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Abstract 20 
Camera-traps are increasingly used to survey threatened mammal species and are an important 21 
tool for estimating habitat occupancy. To date, cost-efficient occupancy survey effort allocation 22 
studies have focused on trade-offs between number of sample units (SUs) and sampling 23 

occasions, with simplistic accounts of associated costs which do not reflect camera-trap survey 24 
realities. Here we examine camera-trap survey costs as a function of the number of SUs, survey 25 
duration and camera-traps per SU, linking costs to precision in occupancy estimation. We 26 
evaluate survey effort trade-offs for hypothetical species representing different levels of 27 
occupancy (ψ) and detection (p) probability to identify optimal design strategies. We apply our 28 

cost function to three threatened species as worked examples. Additionally, we use an extensive 29 
camera-trap data set to evaluate independence between multiple camera traps per SU. The 30 
optimal number of sampling occasions that result in minimum cost decrease as detection 31 
probability increases, irrespective of whether the species is rare (ψ <0.25) or common (ψ >0.5). 32 

The most expensive survey scenarios occur for elusive (p <0.25) species with a large home range 33 
(>10 km2), where the survey is conducted on foot. Minimum survey costs for elusive species can 34 

be achieved with fewer sampling occasions and multiple cameras per SU. Multiple camera-traps 35 
set within a single SU can yield independent species detections. We provide managers and 36 

researchers with guidance for conducting cost-efficient camera-trap occupancy surveys. Efficient 37 
use of survey budgets will ultimately contribute to the conservation of threatened and data 38 
deficient mammals. 39 

 40 
Key-words: elusive species, imperfect detection, species management, threatened species, 41 

wildlife monitoring 42 
 43 

1. Introduction 44 
To conserve threatened species effectively, conservationists must first assess the status of 45 

populations. With financial resources generally in short supply, wildlife researchers and 46 
managers need to adopt cost-efficient monitoring survey protocols to gather baseline data to 47 
inform appropriate conservation interventions (Fryxell, Sinclair & Caughley 2014). Terrestrial 48 

mammals can be a particular challenge to survey due to their elusive nature, the fact that they 49 
often occur at low densities and, in many cases, are difficult to distinguish individually. As such, 50 

population status inferences where individuals are undistinguishable or unmarked rely frequently 51 
on presence-absence data and the estimation of species occupancy (i.e. the proportion of sites 52 

occupied or used by the species). The value of presence-absence data has increased markedly in 53 
recent years as a result of significant developments in occupancy modelling techniques (Vojta 54 
2005) including, for example, being able to account explicitly for the imperfect detection of 55 
elusive species (MacKenzie et al. 2006, Guillera-Arroita 2016). 56 
 57 

Camera-traps are a widely used tool in ecology and conservation (Rowcliffe & Carbone 2008; 58 
O'Connell, Nichols & Karanth 2010; Burton et al. 2015). They are particularly valuable for 59 

surveying elusive mammals because they are non-invasive, can work independently in remote 60 
areas and perform effectively in comparison to alternative detection methods (Gompper et al. 61 
2006; Long et al. 2007; Balme, Hunter & Slotow 2009). Camera-traps have therefore been 62 
deployed in a broad array of circumstances, ranging from monitoring single species populations 63 
(Linkie et al. 2013) and constructing mammal inventories in tropical forests (Tobler et al. 2008), 64 
through to evaluating the value of modified landscapes for threatened species (Linkie et al. 65 
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2007). The number of occupancy studies based on camera-trap data is growing rapidly, with the 66 

majority of focal species being unmarked carnivores or ungulates (Burton et al. 2015).  67 
 68 
Despite the abundance of camera-trap occupancy studies being conducted and published 69 

globally, there is a paucity of research examining how to allocate survey effort to optimize 70 
statistical estimation precision taking into account operational costs. In the context of occupancy 71 
modelling, survey effort guidelines have been developed to address the trade-off between the 72 
number of sample units (hereafter SUs) and the effort applied within each unit (e.g. number of 73 
repeat visits per SU) (MacKenzie & Royle 2005; Field, Tyre & Possingham 2005; Bailey et al. 74 

2007; Guillera-Arroita, Ridout & Morgan 2010; Guillera-Arroita & Lahoz-Monfort 2012). All 75 
these studies consider simplistic cost functions, where total survey cost is proportional to the 76 
total number of survey visits (i.e. number of SUs x survey visits/SU). The underlying assumed 77 
scenario is that a field team member revisits the SUs in each sampling occasion. MacKenzie & 78 

Royle (2005) go further and account for extra initial set-up costs at each SU, for cases where the 79 
first sampling occasion at a SU may be more expensive than subsequent visits. This previous 80 

work, whilst useful, does not accurately represent camera-trap surveys where the length of a 81 
survey can be extended (i.e. more “sampling occasions” conducted) without directly adding 82 

costs. This is because, once installed, camera-traps can work independently for periods of time 83 
between installation, maintenance checks and/or retrieval without a specific associated cost.  84 
 85 

Another important consideration is that camera-trap survey effort per SU can be increased by 86 
both extending survey length and the number of devices deployed per SU. Species with low 87 

detection probability require long surveys to obtain precise estimates (Shannon, Lewis & Gerber 88 
2014). This is often the case for species with large home ranges, as they might be difficult to 89 
detect due to non-random movement across a large area. By installing independent camera-traps, 90 

one can achieve the same level of detection probability with fewer sampling occasions (Long 91 

2008). However, it is unclear where the optimal balance lies between survey length and number 92 
of camera-traps per SU once realistic survey costs are accounted for Increasing the number of 93 
camera-traps per SU may also be required if the survey length is somehow constrained (e.g. 100 94 

days maximum survey of all SUs). 95 
 96 

Here we provide effort allocation guidelines for cost-efficient camera-trap occupancy studies of 97 
terrestrial mammals. We develop a detailed cost function for camera-trap surveys, which we 98 

parameterise with operational installation efficiency values (e.g. minutes to install a camera-trap) 99 
provided by practitioners (e.g. wildlife managers, researchers). This is then used to consider 100 
trade-offs in survey effort allocation in terms of optimal survey length and number of camera-101 
traps within a SU needed to achieve occupancy precision targets at minimum costs. We assess a 102 
range of occupancy and detection probability scenarios for species with different home range 103 

sizes, as well as considering two types of transport between SUs: vehicular and walking. We also 104 
discuss survey design alternatives, using three threatened mammals as worked examples, 105 

illustrating how our cost function can be employed to identify cost-efficient strategies. For one of 106 
the case study species, for which an extensive survey dataset exists, we additionally investigate 107 
the deployment of multiple camera-traps per SU. Camera-trap independence is evaluated in 108 
terms of detection history similarity and how this varies with: (i) camera placement in contiguous 109 
habitat; and, (ii) distance between camera-traps. Our aim is to provide researchers with a 110 
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transparent and robust tool, which can be adapted to meet project-specific conditions, to inform 111 

the efficient use of scarce financial resources when conducting camera-trap occupancy surveys.  112 

 113 

2. Methods 114 
2.1 Sample unit definition and survey length  115 
SU size directly influences the interpretation of occupancy as a state variable. SU size also 116 
affects the amount of time spent in the field, by increasing field team member movement time 117 
both within and between SUs. When it comes to monitoring populations of mammals over large 118 
geographic areas, a common recommendation is that the size of the home range should 119 

determine the area of, and distance between, independent SUs (MacKenzie et al. 2006). 120 

Following this approach, we define the minimum distance between SUs (𝐷𝑠) as the diameter of 121 

the circular area representing the typical home range size of the species 𝑅:  122 

𝐷𝑠 = √
4𝑅

𝜋
(1 + 𝛼) Eqn. 1, 123 

where α allows including a user-defined buffer as a proportion of home range size that can be 124 
used as a conservative approach to account for home range size uncertainty and or extra space to 125 
facilitate variable camera placement within the SU (e.g. not in exact centre). For multiple species 126 

surveys, just as for single species studies, the size of R must be decided based on the research 127 
objectives and what is meaningful for the interpretation of parameters at the community scale 128 
(e.g. Burton et. al. 2012). 129 

 130 
The duration or length of a particular survey (L) has implications with respect to model 131 
assumptions, affecting the interpretation of the estimated occupancy parameter (Guillera-Arroita 132 

2016). The total survey length can be defined as the number of days over which all SUs are 133 

surveyed. A maximum length, 𝐿𝑚𝑎𝑥, should be set a priori and in accordance with survey 134 
objectives (e.g. whether the aim is to capture a “snapshot” of the system, or identifying the areas 135 

used by the species over longer time periods). In practice, to fit occupancy models, the 136 
continuous data collected by the camera-traps can be divided into discrete replicate segments, 137 

and treated as separate sampling occasions (but see Guillera-Arroita et al. 2011).  138 
 139 

2.2 Calculation of survey costs 140 
The total cost of a camera-trap survey is a function of the number of SUs (S), the duration of the 141 
survey (and hence the number of sampling occasions K), and the number of camera-traps per SU 142 
(n). We can write the cost function in a general form as: 143 

𝐶𝑇(𝑆, 𝐾, 𝑛) = 𝐶𝐹 + 𝑆 ∙ 𝐶𝑆𝑈(𝐾, 𝑛) + 𝐶𝑉(𝐾, 𝑛, 𝑆) Eqn. 2. 144 
 145 

We use 𝐶𝐹 to represent fixed costs, which are, those not associated with in-situ operations and 146 
particular to each project (e.g. maintenance of a field station or field vehicle, salaries of 147 

permanent staff and international flights). Hereafter we do not consider fixed costs because they 148 
do not affect optimal design strategy determination as they are independent of the choice of K 149 

and n. 𝐶𝑆𝑈 is the cost of surveying one SU, which is dependent on K and n. We assume that all 150 

SUs are surveyed the same amount of time. Finally 𝐶𝑉 encompasses other costs associated with 151 
the survey that are affected by the final design (see section 2.2.5).  152 

 153 

We consider that 𝐶𝑆𝑈  consists of four types of costs: 154 

𝐶𝑆𝑈(𝐾, 𝑛) = 𝐶1(𝐾, 𝑛) + 𝐶2(𝐾, 𝑛) + 𝐶3(𝑛) + 𝐶4(𝐾, 𝑛) Eqn. 3, 155 
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where 𝐶1(𝐾, 𝑛) is camera-trap operational cost within the SU associated with salaries and fuel 156 

consumption between sample units during instalment, maintenance, retrieval; 𝐶2(𝐾, 𝑛) relates to 157 

field logistics during the survey (e.g. travel to survey area and food); 𝐶3(𝑛) comprises camera-158 

trap equipment cost and, 𝐶4(𝐾, 𝑛) is post-survey image processing cost. We provide detail about 159 
the construction of each of these four elements.  160 

 161 
2.2.1 Operational costs per sample unit 162 

Operational cost 𝐶1 includes personnel salaries and fuel consumption associated with installing, 163 
retrieving and conducting maintenance service checks for the camera-traps in a single SU. We 164 

assume that installation involves the preparation of a single camera-trap (i.e. loading batteries, 165 
memory card and checking overall function) and its positioning for the duration of the survey. 166 
Retrieval consists of data collection (e.g. downloading the memory card), note-taking and 167 
camera-trap removal after the survey is complete. Maintenance involves checking/changing 168 

batteries, lures, baits and memory cards during the survey.  169 

To calculate 𝐶1, we compute the time spent at a particular SU during installation 𝐻𝑖, retrieval 𝐻𝑟 170 

or maintenance checks 𝐻𝑐:  171 

 𝐻𝑥 = { 𝑡𝑥 +
𝑑(𝑛−1)

𝑉𝑤
+

2𝐷𝑠

𝑉𝑦
 }  Eqn. 4, 172 

where: 𝑡𝑥 (𝑡𝑖, 𝑡𝑟 , 𝑡𝑐) is the time (hours) spent handling each of the 𝑛 cameras in the SU; d is the 173 

travel distance between a pair of cameras within the SU (km); 𝑉𝑤 is walking speed through 174 

habitat (km/h) to camera-traps within an SU; 𝐷𝑠 is the distance to the next sampling unit (as per 175 

eqn. 1); and, 𝑉𝑦 is the travel speed between SUs (km/h), which can either be by vehicle (𝑉𝑦 = 𝑉𝑣) 176 

or walking (𝑉𝑦 = 𝑉𝑤). The last term in Eqn. 4 multiplies the diameter of the SU by two. This 177 

assumes that the camera-traps are set up sequentially and then the same distance has to be 178 

travelled either by vehicle or foot, on the return journey back to the field vehicle, after the last 179 

SU has been installed. Once these times have been computed, the total operational time per SU 180 
in hours is: 181 

𝐻𝑆𝑈 =  𝐻𝑖 + 𝐻𝑟 + ⌊
𝐿

𝑧
− 1⌋ 𝐻𝑐   Eqn. 5, 182 

The camera-traps may need to be checked more than once during the survey, hence the factor 183 

multiplying 𝐻𝑐, where 𝑧 is the time interval in days between maintenance checks (we use ⌊. ⌋ to 184 

denote that the term 
𝐿

𝑧
 is rounded down to the nearest whole number, and minus the last sampling 185 

occasion as that cost is included in retrieval). We assume that no maintenance is conducted when 186 
the remaining time between the last check and retrieval is less than z. We can translate total time 187 
per sample unit (Eqn. 5) into working days as follows: 188 

𝐻𝑆𝑈
[𝑑]

=
𝐻𝑆𝑈

(𝑊−𝐵)
 

1

𝐸
     Eqn. 6, 189 

which accounts for net available work time during a particular day. W is the number of hours in a 190 

working day, B is the number of hours per day spent travelling and taking breaks, and E is the 191 
estimated efficiency given normal field setbacks (a factor from 0 to 1). We calculate B as 1 +192 

𝐷𝑡 𝑉𝑚⁄ , where 𝐷𝑡 is the daily return distance travelled between the field accommodation and 193 

survey area and 𝑉𝑚 is the travel speed on a motorway or main road plus a break for an hour for 194 
lunch and rest. 195 
 196 
The total operational cost per sample unit is: 197 

𝐶1(𝐾, 𝑛) = 𝐻𝑆𝑈
[𝑑]

𝑊𝑚      Eqn. 7, 198 
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where m is the combined salary per hour of the field team. To reflect real-world security and 199 

work efficiency considerations, we assume that a team is composed of at least two people: one 200 
qualified field officer (i.e. researcher, park ranger) who can work independently setting up 201 
camera-traps, and a non-qualified field assistant (e.g. guide, tracker) who cannot set up camera-202 

traps independently. In addition, where travel between SUs is by vehicle (𝑉𝑦 = 𝑉𝑣) a term must 203 

be added to Eqn. 7 to account for fuel costs 
2𝐷𝑠𝐹𝑙

𝐹𝑒
(2 + ⌊

𝐿

𝑧
− 1⌋) , where 𝐹𝑙 is fuel cost per litre, 𝐹𝑒 204 

is fuel efficiency (km/l), and the factor in brackets is the number of site visits (i.e. installation 205 
and retrieval (hence 2) and number of maintenance checks).  206 

 207 
2.2.2 Travel and food costs per sample unit 208 

Field logistics cost 𝐶2 includes costs associated with travel between fieldwork accommodation 209 
and the study area, as well as daily consumables (e.g. meals): 210 

𝐶2(𝐾, 𝑛) =  𝐻𝑆𝑈
[𝑑]

{𝐺 +
𝐷𝑡𝐹𝑙

𝐹𝑒
}  Eqn. 8, 211 

where G is the cost of food and daily consumables and 
𝐷𝑡𝐹𝑙

𝐹𝑒
 is the fuel cost to the survey area (𝐷𝑡 212 

is return distance).  213 

 214 
2.2.3 Camera-trap equipment cost 215 

Camera-trap equipment cost 𝐶3 accounts for the expenditure related to purchasing camera-traps, 216 
batteries and memory cards:  217 

𝐶3(𝑛) = 𝑛𝐶𝑎  Eqn. 9, 218 

where 𝐶𝑎 is the cost of a single camera-trap unit, with its memory card plus batteries for the 219 
entire survey. 220 

 221 
2.2.4 Post-survey image processing cost 222 

Post-survey image processing cost 𝐶4 is calculated as:  223 

𝐶4(𝐾, 𝑛) =
𝐿𝑛𝐼𝑑𝐼𝑐

𝐼ℎ
 Eqn. 10, 224 

where 𝐼𝑑 is the average number of images taken by a camera-trap per day, 𝐼𝑐 is the cost per hour 225 

of a trained researcher to process images and 𝐼ℎ is number of images processed per hour 226 
(including the identification of species and data entry into a database).  227 
 228 

2.2.5 Considerations about vehicle hire requirements  229 
Depending on the number of SUs, it might not be feasible to implement the survey (i.e. 230 
installation, maintenance checks and retrieval) with just one field vehicle (an assumed fixed cost) 231 

while meeting the constraint about maximum survey length (𝐿𝑚𝑎𝑥). Here we calculate whether 232 
extra vehicles would be required to meet this constraint. We assume one vehicle can only 233 

accommodate the transportation of two field teams (four individuals). The employment of extra 234 

teams does not affect C1, C2, C3, C4 because these are calculated on a per SU basis. However, it 235 
does impact the number of field vehicles required (in addition to the one considered already 236 
available for the project), which we assume are hired. We incorporate this cost in Eqn. 2 and we 237 

denote it 𝐶𝑉(𝐾, 𝑛, 𝑆), acknowledging it as a cost affected by the design of the survey. 238 

 239 

We compute the number of teams (𝑛𝑡) required to conduct the survey comfortably within 𝐿𝑚𝑎𝑥 240 
as: 241 
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𝑛𝑡 = ⌈
𝑆 𝐻𝑆𝑈

[𝑑]

𝐿𝑚𝑎𝑥𝐸𝑡
⌉,  Eqn. 11 242 

 243 

where 𝑆𝐻𝑆𝑈
[𝑑]

 is the total time consumed in conducting the surveys, and  𝐿𝑚𝑎𝑥 is the maximum 244 

duration allowed for the whole survey. It is unrealistic to expect that all tasks can be scheduled 245 

such that a perfect use of the time is achieved. Therefore, rather than calculating the number of 246 

teams dividing by  𝐿𝑚𝑎𝑥, we impose a tougher constraint by applying a factor 𝐸𝑡, which is a 247 

proportion defined a priori (<1). By planning for tasks to take less than 𝐿𝑚𝑎𝑥𝐸𝑡, we assume that 248 

real implementation will meet the actual constraint of  𝐿𝑚𝑎𝑥.  249 
 250 

The term 𝐶𝑉(𝐾, 𝑛, 𝑆) can be expressed as: 251 

𝐶𝑉(𝐾, 𝑛, 𝑆) = ⌈
𝑛𝑡−2

2
⌉ 𝐿𝑚𝑎𝑥  𝐸𝑡 𝐽    Eqn. 12, 252 

where J is the cost of vehicle hire per day. Here and in Eqn. 11 the brackets indicate that the 253 

quantity is rounded up. If nt is less than two (one existing vehicle for two teams), we set Cv=0 254 
(see Appendix A).  255 
 256 
2.3 Linking survey costs to estimator precision 257 

To evaluate survey design trade-offs, we need to link survey costs to estimator quality. This way 258 
we can identify the most cost-efficient survey effort allocation to achieve a given level of 259 

precision (or, alternatively, identify the best way to allocate a given amount of effort to 260 
maximize estimator precision). MacKenzie & Royle (2005) provide the following approximation 261 
for the variance of the occupancy estimator, ψ: 262 

 𝑣𝑎𝑟(ψ) =
ψ

𝑆
{1 − ψ +

1−𝑝∗

𝑝∗−𝐾𝑝(1−𝑝)𝐾−1}  Eqn. 13, 263 

where p is the probability of detection in a sampling occasion at a SU where the species is 264 

present, and 𝑝∗ = 1 − (1 − 𝑝)𝐾 is the cumulative probability of detection after K sampling 265 

occasions. For our camera-trap survey scenario, the probability 𝑝 refers to the combined 266 

detectability of the 𝑛 camera-traps per SU. Assuming independence among the cameras, we 267 
have: 268 

𝑝 = 1 − (1 − 𝑝1)𝑛  Eqn. 14, 269 

where 𝑝1 is the probability of detection with a single camera-trap. 270 
The variance in Eqn. 13 reflects the precision that we can expect in our estimation of occupancy, 271 

and is a function of the number of 𝑆, number of survey occasions 𝐾 and number of camera-traps 272 

per site 𝑛. Now, considering a target estimation precision that we want to achieve (i.e. a target 273 

var(ψ)), we can solve Eqn. 13 and express 𝑆 as a function of 𝐾 and 𝑛: 274 

𝑆 =
ψ

𝑣𝑎𝑟(ψ)
{1 − ψ +

1−𝑝∗

𝑝∗−𝐾𝑝(1−𝑝)𝐾−1} Eqn. 15. 275 

 276 

We can now substitute 𝑆 by this expression in the equation for total survey cost (Eqn. 2). This 277 

way, we express 𝐶𝑇 as a function of just 𝐾 and 𝑛 (𝜓, 𝑝 and target variance are given values). By 278 

giving values to 𝐾 and 𝑛 in the resulting equation, we can assess which combination of 𝐾 and 𝑛 279 
leads to lowest total survey costs.  280 
 281 

2.4 Evaluation of survey design trade-offs  282 
We apply the methods above (Eqn. 2, 13 and 15) to assess survey effort trade-offs (Fig. 1) for a 283 
range of camera-trap surveys scenarios for hypothetical and real species. For illustrative 284 
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purposes, we select the occupancy estimator quality target of var(ψ) = 0.0056, which 285 

corresponds to a standard error of 0.075 in occupancy estimates. We parameterise our cost 286 
function based on information acquired from experienced camera-trap surveyors (e.g. 287 
researchers, wildlife managers, park rangers, postgraduate students) via an online quantitative 288 

questionnaire (further details in Appendix B). We use the means (or medians when outliers were 289 
prevalent) of the values recorded for each parameter (Table 1). Appendix A provides R code 290 
implementing the cost function. The parameter values in the present study are used by default, 291 
but users can adapt them as required to explore specific case studies. 292 
 293 

2.4.1 Survey design trade-off evaluation: hypothetical species 294 
We first run our trade-off evaluation for a set of hypothetical species. We consider three levels of 295 
home range size values, R = 3, 10 and 30 km2, to represent small (2-6 kg), medium (10-15 kg) 296 
and large (>25kg) species respectively (Gittleman & Harvey 1982; Swihart, Slade & Bergstrom 297 

1988). Within each of those home range size levels, we evaluate all combinations of occupancy 298 
ψ and detection p probability based on the values 0.10, 0.25, 0.5, 0.75 and 0.90. Note that 299 

detection probability values refer to detection via one camera for one sample occasion (Eqn. 14). 300 
In total, 150 survey scenarios were compared (i.e. ψ, p and R). For convenience, we refer to our 301 

simulated species as ‘rare’ (ψ <0.25) or ‘common’ (ψ > 0.50). Similarly, for detection, we 302 
consider species ‘elusive’ if p <0.25 and ‘conspicuous’ if p >0.5.  303 
 304 

For each scenario, we assess survey costs by increasing number of sampling occasions K and 305 
independent camera-traps n per SU. Based on our questionnaire results (Table 1), we set the 306 

number of days considered a sampling occasion at five. We limited our evaluation of K to a 307 

maximum of 20, keeping thus total survey length below 100 days (𝐿𝑚𝑎𝑥 =100). We considered 308 
up to four camera-traps per SU. To ensure costs represent a design where all SUs are surveyed 309 

during 𝐿𝑚𝑎𝑥 we use Eqn. 12 and set the proportion 𝐸𝑡 at 0.7, meaning that all field operations 310 

need to occur within 70% of 𝐿𝑚𝑎𝑥 and extra teams (car hire) will be required for some 311 
combinations in order comply with this restriction (Eqn. 13 and 14). We consider travel between 312 

SUs both via vehicle 𝑉𝑣 and walking 𝑉𝑤 to examine the impact of transport type. Any survey that 313 
uses a mixture of these transport types would result in intermediate values as walking and 314 

vehicle travel represent the two extremes of a continuum. 315 
 316 
We identify which pair of K and n results in minimum cost and, for all other combinations, 317 
calculated how much greater the cost is compared to the minimum. For illustrative purposes, we 318 

classify these quantities into five categories: i) 1-1.5; ii) 1.5-2; iii) 2-3; iv) 3-5; and, v) over 5 319 
times greater than minimum cost (Fig. 2 and 3). We exclude combinations of n and K where the 320 
required number of SUs to survey exceeds 400 as this is unrealistic. To evaluate the effect of p 321 
on cost per SU under different ψ scenarios, we plot the cost per SU of the identified minimum 322 

costs. All models, analyses and graphics are conducted with R version 3.2.0 R Core Team 323 
(2015). 324 
 325 

2.4.2 Worked examples for three case study territorial mammals  326 
To provide working examples for territorial mammals, we apply the methods to evaluate survey 327 
design costs for three threatened carnivores that have been the focus of camera-trap occupancy 328 
surveys: guiña (Leopardus guigna) (home range = ~3 km2) (E. Schüttler unpublished data), 329 
marbled cat (Pardofelis marmorata) (home range = 11.9 km2) (Grassman et al. 2005), and sun 330 
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bear (Helarctos malayanus) (home range >15 km2) (Te Wong, Servheen & Ambu 2004). All 331 

three species are associated with forest habitat, are threatened or data deficient, and have 332 
published occupancy and detection probability estimates (Linkie et al. 2007; Johnson, 333 
Vongkhamheng & Saithongdam 2009; Gálvez et al. 2013). In our evaluation, we use values for 334 

occupancy, detection probability and the number of days considered a sample occasion as 335 
reported in the cited studies. All other parameters of the cost function are kept (Table 1).  336 
 337 
2.5 Camera trap independence: the guiña case study 338 
To provide an empirical example of an evaluation of independence between multiple camera-trap 339 

capture histories within a SU (an assumption in Eqn. 14 ) we interrogate the guiña case study in 340 
more detail, using data from a camera-trap survey conducted in the temperate forest eco-region 341 
of southern Chile (39º15´S, 71º48´W) (N. Gálvez unpublished data). A total of 145 SUs (4 km2) 342 
across agricultural land were randomly chosen from 230 potential SUs, each equivalent to the 343 

mean observed guiña home range size (Minimum Convex Polygon 95% mean = 270 ±137 ha; E. 344 
Schüttler unpublished data). We conducted a total of four survey seasons (summer 2012, summer 345 

2013, spring 2013, summer 2014), with two camera-traps installed per SU (mean distance apart 346 
=230 m ±182 SD). Each SU was surveyed for 10-12 blocks of two days to ensure independence 347 

between sampling occasions, based on the known ranging behaviour of the species (E. Schüttler 348 
unpublished data).  349 
 350 

To assess independence, we estimate a Jaccard similarity index, for each pair of camera-traps in 351 
an SU. Detection by both cameras (i.e. “11”), or by just one of them (i.e. “01” or “10”), was 352 
compared for each sampling occasion. We apply the Jaccard similarity coefficient, calculated as 353 
the number of histories of each type, by the expression “11”/ “11+“01”+“10”. As we are 354 

interested in assessing similarity in detection within a SU, non-detections pairs (i.e. “00”) were 355 
removed for analysis. As a sampling occasion was set at a two day period, we can assume that 356 

camera-trap history dissimilarity (e.g. “01” or “10”) is not due to time related bias (i.e. enough 357 
time for individuals to be captured, or not, by a second camera). We plot distance between each 358 

pair of camera-traps, and whether or not they were placed within contiguous habitat, against the 359 
Jaccard index for each season.  360 

 361 
3. Results 362 
The online questionnaire was completed by 53 respondents with experience in conducting 363 

camera-trap surveys in 35 countries, spread across all continents. Respondents had, on average, 364 
completed six camera-trap surveys (SE = 0.68). Out of the 28 parameter values included in the 365 
cost function, 20 were derived from the questionnaires (Table 1).  366 

 367 
3.1 Trade-off evaluation: hypothetical species 368 

Our evaluation reveals that, for both types of transport (vehicular and walking) between SUs and 369 
across all ψ-p scenarios, the combinations with fewest (K <3) replicate survey occasions and 370 

lowest number of camera-traps per SU (n <2), led to unrealistic solutions due to the large number 371 
of SUs required (>400) (Fig. 2 and 3). Minimum cost for surveys by foot are on average 1.7 372 
(SD= 0.3) times more expensive than those using a vehicle, when comparing ψ-p scenarios at 373 
each home range size. The expenditure per SU of minimum cost combinations decreases as 374 
detection probability rises for both types of transport between SUs and ψ scenarios (Fig. 4). The 375 
highest cost per SU is at low p particularly for walking scenarios. Across all ψ scenarios, 376 
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minimum costs per SU fall to ≤1 000 USD per SU when p is >0.5, and variation is negligible as 377 

p increases. 378 
 379 
In general, and relative to each ψ-p scenario, particularly expensive combinations are more 380 
frequent at high levels of K and n, predominantly where p and home range are greater in size. 381 
Relatively cheaper cost combinations (i.e. green tiles relative to minimum cost for that scenario) 382 

tend to be more frequent for smaller p values across ψ scenarios. Between ψ scenarios, values of 383 
minimum cost are highest at mid ψ (i.e. 0.5) and decrease towards 0.1 and 0.9 levels for both 384 
types of transport. In all ψ-p scenarios, the values of minimum cost rise with increasing home 385 
range size. Indeed, at p levels of 0.1 and 0.25, the largest home range scenario is on average 1.5 386 
(SD =0.3) times more expensive to survey than the smallest. This is in comparison to the largest 387 

home range being 1.3 (SD =0.2) more expensive than the smallest home range size scenario for 388 
higher p levels (i.e. >0.5). Within each ψ scenario, minimum cost is negatively associated with 389 

detection probability, meaning that low p is the most expensive level. Low p, at each ψ scenario, 390 
is 2.7 (SD =0.6), 2.9 (SD =0.7) and 3.2 (SD =0.7), times more costly than high p at 3 km2, 10 391 
km2 and 30 km2 home range size respectively. Generally, the K required for minimum cost 392 
combinations decreases as p increases across all scenarios.  393 

 394 
Minimum cost combinations with multiple camera-traps per SU occur in the most efficient 395 

design in 20 of the 150 scenarios tested. All 20 scenarios occur at p<0.25, but across all home 396 
range sizes (Fig. 2 and 3). They are primarily associated with walking scenarios (17/20) (Fig. 3). 397 
For vehicle travel, multiple camera-traps designs (3/20) occur only at high ψ (0.9) and low p 398 

(0.1) at all home range sizes (Fig. 2). Across ψ-p scenarios, cheaper combinations were, in 399 
general, reached at lower K than the specific minimum cost combination, but with multiple 400 

camera-traps. 401 
 402 

3.2 Case study territorial mammals 403 
Scenarios for the case study species illustrate the broad trends obtained for the hypothetical 404 
species, such as higher costs being associated with larger home range size and lower p, as well as 405 

reduction in required K with an increase in p (Fig. 5). The guiña and marbled cat do not yield 406 
minimum cost combinations with multiple camera-traps, with the exception of one walking 407 

scenario for marbled cat. The opposite is true for sun bear in all but one vehicle travel scenario. 408 
Lower cost combinations are reached with multiple camera-traps at lower K across all three 409 
species. 410 

 411 
3.3 Camera-trap independence 412 
The guiña study case reveals that a high proportion of capture histories between cameras show 413 
no similarity (i.e. equal zero) across seasons (summer2012=0.91; summer2013=0.81; 414 

spring2013=0.70; summer2014=0.88; Fig. 6). Histories which demonstrate some level of 415 
similarity (i.e. >0.00), the majority within an index of <0.5, are concentrated at distances 416 
between devices <300 m. The similarity index tends to decrease when camera-traps are >300 m 417 
apart. There is no difference in the similarity index between camera-traps positioned in 418 
contiguous and non-contiguous forest habitat (Fig. 6b).  419 

 420 
4. Discussion 421 
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Initial estimates of parameters (i.e. ψ and p) are key to informing decisions about effort 422 

allocation in camera-trap occupancy surveys (MacKenzie & Royle 2005; Guillera-Arroita, 423 
Ridout & Morgan 2010). Our work goes further, demonstrating the importance of accounting for 424 
camera-trap specific costs and species ranging behaviour to improve cost-efficiency in survey 425 

effort allocation. We have identified cost-efficient solutions with trade-offs between number of 426 
camera-traps within a SU and the number sampling occasions, particularly for wide ranging 427 
elusive species (i.e. home range >10 km2 and p<0.25) in areas were walking between sampling 428 
units is the main mode of transport. 429 
 430 

As established by the more simplistic cost functions already published in the literature 431 
(MacKenzie & Royle 2005; Guillera-Arroita, Ridout & Morgan 2010), in addition to our study, 432 
the optimal number of sampling occasions decreases as detection increases. This implies that 433 
precise occupancy estimates can be obtained with just a few sampling occasions for species 434 

which are detected easily. However, our results go on to show that the difference in the optimal 435 
number of sampling occasions between rare (ψ <0.25) and common (ψ >0.25) species is 436 

minimal. 437 
 438 

In general, highly elusive species (p <0.1) are the most expensive to survey. When elusive (p 439 
<0.25), rare species (ψ <0.25) appear relatively cheaper to survey compared to more common 440 
ones (ψ >0.50), given the same target precision for occupancy estimation. Indeed, common 441 

species are costly to survey where they have occupancy estimates of 0.5 or 0.75 and are highly 442 
elusive (p <0.1). This pattern arises because we chose variance as our metric to represent 443 

occupancy estimator quality; the optimal number of sampling occasions drives p* (Eqn. 13) near 444 
1, meaning that the variance approximates that of a binomial proportion, which is highest at mid-445 
levels of occupancy. Consequently, keeping a given precision target across species type (i.e. rare 446 

or common) requires a larger sample size at occupancy estimates around 0.5. Different precision 447 

target criteria for common versus rare species could be used, depending on specific goals of the 448 
survey (Guillera-Arroita & Lahoz-Monfort 2012).  449 
 450 

Improvements in species detectability might mitigate the high cost associated with camera-trap 451 
occupancy surveys for elusive species. The steep drop in the value of minimum cost 452 

combinations for detection probabilities 0.1 to 0.25, across all scenarios, suggest that it would be 453 
worthwhile for practitioners to conduct a pilot exercise to test alternative designs with the aim of 454 

maximizing focal species detectability prior to conducting a full survey. For instance, this may 455 
involve assessing how detection probability is influenced by microhabitat characteristics 456 
surround the camera-trap position in the SU, prevailing weather conditions (e.g. O'Connell et al. 457 
2006), camera-trap settings (e.g. Hamel et al. 2013) or increasing capture rates through baits (e.g. 458 
du Preez et al. 2014 but see Balme et al. 2014 for further discussion on the use of baits).  459 

 460 
For elusive species, it is generally more cost-efficient to conduct occupancy surveys using 461 

multiple camera-traps over fewer sampling occasions, irrespective if they are rare or common, 462 
particularly when surveys are done on foot. This is driven by the fact that it is more expensive in 463 
terms of extra work (i.e. time and salaries) and travel between/within larger SUs to undertake 464 
extra sampling occasions. For species with low detectability, a range of relatively cost-efficient 465 
design combinations (i.e. green tiles) are available to practitioners, providing flexibility with 466 
respect to both the number of sampling occasions and camera-traps. Occasionally, field survey 467 
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teams may face certain logistical constraints, such as needing to conduct short camera-trap 468 

rotations or confine work to periods of favourable weather. This can therefore be overcome by 469 
adopting an approach where multiple camera-traps are used per SU but the overall length of the 470 
survey is decreased. Another potential constraint which might be faced is the need to reduce 471 

number of sampling occasions to ensure occupancy modelling assumptions are more 472 
comfortably met for a particular species (Rota et al. 2009). 473 
 474 
Our guiña case study shows that achieving independence between multiple camera-traps 475 
positioned within a single SU is feasible for species with a small home range. However, we only 476 

evaluated the use of two camera-traps, and maintaining independence would become 477 
increasingly difficult with more devices. Moreover, care needs to be taken to ensure that they are 478 
not located so far apart that the camera-traps in adjacent SUs become too close.  479 
 480 

The three case studies evaluated here reveal how our cost function can provide practitioners with 481 
efficient survey allocation scenarios for surveying territorial mammals. For each species there 482 

are various trade-offs that warrant consideration, depending on the conservation context. For 483 
instance, cost effective monitoring of a guiña population would require longer survey lengths 484 

because few sampling occasions provides a high number of unrealistic combinations (i.e. S > 400 485 
shown as empty combinations). Our knowledge of how marbled cats are distributed across Asia 486 
is lacking, and hindering conservation efforts (Johnson, Vongkhamheng & Saithongdam 2009). 487 

If field conditions or logistics constraints mean that survey length must be kept short, our cost 488 
function show that there are a wide range of cost-efficient options available, centered on fewer 489 

sampling occasions and additional camera-traps. Likewise, sun bear surveys, which are required 490 
in forested areas outside protected lands (Linkie et al. 2007), could be most cost-efficient with 491 
multiple camera-traps per SU. One important point to note is that our framework is developed for 492 

constant occupancy models (i.e. with no covariates). In many species-specific cases, practitioners 493 

might be interested in appraising the effects of environmental covariates or the impact of 494 
management interventions, which may require sampling more SUs for statistical reasons. This 495 
would be most expensive for elusive species, due to the costs associated with each SU (Fig. 4). 496 

Our cost function can be readily incorporated in the evaluation of survey design trade-offs for 497 
more complex models via simulations. 498 

 499 
Worldwide, around 15% of mammal species are data deficient and need urgently to have their 500 

extinction risk evaluated (Schipper et al. 2008). Our cost function provides practitioners with a 501 
valuable tool which can be used to inform the design of cost-efficient camera-trap occupancy 502 
surveys, which are required to assess the conservation status of potentially threatened unmarked 503 
mammals (Beaudrot et al. 2016). While the evaluation here represents average field survey 504 
parameters, as reported by practitioners, it can be readily adapted to account for specific survey 505 

conditions and objectives. 506 
 507 

Acknowledgments 508 
We thank the Chilean Ministry of the Environment (FPA 9-I-009-12), Robertson Foundation and 509 
Recanati-Kaplan Foundation for financial assistance. We are grateful to D.W. Macdonald, M. 510 
Fleutchz, E. Schüttler, A.Dittborn, J.Laker, C.Bonacic, G.Valdivieso, N.Follador, 511 
D.Bormpoudakis, T.Gálvez and C.Ríos for their support and assistance, the researchers who 512 
commented on the pilot version of the questionnaire for their feedback, and all the survey 513 



13 
 

respondents for their time and the information provided. NG received a postgraduate scholarship 514 

from the Chilean National Commission for Scientific and Technological Research (CONICYT-515 
Becas Chile). GGA is the recipient of a Discovery Early Career Research Award from the 516 
Australian Research Council (project DE160100904). 517 

 518 

References 519 

Bailey, L.L., Hines, J.E., Nichols, J.D. & MacKenzie, D.I. (2007) Sampling design trade-offs in 520 

occupancy studies with imperfect detection: examples and software. Ecological Applications, 17, 521 
281-290. 522 

Balme, G., Hunter, L., Robinson, H., 2014. Baited camera-trap surveys–Marginally more precise 523 

but at what cost? A response to du Preez et al. (2014). Biol. Conserv. 176, 144–145. 524 

Balme, G.A., Hunter, L.T. & Slotow, R. (2009) Evaluating methods for counting cryptic 525 
carnivores. The Journal of wildlife management, 73, 433-441. 526 

Beaudrot, L., Ahumada, J.A., O’Brien, T., Alvarez-Loayza, P., Boekee, K., Campos-Arceiz, A., 527 
Eichberg, D., Espinosa, S., Fegraus, E., Fletcher, C., 2016. Standardized assessment of 528 

biodiversity trends in tropical forest protected areas: The end is not in sight. PLoS Biol 14, 529 
e1002357. 530 

Burton, A.C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J.T., Bayne, E. & 531 
Boutin, S. (2015) Wildlife camera trapping: a review and recommendations for linking surveys 532 

to ecological processes. Journal of Applied Ecology. 52, 675-685. 533 

Burton, A.C., Sam, M.K., Balangtaa, C., Brashares, J.S., 2012. Hierarchical multi-species 534 

modeling of carnivore responses to hunting, habitat and prey in a West African protected area. 535 
PLoS One 7, e38007. 536 

du Preez, B.D., Loveridge, A.J., Macdonald, D.W., 2014. To bait or not to bait: a comparison of 537 
camera-trapping methods for estimating leopard Panthera pardus density. Biol. Conserv. 176, 538 

153–161. 539 

Field, S.A., Tyre, A.J. & Possingham, H.P. (2005) Optimizing allocation of monitoring effort 540 
under economic and observational constraints. Journal of Wildlife Management, 69, 473-482. 541 

Fleschutz, M.M., Gálvez, N., Pe’er, G., Davies, Z.G., Henle, K., Schüttler, E., 2016. Response of 542 

a small felid of conservation concern to habitat fragmentation. Biodivers. Conserv. 25, 1447–543 

1463 544 

Fryxell, J.M., Sinclair, A.R. & Caughley, G. (2014) Wildlife ecology, conservation, and 545 
management. John Wiley & Sons, Oxford. 546 



14 
 

Gálvez, N., Hernández, F., Laker, J., Gilabert, H., Petitpas, R., Bonacic, C., Gimona, A., Hester, 547 

A. & Macdonald, D.W. (2013) Forest cover outside protected areas plays an important role in the 548 
conservation of the Vulnerable guiña Leopardus guigna. Oryx, 47, 251-258. 549 

Gittleman, J.L. & Harvey, P.H. (1982) Carnivore home-range size, metabolic needs and ecology. 550 
Behavioral Ecology and Sociobiology, 10, 57-63. 551 

Gompper, M.E., Kays, R.W., Ray, J.C., Lapoint, S.D., Bogan, D.A. & Cryan, J.R. (2006) A 552 
comparison of noninvasive techniques to survey carnivore communities in northeastern North 553 
America. Wildlife Society Bulletin, 34, 1142-1151. 554 

Grassman, J., LonI, Tewes, M.E., Silvy, N.J. & Kreetiyutanont, K. (2005) Ecology of three 555 

sympatric felids in a mixed evergreen forest in north-central Thailand. Journal of mammalogy, 556 

86, 29-38. 557 

Guillera-Arroita, G., 2016. Modelling of species distributions, range dynamics and communities 558 
under imperfect detection: advances, challenges and opportunities. Ecography. 559 

doi:10.1111/ecog.02445. 560 

Guillera-Arroita, G., Morgan, B.J., Ridout, M.S. & Linkie, M. (2011) Species occupancy 561 
modeling for detection data collected along a transect.. Journal of agricultural, biological, and 562 
environmental statistics, 16, 301-317. 563 

Guillera-Arroita, G. & Lahoz-Monfort, J. (2012) Designing studies to detect differences in 564 
species occupancy: power analysis under imperfect detection. Methods in Ecology and 565 
Evolution, 3, 860-869. 566 

Guillera-Arroita, G., Ridout, M.S. & Morgan, B.J.T. (2010) Design of occupancy studies with 567 
imperfect detection. Methods in Ecology and Evolution, 1, 131-139. 568 

Hamel, S., Killengreen, S.T., Henden, J., Eide, N.E., Roed‐Eriksen, L., Ims, R.A. & Yoccoz, 569 

N.G. (2013) Towards good practice guidance in using camera‐traps in ecology: influence of 570 

sampling design on validity of ecological inferences. Methods in Ecology and Evolution, 4, 105-571 
113. 572 

Johnson, A., Vongkhamheng, C. & Saithongdam, T. (2009) The diversity, status and 573 
conservation of small carnivores in a montane tropical forest in northern Laos. Oryx, 43, 626-574 
633. 575 

Linkie, M., Guillera-Arroita, G., Smith, J., Ario, A., Bertagnolio, G., Cheong, F., Clements, 576 
G.R., Dinata, Y., Duangchantrasiri, S., Fredriksson, G., 2013. Cryptic mammals caught on 577 
camera: assessing the utility of range wide camera trap data for conserving the endangered Asian 578 

tapir. Biol. Conserv. 162, 107–115. 579 



15 
 

Linkie, M., Dinata, Y., Nugroho, A. & Haidir, I.A. (2007) Estimating occupancy of a data 580 

deficient mammalian species living in tropical rainforests: sun bears in the Kerinci Seblat region, 581 
Sumatra. Biological Conservation, 137, 20-27. 582 

Long, R.A., Donovan, T.M., Mackay, P., Zielinski, W.J. & Buzas, J.S. (2007) Comparing scat 583 
detection dogs, cameras, and hair snares for surveying carnivores. The Journal of Wildlife 584 
Management, 71, 2018-2025. 585 

MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey, L.L. & Hines, J.E. (2006) 586 
Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. 587 
Academic Press. London. 588 

MacKenzie, D.I. & Royle, J.A. (2005) Designing occupancy studies: general advice and 589 

allocating survey effort. Journal of Applied Ecology, 42, 1105-1114. 590 

O'Connell, A.F., Nichols, J.D. & Karanth, K.U. (2010) Camera traps in animal ecology: 591 
methods and analyses. Springer Science & Business Media. London. 592 

O'Connell, A.F., Talancy, N.W., Bailey, L.L., Sauer, J.R., Cook, R. & Gilbert, A.T. (2006) 593 

Estimating site occupancy and detection probability parameters for meso-and large mammals in 594 
a coastal ecosystem. Journal of Wildlife Management, 70, 1625-1633. 595 

R Core Team (2015) R: A language and environment for statistical computing. R Foundation for 596 

Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. [accessed 11 September 597 
2015]. 598 

Rota, C.T., Fletcher Jr, R.J., Dorazio, R.M. & Betts, M.G. (2009) Occupancy estimation and the 599 

closure assumption. Journal of Applied Ecology, 46, 1173-1181. 600 

Rowcliffe, J.M. & Carbone, C. (2008) Surveys using camera traps: are we looking to a brighter 601 
future?. Animal Conservation, 11, 185-186. 602 

Schipper, J., et.al. (2008) The status of the world's land and marine mammals: diversity, threat, 603 
and knowledge. Science, 322, 225-230. 604 

Shannon, G., Lewis, J.S. & Gerber, B.D. (2014) Recommended survey designs for occupancy 605 
modelling using motion-activated cameras: insights from empirical wildlife data. PeerJ, 2: e532; 606 

DOI 10.7717/peerj.532. 607 

Swihart, R.K., Slade, N.A. & Bergstrom, B.J. (1988) Relating body size to the rate of home 608 
range use in mammals. Ecology, 393-399. 609 

Te Wong, S., Servheen, C.W. & Ambu, L. (2004) Home range, movement and activity patterns, 610 
and bedding sites of Malayan sun bears Helarctos malayanus in the rainforest of Borneo. 611 
Biological Conservation, 119, 169-181. 612 



16 
 

Tobler, M., Carrillo‐Percastegui, S., Leite Pitman, R., Mares, R. & Powell, G. (2008) An 613 

evaluation of camera traps for inventorying large‐and medium‐sized terrestrial rainforest 614 
mammals. Animal Conservation, 11, 169-178. 615 

Vojta, C.D. (2005) Old dog, new tricks: innovations with presence-absence information. Journal 616 
of Wildlife Management, 69, 845-848. 617 



17 
 

Table 1. Description of constant parameters used to estimate camera-trap survey cost provided by users obtained from an on-line 618 

questionnaire and literature reference values. 619 

Type Terms Parameter 
Number of 

respondentsa 

Average 

(SD) 
Median Mode Min Max 

Value 

used in 

the cost 

function 

Comments and units 

used in the cost 

function 

User experience Experience (years) - 53 5 (3) 4 3 1 15 - For reference use 

Number of completed 

surveys 

- 53 6 (5) 4 3 1 30 - For reference use 

 
Year last survey was 

conducted 

- 53 

 

- 

 

- 

 

2014 

 

2005 

 

2015 

 

- For reference use 

Field operation 

values 

Camera-trap installation 

time (mins) 

I 53 40 (36) 30 30 5 180 0.66 Average hours 

Camera-trap retrieval time 

(mins) 

R 53 15 (10) 15 10 2 45 0.25 Average hours 

 
Maintenance check time 

(mins)  

C 53 13 (11) 10 5 1 60 0.21 Average hours 

 
Time between 

maintenance checks (days)  

Z 32 17 (12) 15 15 1 50 10  
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Overall survey length 

(days)  

Lmax 45 128 (94) 90 90 30 540 100c  

 
Duration of survey per 

sampling unit (days) 

- 51 58 (56) 45 30 6 300 - For reference use 

 
Time considered a 

sampling occasion (days)  

O 20 7 (5) 6 5 1 15 5 b Mode 

 Length work day (hours)  W 53 8 (3) 8 8 1 15 8 Average hours 

 
Proportion of time spent 

on setbacks  

E 52 0.16 (0.12) 0.10 0.10 0.00 0.50 0.84 Efficiency =1-average 

 
Walking speed between 

sampling units (km/hour) 

Vw - - - - - - 3.5 Average km/hour 

 
Vehicle speed between 

sample units (km/hour) 

Vy 37 33 (12) 30 20 15 60 33 Average km/hour 

 
Vehicle speed on main 

road (km/hour) 

Vm 40 64 (27) 60 60 20 120 64 Average km/hour 

 Fuel efficiency (km/l) Fe - 8 (0.93) 8 8 6.3 9.7 8d Average km/l 

 

Distance between field 

accommodation and 

survey area (km) 

Dt 36 50 (52) 28 20 3 200 56 Median km 
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Field costs 

($USD) 

Salary of trained personnel 

(USD/hour) 

mtp 34 10 (8) 8 25 1 30 10 Average USD per hour 

Salary of field assistants 

(USD/hour) 

mfa 29 4 (4) 2 2 0 16 4 Average USD per hour 

 Food costs (USD/day)  G 44 16 (19) 10 10 1 109 16e Average USD per person 

 Petrol (USD/l) Fl 36 3 (4) 1 1 0 15 3 Average USD per l 

 
Cost of renting field 

vehicle (USD/day) 

J 23 86 (80) 50 50 12 350 86 Average USD per day 

Camera units 

 

Cost of camera-trap 

(USD/unit)  

Ca 

 

46 

 

350 (214) 

 

257 

 

200 

 

80 

 

931 

 

350f 

 

Average USD per unit 

 

Post-survey 

image 

processing 

Number of images per 

camera-trap 

Id 43 21 (29) 12 17 0 144 21 Average per day 

Images processed per an 

hour  

Ih 29 396 (532) 100 100 4 2000 396 Average per hour 

 
Cost of processing images 

(USD/hour)  

Ic 

 

27 

 

12 (14) 

 

6 

 

16 

 

1 

 

60 

 

12g 

 

Average USD per hour 

 

Other Factor to ensure all field 

activities can be conducted 

within maximum length of 

survey  

Et - - - - - - 0.70 Proportion of Lmax 
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Extra buffer area around a 

sample unit (%)  

α - - - - - - 0.25 Proportion of sample unit 

a) Included for parameter values evaluated via the questionnaire 

b) We use the mode of the criteria used to determine the number of days collapsed into one sampling occasion in occupancy studies 

c) We use 100 days as maximum length of survey which is within the average and mode. 

d) Based on fuel efficiency figures for Jeep, Land Rover, Nissan, Subaru, Toyota and Suzuki petrol sport/pickup/utility vehicles, made between 1995 and 

2010. Source: US Department of Energy 2015 (http://www.fueleconomy.gov/) 

e) Food cost is doubled in cost function as the field team is assumed to comprise two individuals 

f) Includes the camera-trap, SD card and batteries 

g) Cost of trained personnel paid to identify species and enter data into a database 

 

 620 
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Figure 1: Synthesis of steps and parameters used to evaluate cost-efficient and statistically 622 

precise camera-trap survey trade-offs for occupancy estimates of terrestrial mammals. 623 

Figure 2: Cost (US dollars) of different camera-trap occupancy survey effort allocations, 624 
assuming vehicular transport is employed between sample units (SUs). Each tile represents a 625 
combination of number of sampling occasions K and number of camera-traps n per SU. Tile 626 

color reflects the cost required to achieve a target statistical precision (S.E. =0.075) in occupancy 627 
estimates (ψ) for any given combination of home range size (3, 10, 30 km2), occupancy and 628 
detection (p) probabilities. All detection probability values refer to p1 (Eqn. 12) which refers to 629 
the detection of one camera for one sample occasion. Costs are shown in relative terms, 630 
benchmarked against the cheapest combination indicated in blue: 1-1.5, green; 1.5-2, olive; 2-3, 631 

yellow; 3-5, light orange; >5 times greater, orange. Maximum number of K considered is 20 632 
(assuming that each occasion is five days long and a maximum possible survey length is 100 633 

days). Empty combinations indicate solutions that require > 400 sites to be surveyed. 634 

 635 

Figure 3: Cost (US dollars) of different camera-trap occupancy survey effort allocations, 636 
assuming the distance between sample units is walked. For details regarding the figure 637 

arrangement, please refer to the legend for Figure 1. 638 

 639 

Figure 4: Range of costs (US dollars) per sample unit (SU) for all minimum cost occupancy (ψ) 640 
and detection (p) probability combinations. Both type of transport between SUs (walking and 641 

vehicular) are compared.  642 
 643 

Figure 5: Camera-trap occupancy survey effort scenarios and combinations for three threatened 644 
case study carnivore species: guiña (Leopardus guigna), marbled cat (Pardofelis marmorata) and 645 

sun bear (Helarctos malayanus). For details regarding the figure arrangement, please refer to the 646 
legend for Figure 1. Both walking and vehicular transport between sample units are evaluated, as 647 

well as various combinations of occupancy (ψ) and detection (p) probability derived from the 648 
literature for each species. Guiña: 3 km2 home range (E. Schüttler unpublished data); occupancy 649 
and detection parameters with two days considered a sampling occasion (Fleschutz et. al. 2016). 650 
Marbled cat: 11.9 km2 home range (Grassman et al. 2005); occupancy and detection parameters 651 

and five days considered a sampling occasion (Johnson et al. 2009). Sun bear: >15 km2 home 652 
range (Te Wong, Servheen & Ambu 2004), occupancy and detection parameters and 15 days 653 
considered a sampling occasion (Linkie et al. (2007). 654 
 655 

Figure 6: Jaccard similarity index of the camera-trap occupancy survey capture histories for two 656 

devices per sample unit (SU), used when surveying guiña (Leopardus guigna) over four seasons. 657 
The index is plotted against: (a) distance between camera-traps (m) within each SU, and; b) 658 

whether or not the two devices were set up within a contiguous habitat patch in the SU. 659 
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