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Iterated gate-teleportation and blind quantum computation
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Blind quantum computation (BQC) allows a user to delegate a computation to an untrusted server while keep-
ing the computation hidden. A number of recent works have sought to establish bounds on the communication
requirements necessary to implement blind computation, and a bound based on the no-programming theorem of
Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in lim-
ited scenarios, and show how to overcome it using a novel method of iterated gate-teleportations. This technique
enables drastic reductions in the communication required for distributed quantum protocols, extending beyond
the blind computation setting. Applied to BQC, this technique offers significant efficiency improvements, and
in some scenarios offers an exponential reduction in communication requirements.

Blind quantum computation is a cryptographic task
whereby a client seeks to hide a delegated computation from
the server implementing the computation. A number of proto-
cols for blind computation have been discovered [1–11], and
a range of capabilities for the client have also been consid-
ered, from the ability to prepare or measure individual single
qubit states [1, 5, 6], to the ability to perform universal com-
putation on fixed size systems [2]. Recently work has sought
to unify this disparate family of protocols in terms of security
definitions [12] and in terms of resource accounting [9, 11].

Recently, Giovannetti et al. proposed a novel cheat-
sensitive protocol for blind quantum computation [11]. They
also derived a lower bound on communication, and showed
their protocol to be optimal with respect to it. Their bound—
based on the no-programming theorem of Nielsen and Chuang
[13]—argues that Ω(S log2 G) qubits must be exchanged be-
tween client and server, where S is the total number of gates
performed, and G is the cardinality of the gate set. It is tempt-
ing to conjecture that the no-programming bound applies to
any approach to blind quantum computation [16]. In this pa-
per, however, we show that such an efficiency constraint can
be overcome even if the client is only allowed to prepare ar-
bitrary single qubit states. The protocols we construct are not
only more efficient than previous blind computation protocols,
but require less communication than is required to classically
describe the delegated computation.

We introduce three protocols in this Letter. The purpose
of the first protocol is to introduce our technique of iterated
gate-teleportation. This is based on the usual gate telepor-
tation [14], but differs from standard usages in that instead
of directly correcting errors induced by teleportation byprod-
ucts, we make use of additional gate teleportation steps to cor-
rect the state of the system. This change, by itself, would not
normally provide any drastic speedups. However, we show
that there are certain universal gate-sets that allow for guar-
anteed correction in very few (constant) number of gate tele-
portations. This technique provides a general means of in-
creasing the efficiency of delegated computation, independent
of whether it is a stand-alone computation or forms part of
some cryptographic protocol. We then leverage this new tech-
nique for efficiently delegating computation to improve the
efficiency of BQC. In Prot. 2 we give a blind version of it-

FIG. 1: Gate teleportation procedure. The top set of wires corre-
sponds to register R, while the bottom set correspond to R′.

erated gate-teleportation, and in Prot. 3, we build a complete
universal BQC protocol that, using Prot. 2 as a building block,
achieves a significant saving in the total communication cost,
allowing our protocol to avoid the lower bound on communi-
cation of S log2 G which results from a naive application of the
no-programming theorem.

Consider the set Dm,l of all diagonal operators acting on
m qubits of the form exp(i∑ j∈{0,1}m θ jZ j1 ⊗Z j2 ⊗ . . .⊗Z jm),
with θ j ∈ { rπ

2l |r ∈ {0,1,2,3, . . . ,2l − 1}}. Our approach al-
lows Alice to successfully teleport any given operator D ∈
Dm,l to Bob in at most l steps, each involving the transmis-
sion of m qubits. This gives a total cost of O(ml). Com-
pare this to any setting where the no-programming theorem
applies, which sets a minimum of Ω(l2m) qubits to be trans-
mitted.

We will assume that Bob’s system contains two registers R
and R′. The multi-qubit gate teleportation circuit we use is de-
picted in Fig. 1. This procedure is formalised in Prot. 1. Note
that at the end of Prot. 1, Bob is in possession of the desired
output state, up to a series of Pauli-X corrections, which he
can perform himself—in this non-blind version. Before dis-
cussing a blind version of Prot. 1 we show that this protocol, if
followed by both Alice and Bob, does indeed yield the correct
output [17].

We will begin by examining the effect of an iteration of
the main loop (Steps 2a through 2d) on an arbitrary input
state |ψ〉 in register R. Each iteration serves to implement
a gate teleportation so that an input state |ψ`〉 is transformed
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Protocol 1 Iterated Gate-Teleportation
Alice’s input: Gate D ∈Dm,l to be teleported.

Bob’s input: Initial state |ψ〉, in register R.

Output: The state XD|ψ〉 in Bob’s register R, where X is a tensor
product of the Pauli-X operator and the identity, known both
to Bob and Alice.

Steps:

1. Set D1 = D.

2. For 1≤ `≤ l

(a) Alice prepares the state D`|+〉⊗m, and sends it to Bob,
who stores it in register R′.

(b) Bob applies the teleportation procedure depicted in Fig.
1 obtaining measurement results s(`)1 , . . . ,s(`)m . He sends
the measurement results to Alice.

(c) Bob swaps the contents of register R and R′.

(d) Set D`+1 = X`D`X`D
†
` , where X` =

⊗m
i X s(`)i .

3. Set X =
(
∏

l
`=1 X`

)
. Bob now has the desired state XD|ψ〉 in

register R.

to |ψ`+1〉= D`X `|ψ`〉. Thus,

|ψl〉=
(

l

∏
`=1

D`X `

)
|ψ〉, (1)

where the product operator is used to denote that the left to
right ordering is from highest to lowest value of `. Note that
if an operator D ∈ Dm,t then (

⊗n
k=1 Xak)D(

⊗n
k=1 Xak)D† ∈

Dm,t−1 for any choice of variables ak ∈ {0,1}. Thus, for any
`, we have D` ∈ Dm,l−`+1. Since Dm,1 corresponds to the set
of tensor products of Z and the identity, DlX l =±X lDl . Thus,
up to a global phase, we have

|ψl〉= X lDl

(
l−1

∏
`=1

D`X `

)
|ψ j〉, (2)

which collapses telescopically, substituting in the definition of
D`, to yield

|ψl〉=
(

l

∏
`=1

X `

)
D1|ψ j〉. (3)

Setting X =
(
∏

l
`=1 X `

)
completes the proof. Note that, at this

stage, Bob can correct his state by applying Pauli-X to his
qubits as appropriate, without knowing the teleported gate,
and without any further assistance or communication from Al-
ice.

It is worth noting here that the set Dm,l was chosen precisely
so that it exhibits the behaviour shown above. If one attempted
to use the iterated gate-teleportation approach naively on an
arbitrary gate set, one would have to repeat the teleportation
process until the current gate teleportation succeeds. For a
gate acting on n qubits, this success probability is 2−n, giving

Protocol 2 Blind Iterated Gate-Teleportation
Alice’s input: Gate D ∈Dm,l to be teleported.

Bob’s input: Initial state |ψ〉, in register R.

Output: The state ZXD|ψ〉 in Bob’s register R, where Z (X) is a ten-
sor product of the Pauli-Z (Pauli-X) operator and the identity,
and Z is Alice’s encryption key, known only to her.

Steps:

1. Set D1 = D.

2. For 1≤ `≤ l

(a) Alice prepares the state Z`Z`−1D`|+〉⊗m, where Z` =⊗m
k=1 Zr(`)k , where r(`)k , 1≤ `≤ l are uniformly random

bits, and Z0 = I. She transmits it to Bob, who stores it
in register R′.

(b) Bob applies the teleportation procedure depicted in Fig.
1 obtaining measurement results s(`)1 , . . . ,s(`)m . He sends
the measurement results to Alice.

(c) Bob swaps the contents of register R and R′.

(d) Set D`+1 = X`D`X`D
†
` , where X` =

⊗m
i X s(`)i .

3. Set X =
(
∏

l
`=1 X`

)
, and Z = Zl . Bob now has the desired

state ZXD|ψ〉 in register R.

an expected communication cost of Ω(2n). Using the gate
set Dm,l , however, guarantees the correct gate to be teleported
in at most O(l) steps, independent of n. Setting l = 3 will
include the π/8-gate in the set Dm,l , making the set, along
with Hadamard and CZ operators applied by Bob, universal
for quantum computation, as well as making the iterated gate-
teleportation succeed in O(1) steps.

Next we present a blind version of Prot. 1. This procedure
allows for the same functionality as the previous protocol, en-
abling Alice and Bob to perform gate teleportation of a gate
encoded by Alice, while additionally ensuring that the gate re-
mains unknown to Bob. The procedure for accomplishing this
is presented in Prot. 2.

The proof of correctness of Prot. 2 is similar to that of Prot.
1. The only difference is that now each iteration adds a se-
ries of random Pauli-Z operators. With each iteration an input
state |ψ`〉 is transformed to |ψ`+1〉= Z`Z`−1D`X `|ψ`〉. Thus,

|ψl〉=
(

l

∏
`=1

Z`Z`−1D`X `

)
|ψ〉, (4)

where, again, the product operator is used to denote that the
left to right ordering is from highest to lowest value of `. As
before, we use the property of Dm,1, and the definition of D`

to telescopically collapse the last equation to

|ψl〉= Zl

(
l

∏
`=1

X `

)
D1|ψ j〉. (5)

A protocol P with input X is said to be blind while leaking
at most L(X)[5], if the distribution of classical and quantum
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FIG. 2: Blind Quantum Computation with Teleportation Protocol.
The dotted-line square shows the repeating pattern of operations.

information obtained by Bob after running P depends only on
L(X) [18]. Accordingly, Prot. 2 is blind while leaking at most
(l,m). The only information transmitted from Alice to Bob
are the set of quantum states |φ`〉 = Z`Z`−1D`|0〉⊗m. Note
that only |φl〉k is a function of r(l)k for 1 ≤ k ≤ m, and that as
these values are unknown to Bob, this state is necessarily the
maximally mixed state of m qubits, and hence independent
of the values of all other r(`)k when ` 6= l. Hence |φl−1〉 is

the only quantum state dependent on r(l−1)
k for 1 ≤ k ≤ m,

and must similarly be in a maximally mixed state. We can
apply this argument recursively, implying that every state sent
from Alice to Bob is in the maximally mixed state due to the
unknown values of {r`k|1≤ k ≤ m,1≤ `≤ l}, which serve as
Alice’s key. As the joint state of all these messages are fixed
to the maximally mixed state and hence independent of the
computation, the only parameters leaked to Bob are l and m.

We are now in a position to present a complete protocol for
universal blind quantum computation. This is presented as a
family of protocols which are parameterised by an integer m,
corresponding to the size of the client’s system. During inter-
mediate steps Alice will instruct Bob to perform m-qubit gates
via gate-teleportation, using Prot. 2. The purpose of studying
protocols with varying parameter m is the following. When m
is small, we obtain a protocol with modest resource require-
ments on Alice while still outperforming previous protocols.
On the other hand, when m is proportional to the number of
qubits used in the computation, n, the protocol achieves an
exponential (in n) separation in total communication from the
naive limit implied by the no-programming theorem.

The protocol proceeds in phases. During the jth teleporta-
tion phase, Alice will use gate teleportation to send the desired
gates to Bob. Without loss of generality we assume that m di-
vides n [19], such that n = Pm, for some integer P. Then for
each contiguous set of m qubits Alice will teleport an opera-
tor D j,p, to Bob, for 1 ≤ p ≤ P, who will then apply it to the
qubits labelled (p− 1)m+ 1 through pm of his current state
in memory. Thus, if at the beginning of the jth phase Bob’s
register is in the state |ψ j〉, by the end of the phase it will be
in state D j|ψ j〉, where D j =⊗P

p=1D j,p.
As the set of gates which may be implemented by gate

teleportation do not form a universal gate set, the scheme

Protocol 3 General Iterated Teleportation Blind Quantum
Computation

1. Alice chooses a depth J and a set of diagonal opera-
tions D j =

⊗P
p=1 D j,p, D j,p ∈ Dm,x, where P = n/m and

n is the number of qubits used in the computation, such
that her target computation is given by the measurement
of HDJHDJ−1HCZ . . .CZD2HD1|+〉⊗n in the computational
basis.

2. Alice produces the state Z1D1|+〉⊗n, where Z1 =
⊗m

k=1 Zr(1)k ,

where each r(1)k is chosen uniformly at random from the set
{0,1}, and transmits J and this state to Bob, who stores the
quantum state in register R.

3. For 2≤ j ≤ J

(a) If j ≡ 1 mod 2, then Bob applies CZ to register R.

(b) Bob applies H to register R.

(c) For 1≤ p≤ P

i. Alice calculates the operator f j,p(D j,p), where the
function f j,p is defined in the main text in Eq. 11.

ii. Alice and Bob engage in Prot. 2 using f j,p(D j,p)
as Alice’s target gate, and Bob’s qubits (p− 1)m
through pm as the target register.

iii. Alice keeps a record of the operator X j,p, the tele-
portation byproduct resulting from Prot. 2, and
Z j,p her encryption key.

(d) Alice calculates the operators

X j =

n/m⊗
p

X j,p, Z j =

n/m⊗
p

Z j,p, (6)

and keeps a record of them.

4. Finally, Bob measures his resulting state in the X basis, and
sends the measurement outcomes m1 . . .mn to Alice. Alice
computes each output bit for the computation as ok = mk⊕rJ

k ,
where ZJ =

⊗
k ZrJ

k .

we present here leverages fixed gates implemented by Bob to
bring about universality in a completely blind manner, as fol-
lows. Interspersed with the operations that Alice teleports,
Bob will also apply the operation CZ = ∏

n−1
i=1 CZ(i, i + 1),

where CZ(i, i+1) is the controlled-Z operator acting on qubits
i and i+ 1; as well as the operator H = H⊗n, where H is the
usual Hadamard operator. The order of phases of the protocol
is as follows. The first step consists of controlled-Z opera-
tors, followed by a Hadamard step, then a teleportation phase,
then another Hadamard phase, followed by a second telepor-
tation phase. Then, the pattern repeats itself until J teleporta-
tion phases have been achieved. To simplify the analysis, and
without loss of generality, we assume J is even. This set of
operations forms a universal set of gates for quantum compu-
tation for any m, and any x ≥ 2 (see for example [15]). See
Fig. 2 for a schematic diagram and Prot. 3 for formal presen-
tation of the protocol.

The correct operation of the protocol depends on the proper
definition of the function f j used in Step 3c. This function is
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meant to correct and remove the X errors and the Z obfusca-
tion operators introduced in previous steps. Before giving a
general definition of f j, lets first consider a simplified version
of the protocol where m = n and the phases of controlled-Z
operators have been subsumed into the diagonal operator tele-
portation phases. Hence, the protocol simplifies into a series
teleported gate phases followed by a layer of Hadamard gates.
The output of the protocol is then given by

|ψo〉=
J

∏
j=1

(
Z jX j f j(D j)H

)
|0〉⊗n, (7)

where the product operator is used to denote that the left to
right ordering is from highest to lowest value of j.

Because there is a layer of Hadamard gates in between ev-
ery teleportation stage, the Z operator byproducts are turned
into X operators, and vice versa, before the the next telepor-
tation. Since Alice can only implement diagonal gates using
Prot. 2, she can only correct the X byproducts of the previous
stage. She can, however, conjugate her current gate with the
previous Z operators, so as to commute that operator forward,
so that it can be corrected in the following teleportation stage.
In this case, f j is given by:

f j(D) = HZ j−1HDZ j−2HX j−1Z j−1H, (8)

where Z j = X j = I for all j < 1. It is straightforward to verify
from the definition above that f j maps Dm,l onto itself. Now,
substituting into Eq. 7 we get

|ψo〉= ZJXJ

J

∏
j=1

(
D jH

)
|0〉⊗n. (9)

From this state, Alice can get the correct output for compu-
tation by having Bob measure in the X basis, and sending her
the output. After this, she uses her decryption key.

The analysis of the full protocol is slightly more involved
due to the (re-)introduction of the CZ gates, since these affect
the propagation of X byproducts. Fortunately, errors propa-
gate only once, to the nearest neighbours before they can be
corrected. To see this, note that in between every two CZ
gate stages, there are two sequences of Hadamard operators
followed by gate teleportations. Hence, any error that cannot
be fixed in the gate-teleportation phase immediately preced-
ing the CZ stage, can be corrected in the subsequent phase. In
order to define the general correction function f j,p, let x j,k and
y j,k be such that

X j =
n⊗

k=1

Xx j,k , and Z j =
n⊗

k=1

Zz j,k . (10)

For even j we take χ j,k = z j−1,k and ζ j,k = z j−2,k +x j−1,k +

∑t∈{−1,1}
(
z j−3,k+t + x j−2,k+t

)
, and for odd j we take χ j,k =

z j−1,k + ∑t∈{−1,1}
(
z j−2,k+t + x j−1,k+t

)
and ζ j,k = z j−2,k +

x j−1,k. Then, finally, for all j and p we define

f j,p(D) =

(⊗
k

X χ j,k

)
D

(⊗
k

Zζ j,k X χ j,k

)
, (11)

where the tensor products are taken over values of k ranging
from (p−1)m+1 to pm.

The correctness of the general protocol follows from a sim-
ilar argument to that of the special case previously considered.
The output of the general protocol is given by

|ψo〉=
J

∏
j=1

Z jX j

n/m⊗
p=1

f j,p(D j,p)

HCZ j

 |0〉⊗n, (12)

where the product operator is used to denote that the left to
right ordering is from highest to lowest value of j. Substitut-
ing Eq. 11 into Eq. 12, with some elementary algebra, gives

|ψo〉= ZJXJ

J

∏
j=1

(
D jHCZ j

)
|0〉⊗n, (13)

as required. Furthermore, it follows directly from the blind-
ness of Prot. 2 that Prot. 3 is blind while leaking at most
(J, l,m,n).

Setting the parameter m equal to n, the above protocol re-
quires that Alice transmit exactly Jx different n qubit states to
Bob, and hence requires only a total of nJx qubits to be sent
from Alice to Bob, and nJx classical bits to be sent from Bob
to Alice. However, this protocol implements J unknown op-
erations, each of which can be drawn arbitrarily from the set
Dk which has cardinality (2k)(2

n−1). Any scheme to which the
no-programming theorem applies, such as that in [11], would
require that at least Jk(2n−1) qubits or bits be communicated,
and hence the protocol presented here is exponentially more
efficient than than previous schemes.

However, setting m equal to n requires Alice to prepare
large entangled states, which may be undesirable in realistic
settings. Our main interest in considering such a setting is
to highlight the inapplicability of lower bounds based on the
no-programming theorem. On the other hand, setting m to a
small constant, gives a protocol that is at least as easily im-
plementable as previous ones in terms of resources needed on
Alice’s side, while still being universal for quantum computa-
tion, and offering a communication advantage. In the interme-
diate case where m is of order nα for α < 1 the protocol ob-
tained yields an exponential increase over previous schemes in
terms of the rate at which gates can be encoded, while retain-
ing the property that Alice’s device is insufficient to perform
the desired computation alone.

The approach of iterated gate-teleportation introduced in
this comment can be applied to other measurement-based
blind computation protocols (such as [1], [5] and [9]) to
achieve smaller advantages over the no-programming theo-
rem bound. It can be used outside of the blind computation
setting, to reduce communication requirements in other dele-
gated computation scenarios via Prot. 1.

This material is based on research funded by the Singa-
pore National Research Foundation under NRF Award NRF-
NRFF2013-01. We thank Lorenzo Maccone, Tomoyuki
Morimae and Terry Rudolph for helpful comments on the
manuscript.
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