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ABSTRACT

This thesis concerns the development of robust nonlinear control design for complex systems

including nonholonomic systems and large-scale systems using sliding mode control (SMC)

techniques under the assumption that all system state variables are accessible for design. The

main developments in this thesis include:

• The concept of generalised regular form and design of a novel sliding function. The

mathematical definition of generalised regular form is proposed for the first time. It is an

extension of the classical regular form, which makes SMC applicable to a wider class of

nonlinear systems. A novel sliding function design, which is based on the global implicit

function theorem, is proposed to guarantee unique sliding mode dynamics.

• The development of decentralised SMC for large-scale interconnected systems. For

systems with uncertain interconnections which possess the superposition property, a de-

centralised control scheme is presented to counteract the effect of the uncertainty by using

bounds on uncertainties and interconnections. The bounds used in the design are nonlinear

functions instead of constant, linear or polynomial functions. The design strategy has

also been expanded to a fully nonlinear case for interconnected systems in the generalised

regular form.

• Robust decentralised SMC for a class of nonlinear systems with uncertainties in input

distribution. A system with uncertainties in input distribution is full of challenges. A novel

method is proposed to deal with such uncertainties for a class of nonlinear interconnected

systems. The designed decentralised SMC enhances the robustness of the controlled

systems.

This thesis also provides case studies of three applications for the proposed approaches.

The existence of the generalised regular form is verified in the trajectory tracking control of a

wheeled mobile robot (WMR) system. Both simulations and experiments on the WMR are given

to demonstrate the validity and effectiveness of the generalised regular form-based SMC design.

A continuous stirred tank reactor (CSTR) system and a longitudinal vehicle-following system

are used to test the proposed decentralised SMC schemes. An expanded vehicle-following

system with both longitudinal and lateral controllers has been developed to demonstrate the

robust control design for system with uncertainties in input distribution.
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CHAPTER. 1

INTRODUCTION

Automatic control theory can be traced back to the Industrial Revolution with the invention of

improved engines and automatic control systems to regulate them. In the mid 18th century, the

stability of a feedback control system was then analysed with mathematics for the first time.

During the World Wars, the control systems were rapidly developed as the development of

control theory has become a matter of survival [3]. Based on a simple input-output description of

the plant, the system in classical control theory is usually expressed as a transfer function which

simply describes the relationship between the single input and the single output. Without the

knowledge of the interior structure of the plant, only limited control behaviour of the closed-loop

system can be observed at that time. To solve the control problems of a more complex plant, the

study of the modern control theory commenced in the 1960s and turned back to the differential

equation techniques of the late 18th century. Based on the relative rich knowledge of the interior

structure of the system plant, the modern control theory provides a richer description of the

plant dynamics, and the system has become increasingly sophisticated since then. In this thesis,

a study focus on the robust control problems for the complex systems has been carried out with

a detailed background.

1
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1.1. Background and Motivation

Complex systems appear almost in every field of contemporary science and are inevitably

associated with a variety of natural and social phenomena. With our intensive and infinite desire

to study and control such systems, complexity has become a crucial issue for the modern control

theory and practical engineering, and the system performance is getting higher and higher

while the demands of various functions are increasing. As a consequence, the corresponding

control schemes of a complex system inevitably tend to be increasingly sophisticated. This

issue has motivated an enormous number of advanced control techniques to ensure that the

desired performance of the systems meets satisfactory. It is becoming increasingly obvious that

"well-organisational complexity" is the way of the future [4].

Although there may be many characteristics in a particular complex system, it has already

been stated in [5] that to look for an overarching theory which contains all essential properties

of complex systems is rather impractical or at least unlikely to be developed anytime soon.

However, it is still valuable and useful to abstract the common features of such systems for

the development of modern control theory [5]. Moreover, in fact, numerous theoretical and

practical results have been developed over the past few decades. It has been shown that the

complexity of a control system is highly dependent on the controlled plant and environment.

Higher requirements often result in more complexity of a controlled system [4]. Among all

the properties for common complex systems, the following three are studied and focused in

this thesis: nonlinearity [6, 7], dimensionality, information structure constraints and uncertainty

[5, 4].

• Nonlinearity. It has been found that linear dynamical systems are limited to describe

many commonly observed phenomena accurately. At certain circumstances, nearly all

systems more or less exhibit nonlinearity. Although the linear control theory is well

developed, the analysis and design of a nonlinear system are very complex. Therefore,

more advanced control techniques are required for such systems, such as linearization

technique, so that the system can be transferred to a linear system and thus linear control

theory can be applied. However, for some complex systems, linearization may not be

available due to some phenomena of the systems, e.g. finite time escape, multiple isolated

equilibria, limit cycles, harmonic oscillation, chaos or multiple modes of behaviour [8].

CHAPTER 1. INTRODUCTION
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Furthermore, systems such as chaotic systems [9], nonholonomic mechanical systems

[10] also have inherent constraints or nonlinearity which greatly increase the system

complexity. Therefore, nonlinearity inevitably increases the system complexity, especially

when the linearization technique is not available.

• Dimensionality. Technically, large memory and fast computing unit are inevitably re-

quired by a system with high order, i.e. the so-called large-scale system (e.g. see [11]).

The inherent computational complexity makes a centralised structure very difficult to be

applied. Furthermore, some systems may be physically distributed in space, the reliability

of the system is inevitably dependent on the communication network. Thus robustness

and reliability problems, e.g. network failure, in such systems may seriously affect or

even devastate the system stability with centralised structure. To overcome these technical

problems, a large-scale system is inevitably partitioned into many simple systems with

local decision makers (DMs) to manage them. To guaranteed the overall system perfor-

mance, a lot of advanced control architecture is developed. However, such techniques

inevitably result in the extra complexity of the controlled system. Thus dimensionality is

a very challenging problem for control of complex systems.

• Information structure constraints. Due to the computational and network problems

related to dimensionality, the DMs in a large-scale system is often designed with informa-

tion structure constraints [5]. Technology like distributed parallel computing with highly

reliable low-cost multiprocessor architectures can be used for fast control action in re-

sponse to local inputs and perturbations in such systems [4]. Therefore, the decentralised

information constraints, in which DMs in each partitioned system can only access local

information, have drawn much attention during the past few decades. Due to the lack of

information, instability caused by the interaction of the overlapped dynamics become the

main problems of such systems.

• Uncertainty. Although classical control methods, i.e. frequency domain methods, and

state feedback approach in modern control theory have been developed for the fundamental

task of stabilising the system maturely, systems may not have the expected performance in

most practical implementation. For a practical system, it is usually very difficult or even

impossible to build a mathematical model to describe the system accurately. Moreover,

some systems may experience unknown disturbances, worsening the performance or

CHAPTER 1. INTRODUCTION
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even causing system instability. The incomplete identification of the system and external

disturbances leads to one of the crucial topics of modern control theory, i.e. robust

control theory, which is to ensure that the control performance of the practical system

remains satisfactory in the presence of uncertainties. Since these uncertainties frequently

exist in real world, robust control synthesis is relatively essential to maintain the desired

performance, which inevitably increases the complexity of the analyse and design of a

complex system furthermore.

Robust control theory has become an important subject of research during recent decades.

Techniques such as adaptive control [12, 13], variable structure control (VSC) [14, 15] etc.

have been developed to improve the robustness of dynamical systems in the presence of heavy

uncertainties. By classifying the differences in structure, uncertainties that can be included

in the input channel is said to be matched uncertainty [16, 17], and the rest is referred to

mismatched uncertainty [18, 2]. Regarding the resources of the uncertainties, they can be

separated into external disturbances, or exogenous disturbances, and internal uncertainty, or

equivalent modelling uncertainty. The difference between the external disturbance and internal

uncertainty is that the former perturbation does not vary with the system variables, i.e. states,

input signals or output. If external disturbances are the only uncertainties in the system, then a

disturbance observer based control, e.g. see [19, 20], can be applied to estimate the disturbance

so that a proper feedback control can be designed with the extra information to achieve better

performance. However, it has been pointed out in [20] that if the system experience both

external and modelling uncertainty, the disturbance observer will be difficult to be applied since

an accurate relative model is required in such approaches. Furthermore, due to the non-vanishing

properties of the external disturbance, the design with this approach can only achieve ultimate

boundedness stability or only part of the system can achieve asymptotical stability in theory

[21, 20].

As a typical VSC, SMC has been recognised as a robust approach in dealing with nonlinear

systems with matched uncertainties. With discontinuous control law, the SMC drives the system

state trajectory onto a predefined surface in the state space and keeps the system state on the

manifold. By choosing a suitable surface, the system will eventually converge to the desired

equilibrium point as the time tends to infinity. While the system is on the sliding manifold, it

behaves as a reduced order system compared with the original plant. Once the system is on

CHAPTER 1. INTRODUCTION
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the manifold, the reduced-order system is independent of the control signal. The invariance

property has motivated research with an extensive literature for framework establishing robust

SMC for various linear and nonlinear control systems [22, 23, 24, 25]. Methods proposed

by Niu in [26] and [27] show the strong robustness of SMC for systems with uncertainties

in input distribution. Moreover, it has been demonstrated that sliding mode approach can be

applied to control systems with mismatched uncertainties, see for example [28, 19, 29, 30].

Although the so-called "chattering" problem may affect the control performance in the practical

implementation, techniques like boundary layer [31], fuzzy sliding mode [9] and high order

SMC [18] can be applied to relieve the problems.

Motivated by the existing problems in practical systems, this thesis studied the issue of the

SMC for complex systems. Specifically, comprehensive analysis of the robustness of SMC is

provided for complex nonlinear systems, particularly nonholonomic systems and large-scale

interconnected systems. Moreover, some significant control problems for complex nonlinear

systems involving both matched and mismatched uncertainties/interconnections are addressed

based on the SMC design. Furthermore, large-scale interconnected systems with uncertainties

in input distribution are also discussed, and robust decentralised control strategy against such

uncertainties along with matched and mismatched interconnections is also developed with

applications.

1.2. Contributions and Thesis Organisation

This thesis contributes to the knowledge and research not only for robust decentralised

control but also extend the SMC for a wider class of nonlinear systems. The approaches

established in this thesis have been applied to several practical systems through case studies

which includes tracking control for wheeled mobile robot (WMR) system, automated highway

systems etc. The contribution of this thesis can be summarised as follows:

• Mathematical definition of generalised regular form and a novel sliding function design.

The concept of generalised regular form is proposed for the first time. It is an extension of

the classical regular form, which makes the traditional regular form-based SMC applicable

to a wider class of nonlinear systems. A novel nonlinear sliding function design based on
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global implicit function theorem is proposed so that the solution to the sliding function,

i.e. the governed sliding surface, does uniquely exist.

• The development of decentralised SMC for large-scale interconnected systems. For

systems with uncertain interconnections which possess the superposition property, a

decentralised control scheme is presented to counteract the effect of the uncertainty by

using the bounds of uncertainties and interconnections. The bounds used in the design

are nonlinear functions instead of constant, linear or polynomial function. The design

strategy has also been expanded to a fully nonlinear case for interconnected system in the

generalised regular form.

• Robust decentralised SMC for a class of nonlinear systems with uncertainties in input

distribution. A system with uncertainties in input distribution is full of challenges. A novel

method is proposed to deal with such uncertainties for a class of nonlinear interconnected

systems. The designed decentralised SMC enhances the robustness of the controlled

systems.

The rest of this thesis is structured as follows:

Chapter 2 gives some mathematical preliminaries required for the following chapters. Partic-

ularly, the necessary definitions and main results of Lyapunov stability theory and Frobenius

theorem required for the following chapters are provided in this chapter.

Chapter 3 gives basic concept and fundamental knowledge needed to help readers to understand

this thesis. Basic knowledge of state feedback and SMC are discussed. Notably, the existence

of regular form for a nonlinear system is discussed based on the Frobenius theorem, which

will be further investigated in the next two chapters. Following the mathematical definition of

nonholonomic with two examples, a literature survey and fundamental concept related to large-

scale systems are discussed in details with three practical examples. Specifically, two common

decomposition techniques and two networked-based system structure are briefly introduced. It

gives a detailed literature review of robust decentralised control before concluding this chapter.

Chapter 4 studies the trajectory tracking control problem of a WMR system. The review of

the trajectory tracking control of WMRs is discussed, and a robust SMC design for trajectory

tracking control of a WMR system is given with both simulation and experiments verification.

The nonlinear sliding mode controller can track the time-based trajectory within reasonable
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time in a local domain. The simulation and experiment results show that the regular form-based

SMC design is capable of working properly on systems that do not even have a regular form,

which is of interest to be further investigated.

Chapter 5 presents a generalised regular form-based SMC for nonlinear systems. In this chapter,

mathematical definition of generalised regular form is proposed for the first time. The proposed

form includes the classical regular form as a special case and expands the regular form-based

design approach to a wider class of nonlinear systems. The corresponding SMC design with a

novel sliding function design based on global implicit function theorem is then developed. The

obtained results are verified on the trajectory tracking control of a two-WMR system developed

in Chapter 4 with matched and mismatched uncertainties. Both simulation and experiment

results show that the proposed approach is effective.

Chapter 6 focuses on the control problems of large-scale interconnected systems in a decen-

tralised manner. A decentralised control strategy based on sliding mode techniques is proposed

for a class of interconnected systems. The considered system has both linear and nonlinear

parts with both matched uncertainties in the isolated subsystems and mismatched uncertainties

associated with the interconnections. Sliding mode controllers for each subsystem are designed

in a decentralised manner by only employing local information. Case studies including a CSTR

system and an automated highway system (AHS) are carried with simulation to demonstrate the

effectiveness of the approach.

Chapter 7 develops a decentralised SMC design for fully nonlinear interconnected systems in

the generalised regular form. The considered isolated subsystem and the interconnection are

fully nonlinear. The considered system is in the generalised regular form, which makes this

approach applicable to a broader class of nonlinear systems. A numerical example is then given

to demonstrate the design process.

Chapter 8 investigates the problem of uncertainties in input distribution caused by modelling

errors and uncertainties. By addressing the problems, a decentralised SMC for a class of large-

scale nonlinear systems with nonlinear uncertainties in input distribution is then presented. By

utilising the bounds of the uncertainties, the system is stabilised asymptotically in the presence

of both matched uncertainties and mismatched uncertain interconnections under some mild

conditions. The developed results are applied to a vehicle-following system in automated
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highway systems with both longitudinal and lateral controllers. The simulation results show that

the developed results are effective.

Finally, Chapter 9 presents a summary of the main conclusions in this thesis. Discussion

for the potential future work is also provided in this chapter.

CHAPTER 1. INTRODUCTION



CHAPTER. 2

MATHEMATICAL PRELIMINARIES

In this chapter, some fundamental mathematical definitions and lemmas are given to clearly

outline the mathematical terms that will be recurringly used in the following chapters. To be

specific, definitions and lemmas related to Lyapunov stability theory are given in Section 2.1,

and Section 2.2 presents definitions and results related to the Frobenius Theorem. In Section 2.3,

some other useful definitions and theorems, such as the mean-value theorem, are introduced.

2.1. Lyapunov Stability

Throughout the development of entire system theory, stability theory plays a significant

role in analysis and design of a system. In this thesis, the stability of equilibrium points, which

is usually characterised in the sense of Lyapunov named after a Russian mathematician and

engineer who laid the foundation of the entire theory [8], is recurringly discussed. Therefore,

some main results of stability of equilibrium points are provided in this section.

Consider an autonomous system

ẋ = f(x) (2.1)

9
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where x ∈ D ⊂ Rn, and f : D → Rn is a locally Lipschitz map.

Definition 2.1 (Stability and Asymptotically Stability [8]). A equilibrium point x = 0 of

system (2.1) is said to be

• stable if, for each ε > 0, there exits δ = δ(ε, t0) > 0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0 ≥ 0 (2.2)

• unstable if it is not stable.

• uniformly stable if, for each ε > 0, there exits δ = δ(ε) > 0, independent of t0, such that

(2.2) is satisfied.

• asymptotically stable if it is stable and there is a positive constant c = c(t0) such that

x(t)→ 0 as t→∞, for all ‖x(t0)‖ < c.

Then, without loss of generality, consider a linear autonomous system

ẋ = Ax (2.3)

where x ∈ Rn.

Lemma 2.1 (Stability of Linear System [8]). An equilibrium point x0 = 0 of system (2.3) is

said to be stable if and only if all eigenvalues λi of A satisfy Reλi ≤ 0 and for every eigenvalue

with Reλi = 0 and algebraic multiplicity qi ≥ 0, rank(A − λiI) = n − qi. The equilibrium

point is said to be asymptotically stable if and only if all eigenvalues of A satisfy Reλi < 0.

Definition 2.2 (Hurwitz and Lyapunov Equation [8]). A matrix A of system (2.3) is said

to be Hurwitz if and only if for any given positive definite symmetric matrix Q there exists a

positive definite symmetric matrix P satisfies

PA+AτP = −Q (2.4)

Moreover, if A is Hurwitz, then P is the unique solution of (2.4), and equation (2.4) is called

the Lyapunov equation.

For nonlinear systems, the following theorem is usually used to determine the stability of

the systems.
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Lemma 2.2 (Lyapunov Stability Theorem [8]). Let x = 0 be an equilibrium point for system

(2.1) and D ⊂ Rn be a domain containing x = 0. Let V : D → R be a continuously

differentiable function such that

V (0) = 0 and V (x) > 0 in D − {0} (2.5)

V̇ (x) ≤ 0 in D (2.6)

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0} (2.7)

then x = 0 is asymptotically stable.

For a non-autonomous system

ẋ = f(t, x) (2.8)

where x ∈ D ⊂ Rn where D contains the origin x = 0 and f : R+ ×D → Rn is piecewise

continuous in t and locally Lipschitsz in x onR+ ×D.

Definition 2.3 (Class K functions [8]). A continuous function α : [0, a) → [0,∞) is said to

belong to class K if it is strictly increasing and α(0) = 0. It is said to belong to class K∞ if

a =∞ and α(r)→ as r →∞

Definition 2.4 (Class KL functions [8]). A continuous function β : [0, a)× [0,∞)→ [0,∞)

is said to belong to class KL if, for each fixed s, the mapping β(r, s) belongs to class K with

respect to r and, for each fixed r, the mapping β(r, s) is increasing with respective to s and

β(t, s)→∞ as s→∞.

Lemma 2.3 (Expanded Lyapunov Asymptotically Stability Theorem [8]). Let x = 0 be

an equilibrium point of system (2.8) and D ⊂ Rn be a domain containing x = 0. Let

V : [0,∞)×D → R be a continuously differentiable function such that

W1(x) ≤ V (t, x) ≤W2(x) (2.9)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −W3(x) (2.10)

∀t ≥ 0 and ∀x ∈ D, where Wi(x) for i = 1, 2, 3 are continuous positive definite functions

on D. Then, x = 0 is uniformly asymptotically stable. Moreover, if r and c are chosen such

CHAPTER 2. MATHEMATICAL PRELIMINARIES



2.2. FROBENIUS THEOREM 12

that Br = {‖x‖ ≤ r} ⊂ D and c < min‖x‖=rW1(x), then every trajectory starting in

{x ∈ Br|W2(x) ≤ c} satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀t ≥ t0 ≥ 0

for some class KL function β. Finally, if D = Rn and W1(x) is radially unbounded, then

x = 0 is globally uniformly asymptotically stable.

It is straightforward to see that Lemma 2.3 expands the original Lyapunov stability theory

to time-varying cases.

Lemma 2.4 (Converse Lyapunov Function [8]). Let x = 0 be an equilibrium point for the

nonlinear system

ẋ = f(t, x)

where f : [0,∞)×D → Rn is continuously differentiable, D = {x ∈ Rn|‖x‖ < r}, and the

Jacobian matrix [∂f/∂x] is bounded on D, uniformly in t. Let k, λ and r0 be positive constants

with r0 < r/k. Let D0 = {x ∈ Rn|‖x‖ < r0}. Assume that the trajectories of the system

satisfy

‖x(t)‖ ≤ k‖x(t0)‖e−λ(t−t0), ∀x(t0) ∈ D0, ∀t ≥ t0 ≥ 0

Then, there exits a function V : [0,∞)×D0 → R such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖)
∂V

∂t
+
∂V

∂x
f(t, x) ≤ −α3(‖x‖)∥∥∥∥∂V∂x

∥∥∥∥ ≤ α4(‖x‖) (2.11)

where αi(·) for i = 1, 2, 3, 4 are classK functions defined on [0, r0]. If the system is autonomous,

V can be chosen independent of t.

From Lemma 2.4, it can be seen that if a system is controllable, then a Lyapunov function

always exits.

2.2. Frobenius Theorem

The Frobenius theorem is used for the discussion of existence of regular form for nonlinear

systems. The necessary definitions that required for the theorem is provided as follows.
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Definition 2.5 (Nonsingular and Singular Distribution [32]). A distribution ∆ on a manifold

N is said to be nonsingular if there exits an integer d such that

dim ∆(p) = d (2.12)

for all p ∈ N , or singular otherwise.

Definition 2.6 (Complete Integrable [32]). A non-singular d-dimensional distribution ∆,

defined on an open set U of Rn, is said to be complete integrable if, for each point x◦ ∈ U

there exists a neighborhood U◦ of x◦, and n− d real-valued smooth functions λ1, . . . , λn−d, all

defined on U◦, such that

span{∂λ1

∂x
, . . . ,

∂λn−d
∂x

} = ∆⊥(x) (2.13)

on U◦, where ∆⊥(x) is an annihilator of ∆(x) that is a set of convectors which annihilates all

vectors in ∆(x).

Definition 2.7 (Lie Brocket [32]). Let f , g be two smooth vector fields on U ⊂ Rn, define a

product [f, g] with the rule

[f, g](x) =
∂g

∂x
f(x)− ∂f

∂x
g(x)

∀x ∈ U . The product [f, g] is said to be the Lie Bracket of the two vector fields f and g.

Definition 2.8 (Involutive [32]). A distribution ∆ is said to be involutive if the Lie bracket

[τ1, τ2] of any pair of vector fields τ1 and τ2 belonging to ∆ is a vector field which belongs to

∆, i.e. if

τ1 ∈ ∆, τ2 ∈ ∆⇒ [τ1, τ2] ∈ ∆

Then the Frobenius theorem is ready to be presented.

Lemma 2.5 (Frobenius Theorem [32]). A nonsingular distribution is completely integrable if

and only if it is involutive.

2.3. Others

For mapping f : A→ B and g : C → D, define the composition g ◦ f with the map

g ◦ f : f−1(B ∩ C)→ D
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defined by g ◦ f(ξ) = g(f(ξ)) for every ξ ∈ f−1(B ∩ C). Define function ri : Rd → R by

ri(x) = xi

where x = col(x1, x2, . . . , xd) ∈ Rd. Let α = (α1, . . . , αd) be a d-tuple of non-negative

integers, then define

[α] =
∑

αi

and
∂α

∂rα
=

∂[α]

∂rα1
1 · · · ∂r

αd
d

If α = (0, . . . , 0), then let
∂α

∂rα
(f) = f

Definition 2.9 (Class Ck function[33]). Let D ⊂ Rd be open, and let f : D → R. for k a non

negative integer, if the partial derivatives ∂αf/∂rα exist and are continuous on D for [α] ≤ k.

f is said to be differentiable of class Ck on D (or simply that f is Ck), In particular, f is C0 if

f is continuous. If f : D → Rn, then f is said to be differentiable of class Ck if each of the

component function fi = ri ◦ f is Ck. f is said to be C∞ if it is Ck for all k ≥ 0.

Consider a system

ẋ = f(x, u) x ∈ Rn, u ∈ Rm (2.14)

where the vector field f : Rn → Rn is C1. Given a point x0 ∈ Rn, and a C1 feedback control

law

u = u(x) (2.15)

so that the system is locally asymptotically stable at the equilibrium point x0. Without loss of

generality, assume that x0 = 0.

Lemma 2.6 (Brockett’s necessary condition [34]). A necessary condition for the existence

of a class C1 feedback law (2.15) rendering x0 ∈ Rn locally asymptotically stability for the

closed-loop system (2.14) is that for all ‖y‖ is sufficiently small, the vector field f̃ : Rn → Rn

defined by

f̃(x) = f(x, u)− y,

where f is defined in (2.14), has an equilibrium point.
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Lemma 2.7. Assume that X = X(t) ∈ Rn and Z = Z(t) ∈ Rn are continuous in t ∈ R+,

and T (X) ∈ Rn×n is a functional matrix with

Z = T (X)X (2.16)

in X ∈ Rn. Then limt→∞X(t) → 0 if limt→∞ Z(t) → 0 when T (X) is nonsingular and

bounded in X ∈ Rn.

Proof. since T (X) is nonsingular, it is straightforward to see that

‖X‖ = ‖T−1(X)Z‖ ≤ ‖T−1(X)‖‖Z‖ (2.17)

Since T (X) is bounded, there exists a positive constant M such that

‖T−1(X)‖ ≤M (2.18)

Then

‖X‖ ≤ ‖T−1(X)‖‖Z‖ ≤M‖Z‖ (2.19)

Hence the conclusion follows. �

Lemma 2.8 (Global Implicit Function Theorem [35]). Assume that f : Rp×Rm 7−→ Rm is

a continuous mapping and it is continuously differentiable with respect to the variable ξ ∈ Rm.

If there exists a constant d > 0 such that∣∣∣[∂f
∂ξ

]
ii

∣∣∣−∑
j 6=i

∣∣∣[∂f
∂ξ

]
ij

∣∣∣ ≥ d, i = 1, . . . ,m. (2.20)

for any (z, ξ) ∈ Rp ×Rn where
[∂f
∂ξ

]
ij

denotes the ij th entry of the Jacobian matrix [∂f/∂ξ]

and p = n−m, then there exists an unique mapping g : Rp 7−→ Rm such that f(z, g(z))=0.

Moreover, this mapping g(·) is continuous. Furthermore, if f(·) is a class C1 function, then g(·)

is a class C1 function.

If x and y are distinct points inRn, then the line segment L(x, y) joining x and y is

L(x, y) = {z|z = θx+ (1− θ)y, 0 < θ < 1}

Lemma 2.9 (Mean-value Theorem [8]). Assume that f : Rn → R is continuously differen-

tiable at each point x of an open set D ⊂ Rn. Let x and y be two points of D such that the line

segment L(x, y) ⊂ D. Then there exists a point z of L(x, y) such that

f(y)− f(x) =
∂f

∂x
|x=z(y − z)
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CHAPTER. 3

FUNDAMENTAL KNOWLEDGE

AND BASIC CONCEPT

Chapter 1 has briefly introduced the background and motivation of this research, which includes

the challenges of designing control for complex systems. To establish a basic understanding of

this work, necessary background knowledge and basic concepts related to this thesis are to be

discussed in detail in this chapter. To be specific, basic knowledge of state feedback and related

basic definitions are given in Section 3.1. The literature in the area of SMC is then reviewed

in Section 3.2. Notably, the regular form-based SMC is introduced in Section 3.2.3, and the

existence of such form for a nonlinear system is discussed based on the Frobenius theorem in

Section 3.2.4. Section 3.3 presents mathematical definitions of nonholonomic systems in details.

In Section 3.4, a literature survey and basic knowledge related to large-scale systems are given

in details. Notably, the typical system structures used for large-scale systems are investigated

and commented in 3.4.2. Before concluding this chapter in Section 3.6, examples of complex

systems with modelling of two nonholonomic systems and three large-scale systems are given

in Section 3.5.
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3.1. State Space and Feedback Control

Feedback control is one of the most rigorously studied topics during the last few decades,

and it has become the basic mechanism for regulation of equilibrium or homeostasis for

systems such as mechanical, electrical systems etc. By utilizing mathematical insight, the

appropriate feedback control law is designed to use the difference between the actual values of

system variables and their desired values to determine the control signals. Thus the system is

always making a certain correction to the desired equilibrium with the closed-loop controllers.

Meanwhile, it is a common problem that the practical systems may not remain satisfactory

due to the incomplete identification and external disturbances. Therefore, the effect of these

uncertainties should be carefully taken into account in the control design process to guarantee

that the system can still be adequately controlled in the worst scenario.

As the main concept of modern control theory, state-space refers to a set of coupled

first-order differential equations with a set of internal variables. A minimum set of variables

which can fully describe the system and its response to any given set of inputs are called state

variables. Then the set of outputs can be represented by a set of algebraic equations which

describes the relationship between the state variables and the physical output variables. The

diagram of an n-the order system with m inputs and p outputs is shown in Fig.3.1.

Figure 3.1: Over view of system plant in modern control theory

To be specific, a dynamical control system shown in Fig.3.1 usually can be described by a
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set of differential equations:

ẋ1 =f1(t, x, u)

ẋ2 =f2(t, x, u)

... =
... (3.1)

ẋn =fn(t, x, u)

where ξ̇ := dξ/dt, and x(t) ∈ Rn denotes the state vector as a set of state variables with

x(t) := col(x1(t), x2(t), . . . , xn(t)). u ∈ Rm and t ∈ R+ denote input/control vector and

time respectively. Function fi(t, x, u) describe the dynamics of the state variable xi for i =

1, 2, . . . , n. With the time-varying n-dimensional vector x(t), an n-dimensional state-space is

thus described by the set of differential equations (3.1).

The relationship between the outputs and the states can be described by an algebraic

equation as

y1 =h1(t, x)

y2 =h2(t, x)

... =
... (3.2)

yp =hp(t, x)

where y1(t), y2(t), . . . , yp(t) are the system outputs. Define the output vector

y(t) := col(y1(t), y2(t), . . . , yp(t)) ∈ Rp

and function vectors

f(·) := col(f1(·), f2(·), . . . , fn(·))

h(·) := col(h1(·), h2(·), . . . , hp(·))

then equation (3.1)-(3.2) can be rewritten in vector form as:

ẋ =f(t, x, u) (3.3)

y =h(t, x) (3.4)

A system in the form of (3.3) with m, p = 1 is called single-input single-output (SISO) system

and system with m, p > 1 are called multi-input and multi-output (MIMO) system.
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For the illustrating purposes, consider the following linear system:

ẋ =Ax+Bu (3.5)

y =Cx (3.6)

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are constant matrix, (A,B) is controllable and

(A,C) is observable. Additionally, since a time delay for an input u will result in the same

time delay on the output y in system (3.5), system (3.5) is called a time-invariant system [8].

A time-variant system is a system that is not time invariant. The vector block diagram for the

linear system (3.5) is shown in Fig.3.2.

Figure 3.2: Diagram block of system (3.5)-(3.6)

The state feedback control refers to the control design that utilize all the state information

for the controller u = u(x). For instance, for system (3.5), by using the control law u = −Kx,

the corresponding closed-loop system is

ẋ = (A−BK)x (3.7)

where K is a constant matrix. Then the problem of the state feedback control is to find a suitable

constant feedback gain matrix K such that (A−BK) is Hurwitz. The block diagram of a state

feedback controller can be seen in Fig.3.3.

Sometime, the state information may not be accessible by the sensors. In this case, the

controller can only access a subset of the state information, i.e. the output y. Controller in the

form of u = u(y) that only uses output information is known as static output feedback control.

For instance, by using output feedback control law in the form u = −Kcy for system (3.3)-(3.4),

the corresponding closed-loop system is

ẋ = (A−BKcC)x (3.8)

CHAPTER 3. FUNDAMENTAL KNOWLEDGE AND BASIC CONCEPT



3.1. STATE SPACE AND FEEDBACK CONTROL 20

Figure 3.3: Diagram block of state feedback control for system (3.5)

where Kc is a constant matrix. Then the problem of output feedback is to find a constant

feedback gain matrix Kc such that (A−BKcC) is Hurwitz.

Figure 3.4: Diagram block of static output feedback control for system (3.5)-(3.6)

As mentioned in a survey paper published by V. L. Syrmos et al. in 1997 [36], various

methods have been proposed to find a feedback gainKc stabilising the single-input-single-output

systems by using output feedback, such as the Youla parameterization method, inverse linear-

quadratic approach, covariance assignability by output feedback, output structural constraint

approach and coupled linear matrix inequality formulation, more detail information can be

found in [36]. However, it is pointed out in [36] that all the proposed methods cannot be easily

expanded to a multi-input-multi-output case. In terms of the pole placement problem, it is shown

that if B and C have full rank and the system is minimal, max(m,p) poles can be assignable

with output feedback gain Kc in Davison [37, 38, 39]. The necessary and sufficient conditions

of existence of gain Kc is

m+ p ≤ n+ 1

which was obtained by Davison et al. in [39], and Kimura in 1975 and 1978 [40, 41]. More
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interesting results can also be found in [36]. However, due to the inefficiently testable necessary

and sufficient conditions for the existence of a static output feedback, the static output feedback

problems still remain as an open problem as they are just transformed into another unsolved

problem or numerical searching problems without strictly proved guarantee of convergence

[36].

An alternative method for the limited information problem is to use a dynamical system

to estimate the state and then design a feedback controller with the estimated state x̂. Such a

dynamical system is called observer, and the feedback controller with the designed dynamics is

called observer-based control, which is also known as dynamic output feedback control. For

instance, for the linear system (3.3)-(3.4), define an observer in the form

˙̂x = (A+ LC)x̂+Bu− Ly (3.9)

where L is a designed constant matrix such that the eigenvalues of A+ LC have negative real

parts. Then by defining the error between the state and the estimated system with e = x− x̂,

the dynamic equation of the error system is

ė = (A+ LC)e (3.10)

With the Judicious choice for the poles of (A + LC), the error e(t) will converge to zero as

t tends to infinity from any initial condition and thus x̂(t) will converge to x(t) [16]. Then a

feedback controller can be designed with the estimated state x̂(t).

Apparently, either static output feedback control or dynamic output feedback control will

increase the system complexity due to the limited system information. It may even be much

more challenging to guarantee the performance of the practical implementation due to the

presence of uncertainties. Without loss of generality, consider the linear system (3.5) in the

presence of uncertainties as

ẋ = Ax+B(u+ φ(t, x)) + ψ(t, x) (3.11)

where φ(·) ∈ Rm and ψ(·) ∈ Rn are unknown function vectors which represent the uncertain-

ties. Uncertainties in the input channel, e.g. φ(·), are often referred as matched uncertainty, and

the rest, e.g. ψ(·), is called mismatched uncertainties. It is clear to see that both closed-loop

system (3.7) and (3.8) will be significantly affected by the uncertainties. The convergence of

observer (3.9) may not be guaranteed in this case as well. Therefore, it is of great importance to
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design a robust feedback control. Among all these feedback methods mentioned above, state

feedback control is mainly considered in this thesis.

3.2. Sliding Mode Control

SMC is a particular type of VSC which was firstly developed by Russian researchers

Emelyanov and Barbashin in the early 1960s. After the book by Itkis [42] and the survey paper

by Utkin in [1] were published, the design ideas were spread outside the Russia. With the devel-

opment of modern control theory, the study of the nonlinear system in state space commenced

in 1970 and MIMO systems are widely considered for more complex tasks since then [2]. This

trend has dramatically promoted the development of sliding mode controllers, motivating the

application of SMC in many practical systems [17]. In such systems, rules are determined so

that the variety of structures can be switched in real time to perform specific system objectives,

whereas applying a single structure for the system might be unstable. Based on the introduction

of a "custom-designed" function, SMC has become one of the most significant control strategies

because of its reduced-order dynamics and strong robustness [43, 16, 17].

Consider a simple double integrator

ξ̈ = u (3.12)

Then by choosing x1 = ξ and x2 = ξ̇ with x = col(x1, x2), a simple linear system can be

written as

ẋ =

0 1

0 0

x+

0

1

u (3.13)

Select a switching function, which refers to a custom designed function that describe the dividing

of the system plant in VSC theory, with σ(x) = cx1 + x2, and apply a discontinuous feedback

control law with

u =

−cx2 − ρ, σ > 0;

−cx2 + ρ, σ < 0,
(3.14)

for all ρ > 0. The time response and the response of the phase-plane of the closed-loop system

are shown in Fig.3.5 and Fig.3.6 respectively. From the response in phase portrait, it is clear
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Figure 3.5: Time response of the state variables of system (3.13) with control (3.14)
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Figure 3.6: Phase portrait of system (3.13) with control (3.14)
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that the system (3.13) with control law (3.14) exhibits an ideal sliding motion. From (3.13), it is

straightforward to verify that when the sliding motion takes place, the system performance only

depends on the constant parameter c in the switching function σ(x) = cx1 + x2.

From the phase portrait in Fig.3.6, it is clear that the system has two phase exhibiting

differences response, which can be defined as the sliding mode and the reaching phase [17].

• Sliding Mode refers to the motion when the system trajectory moves along the sliding

surface which is often defined by designing a switching function. When the system is

restricted to the predefined surface, the order of the system is reduced. The reduced-order

dynamics are called sliding mode dynamics.

• Reaching Phase refers to the motion before sliding motion occurs, starting from the

initial point. To ensure the reachability, a VSC, which drives the system trajectory to the

sliding surface and maintain the sliding motion, should be designed.

3.2.1. Existence of Sliding Mode

The existence of a sliding mode can be seen as a generalised stability problem which

requires stability of the state trajectory to the sliding surface governed by the pre-defined

switching function at least in a neighbourhood of {x|s = 0}. Therefore, the system state is

required to approach the region of attraction of the sliding surface at least asymptotically [42, 1].

Without loss of generality, consider the following system

ẋ = f(t, x) + g(t, x)u (3.15)

where x ∈ Rn, u ∈ Rm, f(t, x) ∈ Rn and g(t, x) ∈ Rn×m. Define the discontinuous feedback

control is given by

u =

u+(t, x), σ(x) > 0

u−(t, x), σ(x) < 0
(3.16)

and the sliding surface

σ(x) = col(σ1(x), σ2(x), . . . , σm(x)) = 0 (3.17)

which is a (n−m)-dimensional manifold.
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Definition 3.1 (Sliding mode domain [1]). A domain S in the manifold σ(x) = 0 is said to be

a sliding mode domain if for each ε > 0, a δ > 0 exists such that any motion starting in the

n-dimensional ε-vicinity of S may leave the n-dimensional ε-vicinity of S only through the

n-dimensional ε-vicinity of the boundaries of S (Fig. 3.7)

Figure 3.7: Sliding mode domain adapted from [1]

Lemma 3.1 (Existence of a sliding mode [1]). For the (n−m)-dimensional domain S to be

the sliding mode domain, it is sufficient that in some n-dimensional domain Ω, S ⊂ Ω, there

exits a continuously differential function V (t, x, σ), satisfying the following condition:

1). V is positive definite with respect to σ and for any x ∈ S and t

inf
‖σ‖=ρ

V = hρ, sup
‖σ‖=ρ

V = Hρ (3.18)

where hρ 6= 0 if ρ > 0, and hρ and Hρ depend only on ρ.

2). Time derivative of V for (3.15) has negative supremum on small enough spheres ‖σ‖ = ρ

with removed points on the discontinuity surfaces where this derivative does not exist.
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The domain S is the set of x for which the origin in subspace (σ1, σ2, . . . , σm), i.e.

σ(x) = 0, is an asymptotically stable equilibrium point for the dynamic system

σ̇ =
∂σ

∂x
f(t, x) +

∂σ

∂x
g(t, x)u (3.19)

where σ(x) is defined in (3.17) and f(·), g(·) and u are defined in (3.15) and (3.16). Since there

is no method to generate Lyapunov function for arbitrary nonlinear system, there is no standard

method to find the Lyapunov function V for system (3.19).

For the system (3.13) as an example, since it is a single input time-invariant system, a

Lyapunov function can be chosen as

V (t, x, σ) =
1

2
σ2(x) (3.20)

which is globally positive definite with respect to σ. Therefore, by choosing a suitable control

such that

V̇ (t, x, σ) = σσ̇ < 0 (3.21)

in the considered domain, the state trajectory of system (3.13) can reach the pre-defined sliding

surface and maintain a sliding motion for all subsequent time. By expanding the inequality to

system (3.15) on sliding surface σ(x) = 0, an inequality for the n-dimensional case is obtained

as

V̇ (t, x, σ) = στ (x)σ̇(x) < 0 (3.22)

The inequality (3.22) is known as the reachability condition which ensures that the sliding

manifold is reached asymptotically [16].

However, condition (3.22) can only guarantee that the system is driven to the sliding surface

asymptotically. Therefore, condition (3.22) is often replaced by another reachability condition

in the form

V̇ (t, x, σ) = στ (x)σ̇(x) ≤ −η‖σ(x)‖ (3.23)

which is known as η-reachability condition [1, 16]. In this case, it is guaranteed that the system

will reach the sliding surface in finite time so that system (3.3) is asymptotically stable. The

reaching gain η is then computed with feedback in the SMC design in many application [1].
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3.2.2. Existence of Unique Solution and Equivalent Control

It is straightforward to see that the control defined in (3.16) is discontinuous, which

results in a discontinuous righthand side of equation (3.15). Therefore, classical solution to

the discontinuous system (3.15) may not exist. In this case, as pointed out in [44, 16], one

of the conceptually straightforward solutions is the method of Filippov in [45, 46], which is

the "average" of the solutions obtained from the approaching the point of discontinuity from

different directions. Written for convenience as

ẋ = F (t, x) (3.24)

where F : R+ ×Rn → Rn is discontinuous with respect to the state vector x ∈ Rn. Let x0 be

a point of discontinuity on the surface S, and F−(t, x0) and F+(t, x0) represents the limits of

F (t, x) as the point x0 is approached from the opposite sides of the tangent plane to S at x0, it

has been shown in [45, 46] that the state trajectories of (3.24) are the solutions of the equation

ẋ = (1− α)F− + αF+ = Fα, 0 < α < 1 (3.25)

where Fα is the obtained velocity vector of the state trajectory when the system is on the sliding

surface. The concept can be conceptually illustrated in Fig. 3.8.

Figure 3.8: Illustration of the Filippov method

Based on that, the so-called equivalent control is proposed in [1], which is the solution to

σ(x) = 0, σ̇(x) = 0 (3.26)
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By differentiating σ(x) with respect to t along the trajectory of (3.15), it yields

σ̇(x) =
∂σ

∂x
ẋ =

∂σ

∂x
(f(t, x) + g(t, x)u) = 0 (3.27)

Suppose there exists a solution u to the equation (3.27) with

u = ueq(t, x) (3.28)

which is the equivalent control of system (3.15) on sliding surface (σ(x) = 0) [2]. Then the

sliding mode dynamics governing the sliding motion can be obtained by

 ẋ = f(t, x) + g(t, x)ueq(t, x))

s(x) = 0
(3.29)

For illustrate purpose, for a linear system described by

ẋ = Ax+Bu (3.30)

when the sliding motion takes place with a predefined sliding function s(x) = Sx, it follows

from ṡ(x) = 0 that the corresponding equivalent control is given by (see [16, 2])

ueq = −(SB)−1SAx (3.31)

where the matrix S is chosen so that SB has full rank, which implies the equivalent control is

unique. Then, the corresponding sliding motion can be described by

 ẋ = Ax−B(SB)−1SAx

s(x) = 0
(3.32)

Since the equivalent control (3.28) is derived from the case that ideal sliding motion occurs,

it is not the actual control signals that applied to the system but the action necessary to maintain

an ideal sliding motion on S [16]. The actual control signal often contains compensator that

drives the system towards the sliding surface.

3.2.3. regular form-based Approach

Regular form is another method to analyze the sliding mode dynamics. For illustrating

purpose, reconsider the linear system (3.5)

ẋ = Ax+Bu
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Since the dimension of the input m is often less than the dimension of the system n, i.e. m < n,

and by assumption rank(B) = m, there always exists an invertible matrix Tr ∈ Rn×n such that

TrB = B̃ =

 0

B̃2

 (3.33)

where B2 ∈ Rm×m. Then a transformation z = Trx can be constructed that can transfer the

system (3.5) into two parts with the form

ż1 =Ã11z1 + Ã12z2 (3.34)

ż2 =Ã21z1 + Ã22z2 + B̃2u (3.35)

where z1 ∈ Rn−m and z2 ∈ Rm, and

Ã = TrAT
−1
r

Ã11 Ã12

Ã21 Ã22


It is clear that system (3.34) is independent to the control input. System (3.34)-(3.35) is

referred as the regular form, equation (3.34) describes the null space dynamics and equation

(3.35) describes the range space dynamics [16].

Lemma 3.2 (see [16]). The matrix pair (Ã11, Ã12) is controllable if and only if the pair (A,B)

is controllable.

Define a linear sliding function as

σ(z) = Sz = Cz1 + z2 (3.36)

where the design parameter C ∈ Rm×(n−m) is a constant matrix.

When the sliding motion takes place

z2 = −Cz1 (3.37)

The sliding mode of system (3.34)-(3.35) is then derived as

ż1 = (Ã11 − Ã12C)z1 (3.38)

which is a reduced-order system when compared with the original system (3.5). From Lemma

3.2, it can be seen that C can be chosen such that (Ã11 − Ã12C) is Hurwitz if (A,B) is

controllable. Thus the sliding mode is asymptotically stable.
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Invariant Properties

Suppose the system (3.34)-(3.35) are experiencing uncertainties. Then rewrite the system

(3.34)-(3.35) as

ż1 =Ã11z1 + Ã12z2 + ψ1(t, z1, z2) (3.39)

ż2 =Ã21z1 + Ã22z2 +B2u+ ψ2(t, z1, z2) (3.40)

where ψ1(·) ∈ R(n−m) and ψ2(·) ∈ Rm . Then the corresponding sliding mode of system

(3.39)-(3.40) with sliding function (3.36) can be described by

ż1 = Ãeqz1 + ψ1(t, z1,−Cz2) (3.41)

where Ãeq = Ã11 − Ã12C. From (3.41), it is straightforward to see that during sliding phase,

the dynamics of the sliding mode (3.41) is independent to the disturbance ψ2(·) in system (3.40),

which is the so-called insensitivity property. In this case, the system completely insensitive to

matched uncertainties/external disturbances [16, 17, 18]. For the mismatched uncertainties ψ1(·),

it has been demonstrated that the sliding mode approach can be applied to control systems with

mismatched uncertainties under some proper conditions , see for example [47, 28, 19, 29, 30].

Control Design

After designing a suitable sliding surface, it is naturally important to ensure that the system

can reach the designed sliding surface and maintain on it thereafter. Several methods for the

reachability problem are available in [1, 16]. Among them, a common structure of control is

applied with

u = ueq + un (3.42)

where

ueq = −(SB̃)−1SÃz

is the equivalent control to maintain an ideal sliding motion, and un is a discontinuous term so

that

σ̇(z) =Sż = SÃz + SB̃(ueq + un)

=SB̃un = B̃2un (3.43)
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By choosing

un(z) = −ηB̃−1
2

σ(z)

‖σ(z)‖
, η > 0

implies that

στ (z)σ̇(z) = −η‖σ(z)‖

for σ(z) 6= 0, thus the η-reachability condition is satisfied which guarantee the finite-time

reachability. The controller (3.42) is called unit vector controller.

Define

sign(ξ) =


1 ξ > 0

0 ξ = 0

−1 ξ < 0

(3.44)

replacing the term σ(z)
‖σ(z)‖ , it is clear that sign(x) is discontinuous, resulting in infinite number

of switches in finite time when the system is around the designed sliding surfaces/manifolds

[17]. To get an ideal sliding mode, it is assumed that the switch of the term sign(x) can be

infinitely fast, which is obviously impossible in the practical system due to the delay caused

by the physical limitation or any un-modelled dynamics. This phenomenon is known as the

chattering problem in practical implementation as shown in Fig. 3.9.

Figure 3.9: Chattering effect

Unexpected dynamics caused by the non-ideal switch may produce chattering which greatly

affects the performance for many practical systems. For this reason, many efforts have been

used to address the chattering problem. For example, define

sgn(ξ) =
ξ

‖ξ‖+ ε
(3.45)
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where ε ∈ R+ is a small constant. Equation (3.45) is then a boundary layer which approximates

the discontinuities of equation (3.44) and can be applied to reduce the chattering [31, 48]

although the robustness of the systems is mildly reduced due to the approximation. High-order

sliding mode techniques recently have been recognised as an effective approach regarding the

chattering attenuation if the time derivative of the plant control is considered as the actual control

variable [49, 50]. The continuous approximation appears to be much simpler, but the robustness

of the systems are degraded at the mean time.

3.2.4. Existence of Regular Form for a Nonlinear Systems

It has been shown in Sec. 3.2.3 that the regular form for a controllable linear system (3.5)

always exists if B has full rank. However, it may become a bit difficult when considering the

nonlinear system.

Consider the nonlinear time-invariant system

ẋ = f(x) + g(x)u (3.46)

where x ∈ D ⊂ Rn and u ∈ Rm. f(·) ∈ Rn and g(x) ∈ Rn×m. Then suppose a transforma-

tion z = T (x) with diffeomorphism T : Rn → Rn exists, define

T (x) = col(T1(x), T2(x)) (3.47)

where T1(x) ∈ Rn−m and T2(x) ∈ Rm such that

∂T

∂x
g(x) =

 0

G2(z)

 (3.48)

Then the nonlinear system (3.46) will be transferred into the regular form

ż1 =F1(z) (3.49)

ż2 =F2(z) +G2(z)u (3.50)

where z = col(z1, z2). Then it is straightforward to see that the existence of the regular form for

nonlinear system (3.46) is equivalent to the existence of the solution to the partial differential

equation
∂T1

∂x
g(x) = 0 (3.51)
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where T1(x) is defined in (3.47). Let g(x) = (g1(x), g2(x), . . . , gm(x)) where gi(x) ∈ Rn is

vector field, and define

G = span{g1, (x), g2(x), . . . , gm(x)} (3.52)

which is a distribution spanned by g1(x), g2(x), . . . , gm(x). It can be concluded from Definition

2.6 that the existence of solution to the partial differential equation (3.51) relies on the completely

integrability of the distribution G . Then from Lemma 2.5, it can be verified that the regular

form for nonlinear system (3.46) exists if the distribution G defined in (3.52) is nonsingular and

involutive.

3.3. Nonholonomic Systems

Suppose a mechanical or electrical system described by

q̇ = f(t, q, u) (3.53)

where q ∈ Q ∈ Rn is an n-dimensional vector of generalised coordinates with

q = col(q1, q2, . . . , qn)

Generally, the considered spaceQ is in an n-dimensional smooth manifold, locally diffeomorphic

to the Euclidean spaceRn. The generalised velocity at a generic point of a trajectory q(t) ⊂ Q

is described by its tangent vector q̇ with

q̇ = col(q̇1, q̇2, . . . , q̇n)

The geometric constraints may exist to be imposed on the mechanical system (3.53) with

hi(q) = 0 i = 1, 2, . . . , k (3.54)

which restrict the possible motions of system (3.53) to an (n−k)-dimensional submanifold. For

the velocity-dependent constraints which involve generalised coordinates q and their derivatives,

e.g. first-order kinematic constraints with the form

ai(q, q̇) = 0 i = 1, 2, . . . , k (3.55)
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In most cases, the kinematic constraints (3.55) are Praffian constraints [51], which can be

described by

aτi (q)q̇ = 0 i = 1, 2, . . . , k (3.56)

If the kinematic constraints are integrable, there may exist k functions hi such that

∂hi(q)

∂q
= aτi (q) i = 1, 2, . . . , k (3.57)

Substitute (3.57) into (3.56) yields

∂hi(q)

∂q
q̇ = 0 i = 1, 2, . . . , k

which implies

hi(q) = ci i = 1, 2, . . . , k

where ci for i = 1, 2, . . . , k are some constants. In this case, the kinematic constraints are also

geometric constraints.

Definition 3.2 (Nonholonomic Constraints and Nonholonomic Systems [51]). A set of con-

straints in the form (3.54) or a set of Pfaffian constants (3.56) that is integrable is called

holonomic constraints. Otherwise, it is called nonholonomic constraints. Systems with nonholo-

nomic constraints are said to be nonholonomic systems.

Although a nonholonomic system has also been proved to be controllable, the regulation of

a nonholonomic system is full of challenges. Specifically, for a drift-less nonholonomic system

in the form

q̇ =

m∑
i=1

g′(t, x)u (3.58)

where g′(·) ∈ Rn is smooth enough, then from the Brockett’s necessary condition (??) in

Lemma 2.6, it is straightforward to see that the existence of a continuous time-invariant feedback

control law for system (3.58) can be guaranteed if and only if the numbers of inputs m equal

to the number of states n. Since the dimension of the inputs is usually less than the dimension

of states, it is straightforward that continuous time-invariant feedback control laws cannot

achieve regulation control for a drift-less nonholonomic system, which makes the regulation

tasks very challenging. To overcome that, the earlier efforts were mostly made on discontinuous

time-invariant control law design and time-varying control design [52].
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In [53], it is possible to stabilise the nonholonomic systems by designing an appropriate

time-varying control law. Based on that, various expansion work for time-varying control laws

arise[52]. The fundamental idea of the time-varying control law is to transfer the nonholonomic

system into linear time-varying via time-varying coordinate transformation. Another kind of

time-varying control laws for the nonholonomic systems is based on the use of homogeneous

system coordinates [54]. Although the system in this method has a reasonable convergence rate,

it cannot achieve global point stabilisation of nonholonomic systems.

To apply discontinues feedback control law is another alternative to avoid Brockett’s

necessary conditions. Therefore, various discontinues feedback control law has been developed

for the nonholonomic systems, e.g. see σ process based approach [55], feedback linearization

[56], invariant manifold technique [57]. As a typical form of discontinuous nonlinear control,

VSC systems has its advantage when dealing with discontinuous systems. In [58], a VSC system

was applied on a nonholonomic system with feedback linearization techniques for the regulation

tasks, and the proposed method has effective simulation results. As the flexible configuration

may result in various systems behaviour, the VSC control for regulation of nonholonomic

systems is still an active area.

3.4. Large-Scale System

As discussed in Chapter 1, large-scale system is often known as a class of system with

plenty of states. The main difficulties have been reported in several works in [59, 5, 4, 7, 2],

i.e. dimensionality, information structure constraints, uncertainty and delays. These difficulties

motivate the development of the theory of large-scale systems. Several general methodologies

have been and are being elaborated, which can usually be concluded into the following three

groups: decomposition [4], architectures [60], robustness and model simplification [59].

• Decomposition concerns the dimensionality problems of the large-scale systems. By

decomposing the system into a collection of subsystems, the analysis and synthesis

tasks of a large-scale system are greatly simplified. It has been demonstrated in [4]

that decomposition may not only reduce computational complexity but also weaken the

interaction effects. Subsystems obtained from the overlapping decomposition may not
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even have the problems of interconnections.

• Architectures concerns the information structure inherent to the given problem. Because

of the wide range of the problems considered and the desired goals to be achieved in

a large-scale system, the control structures are various with different focuses, and thus

resulting in different merits and limitations. In this thesis, a completely decentralised

structure is considered since the reliability of such structure does not depend on the

network performance. Besides, the developed decentralised control can be expanded to a

quasi-decentralised scheme (e.g. see [61]) to improve the stability and robustness.

• Robustness concerns the ability to maintain desired performance in the presence of

uncertainties including modelling error or interaction between subsystems, the so-called

interconnection, on the bases of the stability analysis. It is essential for systems with

disjoint decomposition as the interconnection may substantially affect the system stability

in such systems. Model simplification mainly focuses on model reduction methods and

approximations to reduce the complexity of the large-scale system [5].

3.4.1. Decomposition Techniques

Apparently, it is less complicated to analyse the robustness and stability of subsystems

rather than the overall system when the dimension of the systems is intensively large, e.g. aircraft

and satellite formations [62, 63], or the system is physically composed of several subsystems

distributed in space, e.g. multi-machine power system [11]. Meanwhile, with the development

of technology such as embedded computing, parallel processing, communication network, it

has become increasingly economical and reliable to decompose a system into many simples

systems with overlapping dynamics [4]. Therefore, decomposition plays a significant role

in the control design phase for large-scale systems. In fact, some large-scale systems, e.g.

multi-machine power systems [64, 65, 66], automated highway systems [67], already have

natural spatial decompositions, i.e. the subsystems are physically defined according to their

different locations/distributions, and thus the interconnections between each subsystem may

have their physical significance. However, there are still many systems in reality where it is hard

to find appropriate weak couplings [68]. For the system without natural spatial decompositions,

the decomposition technique may be a suitable solution. Moreover, a proper decomposition

may not only simplify the system but also weaken the interaction effects to improve the system
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performance furthermore [4]. There are several decomposition techniques available, and the two

typical type of decomposition techniques will be briefly introduced in the following subsection,

i.e. disjoint decomposition and overlapping decomposition.

Disjoint decomposition

As been pointed out in [59], a system is often decomposed from conceptual or numerical

reasons. The conceptual reason is mainly due to the physical separation of the subsystems. For

instance, in automated highway systems [67], each vehicle can be a separate subsystem. On the

other hand, a universal control technique for large-scale systems is required for the numerical

reasons [59]. A typical disjoint decomposition is the so-called nested epsilon decomposition

[5, 4]. Except for the system, the disjoint decomposition techniques can also be used to

decompose the interconnection [4].

For illustrate purposes, rewrite the linear system (3.5) as

ẋ = Ax+Bu

Definition 3.3 (Epsilon decomposition [5]). Matrix A of system (3.5) is said to have an epsilon

decomposition if there exits a permutation matrix P such that

P τAP = AD + εAC (3.59)

where AD = diagA1, A2, . . . , AN is a block-diagonal, ε is a small positive number and all the

elements of AC are smaller than one in magnitude.

Moreover, by increasing the threshold of ε, the system can be furthered decomposed, which

is also known as the nested epsilon decomposition.

Definition 3.4 (Nested epsilon decomposition [4]). A matrix A is said to have a K-fold

epsilon decomposition of there are K > 0 positive numbers ε1 > ε2 >, . . . , > εK such that, by

permutations of rows and columns, the matrix A can be represented as

Â = Â0 + ε1Â1 + · · ·+ εKÂK (3.60)

where Â0 is a block diagonal matrix and Â1, Â2, . . . , ÂK are all partitioned matrices with

compatible blocks, such that each nonzero block appears in one and only one matrix Âi for

i = 1, 2, . . . ,K, and none of the elements of any Âi is larger than one in magnitude.
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The choice threshold, i.e. ε or ε1 > ε2 >, . . . , > εK in nested epsilon decomposition, will

significantly affect the strength of interconnections. Appropriate choice of the thresholds in

the algorithm may preserve the weak coupling properties of the system, thus maintaining the

stability of the overall system. Therefore, the control design for disjoint systems decomposed by

nested epsilon decomposition mainly focus on the attenuation of interactions and uncertainties

[69, 70, 71, 72, 73, 74]. The advantage of using ε decomposition is that it can represent not only

the linear interactions but also nonlinear interactions and the uncertainty of the subsystem itself

[4].

Overlapping decomposition

In some practical systems, the subsystems often share a common part. For the sake

of conceptual or computational reasons, an alternative approach arises by using overlapping

information sets [4], i.e. overlapping decomposition. It has been demonstrated in [4] that the

interconnection after the decomposed will be a part of the subsystem and some subsystems may

not even have an interconnection at all. The fundamental idea of the overlapping decomposition

is to numerically expand the original system into a larger dimensional system which has weaker

interconnection among subsystems, and then find the solution of the expanded system that can

also stabilized the original system. This method has been rigorously developed into a general

mathematical framework, i.e. the so-called inclusion principle [59, 4]. To rigorously formulate

the inclusion principle, consider two dynamic system S and S̃

S : ẋ = Ax+Bu (3.61)

S̃ : ˙̃x = Ãx̃+ B̃u (3.62)

where x ∈ D ⊂ Rn and x̃ ∈ D̃ ⊂ Rñ are state of system S and S̃ respectively. u ∈ Rm is the

input of both systems.

Definition 3.5. System S̃ is said to includes system S, or equivalently, a system S is said to

be included by system S̃ if there exists an ordered pair of matrix (U, V ) with U ∈ Rn×ñ and

V ∈ Rñ×n such that UV = In, and for any initial state x0 ∈ D of S and any fixed input u(t),

we have

x(t;x0, u) = Ux̃(t;V x0, u), ∀t ≥ 0 (3.63)
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After expanding the system into a larger dimensional system without interconnections that

includes the original system, a local feedback controller can be designed for each subsystem on

the expanded system plant. Although the inclusion principle is expandable to nonlinear systems,

constraints may be too strict for practical systems [4]. Since the expansion and contraction

operation must be performed with a non-square transformation function, the existence of such

transformation function, which is an essential part of the decomposition, may be too difficult

to be found for the nonlinear systems. Moreover, since the expanded system has to include

the original system, the system complexity is inevitably increased due to the expansion and

contraction. Therefore, due to the strict constraints required for the nonlinear system and the

increased complexity during the decomposition, the overlapping method is not considered in

this thesis.

3.4.2. Architecture

In order to simplify the analysis, consider a large-scale system

ẋ = F (t, x, u) (3.64)

where x ∈ RN , u ∈ Rm and F (·) ∈ RN are the state, input and vector function respectively.

Suppose a proper decomposition process exists, (e.g. see Section 3.4.1), thereby the overall

system can be separated into a set of subsystems connected through interconnection, which is

described by

ẋi = fi(t, xi, ui) +Hi(t, x), i = 1, 2, . . . , N (3.65)

where xi ∈ Rni and ui ∈ Rmi denote the state and input signal of ith subsystem. Hi(·) denote

the interconnection coming from the other subsystems. System

ẋi = fi(t, xi, ui) (3.66)

is called the ith isolated subsystem of system (3.65). In such systems, although each isolated

subsystem may exhibit desired performance, the unexpected dynamics caused by the intercon-

nection may greatly affect or even devastate the stability of the whole system plant. Consider

the form of system (3.65) in

ẋi = fi(t, xi) + gi(t, xi)(ui + φi(t, xi)) +Hi(t, x), i = 1, 2, . . . , N (3.67)
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where φi(·) denote the matched uncertainties. Then system

ẋi = fi(t, xi) + gi(t, xi)ui (3.68)

is called the ith nominal isolated subsystem of system (3.67)

As part of the overall system, each subsystem is controlled by its local actuator ui. In the

following subsections, four typical architecture, i.e. centralised structure, hierarchical structure,

distributed structure and decentralised structure, will be briefly introduced.

Centralised Structure

Figure 3.10: Centralised system structure

For a relative small-scale system, a system structure shown in Fig. 3.10, in which the

control ui utilises all the state information to stabilise the overall system, is the so-called

centralised structure. The local controller with centralised structure is often in the form

ui = ui(t, x) (3.69)

With a complete graph of the system plant, a centralised strategy might provide better control

performance than a complete decentralised control strategy since the central coordinator has

much more information than a local DM to deal with the interactions. Therefore, centralised
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system structure is ubiquitous in most small-scale systems. However, as the system nowadays

has become increasingly complicated, the system inevitably requires computing units with much

larger memory and much faster computation capability. The extensive amount of information

fed into the coordinator and the massive computing tasks may make the centralised scheme

difficult or even impossible to be implemented [59]. Furthermore, the scale of the system,

such as intelligent transportation infrastructures [67, 75, 76], may keep increasing with extra

functionality required or new subsystems joining in, which will eventually become a problem.

Hierarchical Structure

Figure 3.11: Two level hierarchical structure

Many industrial, economic or sociological systems possess a hierarchical structure [60].

The research about hierarchical structure started in the 1960s and attracted increasing attention

since then [77, 78, 79]. More work can be found in various application, such as augmenting

bulk system [80], power system [81, 82, 83, 84], energy management system [85]. The highest

layer of the hierarchy corresponds to a system with slow dynamics, The system then can be

controlled by looking at its long-term behaviour, and its calculated control inputs must be

efficiently provided by subsystems located at the lower level of the hierarchy, characterised by
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faster dynamic. An example of a three-layer structure is shown in Fig. 3.11. As we can see in

the Fig. 3.11, the increasing levels that the system structure has inevitably result in increasing

complexity of the overall system. The increasing complexity of the structure, as a consequence,

limits the implementation of this kind of system structure. Nowadays, hierarchical structures

are developed with optimisation techniques for applications to improve the performance as a

compromise [77]. Similar optimisation design based on decentralised control in hierarchical

structures can also be found in [86, 87, 60].

Distributed Structure

Figure 3.12: Distributed structure

In distributed control structure, it is assumed that some information can be transmitted

among those local regulators through a network so that regulators in each subsystem can have

some knowledge on the behaviour of the others [88, 60]. This system structure is widely used

in power grid regulation [89], intelligent transportation system [76]. Since a subsystem may

not need all the information of the system plant, Therefore, the information that is transmitted

from the local regulators is usually feed in a given subset of the others, which is also known as

partially connected [60]. However, the delay of the network is still an essential problem for the

distributed control system. Furthermore, the network failure may greatly degrade the control
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performance of a local regulator or even devastate the stability of the subsystem.

Decentralized Structure

Figure 3.13: Decentralised system structure

In a decentralised control system shown in Fig. 3.13, the local controllers of each subsystem

for system (3.64) are often in the form

ui = ui(t, xi) (3.70)

in which only local state information xi is used for the local controller in ith subsystem. Since

the controller is based only on local information, the reliability of system performance only

depends on the control performance of the local controllers. This system structure is also

economical since the network for information transmitting is not required and thus the cost

of the implementation and complexity of the overall system is reduced. However, due to the

lack of information from the other subsystems, maintaining desired control performance in the

presence of unknown interconnection usually is full of challenges. Furthermore, disturbances,

modelling errors and parameter variation also widely exist in most practical systems. Specifically,

uncertainties experienced by one subsystem not only affect its performance but usually affect
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the other subsystems’ performance as well due to the interactions among subsystems. As a

consequence, the uncertainties existing in each subsystem may greatly affect the overall system

performance or even completely devastate the stability of entire systems. To overcome such a

problem, a bordered block-diagonal form for the gain matrix is proposed in [90] and extended

in [91]. As been pointed out in [91], such structure can significantly improve the decentralised

stabilisation of large-scale system at the expense of only minimal communication overhead.

Following this, a homotopic method based decentralised dynamic control with interconnected

descriptor system is proposed in [92]. Adaptive control technique is a powerful tool to estimate

the bounds of the uncertainties, which make it very useful for the decentralised control design. As

discussed in [93], the adaptive technique based decentralised control strategy was first proposed

in [94]. Later in [95], an adaptive algorithm is developed for SISO system with strong nonlinear

interactions. Adaptive strategies for uncertain interconnections was further developed in [96, 97].

With the knowledge of the bounds on uncertainties, many robust control designs have been

carried out to improve the robustness of the decentralised control systems. In [22, 23, 24, 25],

only matched uncertainties are considered, and bounds on the matched uncertainties are assumed

to be linear or polynomial. In terms of mismatched uncertainties, in order to achieve asymptotic

stability, some limitations on the uncertainties are unavoidable. Mismatched uncertainties have

been considered in [28, 98] where centralised dynamical feedback controllers are designed

which need more resources to exchange information between subsystems. A class of constraints

called integral quadratic constraints is imposed on the considered systems to limit the structure

of the original systems [98]. In some cases, adaptive techniques are applied to estimate an

upper bound on the mismatched uncertainty to counteract its effect [99]. This approach may

be powerful when the uncertainty satisfies a linear growth condition. In [100], although the

uncertainties are assumed to be functions, the system needs to be transformed into a special

triangular structure. All the literature which considers mismatched uncertainties mentioned

above inevitably requires extra resources and increases the system complexity. This problem

may make such approaches unattractive from the viewpoint of implementation.

As a typical form of discontinuous nonlinear control, VSC has its advantage when dealing

with nonlinear uncertain systems. In [101], a decentralised VSC, which is one of the earliest work

applying VSC on decentralised structure, is proposed for interconnected systems. Following

that, many researchers worked on the decentralised control based on one particular VSC,
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i.e. SMC as mentioned in Section 3.2, owing to its strong robustness and order reduction

[16, 44, 102, 17, 103]. For this reason, the problem of robust decentralised SMC design has

received much attention, and many results have been obtained during the past 2 decades owing

to its strong robustness against matched uncertainties [104, 17] and order reduction for nonlinear

systems, e.g. see [105, 47, 11, 71, 99, 106, 107], and the trend is still growing.

It appears that the state variables of each subsystem are also not fully available in some

practical applications. An observer-based controller is an option if the subsystem is observable,

but the established observers for each subsystem will also increase the complexity of overall

systems and needs more computational resources. To avoid the unnecessary cost while keeping

strong robustness, robust decentralised control using only output information has been developed

rapidly during the past decades [108, 109, 110, 69]. Besides, some SMC schemes by using

output feedback have been proposed for large-scale systems [111], and the reachability condition

for large-scale systems are well studied [112] and expanded by Hsu, K. C. in [113]. After that,

Yan et al. in [105] proposed a decentralised sliding control for a class of nonlinear large-scale

interconnected systems with both mismatched uncertainties and mismatched interconnections.

The bounds of uncertainties are more general for comparing with the earlier work in [111]. Later,

the conservatism is reduced in [47], where the assumptions on the uncertainties are inevitably

strong due to the lack of the state information.

Nevertheless, in contrast to the case of networked control, decentralised control can only

use local information, and thus the uncertainties within the interconnections may not be well

rejected, even if they are matched. Designing a decentralised control scheme to reject the effect

of uncertainties in the interconnection terms is still challenging. To overcome the disadvantages

of the decentralised control, and to avoid the complexity and lack of flexibility when compared

with traditional centralised control and hierarchical control, quasi-decentralised control strategies

with cross communication capability between subsystems are provided with an appropriate

compromise. Similar to the distributed control, quasi-decentralised also utilise the network for

the data transmission between subsystems. However, the central part of the system structure

is decentralised, i.e. most signals used for the local regulators are collected and processed

locally, which can be expanded from a developed decentralised control strategy. Regarding the

interconnections, minimum signals from other subsystems through the network are collected

to adequately account for the interactions between subsystems and minimise propagation of
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disturbances and process influence from one unit to another [61, 114]. Therefore, decentralised

SMC is mainly considered in this thesis since it can be easily expanded to a quasi-decentralised

strategy without scarifying the reliability of the decentralised control if extra information is

available.

3.5. Practical Examples of Complex Systems

3.5.1. Nonholonomic Systems

To illustrate the nonholonomic systems and nonholonomic constraints, two examples of

nonholonomic systems, i.e. unicycle and bicycle (see [115]), are given as follows.

Unicycle

Figure 3.14: Model of a Unicycle

Suppose a unicycle shown in Fig.3.14 with coordinates q = (x, y, θ), assume that the

wheel cannot slip laterally, which result in nonholonomic constraint

ẋ sin θ − ẏ cos θ = 0 (3.71)

Rewrite the constraints in the form of Pfaffian

A(q)q̇ = 0 (3.72)

where

A(q) =
[

sin θ − cos θ 0
]

(3.73)
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By expressing all the feasible motion of unicycle as a linear combination of vector fields S(q)

S(q) =


cos θ 0

sin θ 0

0 1


which spans the null space of matrix A(q), the so-called kinematic model can be obtained as

q̇ = S(q)u (3.74)

where u = col(v, ω), and v and ω are the linear velocity and the steering velocity of the unicycle

respectively.

Bicycle

Figure 3.15: Model of Bicycle

For a bicycle shown in Fig.3.15 with coordinates q = cos(x, y, θ, φ), assume that the wheel

cannot slip laterally, which result in Pfaffian nonholonomic constraints

A(q)q̇ = 0 (3.75)

where

A(q) =

 sin θ − cos θ 0 0

sin(θ + φ) − cos(θ + φ) −l cosφ 0

 (3.76)

CHAPTER 3. FUNDAMENTAL KNOWLEDGE AND BASIC CONCEPT



3.5. PRACTICAL EXAMPLES OF COMPLEX SYSTEMS 48

By expressing all the feasible motion of bicycle as a linear combination of vector fields S(q)

S(q) =


cos θ 0

sin θ 0

1
l tanφ 0

0 1


which spans the null space of matrix A(q), the so-called kinematic model can be obtained as

q̇ = S(q)u (3.77)

where u = col(v, ω), and v and ω are the linear velocity of the bicycle and the steering rate of

the front wheel respectively.

3.5.2. Large-Scale Systems

Large-scale systems widely exist in the real world, in this section, the model of large-

scale system, such as power systems [11], continuously stirred tank reactor system [114] and

automated highway system [116], are to be provided.

Power Systems

Figure 3.16: Over view of multi-machine power systems with an infinite busbar [2]

Nowadays, electricity plays a crucial role in our daily lives. Apparently, with the increasing

complexity of power distribution systems and demands of users, it has become increasingly

CHAPTER 3. FUNDAMENTAL KNOWLEDGE AND BASIC CONCEPT



3.5. PRACTICAL EXAMPLES OF COMPLEX SYSTEMS 49

important to develop the automation of some tasks such as generation, transmission, distribution

etc. Among these tasks, a multi-machine power system with N synchronous generators as

shown in Fig.3.16 is a typical large-scale interconnected system. The interconnection between

each local generators through a transmission network greatly increases the system complexity

[59].

The mechanical equation of the generator is described by

δ̇i =ωi (3.78)

ω̇i =− Di

2Hi
ωi +

ω0

2Hi
(Pmi0 − Pei) (3.79)

where δi represent the power angle of the i-th generator and ωi denote the relative speed with

respect to the synchronous machine speed ω0. Di, Hi, Pmi0 and Pei denote the damping

constant, inertia constant, mechanical input power and electrical power respectively.

The electrical dynamics of the generator are described by

Ė′qi =
1

T ′doi
(Efi − Eqi) (3.80)

with the electrical equations

Efi =Kciufi (3.81)

Eqi =E′qi − (xdi − x′di)Idi (3.82)

Pei =
N∑
j=1

E′qiE
′
qjBij sin(δi − δj) (3.83)

Qei =−
N∑
j=1

E′qiE
′
qjBij cos(δi − δj) (3.84)

Iqi =

N∑
j=1

E′qjBij sin(δi − δj) (3.85)

Idi =
N∑
j=1

E′qjBij cos(δi − δj) (3.86)

Eqi =xdiIfi (3.87)

Vti =
√

(E′qi − x′diIdi)2 + (x′diIqi)
2 (3.88)

where Qei, E′qi and T ′doi denote the reactive power, the transient EMF in the quadrature axis and

direct axis transient short circuit time constant respectively. xdi and x′di represent the reactance
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and transient reactance in direct axis respectively, and Idi and Iqi represent current in direct axis

and quadrature axis respectively. Kci and Bij denote the gain of the excitation amplifier and the

i-th row and j-th column element of nodal susceptance matrix at internal nodes respectively.

ufi is the input signal of the i-th generator. This model has been widely used for the research of

multi-machine power system, e.g. see [117, 118, 119].

Continuously Stirred Tank Reactor

For illustrating purposes, a continuously stirred tank reactor system with three reactors is

shown in Fig.3.17. The output of local subsystem CSTR 3 is passed through a separator that

Controller 1

Temperature 

sensor

Composition 

analyzer

Coolant 

in

Coolant 

out

CSTR 1

F01, T01, CA01

Controller 2

Temperature 

sensor

Composition 

analyzer

Coolant 

in

Coolant 

out

CSTR 2

F02, T02, CA02

Controller 3

Temperature 

sensor

Composition

analyzer

Coolant 

in

Coolant 

out

CSTR 3

F03, T03, CA03

Fr, T3, CA3

F1, T1, CA1 F2, T2, CA2 F3, T3, CA3

Recycle

Local subsystem 1 Local subsystem 2 Local subsystem 3

Figure 3.17: Schematic diagram of the CSTR system

recycles unreacted products back to the subsystem CSTR 1. The reactant species are consumed

in each reactor by three parallel, irreversible exothermic reactions. Due to the non-isothermal

nature of the reactions, a jacket is used to remove/provide heat to each reactor. A plant model

based on material and energy balance is described as follows (see [114] for full details):

dT1

dt
=
F 0

1

V1
(T 0

1 − T1) +
Fr
V1

(Tr − T1) +

3∑
i=1

−∆Hi

ρcp
Ri(CA1, T1)

+
Q1

ρcpV1
(3.89)

dCA1

dt
=
F 0

1

V1
(C0

A1 − CA1) +
Fr
V1

(CAr − CA1)−
3∑
i=1

Ri(CA1, T1) (3.90)

dT2

dt
=
F 0

2

V2
(T 0

2 − T2) +
F1

V2
(T1 − T2)
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+
3∑
i=1

−∆Hi

ρcp
Ri(CA2, T2) +

Q2

ρcpV2
(3.91)

dCA2

dt
=
F 0

2

V2
(C0

A2 − CA2) +
F1

V2
(CA1 − CA2)−

3∑
i=1

Ri(CA2, T2) (3.92)

dT3

dt
=
F 0

3

V3
(T 0

3 − T3) +
F2

V3
(T2 − T3)

+
3∑
i=1

−∆Hi

ρcp
Ri(CA3, T3) +

Q3

ρcpV3
(3.93)

dCA3

dt
=
F 0

3

V3
(C0

A3 − CA3) +
F2

V3
(CA2 − CA3)−

3∑
i=1

Ri(CA3, T3) (3.94)

where Ti, CAi, Qj and Vj denote the temperature, the reactant concentration, the rate of heat,

and the volume of the ith reactor, respectively. The terms

Ri(CAj , Tj) =ki0e
−Ei
RTj CAj , i = 1, 2, 3

represent the reaction rate of the ith reaction. F 0
i denotes the flow rate of a fresh feed stream

associated with the ith reactor. Fr represents the flow rate of the recycle stream. It should be

noted that the temperature and the reactant concentration of the recycle stream are assumed to be

equal to the temperature and the concentration of the CSTR 3 subsystem as the recycled product

is directly separated from CSTR 3. ∆Hi, ki and Ei for i = 1, 2, 3 denote the enthalpy, pre-

exponential constants and activation energies of the three reactions respectively. The symbols cp

and ρ denote the heat capacity and density of fluid in the reactor.

Automated Highway Systems

In order to achieve high traffic flow rates and reduce congestion, an automated highway

systems has been developed [116]. During the automated driving process, cars are driven

automatically with both on-board lateral and longitudinal controllers. The lateral controller is

used to steer the vehicle and the longitudinal controller is used to follow a lead vehicle at a safe

distance. The corresponding overview of this vehicle-following system is shown in Fig.3.18 and

the dynamics of the system is described by [67]

ξ̇i =vi − v(i−1) (3.95)

v̇i =
1

mi

(
−Aipv2

i − di + fi
)

(3.96)
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ḟi =
1

κi
(−fi + ui) (3.97)

where ξi represents the distance between the ith and the (i− 1)th vehicle, vi is the velocity of

the ith vehicle and fi is the force applied to the longitudinal dynamics of the ith vehicle, where

if fi > 0 a forward driving force occurs and if fi < 0, then a braking force takes place. mi is

the mass of the ith vehicle, di and κi are the constant frictional force and the engine brake time

constant. The signal ui is the control variable, where if ui > 0, a throttle input results, and if

ui < 0 then a braking input occurs.

Figure 3.18: Overview of vehicle-following system

3.6. Conclusion

In this chapter, the basic knowledge of state feedback has been provided. The fundamental

properties and interests of SMC have been discussed. Owning to the strong robustness and

reduced-order properties, SMC is an effective approach for regulation of complex systems.

Regarding the difficulties arising in the control of complex systems, nonholonomic systems and

large-scale systems are considered in this thesis. The definition of nonholonomic constraints

and nonholonomic systems are provided in details with two practical examples. Due to the well
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known Brockett’s necessary condition, it is proved that a continuous feedback controller for

drift-less nonholonomic systems does not exist. To overcome such problems, discontinuous

controller, such as VSC, is usually introduced. With the natural decompositions or decompo-

sition techniques, large-scale system is usually partitioned to a collection of subsystem with

overlapping dynamics. The computational difficulties motivate the develop of various system

structures. Among all the structures, decentralised structure is one of the most reliable and

flexible structures regarding the problems arising in network transmission. Moreover, it has been

reviewed that decentralised control strategy can be used as a foundation of some hierarchical

structures or quasi-decentralised structure to further improve the system performance with

network while keeping the advantage of reliability and flexibility when the network is not

available. As a result, SMC and decentralised SMC is considered as the main methodology for

the works of large-scale systems in the following chapters.

CHAPTER 3. FUNDAMENTAL KNOWLEDGE AND BASIC CONCEPT



CHAPTER. 4

TRAJECTORY TRACKING CONTROL

FOR WMR SYSTEMS

WMRs are increasingly used for both industrial and service purposes owing to its flexible

mobility. Several moving mechanisms can be found in applications in [120]. As one of the most

common driving methods for single-body WMR, differential driving based WMR is widely used

because of the relatively simple configuration and implementation. As a typical nonholonomic

system, WMR is a complex nonlinear system with multiple inputs and outputs. A model of the

WMR is developed in Section 4.2. The SMC design is presented and analysed in Section 4.3,

and the WMR hardware layout is described in Section 4.4. Section 4.5 contains simulation and

experimental results before Section 4.6 concludes the chapter.

4.1. Background

Trajectory tracking control refers to find a feedback control laws to track or "move along"

a pre-given time-varying trajectory with arbitrary initial conditions in the considered domain.

Path following control for WMR systems is similar to trajectory tracking control but without
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consideration of speed and temporal position requirements when the robot moves along the

defined path [121]. In other words, the tracking tasks are to track a time-varying trajectory in

trajectory tracking control while moving along a designed geometric path in path-following

control. It should be noted that only trajectory tracking control is discussed in this chapter.

Although it is not necessary to satisfy Brockett’s well known necessary condition (??)

provided in Section 2.3 if the reference trajectory does not involve stabilisation to a rest

configuration [122], it is challenging to use conventional control methods to obtain desired

tracking performance for WMR systems because of the inherent nonlinearity caused by the

nonholonomic constraints. For the WMRs, kinematic models strictly relate to the nonholonomic

constraints. Thus many researchers focus on the kinematic models for trajectory tracking control

in the early work [123, 124, 125, 126, 127]. To name a few, a local trajectory tracking controller

is designed in [123] by locally linearising the system, which can only guarantee the tracking

performance locally. Then, Samson and Ait-Abderrahim firstly designed a global trajectory

tracking controller based on Lyapunov stability theory in [124]. Since there is no standard

method to obtain a nonlinear Lyapunov function, the nonlinear feedback control law may be

complicated to be obtained. Thus the design procedure may be relatively complicated. In [126],

the WMR system is approximately linearised in the neighbourhood of the equilibrium point,

and a relatively simple feedback control law is then applied to the linearised system to track

the model-based trajectory. However, due to the approximation of the dynamics, the tracking

performance is not as expected. A significant improvement of the controller based on the

backstepping method is proposed in [125]. This method has been widely used in many WMR

tracking control design [128, 129]. In the recent work in [10], the kinetic controller based on

back-stepping techniques is further simplified.

In kinematic control design, the control inputs are chosen with linear velocity and steering

velocity. However, the actual inputs of a practical WMR system are usually the torques of two

motors [130] or the voltages of the driving circuit [10]. To generate the required input signals

in the kinematic layer, it is necessary to design dynamic feedback controller to ensure that

the velocities are well-tracked [125]. Thus, dynamic controller design can be found in most

literature, e.g. see [128, 129, 131, 10]. In a driftless nonholonomic system, the disturbances

mainly come from the input channel. Meanwhile, SMC has been recognised as a robust control

method owing to its complete robustness against matched uncertainties when the system is in the
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sliding motion as discussed in Chapter 3. Therefore, this approach has been widely employed to

the nonholonomic system (see, e.g. [132]). Moreover, the sliding mode approach can also be

used to deal with systems in the presence of mismatched uncertainty under suitable conditions

even for time-delay systems (see, e.g. [133] and [134]). Therefore, SMC techniques can be a

compelling solution to the problem of trajectory tracking control in practical systems. A SMC

scheme for trajectory tracking with polar coordinates has been previously proposed by Yang

and Kim [127]. However, due to hardware limitation, the designed controller does not exhibit

the expected tracking performance in practice. In [135], sliding mode techniques were applied

to a WMR system using feedback linearization techniques, and the results have been obtained

not only for the tracking control problem but also for regulation task. However, this approach

requires that measurement of the propulsive force of the WMR to satisfy strict conditions of the

feedback linearization. Consequently, this approach is relatively complicated to implement from

the practical point of view. A coordinated control scheme based on a leader-follower approach

is developed for the control of cooperative autonomous mobile robots in [136] which enables

formation stabilisation and ensures the collision avoidance. An integral SMC strategy is applied

to the Heisenberg system, and the developed results have been successfully applied to mobile

robot control in [137]. In both [129] and [10], a SMC strategy was used in the dynamic layer.

Although simulation results in both cases show robustness against matched uncertainties, the

SMC was only applied to the dynamic model, which only ensures that the reference velocities

is well tracked. In [138], SMC was applied to the kinematic model of a WMR. However, the

designed controller is expressed in implicit form.

Although SMC has strong robustness when in the sliding mode, the system is sensitive to

uncertainties in the reaching phase. Thus many techniques have been applied for minimising

the reaching time (see, e.g. [139]), such as reaching gain adaptation in [140], time-varying

sliding surfaces in [141] or fuzzy moving sliding surfaces in [142]. However, the required

extra computation for the adaptation algorithm or time-dependent functions inevitably increases

system complexity as mentioned in [139] while the dynamics of the sliding functions are

required to satisfy appropriate fuzzy rules for the case of fuzzy moving sliding surfaces. On the

other hand, the dynamics of linear sliding surfaces may not align with global dynamic properties

required for the system (see, e.g. [143]). To overcome the disadvantages, nonlinear sliding

surfaces can be designed for the WMR system to get better performance.
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In this chapter, a sliding mode controller is proposed for a two-WMR system. Asymptotic

tracking of trajectories based on the kinematic model of the system is considered. A new sliding

surface is designed to guarantee the stability of the proposed sliding motion. Then a SMC

law is proposed to guarantee the reachability condition is satisfied so that the system attains

and maintains the required sliding motion. The implementation of the control in a two-WMR

using DC motors as actuators is carried out, and implementation of the proposed scheme is

straightforward. The experimental results achieved are consistent with the simulation results

which shows that the proposed approach is effective to the control of the two-WMR system.

4.2. Modelling of the two-WMR

qx

q

qrx

Figure 4.1: Configuration of the robot

The kinematic of the nonholonomic system and the examples of modelling were discussed

in Chapter 3. Similar to a unicycle model given in Section 3.5, consider a two-WMR with the

generalised n-vector coordinates q = col(qx, qy, θ) ∈ Rn as shown in Fig.4.1. The Pfaffian

nonholonomic constraint that the WMR cannot shift laterally is

A(q)q̇ = 0 (4.1)
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where

A(q) =
[

sin θ − cos θ 0
]

by expressing all the feasible motion of WMR as a linear combination of vector field S(q)

S(q) =


cos θ 0

sin θ 0

0 1


which spans the null space of matrix A(q), the so-called kinematic model can be obtained as

(see e.g. [130])

q̇ = S(q)u (4.2)

where u = col(v, ω), and v and ω are the linear velocity and the steering velocity of the WMR

respectively.

For the differential-driving mechanism, v and ω can be derived from the rotational velocity

of two wheels as follows (see e.g. [130]) v

ω

 =

 r
2

r
2

r
R − r

R

 ωR

ωL

 (4.3)

where ωR and ωL denote the rotational velocity of the wheels on the right side and left side

respectively. r and R represent the radius of the wheel and the width of the robot respectively as

shown in Fig.4.1.

Remark 4.1. In this chapter, the actual commands for the WMR in Fig.4.1 are the angular

velocities (ωR, ωL) defined in (4.3) (e.g. see [130]), which is implemented by motors with

voltage as input signals. This is also known as the dynamical model, e.g. see [144], [129]

and [10]. Since the mapping between these velocities is one-to-one, the pair of velocities for

the robot (v, ω) with u = col(v, ω) are implemented by two DC motors generating angular

velocities (ωR, ωL) defined in (4.3).

Assume the reference trajectory is model based. Then the differential equations of the

reference trajectory with reference coordinates qr = col(qxr, qyr, θr) and reference velocities

ur = col(vr(t), ωr(t)) are given by the following dynamics
q̇xr

q̇yr

θ̇r

 =


cos θr 0

sin θr 0

0 1


 vr(t)

ωr(t)

 (4.4)
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where vr(t) 6= 0, which implies that the reference trajectory does not have rest configuration

(see, e.g. [122]).

Then the objective of the model-based tracking control is to design a controller u for system

(4.2) such that

lim
t→∞
‖qr − q‖ = 0

where qr = col(qxr, qyr, θr) is the reference trajectory created by (4.4).

Introduce a diffeomorphism T : R3 −→ R3 with qe = T (q) as (see e.g. [138])

qe :=


xe

ye

θe

 = T̃ (q)(qr − q) (4.5)

where q = col(xc, yc, θ), qr = col(xr, yr, θr) and

T̃ (q) =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1


It is straightforward to verify that the inverse T̃−1(q) with

T̃−1(q) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (4.6)

is bounded with ‖T̃−1(q)‖ ≤ 1. Then, from Lemma 2.7, when limt→∞ ‖qe‖ = 0,

lim
t→∞
‖qr − q‖ = 0

Since θe represents the angular error between the robot and the reference, without loss of

generality, let |θe| ≤ π.

By direct computation, it follows from (4.2) and (4.4) that the differential equation of the

new error system can be described by
ẋe

ẏe

θ̇e

 =


vr cos θe

vr sin θe

ωr

+


−1 ye

0 −xe

0 −1


 v

ω

 (4.7)
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Therefore, the model-based reference tracking control problem based on the kinematic model

(4.2) is equivalent to determining a feedback control law to stabilise the new error system (4.7)

to the origin.

4.3. Control Design for the WMR

As discussed in Section 3.2, the analysis of SMC is generally separated into two phase,

i.e. sliding mode and reaching phase. To be specific, consider the error system (4.7), a sliding

function is firstly designed so that the sliding mode of the system (4.7) is asymptotically stable.

Then control to guarantee the reachability is designed based on the sliding function. In the

following subsections, the tracking control is based on the SMC with limitation on the reference

trajectory, which is separated into vr > 0 and vr < 0. The case vr > 0 is mainly considered,

and the other case vr < 0 can be obtained directly by slightly modifying sliding function and

control design from the case with vr > 0.

4.3.1. Stability of the Sliding Mode

Figure 4.2: Domain Ω in x-y plane.

If vr > 0, consider the system (4.7) in the domain

Ω = {(xe, ye, θe)τ |xe > −c1(1 + y2
e), ye ∈ R, |θe| ≤ π} (4.8)
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where c1 is a designed positive parameter and c1 > 0.5. The domain in x-y plane can be found

in Fig. 4.2.

Choose the sliding function σ = col(σl1, σ
l
2) as follows

σ =

 σ1

σ2

 =

 c1θe + tan−1(ye)

xe

 (4.9)

When the sliding motion takes place, it is straightforward to verify from σ = 0 that

{ xe = 0

θe = − tan−1(ye)
c1

(4.10)

It is clear that | tan−1(ye)
c1

| < π

Substituting (4.10) into (4.7), the unforced system can be obtained as

ẏe = vr sin(−tan−1(ye)

c1
) (4.11)

It is straightforward to see that although the system (4.7) is not in the regular form, the unforced

system can still be expressed when the system is on the sliding surface. Choose the Lyapunov

function

V =
1

2
y2
e (4.12)

Then the derivative of (4.12) is given by

V̇ = yeẏe = −vr sin(−tan−1(ye)

c1
)ye (4.13)

It is straightforward from (4.13) to verify that the derivative of the selected Lyapunov

function is negative definite. Therefore, from Lemma 2.2, the sliding motion of system (4.7)

with the sliding surface σ = 0 is asymptotically stable.

4.3.2. Reachability of the Sliding Mode

Define the input u as

u = −Λ−1

Jn

vr cos θe

vr sin θe

ωr

+

 η1sgn(σ1)

η2sgn(σ2)


 (4.14)

CHAPTER 4. TRAJECTORY TRACKING CONTROL FOR WMR SYSTEMS



4.3. CONTROL DESIGN FOR THE WMR 62

where σ1(ye, θe) and σ2(xe) defined in (4.9), η1,η2 are positive reaching gains, Jn is the Jacobian

Matrix of the sliding functions defined by

Jn =

 0 1
1+y2e

c1

1 0 0


and the matrix E is defined by

Λ =

 0 −(c1 + xe
1+y2e

)

−1 ye


It should be noticed that Λ is invertible for qe ∈ Ω where Ω is defined in (4.8).

Remark 4.2. The limitation of xe in the domain Ω is to ensure that the invertible matrix Λ

always exists. Since θe is periodic in the coordinates, an appropriate equivalent θe can always

be found in the defined domain Ω.

Theorem 4.1. Consider the WMR system (4.7) in the domain Ω. The controller (4.14) drives

the system (4.7) to the sliding surface σ = 0 where σ(·) is defined in (4.9) and maintains a

sliding motion on it.

Proof. Rewrite the derivatives of the sliding surface in the following form:

 σ̇1

σ̇2

 = Jn


vr cos θe

vr sin θe

ωr

+ Λu (4.15)

Then substituting (4.14) into (4.15), it follows that σ̇1

σ̇2

 =

 −η1sgn(σ1)

−η2sgn(σ2)

 (4.16)

It is clear that

στ σ̇ = −η1σ1sgn(σ1)− η2σ2sgn(σ2) ≤ η‖σ‖ (4.17)

where η > 0. Then the condition

Thus the results follow. �

If vr < 0, then choose a sliding surface σ = col(σl1, σ
l
2) as follows

σ =

 c1θe − tan−1(ye)

xe

 (4.18)
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Then following the analysis above, it is straightforward to obtain the required result for tracking

in reverse by slightly modifying the case vr > 0.

Remark 4.3. From sliding mode theory, the controller developed from the proposed nonlinear

sliding surface can stabilise the system only locally because the matrix Λ is singular when

xe = −c1(1 + y2
e).

4.4. Hardware description

Initializing

Initial conditions

Trajectory

Set up

Close-loop control

PCBMicrocontroller

Control

algorithm Motor Driving

Robot

Encoders

Gyroscope

Data

Processing

x,y,�

� 

� R� L

Figure 4.3: System overview for the two-WMR

The overview of the two-WMR built at the University of Kent is shown in Fig.4.3. In

order to obtain accurate motion to estimate the coordinates, a rate gyro (LPY503AL) capable

of measuring up ±250◦/s is used. The configuration of the sensor is shown in Fig.4.4. As

the gyro produces analog output signals between 0 and 3.3 V, the analog input is processed

by the analog-to-digital conversion unit equipped on the micro-controller with up to 12 bits of

resolution.

Two DC motors (Pololu 12v 50:1 Gear Motor w/Encoder shown in Fig.4.5) are used as the

actuator in the right and left side of the robot body for differential driving, to which gearbox

with reduction ratio of 50:1 is mounted. The encoder assembled on the shaft of the motor can

create up to 32 pulses per revolution as shown in Fig.4.6. With the gear ratio (50:1), it can create

up to 3200 counts per revolution of a wheel by detecting the edge of the pulses. Thus the two

encoders and the rate gyro together offer a relative accurate estimation of the position of the

robot and feedback of the rotational velocities of each motor.
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Figure 4.4: Configuration of gyroscope LPY503AL

Figure 4.5: Pololu 12v 50:1 Gear Motor w/Encoder

It should be noticed that the motors are independently drive by two H-bridge MOSFET-

based motor drivers (BD6222 HPR7) with 8.7V power supply, which are controlled by the

micro-controller with two separate pulse-width-modulation signals shown in Fig.4.7. The

micro-controller applied on the robot is a 32-b micro-controller board (Arduino Due) which

is based on the Atmel SAM3X8E ARM Cortex-M3 CPU. It has a 84 MHZ clock, 512 kB of
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Figure 4.6: Output signals of the encoder assembled on the motor shaft

embedded Flash, 96 kB of SRAM with dual banks and other useful external peripherals. The

developed printed circuit board (PCB) is shown in Fig.4.8.

Figure 4.7: Synchronised PWM signals for H-bridge motor drivers
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The programming of the micro-controller is user-friendly with C and C++ languages, and

the sampling frequency for the main control unit is 100 Hz in the implementation which is

sufficient for this application. The phototype of the two-WMR can be described in Fig. 4.9.

4.4.1. Implementation of the Control with DC Motors

Figure 4.8: Developed PCB for WMR

In order to implement the control algorithm within the robot, two DC motors are used

as actuators. The wheels on each side of the robot are driven independently, since the linear

velocity and steering velocity correspond to differential driving. The relationship between the

velocities of the robot and the rotational velocities of the wheels is given in (4.3).

Figure 4.9: Phototype of the WMR
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Pulse-width-modulation techniques are used to adjust the supply voltage so that the micro-

controller can control the rotational velocities of each wheel independently. The rotational

velocity of a motor with no load according to the input voltage adjusted by a PWM signal with

100 Hz sampling rate is shown in Table 4.1.

Table 4.1: Rotational velocities with no load according to the duty cycle of the PWM signals.

Voltage Counts ω(rad/s)

(1) 1.088 2 0.062

(2) 2.175 10 0.31

(3) 3.263 21 0.66

(4) 4.35 31 0.97

(5) 5.438 41 1.28

(6) 6.525 51 1.59

(7) 7.613 61 1.91

(8) 8.697 71 2.22

To avoid unnecessary complexity of the control algorithm, two PI controllers are applied to

the two motors to produce the desired inputs u = col(v, ω) in the system (4.7) as designed in

(4.14). The dynamical parameters of the motors are estimated by experiments based on their

specification. With the same strategies proposed by [145], and assuming the two motors have

the same parameters, the approximated dynamic model of the DC motor can be described by

ω̇m = −15.385ωm + 3.846um (4.19)

where ωm is the rotational velocity of the motor and um is the adjusted voltage.

Define the PI controller for the motor as

um(t) = Kpem(t) +Ki

∫ t

0
em(t)dt (4.20)

where em(t) is the error between the expected and actual rotational velocities of motor. Kp is

the proportional gain, and Ki is the integral gain for the motors on the right and left side. It

should be noticed that the differences between the dynamics of the two motors are ignored and

the PI controllers are simply implemented with identical controller gains.
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With 100 Hz sampling rate, the parameter Kp = 6.96 and Ki = 17.94 are obtained by test.

The sine wave tracking response shown in Figure 4.10 shows that the tracking performance is as

expected.

Despite the dynamic variability and parameter variations in the motors, for example the

slight differences in manufacturing between the two motors, the effect of the inductance, load

changes and external forces, these may be ignored in the model as these uncertainties largely

occur in the input channel of the kinematic model. The designed SMC system can be made

completely insensitive to such matched uncertainty as described in section 3.2.

Figure 4.10: Sinewave response of the motor

4.5. Simulation and Experimental Results

In this section, both closed-loop simulation and experimental results are presented to

test the behaviour of the SMC proposed in Section 4.3. The simulations are implemented in

MATLAB, and the real-time experiments are based on the Arduino Due board with the software

configured according to the control design. The measured and estimated parameters are shown

in Table 4.2

Remark 4.4. As in our design the two DC motors are identical, all the parameters of both

motors, r, Kp and Ki, are the same.
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Table 4.2: The choice of options.

Parameters value

(1) radium of wheels r(m) 0.0315

(2) Width between two wheels R(m) 0.09

(3) Sliding surface parameter c1 0.6

(4) Reaching gain η1 1.2

(5) Reaching gain η2 0.1

(6) Boundary layer parameter δ1 0.05

(7) Boundary layer parameter δ2 0.01

Simulation Results

The simulation is carried out by using MATLAB, and the model for the reference and

actual robot used in the simulation is the kinematic model of them defined in (4.4) and (4.2)

respectively.
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Figure 4.11: Time response of the error states

The main simulation results with a circle reference trajectory with initial condition

qr(0, 0,
π
4 ), reference control pair vr = 0.25, ωr = 0.5 and initial posture of the actual robot

q(−0.2,−0.3, 0) are shown in Figures 4.12 to 4.13

Remark 4.5. The simulation environment is configured to represent the hardware. All the
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Figure 4.12: Simulated motion shown in the x-y phase plane
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Figure 4.13: Time response of the velocities
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parameters are selected corresponding to the hardware constraints. The dynamics of the

actuators, in this case the motors, are also incorporated in the simulation.

Experimental results

An image of the WMR during the circle tracking task is shown in Figure 4.14 and the

actual motion is compared with simulation results in Figure 4.15.

Figure 4.14: Tracking task experiments

From the experimental results, it is evident that although the regular form is not available,

the regular form-based SMC can still be used for the control design. Both simulation and

experiment results verify the effectiveness of this approach and it has also been demonstrated

that although uncertainties may exist, the robustness properties of the SMC ensure that the

system exhibits the expected tracking performance. A small tracking error is achieved in the

implementation.

4.6. Conclusion

In this chapter, the trajectory tracking control design problem for a differential driving

two-WMR has been considered. The proposed regular form-based SMC has been successfully

implemented on a real-time WMR platform although the system is not in the regular form.

Both simulation results and experimental tests show that the proposed controller is effective,
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Figure 4.15: Comparison between experiments and simulations

straightforward to implement and exhibiting good tracking performance.
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GENERALISED REGULAR FORM

BASED CONTROL

From the previous chapter, a SMC design is established for the tracking control of a WMR

with both simulation and experimental verifications. Notably, system (4.7), in which the regular

form-based SMC is designed, is not in the exact regular form. By further analysis, a global

diffeomorphism which can transfer system (4.7) into the regular form does not even exist

according to the Frobenius Theorem discussed in Section 3.2.4. From the simulation and

experiment results of control for system (4.7), it indicates that the regular form-based SMC may

also be developed on the system in which the classical regular form is not available. Therefore,

in this chapter, a generalised regular form is proposed with further analysis and SMC is designed

for nonlinear systems in the generalised regular form with both simulation and experiment.

Starting with the brief review of related works in Section 5.1, the target system is then introduced

in Section 5.2. The corresponding stability analysis and control design are carried out in Section

5.3 and Section 5.4 respectively. Section 5.5 applies the developed results to the trajectory

control of WMR in the presence of both matched and mismatched uncertainties with both

simulation and experimental verifications. Finally, the conclusion of this chapter is given in

Section 5.6.
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5.1. Introduction

As mentioned in section 3.2, SMC is a powerful technique because of its fast convergence

and strong robustness [17, 18]. The invariance property of systems in the sliding mode to

matched uncertainties and parameter variations [16] has motivated numerous applications of

sliding mode techniques to nonlinear systems, e.g. multi-machine power systems [11], direct-

drive robot system [146], induction motor [147], power converters [148] and WMR systems

[10]. The concept of the SMC is also used in observer design and fault detection [149]. To

name a few, it has been demonstrated that sliding mode approach can be applied to control

systems with mismatched uncertainties, see for example [28, 19, 29, 30]. In [67], the bounds

on the uncertainties are estimated using adaptive techniques. However, the uncertainties are

inevitably assumed to satisfy a linear growth condition in order to adaptively compensate the

parameter uncertainty. In [19], by using an extended disturbance observer with a modified

time-varying sliding surface, a novel SMC is applied to stabilise a SISO system with continuous

external disturbance which does not vanish at the origin. Ultimate boundedness of the system

is guaranteed and the obtained ultimate bound can be further reduced by choosing appropriate

design parameters. However, the structure of the system is restricted, which makes the method

difficult to extend to the MIMO case. In [20] a sliding mode scheme is proposed for a linear

MIMO system which is applied with disturbance observer techniques to reduce the effect

caused by mismatched uncertainties with known structure and upper bounds. The external

disturbance is attenuated in sliding motion with a H∞ control-based approach to guarantee

ultimate boundedness stability or can be completely eliminated from the output channel at

the steady state with steady-state output-based approach such that the output of the system

is asymptotically stable. The method proposed by [27] also shows the strong robustness of

SMC for systems with an uncertain input distribution where the considered systems are linear

with nonlinear disturbances. In [150], SMC for general nonlinear stochastic systems has been

investigated. It is shown that for some special nonlinear stochastic systems, LMIs can be used

for controller design. Furthermore, this method can also be applied for nonlinear uncertain

stochastic systems with state-delay based on a T-S fuzzy modeling and control approach [151].

With the SMC above, the system is usually required to be in regular form or to be transferred

into such a form for analysis. It should be noted that the transformation matrix for linear systems
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can be easily obtained by basic matrix theory. However, for nonlinear systems, it is usually very

difficult to find a diffeomorphism to transfer a nonlinear system into the traditional regular form.

Moreover, the associated conditions may be too strong to be applied for most general nonlinear

systems even if the traditional regular form exists (see, for example [134] and reference therein).

In this chapter, a generalised regular form is proposed for a class of nonlinear control

systems, which is an extension of the traditional/classical regular form for SMC design for the

first time. This is an extension of the traditional/classical regular form for sliding mode design.

Then, a novel nonlinear sliding surface is designed associated with the generalised regular form

such that the corresponding sliding mode dynamics are globally asymptotically stable using

implicit function theory. Robust sliding mode controllers are designed to guarantee that the

considered system is driven to the sliding surface in finite time and remains on it thereafter even

in the presence of matched and mismatched uncertainties. All the uncertainties are assumed to

be bounded by known functions and the bounds on the uncertainties are fully used to reduce the

effects of the uncertainties. The developed results are tested by model-based tracking control

of a WMR with a differential driving mechanism through simulation and experiment. The

tracking error dynamics are derived initially, and then the developed results are applied to the

error system to demonstrate the developed strategies. Experimental and simulation results on

the WMR show that the proposed controller is insensitive to matched uncertainties, and can

tolerate a certain level of mismatched uncertainties in both theory and application.

5.2. System Description

Consider a class of nonlinear systems with matched and mismatched uncertainties described

by

ẋ = F (t, x) + G(t, x)(u+ Φ(t, x)) + Ψ(t, x) (5.1)

where x ∈ Rn and u ∈ Rm are the state variables and control inputs respectively. The

nonlinear vector F (·) ∈ Rn and the input matrix function G(·) ∈ Rn×m are known with full

rank for x ∈ Rn and t ∈ R+. The terms Φ(·) and Ψ(·) denote the matched and mismatched

uncertainties respectively. It is assumed that all the nonlinear functions are smooth enough so

that the existence of the solution of system (5.1) is guaranteed.
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Assumption 5.1. There exist known continuous nonnegative functions δ(t, x) and µ(t, x) such

that the mismatched uncertainty Ψ(t, x) and the matched uncertainty Φ(·) in system (5.1) satisfy

‖Ψ(t, x)‖ ≤δ(t, x) (5.2)

‖Φ(t, x)‖ ≤µ(t, x) (5.3)

Remark 5.1. Assumption 5.1 requires that the bounds on the uncertainties are known. These

will be employed in the control design to reject/reduce the effects of the uncertainties.

For further analysis, partition F (·), G(·) and Ψ(·)

F (t, x) :=

 F1(t, x)

F2(t, x)

 (5.4)

G(t, x) :=

 G1(t, x)

G2(t, x)

 (5.5)

Ψ(t, x) :=

 Ψ1(t, x)

Ψ2(t, x)

 (5.6)

where F1(·) ∈ Rn−m, F2(·) ∈ Rm, G1(·) ∈ R(n−m)×m, G2(·) ∈ Rm×m, Ψ1(·) ∈ Rn−m and

Ψ2(·) ∈ Rm. Then from the partitions (5.4)-(5.6), the system (5.1) can be rewritten as

ẋ1 =F1(t, x) + G1(t, x)
(
u+ Φ(t, x)

)
+ Ψ1(t, x) (5.7)

ẋ2 =F2(t, x) + G2(t, x)
(
u+ Φ(t, x)

)
+ Ψ2(t, x) (5.8)

where x1 ∈ Rn−m, x2 ∈ Rm and x = col(x1, x2). Since G(·) ∈ Rn×m is full rank for

x ∈ Rn and t ∈ R+. Assume that G2(t, x) is nonsingular in (t, x) ∈ R+ ×Rn or there exists

a diffeomorphism such that system (5.1) can be transferred into the form of (5.7)-(5.8) with

G2(t, x) is nonsingular in (t, x) ∈ R+ ×Rn, then choose the sliding function σ(x) as follows:

σ(x) = Kx2 + ϕ(x1, x2) (5.9)

where K = diag{k1, k2, . . . , km} with ki > 0 for i = 1, 2, . . . ,m, ϕ(·) is a known class C1

function and each entry of the Jacobian matrix [ ∂ϕ∂x2

]
ij

for i, j = 1, 2, . . . ,m is bounded.

Remark 5.2. There is no general way to design the function ϕ(x1, x2) for a general nonlinear

system since the function is dependent on the system dynamics. However, for a specific system,

system knowledge can be used in conjunction with the assumptions to establish a design. It
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should be noted that the sliding function (5.9) proposed in this chapter includes both the linear

sliding function σ(x) = Cx where C ∈ Rm×n is a constant matrix, and the nonlinear sliding

function in the form of σ(x) = x2 + ϑ(x1) where ϑ(·) ∈ Rm as special cases.

For the sliding function in (5.9), the sliding surface is described by

S = {x ∈ Rn| σ(x) = 0} (5.10)

Definition 5.1. System (5.7)-(5.8) with the sliding function defined in (5.9) is called the

generalised regular form of system (5.1) if the function G1(·) defined in (5.5) satisfies

G1(t, x)|x∈S = 0 (5.11)

Remark 5.3. It should be emphasised that the classical regular form requires that G1(t, x) = 0

for all t ≥ 0 and x ∈ Rn (see, e.g. [17], [134]) while the generalised regular form defined

above requires that G1(t, x) = 0 only for all t ≥ 0 and x ∈ S . It is clear to see that the classical

regular form is a special case of the generalised regular form defined above as S is just a surface

in Rn. From the Frobenius Theorem, the distribution spanned by the column vectors of the

input matrix G(·) is completely integrable if and only if the distribution is involutive (detailed

discussion can be found in Section 3.2.4). This implies that the classical regular form may

not exist for a nonlinear system. In contrast, the generalised regular form may exist and thus

to develop a sliding mode theory associated with the proposed generalised regular form is

valuable since the proposed method can be applied in cases where the classical regular form is

not available.

Define function matrices ΓG (t, x) and ΓF (t, x) as

ΓG (t, x) :=
∂σ

∂x
G(t, x) = KG2(t, x) +

∂ϕ

∂x
G(t, x) (5.12)

ΓF (t, x) :=
∂σ

∂x
F (t, x) = KF2(t, x) +

∂ϕ

∂x
F (t, x) (5.13)

where F1(·), F2(·), G1(·) and G2(·) are defined in (5.4)-(5.5) and σ(·) is defined in (5.9). The

following assumption is imposed on system (5.7)-(5.8).

Assumption 5.2. The function matrix ΓG (t, x) defined in (5.12) is nonsingular for x ∈ Rn and

t ∈ R+
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Remark 5.4. Assumption 5.2 is a limitation on the input distribution matrix G(t, x) and the

designed sliding surface σ(x) in (5.9). It is required to guarantee that the system can be driven

to the sliding surface (5.10). Since G2(·) is nonsingular, it is straight forward to see from (5.13)

that Assumption 5.2 usually can be satisfied by choosing an appropriate parameter K, and thus

this condition is not strict.

It should be noted that under condition (5.11), when the system (5.1) is limited to the

sliding surfaces (5.10), the system (5.7) has the following form

ẋ1 = F1(t, x)|x∈S + Ψ1(t, x)|x∈S (5.14)

The objective now is to study under what conditions system (5.14) is the sliding mode dynamics

of system (5.1) with respect to the sliding surface (5.10). Therefore it is necessary to guarantee

that there exists a unique solution of the functional equation σ(x) = 0 for x2 in terms of x1.

The following lemma is introduced to facilitate further analysis.

Lemma 5.1. Under condition (5.11), there exists a function g : Rn−m → Rm such that when

system (5.7) is constrained to the sliding surface (5.10), the dynamical system (5.7) can be

described by

ẋ1 =F s
1 (t, x1) + Ψs

1(t, x1) (5.15)

where

F s
1 (t, x1) =F1(t, x)|x2=g(x1) (5.16)

Ψs
1(t, x1) =Ψ1(t, x)|x2=g(x1) (5.17)

if K = diag{k1, k2, . . . , km} in (5.9) satisfies

ki ≥ ε+

m∑
j=1

sup
∣∣∣[∂ϕ
∂x

]
ij

∣∣∣, i = 1, 2, . . . ,m (5.18)

where ε is a positive constant.

Proof. When system (5.7) is limited to the sliding surfaces (5.10), it follows from condition

(5.11) that the system (5.7) can be described by (5.14). From (5.9) and (5.18),∣∣∣[ ∂σ
∂x2

]
ii

∣∣∣ =
∣∣∣ki +

[ ∂ϕ
∂x2

]
ii

∣∣∣ ≥ ki − ∣∣∣[ ∂ϕ
∂x2

]
ii

∣∣∣
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≥ε+
m∑
j=1

sup
∣∣∣[∂ϕ
∂x

]
ij

∣∣∣− ∣∣∣[ ∂ϕ
∂x2

]
ii

∣∣∣
=ε+

m∑
j=1

j 6=i

sup
∣∣∣[∂ϕ
∂x

]
ij

∣∣∣ (5.19)

for i = 1, 2, . . . ,m. This implies that∣∣∣[ ∂σ
∂x2

]
ii

∣∣∣− m∑
j=1

j 6=i

∣∣∣[ ∂σ
∂x2

]
ij

∣∣∣ ≥ ε, i = 1, 2, . . . ,m (5.20)

Then from Lemma 2.8, there exists a unique class C1 function x2 = g(x1) satisfying σ(x1, g(x1))

= 0.

The analysis above shows that x2 = g(x1) when x ∈ S . Hence the result follows by

substituting x2 = g(x1) into the right-hand side of the equation (5.14). �

5.3. Stability Analysis of the Sliding Mode

It is clear that the corresponding sliding motion of system (5.1) associated with the sliding

surface (5.9) is given by (5.15). The stability of system (5.15) will be studied in this section.

Assumption 5.3. There exists a continuously differentiable Lyapunov function V (t, x1) :

R+ ×Rn−m 7−→ R satisfying the inequalities

ς1(‖x1‖) ≤ V (t, x1) ≤ ς2(‖x1‖) (5.21)

∂V

∂t
+
∂V

∂x1
F s

1 (t, x1) ≤ −ς3(‖x1‖) (5.22)∥∥∥ ∂V
∂x1

∥∥∥ ≤ ς4(‖x1‖) (5.23)

where the functions ςi(·) for i = 1, 2, 3, 4 are continuous class K functions, and F s
1 (·) is given

in (5.15).

Remark 5.5. Assumption 5.3 implies that the nominal system of the sliding mode dynamics

(5.15) is asymptotically stable. The conditions (5.21)-(5.23) are developed from the well known

converse Lyapunov Theorem (see Lemma 2.4 in Chatper 2).
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From Assumption 5.1, it is straightforward to see that the mismatched uncertainty Ψs
1(t, x1)

in (5.15) satisfies

‖Ψs
1(t, x1)‖ ≤ γ(t, x1) (5.24)

where γ(·) is a known positive continuous function, which is assumed to satisfy γ(t, 0) = 0

such that the origin is the invariant equilibrium point of the sliding mode dynamics (14).

Theorem 5.1. Under condition (5.11) in Definition 5.1 and Assumptions 5.1 and 5.3, the

sliding mode (5.15) is globally uniformly asymptotically stable if there exists a continuous

nondecreasing function w : R+ 7−→ R+ satisfying w(r) > 0 for r > 0 and w(r)→∞ when

r →∞ such that for any x1 ∈ Rn−m

w(‖x1‖) ≤ ς3(‖x1‖)− ς4(‖x1‖)γ(t, x1) (5.25)

Proof. Consider the Lyapunov candidate function V (·) satisfying Assumption 5.3 for system

(5.15). The time derivative of V (·) along the trajectory of system (5.15) is given by

V̇ =
∂V

∂t
+ (

∂V

∂x1
)τ (F s

1 (t, x1) + Ψs
1(t, x1))

≤∂V
∂t

+ (
∂V

∂x1
)τF s

1 (t, x1) +

∥∥∥∥(
∂V

∂x1
)τ
∥∥∥∥ ‖Ψs

1(t, x1)‖

≤ − ς3(‖x1‖) + ς4(‖x1‖)γ(t, x1)

≤− w(‖x1‖) (5.26)

where the conditions (5.21)-(5.23) are used above. Hence, the conclusion follows. �

Remark 5.6. It should be pointed out that condition (5.25) shows the limitation on the mis-

matched uncertainty Ψ(t, x) in system (5.1) through the bounds γ(t, x1) in (5.24). It should be

noted that: i) γ(t, x1) is the bound on Ψs
1(t, x1) (see (5.24), ii) Ψs

1(t, x1) is the contribution

from the function Ψ1(t, x) when the system is on the sliding surface (see (5.17)), and iii) Ψ1(t, x)

is a sub-component of Ψ(t, x) (see (5.6)). Therefore, inequality (5.25) represents the limitation

on the bounds of the sub-component Ψ1(·) of Ψ(·) when Ψ1(·) is on the sliding surface instead

of the uncertainty Ψ(·) in the whole space x ∈ Rn.

Remark 5.7. For systems with mismatched disturbances which do not vanish at the origin

or in the presence of mismatched external disturbances d(t) which do not vanish when time

t goes to infinity, the problem is particularly challenging. In this case, usually only ultimate
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bounded results can be obtained under appropriate conditions unless other techniques such as

adaptive control are used to identify the disturbance [103]. In this chapter, global asymptotic

stabilization is considered where it is required that the mismatched disturbances vanish at the

origin, which is reflected in (5.24) where γ(t, 0) = 0. For the system with external disturbance

d(t) which cannot vanish at origin as t → ∞, the system can only be proved to be ultimate

boundedness stable without extra information of the disturbance since the ebullient point of the

system with unvanishing disturbance may not be origin. Since we consider uniform asymptotical

stability, part of the mismatched uncertainty ψ1(·) in this chapter is required to vanish at origin.

Since (5.15) is the associated sliding mode dynamics. Theorem 5.1 shows that the sliding

motion is asymptotically stable.

5.4. Reachability

From Assumption 5.2, ΓG (t, x) is nonsingular. Consider the control law

u(t, x) =− Γ−1
G (t, x)ΓF (t, x)− Γ−1

G (t, x)sgn
(
σ(x)

)
·
{∥∥∥∂σ

∂x

∥∥∥δ(t, x) + ‖ΓG (t, x)‖µ(t, x) + η
}

(5.27)

where ΓG (·) and ΓF (·) are defined in (5.12) and (5.13) respectively, δ(·) and µ(·) satisfy (5.2)

and (5.3) respectively, and η > 0 is a constant parameter selected to define the reaching

behaviour.

Theorem 5.2. Consider the nonlinear system (5.7)–(5.8). Under Assumptions 5.1 and 5.2,

the control (5.27) is able to drive system (5.1) to the sliding surface (5.10) in finite time and

maintain a sliding motion on it thereafter.

Proof. From (5.9)

σ̇(x) =
∂σ

∂x

(
F (t, x) + Ψ(t, x)

)
+
∂σ

∂x
G(t, x)(u+ Φ(t, x))

=ΓF (t, x) + ΓG (t, x)
(
u+ Φ(t, x)

)
+
∂σ

∂x
Ψ(t, x) (5.28)

Substituting the control in (5.27) into (5.28),

στ (x)σ̇(x) =στ (x)
{∂σ
∂x

Ψ(t, x) + ΓG (t, x)Φ(t, x)
}
−
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στ (x)sgn(σ(x))
{∥∥∥∥∂σ∂x

∥∥∥∥ δ(t, x) + ‖Γ(t, x)‖µ(t, x) + η
}

≤‖σ(x)‖
{∥∥∥∥∂σ∂xΨ(t, x)

∥∥∥∥+ ‖Γ(t, x)Φ(t, x)‖

−
∥∥∥∥∂σ∂x

∥∥∥∥ δ(t, x)− ‖Γ(t, x)‖µ(t, x)− η
}

(5.29)

From Assumption 5.1. ∥∥∥∥∂σ∂xΨ(t, x)

∥∥∥∥ ≤∥∥∥∥∂σ∂x
∥∥∥∥ ‖Ψ(t, x)‖

≤
∥∥∥∥∂σ∂x

∥∥∥∥ δ(t, x) (5.30)

‖Γ(t, x)Φ(t, x)‖ ≤‖Γ(t, x)‖‖Φ(t, x)‖

≤‖Γ(t, x)‖µ(t, x) (5.31)

Substituting inequalities (5.30) and (5.31) into (5.29) yields

στ (x)σ̇(x) ≤‖σ(x)‖
{∥∥∥∥∂σ∂xΨ(t, x)

∥∥∥∥− ∥∥∥∥∂σ∂x
∥∥∥∥ δ(t, x)

+ ‖Γ(t, x)Φ(t, x)‖ − ‖Γ(t, x)‖µ(t, x)− η
}

≤− η‖σ(x)‖ (5.32)

Hence the conclusion follows. �

5.5. Case Study: Two-WMR Systems

In this section, the results developed in Section 5.2 - Section 5.4 will be applied to the

tracking control of a two-WMR where the reference trajectory is model based. The drift-less

model of the WMR has been developed in Section 4.2. However, it is common to have uncertain

movement in practical implementation cased by non-ideal environment. For instance, in both

[129] and [10], SMC strategies were used in the dynamic layer. Although the simulation results

in [129, 10] show robustness against matched uncertainties, the SMC was only applied to the

dynamic model, which only ensures that the reference velocities can be tracked. In the following

sections, a robust SMC for the WMR system is developed in the presence of mismatched

uncertainties.
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5.5.1. Problem formulation

Consider a WMR with differential driving mechanism. As the wheels of the robot may

drift, which may result in mismatched uncertainty, it is necessary to consider mismatched

disturbances. From [130], the kinematic model of the WMR can be described by

q̇ =


cos θc 0

sin θc 0

0 1

(u+ φ(t, q)
)

+ ψ(t, q) (5.33)

where q = col(qx, qy, θc) ∈ R3 is the state with coordinates (qx, qy) on the x− y plane and the

heading angle θc, u = col(v, ω) is the control input where v is the linear velocity and ω is the

steering velocity, φ(·) ∈ R2 includes all uncertainties in the input channel (i.e. the matched

uncertainty) and the term ψ(·) ∈ R3 denotes the mismatched uncertainty.

Without loss of generality, it is assumed that ψ(·) has the form

ψ(t, q) := col(ψ1(t, q), ψ2(t, q), 0)

where ψ1(·) ∈ R and ψ2(·) ∈ R. Note that the third component of ψ(·) is assumed to be zero.

If it is not zero, then it can be included in the matched uncertainty φ(·) in (5.33).

Assume that the reference trajectory is model based, and it is given by the following

dynamic system 
q̇xr

q̇yr

θ̇r

 =


cos θr 0

sin θr 0

0 1


 vr(t)

ωr(t)

 (5.34)

where qr = col(qxr, qyr, θr) is the reference trajectory and ur = col(vr(t), ωr(t)) is the

reference control with vr 6= 0. Then the objective of the model-based tracking control is

to design a controller u for the system (5.33) such that limt→∞ ‖qr − q‖ = 0 where q =

col(qx, qy, θc) ∈ R3 is the state of the system (5.33) and qr = col(qxr, qyr, θr) is the reference

trajectory created by (5.34).

Remark 5.8. Due to the complex nonlinearity in the nonholonomic WMR system, it is straight-

forward to see that not all trajectories can be tracked. Therefore, the trajectory in this chapter

is assumed to be model based. It should be noted that the initial misalignment of the WMR
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may result in different initial misalignment of the tracking error system. Such an effect can be

included in the system uncertainty which can be overcome by redesign of the SMC if necessary.

Introduce a diffeomorphism T : R3 −→ R3 with x = T (q) as (see e.g. [138])

x :=

 x1

x2

 =


x1

x21

x22

 = T̃ (q)(qr − q) := T (q) (5.35)

where x1 ∈ R, x2 = col(x21, x22) ∈ R2 and

T̃ (q) =


− sin θc cos θc 0

cos θc sin θc 0

0 0 1


From (5.33), (5.34) and (5.35), the dynamics of the new error system in x coordinates is given

by

ẋ =


0 − cos θc(qrx − qx)− sin θc(qry − qy)

−1 − sin θc(qrx − qx) + cos θc(qry − qy)

0 −1

(u+ φ̂(t, x)
)

+ Ψ(t, x)

+


vr(t) sin θr cos θc − vr(t) cos θr sin θc

vr(t) cos θr cos θc + vr(t) sin θr sin θc

ωr(t)



=


vr(t) sinx22

vr(t) cosx22

ωr(t)


︸ ︷︷ ︸

F (t,x)

+


0 −x21

−1 x1

0 −1


︸ ︷︷ ︸

G(t,x)

(
u+ φ̂(t, x)

)
+ Ψ(t, x) (5.36)

where

φ̂(t, x) =φ(t, q)|q=T−1(x)

Ψ(t, x) :=

 Ψ1(t, x)

Ψ2(t, x)

 =
∂T

∂q
ψ(t, q)|q=T−1(x) (5.37)

By direct calculation,

∂T

∂q
=
(
− T̃ (q) + T̂ (x)

)
(5.38)
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where

T̂ (x) =


0 0 −x21

0 0 x1

0 0 0


Substitute (5.38) into (5.37) yields

Ψ(t, x) = −T̃ (q)ψ(t, q)|q=T−1(x) (5.39)

Then it is straightforward to see that the mismatched uncertainty Ψ(t, x) in the new error system

(5.36) has the form

Ψ(t, x) =

 Ψ1(t, x)

Ψ2(t, x)

 =


Ψ1(t, x)

Ψ21(t, x)

0


Thus system (5.36) can be described in the form (5.7)-(5.8) as follows

ẋ1 = vr(t) sinx22︸ ︷︷ ︸
F1(t,x)

+
[

0 −x21

]
︸ ︷︷ ︸

G1(t,x)

(
u+ Φ(t, x)

)
+ Ψ1(t, x) (5.40)

ẋ2 =

 vr(t) cosx22

ωr(t)


︸ ︷︷ ︸

F2(t,x)

+

 −1 x1

0 −1


︸ ︷︷ ︸

G2(t,x)

(
u+ Φ(t, x)

)
(5.41)

where x2 = col(x21, x22) ∈ R2, x1 ∈ R and

Φ(t, x) := φ̂(t, x)−Ψ2(t, x) (5.42)

It is straightforward to verify that T̃ (q) is nonsingular and T̃−1(q) is bounded. From (5.35),

‖qr − q‖ ≤ ‖T̃−1(q)‖ ‖x‖ which implies that limt→∞ ‖qr − q‖ = 0 if limt→∞ ‖x‖ = 0.

Therefore, the model-based reference tracking control problem for the kinematic model (5.33)

has now been transformed to a stabilisation problem for the error system (5.36). It remains to

design a control u to stabilise the system (5.36) globally and asymptotically.

5.5.2. Control design

Assume that the reference trajectory only moves forward with vr(t) ≥ Vm where Vm is a

positive constant such that a continuously differentiable feedback control law that asymptotically
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stabilizes the tracking error system exists [122, 152], and the reference velocities (vr(t), ωr(t))

are bounded with vr(t) ≤ Vx and |ωr(t)| ≤ Wx for any t ∈ R+. Further, the mismatched and

matched uncertainties Ψ1(t, x) and Φ(t, x) satisfy

‖Ψ1(t, x)‖ ≤ sin2(x22)
√
x2

21 + α+ 0.1|x1x21|
√
x2

21 + α︸ ︷︷ ︸
δ(t,x)

(5.43)

‖Φ(t, x)‖ ≤ 0.5‖x‖+ 0.6|vrωr|︸ ︷︷ ︸
µ(t,x)

(5.44)

where α is a positive constant satisfying α < V2
m. Design the switching functions

σ(x) =

 k1x21

k2x22

+

 0

x1√
c+x21+x221


︸ ︷︷ ︸

ϕ(x1,x2)

(5.45)

where k1 > 0 and k2 > 1 are design parameters and c > 0 is a constant. The sliding surface is

described by

S = {x ∈ R3| σ(x) = 0} (5.46)

where σ(x) is defined in (5.45). Then on the sliding surface (5.46), x21 = 0 and thus from

(5.40), G1(t, x) = 0. Therefore, system (5.40)-(5.41) has the generalised regular form. From

F (·) and G(·) in (5.36) and by direct calculation,

ΓF (t, x) :=
∂σ

∂x
F (t, x) =

 k1vr cosx22

(c+x221)vr sinx22−x1x21vr cosx22√
c+x21+x221

+ k2ωr

 (5.47)

ΓG (t, x) :=
∂σ

∂x
G(t, x) =

 −k1 k1x1

x1x21

(c+x21+x221)
3
2
− x21

(c+x21+x221)
1
2
− k2

 (5.48)

which is nonsingular when k2 ≥ 1. When system (5.40) is limited to the sliding surface (5.46),

it can be described by

ẋ1 = vr(t) sin
(
− x1

k2

√
c+ x2

1

)
︸ ︷︷ ︸

F s1 (t,x1)

+Ψs
1(t, x1) (5.49)

where

‖Ψs
1(t, x1)‖ ≤

√
α sin2(

x1

k2

√
c+ x2

1

)︸ ︷︷ ︸
γ(t,x1)

(5.50)
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Therefore system (5.49) with Ψs
1(·) satisfying (5.50) is the sliding mode dynamics associated

with the sliding surface (5.46). For system (5.49), define the candidate Lyapunov function as

V (t, x1) = 1
2x

2
1, then it is clear to see that

0.4x2
1︸ ︷︷ ︸

ς1(t,x1)

≤ V (t, x1) ≤ 0.6x2
1︸ ︷︷ ︸

ς2(t,x1)

The time derivative of V along the trajectories of system (5.49) is given by

∂V

∂t
+
∂V

∂x1
F s

1 (t, x1) =vr(t) sin
(
− x1

k2

√
c+ x2

1

)
x1

≤− Vm sin(
|x1|

k2

√
c+ x2

1

)|x1|︸ ︷︷ ︸
ς3(|x1|)

(5.51)

∥∥∥∥ ∂V∂x1

∥∥∥∥ = |x1|︸︷︷︸
ς4(|x1|)

(5.52)

From k2 ≥ 1 > 2
π , which implies

τ

k2

√
c+ τ2

<
π

2
(5.53)

it is straightforward to see that ς3(τ) is a class K function. Thus

ς3(|x1|)− ς4(|x1|)γ(t, x1)

=Vm sin(
x1

k2

√
1 + x2

1

)|x1| −
(√
α sin2(

x1

k2

√
c+ x2

1

)
)
|x1|

≤
(
Vm sin(

x1

k2

√
1 + x2

1

)−
√
α sin2(

x1

k2

√
c+ x2

1

)
)
|x1|

=w(|x1|) (5.54)

where

w(τ) =
(
Vm sin(

τ

k2

√
c+ τ2

)−
√
α sin2(

τ

k2

√
c+ τ2

)
)
τ (5.55)

where τ ∈ R+. Since Vm ≥
√
α ≥
√
α sin( τ

k2
√
c+x21

), it is clear that w(τ) is positive definite.

Therefore, the conditions of Theorem 5.1 hold. By limiting the minimum reference velocity

Vm = 0.01, the kinematic controller u = col(v, ω) is described by

u(t, x) =− Γ−1
G (t, x)ΓF (t, x)− Γ−1

G (t, x)sgn
(
σ(x)

)
·{∥∥∥∂σ

∂x

∥∥∥δ(t, x) + ‖ΓG (t, x)‖µ(t, x) + 5
}

(5.56)
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where the uncertainties δ(·) and µ(·) for the WMR are defined in (5.43) and (5.44) respectively.

σ(x) for the WMR is defined in (5.45) with k1 = k2 = 1 and c = 0.01, and the corresponding

ΓG (·) and ΓF (·) are defined in (5.47) and (5.48) respectively. Then, from Theorems 5.1 and 5.2,

it is straightforward to see that systems (5.40)-(5.41) are globally asymptotically stable.

The performance of the proposed controller is tested in MATLAB using the Lemniscate

curve [153] and a sharp corner as a reference trajectory. The model for the reference and

actual robot used in the simulation is the kinematic model of them defined in (5.34) and (5.33)

respectively.

1). Lemniscate Curve
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0
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1.5

x (m)

y 
(m
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Motion of the WMR

 

 
Reference trajectory
Robot trjectory
Start point of reference trajectory
Initial point of actual robot

Figure 5.1: The reference trajectory of the Lemniscate curve and the trajectory of the robot in

the x− y plane

The Lemniscate curve can be described by the following equations:

qrx(t) = sin(2πt
6 ) (5.57)

qry(t) = sin(2πt
3 ) (5.58)
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Figure 5.2: Time response of the tracking errors

0 2 4 6 8 10 12
0

1

2

3

4

5

6

Time (sec)

Li
ne

ar
 v

el
oc

ity
 v

 (
m

/s
)

Time response of linear velocity

 

 
u

r1

u
1

0 2 4 6 8 10 12
−4

−2

0

2

4

Time (sec)

S
te

er
in

g 
ve

lo
ci

ty
 w

 (
ra

d/
s)

Time response of steering velocity

 

 
u

r2

u
2

Figure 5.3: Time response of the control pair (v, ω)

The initial point of the reference is (0, 0, 1.107) and the initial point of the robot is chosen

as (−0.3,−0.4, 1.707). The motion of the robot and the reference trajectory given by (5.57)-

(5.58) are shown in Fig.5.1. The time response of the tracking errors and the control signal
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(v, ω) shown in Fig.5.2 and Fig.5.3 respectively.

2). Sharp Corner
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Figure 5.4: The reference trajectory of the Lemniscate curve and the trajectory of the robot in

the x− y plane
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Figure 5.5: Time response of the tracking errors
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The sharp corner that will be tested can be described by the following equations:

qrx(t) =

 0 t < 4− β√
(t+β−4)2+β−

√
β√

16+β
t ≥ 4− β

(5.59)

qry(t) =

 1−
√

(t−4)2+β√
16+β

t < 4

1 t ≥ 4
(5.60)

where β = 0.81 is a positive parameter that smoothes the corner. The initial point of the
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Figure 5.6: Time response of the control pair (v, ω)

reference is (0, 0, π2 ) and the initial point of the robot is chosen as (0.5, 0.1, 2.17). The motion

of the robot and the reference trajectory given by (5.59)-(5.60) are shown in Fig.5.4. The

time response of the tracking errors and the control signal (v, ω) shown in Fig.5.5 and Fig.5.6

respectively. From Fig.5.3 and Fig.5.6, it can be seen that the system is affected by the matched

uncertainties. Particularly, the unvarnished disturbances can be clearly observed in Fig.5.6 at

the corner. Due to the complete robustness of SMC to matched uncertainties, the performance
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of the system is not affected. From Fig.5.1-Fig.5.6, it is straightforward to see that the proposed

approach is effective. It should be noted that due to the discontinuity of the sign function,

the control in reality may experience chattering [154] as discussed in Section 3.2. To avoid

such problems, the boundary-layer technique proposed in [31], e.g. equation (3.45), has been

introduced to reduce the chattering in the simulation and experiments presented in this chapter.

Remark 5.9. Uncertainties are added in the WMR simulation and bounds on the uncertainties

are given to show the robustness of the proposed methodology. In the real system, the uncer-

tainties will vary on a case-by-case basis and can be obtained by statistical data analysis or

engineering experience.

5.5.3. Experimental Test

The low-cost WMR used in this chapter is an updated version of the WMR introduced in

Section 4.4 of Chapter 4. The battery of the WMR is replaced with a 12V battery so that the

12V DC motors can run at their maximum speed. The gyroscope is replaced by a 9 degree of

freedom motion tracking micro-electro-mechanical System (MEMS) device, i.e. MPU9150,

which has 3 axis digital gyroscope, accelerator and compass which enable relatively accurate

position estimation. In order to obtain data through wireless communication, a bluetooth module

is applied for the serial communication with cycle time of 10ms. The fusion algorithm used

in this WMR is based on the combination of the open-source inertial measurement unit (IMU)

algorithm proposed in [155] and Kalman filtering techniques. By applying the IMU algorithm to

the WMR combing with the encoder, the accuracy of the estimation of the position is increased

for the WMR system.

5.5.4. Implementation of the control with DC motors

It should be noted that the control inputs of system (5.40) and (5.41) are the linear velocity

v and the steering velocity ω. As assumed by other authors (e.g see [130]), such a controller can

be implemented directly using the differential driving mechanism to produce the desired inputs

(v, ω) required by the controller (5.27). Two DC motors are used as actuators driving the wheels

on each side of the robot independently. The relationship between the velocities of the robot

(v, ω) and the rotational velocities of the wheels (ωR, ωL) can be described as follows (e.g. see
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[130]):  v

ω

 =
1

2

 r r

r
b −

r
b

 ωR

ωL

 (5.61)

where (ωR, ωL) denote the rotational velocities of the wheels on the right and left sides, respec-

tively. r and b denote the radius of the wheel and width of the robot respectively. The dynamics

of the motor are also investigated to achieve the input (v, ω) required by controller (5.27). The

model of the motor system can be described by (e.g. see [16]) ω̇m

i̇m

 =

 0 Kt
Jm

−Ke
Lm

−Rm
Lm

 ωm

im

+

 0

1
Lm

uv
+

 −TL
0

 (5.62)

y =ωm (5.63)

where ωm and im are the angular velocity and motor current, and y is the measured output. uv de-

notes the input voltage adjusted by the microcomputer with Pulse-width modulation techniques.

Parameters Jm, Lm, Kt, Ke and Rm denote the motor inertia, inductance, torque constant,

back-emf constant and resistance respectively. TL is the external disturbance representing the

effects of friction and the motor load. Parameters identified through experiments with no-load

are Jm = 0.0012Kg ·m2, Lm = 0.0054F , Kt = 0.034N ·m/A, Ke = 1.04V · s/rad and

Rm = 2.4Ω. The comparison between the model response (5.62) and the response of the actual

motor is shown in Fig.5.7. The experimental results when tracking a constant reference and sine

wave reference signals are shown in Fig.5.8. From the test results, it can be seen that although

the system is affected by the limitation of the hardware, the tracking performance is as expected.

Although the control performance of the motors may also be affected by parameter variations,

the uncertainties caused by friction between the wheels and ground in the motor system will not

affect the performance of the WMR system since the SMC is robust to uncertainties implicit in

the input channel.

5.5.5. Experimental results

The experimental results for the WMR are presented in this section. The control of the

robot is designed with the same process described in Section IV-B. The control performance of
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Figure 5.7: Comparison between the actual velocity and the simulation of the motor
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Figure 5.8: Tracking performance of the motor control
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the robot is tested with a reference curve described by

qrx(t) = 0.05t (5.64)

qry(t) =
0.16

(0.05t− 0.5)2 + 0.16
− 0.3902 (5.65)

and the reference curve described in (5.59)-(5.60) which denotes a smoothed right-angled curve.

For the curve (5.64)-(5.65), the actual motion of the robot and the reference trajectory are

shown in Fig.5.9.
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Figure 5.9: Motion of robot in x-y plane in tracking task experiment

The time response of the tracking errors is shown in Fig.5.10, and the control signal is

shown in Fig.5.11.

For the curve (5.59)-(5.60) which denotes a smoothed right-angled curve, the actual motion

of the robot and the reference trajectory are shown in Fig.5.12. The time response of the tracking

errors is shown in Fig.5.13, and the control signal is shown in Fig.5.14.

From Fig.5.10 and Fig.5.13, it can be seen that the system experiences uncertainties caused by

the hardware. However, the robot exhibits good tracking performance as shown in Fig.5.12 due

to the high robustness of the designed SMC.
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Figure 5.10: Time response of tracking errors in tracking task experiment
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Figure 5.11: Measured control input (v, ω) based on sensors data in tracking task experiment

From the experimental results, it is evident that although modelling error and noise may

exist, the robustness properties of the SMC ensure that the system exhibits the expected tracking

performance in the presence of uncertainties. It should be noted that the noise usually comes
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Figure 5.12: Motion of robot in x-y plane in tracking task experiment
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Figure 5.13: Time response of tracking errors in tracking task experiment

from the motors and thus it is matched. Since SMC is completely robust to matched uncertainty,

good tracking accuracy is achieved in the experiments.
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Figure 5.14: Measured control input (v, ω) based on sensors data in tracking task experiment

5.6. Conclusion

In this chapter, a novel generalised regular form for a class of nonlinear systems is proposed

for the first time. Based on the generalised regular form, a novel sliding surface has been

designed and global asymptotic stability of the corresponding sliding motion has been presented.

A SMC scheme is designed to guarantee reachability of the sliding mode. The developed results

have been applied to a WMR. Based on the WMR dynamics, a nonlinear sliding surface is

formed and global asymptotic stability is exhibited. This application demonstrates that sliding

mode techniques can be used to stabilise systems when the normal regular form is not available.

Simulation and experimental results show that the proposed results are effective and practicable.
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CHAPTER. 6

DECENTRALISED CONTROL FOR

LARGE-SCALE SYSTEMS

In this chapter, a decentralised control strategy for a class of nonlinear large-scale interconnected

systems is developed in the presence of uncertainties. Since the local controller only utilises

the local information, the data transmission is not required in such strategy. To overcome the

problem caused by the interconnection, SMC with the following features was applied to improve

the robustness. It is shown in this chapter that if the uncertainties/interconnections possess a

superposition property, a decentralised control scheme may be designed to counteract the effect

of the uncertainty. The study shows that limitations on the bounds assumed on the uncertainties

and interconnections can be greatly reduced when compared with the output feedback case. This

chapter is organised as follows. Section 6.1 presents a brief review of the existing works. Then,

the considered large-scale system is depicted in Section 6.2. The corresponding SMC design is

carried out in Section 6.3 and Section 6.4. Two case studies on CSTR system and automated

highway system is then provided in Section 6.5.2 before Section 6.6 concludes this chapter.
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6.1. Introduction

The problem of robust decentralised controller design has been discussed in Section 3.4.

For large scale interconnected systems, uncertainties experienced by one subsystem not only

affect its own performance but usually affect the other subsystems’ performance as well due to

the interactions between the subsystems. SMC has been recognised as a powerful approach in

dealing with uncertainties [16, 17] in the presence of unmatched uncertainty [134] although the

property of total insensitivity is frequently lost. However, in contrast to the case of centralised

control, decentralised scheme can only use local information and thus the uncertainties within

the interconnections may not be rejected, even if they are matched. Designing a decentralised

control scheme to reject the effect of uncertainties in the interconnection terms is thus chal-

lenging. In [22, 23, 24, 25], only matched uncertainties are considered and the bounds on the

matched uncertainties are assumed to be linear or polynomial. In terms of mismatched uncer-

tainties, in order to achieve asymptotic stability, some limitations are unavoidable. Mismatched

uncertainties have been considered in [134, 98] where centralised dynamical feedback con-

trollers are designed which need more resources to exchange information between subsystems.

A class of constraints called integral quadratic constraints is imposed on the considered systems

to limit the structure of the original systems [98]. In some cases, adaptive techniques are applied

to estimate an upper bound on the mismatched uncertainty which can then be used to counteract

its effects [99]. This approach can be powerful when the uncertainty satisfies a linear growth

condition. In [69], although the uncertainties are assumed to be nonlinear functions, the system

needs to be transformed into a special triangular structure. All the literature which considers

mismatched uncertainties mentioned above inevitably requires extra resources and increases

system complexity. This may be unattractive from the viewpoint of implementation. Specifically,

output feedback control based results impose very strong limitations on the uncertainties and

interconnections (see e.g. [22, 156, 47, 11]).

In this chapter, a decentralised control strategy for a class of nonlinear large-scale intercon-

nected systems is proposed based on a SMC paradigm. In terms of the robustness, both matched

uncertainties and mismatched unknown interconnections are considered. It is well known

that to deal with interconnections is one of the main challenges for large-scale interconnected

systems when decentralised control is considered. The main contribution of this section can be
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summarized as follows:

i). The uncertain interconnections are separated into two parts to reduce the conservatism.

ii). It is not required that the interconnections vanish at the origin.

iii). The bounds on the uncertainties have a more general form than those imposed in existing

work.

Moreover, the uncertainties are assumed to be bounded by known functions which are employed

in the control design to counteract the effects of the uncertainties. The bounds on the uncer-

tainties take more general forms when compared with existing work. Based on the approach

proposed in [16], a sliding surface for each subsystem is designed. Together these constitute a

composite sliding surface for the large-scale system. A set of sufficient conditions is developed

such that the corresponding sliding motion is asymptotically stable when the system is restricted

to the designed sliding surface. Then, a decentralised SMC is designed to drive the large-scale

interconnected system to the sliding surface in finite time. It is shown that if the uncertain-

ties/interconnections possess a superposition property, a decentralised control scheme can be

designed to counteract the effect of the uncertainty. Finally, the developed decentralised control

scheme is applied to a CSTR system and an automated highway system. Simulation results

relating to a high-speed car following system show that the obtained results are effective. The

study shows that limitations on the bounds assumed on the uncertainties and interconnections

can be greatly reduced when compared with the output feedback case.

6.2. System Description and Preliminaries

Consider a nonlinear large-scale interconnected system composed of N subsystems where

the i-th subsystem is described by

ẋi =Aixi +Bi (ui + φi(t, xi)) +
N∑
j=1

Ξij(t, xj) + ψi(t, x) i = 1, 2, . . . , N (6.1)

where xi ∈ Di ⊂ Rni (Di is the neighborhood of the origin xi = 0), ui ∈ Rmi denote the

state variables and inputs of the i-th subsystem, respectively. The matrix pairs (Ai, Bi) are

constant with appropriate dimensions. The matched uncertainties are denoted by φi(t, xi).
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The terms
∑n

j=1 Ξij(t, xj) with Ξij(t, 0) = 0 describe the known interconnection of the i-th

subsystem. The nonlinear functions ψi(t, x) represent the uncertain interconnections where

x = col(x1, x2, . . . , xn) is the state of the whole system plant. It is assumed that all the nonlinear

functions are sufficiently smooth such that the unforced system has a unique continuous solution.

It should be noted that

N∑
j=1

Ξij(t, xj) =Ξii(t, xi) +
N∑
j 6=i
j=1

Ξij(t, xj) (6.2)

In this case, Ξii(t, xi) can be considered as the known nonlinearity in the ith subsystem and

the term
∑N

j 6=i
j=1

Ξij(t, xj) as the known interconnection within the ith subsystem. It will be

shown that such a class of interconnections can be employed in decentralised controller design

to reduce conservatism.

The objective of this chapter is to design a decentralised control

ui = ui(xi, t), i = 1, 2, . . . , N (6.3)

for system (6.1) based on sliding mode techniques such that the corresponding closed-loop

system formed by applying the controllers (6.3) to the system (6.1) is asymptotically stable.

The following basic assumption is firstly imposed on the system (6.1).

Assumption 6.1. The matrix pairs (Ai, Bi) are controllable and rank(Bi) = mi for i =

1, 2, . . . , N .

Under the condition that rank(Bi) = mi in Assumption 1, there exists an invertible matrix

T̃i ∈ R(ni×ni) such that after the coordinate transformation x̃i = T̃ixi, the matrix pairs (Ai, Bi)

with respect to the new coordinates x̃i have the following structure

Ãi =

 Ãi1 Ãi2

Ãi3 Ãi4

 = T̃iAiT̃
−1
i (6.4)

B̃i =

 0

B̃i2

 = T̃iBi (6.5)

where Ãi1 ∈ R(ni−mi)×(ni−mi) and the matrix B̃i2 ∈ Rmi×mi is nonsingular for i =

1, 2, . . . , N . It should be noted that the matrix T̃i can be obtained using basic matrix theory.
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Assume that (Ai, Bi) is controllable. From [16], it follows that the matrix pair (Ãi1, Ãi2)

in (6.4) is controllable. Then, there exists a matrix Ki ∈ R(ni−mi)×mi such that Ãi1−KiÃi2 is

Hurwitz stable. Considering the system (6.1), introduce a new transformation matrix as follows:

Ti =

 Ini−mi 0

Ki Imi

 T̃i (6.6)

It is clear that the matrix Ti is nonsingular. Define z = col(z1, z2, . . . , zN ) where zi = Tixi.

Then in this new coordinate system, system (6.1) has the following form

żi =

 Ai1 Ai2

Ai3 Ai4

 zi +

 0

B̃i2

 (ui + gi(t, zi)) +
N∑
j=1

Γij(t, zj) + δi(t, z) (6.7)

where zi ∈ Ti(Di) := Ωi, Ai1 = Ãi1 − Ãi2Ki is stable,

T−1 ≡: diag{T−1
1 , T−1

2 , . . . , T−1
N }

and

gi(t, zi) =φi(t, T
−1
i zi) (6.8)

Γij(t, zj) ,

 Γaij(t, zj)

Γbij(t, zj)

 = TiΞij(t, T
−1
j zj) (6.9)

δi(t, z) ,

 δai (t, z)

δbi (t, z)

 = Tiψi(t, T
−1z) (6.10)

where Γaij(t, zj) ∈ R(ni−mi), δai (t, z) ∈ R(ni−mi), Γbij(t, zj) ∈ Rmi , and δbi (t, z) ∈ Rmi for

i, j = 1, 2, . . . , N .

For further analysis, now partition zi =col(zai , z
b
i ) where zai ∈ Rni−mi and zbi ∈ Rmi .

Then the system (6.7) can be rewritten in the following form

żai =Ai1z
a
i +Ai2z

b
i +

N∑
j=1

Γaij(t, zj) + δai (t, z) (6.11)

żbi =Ai3z
a
i +Ai4z

b
i + B̃i2(ui + gi(t, zi)) +

N∑
j=1

Γbij(t, zj) + δbi (t, z) (6.12)

where the matrix Ai1 in (6.11) is stable.

The following assumption is imposed on the uncertainty.
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Assumption 6.2. There exist known continuous functions ρi(t, zi), ηai (t, z) and ηbi (t, z) such

that for i = 1, 2, . . . , N ,

(i) ‖gi(t, zi)‖ ≤ ρi(t, zi)

(ii) ‖δai (t, z)‖ ≤ ηai (t, z)‖z‖

(iii) ‖δbi (t, z)‖ ≤ ηbi (t, z)

Remark 6.1. Assumption 6.2 is a limitation on all the uncertainties experienced by the inter-

connected system. It is required that bounds on the uncertainties are known. These bounds

will be employed in the control design to reject the effects of the uncertainty. It should be

emphasised that the bounds on the uncertainties in Assumption 6.2 have a more general form

when compared with existing work [22, 47, 11, 156]. It should be noted that it is only required

that δai (·) vanish at the origin, and it is not required that gi(·) and δbi (·) vanish at the origin.

6.3. Stability Analysis of the Sliding Motion

In this section, a sliding surface is designed for the system (6.7) and the stability of the

corresponding sliding motion is analysed. A set of sufficient conditions is provided such that

the sliding motion is asymptotically stable.

It is clear that system (6.11)-(6.12) has regular form. Choose the local sliding surface for

the ith subsystem of the large-scale interconnected system (6.7) as follows:

σi(zi) ≡: zbi = 0, i = 1, 2, . . . , N. (6.13)

Then, the composite sliding surface for the interconnected system (6.11)-(6.12) is chosen as

σ(z) = 0 (6.14)

where

σ(z) ≡: col (σ1(z1), σ2(z2), . . . , σN (zN ))

= col
(
zb1, z

b
2, . . . , z

b
N

)
SinceAi1 in (6.11) is stable, for anyQi > 0, the following Lyapunov equation has a unique

solution Pi > 0 such that

Aτi1Pi + PiAi1 = −Qi, i = 1, 2, . . . , N. (6.15)
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During sliding motion, zbi = 0 for i = 1, 2, . . . , N . Then, the sliding mode dynamics for

the system (6.11)-(6.12) associated with the designed sliding surface (6.14) can be described by

żai = Ai1z
a
i +

n∑
j=1

Γsij(t, z
a
j ) + δsi (t, z

a
1 , z

a
2 , . . . , z

a
N ) (6.16)

where

Γsij(t, z
a
j ) :=Γaij(t, zj)|zbj=0 (6.17)

δsi (t, z
a
1 , z

a
2 , . . . , z

a
N ) :=δai (t, z)|(zb1,zb2,...,zbN )=0 (6.18)

Here Γaij(t, zj) and δai (t, z) are defined in (6.9) and (6.10) respectively.

Assumption 6.3. The functions Γsij(·) in (6.17) have the following decomposition:

Γsij(t, z
a
j ) = Γ̃sij(t, z

a
j )zaj (6.19)

where Γ̃sij(t, z
a
j ) is an appropriately-dimensioned matrix function for i, j = 1, 2, . . . , N .

Remark 6.2. If the term Ξij(t, xj) in system (6.1) is sufficiently smooth with Ξij(t, 0) = 0,

then Γsij(t, z
a
j ) will be smooth enough with Γsij(t, 0) = 0. From [47], it is straightforward to

see that the decomposition (6.19) holds. It should be noted that in the system (6.11)-(6.12), the

interconnection terms are Γaij(t, zj) and Γbij(t, zj). Therefore, it is clear to see from (6.19) and

(6.17) that the Assumption 6.3 does not require that the interconnections vanish at the origin.

This is in comparison with all of the associated work [22, 98, 100, 47] where it is required that

the interconnections vanish at the origin.

Under Assumptions 6.1-6.3, a reduced order interconnected system composed of N

subsystems with dimension ni −mi is obtained as follows:

żaj = Ai1z
a
j +

n∑
j=1

Γ̃sij(t, z
a
j )zaj + δsi (t, z

a
1 , z

a
2 , . . . , z

a
N ) (6.20)

which represents the sliding mode dynamics relating to the sliding surface (6.14), where

zai ∈ Rni−mi and Γ̃si (t, z
a
j ) is defined in (6.19).

Lemma 6.1. For the terms δsi (t, z
a
1 , z

a
2 , . . . , z

a
N ) in system (6.20), if condition (ii) in Assumption

6.2 holds, then there exist continuous functions γij(·) such that

‖δsi (t, za1 , za2 , . . . , zaN )‖ ≤
N∑
j=1

γi(t, z
a)‖zaj ‖ (6.21)
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where

γi(t, z
a) = ηai (t, za1 , 0, z

a
2 , 0, . . . , z

a
N , 0)

for i = 1, 2, . . . , N , and za = col(za1 , z
a
2 , . . . , z

a
N ).

Proof. From the definition of δsi (·) in (6.18), it follows that

δsi (t, z
a
1 , z

a
2 , . . . , z

a
N ) = δai (t, za1 , 0, z

a
2 , 0, . . . , z

a
N , 0) (6.22)

From condition (ii) in Assumption 6.2,

‖δai (t, z)‖ ≤ ηai (t, z)‖z‖ (6.23)

From (6.22) and (6.23), it follows that

‖δsi (t, za1 , za2 , . . . , zaN )‖ = ‖δai (t, za1 , 0, z
a
2 , 0, . . . , z

a
N , 0)‖

≤ ηai (t, za1 , 0, z
a
2 , 0, . . . , z

a
N , 0)‖za‖

≤
N∑
j=1

ηai (t, za1 , 0, z
a
2 , 0, . . . , z

a
N , 0)‖zaj ‖

≤
N∑
j=1

γi(t, z
a)‖zaj ‖

Hence the result follows. �

The following result can now be presented.

Theorem 6.1. Consider the sliding mode dynamics given in equation (6.20). Under Assumptions

6.1-6.3, the sliding motion governed by (6.20) is asymptotically stable if there exists a domain

Ωza of the origin in za ∈ R
∑N
i=1(ni−mi) such that

M τ +M > 0

in Ωza\{0} where M = (mij)N×N , and

mij =

 λmin(Qi)− 2‖Pi‖γi(t, za)− ςii(t, zai ), i = j

−ςij(t, zaj )− 2‖Pi‖γi(t, za), i 6= j

where Pi and Qi satisfy (6.15), and the functions ςij(·) are defined by

ςij(t, z
a
j ) :≡ ‖PiΓ̃sij(t, zaj ) + (Γ̃sij)

τ (t, zaj )Pi‖

with Γ̃sij(t, z
a
j ) given by (6.19), and γi(t, za) satisfy (6.21) for i, j = 1, 2, . . . , N .
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Proof. For system (6.20), consider the Lyapunov function candidate

V (t, za1 , z
a
2 , . . . , z

a
N ) =

N∑
i=1

(zai )τPiz
a
i (6.24)

where Pi satisfies equation (6.15).

Then, from the lyapunov equation (6.15), the time derivative of V (t, za1 , z
a
2 , . . . , z

a
N ) along

the trajectories of system (6.20) is given by

V̇ =

N∑
i=1

{
(żai )τPiz

a
i + (zai )τPiż

a
i

}
≤

N∑
i=1

{
− λmin(Qi)‖zai ‖2 + 2‖zai ‖‖Pi‖‖δsi (t, za1 , za2 , . . . , zaN )‖+

N∑
j=1

∥∥∥PiΓ̃si1(t, zaj ) + (Γ̃sij(t, z
a
j ))τzajPi

∥∥∥‖zai ‖‖zaj ‖}

≤
N∑
i=1

{
− λmin(Qi)‖zai ‖2 +

N∑
j=1

ςij(t, z
a
j )‖zai ‖‖zaj ‖+ 2‖zai ‖‖Pi‖

N∑
j=1

γi(t, z
a)‖zaj ‖

}

=−
N∑
i=1

{
λmin(Qi)− 2‖Pi‖γi(t, za)− ςii(t, zai )

}
‖zai ‖2

+

N∑
i=1

N∑
j=1

j 6=i

{
ςij(t, z

a
j ) + 2‖Pi‖γi(t, za)

}
‖zai ‖‖zaj ‖

=− 1

2
Y τ (M τ +M)Y (6.25)

where Y ≡: col(‖za1‖, . . . , ‖zaN‖).

Thus, the conclusion follows from M τ +M > 0. �

Theorem 6.1 shows that the sliding motion corresponding to the designed sliding surface is

asymptotically stable. Conditions to ensure this sliding motion is attained and maintained will

be developed in the next section.

6.4. Decentralised Sliding Mode Control Design

A SMC is designed to drive the system to the sliding surface. It is well known that an

appropriate reachability condition is described by

στ (z)σ̇(z) < 0
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for a centralized system with switching surfaces σ(z) = 0. For the nonlinear interconnected

system (6.1), the corresponding reachability condition is described by

N∑
i=1

στi (zi)σ̇i(zi)

‖σi(zi)‖
< 0 (6.26)

where σi(zi) is defined by (6.13). It should be noted that the condition (6.26) is proposed in

[113] and has been widely used (see, e.g. [47]).

Consider system (6.11)-(6.12). In order to reduce the effects of the unknown interconnec-

tion δbi (·), consider the expression

ηbi (t, z) =
N∑
j=1

µij(t, zj) + νi(t, z) (6.27)

where νi(t, z) represents all the coupling terms which cannot be included in the term∑N
j=1 µij(t, zj).

Remark 6.3. The interconnection decomposition in (6.27) is not unique and is introduced to

reduce the conservatism caused by the interconnection terms within the control design. There is

no general way to obtain the decomposition. The first interconnection term
∑N

j=1 µij(t, zj) has

a superposition property. It will be shown that the term
∑N

j=1 µij(·) in (6.27) can be rejected by

selection of an appropriate decentralised control and this will reduce conservatism. The second

term, νi(t, z) in (6.27), cannot be rejected by the choice of decentralised control.

The objective is to design a decentralised sliding mode controller such that the reachability

condition (6.26) is satisfied. For i = 1, 2, . . . , N , the following control scheme is proposed:

ui =− B̃−1
i2

{
Ai3z

a
i +Ai4z

b
i +

N∑
j=1

Γbji(t, zi)
}

− B̃−1
i2 sgn(zbi )

{
‖B̃i2‖ρi(t, zi) +

N∑
j=1

µji(t, zi) + ζi(t, zi)
}

(6.28)

where zi = col(zai , z
b
i ), ρi(t, zi) are defined in Assumption 6.2, µji(t, zi) satisfy (6.27) and

ζi(t, zi) is a reachability function which will be defined later.

Theorem 6.2. Consider the nonlinear interconnected system (6.7). Under Assumptions 6.1-

6.3, the decentralised control (6.28) is able to drive system (6.7) to the composite sliding
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surface (6.14) and maintains a sliding motion on it thereafter if in the considered domain

Ω = Ω1 × Ω2 · · · × ΩN , the functions ζi(t, zi) in (6.28) satisfy

N∑
i=1

ζi(t, zi) >

N∑
i=1

νi(t, z) (6.29)

in Ω\{0} for all t > 0 with νi(t, z) defined in (6.27).

Proof. From the analysis above, all that needs to be proved is that the composite reachability

condition (6.26) is satisfied. From (6.14), for i = 1, 2, . . . , N ,

σ̇i(zi) = żbi =Ai3z
a
i +Ai4z

b
i + B̃i2

(
ui + φi(t, T

−1
i zi)

)
+

N∑
j=1

Γbij(t, zj) + δbi (t, z) (6.30)

Substituting (6.28) into (6.30),

N∑
i=1

στi (zi)σ̇i(zi)

‖σi(zi)‖
=

N∑
i=1

{(zbi )
τ

‖zbi ‖
{
δbi (t, z) + B̃i2φi(t, T

−1
i zi)

}
− ‖B̃i2‖ρi(t, zi)−

N∑
j=1

µji(t, zi)− ζi(t, zi)
}

+
(zbi )

τ

‖zbi ‖
{ N∑
i=1

N∑
j=1

Γbij(t, zj)−
N∑
i=1

N∑
j=1

Γbji(t, zi)
}

≤
N∑
i=1

‖B̃i2φi(t, T−1
i zi)‖+

N∑
i=1

‖δbi (t, z)‖ −
N∑
i=1

‖B̃i2‖ρi(t, zi)

−
N∑
i=1

N∑
j=1

µji(t, zi)−
N∑
i=1

ζi(t, zi) (6.31)

From Assumption 6.2,

N∑
i=1

‖δbi (t, T−1z)‖ ≤
N∑
i=1

N∑
j=1

µij(t, zj) +
N∑
i=1

νi(t, z)

=
N∑
i=1

N∑
j=1

µji(t, zi) +

N∑
i=1

νi(t, z) (6.32)

and

‖B̃i2φi(t, T−1
i zi)‖ ≤‖B̃i2‖‖φi(t, T−1

i zi)‖ ≤ ‖B̃i2‖ρi(t, zi) (6.33)

Substituting inequalities (6.32) and (6.33) into (6.31),

N∑
i=1

στi σ̇i
‖σi‖

≤ −
N∑
i=1

ζi(t, zi) +
N∑
i=1

νi(t, z) < 0 (6.34)
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Then the reachability condition (6.26) is satisfied. Hence, the result follows. �

Remark 6.4. It should be noted that the functions ζi(·) in (6.29) are design parameters. Theorem

6.2 shows that if ζi(·) are designed to satisfy condition (6.29), then the well known reachability

condition holds and a sliding mode will occur. Moreover, if all the interconnection functions

νi(t, z) are bounded for i = 1, 2, . . . , N in the considered domain Ω, it is straightforward to

see that (6.29) always holds by choosing appropriate ζi(·).

From SMC theory, Theorems 5.1 and 5.2 together guarantee that the closed-loop system

formed by applying the decentralised controller (6.28) to the interconnected system (6.7) is

asymptotically stable in the domain Ω.

It is clear to see that system (6.7) is an expression of system (6.1) in the new coordinates

zi(zi = Tixi). Partition Ti as follows

Ti =

 T ai

T bi

 (6.35)

where T ai ∈ R(ni−mi)×ni and T bi ∈ Rmi×ni .

Then  zai

zbi

 := zi = Tixi =

 T ai xi

T bi xi

 (6.36)

From the relationship between (6.1) and (6.7), it is straightforward to rewrite the control

(6.28) in terms of the x coordinates to stabilize the system (6.1) using (6.36).

6.5. Case studies

6.5.1. Control of a CSTR

To illustrate the algorithm, a system composed of three cascaded non-isothermal continu-

ously stirred-tank reactors (CSTRs) with recycling as presented in example 2 of section 3.5.2 is

considered. As in [114], it is assumed that the recycle ratio is r = 0.5 and the system parameters

are given in Table 6.1. The corresponding steady state operating conditions are presented in
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Table 6.1: CSTR System Parameters

Parameters Value Parameters Value

F 0
1 4.998 m3/h V1 1.0 m3

F 0
2 30 m3/h V2 3.0 m3

F 0
3 60 m3/h V3 9.0 m3

T 0
1 300.0 K C0

A1 4.0 kmol/m3

T 0
2 300.0 K C0

A2 3.0 kmol/m3

T 0
3 300.0 K C0

A3 2.0 kmol/m3

∆H1 -5.0 × 104 KJ/kmol k10 3.0 × 106 h−1

∆H2 -5.2 × 104 KJ/kmol k20 3.0 × 105 h−1

∆H3 -5.4 × 104 KJ/kmol k30 3.0 × 105 h−1

E1 5.0 × 104 KJ/kmol ρ 1000.0 kg/m3

E2 7.53 × 104 KJ/kmol cp 0.231 KJ/kg K

E3 7.53 × 104 KJ/kmol Fr 94.998 m3/h

Note: Fr = rF3 where r is the recycle ratio.

Table 6.2 (see [114]). The objective is to design a decentralised control strategy to stabilise the

Table 6.2: CSTR System Steady State Operating Conditions

State Equilibrium Point State Equilibrium Point

T s1 432.8113 K CsA1 1.8864 kmol/m3

T s2 422.1458 K CsA2 2.0510 kmol/m3

T s3 427.8888 K CsA3 1.8302 kmol/m3

CSTR system asymptotically. Let xi1 = CAi − CsAi and xi2 = Ti − T si for i = 1, 2, 3. Then,

the CSTR system can be described in the form of (6.1) by

ẋ1 =

 −99.996 0

0 −99.996


︸ ︷︷ ︸

A1

x1 +

 0

0.00433


︸ ︷︷ ︸

B1

(u1 + φ1(t, x1))
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+

 94.998 0

0 94.998

x3︸ ︷︷ ︸
Ξ13

+

 f11(t, x1)

f12(t, x1)


︸ ︷︷ ︸

Ξ11

+ψ1(t, x) (6.37)

ẋ2 =

 −43.332 0

0 −43.332


︸ ︷︷ ︸

A2

x2 +

 0

0.00144


︸ ︷︷ ︸

B2

(u2 + φ2(t, x2))

+

 33.332 0

0 33.332

x1︸ ︷︷ ︸
Ξ21

+

 f21(t, x2)

f22(t, x2)


︸ ︷︷ ︸

Ξ22

+ψ2(t, x) (6.38)

ẋ3 =

 −21.111 0

0 −21.111


︸ ︷︷ ︸

A3

x3 +

 0

0.000481


︸ ︷︷ ︸

B3

(u3 + φ3(t, x3))

+

 14.444 0

0 14.444

x2︸ ︷︷ ︸
Ξ32

+

 f31(t, x3)

f32(t, x3)


︸ ︷︷ ︸

Ξ33

+ψ3(t, x) (6.39)

where

f11(t, x1) =
(
− 3× 106 exp(

−6013.952

x12 + 432.8113
)− 6× 105

· exp(
−9057.012

x12 + 432.8113
)
)

(x11 + 1.8864) + 5.2249 (6.40)

f12(t, x1) =
(
6.494× 108 exp(

−6013.952

x12 + 432.8113
) + 1.377× 108

· exp(
−9057.012

x12 + 432.8113
)
)

(x11 + 1.8864)− 1131.4185 (6.41)

f21(t, x2) =
(
− 3× 106 exp(

−6013.952

x22 + 422.1458
)− 6× 105

· exp(
−9057.012

x22 + 422.1458
)
)

(x21 + 2.051) + 4.0035 (6.42)

f22(t, x2) =
(
6.494× 108 exp(

−6013.952

x22 + 422.1458
) + 1.377× 108

· exp(
−9057.012

x22 + 422.1458
)
)

(x21 + 2.051)− 865.9556 (6.43)

f31(t, x3) =
(
− 3× 106 exp(

−6013.952

x32 + 427.8888
)− 6× 105

· exp(
−9057.012

x32 + 427.8888
)
)

(x31 + 1.8302) + 4.3212 (6.44)

f32(t, x3) =
(
6.494× 108 exp(

−6013.952

x32 + 427.8888
) + 1.377× 108
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· exp(
−9057.012

x32 + 427.8888
)
)

(x31 + 1.8302)− 935.5439 (6.45)

The unknown matched uncertainty φi(t, xi, t) is assumed to satisfy

‖φ1(t, x1)‖ ≤1000|x11|+ 800|x12| (6.46)

‖φ2(t, x2)‖ ≤2000|x21|+ 600|x22| (6.47)

Consider the system (6.37)-(6.39) in the domain

D = {xi ∈ R3|xi1 ≥ −CsAi, |xi2| ≤ 100}

It should be noted that since the concentration of each tank cannot be negative and the tempera-

ture is upper and lower limited by practical bounds, the domain considered covers a reasonable

range from the practical point of view.

By using the algorithm in [16], the coordinate transformation zi = Tixi for i = 1, 2, 3 can

be obtained with Ti defined by

Ti =

 1 0

−0.1 1


Then the system (6.37)-(6.39) is transformed into the form in (6.11)-(6.12) as

ż1 =

 −99.996 0

0 −99.996

 z1 +

 0

0.00433

 (u1 + g1(t, z1, t))

+

 94.998 0

0 94.998

 z3︸ ︷︷ ︸
Γ13(t,z3)

+

 Γa11(t, z1)

Γb11(t, z1)

+

 δa1(t, z)

δb1(t, z)

 (6.48)

ż2 =

 −43.332 0

0 −43.332

 z2 +

 0

0.00144

 (u2 + g2(t, z2, t))

+

 33.332 0

0 33.332

 z1︸ ︷︷ ︸
Γ21(t,z1)

+

 Γa22(t, z2)

Γb22(t, z2)

+

 δa2(t, z)

δb2(t, z)

 (6.49)

ż3 =

 −21.111 0

0 −21.111

 z3 +

 0

0.000481

 (u3 + g3(t, z3, t))
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+

 14.444 0

0 14.444

 z2︸ ︷︷ ︸
Γ32(t,z2)

+

 Γa33(t, z3)

Γb33(t, z3)

+

 δa3(t, z)

δb3(t, z)

 (6.50)

where

Γaii(t, zi) =fi1(T−1
i zi)

Γbii(t, zi) =fi2(T−1
i zi)− 0.1fi1(T−1

i zi)

for i = 1, 2, 3 and j = 1, 2, and the unknown interconnections are assumed to satisfy

δa1(t, z) ≤5 sin2(z11)‖z‖

δb1(t, z) ≤ 0.5 sin2(z11)‖z1‖︸ ︷︷ ︸
µ11(t,z2)

+ 0.5 sin2(z11)‖z2‖+ 0.5 sin2(z11)‖z3‖︸ ︷︷ ︸
ν1(t,z)

δb2(t, z) ≤ 6|z21|+ 5|z22|︸ ︷︷ ︸
µ22(t,z2)

δa3(t, z) ≤2 cos2(z31)‖z3‖

δb3(t, z) ≤ 0.2 cos2(z11)‖z3‖︸ ︷︷ ︸
µ31(t,z1)

+ 0.7|z22|︸ ︷︷ ︸
µ32(t,z2)

During sliding motion, zi2 = 0 and Γsii(t, zi) is given by

Γs11(t, z11) =ξ11(t, z11)z11 + 1.8864ξ11(t, z11) + 5.2249 (6.51)

Γs22(t, z21) =ξ21(t, z21)z11 + 2.051ξ21(t, z21) + 4.0035 (6.52)

Γs33(t, z31) =ξ31(t, z31)z11 + 1.8302ξ31(t, z31) + 4.3212 (6.53)

where

ξ11(t, z11) =− 3× 106 exp(
−6013.952

0.1z11 + 432.8113
)− 6× 105 exp(

−9057.012

0.1z11 + 432.8113
)

ξ11(t, z21) =− 3× 106 exp(
−6013.952

0.1z21 + 422.1458
)− 6× 105 exp(

−9057.012

0.1z21 + 422.1458
)

ξ11(t, z31) =− 3× 106 exp(
−6013.952

0.1z31 + 427.8888
)− 6× 105 exp(

−9057.012

0.1z31 + 427.8888
)

It is straightforward to verify that the term 1.8864ξ11(t, z11) + 5.2249 in (6.51) vanishes to 0

when x11 = 0, which means that the term can be approximated with a Taylor series. By using a

Taylor series of order 6, the term can be expressed as follows:

1.8864ξ11(t, z11) + 5.2249 = d1(t, z11)z11 (6.54)
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where

d1(t, z11) =1.43× 10−15z4
11 + 7.27× 10−12z3

11

+ 1.73× 10−8z2
11 + 2.31× 10−5z11 + 0.0168 (6.55)

With the same procedure, the Taylor series’ expansions for similar terms in Γs22(t, z2) and

Γs33(t, z3) can also be expressed with d2(t, z21) and d3(t, z31)

d2(t, z21) =7.67× 10−16x4
22 + 3.45× 10−12x3

22

+ 7.61× 10−9x2
22 + 9.55× 10−6x22 + 0.00658 (6.56)

d3(t, z31) =7.64× 10−16x4
32 + 3.67× 10−12x3

32

+ 8.42× 10−9x2
32 + 1.09× 10−5x32 + 0.00776 (6.57)

Thus the known nonlinearity Γsii(t, zi1) in (6.48)-(6.50) can be expressed as

Γsii(t, zi1) = (ξi1(t, zi1) + di(t, zi1))︸ ︷︷ ︸
Γ̃sii(t,zi1)

zi1

It is clear that the known nonlinear interconnections Γsij(t, zj1) can be expressed as

Γs13(t, z31) = 94.998z31 Γs21(t, z11) = 33.332z31 Γs32(t, z21) = 14.444z31

From Lemma 1,

δa1(t, z11, z21, z31) ≤
3∑
j=1

5 sin2(z21)‖z11‖

δa3(t, z11, z21, z31) ≤2 cos2(z31)‖z31‖

Choosing Qi = I2 for i = 1, 2, 3 and solving the Lyapunov equation (6.15) yields

P1 = −0.005 P2 = −0.0115 P3 = −0.0237

Then, the matrix function M will be
1− ‖Γ̃

s
11(t,z11)‖
99.996 − 0.05 sin2(z11) −0.05 sin2(z11) −0.95− 0.05 sin2(z11)

−0.7692 1− ‖Γ̃
s
22(t,z21)‖
43.332 0

0 −0.6842 1− ‖Γ̃
s
33(t,z31)‖
21.11 − 0.0947 cos2(z31)


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By the help of computing such as LMI toolbox in MATLAB, it is straightforward to verify that

in the domain D,

M τ +M > 0

It follows from Theorem 6.1 that the designed sliding mode is asymptotically stable. From

Theorem 6.2, define the following decentralised control law

u1(t, z1) =15395.8441z12 − 230.9469Γb11(t, z1)

− sgn(z13)
{

1000|z11|+ 800|z12 − 0.1z11|

+ 115.47 sin2(z11)‖z1‖+ 230.9469ζ1(z1)
}

(6.58)

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

Time hr

C
on

ce
nt

ra
tio

n 
km

ol
/m

3

Reactant Concentration

 

 

0 0.2 0.4 0.6 0.8 1
300

350

400

450

500

550

Time hr

T
em

pe
ra

tu
re

 K

Temperature

 

 

C
e1

C
e2

C
e3

T
e1

T
e2

T
e3

Figure 6.1: Time response of the states of the CSCTR system from (3.89)-(3.94)
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u2(t, z2) =20014.7806z22 − 692.8406Γb22(t, z2)

− sgn(z23)
{

2000|z21|+ 600|z22 − 0.1z21|

+ 692.8406ζ2(z2)
}

(6.59)

u3(t, z3) =− 153575.7506z32 − 2078.5219Γb11(t, z3)

− sgn(z33)
{

415.70348 cos2(z31)‖z3‖+ 2078.5219ζ3(z3)
}

(6.60)

where ζ1(z1) = 250 + 0.5‖z1‖, ζ2(z2) = 100, and ζ3(z3) = 100.

By direct computation, it follows that the condition
∑N

i=1 ζi(zi) ≥
∑N

i=1 νi(t, z) is sat-

isfied in the domain D, and thus the designed controllers (6.58)–(6.60) stabilise the system

(6.37)-(6.39) asymptotically. The time responses of the system states of the CSCTR described

in equations (3.89)-(3.94) are given in Figure 6.1 where the upper figure shows the reactant

concentration while the lower figure shows the tank temperature. The time response of the

control input signals are shown in Figure 6.2. The simulation results show that the proposed

approach is effective.
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Figure 6.2: Time response of the control input signals

6.5.2. Automated Highway Systems

To illustrate the algorithm, an automated high systems composed of six vehicles as pre-

sented in example 3) of section 3.5.2 is considered. The stability and the robustness of the

vehicle-following system will be considered as a case study to demonstrate the theoretical results
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and the parameters are chosen as in [67]:

mi = 1300kg, Aip = 0.3Ns2/m2, di = 100N

κi = 0.2s, v0 = 20m/s

As in [157], a safety distance frequently used in automated highway systems based on the

Time-Headway policy (CTH) is used in this design. The safety distance defined by the CTH

policy is described by (e.g. see [157])

ξd(vi) = ξd0 + βvi (6.61)

where ξd0 is the distance between stationary vehicles, and β is the so-called headway time. It is

well known that the safety distance is closely related to the vehicle’s velocity. Therefore, the

safety distances in (6.61) are more practicable when compared with the work in [67] and [116]

in which the safety distance is chosen as a constant.

Define ξd0 = 1, β = 0.5 and vd = v0 as an ideal driving velocity, and let

xi1 = ξi − ξd(vi) (6.62)

xi2 = vi − vd (6.63)

xi3 =
fi −Aipv2

0 − di
1000

(6.64)

for i = 1, 2, . . . , 6. Then, a 6-vehicle following system can be described in the form of (6.1) as

follows:

ẋi =


0 1.0046 −0.3846

0 −0.0092 0.7692

0 0 −5


︸ ︷︷ ︸

Ai

xi +


0

0

0.005


︸ ︷︷ ︸

B

(ui + 220 + φi(xi, t))

+


−x(i−1)2

0

0


︸ ︷︷ ︸

Ξi(i−1)

+


0.00046x2

i2

−0.00023x2
i2

0


︸ ︷︷ ︸

Ξii

+ψi(t, x), i = 1, 2, . . . , 6 (6.65)
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where Ξij = 0 if i 6= j and j 6= i− 1, and

Ξi0 =


−x02

0

0

 =


−v0 + vd

0

0

 = 0

The bounds of the unknown matched uncertainty φi(xi, t) are assumed to satisfy

‖φ1(x1, t)‖ ≤20|x11 + x12|+ 80|x13| (6.66)

‖φ2(x2, t)‖ ≤25|x21 + x22|+ 75|x23| (6.67)

‖φ3(x3, t)‖ ≤30|x31 + x32|+ 70|x33| (6.68)

‖φ4(x4, t)‖ ≤35|x41 + x42|+ 65|x43| (6.69)

‖φ5(x5, t)‖ ≤40|x51 + x52|+ 60|x53| (6.70)

‖φ6(x6, t)‖ ≤45|x61 + x62|+ 55|x63| (6.71)

Remark 6.5. The high-speed following system is a physical system and the mass of each vehicle

is relatively large and thus the corresponding driving/braking forces are large. It should be

noted that the uncertainty added to the system in the current study is to illustrate the robustness

of the designed control system to verify the results obtained in this chapter. This element is not a

feature of the system in [67].

Consider the system (6.65) in the domain

Di = {(xi1, xi2, xi3) |xi2| < 20} (6.72)

which, from (6.63), implies that the maximus speed of all the cars is 40m/s (144 Km/h).

By using the algorithm in [16], the coordinate transformation zi = Tixi for i = 1, 2, . . . , 6

can be obtained with Ti defined by

Ti =


1 0 0

0 1 0

13 20.79 1


then the system (6.65) is transformed into the form (6.11)-(6.12) with Ai1 Ai2

Ai3 Ai4

 =


5 9 −0.3846

−10 −16 0.7692

−77.88 −111.668 5.9908


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Bi =


0

0

0.005


for i = 1, 2, . . . , 6 and

Γii(t, zj) =

 Γaii(t, zj)

Γbii(t, zj)

 =


0.000115x2

i2

−0.00023x2
i2

−0.0033x2
i2


for i = 1, 2, . . . , 6 and

Γi(i−1) =

 Γai(i−1)(t, zj)

Γbi(i−1)(t, zj)

 =


−x(i−1)2

0

−13x(i−1)2

 , i = 2, . . . , 6

The bounds on the unknown interconnections satisfy

δa1(t, z) ≤0.01 cos2(z12)‖z1‖+ 0.008 sin2(z21)‖z2‖

δa2(t, z) ≤0.009 cos2(z21)‖z2‖+ 0.016 sin2(z13)‖z1‖+ 0.0096 cos2(z33)‖z3‖

δa3(t, z) ≤0.008 sin2(z32)‖z3‖+ 0.007 cos2(z11)‖z1‖+ 0.011 cos2(z22)‖z2‖

+ 0.0095 cos2(z42)‖z4‖

δa4(t, z) ≤0.011 cos2(z41)‖z4‖+ 0.012 cos2(z22)‖z2‖+ 0.01 cos2(z31)‖z3‖

+ 0.0078 cos2(z51)‖z5‖

δa5(t, z) ≤0.012 sin2(z51)‖z5‖+ 0.016 cos2(z23)‖z2‖+ 0.009 sin2(z42)‖z4‖

+ 0.0074 cos2(z63)‖z6‖

δa6(t, z) ≤0.02 sin2(z63)‖z6‖+ 0.0075 sin2(z13)‖z1‖+ 0.012 sin2(z51)‖z5‖

and

δb1(t, z) ≤ 0.24 cos2(z12)‖z1‖︸ ︷︷ ︸
µ11(t,z1)

+ 0.192|z22|︸ ︷︷ ︸
µ12(t,z2)

δb2(t, z) ≤ 0.18 cos2(z21)‖z2‖︸ ︷︷ ︸
µ22(t,z2)

+ 0.38 sin2(z13)‖z1‖︸ ︷︷ ︸
µ21(t,z1)

+ 0.32 sin2(z22)‖z1‖+ 0.192 sin2(z22z33)‖z3‖︸ ︷︷ ︸
ν2(t,z)
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δb3(t, z) ≤ 0.2|z21 + z22|+ 0.1|z23|︸ ︷︷ ︸
µ32(t,z2)

δb4(t, z) ≤ 0.3|z11 + z13|+ 0.2|z12|︸ ︷︷ ︸
µ41(t,z1)

+ 0.6|z51 + z52|+ 0.4|z53|︸ ︷︷ ︸
µ45(t,z5)

δb6(t, z) ≤ 0.6|z21 + z22|+ 0.4|z23|︸ ︷︷ ︸
µ62(t,z2)
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Figure 6.3: Time responses of the state variables of the system (6.65)

It is clear that the known nonlinear interconnections Γij(t, zj) in equation (6.19) can be

expressed as

Γsii =


0 0.3

1300xi2 0

0 − 0.3
1300xi2 0

0 −4.2864
1300 xi2 0

 , i = 1, . . . , 6

Γs21 =Γs32 =


0 −1 0

0 0 0

0 −13 0


which, by direct verification, satisfy (6.19). Now define the sliding surface as

σ(zi) = zi3, i = 1, . . . , 6
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Then, when the sliding motion takes place, from Lemma 1,

δa1(t, za1 , . . . , z
a
6) ≤0.01 cos2(z12)‖za1‖+ 0.008 sin2(z21)‖za2‖

δa2(t, za1 , . . . , z
a
6) ≤0.009 cos2(z21)‖za2‖+ 0.016 sin2(z12)‖za1‖

δa3(t, za1 , . . . , z
a
6) ≤0.008 sin2(z32)‖za3‖+ 0.007 cos2(z11)‖za1‖

+ 0.011 cos2(z22)‖za2‖+ 0.0095 cos2(z42)‖za4‖

δa4(t, za1 , . . . , z
a
6) ≤0.011 cos2(z41)‖za4‖+ 0.012 cos2(z22)‖za2‖

+ 0.01 cos2(z31)‖za3‖+ 0.0078 cos2(z51)‖za5‖

δa5(t, za1 , . . . , z
a
6) ≤0.012 sin2(z51)‖za5‖+ 0.009 sin2(z42)‖za4‖

δa6(t, za1 , . . . , z
a
6) ≤0.012 sin2(z51)‖za5‖

Choose Q1 = 1000I2, Q2 = 234I2, Q3 = 23I2, Q4 = 1.3I2, Q5 = 0.05I2 and Q6 =

0.01I2, by solving the Lyapunov equation, (6.15) yields

P1 =

1577.27 −931.82

−931.82 613.64

 P2 =

 369.08 −218.05

−218.05 143.59


P3 =

 36.28 −21.43

−21.43 14.11

 P4 =

 2.05 −1.21

−1.21 0.80


P5 =

 0.079 −0.047

−0.047 0.031

 P6 =

 0.016 −0.0093

−0.0093 0.0061


Then, the matrix function M can be obtained. It is straightforward to verify that in the domain

Ω = T (D1 ×D2 × · · · × D6) where Di are given in (6.72) for i = 1, . . . , 6,

M τ +M > 0

It follows from Theorem 6.1 that the designed sliding mode is asymptotically stable.

Choose

ζ1 = 200 + 0.32‖z1‖ ζ2 = 200 ζ3 = 200 + 0.192‖z3‖

ζ4 = 200 ζ5 = 200 ζ6 = 200

From (6.28), the controller ui for i = 1, . . . , 3 is well defined and the condition (8.35) in

Theorem 6.2 is satisfied in the considered domain.

Simulation results are obtained and shown in Fig.6.3-Fig.6.7. The time responses of all

the system states are shown in Fig.6.3. From Fig.6.3, it is clear to see that all subsystems are
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Figure 6.4: Time responses of the velocities of the vehicles
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Figure 6.5: Time responses of the driving/braking forces of the vehicles

CHAPTER 6. DECENTRALISED CONTROL FOR LARGE-SCALE SYSTEMS



6.5. CASE STUDIES 124

0 10 20 30

Time (sec)

0

20

40

D
is

ta
nc

e l
1

Safe Distance

0 10 20 30

Time (sec)

0

20

40

D
is

ta
nc

e l
2

Safe Distance

0 10 20 30

Time (sec)

0

20

40

D
is

ta
nc

e l
3

Safe Distance

0 10 20 30

Time (sec)

0

20

40

D
is

ta
nc

e l
4

Safe Distance

0 10 20 30

Time (sec)

0

20

40

D
is

ta
nc

e l
5

Safe Distance

0 10 20 30

Time (sec)

0

20

40

D
is

ta
nc

e l
6

Safe Distance

Figure 6.6: Time responses of the actual distances and the safe distance defined in (6.61)
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Figure 6.7: Time responses of the system input
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stabilized even in the presence of uncertainties. The time response of velocities, driving/braking

forces and distances with safe distances defined in (6.61) are shown in Fig.6.4-Fig.6.6 respec-

tively. According to Fig.6.6, all cars are running within the prescribed safe distance to avoid

collision. In Fig.6.5, it is clear to see that some subsystems, e.g. the 4th and 5th subsystems,

experienced relatively large disturbances. However, owing to the robustness of the controller

with respect to matched uncertainties when in the sliding mode, the closed-loop performance is

robust. The control input signals applied to the system (6.65) are shown in Fig.6.7. It should

be noted that a boundary layer approximation is used in the simulation, and thus there is no

chattering. The simulation results show that the proposed approach is effective.

Remark 6.6. From the simulation example, it is clear to see that the bounds on the uncertainties

have a more general form in this chapter when compared with the existing work in [67] and

[158]. In fact, in [67], the uncertainties are inevitably assumed to be a linear combination of

known nonlinear functions in order to adaptively compensate parameter uncertainty. Further-

more, the bounds on the interconnections are assumed to satisfy a linear growth condition (i.e.

‖δi‖ ≤
∑N

j=0 cj‖xj‖). In [158], an adaptive fuzzy control is applied on an automated highway

system. In order to counteract the effect of the uncertainties, the bounds on the interconnection

terms are assumed to have a special structure [158].

6.6. Conclusion

In this chapter, a decentralised state feedback SMC law has been proposed to asymptotically

stabilise a class of nonlinear interconnected systems with known and unknown interconnections

in the considered domain. Both matched and mismatched uncertainties are considered. The

bounds on the uncertainties can be nonlinear functions instead of constants or polynomial

bounds as in previous work. Both known interconnections and the bounds on the unknown

interconnections have been fully considered in the control design to reject their effects on

the system to reduce conservatism. The developed results are applicable to a wide class of

interconnected systems. Simulations for a CSTR system and a vehicle-following system have

been presented to show that the results obtained are effective.
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CHAPTER. 7

DECENTRALISED CONTROL FOR

LARGE-SCALE SYSTEMS IN

GENERALISED REGULAR FORM

For a linear system, the regular form can be obtained through basic matrix calculation. However,

for a fully nonlinear MIMO interconnected system, the regular form does not always exist as

discussed in Section 3.2.4. For a system that the classical regular form is not available, it is

useful to develop control strategy based on the generalised regular form defined in Chapter 5. In

this chapter, a nonlinear decentralised control strategy for a class of nonlinear interconnected

systems in generalised regular form is proposed based on a SMC paradigm. The considered

large-scale systems with fully nonlinear isolated subsystem have more general form than the

system with the classical regular form considered in Chapter 6. The uncertainties are assumed

to be bounded by known functions which are employed in the control design to counteract

the effects of the uncertainties in the controlled interconnected system. It is shown that if the

uncertainties/interconnections possess a superposition property, a decentralised control scheme

may be designed to counteract the effect of the uncertainty for the nonlinear large-scale systems

as well. To be specific, a class of nonlinear interconnected systems with subsystems in the
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generalised regular form is studied in Section 7.1. Decentralised structure based on SMC

technique for such systems is developed in the presence of both matched and mismatched

uncertainties in Sections 7.2 and 7.3 regarding the stability of the sliding mode and reachability

of the decentralised controller respectively. A numerical example with simulation results is

presented in Section 7.4 to demonstrate the proposed control scheme. Finally, the conclusion of

this chapter is presented in Section 7.5.

7.1. System Description

Consider a class of nonlinear large-scale interconnected systems composed of N subsys-

tems where the i-th subsystem can be transformed or described by

Ẋi =Fi(t,Xi) +Gi(t,Xi)(Ui + Φi(t,Xi)) +
N∑
j=1

Hij(t,Xj) (7.1)

where Xi ∈ Ωi ⊂ Rni are the state variables of the i-th subsystem. The vector Fi(·) with

Fi(t, 0) = 0 and the function matrix Gi(·) are continuous with appropriate dimensions.

Ui ∈ Rmi denote inputs of the i-th subsystem respectively for i = 1, 2, . . . , N . Matched

uncertainty is denoted by Φi(·). The nonlinear functions Hij(·) ∈ Rni represent the uncertain

interconnections. Specifically, Hii(·) represent the uncertainty in the i-th subsystem. It is

assumed that all the nonlinear functions are sufficiently smooth such that the unforced system

has a unique continuous solution.

For further discussion and analysis, rewrite system (7.1) as follows

Ẋa
i =F ai (t,Xi) +Gai (t,Xi)(Ui + Φi(t,Xi)) +

N∑
j=1

Ha
ij(t,Xj) (7.2)

Ẋb
i =F bi (t,Xi) +Gbi(t,Xi)(Ui + +Φi(t,Xi)) +

N∑
j=1

Hb
ij(t,Xj) (7.3)

where Xa
i = col(Xa

i1, X
a
i2, . . . , X

a
i(ni−mi)) ∈ R

ni−mi and Xb
i ∈ Rmi are derived from Xi :=

col(Xa
i , X

b
i ), and

Fi(t,Xi) :=

 F ai (t,Xi)

F bi (t,Xi)

 , Gi(t,Xi) :=

 Gai (t,Xi)

Gbi(t,Xi)

 (7.4)
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Hij(t,Xj) :=

 Ha
ij(t,Xj)

Hb
ij(t,Xj)

 (7.5)

where the function vectors F ai (·) ∈ R(ni−mi) and F bi (·) ∈ Rmi , the function matrices

Gai (·) ∈ R(ni−mi) and Gbi(·) ∈ Rmi and the uncertainties Ha
ij(·) ∈ Rni−mi and Hb

ij(·) ∈ Rmi

are continuous with appropriate dimensions.

Choose the sliding function σi(Xi) as follows:

σi(Xi) = Xb
i + ϕi(X

a
i ), i = 1, 2, . . . , N. (7.6)

where ϕi(·) is a known Frechet-differentiable function with ϕi(0) = 0 satisfying

Mϕi(ξi) (Mϕi(ξi))
τ ≤βiImi ∀ξi ∈ Rni−mi (7.7)

where Mϕi(·) ∈ Rmi×(ni−mi) represent the Jacobian matrix of the function ϕi(·), and βi is a

positive constant.

For the sliding functions in (7.6), the sliding surface is described by

Si = {Xi ∈ Rni | σi(Xi) = 0}, i = 1, 2, . . . , N. (7.8)

Define function matrix Γi(t,Xi) as

Γi(t,Xi) := Gbi(t,Xi) +Mϕi(X
a
i )Gai (t,Xi) (7.9)

where Gai (·) and Gbi(·) are defined in systems (7.2)-(7.3) and ϕi(·) are defined in (7.6).

Assumption 7.1. System (7.1) is in the generalised regular from, see Definition 5.1 in Section

5.2 of Chapter 5, described by (7.2)-(7.3), and the function Γi(·) defined in (7.9) is nonsingular

for Xi ∈ Ωi for i = 1, 2, . . . , N .

Remark 7.1. As discussed in Section 3.2.4 in Chapter 3, the distribution spanned by the column

vectors of the input matrix is completely integrable if and only if the distribution is involutive (e.g.

see [32]). This implies that the classical regular form does not always exist. As the generalised

regular form include the classical regular form as a special case, which further shows that the

proposed method has more general form than the existing work.
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Assumption 7.2. There exist known continuous nondecreasing functions Ξaij(·) in R+ with

Ξaij(0) = 0, and known continuous functions Ξbi(·) and ρi(·) such that

(i)
∥∥Ha

ij(t,Xj)
∥∥ ≤ Ξaij(‖Xj‖) (7.10)

(ii)
∥∥∥Hb

ij(t,Xj)
∥∥∥ ≤ Ξbij(‖Xj‖) (7.11)

(iii) ‖Φi(t,Xi)‖ ≤ ρi(t,Xi) (7.12)

for all t ∈ R+, and Xi ∈ Ωi for i = 1, 2, . . . , N .

Remark 7.2. Assumption 7.2 is a limitation on all the uncertainties experienced by the system.

It is required that bounds on the uncertainties are known and the bounds will be employed in the

control design to reject or reduce the effect caused by the uncertainties. It should be pointed out

that only uncertainties Ha
ij(·) are required to vanish at the origin, which are reflected through

Ξaij(0) = 0 while it is not required that Hb
ij(t,Xj) are vanished at the origin in this chapter.

7.2. Stability Analysis of the Sliding Mode

Choose the composite sliding surface for the interconnected system (7.2)-(7.3) as follows

σ(X) = 0 (7.13)

where σ(X) ≡: col (σ1(X1), σ2(X2), . . . , σN (XN )) and X := col(X1, X2, . . . , XN ) with

σi(·) defined in (7.6). During sliding motion, σi(Xi) = 0 for i = 1, 2, . . . , N . Therefore, when

sliding motion occurs, from Assumption 7.1,

Gai (t,Xi) = 0

and from (7.6),

Xb
i = −ϕi(Xa

i )

for i = 1, 2, . . . , N . Then, the sliding mode dynamics for the system (7.2)-(7.3) associated with

the designed sliding surface (7.13) can be described by

Ẋa
i = F si (t,Xa

i ) +
N∑
j=1

Hs
ij(t,X

a
j ) (7.14)
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where

F si (t,Xa
i ) :=F ai (t,Xa

i ,−ϕi(Xa
i )) (7.15)

and

Hs
ij(t,X

a
j ) := Ha

ij(t,X
a
j ,−ϕj(Xa

j )) (7.16)

for i, j = 1, 2, . . . , N with Ha
ij(t,Xj) defined in (7.2).

Lemma 7.1. For termsHs
ij(t,X

a
j ) in system (7.14), if inequality (7.10) in Assumption 7.2 holds,

then

‖Hs
ij(t,X

a
j )‖ ≤ Ξsij(‖Xa

j ‖) (7.17)

where

Ξsij(‖Xa
j ‖) = Ξaij(

√
1 + βi‖Xa

j ‖)

where Ξaij(·) are defined in (7.10).

Proof. From the definition of Hs
ij(·) in (7.16), it follows that

Hs
ij(t,X

a
j ) =Ha

ij(t,X
a
j ,−ϕi(Xa

j )) (7.18)

From (7.7), it is straightforward to see that

‖Mϕi(ξ)‖ ≤
√
βi (7.19)

Then from the mean value theorem,

‖ϕi(h)− ϕi(0)‖ = ‖ϕi(h)‖ ≤
√
βi‖h‖ (7.20)

When the system is on the sliding surface

‖Xi‖ =
√

(Xa
i )τXa

i + (Xb
i )
τXb

i

=
√

(Xa
i )τXa

i + ϕτi (Xa
i )ϕi(Xa

i )

≤
√
‖Xa

i ‖2 + βi‖Xa
i ‖2

=
√

1 + βi‖Xa
i ‖ (7.21)

From (7.18), (7.10) and (7.21), it follows that

‖Hs
ij(t,X

a
j )‖ ≤Ξaij(‖Xj‖) ≤ Ξaij(

√
1 + βi‖Xa

j ‖) = Ξsij(‖Xa
j ‖) (7.22)

Hence the result follows. �
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Assumption 7.3. There exist continuous C1 function Vi : R+ ×Rni−mi → R+ and functions

ςi1(·), ςi2(·), ςi3(·) and ςi4(·) of class K such that for all Xi ∈ Ωi and t ∈ R+

(i) ςi1(‖Xa
i ‖) ≤ Vi(t,Xa

i ) ≤ ςi2(‖Xa
i ‖)

(ii)
∂Vi(t,X

a
i )

∂t
+
∂Vi(t,X

a
i )

∂Xa
i

F si (t,Xa
i ) ≤ −ς2

i3(‖Xa
i ‖)

(iii)
∥∥∥∥∂Vi(t,Xa

i )

∂Xa
i

∥∥∥∥ ≤ ςi4(‖Xa
i ‖)

where
∂Vi(t,X

a
i )

∂Xa
i

=

(
∂Vi(t,X

a
i )

∂Xa
i1

,
∂Vi(t,X

a
i )

∂Xa
i2

. . .
∂Vi(t,X

a
i )

∂Xa
i(ni−mi)

)
with Xa

i = col(Xa
i1, X

a
i2, . . . , X

a
i(ni−mi)).

Assumption 7.3 is employed to guarantee that all the isolated nominal subsystems of the

interconnected system (7.14) are asymptotically stable. The following result is ready to be

presented.

Theorem 7.1. Under Assumptions 7.1, 7.2 and 7.3, the sliding modes (7.14) of the systems (7.2)-

(7.3) for i = 1, 2, . . . , N associated with the sliding surface (7.13) are asymptotically stable if

there exists a domain ΩXa of the origin in Xa = col(Xa
1 , X

a
2 , . . . , X

a
N ) ∈ R

∑N
i=1(ni−mi) such

that

(W (t,Xa))τ +W (t,Xa) > 0

in domain ΩXa\{0} with W (t,Xa) = (wij(t,X
a
i , X

a
j ))N×N and for i, j = 1, 2, . . . , N

wij(t,X
a
i , X

a
j ) =


µi3(‖Xa

i ‖)− µi4(‖Xa
i ‖)γii(‖Xa

i ‖), i = j

− µi4(‖Xa
i ‖)γij(‖Xa

j ‖), i 6= j

where µi3(·), µi4(·) and γij(·) are defined respectively by

µi3(ξ) =

∫ 1

0

∂ςi3(ξh)

∂h
dh (7.23)

µi4(ξ) =

∫ 1

0

∂ςi4(ξh)

∂h
dh (7.24)

γij(ξ) =

∫ 1

0

∂Ξsij(ξh)

∂h
dh (7.25)

with h ∈ R, and ςi3, ςi3 and Ξsij are defined in Assumption 7.3 and (7.17) respectively.
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Proof. From (7.23)-(7.25), it can be observed that

ςi3(‖Xa
i ‖) =µi3(‖Xa

i ‖)‖Xa
i ‖ (7.26)

ςi4(‖Xa
i ‖) =µi4(‖Xa

i ‖)‖Xa
i ‖ (7.27)

Ξsij(‖Xa
j ‖) =γij(‖Xa

j ‖)‖Xa
j ‖ (7.28)

From the analysis above, it is seen that system (7.14) represents the sliding mode dynamics

of the system (7.2)-(7.3) corresponding to the sliding surface (7.13). For system (7.14), consider

the candidate Lyapunov function

V (t,Xa) =
N∑
i=1

Vi(t,X
a
i ) (7.29)

where Vi(t,Xa
i ) is given in Assumption 7.3. Then, the time derivative of V (t,Xa

i ) along

equation (7.14) is given by

V̇ =
N∑
i=1

{∂Vi(t,Xa
i )

∂t
+
∂Vi(t,X

a
i )

∂Xa
i

F si (t,Xa
i ) +

∂Vi(t,X
a
i )

∂Xa
i

N∑
j=1

Hs
ij(t,X

a
j )
}

≤
N∑
i=1

{
− ς2

i3(‖Xa
i ‖) + ςi4(‖Xa

i ‖)
N∑
j=1

Ξsij(‖Xa
j ‖)
}

=−
N∑
i=1

µ2
i3(‖Xa

i ‖)‖Xa
i ‖2 +

N∑
i=1

N∑
j=1

µi4(‖Xa
i ‖)γij(‖Xa

j ‖)‖Xa
i ‖‖Xa

j ‖

=− 1

2
(‖Xa

1‖, ‖Xa
2‖, . . . , ‖Xa

N‖) (W τ +W )


‖Xa

1‖

‖Xa
2‖

...

‖Xa
N‖


Since the matrix function W τ +W is positive definite in ΩXa\{0} , it follows that V is negative

definite in domain ΩXa . Hence, the result follows. �

7.3. Decentralised Control Design

For nonlinear interconnected system (7.2)-(7.3) with sliding surface (7.13), the correspond-

ing reachability condition is described by (e.g. see [113, 47])

N∑
i=1

στi (Xi)σ̇i(Xi)

‖σi(Xi)‖
< 0 (7.30)
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where σi(Xi) is defined in (7.6).

Consider the decentralised control

Ui =− Γ−1
i (t,Xi)

{
Mϕi(X

a
i )F ai (t,Xi) + F bi (t,Xi)

}
− Γ−1

i (t,Xi)sgn(σi(Xi))
{ N∑
j=1

ε−1
j

(
Ξaji(‖Xi‖)

)2
+

N∑
j=1

Ξbji(t,Xi) +Nεiβi + ‖Γi(t,Xi)‖ρi(t,Xi) + ζi

}
(7.31)

where Ξaji(·), Ξbji(·) and ρi(t,Xi) are defined in Assumption 7.2, ζi and εj are positive constants

which can be considered as design parameters.

Theorem 7.2. Consider the nonlinear interconnected systems (7.2) - (7.3) for i = 1, 2, . . . , N .

Under Assumptions 7.1-7.2, the closed-loop systems (7.2)-(7.3) with the decentralised control

(7.31) are driven to the composite sliding surface (7.13) and maintain a sliding motion on it

thereafter.

Proof. From the analysis above, all that needs to be proved is that the composite reachability

condition (7.30) is satisfied. From (7.6), for i = 1, 2, . . . , N

σ̇i(Xi) =Mϕi(X
a
i )F ai (t,Xi) + F bi (t,Xi) +Mϕi(X

a
i )

N∑
j=1

Ha
ij(t,Xj)

+

N∑
j=1

Hb
ij(t,Xj) + Γi(t,Xi)(Ui + Φi(t,Xi)) (7.32)

Substituting (7.31) into (7.32),

N∑
i=1

στi (Xi)σ̇i(Xi)

‖σi(Xi)‖
=

N∑
i=1

{ στi (Xi)

‖σi(Xi)‖

{ N∑
j=1

Hb
ij(t,Xj)+Mϕi(X

a
i )

N∑
j=1

Ha
ij(t,Xj)

+ Γi(t,Xi)Φi(t,Xi)
}
− ‖Γi(t,Xi)‖ρi(t,Xi)

−
N∑
j=1

ε−1
j

(
Ξaji(‖Xj‖)

)2− N∑
j=1

Ξbji(t,Xi)−Nεiβi−ζi
}

≤
N∑
i=1

‖Γi(t,Xi)Φi(t,Xi)‖+

N∑
i=1

N∑
j=1

‖Hb
ij(t,Xj)‖

+

N∑
i=1

N∑
j=1

στi (Xi)

‖σi(Xi)‖
Mϕi(X

a
i )Ha

ij(t,Xj)
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−
N∑
i=1

‖Γi(t,Xi)‖ρi(t,Xi)−
N∑
i=1

N∑
j=1

ε−1
j

(
Ξaji(‖Xi‖)

)2
−

N∑
i=1

N∑
j=1

Ξbji(t,Xi)−N
N∑
i=1

εiβi −
N∑
i=1

ζi (7.33)

From the fact that for any positive constant ε (e.g. see [73]),

2W τZ ≤ εW τW + ε−1ZτZ, ∀W,Z ∈ Rl (7.34)

Then, from (7.11) and (7.7), it is straightforward to obtain that

N∑
i=1

N∑
j=1

στi (Xi)

‖σi(Xi)‖
Mϕi(X

a
i )Ha

ij(t,Xj)

≤N
N∑
i=1

εi
στi (Xi)

‖σi(Xi)‖
Mϕi(X

a
i ) (Mϕi(X

a
i ))τ

σi(Xi)

‖σi(Xi)‖

+
N∑
i=1

N∑
j=1

ε−1
i

(
Ha
ij(t,Xj)

)τ
Ha
ij(t,Xj)

≤N
N∑
i=1

εiβi
στi (Xi)σi(Xi)

‖σi(Xi)‖2
+

N∑
i=1

N∑
j=1

ε−1
i

∥∥Ha
ij(t,Xj)

∥∥2

=N
N∑
i=1

εiβi +
N∑
i=1

N∑
j=1

ε−1
i

∥∥Ha
ij(t,Xj)

∥∥2 (7.35)

where εi is a positive constant.

Then, from Assumption 7.2 and the identity

N∑
i=1

N∑
j=1

aij ≡
N∑
i=1

N∑
j=1

aji

it is straightforward to see that

N∑
i=1

N∑
j=1

ε−1
i ‖H

a
ij(t,Xj)‖2 ≤

N∑
i=1

N∑
j=1

ε−1
i

(
Ξaij(‖Xj‖)

)2
=

N∑
i=1

N∑
j=1

ε−1
j

(
Ξaji(‖Xi‖)

)2 (7.36)

N∑
i=1

N∑
j=1

‖Hb
ij(t,Xj)‖ ≤

N∑
i=1

N∑
j=1

Ξbij(t,Xj)

=
N∑
i=1

N∑
j=1

Ξbji(t,Xi) (7.37)
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Further from (7.12) in Assumption 7.2,

‖Γi(t,Xi)Φi(t,Xi)‖ ≤‖Γi(t,Xi)‖‖Φi(t,Xi)‖

≤‖Γi(t,Xi)‖ρi(t,Xi) (7.38)

Then from inequalities (7.35)-(7.38), it is straightforward to verify that

N∑
i=1

σi(Xi)
τ σ̇i(Xi)

‖σi(Xi)‖
≤ −

N∑
i=1

ζi < 0 (7.39)

Hence, the result follows. �

Remark 7.3. The result in Theorem 7.2 shows that if the nonlinear function ϕi(·) defined in

(7.6) satisfies (7.7), then the proposed controller (7.31) can guarantee that all the subsystems

will reach the composite sliding surface (7.13).

From sliding mode control theory, Theorems 1 and 2 together guarantee that the systems

(7.2)-(7.3) are stabilized by the designed decentralised control (7.31).

7.4. Numerical Simulation

Consider the following nonlinear interconnected system composed of three subsystems

described by

Ẋa
1 =−0.6X11 cos(X12) +X13︸ ︷︷ ︸

Fa1 (t,X1)

+

3∑
j=1

Ha
1j(t,Xj)

+
[

0 sin(X12)
]

︸ ︷︷ ︸
Ga1(t,X1)

(U1 + Φ1(t,X1)) (7.40)

Ẋb
1 =

 0.2X11X13

−X11 + 0.8X13 cos(X12)


︸ ︷︷ ︸

F b1 (t,X1)

+
3∑
j=1

Hb
1j(t,Xj)

+

 1 X13

0 1


︸ ︷︷ ︸

Gb1(t,X1)

(U1 + Φ1(t,X1)) (7.41)

Ẋa
2 =−0.5X21 cos(X22) +X23︸ ︷︷ ︸

Fa2 (t,X2)

+
3∑
j=1

Ha
2j(t,Xj)
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+
[

0 sin(X22)
]

︸ ︷︷ ︸
Ga2(t,X2)

(U2 + Φ2(t,X2)) (7.42)

Ẋb
2 =

 0.4X21X23

−0.8X21 + 0.8X23 cos(X22)


︸ ︷︷ ︸

F b2 (t,X2)

+

3∑
j=1

Hb
2j(t,Xj)

+

 1 X23

0 1


︸ ︷︷ ︸

Gb2(t,X2)

(U2 + Φ2(t,X2)) (7.43)

Ẋa
3 =−0.7X31 cos(X32) +X33︸ ︷︷ ︸

Fa3 (t,X3)

+
3∑
j=1

Ha
3j(t,Xj)

+
[

0 sin(X32)
]

︸ ︷︷ ︸
Ga3(t,X3)

(U3 + Φ3(t,X3)) (7.44)

Ẋb
3 =

 0.2X31X33

−X31 + 0.9X33 cos(X32)


︸ ︷︷ ︸

F b3 (t,X3)

+
3∑
j=1

Hb
3j(t,Xj)

+

 1 X33

0 1


︸ ︷︷ ︸

Gb3(t,X3)

(U3 + Φ3(t,X3)) (7.45)

where Xi1 := Xa
i , col(Xi2, Xi3) := Xb

i for i = 1, 2, 3.

Assume the matched uncertainties satisfy

‖Φ1(t,X1)‖ ≤ 0.24
√
X2

13 + 1︸ ︷︷ ︸
ρ1(t,X1)

, ‖Φ2(t,X2)‖ ≤ 0.16
√
X2

23 + 1︸ ︷︷ ︸
ρ2(t,X2)

‖Φ3(t,X3)‖ ≤ 0.18
√
X2

33 + 1︸ ︷︷ ︸
ρ3(t,X3)

Assume that the bounds on the uncertain interconnections satisfy

2∑
j=1

‖Ha
1j(t,Xj)‖ ≤ 0.72| cos(X12)|‖X1‖︸ ︷︷ ︸

Ξa11(‖X1‖)

+ 0.5‖X2‖︸ ︷︷ ︸
Ξa12(‖X2‖)

+ 0.64‖X3‖︸ ︷︷ ︸
Ξa13(‖X3‖)

2∑
j=1

‖Hb
1j(t,Xj)‖ ≤ 0.83|‖X1‖︸ ︷︷ ︸

Ξb11(‖X1‖)

+ 1.01‖X2‖︸ ︷︷ ︸
Ξb12(‖X2‖)

+ 0.68‖X3‖︸ ︷︷ ︸
Ξb13(‖X3‖)
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2∑
j=1

‖Ha
2j(t,Xj)‖ ≤ 0.5‖X1‖︸ ︷︷ ︸

Ξa21(‖X1‖)

+ 0.78| cos(X22)|‖X2‖︸ ︷︷ ︸
Ξa22(‖X2‖)

+ 0.58‖X3‖︸ ︷︷ ︸
Ξa23(‖X3‖)

2∑
j=1

‖Hb
2j(t,Xj)‖ ≤ 0.63‖X1‖︸ ︷︷ ︸

Ξb21(‖X1‖)

+ 0.63‖X2‖︸ ︷︷ ︸
Ξb22(‖X2‖)

+ 0.42‖X3‖︸ ︷︷ ︸
Ξb23(‖X3‖)

2∑
j=1

‖Ha
3j(t,Xj)‖ ≤ 0.64‖X1‖︸ ︷︷ ︸

Ξa31(‖X1‖)

+ 0.78‖X2‖︸ ︷︷ ︸
Ξa32(‖X2‖)

+ 0.64| cos(X33)|‖X3‖︸ ︷︷ ︸
Ξa33(‖X3‖)

2∑
j=1

‖Hb
3j(t,Xj)‖ ≤ 0.64‖X1‖︸ ︷︷ ︸

Ξb31(‖X1‖)

+ 0.65‖X2‖︸ ︷︷ ︸
Ξb32(‖X2‖)

+ 0.73‖X3‖︸ ︷︷ ︸
Ξb33(‖X3‖)

Now define the sliding function in the form of (7.6) by

ϕi(X
a
i ) =

 0
√
βiciX11√
ci+X2

11

 i = 1, 2, 3

where the design parameters βi and ci are chosen as βi = 1 and ci = 0.25. Then it is

straightforward to verify that

Mϕi(X
a
i )Mϕi(X

a
i )τ =

 0 0

0
βic

3
i

(ci+X2
11)3

 ≤ βiI2

From Lemma 1, when the sliding motion takes place,

2∑
j=1

‖Hs
1j(t,X

a
j )‖ ≤ 0.51‖Xa

1‖︸ ︷︷ ︸
Ξs11(‖X1‖)

+ 0.35‖Xa
2‖︸ ︷︷ ︸

Ξs12(‖X2‖)

+ 0.45‖Xa
3‖︸ ︷︷ ︸

Ξs13(‖X3‖)

2∑
j=1

‖Hs
2j(t,X

a
j )‖ ≤ 0.35‖Xa

1‖︸ ︷︷ ︸
Ξs21(‖X1‖)

+ 0.55‖Xa
2‖︸ ︷︷ ︸

Ξs22(‖X2‖)

+ 0.41‖Xa
3‖︸ ︷︷ ︸

Ξs23(‖X3‖)

2∑
j=1

‖Hs
3j(t,X

a
j )‖ ≤ 0.45‖Xa

1‖︸ ︷︷ ︸
Ξs31(‖X1‖)

+ 0.55‖Xa
2‖︸ ︷︷ ︸

Ξs32(‖X2‖)

+ 0.45‖Xa
3‖︸ ︷︷ ︸

Ξs33(‖X3‖)

Choose the candidate Lyapunov function for system (7.40) - (7.45) as

V =

3∑
i=1

Vi (7.46)

where

Vi =
1

2
(Xa

i )τXa
i , i = 1, 2, 3
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Then,

0.4‖Xa
i ‖2︸ ︷︷ ︸

ςi1

≤ Vi(t,Xa
i ) ≤ 0.6 ‖Xa

i ‖2︸ ︷︷ ︸
ςi2

Define ςi3(·) for i = 1, 2, 3 as

ς13(r) = 0.6︸︷︷︸
µ13

r, ς23(r) = 0.5︸︷︷︸
µ23

r, ς33(r) = 0.7︸︷︷︸
µ33

r

and ςi4(·) as

ςi4(r) = 1︸︷︷︸
µi4

·r, i = 1, 2, 3

By direct computation, it is straightforward to verify that

W (t,X) + (W (t,X))τ > 0

with
γ11(‖X1‖) = 0.51, γ12(‖X2‖) = 0.35, γ13(‖X3‖) = 0.45

γ21(‖X1‖) = 0.35, γ22(‖X2‖) = 0.55, γ23(‖X3‖) = 0.41

γ31(‖X1‖) = 0.45, γ32(‖X2‖) = 0.55, γ33(‖X3‖) = 0.45

Thus the designed sliding modes are asymptotically stable.

From (7.31), the controllers Ui are well defined with ζi = 1 and εi = 0.5 for i = 1, 2, 3,

which guarantee that the condition (6.26) is satisfied for Xi ∈ R3, i = 1, 2, 3. Thus systems

(7.40)-(7.43) for i = 1, 2, 3 can be stabilised by the designed controls Ui proposed in (7.31).

The time response of the system states is shown in Fig.7.1, and the time responses of the

decentralised controllers are shown in Fig. 7.2. The simulation results show that the proposed

approach is effective. It should be noted that in the simulation, a boundary layer is used to

remove the chattering.

7.5. Conclusion

This chapter has proposed a robust decentralised sliding mode control design approach for a

class of nonlinear large-scale interconnected systems in generalised regular form with uncertain

interconnections. The bounds on the uncertainties are assumed to be known functions which

have been used to enhance robustness. Decentralized sliding mode controllers are designed to

reduce the effects of the interconnections on the entire system. The developed results can be
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Figure 7.1: Time response of the state variables of system (7.40)-(7.45).

applied to all the interconnected systems which can be transformed to the generalised regular

form described in (7.2)-(7.3). A numerical example is given to show how to use the sliding

mode technique to stabilise a system with uncertain interconnections. Simulations have been

presented to demonstrate the effectiveness of the proposed approach.
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Figure 7.2: Time response of control signals (left) and sliding functions (right).
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CHAPTER. 8

DECENTRALISED CONTROL FOR

LARGE-SCALE SYSTEMS WITH

UNCERTAINTIES IN INPUT

DISTRIBUTION

The research on systems with uncertainties in input distribution is limited since such uncertain-

ties often affect the systems through the input signals, which makes the attenuation of such

uncertainties very challenging in the large-scale systems. In this chapter, a class of nonlinear

system with uncertainties in input distribution is considered, and strategy based on sliding

mode techniques is developed in the presence of uncertain interconnections. After a brief

review of related work in Section 8.1, the problem is rigorously formulated in Section 8.2. The

corresponding control design is separated which is given in Section 8.3 and 8.4 regarding the

stability of the sliding mode and reachability of decentralised control respectively. After the case

study on a 3D vehicle-following system in Section 8.5, a summary of this chapter is presented

in Section 8.6.
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8.1. Introduction

For practical systems, it is well known that uncertainties or modelling errors may seriously

affect control system performance. In large-scale interconnected systems, the effect of uncer-

tainties on the whole system is even more challenging. To be specific, uncertainties experienced

by a subsystem will affect not only its own performance but also the other subsystems through

the interactions between subsystems. Thus designing a decentralised control scheme to reject or

reduce the effect of uncertainties in the interconnection terms is challenging. As discussed in

Section 3.2 in Chapter 3, SMC has been recognised as a robust approach in dealing with nonlin-

ear systems with uncertainties [17] owing to its unique structure and complete robustness against

matched uncertainties [16, 17]. In [28], it is shown that the sliding mode approach can be used

to deal with the systems in the presence of unmatched uncertainty. Methods proposed by Niu in

[26] and [27] also show the strong robustness of SMC for uncertain systems. Therefore, many

researchers have tried to develop a decentralised SMC strategy for large-scale interconnected

systems in the presence of uncertainties and interconnections. However, as the information

available to the controllers of each subsystem is limited in a decentralised strategy, it is difficult

to reject the uncertainties within the interconnections even if they are matched [159].

For robust decentralised controller design problems, many results have been obtained

using various methods. In [22, 23, 24, 25], robust control strategy is used for interconnected

systems. However, only matched uncertainties are considered, and the bounds on the matched

uncertainties are assumed to be linear or polynomial. In [28], mismatched uncertainties are

considered with centralised dynamical feedback controllers which need more resources to

exchange information between subsystems. In [98], a decentralised state feedback controller is

proposed for systems with a class of constraints called integral quadratic constraints to limit

the structure of the original system. In some cases, adaptive techniques are applied to estimate

an upper bound on the mismatched uncertainty, and this is used in control design to counteract

the effects of uncertainty [99]. This approach is powerful for the case where the uncertainty

satisfies a linear growth condition. Regarding mismatched uncertainties, it is inevitable to

impose some limitations to achieve asymptotic stability. After transforming the system into a

special triangular structure, the uncertainties of the system in [100] have more general forms

when compared with previous work. For uncertainties in input distribution, the existing research
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is limited. In [26] and [27], SMC design is proposed for systems with uncertainties in the control

matrix. However, the uncertainties in [26, 27] are assumed to have a particular structure, for

example, the uncertainty is required to lie in the range of the control input distribution matrix. In

most previous work, the nominal part of the system is usually assumed to be linear, which limits

the application of the obtained results. In [160], a decentralised quantitative feedback control is

proposed for a class of large-scale systems in the presence of uncertainties in the state-space

matrices, and the work has also been implemented on a selective compliance assembly robot

arm system. However, both the nominal part of the system and the interconnection between

subsystem are assumed to be linear. In [161], a robust nonlinear output feedback control is

proposed for a class of nonlinear time-delay interconnected systems with complete nonlinear

nominal isolated subsystems. With artificial interconnections, the real interconnections are

separated into an accessible part and an inaccessible part to reduce conservatism. The conditions

for this method are relatively strong which can be relaxed when a state feedback control system

is considered.

In this chapter, a nonlinear decentralised control strategy for a class of nonlinear intercon-

nected systems is proposed based on a SMC paradigm. Compared with the results in Chapter

6, the interconnected system is assumed to be fully nonlinear with unknown interconnections

and uncertainties in input distribution term. Moreover, the uncertainties are assumed to be

bounded by known functions which are employed in the control design to counteract the effects

of the uncertainties in the controlled interconnected system. The bounds on the uncertainties

take more general forms when compared with existing work. A set of sufficient conditions is

developed such that the corresponding sliding motion is asymptotically stable when the system

is restricted to the designed sliding surface. Then, a decentralised SMC is designed to drive the

interconnected system to the sliding surface in the presence of uncertainties. It is also shown that

if the uncertainties/interconnections possess a superposition property, a decentralised control

scheme may be designed to counteract the effect of the uncertainty. The developed results are

applied to a vehicle-following system in automated highway system with both longitudinal

and lateral controllers. Since the proposed controller for each vehicle does not require data

transmission from the other vehicles, the proposed method is more reliable than a centralised

method or networked control. The simulation results show that the proposed method is effective

as expected.
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8.2. System Description

Consider a class of nonlinear large-scale interconnected systems composed of N subsys-

tems where the i-th subsystem can be transformed or described by

ẋai =fai (t, xi) + ψai (t, x) (8.1)

ẋbi =f bi (t, xi) + (gi(t, xi) + g̃i(t, xi))ui + ψbi (t, x) (8.2)

where the state variables of the i-th subsystem are represented by xi := col(xai , x
b
i) ⊂ Ωi ∈ Rni

where xai ∈ Rni−mi , xbi ∈ Rmi and x = col(x1, x2, . . . , xN ). ui ∈ Rmi denote inputs of the

i-th subsystem respectively for i = 1, 2, . . . , N . The function fai (·), f bi (·) with fai (t, 0) = 0 and

f bi (t, 0) = 0 and the function matrix gi(·) are continuous and nonsingular for all xi ∈ Rni with

appropriate dimensions. Uncertainty in input distribution is denoted by g̃i(t, xi). The nonlinear

functions ψai (t, x) ∈ Rni−mi and ψbi (t, x) ∈ Rmi represents the uncertain interconnection and

mismatched uncertainties. It is assumed that all the nonlinear functions are sufficiently smooth

such that the unforced system has a unique continuous solution.

The existence of the transformation Ti(t, xi) to transfer system

ẋi = f̂i(t, xi) + ĝi(t, xi)ui

into the form of system (8.1)-(8.2), which is equivalent to the existence of the solution of

equation

wi(t, xi)ĝi(t, xi) = 0, j = 1, 2, . . . , ni −mi

where

wi(t, xi) =
∂Ti
xai

, j = 1, 2, . . . , ni −mi

which can be checked by the Frobeninus Theorem [32].

In this chapter, the focus is to design a decentralised control scheme to stabilise system

(8.1)-(8.2) under the assumptions that the isolated nominal system has the desired performance.

The following basic assumptions are imposed on the uncertainties of the system (8.1)-(8.2).

Assumption 8.1. There exists known continuous nondecreasing function δaij(·) in R+ with

δaij(t, 0) = 0, and known continuous functions δbi (·) and ρi(·) such that

(i) ‖ψai (t, x)‖ ≤
n∑
j=1

δaij(‖xj‖) (8.3)
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(ii)
∥∥∥ψbi (t, x)

∥∥∥ ≤ δbi (t, x) (8.4)

(iii) ‖g̃i(t, xi)‖ ≤ ρi(t, xi) (8.5)

for all t ∈ R+, xi ∈ Ωi.

Remark 8.1. Assumption 8.1 is a limitation on all the uncertainties experienced by the system.

It is required that bounds on the uncertainties are known and the bounds will be employed in the

control design to reject or reduce the effects caused by the uncertainties. It should be pointed

out that only uncertainties ψai (·) are required to vanish at the origin. The form of the bounds is

more general comparing with existing work (e.g. see [22, 23, 24, 25]).

Assumption 8.2. There exist a constant αi with 0 ≤ αi <
2√
ni

such that the uncertainty

g̃i(t, xi) with the input distribution gi(t, xi) of system (8.1)-(8.2) satisfies

g̃i(t, xi)g
−1
i (t, xi) +

(
g−1
i (t, xi)

)τ
g̃τi (t, xi) + αiIm ≥ 0 (8.6)

for all t ∈ R+, xi ∈ Ωi.

Remark 8.2. Assumption 8.2 is made on the uncertainties in input distribution term. It will

be shown that a class of uncertainties in input distribution can be rejected by designing an

appropriate control. Comparing with existing work, e.g. see [26, 27, 160], the uncertainties

in input distribution are nonlinear instead of linear. It is emphasised that the uncertainties

g̃i(·) are not required to be matched, and only gbi (·) is required to be nonsingular for t ∈ R+,

xi ∈ Ωi.

Since g̃i(t, xi) are the uncertainties in input distribution, their effects are closely related to

the control signal ui for i = 1, 2, . . . , N . This can be seen from the terms g̃i(t, xi)ui in system

(8.2). Therefore, the uncertainties existing in input distribution make the control design much

more difficult. This chapter will present an approach to deal with nonlinear uncertainties in

input distribution when the input distribution is nonlinear.

Lemma 8.1. For any square matrix A ∈ Rn×n and vector ξ = col(ξ1, ξ2, . . . , ξn) ∈ Rn, if

there exists a non-negative scalar h such that

Aτ +A+ hIn ≥ 0 (8.7)

then

ξτAsgn(ξ) ≥ −h
√
n

2
‖ξ‖ (8.8)
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Proof. The proof is based on three different cases of the vector ξ.

(i). If ξ = 0, then sgn(ξ) = 0. Thus it is straightforward to see that

ξτAsgn(ξ) = 0 (8.9)

Hence (8.8) holds.

(ii). Assume that min{|ξ1|, |ξ2|, . . . , |ξ3|} > 0. Then by definition of the function sgn(ξ),

sgn(ξ) =


sgn(ξ1)

sgn(ξ2)
...

sgn(ξn)

 =



ξ1
|ξ1|
ξ2
|ξ2|
...
ξn
|ξn|

 = Rξ (8.10)

where

R =



1
|ξ1| 0 · · · 0

0 1
|ξ2| 0

...
. . . · · ·

0 · · · 1
|ξn|


If condition (8.7) holds, then from R ≥ λmin(R)In,

RAτ +AR+ hR ≥λmin(R)(Aτ +A+ hIn) ≥ 0 (8.11)

which implies

RAτ +AR ≥− hR (8.12)

then from (8.12)

ξτAsgn(ξ) =ξτARξ =
1

2
ξτ (RAτ +AR)ξ

≥− h

2
ξτRξ = −h

2
ξτ sgn(ξ) = −h

2

n∑
i=1

ξisgn(ξi)

=− h

2

n∑
i=1

|ξi| ≥ −
h

2

√
n

√√√√ n∑
i=1

ξ2
i = −h

√
n

2
‖ξ‖ (8.13)

(iii). For the case that some elements of the vector ξ equals to 0, without loss of generality,

assume that ξk+1, ξk+2, . . . , ξn = 0 with 0 < k < n, then by the definition of the sgn(·),
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sgn(ξk+1), sgn(ξk+2), . . . , sgn(ξn) = 0. Let aij denotes the element in i-th row and j-th

column of the matrix A, then

ξτAsgn(ξ) =

n∑
i=1

n∑
j=1

aijξisgn(ξj)

=

k∑
i=1

k∑
j=1

aijξisgn(ξj) (8.14)

By similar reasoning as in (8.16), it is straightforward to see that

ξτAsgn(ξ) =

k∑
i=1

k∑
j=1

aijξisgn(ξj) ≥ −
h
√
k

2
‖ξ̃‖ ≥ −h

√
n

2
‖ξ‖ (8.15)

where ξ̃ ∈ Rk with ξ̃ = col(ξ1, ξ2, . . . , ξk). Thus from (i)-(iii) above, it follows that for all

ξ ∈ Rn,

ξτAsgn(ξ) ≥ −h
√
n

2
‖ξ‖ (8.16)

Hence the conclusion follows. �

8.3. Stability Analysis of the Sliding Mode

Choose the sliding function σi(x) for the i-th subsystem as follows:

σi(xi) = xbi + ϕi(x
a
i ), i = 1, 2, . . . , N. (8.17)

where ϕi(·) is a known Frechet-differentiable function with g̃i(0) = 0 satisfy

Mg̃i(ξ)(Mg̃i(ξ))
τ ≤βiIm ∀ξ ∈ Rni−mi (8.18)

where Mg̃i(·) ∈ Rmi×(ni−mi) represent the Jacobian matrix of function g̃i(·), and βi is a

positive constant.

Choose the composite sliding surface for the interconnected system as (8.1)-(8.2) is chosen

as

σ(x) = 0 (8.19)

where σ(x) ≡: col (σ1(x1), σ2(x2), . . . , σN (xN )). During sliding motion, σi(xi) = 0 for

i = 1, 2, . . . , N , the sliding mode dynamics for the system (8.1)-(8.2) associated with the

designed sliding surface (8.19) can be described by

ẋai = fsi (t, xai ) + ψsi (t, x
a
1, x

a
2, . . . , x

a
N ) (8.20)
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where

fsi (t, xai ) :=fai (t, xi)|xbi=−ϕi(xai ) (8.21)

and

ψsi (t, x
a
1, x

a
2, . . . , x

a
N ) :=ψai (t, x)|xbj=−ϕj(xaj ),j=1,2,...,N (8.22)

for i = 1, 2, . . . , N with ψai (t, x) defined in (8.1).

From Lemma 7.1, it is straightforward to be verified that

‖ψsi (t, xa1, xa2, . . . , xaN )‖ ≤
N∑
j=1

δsij(‖xaj‖) (8.23)

where

δsij(‖xaj‖) = δaij(
√

1 + βi‖xaj‖)

where δaij(·) are defined in (8.3).

Assumption 8.3. There exist continuous C1 function Vi : R+ ×Rni−mi → R+ and functions

ςi1(·), ςi2(·), ςi3(·) and ςi4(·) of class K such that for all xi ∈ Ωi and t ∈ R+

(i) ςi1(‖xai ‖) ≤ Vi(t, xai ) ≤ ςi2(‖xai ‖)

(ii)
∂Vi(t, x

a
i )

∂t
+
∂Vi(t, x

a
i )

∂xai
fsi (t, xai ) ≤ −ς2

i3(‖xai ‖)

(iii)
∥∥∥∥∂Vi(t, xai )∂xai

∥∥∥∥ ≤ ςi4(‖xai ‖)

where
∂Vi(t, x

a
i )

∂xai
=

(
∂Vi(t, x

a
i )

∂xa1
,
∂Vi(t, x

a
i )

∂xa2
. . .

∂Vi(t, x
a
i )

∂xan

)
Remark 8.3. Assumption 8.3 is a limitation on the function fai (·). From Lyapunov function

theorem in Section 2.1 in Chapter 2, it implies that the system

ẋai = f si (t, xai )

is asymptotically stable with Lyapunov function Vi(·) for i = 1, 2, . . . , N .

Theorem 8.1. Under Assumptions 8.1 and 8.3, the sliding mode (8.20) of the system (8.1)-(8.2)

associated with the sliding surface in (8.19) is asymptotically stable if there exists a domain

Ωxa of the origin in xa ∈ R
∑N
i (ni−mi) such that

M(t, x)T +M(t, x) > 0
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in domain Ωxa\{0} with M(t, x) = (mij(t, xi, xj))N×N and for i, j = 1, 2, . . . , N

mij(t, xi, xj) =

µi3(‖xai ‖)− µi4(‖xai ‖)γii(‖xai ‖), i = j

−µi4(‖xai ‖)γij(‖xaj‖), i 6= j

where µi3(·), µi4(·) and γij(·) are defined respectively by

µi3(x) =

∫ 1

0

∂ςi3(xτ)

∂τ
dτ (8.24)

µi4(x) =

∫ 1

0

∂ςi4(xτ)

∂τ
dτ (8.25)

γij(x) =

∫ 1

0

∂δsij(xτ)

∂τ
dτ (8.26)

Proof. From (8.24)-(8.26), it can be observered that

ςi3(‖xai ‖) =µi3(‖xai ‖)‖xai ‖ (8.27)

ςi4(‖xai ‖) =µi4(‖xai ‖)‖xai ‖ (8.28)

δsij(‖xai ‖) =γij(‖xai ‖)‖xai ‖ (8.29)

From the analysis above, it is seen that the system (8.20) represents the sliding mode

dynamics of the system (8.1)-(8.2) corresponding to the sliding surface (8.19).

For system (8.20), consider the Lyapunov function candidate

V (t, xai ) =

N∑
i=1

Vi(t, x
a
i ) (8.30)

where Vi(t, xai ) is given by Assumption 8.3. Then, the time derivative of V (t, xai ) along equation

(8.20) is given by

V̇ =
N∑
i=1

{∂Vi(t, xai )
∂t

+
∂Vi(t, x

a
i )

∂xai
fsi (t, xai ) +

∂Vi(t, x
a
i )

∂xai
ψai (t, x)

}
≤

N∑
i=1

{
− ς2

i3(‖xai ‖) + ςi4(‖xai ‖)
N∑
j=1

δsij(‖xaj‖)
}

=−
N∑
i=1

µ2
i3(‖xai ‖)‖xai ‖2 +

N∑
i=1

N∑
j=1

µi4(‖xai ‖)γij(‖xaj‖)‖xai ‖‖xaj‖

=− 1

2
(‖xa1‖, ‖xa2‖, . . . , ‖xaN‖)

(
MT +M

)

‖xa1‖

‖xa2‖
...

‖xaN‖


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Since the matrix function MT +M in Ωxa\{0} is positive definite, therefore, it follows that V

is a negative definite function in Domain Ωxa . Hence, the results follow. �

8.4. Decentralised Control Design

For the nonlinear interconnected system (8.1)-(8.2), the corresponding reachability condi-

tion is described by (e.g. see [113, 47])

N∑
i=1

στi (xi)σ̇i(xi)

‖σi(xi)‖
< 0 (8.31)

where σi(xi) is defined in (8.17). In order to reduce the effects of the unknown interconnection

ψbi (·), consider the expression

δbi (t, x) =
N∑
j=1

ηij(t, xj) + νi(t, x) (8.32)

where δbi is defined in (8.4) and νi(t, x) represents all the coupling terms which cannot be

included in the term
∑N

j=1 ηij(t, xj)

Remark 8.4. The decomposition in (8.32) is not unique and is introduced to reduce the conser-

vatism caused by the interconnection terms within the control design. There is no general way

to obtain the decomposition. The first interconnection term
∑N

j=1 ηij(t, xj) has a superposition

property. It will be shown that the term
∑N

j=1 ηij(·) in (8.32) can be rejected by selection of an

appropriate decentralised control and this will reduce conservatism. The second term, νi(·) in

(8.32), cannot be rejected by the choice of decentralised control.

The objective is to design a decentralised sliding mode controller such that the reachability

condition (8.31) is satisfied. Consider the decentralised control

ui =− g−1
i (t, xi)Fi − g−1

i (t, xi)sgn(σi(xi))
{ 2

2− αi
√
ni

W (t, xi) + ζi(t, xi)
}

(8.33)

where

Fi(t, xi) =
∂ϕi
∂xai

fai (t, xi) + f bi (t, xi)

Wi(t, xi) =
N∑
j=1

√
βjδ

a
ji(‖xi‖) +

N∑
j=1

ηji(t, xi) + ‖g−1
i (t, xi)Fi(t, xi)‖ρi(t, xi) (8.34)
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and ρi(t, xi) are defined in Assumption 8.1, and ηji(t, xi) satisfy (8.32). The term ζi(t, xi) is a

reachability function which can be considered as a design parameter to be defined.

Theorem 8.2. Consider the nonlinear interconnected system (8.1) and (8.2). Under Assumptions

1-3, the closed-loop system (8.1)-(8.2) with the decentralised control (8.33) is converged to the

composite sliding surface (8.19) and maintain a sliding motion on it thereafter if there exits

positive constant ε in the considered domain Ω = Ω1 × Ω2 · · · × ΩN such that the functions

ζi(t, xi) in (8.33) satisfy

N∑
i=1

(1−
αi
√
ni

2
)ζi(t, xi) >

N∑
i=1

νi(t, x) (8.35)

in Ω for all t > 0 with νi(t, x) defined in (8.32).

Proof. From the analysis above, all that needs to be proved is that the composite reachability

condition (8.31) is satisfied. From (8.17), for i = 1, 2, . . . , N

σ̇i(xi) =
∂ϕi
∂xai

fai (t, xi) + f bi (t, xi) +
∂ϕi
∂xai

ψai (t, x) + ψbi (t, x)

+ (gi(t, xi) + g̃i(t, xi))ui (8.36)

Substituting (8.33) into (8.36),

N∑
i=1

στi (xi)σ̇i(xi)

‖σi(xi)‖

=
N∑
i=1

{ στi (xi)

‖σi(xi)‖
{∂ϕi
∂xai

ψai (t, x) + ψbi (t, x)− g̃i(t, xi)g−1
i (t, xi)Fi(t, xi)

}
− στi (xi)

‖σi(xi)‖
g̃i(t, xi)g

−1
i (t, xi)sgn(σi(xi))

(
2

2− αi
√
ni

Wi(t, xi) + ζi(t, xi)

)
−

αi
√
ni

2− αi
√
ni

Wi(t, xi)−Wi(t, xi)− ζi(t, xi)
}

≤
N∑
i=1

‖g̃i(t, xi)g−1
i (t, xi)Fi(t, xi)‖+

N∑
i=1

‖ψbi (t, x)‖+
N∑
i=1

∥∥∥∥∂ϕi∂xai
ψai (t, x)

∥∥∥∥
−

N∑
i=1

στi (xi)

‖σi(xi)‖
g̃i(t, xi)g

−1
i (t, xi)sgn(σi(xi))

(
2

2− αi
√
ni

Wi(t, xi) + ζi(t, xi)

)

−
N∑
i=1

N∑
j=1

√
βjδ

a
ji(‖xi‖)−

N∑
i=1

N∑
j=1

µji(t, xi)−
N∑
i=1

‖g−1
i (t, xi)Fi(t, xi)‖ρi(t, xi)

−
N∑
i=1

αi
√
ni

2− αi
√
ni

Wi(t, xi)−
N∑
i=1

ζi(t, xi) (8.37)
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From Assumption 8.1,

N∑
i=1

‖∂ϕi
∂xai

ψai (t, x)‖ ≤
N∑
i=1

N∑
j=1

√
βiδ

a
ij(‖xj‖) =

N∑
i=1

N∑
j=1

√
βjδ

a
ji(‖xi‖) (8.38)

N∑
i=1

‖ψbi (t, x)‖ ≤
N∑
i=1

N∑
j=1

µij(t, xj) +
N∑
i=1

νi(t, x)

=

N∑
i=1

N∑
j=1

µji(t, xi) +

N∑
i=1

νi(t, x) (8.39)

‖g̃i(t, xi)g−1
i (t, xi)Fi(t, xi)‖ ≤‖g̃i(t, xi)‖‖g−1

i (t, xi)Fi(t, xi)‖

≤‖g−1
i (t, xi)Fi(t, xi)‖ρi(t, xi) (8.40)

and from Assumption 8.2 and Lemma 8.1, for any positive scale h

h

‖σi(xi)‖
στi (xi)g̃i(t, xi)g

−1
i (t, xi)sgn(σi(xi)) ≥−

h

‖σi(xi)‖
·
αi
√
ni

2
‖σi(xi)‖

=−
αi
√
ni

2
· h (8.41)

Substituting inequalities (8.38)-(8.41) into (8.37), implies

N∑
i=1

στi (xi)σ̇i(xi)

‖σi(xi)‖
≤

N∑
i=1

αi
√
ni

2− αi
√
ni

Wi(t, xi) +

N∑
i=1

αi
√
ni

2
ζi(t, xi)

−
N∑
i=1

αi
√
ni

2− αi
√
ni

Wi(t, xi)−
N∑
i=1

ζi(t, xi) +

N∑
i=1

νi(t, x)

=−
N∑
i=1

(1−
αi
√
ni

2
)ζi(t, xi) +

N∑
i=1

νi(t, x) < 0 (8.42)

Then the reachability condition (8.31) is satisfied. Hence, the result follows. �

From SMC theory, Theorems 8.2 and 8.2 together guarantee that the system (8.1)-(8.2) is

stabilized by the designed decentralised control (8.33).

Remark 8.5. It should be pointed out that the developed results are suitable for fully nonlin-

ear interconnected systems specifically with uncertainties in both the input distributions and

interconnections. It is not required that the nominal isolated subsystem is either linearizable or

partially linearizable.
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8.5. Case Study - Automated Highway Systems

In order to achieve high traffic flow rates and reduce congestion, an automated highway

system has been developed [116]. The SMC of the longitudinal vehicle following system has

been developed in [74]. In order to improve the feasibility of the system, it is necessary to

consider both on-board lateral and longitudinal controllers during the automated driving process.

Therefore, the stability and the robustness of the 3D vehicle-following system will be considered

as a case study to demonstrate the theoretical results developed above.

Modelling of 3D car-following system

The kinematic model of the i-th vehicle under nonholonomic constraints (i.e. rolling

without slipping) can be described by (e.g. see [162])
q̇xi

q̇yi

q̇θi

 =


cos(qθi)−

εi tanφi sin(qθi )

li

sin(qθi) +
εi tanφi cos(qθi )

li

tan g̃i
li

 vi (8.43)

where (qxi , qyi , qθi) denote the position of a point of the vehicle, and εi represents the distance

between the position and the center of the real wheel center, see [163]. φi denotes the steering

angle of the front inner wheel, which is bounded with |φi| ≤ 0.691 for i = 1, 2, 3 in common

car design. li is the length between the rear and front shafts. vi represents the linear velocity of

the vehicle toward the heading direction with

vi = rω̃i

for rear wheel driving or

vi = rω̂i cosφi

for front wheel driving where r represents the radius of the wheels, and ω̃i and ω̂i denote the

angular velocity of the rear shaft and the front inner wheel respectively.

Define (qfxi , q
f
yi , q

f
θi

) and (qrxi , q
r
yi , q

r
θi

) as the position of the front and rear edge of the

vehicle respectively. From Fig.(8.1) , it is straightforward to see that the dynamic of the

position (qfxi , q
f
yi , q

f
θi

) can be described by (8.43) with εi = bi, and the dynamic of the position

(qrxi , q
r
yi , q

r
θi

) can be described by (8.43) with εi = −ai . Then, define the error coordinates
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Figure 8.1: Model of the vehicle in Catersian Coordinate System

Figure 8.2: Model of error position between the i-th and i(−1)-th vehicles

(qexi , q
e
yi , q

e
θi

) shown in Fig.8.2 
qexi

qeyi

qeθi

 =Ti


qrxi−1

− qfxi
qryi−1

− qfyi
qrθi−1

− qfθi

 (8.44)
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with local coordinate transformation matrix (e.g. see [164])

Ti =


− sin(qθi) cos(qθi) 0

cos(qθi) sin(qθi) 0

0 0 1

 (8.45)

Then the kinematic model of the 3D car-following system can be described by
q̇exi

q̇eyi

q̇eθi

 =


v(i−1) sinxi3 − l−1

i−1ai−1vi−1 tanφi−1 cos qeθi−1

v(i−1) cosxi3 + l−1
i−1ai−1vi−1 tanφi−1 sin qeθi−1

l−1
i−1vi−1 tanφi−1



+


−l−1

i (bi + qexi)vi tanφi

l−1
i qexivi tanφi − vi

−l−1
i vi tanφi

 (8.46)

In the 3D car-following system proposed in this chapter, the main objective is to control

each vehicle moving at desired velocity with pre-defined safe distance apart for other vehicles

in the system. Assume that the vehicle is driving safely which does not slip laterally, and each

tire share the same parameters, then, the dynamic model of the velocity vi and steering angle φi

can be simplified from [165] and described by v̇i

φ̇i

 =

 cosφiF
fy
i −sinφiF

fx
i +F ryi

mi

ωi

 (8.47)

where mi and ωi denotes the mass of the vehicle and steering velocity of the front inner wheel

respectively. F fyi and F ryi denote the longitudinal driving force from the front wheels and rear

wheels respectively and F fxi denote the lateral force of the front wheels which is unknown and

can be calculated by (e.g. see [166])

F fxi = Cfi (φ− l̃i tanφ

li
)

where Cfi denotes the lateral tire stiffness and l̃i denote the distance between the front shaft and

the central mass of the vehicle.

As in [157], a safety distance frequently used in automated highway systems based on the

Time-Headway policy (CTH) is used in this design. The safety distance defined by the CTH

policy is described by (e.g. see [157])

ξdi(vi) = ξd0 + tsvi (8.48)
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where ξd0 is the distance between stationary vehicles, and ts is the so-called headway time.

Then the objective of the vehicle-following system is equivalent to stabilize the error position

(qexi , q
e
yi , q

e
θi

) at the equilibrium point (0, ξdi(vi), 0) with constant velocity v0 and safety distance

ξdi(vi) given by the corresponding highway policy.

Simulation

Let xi1 = qexi , xi2 = qeyi − tsv0, xi3 = qeθi , xi4 = vi − v0 and xi5 = φi, and define

Qi(t, xi) = l−1
i (xi4 + v0) tanxi5 (8.49)

Then the vehicle-following system with three vehicles can be described by
ẋi1

ẋi2

ẋi3


︸ ︷︷ ︸

xai

=


(−bi − tsv0 − xi2)Qi(t, xi) + v0 sinxi3

Qi(t, xi)xi1 + v0 cosxi3 − xi4 − v0

−Qi(t, xi)


︸ ︷︷ ︸

fai (t,xi)

+ψai (t, x) (8.50)

 ẋi4

ẋi5


︸ ︷︷ ︸

xbi

=


 m−1

i 0

0 1


︸ ︷︷ ︸

gi(t,xi)

+g̃i(t, xi)

ui + ψbi (t, xi) (8.51)

where u = col(Fi, ωi) where Fi := F fyi cosφi + F ryi represent the overall longitudinal driving

force and Qi(·) is defined in (8.49) and the interconnection ψai (t, x) with ψa1(t, x) = 0 can be

described by

ψai (t, x) =


x(i−1)4 sinxi3 − ai−1Qi−1(t, xi−1) cosxi3

x(i−1)4 cosxi3 + ai−1Qi−1(t, xi−1) sinxi3

Qi−1(t, xi−1)

 (8.52)

for i = 2, 3. The corresponding parameters are chosen based on real vehicle model as shown in

Table.8.1. Assume that the size of one vehicle is not known by the others, but the range of the

corresponding parameters, i.e. ai, bi and li, are known, then it is straightforward to verify that

‖ψai (t, x)‖ ≤
√
x2

(i−1)4 + (1 + a2
i−1)Q2

i−1(t, xi−1)

and assume the uncertain interconnections ψbi (t, x) for i = 1, 2, 3 satisfy

‖ψb1(t, x)‖ ≤ 0.292|x14 + 30.07|+ 0.6x2
15︸ ︷︷ ︸

η11(t,x1)

+ 0.2 cos(x13)|x24 + v0|︸ ︷︷ ︸
ν1(t,x)
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Table 8.1: Parameters of the vehicle-tracking system

i ai(m) bi(m) li(m) mi(Kg)

1 0.565 3.149 2.467 1200

2 1.019 3.827 2.895 2160

3 1.016 3.614 2.699 1450

‖ψb2(t, x)‖ ≤ 0.12‖xb1‖︸ ︷︷ ︸
η21(t,x1)

+ 0.33|x24 + 30.08|+ 0.56x2
25︸ ︷︷ ︸

η22(t,x2)

+ 0.8 cos(x23)‖xb1‖+ 0.1 cosx33|x24 + v0|︸ ︷︷ ︸
ν2(t,x)

‖ψb3(t, x)‖ ≤ 0.12‖xb2‖︸ ︷︷ ︸
η32(t,x2)

+ 0.35|x34 + 30.05|+ 0.4x2
35︸ ︷︷ ︸

η33(t,x3)

Furthermore, since the weight of the vehicle may be various because of uncertain load, and

the steering velocity may also affected by other factors, e.g. the speed of the vehicle, the input

distribution has uncertainty that may affect the control performance. Therefore, assume that the

actual input distribution ĝi(·) is

ĝi(t, xi) =

 − 1
m̂i

k̂i(xi4+v0)
m̂i

0 1


where m̂i is the uncertain actual weight of the i-th vehicle with load, and k̂i denotes the impact

factor which reflects how the steering velocity of the front wheels ωi affecting the driving force

Fi. Then assume the uncertainties g̃i(·) satisfy

‖g̃1(t, x1)‖ ≤ 0.00055︸ ︷︷ ︸
ρ1(t,x1)

, ‖g̃2(t, x2)‖ ≤ 0.00031︸ ︷︷ ︸
ρ2(t,x2)

‖g̃3(t, x3)‖ ≤ 0.00046︸ ︷︷ ︸
ρ2(t,X3)

with α1 = 0.61, α2 = 0.65 and α3 = 0.63 satisfy (8.6). It should be noted that due to the large

mass of the vehicle, the uncertainty g̃i(·) in (8.51) is relatively small, resulting that the bounds

of the uncertainty ρi is relatively small. Since the high-speed following system is a physical

system and the mass of each vehicle is relatively large. Therefore, for the simulation purpose,

the maximus speed of all the vehicles in the system is limited within 40m/s (144 Km/h) and the
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error angle qeθi is limited with |qeθi | ≤
π
4 . Furthermore, it may not be measurable for too large

longitudinal and lateral error distance qexi and qexi in pratical, e.g. the limitation of the stereo

vision measurement technique. And assume the desired speed of the vehicles v0 = 30m/s (108

Km/h), then the considered domain of the proposed vehicle-tracking system is

Di = {(xi1, xi2, xi3, xi4, xi5) |xi1| < 10, |xi2| < 20,

|xi3| ≤
π

4
,−30 < xi4 ≤ 10, |xi1| ≤ 0.691} (8.53)

Now define the sliding function in the form of (8.17) with

ϕi(t, xi) =

 −ki1xi2 + v0(1− cosxi3)

− tan−1 li(ki2xi1+v0 sinxi3)
di(kixi2+v0 cosxi3)

 (8.54)

where di is a constant with di = tsv0 + bi, ki1 and ki2 are design parameters with ki1 = ki2 = 1.

Then it is straightforward to verify that

Mϕi(x
a
i )Mϕi(x

a
i )
τ ≤ βiI2

with β1 = 22.8, β2 = 22.84 and β3 = 22.82.

When the system is on the sliding surface,

‖ψs1(t, x)‖ =0 (8.55)

‖ψs2(t, x)‖ ≤ (13.9
√

0.0001 + x2
13 + 0.7)︸ ︷︷ ︸

γ21(‖xa1‖)

‖xa1‖

︸ ︷︷ ︸
δs21(‖xa1‖)

(8.56)

‖ψs3(t, x)‖ ≤ (13.6
√

0.001 + x2
23 + 0.84)︸ ︷︷ ︸

γ32(‖xa2‖)

‖xa2‖

︸ ︷︷ ︸
δs32(‖xa2‖)

(8.57)

Choose the Lyapunov function candidate

V =
3∑
i=1

Vi (8.58)

where

Vi =
Ki

2
(xai )

τxai , i = 1, 2, 3 (8.59)
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with K1 = 1000, K2 = 20 and K3 = 0.05. Then,

Ki

3
‖xai ‖2︸ ︷︷ ︸
ςi1

≤ Vi(t, xai ) ≤ Ki‖xai ‖2︸ ︷︷ ︸
ςi2

, i = 1, 2, 3

Define ςi3(·) for i = 1, 2, 3 as

ς13(r) = K1

√
0.902 sinx13

x13︸ ︷︷ ︸
µ13

r, ς23(r) = K2

√
0.884 sinx23

x23︸ ︷︷ ︸
µ23

r

ς33(r) = K3

√
0.89 sinx33

x33︸ ︷︷ ︸
µ33

r

and ςi4(·) as

ςi4(r) = Ki︸︷︷︸
µi4

r, i = 1, 2, 3

By direct computation, it is straightforward to verify that

M(t, x) +M(t, x)τ > 0

in D1 ×D2 ×D3\{0}. Thus the designed sliding mode are locally asymptotically stable in the

considered domain.

From (8.33), the controller ui for i = 1, 2, 3 are well defined with ζ1 = 1 + 1.44‖x1‖,

ζ2 = 1 + 1.19‖x2‖ and ζ3 = 1 which guarantee the condition (8.35) in Theorem 8.2 is satisfied

for x ∈ D1 ×D2 ×D3. Therefore system (8.1)-(8.2) can be stabilised by the designed control.

The time response of the system states is shown in Fig.8.3, and the time response of the

control inputs is shown in Fig.8.4.

From the simulation results, it can be seen that all three vehicles converge to the steady state

within a reasonable time. From Fig.8.4, it can be seen that the control signals do not tends to

zeros, which indicates that the vehicle systems are experiencing unvarnished uncertainties ψbi (·).

However, owing to the strong robustness of the SMC and the extra design for the uncertainties

in input distribution, the stability of the overall system is barely affected, showing that the

proposed approach is effective for system with uncertainties in input distribution. It should be

noted that in the simulation, a boundary layer is used to reduce the chattering.
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Figure 8.3: Time response of the state variables of system (8.50)-(8.51).

8.6. Conclusion

In this chapter, uncertainties in input distribution are discussed, and a robust decentralised

control design approach for a class of nonlinear large-scale interconnected systems with such

uncertainties and unknown interconnection is introduced. The bounds on the uncertainties

are assumed to be known functions which have been used to enhance robustness against the

uncertainties. A SMC is designed to guarantee reachability. The developed results are also
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Figure 8.4: Time response of the control inputs of system (8.50)-(8.51).

applied to automated highway system with both onboard longitudinal and lateral controllers.

With decentralised control strategy, the proposed controller can be applied to each vehicle for

automation or driving assistance without data transmission from the other vehicles in the system.

The simulation given for the vehicle-tracking system with interconnection and uncertain input

distribution has been presented to demonstrate the effectiveness of this approach.
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CHAPTER. 9

CONCLUSIONS AND FUTURE WORK

9.1. Summary and Conclusions

In this thesis, a survey of the background of SMC for complex systems has been presented,

in particular for nonholonomic systems and interconnected systems. By introducing the concept

of generalised regular form, SMC can be applied to a broader class of nonlinear systems in

the presence of uncertainties. It also demonstrated the robust control design for nonlinear

interconnected systems in a decentralised manner.

The fundamental knowledge and the basic concept of complex systems and SMC have

been given in Chapter 3 after a outline of mathematical preliminaries in Chapter 2. Practical

examples of both nonholonomic systems and interconnected systems have been introduced, and

a brief review of the SMC has also been provided.

In Chapter 4, trajectory tracking control design for a two-wheeled differential drive WMR

has been discussed. A SMC design has been carried out for the trajectory tracking control

of the WMR systems in a local domain. The simulation results and experimental test on the

developed real-time WMR platform, it has shown that even if the regular form of a system is
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not available, a sliding mode controller can still be applied if the sliding mode of the system is

independent of the control signal during sliding motion. This class of systems has been studied

furthermore in Chapter 5 by proposing the concept of generalised regular form. From the theory

point of view, the classical regular form is a particular case of the generalised regular form.

By introducing the generalised regular form, the SMC can be applied to a broader class of

nonlinear systems. The robustness of the systems in the generalised regular form has also been

discussed, and the corresponding nonlinear SMC design has been proposed and implemented

on the WMR platform. By introducing a novel nonlinear sliding function design based on

global implicit function theorem, a nonlinear sliding surface is formed, and global asymptotic

stability is exhibited. Thus the developed controller can drive the robot tracking the time-based

trajectory with an arbitrary initial condition. Both simulation and experiment results show that

sliding mode techniques can be used to stabilise systems when the classical regular form is not

available.

Some robust decentralised control problems have been addressed and solved in Chapter

6-8.

More specifically, in Chapter 6, a decentralised state feedback SMC law has been proposed

to asymptotically stabilise a class of nonlinear interconnected systems with known and unknown

interconnections in the considered domain. Both matched, and mismatched uncertainties are

considered. The bounds on the uncertainties can be functions instead of constants or polynomial

as considered in previous work. Both known interconnections and the bounds on the unknown

interconnections have been fully considered in the control design to reduce conservatism.

The developed results is applicable to a broad class of interconnected systems. Simulations

based on a vehicle-following system have been presented to show that if the bounds of the

unknown interconnection possess a superposition property, a decentralised control scheme may

be designed to counteract the effect of the uncertainty. In Chapter 7, the developed results have

been expanded to systems in the generalised regular form with fully nonlinear nominal isolate

subsystems. A numerical example has been given to demonstrate the design process.

Uncertainties in input distribution have been discussed in Chapter 8. Robust decentralised

control design based on sliding mode techniques has been proposed for fully nonlinear systems

with uncertainties in input distribution. Both matched uncertainties in the isolated subsystems

and mismatched uncertainties associated with the interconnections are considered. Conditions
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are developed for the uncertainties in input distribution so that the bounds information on the

uncertainties can be employed within the decentralised controller design to reduce the effect

caused by the uncertainties. The developed results are applied to the automated highway systems

with both longitudinal and lateral controllers. With decentralised control strategy, the proposed

controller can be applied to each vehicle for automation or driving assistance without data

transmission from the other vehicles in the system. The simulation given for the vehicle-tracking

system with interconnection and uncertain input distribution has been presented to demonstrate

the effectiveness of this approach.

9.2. Ideas for Future Research

There are some possible interesting ideas for further research.

Although it has been shown that the SMC can be applied to a broader class of nonlinear

systems by introducing generalised regular form, how to find a diffeomorphism that can transfer

a nonlinear system into such a form is still challenging. From the fact that the generalised regular

form has to be paired with a sliding function, the implicit Lyapunov function theorem may be a

possible solution to this problem. Furthermore, for the chattering problems, second-order SMC

for systems with the relative degree of 1 in generalised regular form deserves to be considered.

Thus the rapidly changing control action can be avoided so that possible damage to the WMR

systems caused by the high-frequency switching action can be significantly reduced. For the

WMR systems, the robustness can be further improved by introducing the disturbance observer

to estimate the mismatched uncertainties caused by the drift of the WMR.

For decentralised control design, the attenuation of unknown interconnection for systems

based on SMC with finite-time reachability is a considerable challenging due to the lack

of information from other subsystems. Meanwhile, the rapid development of the Internet

of Vehicles encourages the communication network between vehicles in automated highway

systems. However, as mentioned in Chapter 3, the communication problems such as transmission

failure or time delay during the communication process between different vehicles to the cloud

server may still affect the control performance if centralised or networked controllers are applied.

To overcome these problems, the quasi-decentralised control strategy may be a better solution

for overcoming the drawback of both centralised and decentralised strategy for the automated
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highway systems. With extra information periodically coming from the other subsystems, the

control performance of the developed decentralised controller in Chapters 6-8 may be further

improved without scarifying the reliability of the decentralised schemes while the finite-time

reachability of the sliding mode may be guaranteed.
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