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On bifurcation for semilinear elliptic Dirichlet problems on

geodesic balls

Alessandro Portaluri and Nils Waterstraat

Abstract

We study bifurcation from a branch of trivial solutions of semilinear elliptic Dirichlet

boundary value problems on a geodesic ball, whose radius is used as the bifurcation param-

eter. In the proof of our main theorem we obtain in addition a special case of an index

theorem due to S. Smale.

1 Introduction

Let (M, g) be an oriented Riemannian manifold of dimension n and let ∆ = div grad : C∞(M) →
C∞(M) denote the associated Laplace-Beltrami operator. Let V : M × R → R be a smooth
function such that V (p, 0) = 0 for all p ∈M and

|V (p, ξ)| ≤ C(1 + |ξ|α),

∣

∣

∣

∣

∂V

∂ξ
(p, ξ)

∣

∣

∣

∣

≤ C(1 + |ξ|β), (p, ξ) ∈M × R, (1)

for some C > 0 and constants α, β ≥ 0 depending on the dimension n of M (cf. [AP93, §1.2]).
In this paper we deal with local solutions of the semilinear equation

−∆u(p) + V (p, u(p)) = 0, p ∈M, (2)

under Dirichlet boundary conditions. Note that many equations from geometric analysis are of
the type (2). Let us refer to [Au82], [Be87] and just mention as an example on compact manifolds
of dimension n ≥ 3 the equation

4
n− 1

n− 2
∆u(p) + s(p)u(p) = µu(p)

n+2

n−2 , p ∈M, (3)

where s :M → R denotes the scalar curvature function and µ the Yamabe invariant of the metric
g on M . Positive solutions u ∈ C∞(M) of (3) give rise to metrics g̃ of constant scalar curvature

on M by g̃ = u
4

n−2 g.
We now fix a point p0 ∈ M and assume that the unit ball B(0, 1) ⊂ Tp0

M is contained in the
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maximal domain on which the exponential map expp0
at p0 is an embedding. Let us denote

by B(p0, r) = expp0
(B(0, r)) the geodesic ball of radius 0 < r ≤ 1 around p0 and consider the

Dirichlet boundary value problems

{

−∆u(p) + V (p, u(p)) = 0, p ∈ B(p0, r)

u(p) = 0, p ∈ ∂B(p0, r).
(4)

We call r∗ ∈ (0, 1] a bifurcation radius for the boundary value problems (4) if there exists
a sequence of radii rn → r∗ and functions un ∈ H1

0 (B(p0, rn)) such that un is a non-trivial
weak solution of (4) on B(p0, rn) and ‖un‖H1

0
(B(p0,rn)) → 0. Note that we exclude from the

definition the limiting case r∗ = 0 in which the domain degenerates to a point. The reason
is that ‖un‖H1

0
(B(p0,rn)) → 0 for rn → 0 holds, for example, for any sequence of functions

un ∈ C1(B(p0, rn)), n ∈ N, such that all un and their weak derivatives are bounded uniformly.
Consequently, a bifurcation radius r∗ = 0 would not imply the existence of non-trivial solutions
of (4) for small r > 0 which are arbitrarily close to the trivial solution u ≡ 0 in a suitable sense.
Let us now consider the linearised boundary value problems

{

−∆u(p) + f(p)u(p) = 0, p ∈ B(p0, r)

u(p) = 0, p ∈ ∂B(p0, r),
(5)

where f(p) = ∂V
∂ξ

(p, 0), p ∈M . We call r∗ ∈ (0, 1] a conjugate radius for (5) if

m(r∗) := dim{u ∈ C2(B(p0, r
∗)) : u solves (5)} > 0,

and from now on we assume that m(1) = 0. Our main result reads as follows:

Theorem 1.1. The bifurcation radii of (4) are precisely the conjugate radii of (5).

We explain below in the proof of Theorem 1.1 that we obtain from our methods a new proof
of the Morse-Smale index theorem [Sm65] (cf. also [Sm67]) for the linearised equations (5). As a
consequence, we conclude that m(r) = 0 for almost all radii r ∈ (0, 1), and moreover, we derive
from Theorem 1.1 the following corollary:

Corollary 1.2. Let µ denote the Morse index of (5) on B(p0, 1), i.e. the number of negative

eigenvalues counted according to their multiplicities. If µ 6= 0, then there exist at least

⌊

µ

max0<r<1m(r)

⌋

distinct bifurcation radii in (0, 1), where ⌊·⌋ denotes the integral part of a real number.

Let us point out that a proof of Theorem 1.1 and Corollary 1.2 for the special case that M
is a star-shaped domain in R

n can be found in [PW13]. The following section is devoted to the
more general setting which we consider here.

2 The proof

Our main reference for the Laplace-Beltrami operator on manifolds with boundary is [Ta96, §2.4].
Let us recall at first that in local coordinates

2



∆u =
n
∑

j,k=1

|g|−
1
2
∂

∂xj

(

gjk|g|
1
2
∂u

∂xk

)

,

where gjk, 1 ≤ j, k ≤ n, are the components of the inverse of the metric tensor g = {gjk} and
|g| := | det{gjk}| is the absolute value of its determinant. Denoting by dvolg the volume form of
g, we find for v ∈ H1

0 (B(p0, r)), 0 < r ≤ 1,

−

∫

B(p0,r)

(∆u)(p)v(p) dvolg +

∫

B(p0,r)

V (p, u(p)) v(p) dvolg

= −

∫

B(0,r)

v(x)
n
∑

j,k=1

∂

∂xj

(

gjk(x)|g(x)|
1
2
∂u

∂xk
(x)

)

dx+

∫

B(0,r)

|g(x)|
1
2V (x, u(x))v(x) dx

=

∫

B(0,r)

n
∑

j,k=1

gjk(x)|g(x)|
1
2
∂u

∂xk
(x)

∂v

∂xj
(x) dx+

∫

B(0,r)

|g(x)|
1
2 V (x, u(x))v(x) dx

= r

∫

B(0,1)

n
∑

j,k=1

gjk(r · x)|g(r · x)|
1
2
∂u

∂xk
(r · x)

∂v

∂xj
(r · x) dx

+ r

∫

B(0,1)

|g(r · x)|
1
2V (r · x, u(r · x))v(r · x) dx,

and analogously

−

∫

B(p0,r)

(∆u)(p)v(p) dvolg +

∫

B(p0,r)

f(p)u(p)v(p) dvolg

= r

∫

B(0,1)

n
∑

j,k=1

gjk(r · x)|g(r · x)|
1
2
∂u

∂xk
(r · x)

∂v

∂xj
(r · x) dx

+ r

∫

B(0,1)

|g(r · x)|
1
2 f(r · x)u(r · x)v(r · x) dx.

We now set B := B(0, 1) and define for 0 ≤ r ≤ 1 a functional qr : H
1
0 (B)×H1

0 (B) → R by

qr(u, v) =

∫

B

n
∑

j,k=1

gjk(r · x)|g(r · x)|
1
2
∂u

∂xk
(x)

∂v

∂xj
(x) dx + r2

∫

B

|g(r · x)|
1
2V (r · x, u(x))v(x) dx

as well as a quadratic form hr : H1
0 (B) → R by

hr(u) =

∫

B

n
∑

j,k=1

gjk(r · x)|g(r · x)|
1
2
∂u

∂xk
(x)

∂u

∂xj
(x) dx+ r2

∫

B

|g(r · x)|
1
2 f(r · x)u(x)2 dx.

From the computations above we conclude that:

i) r∗ ∈ (0, 1] is a bifurcation radius for (4), if and only if there exist a sequence {rn}n∈N ⊂
(0, 1], rn → r∗, and a sequence of non-trivial functions {un}n∈N ⊂ H1

0 (B), un → 0, such
that qrn(un, ·) = 0 ∈ (H1

0 (B))∗ for all n ∈ N.
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ii) r∗ ∈ (0, 1] is a conjugate radius for (5) if and only if hr is degenerate.

We now define a function ψ : [0, 1]×H1
0 (B) → R by

ψ(r, u) =

∫

B

n
∑

j,k=1

gjk(r · x)|g(r · x)|
1
2
∂u

∂xk
(x)

∂u

∂xj
(x) dx+ r2

∫

B

|g(r · x)|
1
2 G(r · x, u(x)) dx,

where

G(x, t) =

∫ t

0

V (x, ξ) dξ.

It is a standard result that ψ is C2-smooth under the growth conditions (1), and Duψr = qr(u, ·),
u ∈ H1

0 (B). Moreover, 0 ∈ H1
0 (B) is a critical point of all functionals ψr and the corresponding

Hessians are given by D2
0ψr = hr. From the compactness of the inclusion H1

0 (B) →֒ L2(B),
we see at once that the Riesz representation of the quadratic form hr is a selfadjoint Fredholm
operator. In particular, it is invertible if hr is non-degenerate.
Let us now assume at first that r∗ ∈ (0, 1] is not a conjugate radius. Then hr∗ is non-degenerate
and we conclude by the implicit function theorem [AP93, §2.2] that the equation qr(u, ·) = 0
has no other solutions than (r, 0) ∈ [0, 1]×H1

0 (B) in a neighbourhood of (r∗, 0). Consequently,
(r∗, 0) is not a bifurcation radius, and we have shown that every bifurcation radius in (0, 1] is a
conjugate radius.
In order to prove the remaining implication of Theorem 1.1, we make use of the bifurcation
theory for critical points of smooth functionals developed in [FPR99]. Accordingly, we consider
for r0 ∈ (0, 1) the quadratic forms

Γ(h, r0) : kerhr0 → R, Γ(h, r0)[u] =

(

d

dr
|r=r0 hr

)

u.

By [FPR99, Thm. 1& Thm. 4.1], r0 is a bifurcation radius if Γ(h, r0) is non-degenerate and has
a non-vanishing signature (cf. also Section 2.1 in [PW13]). Consequently, we now assume that
r0 ∈ (0, 1) is a conjugate radius and our aim is to compute Γ(h, r0). Let us write for simplicity
of notation

ajk(x) = gjk(x)|g(x)|
1
2 , x ∈ B, 1 ≤ j, k ≤ n,

f̃(x) = |g(x)|
1
2 f(x), x ∈ B.

For u ∈ kerhr0 we have by definition

Γ(h, r0)[u] =

∫

B

n
∑

j,k=1

〈∇ajk(r0 · x), x〉
∂u

∂xk
∂u

∂xj
dx+

∫

B

d

dr
|r=r0 (r2f̃(r · x))u(x)2 dx. (6)

Let us now introduce a new function by vr(x) := u( r
r0

· x), r ∈ (0, r0], x ∈ B, and denote

u̇(x) :=
d

dr
|r=r0 vr(x) =

1

r0
〈∇u(x), x〉. (7)

It is readily seen that vr satisfies

4



−

n
∑

j,k=1

∂

∂xj

(

ajk(r · x)
∂vr

∂xk

)

+ r2f̃(r · x)vr(x) = 0,

and by differentiating with respect to r at r = r0 we have

0 = −

n
∑

j,k=1

∂

∂xj

(

〈∇ajk(r0 · x), x〉
∂u

∂xk

)

−

n
∑

j,k=1

∂

∂xj

(

ajk(r0 · x)
∂u̇

∂xk

)

+
d

dr
|r=r0 (r2f̃(r · x))u(x) + r20 f̃(r0 · x)u̇(x).

(8)

We multiply (8) by u and integrate over B:

0 = −

∫

B

n
∑

j,k=1

∂

∂xj

(

〈∇ajk(r0 · x), x〉
∂u

∂xk

)

u(x) dx−

∫

B

n
∑

j,k=1

∂

∂xj

(

ajk(r0 · x)
∂u̇

∂xk

)

u(x) dx

+

∫

B

d

dr
|r=r0 (r2f̃(r · x))u(x)2 dx+

∫

B

r20 f̃(r0 · x)u̇(x)u(x) dx.

Let ν(x) = (ν1(x), . . . , νn(x)), x ∈ ∂B, denote the outward pointing unit normal to the boundary
of B. Using u |∂B= 0, we obtain from integration by parts

0 =

∫

B

n
∑

j,k=1

〈∇ajk(r0 · x), x〉
∂u

∂xk
∂u

∂xj
dx−

∫

∂B





n
∑

j,k=1

〈∇ajk(r0ẋ), x〉νj(x)
∂u

∂xk



 u(x) dS

+

∫

B

n
∑

j,k=1

ajk(r0 · x)
∂u̇

∂xk
∂u

∂xj
dx−

∫

∂B





n
∑

j,k=1

ajk(r0 · x)νj(x)
∂u̇

∂xk



u(x) dS

+

∫

B

d

dr
|r=r0 (r2f̃(r · x))u(x)2 dx+

∫

B

r20 f̃(r0 · x)u̇(x)u(x) dx

=

∫

B

n
∑

j,k=1

〈∇ajk(r0 · x), x〉
∂u

∂xk
∂u

∂xj
dx−

∫

B

n
∑

j,k=1

∂

∂xj

(

ajk(r0 · x)
∂u

∂xk

)

u̇(x) dx

+

∫

∂B





n
∑

j,k=1

ajk(r0 · x)νj(x)
∂u

∂xk



 u̇(x) dS

+

∫

B

d

dr
|r=r0 (r2f̃(r · x))u(x)2 dx+

∫

B

r20 f̃(r0 · x)u̇(x)u(x) dx.

Since u ∈ kerhr0 ,

−
n
∑

j,k=1

∂

∂xj

(

ajk(r0 · x)
∂u

∂xk

)

+ r20 f̃(r0 · x)u(x) = 0, x ∈ B, (9)

and it follows from (6) and (7) that
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Γ(h, r0)[u] = −
1

r0

∫

∂B





n
∑

j,k=1

ajk(r0 · x)νj(x)
∂u

∂xk



 〈∇u(x), x〉 dS. (10)

If we set A(x) := {ajk(x)}, x ∈ B, and use that ν(x) = x for all x ∈ ∂B, we can rewrite (10) as

Γ(h, r0)[u] = −
1

r0

∫

∂B

〈A(r0 · x)x,∇u(x)〉 〈∇u(x), x〉 dS.

Denoting by (A(r0 · x)x)
T , x ∈ ∂B, the tangential component of the vector A(r0 · x)x, we have

〈A(r0 · x)x,∇u(x)〉 = 〈∇u(x), x〉 〈A(r0 · x)x, x〉 + 〈∇u(x), (A(r0 · x)x)
T 〉

and hence

Γ(h, r0)[u] = −
1

r0

∫

∂B

〈∇u(x), x〉2 〈A(r0 · x)x, x〉 dS

−
1

r0

∫

∂B

〈∇u(x), x〉 〈∇u(x), (A(r0 · x)x)
T 〉 dS.

Since

〈∇u(x), x〉 〈∇u(x), (A(r0 · x)x)
T 〉 = div(u(x)〈x,∇u(x)〉(A(r0 · x)x)

T ), x ∈ ∂B,

we finally get by Stokes’ theorem

Γ(h, r0)[u] = −
1

r0

∫

∂B

〈∇u(x), x〉2 〈A(r0 · x)x, x〉 dS ≤ 0, (11)

where we use that A(x) is positive definite for all x ∈ B.
Moreover, we obtain from (11) that if Γ(h, r0)[u] = 0 for some u ∈ kerhr0 , then

〈∇u(x), x〉 = 〈∇u(x), ν(x)〉 =
∂u

∂ν
(x) = 0

for all x ∈ ∂B which implies u ≡ 0 by the unique continuation property.
In summary, we have shown that Γ(h, r0) is negative definite, and so in particular non-degenerate
with the non-vanishing signature

sgnΓ(h, r0) = m(r0). (12)

Consequently, r0 is a bifurcation radius and Theorem 1.1 is proven.
Let us now prove Corollary 1.2. We note at first that the Morse index µ of (5) on the full
domain B(p0, 1) is given by the Morse index µ(h1) of the quadratic form h1. Moreover, since h0
is positive, we see that µ(h0) = 0. It is shown in [FPR99, Prop. 3.9& Thm. 4.1] that if Γ(h, r)
is non-degenerate for all r ∈ (0, 1), then kerhr = 0 for almost all r ∈ (0, 1) and

6



µ(h1)− µ(h0) =
∑

0<r<1

sgnΓ(h, r).

Consequently, we conclude from (12) that m(r) = dim kerhr = 0 for almost all r ∈ (0, 1) and

µ =
∑

0<r<1

m(r). (13)

Let us point out that (13) was obtained by Smale in [Sm65] by studying the monotonicity
of eigenvalues under shrinking of domains. Hence we have obtained a new proof of Smale’s
theorem for the boundary value problem (5), and moreover, Corollary 1.2 is now an immediate
consequence of (13) and Theorem 1.1.
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