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A Situation-Aware Fear Learning (SAFEL) Model for Robots

Caroline Rizzi®*, Colin G. Johnson?, Fabio Fabris?, Patricia A. Vargasb

“School of Computing, University of Kent, Canterbury, UK
bRobotics Laboratory, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK

Abstract

This work proposes a novel Situation-Aware FEar Learning (SAFEL) model for robots. SAFEL combines concepts
of situation-aware expert systems with well-known neuroscientific findings on the brain fear-learning mechanism
to allow companion robots to predict undesirable or threatening situations based on past experiences. One of the
main objectives is to allow robots to learn complex temporal patterns of sensed environmental stimuli and create a
representation of these patterns. This memory can be later associated with a negative or positive “emotion”, analogous
to fear and confidence. Experiments with a real robot demonstrated SAFEL’s success in generating contextual fear

conditioning behaviour with predictive capabilities based on situational information.

Keywords: Contextual Fear Conditioning, Brain Emotional Learning, Temporal Pattern, Affective Computing,
Autonomous Robotics, Amygdala and Hippocampus Modelling

1. Introduction

Learning to fear unpleasant or harmful stimuli from
the environment is ubiquitous in nature. Fear can be
defined as a brain’s mechanism for automatic learning
and memorization of potential threats to one’s survival.
It offers exceptional advantages over conscious-rational
thinking during critical situations due to its involun-
tary and automatic responses, leading to faster decision-
making and reaction in the face of danger [1, 2], as well
as increased focus and attention [3]. Fear learning is
also an important ally for environmental adaptation as
the brain constantly associates fear with newly experi-
enced dangers. Hence, it assists animals to learn and
react to the new patterns and threats of unfamiliar envi-
ronments.

Fear learning supports not only survival and environ-
mental adaptation, but also social adaptation (i.e., one’s
ability of adjusting its behaviour to the rules of its own
society). The concept of society applies to many animal
species, where individuals feel an instinctive need to be
accepted by others of its kind. As belonging to a com-
munity can highly increase one’s chances of survival,
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the brain of many animal species evolved to process
social rejection as an aversive environmental stimulus.
Consequently, the brain triggers fear learning when an
individual observes disapproval from others towards its
actions.

By being real agents that inhabit the physical world
and interact with human beings, autonomous robots are
also susceptible to environmental threats and to social
adaptation. Hence, autonomous robots could also take
advantage of a mechanism inspired by fear learning.
Robot companions [4-7], for instance, are gaining more
space in our society as social entities and have shown
a great potential for applications in many areas (e.g.,
healthcare [8]). However, a common issue with long-
term robot companions is the rapid loss of interest from
their users, who get frustrated and lose motivation over
time as companions continue to perform pre-defined
and repetitive behaviours [5]. This poses a challenge to
the broad development and practical use of robot com-
panions.

From the HRI (Human-Robot Interaction) point of
view, robots’ social interaction becomes more believ-
able and natural as they become more adaptable and re-
sponsive to environmental cues [4, 6, 9]. As humans,
we expect others to be able to identify environmental
factors that can represent unpleasantness or danger to
themselves and act accordingly. Therefore, being able
to properly express fear responses could highly increase
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the believability of a long-term robot companion [9].

Fear learning has been a strong source of inspiration
for developing more flexible and adaptive artificial in-
telligence [10-13]. The potential of artificial intelli-
gence based on fear-learning models is demonstrated by
its successful contribution to a variety of engineering
and robotic applications [14-29]. Despite its advances,
research on artificial fear-learning is still in its infancy
and has several aspects with margin for improvement,
among which we can highlight situation appraisal.

In the real world, people react not only to individual
environmental stimuli (e.g. pain, smells, noises, loca-
tion, light levels, etc.), but also to contextual variation
over time, also known as situation, which is character-
ized by the temporal order and intensity variation of all
appraised stimuli in a given period of time (e.g., being
in a forest at night, with impaired visibility, and hear-
ing animals’ noises). Here, we define the emotional
outcome and evaluation of a situation as situation ap-
praisal.

To the best of our knowledge, artificial fear-learning
models proposed to date do not substantially address sit-
uation appraisal, which is a significant part of the brain’s
fear-learning system, and essential for a organism to
predict outcomes and adapt to threats and environmen-
tal changes [30].

This paper proposes a novel hybrid computational
model, named SAFEL (Situation-Aware FEar Learn-
ing), which is based on the brain’s fear-learning sys-
tem and incorporates the concept of situation aware-
ness from expert systems. SAFEL builds on our fear-
learning model, proposed in [31], which is inspired by
three brain regions essential in fear learning: the sen-
sory system, the amygdala and the hippocampus, along
with a cognitive function of the brain known as the
working memory [2]. Here, we discuss the implemen-
tation of SAFEL’s hippocampus and working memory
modules, which are responsible for simulating situa-
tion appraisal regarding fear. Experiments with a NAO
robot demonstrate that SAFEL has successfully gener-
ated fear-conditioning behaviour with predictive capa-
bilities based on situational information.

The main contributions of this work as compared to
the state of the art are:

1. Integration of a fear learning model with the con-
cept of temporal context. SAFEL performs threat
predictions based on complex temporal and con-
textual information. Existing fear memory mod-
els either focus in the contextual or the temporal
aspect, overlooking the need of both skills for an
artificial intelligent agent to properly react to real-

world threatening situations.

2. SAFEL is focused on real-world applications for
artificial and autonomous intelligence in robotics.
Many existing fear-learning models that are in-
spired by the real mechanisms of the brain focus on
providing a close-to-real emulation of brain func-
tions without addressing the practical usage of the
model for artificial intelligence.

3. The successful integration of a symbolic rule-
based platform for situation management with a
classification algorithm for memorizing and pre-
dicting threats based on complex temporal context.

This paper is organised as follows: Section 2 dis-
cusses related work. Section 3 summarizes the biolog-
ical background and neuroscientific findings that have
inspired SAFEL. Section 4 presents SAFEL’s modelling
and implementation. Experimental methodology and
results are discussed in Sections 5 and 6, respectively.
The paper concludes with Section 8, and also suggests
future work.

2. Previous Models of Contextual Fear Conditioning

The idea of using models of emotion for improving
autonomous learning in artificial systems started with
Picard’s research in 1995 [32, 33]. Picard’s work origi-
nated one of the most recent branches of computer sci-
ence: affective computing. According to Picard [33],
affective computing tackles three aspects of artificial in-
telligence: (1) the ability of machines to recognize and
express emotions, (2) the ability of machines to respond
intelligently to human emotion, and (3) the capability of
machines to regulate and utilize emotions in order to be-
have more intelligently and effectively. In this work, we
focus on the latter aspect of affective computing, though
all the three aspects are indirectly addressed.

A large range of approaches have been proposed for
simulating emotions in artificial agents, such as affec-
tive space models [34, 35], motivation-driven models
[13], neuro-inspired models [10, 12, 36—38], hormonal
or homoeostatic systems [39—42], among others [43, 44]
(for a broader review on the varied approaches and chal-
lenges of affective computing, we refer the reader to
[45]). Here, we are particularly interested in approaches
addressing the temporal properties of context applied to
fear conditioning for providing robots with fast, efficient
and flexible decision-making.

One of the most influential works in artificial fear
conditioning is the brain emotional learning (BEL)
model, proposed by Morén and Balkenius [10]. Their
model (Fig. 1) consists of interconnected modules of



artificial neural networks (ANNSs) that simulate the role
of neural circuitries involved in fear learning. It receives
two types of inputs — environmental neutral stimuli and
a reward signal — that are processed by four simulated
neural regions: the thalamus, the sensory cortex, the
amygdala and the orbitofrontal cortex.

The thalamus and sensory cortex simply relay in-
put information to the orbitofrontal cortex and amyg-
dala and, together, compose the “low and high roads”
to the amygdala, respectively [2]. The sensory cortex
receives information from the thalamus, which in turn
receives information directly from the environment. As
the thalamic pathway is shorter, it provides the amyg-
dala with low latency information about environmen-
tal stimuli. On the other hand, information projected
through the thalamic-cortical pathway takes longer to
reach the amygdala, but provides a higher-level and
more accurate representation of the sensed world.

The amygdala is responsible for assessing and pre-
dicting the emotional value of stimuli, based on the sig-
nificance of the accompanied reward. Finally, the or-
bitofrontal cortex is responsible for inhibiting emotional
associations of the amygdala that are no longer valid.
This model has been tested for the most basic effects of
classical conditioning — such as fear acquisition, fear
extinction, blocking, habituation and spontaneous re-
covery — showing satisfactory results.

The BEL model was later improved in [46], with the
addition of a module that simulates the contextual pro-
cessing performed by the brain’s hippocampal regions.
BEL’s hippocampus module has four main components:
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Figure 1: Fear-learning model proposed by Morén and Balkenius [10].
Each component of their model represents an ANN. Circles represent
individual ANNS internal to the respective component.
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the Bind subsystem, the Mem system, the Match sys-
tem and the Context system. The Bind subsystem is re-
sponsible for binding stimuli that are simultaneously de-
tected. The Mem system generates expectations about
stimuli manifestation at specific locations. These ex-
pectations are later compared with the actual stimuli in
the Match system. Lastly, the Context system combines
information from the Match and Bind systems to gen-
erate a contextual code that feeds the amygdala and or-
bitofrontal cortex.

With the aid of the hippocampal module, BEL is able
to express fear responses based on contextual informa-
tion. For example, one of the experiments performed in
[46] consisted on presenting two different stimuli, CSO
and CS1, sometimes separately and sometimes together.
All single presentations of either CSO or CS1 were fol-
lowed by a reinforcing signal, whereas all simultane-
ous presentations were followed by nothing. The model
gradually learned to differentiate between single and
joint stimulus presentation. Further experiments in [46]
with other patterns of stimulus presentation and location
were also successful.

Despite BEL’s success in discriminating sets of si-
multaneously presented stimuli, a few important ques-
tions were left unanswered. For instance, what would
happen if the reinforcing signal was presented only after
CSO0 was followed by CS1 (represented by CSO—CS1)?
Would the model understand that CS1—CSO0 is differ-
ent from CSO—CS1? According to Morén [46], con-
text “can be either an abstract sequence of stimuli or a
place defined by a number of stimuli at different loca-
tions around the animal”. It is clear that temporal fac-
tors are not considered in Morén’s conceptualization of
context, which is possibly the reason why the temporal
order of stimulus presentation is never evaluated in his
experiments.

The simplest version of the BEL model (i.e., the ver-
sion proposed in [10], which has no hippocampus mod-
ule) became more popular among researchers. Based
on the BEL model [10], Lucas, Shahmirzadi and Sheik-
holeslami [11] proposed a Brain Emotional Learning
Based Intelligent Controller (BELBIC), which was later
applied (somewhat adapted) to a large range of indus-
trial [14-18], engineering [19-23] and robotics [24—
29] applications. Most of these works have compared
their BELBIC controllers with conventional controller
approaches (e.g. PID, MLP, ANFIS and LLNF) and ob-
served meaningful improvements in varied performance
aspects when using BELBIC.

In 2010, Beheshti and Hashim [47] published a re-
view on BELBIC systems and demonstrated its per-
formance for engineering ends. They compared BEL-



BIC with a range of conventional controller approaches
(such as PID, ANFIS and feedback linearization con-
troller) for several engineering applications (such as mi-
cro heat exchanger, intelligent control of washing ma-
chine, dynamic power management, intelligent predic-
tor for geomagnetic activity, and speed and flux control
of an induction motor). Their analysis concluded that
BELBIC showed better performance and results than
the tested conventional approaches for real time control
and decision systems.

BELBIC’s popularity and performance improvement
over traditional approaches in several application areas
demonstrates its great potential as a controller. We be-
lieve that such success could be even greater if BELBIC
was based on the improved version of BEL [46], as well
as if it considered the temporal aspects of context.

Rudy and O’Reilly [36] have also proposed a contex-
tual fear-conditioning model that relies on a theoretical
framework [48] based on the cortical and hippocampal
regions of the brain. In their model, the cortex repre-
sents context as a set of independent features, whereas
the hippocampus binds these features into an unitary
representation. Rudy and O’Reilly have implemented
their framework on an artificial neural network model,
which was evaluated on a scenario that simulates a con-
text fear-conditioning experiment performed with rats.
The experiment aimed at evaluating the model regard-
ing is capability to (1) enhance fear conditioning via
pre-exposure to context and (2) induce pattern comple-
tion (when a subset of a learned pattern can recover the
entire pattern).

Although successful in reproducing many fear condi-
tioning effects, the contextual fear-conditioning model
of Rudy and O’Reilly [36] also disregards the temporal
properties of context. According to Rudy and O’Reilly
[36], “either context can be represented as a set of in-
dependent features (the features representation view) or
these features can be bound into an unitary encoding
that represents their co-occurrence (the conjunctive rep-
resentation view)”. This implies that their unitary rep-
resentation of context considers features that co-occur
only, which excludes a large range of temporal possi-
bilities between distinct features that are essential for a
thorough contextual perception.

A model that considers temporal sequences has been
designed by Harrison et al. [30]. Their study aimed at
evaluating hippocampal responses to changes in prob-
abilistic context by submitting subjects to a first-order
Markov sequence, where the current event E, is con-
ditionally dependent on the previous event E,_;, and
the probability of transition between them is given by
P(E|E,—1). To model the task, they assumed that the

subject was an ideal Bayesian observer, who starts with
the belief that all events are equally likely and consec-
utive events are independent. As samples of events are
sequentially presented, this ideal observer constructs a
transition matrix consisting of the probabilities of tran-
sition between consecutive events.

Their model is similar to ours in the sense that learn-
ing and prediction are based on the temporal relation-
ship of events. However, the design of the task given to
their subjects, which reflects on their model of an ideal
observer, considers that every event consists of only one
stimulus. Although sufficient for the purpose of their
experiment, which is analysing hippocampal responses
to temporal context, this simplistic design does not re-
flect real world situations, in which events may consist
of many simultaneous stimuli.

Among recent research, we highlight the work of
Subagdja and Tan [37]. They propose a model for
episodic memory, which is a type of long-term declara-
tive memory mainly processed by the hippocampus, us-
ing an extended adaptive resonance theory (ART) net-
work. They argue that the accuracy of memory retrieval
depends on the order and latency between memory cues,
which matches the conceptual foundation of our work.
They evaluate their approach on a transitive inference
problem, which is a classical logical problem of com-
paring the value of things (e.g., given that A weighs
more than B and B weighs more than C, than it can be
inferred that A weighs more than C).

Amongst the related work, Subagdja and Tan [37]
may be the most similar to our proposed model with
regards to temporal context. For instance, their defini-
tion of situation (which they call an episode) is equal
to ours. However, our approaches differ in the final pur-
pose of temporal context. We are mostly concerned with
predicting aversive events by creating a link between the
“feeling of fear” and the events that preceded an aver-
sive stimulus in a past experience. This would provide
robots with the chance to react and prevent unpleasant
(possibly harmful) situations, as well as to increase their
adaptation capabilities. On the other hand, the work of
Subagdja and Tan addresses neither fear conditioning,
nor danger prediction/prevention. In their work, events’
order is not associated with any emotion. Their main fo-
cus is to facilitate retrieval, creation and update of neu-
tral (non-aversive) contextual memory.

3. Biological Background

This section discusses the main biological concepts
behind SAFEL’s model. We begin introducing SAFEL’s
inspiration: fear conditioning, the phenomenon behind



fear learning. Next we discuss the brain mechanism re-
sponsible for fear learning and memory, based on the
model proposed by LeDoux [2, 49].

3.1. Fear Conditioning

In classical fear conditioning [50], associative learn-
ing is induced by repeatedly pairing a neutral stimulus
(NS) with an aversive unconditioned stimulus (US). An
aversive US is any stimulus that naturally elicits fear or
anxiety in the animal. In other words, the animal is born
with the knowledge that such stimulus is aversive, like
a “hard-coded” knowledge. Some examples of aversive
US are pain, hunger, sensory impairment (such as losing
visibility in dark places), aggressive facial expression of
other animals, etc.

By pairing a NS and an aversive US (i.e., by present-
ing these stimuli simultaneously to the animal), the NS
acquires emotional value and becomes able to trigger
fear reactions by itself, even in the absence of the US.
Since the NS did not trigger fear reactions before, we
say that the animal has learned to fear it through a con-
ditioning procedure. As consequence, the NS becomes
a conditioned stimulus (CS).

The classical foot-shock experiment with rats demon-
strates this phenomenon. In the experiment, a rat is
placed into an apparatus and receives auditory cues
paired with electrical shock in its feet. The shock nat-
urally elicits fear in the rat, which freezes in response.
After repeating this procedure a few times, the rat asso-
ciates the stimuli and starts to freeze in response to the
auditory cue even in the absence of an electrical shock.
Because the CS did not elicit the defensive response be-
fore, it is said to be a conditioned emotional response.

Nevertheless, in this experiment, fear expression has
been observed not only in response to the auditory cue,
but also to the background context, which in this case is
the apparatus where the shock was induced. The phe-
nomenon of expressing defensive responses in the pres-
ence of a specific combination of stimuli (e.g., a situ-
ation or place) under which a US has been previously
induced is known as contextual fear conditioning [51].

Although both types of conditioning lead to the same
fear responses, their perception and processing mecha-
nisms in the brain are very different. In classical fear
conditioning, the CS is restricted to an individual stim-
ulus that belongs to a specific sensory modality (smell,
touch, taste, hearing or vision), whereas in contextual
fear conditioning, the CS is composed of a collection of
stimuli, which may belong to different sensory modal-
ities [51]. This set of stimuli is bound into an unitary
representation of context that depicts not the stimuli per
se, but the relationship between them [2].

3.2. Fear Learning in the Brain

Considerable evidence points the amygdala as the
main brain region involved in fear learning and memory
[2, 49, 51, 52]. Although the amygdala is essential for
both classical and contextual fear conditioning [51], it
is in the hippocampus where context processing mainly
takes place [2, 53], including the association of events
across time [54]. Research has shown that lesions to
the amygdala interfere with fear responses to both types
of fear conditioning, while lesions to the hippocampus
interfere with fear responses in contextual fear condi-
tioning only [51, 55].

These findings reinforce the model of the brain’s fear-
learning process proposed by LeDoux [2, 49]. Accord-
ing to LeDoux, fear learning relies mainly on three brain
regions: the sensory system, the amygdala and the hip-
pocampus, as well as a cognitive function known as the
working memory.

The sensory system, composed by the thalamic and
cortical pathways, is responsible for providing the
amygdala with information on different levels of ab-
straction and accuracy. The amygdala, in turn, pro-
cesses the emotional significance of sensed stimuli. In
other words, it is the brain region responsible for fear
appraisal. It is also where classical fear conditioning
takes place, i.e., where neutral stimuli are associated
with aversive stimuli during the conditioning process.

The hippocampus is where we begin to leave the
purely perceptual reasoning about the world and enter
the conceptual domain of the brain. In the hippocam-
pus, sensory information is put together in order to form
an unitary representation of the current state of affairs.
Unlike information processed in the amygdala, repre-
sentations formed in the hippocampus are not just vi-
sual, auditory or olfactory, but all of these at once, and
includes the way these sensations relate to each other
both in intensity and temporal order.

The amygdala and hippocampal systems work in par-
allel, forming what LeDoux calls, respectively, as emo-
tional memory and memory of emotion [2]. When you
remember a traumatic situation, in addition to the state
of affairs, the hippocampus will also remember you as a
cold fact that you were afraid at that time, providing you
with an unemotional memory of emotion. The amyg-
dala, in turn, will trigger bodily and brain responses
(muscles’ tense up, increased heart rate, hormone re-
lease, etc.) that allow you to re-experience the fear felt
during the trauma, thus providing you with an emotional
memory of the episode.

Exposure to stimuli that were present during the
trauma activates both the amygdala and hippocampal



systems, which work in parallel to retrieve emotional
and contextual memory about the event, respectively.
Because these two memories are simultaneously recov-
ered in response to the same stimuli, they are experi-
enced as if they were one single memory.

These two memories are fused and consciously ex-
perienced in the working memory. LeDoux [49] de-
fines the working memory as “a serially organized men-
tal workspace where things can be compared and con-
trasted and mentally manipulated”. A variety of stud-
ies indicate pre-frontal cortex areas and the anterior
cingulate region as involved in working memory func-
tions [49, 56, 57]. Newly sensed stimuli and stored
hippocampal representations are integrated in working
memory through interactions between pre-frontal and
hippocampal areas. In the case of an aversive stimu-
lus, similar interactions are triggered, which inform the
working memory of the fact that the amygdala has acti-
vated fear responses. In other words, the working mem-
ory allows the association of explicit contextual mem-
ory formed in the hippocampus with implicit emotional
memory formed in the amygdala.

4. SAFEL: A Situation-Aware Fear Learning Model

SAFEL is a situation-aware computational system
capable of endowing a companion robot to learn and
predict threatening situations to itself through a fear-
conditioning—like procedure. Nevertheless, we empha-
sise that, although we have chosen robotics as our main
application, SAFEL has the potential for being used in
any other areas that require machine learning and adap-
tation.

This work is based on the fear-learning model of the
human brain and contemplates part of a more ambitious
fear-learning architecture proposed in [31]. This archi-
tecture is inspired by the LeDoux model [2, 49], dis-
cussed in Section 3.2. SAFEL’s complete architecture
[31] is divided into four hybrid modules that work in
an integrated and parallel manner: the sensory system,
the amygdala system, the hippocampal system and the
working memory.

Fig. 2 depicts the complete model proposed in [31],
illustrating how the four main modules of the archi-
tecture are interconnected. The sensory system pre-
processes environmental stimuli detected by the robot
(e.g., by means of sensors’ input or direct user input),
which is relayed to the amygdala and hippocampal sys-
tems. The amygdala system is responsible for predict-
ing and associating environmental stimuli to imminent
danger. It also provides emotional feedback to the hip-
pocampal system. In parallel, the hippocampal sys-
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Figure 2: The complete model of the fear-learning architecture pro-
posed in [31]. Dashed boxes represent the modules of the architecture
that we have not yet implemented. White boxes represent areas of the
brain, whereas grey boxes represent cognitive functions of the brain.
The system receives neutral and aversive stimuli as input, and outputs
the corresponding emotional response.

tem generates complex contextual representations of the
environment based on the processed sensory informa-
tion projected by the cortex. Finally, implicit memories
from the amygdala system and explicit memories from
the hippocampal system meet in the working memory,
where contextual information is associated with emo-
tional information to produce emotional responses.

Note that this model does not attempt to capture all
the real neural circuits involved in the brain’s fear learn-
ing system, which are far more complex and have not
yet been completely understood by neuroscientists. It
also does not attempt to perfectly mimic all aspects of
the real fear learning. The proposed model seeks to cap-
ture the aspects of the fear learning system that are rel-
evant for improving a robot’s learning, adaptation and
believability competencies.

In this paper, we model, implement and evaluate the
hippocampus and working memory modules. The im-
plementation of the sensory and amygdala systems are
part of our future work.

4.1. Hippocampus Module

In the following, we present both theoretical and
practical foundations for implementing situation aware-
ness in the hippocampus module of SAFEL.

The hippocampus module is responsible for SAFEL’s
contextual processing and is based on the concepts of



situation-awareness proposed by Dey [58], which is dis-
cussed in Section 4.1.1. In order to address Dey’s defi-
nition of situation awareness, we have modelled and im-
plemented SAFEL’s hippocampus module on the JBoss
Drools rule engine and CEP (Complex Event Process-
ing) platform [59], which we introduce in Section 4.1.2.
Finally, Section 4.1.3 presents the design of the hip-
pocampus module.

4.1.1. Situation Awareness

Context has many definitions among different areas of
study. Dey [58] was one of the first to propose a context
definition from the perspective of expert systems. Ac-
cording to Dey, “context is any information that can be
used to characterise the situation of an entity. An entity
is a person, place, or object that is considered relevant
to the interaction between a user and an application, in-
cluding the user and application themselves” [58].

Dey’s definition of context, however, does not incor-
porate temporal properties. This is because, according
to Dey, the temporal aspects associated with the status
of an entity are part of an extended conceptualization
of context called situation. A situation describes a col-
lection of states of relevant entities, where each state
depicts those entities’ context in a given point in time.
In this sense, the term situation awareness could be un-
derstood as the act of being aware of the variations in an
entity’s context during a particular period of time.

To the merge of situation-awareness with emotional
evaluation we give the name of situation appraisal.
Here, we define situation appraisal as one’s capability
of not only being situation aware, but also being able to
make emotional evaluations and associations over per-
ceived situations. This is not to be confused with the ap-
praisal approach of emotion, in which emotional states
are usually defined by rule-based techniques on a set of
appraisal variables [12, 60]. Although the hippocam-
pus module is based on rules and event management,
the link between situations and emotional states is not
defined through rules, and is performed in the working
memory module, as we explain later in Section 4.2.

The hippocampus module of SAFEL is based on
Dey’s conceptualization of situation awareness for com-
puting. In other words, the hippocampus module is re-
sponsible for collecting, understanding and managing
the states of the robot over time, so that other modules of
SAFEL, such as the working memory, can make proper
use of this information at a higher level of abstraction.

4.1.2. Underlying Technology
Rule-based languages are based on the model of hu-
man cognitive process of conscious decision-making,

which is guided by the rules and facts learned during an
individual’s life [61]. This makes rule-based techniques
suitable for simulating the hippocampal functions in the
brain.

The hippocampus module of SAFEL is based on
JBoss Drools [59], which is a robust rule management
platform. Drools also provides CEP (Complex Event
Processing) management and greatly fulfils the design
requirements of the hippocampus module.

Drools has its own rule-based language, the DRL
(Drools Rule Language), consisting of a set of when-
then statements that can be applied to a set of facts.
Facts, in turn, are information representing immutable
entities of the world. For example, “John”, “Mike” and
“Mary” are instances of the fact “person”, which can
have “age” as an attribute. An example of a rule (in nat-
ural language) would be “when a person older than 60
years enters the bus, then apply ticket discount”. Code 1
shows a simple example of how this rule could be writ-
ten in DRL.

Drools’ inference engine (or rule engine), is responsi-
ble for evaluating facts against rules’ patterns through a
process known as pattern matching. When one or more
facts satisfy a rule’s condition (the when part), the in-
ference engine executes the actions defined in the rule’s
then part and we say that the rule has been fired. When
arule is fired, the execution of its actions may fire other
rules, leading to a cascade effect.

Drools also has an embedded CEP platform, which
allows for the detection and management of events.
Events are defined as records of significant changes in
the domain’s state at a given point in time [59]. Some
examples of events are “A person has entered the bus”,
“Mary has left the room”, etc. Besides facts, an event
can also consist of other events, when it is said to be a
complex event.

Because events have intrinsic temporal properties,
they can be compared with each other by means of
temporal operations. Drools implements all 13 tempo-
ral operators defined by Allen [62, 63]. Some exam-

CEENNT3

ples are “before”, “after”, “during”, “finished by”, etc.

Code 1: Example of Drools rule.

rule "Ticket Discount" // rule name
when // condition
person : Person(age > 60)
then // action
BusSystem.applyTicketDisccount () ;
6 end
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An example of rule using a temporal operation would
be “when a person enters the meeting room before the
meeting time, then ask to wait outside”.

While events represent punctual changes in the state
of affairs, such as “Mary has entered the room”, situa-
tions represent changes in the state of affairs that have
duration and can be either current (e.g., “Mary has been
in the room since 6AM”) or past (e.g. “Mary was in
the room for 5 hours”). SAFEL is inspired by SCENE’s
situation management modelling [64, 65] to implement
situation-awareness. According to SCENE’s conceptu-
alization, situations are “‘composite entities whose con-
stituents are other entities, their properties and the rela-
tions in which they are involved” [64].

In SCENE, general characteristics of situations are
defined by their situation type. For example, “John is in
the meeting room” and “Mary is in the living room” are
examples of instances of the situation type ‘“Person is in
the room”. A situation instance is activated when en-
tities whose properties satisfy the restrictions of the re-
spective situation type are detected. A situation instance
is said to be a current situation while these restrictions
are satisfied. The situation instance is deactivated when
its type restrictions are no longer satisfied, and it is said
to be a past situation. Situation duration is the period of
time between the activation and deactivation of a situa-
tion. Therefore, only inactive situations (i.e., past situa-
tions) can have a closed duration.

Our situation management differs from SCENE’s ap-
proach regarding the moment of situation detection, i.e.,
the moment when the system becomes aware of the ex-
istence of the situation. According to SCENE, situa-
tions are always detected at their activation time. How-
ever, SAFEL’s design requires certain types of situation
to be detectable at or after their deactivation time. The
reason for this design decision is explained next, in Sec-
tion 4.1.3.

4.1.3. Hippocampus Model

The hippocampus module receives two input types:
neutral stimulus and adrenaline signal. Neutral stim-
uli are real values representing environmental stimuli
detected by the robot’s sensors that, initially, have no
emotional meaning for the robot. On the other hand, the
adrenaline signal is a value in the range [0, 1] represent-
ing the system’s level of fear based on the detection of
aversive unconditioned stimulus (US).

Analogously to aversive US in the brain, an aversive
US for SAFEL is any stimulus that is known to be harm-
ful to the robot and, thus, can be hard-coded as aver-
sive US in the robot’s fear-learning system. In the same

sense that animals are born with knowledge about aver-
sive US, robots should also start their life-cycle with
a set of well-known aversive US (e.g., collision, low
light/visibility level, low battery, etc.), which are pre-
configured parameters of SAFEL.

In the complete architecture of SAFEL (Fig. 2),
the amygdala module is responsible for assessing the
emotional value of sensed stimuli and outputting an
adrenaline signal. The adrenaline informs the hip-
pocampus about the presence or not of aversive stimuli.
However, as previously mentioned, the amygdala mod-
ule has not yet been implemented in the current version
of SAFEL. To deal with the absence of the amygdala,
we simplify the process of adrenaline management by
setting it high whenever a pre-defined aversive stimulus
(i.e., an US) is detected, and setting it low otherwise.

This solution, though, is temporary and has the only
purpose of evaluating the hippocampus and working
memory modules. Thus, it is not intended to replace the
amygdala module. The amygdala is an important mod-
ule in SAFEL’s architecture, which performs essential
tasks other than managing adrenaline levels. For exam-
ple, the amygdala is also responsible for detecting and
memorizing new potential aversive stimuli that are not
US (i.e., are not pre-defined), which may have been neu-
tral in the past, but became dangerous in a currently new
environment.

Situation management in the hippocampus module is
based on the following definitions:

Definition 1. An event e; is a collection of all stimuli
detected by the robot’s sensors at time t, so that e, =
{57, 85, ... 5| n € N}, where s! is a normalized real value

. : . . . .
st € [0, 1] representing the intensity of stimulus of type i
detected at time t.

Definition 2. A situation S is composed of the sequence
of events occurring during its active period, so that
Sj = {eaj,eaj+1, ...,edjl aj < dj, [aj,dj] € [N,N]}, where
aj and d; are, respectively, the times of activation and
deactivation of situation j.

We have defined four situation types in the hippocam-
pus module: aversive, predictive, safe and unknown.
The rules under which these situations are instantiated
are defined in a DRL file and are constantly matched
against the current adrenaline signal and existing sit-
uations instances in Drools” memory. When informa-
tion in Drools’ memory satisfies the constraints of these
rules, new situations are instantiated, whose type de-
pends on which rule was executed.

Code 2 shows the rule responsible for instantiating
new aversive situations, whose conditions are defined in



the when block (lines 3 to 5). This rule is satisfied when
the last adrenaline signal received (line 3) has level
above a given threshold (line 4) and there is no aver-
sive situation currently active (line 5). If these condi-
tions are satisfied, the actions listed in the then block are
executed, which in this case is creating a new instance
of aversive situation and insert it into Drools’ memory
(line 7). The properties of events (e.g. Adrenaline) and
situations (e.g. AversiveSituation) are defined in Java
objects.

It is also possible to perform temporal operations be-
tween situations. Code 3 shows a snippet of the rule
responsible for instantiating predictive situations. Ob-
serve in the conditions of this rule, keywords such as
before and after (lines 5 and 6). These keywords repre-
sent temporal operations and allow creating conditions
based on the temporal order of situations’ activation and
deactivation.

The properties and constraints of each situation type
in the hippocampus can be summarized as follows:

. Aversive situation: An aversive situation indicates
the periods of time in which the system was (or is,
if it is a current situation) exposed to aversive stim-

Code 2: Drools rule for instantiating an aversive situation.

rule "Aversive Situation"

(UST O I

when
adrenaline : Adrenaline() over
window:length(1)
4 Adrenaline(this == adrenaline, level >=
adrThreshold)
5 not AversiveSituation()
6 then
7 insert (new AversiveSituation());
8 end
Code 3: Example of temporal operation.
I rule "Predictive Situation"
2  when
3 (...)
4 aversive : AversiveSituation ()
5 unknown : UnknownSituation(this before
aversive)
6 not (exists UnknownSituation(this after
unknown, this before aversive))
7 (...)
8 then
9 (...)
10 end

uli. It is activated when the adrenaline signal rises
above a given threshold (meaning that the robot has
detected an aversive stimulus), and is deactivated
when the adrenaline signal returns to normal lev-
els (meaning that the aversive stimulus is no longer
present).

. Predictive situation: Predictive situations are those
that precede aversive situations. Because they have
preceded an aversive situation once, if they reoc-
cur, it is probable that they will precede a sim-
ilar aversive situation again. By recognizing the
pattern of predictive situations, the robot increases
its chances to predict the imminent exposure to
aversive stimuli. Because predictive situations can
only be detected on the activation of the respective
aversive situation, i.e., after their own deactivation,
they are always past situations (see Section 4.1.2)
for the system.

Safe situation: Safe situations are those that do not
precede or co-occur with aversive or predictive sit-
uations. This means that the robot is not being ex-
posed to aversive stimuli at the current moment,
and has no expectations to be exposed to aversive
stimuli in the near future. The only way to ensure
that a given situation is safe is to look at the situa-
tions occurring right after it in order to confirm that
they are neither aversive nor predictive. Hence,
like predictive situations, safe situations can only
be detected when they are already past situations.

. Unknown situation: An unknown situation is any
situation that is not aversive, and cannot yet be con-
sidered safe or predictive (since these can only be
detected after their deactivation). Unknown situa-
tions can become either safe or predictive in the fu-
ture, depending on the events occurring in a given
time interval after their deactivation.

Fig. 3 shows an example of situations’ life-cycle over
time, where Fig. 3a shows the adrenaline signal over
time, and Fig. 3b, 3c and 3d show situations’ status
in the system at time to, ?13 and 714, respectively. In
Fig. 3b, for instance, situation S; has activation time
a; = t and deactivation time d; = s, situation S, has
activation time a, = f, and deactivation time d, = f,
and so on. Analogously, S| = [e,, €,, €, €, €], S2 =
[e,, €, €. €, € ], and so on.

Observe that situations can overlap each other. For
example, situation S, is activated while situation S is
active; situation S; is activated while situations S| and
S, are active, etc. Consequently, two or more situations
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Figure 3: Example of situations’ status over time. In Fig. (b), (c) and (d), the horizontal axis indicates the time step, and overlapping situations are
disposed vertically, for the sake of readability. (a) Behaviour of adrenaline signal over time. In this example, the adrenaline is below the pre-defined
threshold, and instantly goes above it when an aversive US is detected. (b) Status of situations’ type at time #1o. At this moment, all situations are
still considered unknown. (c) Status of situations’ type at time #13. At this moment, situation S| can no longer become a predictive or aversive
situation. As consequence, it leaves the status of unknown situation and becomes a safe situation. (d) Status of situations’ type at time #14. At this
moment an aversive US is detected and, consequently, adrenaline levels rise above the pre-defined threshold (see Fig. a). Because situation So is
the last unknown situation to happen before the elevation of the adrenaline signal, it becomes a predictive situation.

can contain the same event. For instance, event ey, be-
longs to situations S 1, 52,53 and S 4.

A new unknown situation is activated every Aa time
steps (Fig. 3b), where Aa is a parameter of SAFEL,
called situation detection delay, that defines the period
of time between the activation of a given situation and
the activation of its predecessor situation. Unknown sit-
uations can be either current or past. For instance, in
Fig. 3b, situations from S ; to S are past because they
have already finished by time #,(, while situations S7, S'g
and S are current because they are still occurring at
time #1o.

Unknown situations may become safe or predictive in
the future, but only if certain constraints are satisfied at
the current moment, otherwise they continue to be con-
sidered unknown. For instance, all situations detected
in Fig. 3b are still unknown, since nothing can be said
about them at time #;o. To be considered safe, a situation
must be past and be followed by at least two consecu-
tive past unknown situations. This is to ensure it will
never precede or co-occur with any predictive or aver-
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sive situation. To be considered predictive, a situation
must precede a peak in the adrenaline level. Consid-
ering that at moment ¢,y none of these conditions have
been matched, all situations are still unknown at that
moment.

At moment ¢3 in Fig. 3c, however, the conditions for
detecting safe situations are satisfied by the current sta-
tus of situation S ;. Attime ¢#;3, situation S is past and is
followed by a past situation (S's5) that, at this point, can
no longer become predictive. Thus, at time ¢,3, situation
S| leaves the status of unknown and becomes a safe sit-
uation. Similarly, the conditions for detecting predictive
situations are also satisfied by the current status of situ-
ation S at time 714 in Fig. 3d, when the adrenaline level
rises above the specified threshold (as seen in Fig. 3a).
Because S is the last past unknown situation before the
raise of adrenaline, it leaves the status of unknown situ-
ation and becomes a predictive situation.

Safe and predictive situations are immediately sent
to the working memory module at their detection time,
while unknown situations are sent at their deactivation



time. Consequently, every factually safe and predic-
tive situation is sent twice to the working memory: first
when it has just finished and is still unknown; and then
again a few time steps later, when the hippocampus is
able to determine whether it is actually safe or predic-
tive. In the example of Fig. 3, for instance, situation
S| is sent to the working memory at time #5 as unknown
and at time 73 as safe. Analogously, situation S is sent
to the working memory at time #;3 as unknown and at
time #,4 as predictive. The dual submission of the same
situation instance, but with different situation types, is
essential for the working memory to perform its task,
which is discussed in the next section.

4.2. Working Memory Module

The working memory is the place where emotional
memory (formed in the amygdala) and contextual mem-
ory (formed in the hippocampus) are fused to create
“emotional contextual memories”. The goal is to pro-
vide the robot with the capability to recover fear memo-
ries and predict an imminent unpleasant event by expe-
riencing again a situation that preceded that unpleasant
event in the past.

In this section we discuss the working memory mod-
ule regarding the main algorithm behind its associa-
tive learning (Section 4.2.1) and its modelling (Section
4.2.2).

4.2.1. Underlying Technology

The working memory’s associative learning is im-
plemented using MATLAB’s binary classification tree
[66], which is used to classify situation patterns into
safe or predictive. In a binary classification tree, each
node corresponds to a binary predicate on one attribute,
where one branch from the node represents positive in-
stances of the predicate and the other branch represents
negative instances. Each leaf node is labelled by a class.
To predict the type of an input situation pattern, a path
to a leaf from the root is found depending on the value
of the predicate at each node that is visited.

MATLAB creates a classification tree by first
analysing the training dataset and examining all possi-
ble binary splits on every attribute. Then, the first node
is split according to its impurity gain, which is calcu-
lated using the Gini Diversity Index (GDI), also known
as Gini Impurity Criterion [67]. The GDI of a node is

given by
1= PG, )

where p(i) is the proportion of cases of class j at the re-
spective node. A node with just one class (a pure node)

has Gini index 0; otherwise the Gini index is positive.
To split the node, MATLAB selects the attribute vari-
able that maximizes the impurity gain (i.e., that maxi-
mizes the purity of the node). This process is recursively
repeated for the child nodes, stopping when it finds a
pure node or when it reaches a stopping criteria, such as
a maximum number of splits or maximum tree depth.

The following design reasons led us to adopt the bi-
nary classification tree:

. Interpretable: classification trees are white box al-
gorithms, thus allowing one to easily interpret the
logic behind the robot’s learning and emotional re-
sponse to stimuli.

Insensitive to outliers: classification trees are built
by dynamically selecting the most informative fea-
tures, and ignoring information that is irrelevant
for the predictions. This is an essential feature
for the working memory module, because in most
cases only a subset of the robot’s sensors will pro-
vide valuable information about the pattern of a
specific situation. For instance, a robot may re-
quire a camera, face recognition algorithms and
sonar sensors to detect that a person is nearby, but
many other sensor information (e.g., internal tem-
perature, accelerometer and battery level) would
not give valuable information in this case. It is es-
sential that the classifier of the working memory
module be able to ignore information that is irrele-
vant for characterizing the pattern of predictive sit-
uations.

. Fast training and classification: classification tree
is an algorithm well known by its fast training and
classification processes [68]. This is important be-
cause SAFEL’s emotional learning greatly relies
on constantly retraining the classifier of the work-
ing memory module. The slower the re-training
and classification processes are, the more time the
robot would take to present an emotional reaction.

. Non-parametric: classification trees are non-
parametric algorithms, meaning that they do not
require specifying parameters that depend on the
distribution of data. One of SAFEL’s goals is to be
of general purpose. To be applicable to a variety
of environmental characteristics, SAFEL’s learn-
ing must be independent of data shape.

4.2.2. Working Memory Model
In the working memory module, situation instances
coming from the hippocampus module pass through a



feature extraction process in order to generate com-
pacted versions of situational information. This phase
consists of extracting relevant information that charac-
terizes the fluctuation pattern of each stimulus over the
situations’ duration.

From Definitions 1 and 2, and supposing that a; = 1
and d; = m, and that the robot has n sensory inputs, we
have that:
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From Eq. 2 we can say that

S] = [sla525""sn]’ (3)

where s; = [s/, ..., s”]7. Then, the new situation infor-

mation § ; generated from S ; is given by

S = [515 o0y Sns V1 wees Vs M woes s “4)

where s;, y; and 7; are, respectively, the mean, skewness
and number of local maxima of s; (Eq. 3). The mean
value provides the average intensity of each sensed
stimulus along the situation’s duration. The skewness
provides the approximate time interval when each stim-
ulus was more intense during the respective situation.
Finally, the number of local maxima provides the detec-
tion frequency of each stimulus during the situation.

The main goal of performing this feature extraction
procedure is to create approximated representations of
situation instances that aid on the generalization aspect,
thus preventing overfitting of situation patterns. The
new piece of information generated by this process is
analogous to the unitary representation of context cre-
ated in the brain, discussed in Section 3.2.

This feature extraction phase is also useful for data
compression, since it can reduce the volume of infor-
mation about situation j from a matrix S ; of size n X m
to a vector § ; of size 3n. This is especially efficient
when m > n, which is in fact the most common case,
as the number m of time steps in a situation is usually
much larger than the number 7 of sensory inputs a robot
may offer.

As mentioned in Section 4.1, every factually safe and
predictive situation is sent in two time-steps from the
hippocampus to the working memory: first when it is
still unknown and later when it is either factually safe
or predictive. Therefore, at time d; (i.e., when situa-
tion j has just been deactivated), S ; will be sent as an
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unknown situation to the working memory, where it is
transformed into S ; and submitted to the binary tree for
classification. The tree will classify that situation into
safe or predictive based on past situation experiences
of the robot. Then, at time t,, where t, > d;, situa-
tion information S ; will be sent to the working memory
once again, but this time labelled as either safe of pre-
dictive. The generated situation pattern S ’] and its type
(safe or predictive) will now be used for retraining the
classification tree, providing it with one more situation
experience where to base its future predictions.

For example, in Fig. 3b, situation §; is sent to
the working memory as an unknown situation at time
d, = ts. Then, the working memory compacts S into
§'1, which is later classified as either safe or predictive.
At time t;3 in Fig. 3c, the same situation S is sub-
mitted again to the working memory, but now as a safe
situation. This time, S ’1 is used for retraining the classi-
fication tree, thus reinforcing that the pattern of S| rep-
resents a safe situation and indicates that no aversive
stimulus is expected to occur in the near future.

Similarly, situation S¢ is sent as unknown for pre-
diction to the working memory at time dy = f;3 (Fig.
3c). If the robot has experienced other situations that are
similar to S in the past, then the binary tree will very
likely classify S § as a predictive situation, meaning that
an aversive stimulus is about to occur. Knowing at time
t13 that something “bad” is about to occur is advanta-
geous, as the system can use this information to prevent
or minimize the outcome of the aversive stimulus occur-
ring at time 74, if possible. Then at time ¢4 (Fig. 3d),
when the aversive stimulus occurs (making it possible to
affirm that S is indeed a predictive situation), situation
S is sent again to the working memory and is used for
retraining the classification tree to recognize the pattern
of §§ as a predictive situation.

The dataset used to train the decision tree starts
empty, with no knowledge about the current environ-
ment. As the robot explores the environment and expe-
riences new aversive situations, the dataset grows and
the tree is retrained. Therefore, the robot’s capability
to predict imminent aversive events improves with ex-
perience, as it explores the environment. In addition,
because the tree is constantly retrained, the robot can
adapt itself even when it is moved from one environ-
ment to another. If a particular situation that was safe
in a previous environment is now predictive in the new
environment, the classification tree will be constantly
retrained in this new environment to recognize that sit-
uation as predictive, consequently gradually forgetting
the previous association of that situation with safety.



5. Experiments with a Humanoid Robot

In terms of predictive performance, we understand
that comparing BEL [10] and SAFEL with focus on
temporal reasoning would be unfair, because unlike
SAFEL, BEL is not designed to process temporal se-
quences of events. Although BEL has similarities with
SAFEL, these are mostly conceptual, such as being in-
spired by real brain mechanisms. Instead, we focus on
experiments showing the efficacy of SAFEL for predict-
ing aversive events based on temporal context.

The experiments have been conducted using a NAO
humanoid robot, model T14 (Fig. 4). NAO is one of
the most widely used robots in the HRI field of research
[69]. By using NAO, we hope to facilitate the reproduc-
tion of our work, as well as the implementation of future
comparative studies.

In addition, by using a physical robot in this experi-
ment, we aim at exposing SAFEL to noises and reading
failures characteristic of real robot sensors. In a virtu-
ally simulated environment, the quality of sensor read-
ing could be greatly improved in comparison to real sen-
sors, providing smoother data and possibly facilitating
SAFEL’s predictions. As the goal of SAFEL is to be of
practical use in real world scenarios, we decided to test
it with data collected through real robot sensors. For
this reason, all sensor noises and detection failures were
preserved during this experiment, so to analyse how it
would affect SAFEL’s prediction performance.

We have used four types of sensor readings to repre-
sent NAO’s perception of environmental stimuli, which
are:

. 51: light level,
. s>: number of human faces detected,

. s3: identification of NAOmarks, which are land-
mark images with specific patterns that NAO
robots can recognize and identify (Fig. 5),

. s4: sound detection confidence, which is a number
in the range [0,1] depicting NAO’s confidence that
a particular detected sound is real.

In this experiment, the aversive stimulus is repre-
sented by darkness, which is an analogy to the natural
fear and stress that most animals experience when they
become unable to see. Hence, before running the ex-
periment, SAFEL was configured to increase adrenaline
levels whenever NAO detected low light levels. The re-
maining environmental stimuli (i.e., human faces, NAO-
marks and sound detection) were initially neutral.
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We highlight that this experiment focuses on ob-
serving the robot’s emotional response rather than its
behavioural response. In fear conditioning, the be-
havioural response of an individual is a reflex of its emo-
tional response. The emotional response, in turn, is the
most important feedback in order to verify that the in-
dividual is under fear, as well as to evaluate the suc-
cess of fear learning. Thus, in this experiment we focus
on studying the robot’s emotional response to different
stimulation in order to verify that it can in fact learn and
predict aversive events based on situational information.
In future work (Section 8), we plan to perform a robust
case study which will evaluate the behavioural response
of the robot, as well as how it affects the robot success
into accomplishing a given task.

In order to create a controlled test environment,
where we could analyse the influence of the same set

Figure 4: The NAO robot used in the experiment.
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Figure 5: Examples of NAOmark.



of situations under different parameter settings, we have
separated the experiment into three phases. First we col-
lected data, by repeatedly presenting the above-listed
stimuli to NAO and then storing NAO’s sensor read-
ings. In the second phase, we assembled the collected
data in a specific time line, creating a dataset that was
reproduced for different parameters and configurations.
Lastly, we ran SAFEL on each dataset independently,
during which the instances of the datasets were pre-
sented sequentially to SAFEL, as if it was being exe-
cuted in the robot at real time. In this section, we de-
scribe the first two phases in detail. The third phase is
addressed in Section 6.

5.1. Data Collection

In SAFEL, a situation pattern is the set of main tem-
poral aspects (such as average time delay and temporal
sequence among stimuli) that characterizes a given sit-
uation. Hence, situation instance is the instantiation of
a situation pattern, and must have all the properties that

a) NAOmark followed by
face followed by darkness b) Face followed by NAOmark
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Figure 6: Example of situation instances for each of the six situation
patterns induced in the experiment. Vertical axis depicts NAO’s sen-
sor input after normalization. Horizontal axis depicts the time line
counted in numbers of events.
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characterize that pattern (e.g., a specific order of stimu-
lus detection).

We have collected data respecting six distinct situa-
tion patterns. Fig. 6 shows examples of NAO’s sensor
readings for each of the six situation patterns induced
in the experiment. For example, the pattern of the sit-
uation observed in Fig. 6b is characterized by the de-
tection of a human face followed by the detection of a
NAOmark. To collect data of situation instances with
this pattern, we first presented a human face to the robot
for about five seconds, after which we hid this face and
presented a NAOmark to the robot for about five sec-
onds. This procedure has been performed at good light
conditions, so the robot could easily detect both human
faces and NAOmarks. The same procedure was then in-
dependently repeated several times in order to collect
many different instances of this same situation pattern.

Analogously, to collect instances like the one seen in
Fig. 6c, we presented the NAOmark and a human face
at the same time to the robot at good light conditions
for about five seconds, and then hid both. Again, we
repeated this procedure several times in order to col-
lect many different instances of this same pattern. The
same sequence of steps was performed for collecting in-
stances of the remaining situation patterns in Fig. 6.

Fig. 6a depicts an example of predictive situation
followed by an aversive stimulus, which in this case

Stimuli
Presentation D
4 I
]
Aversive
R — event

N

Figure 7: Procedure for presenting the aversive event to the robot. (a)
Lights are kept on, while a specific NAOmark is presented to NAO for
about 5 seconds. (2) With lights still on, the NAOmark is hidden, and
then a human face is presented to the robot for about 5 seconds. (3)
Both human face and NAOmark are hidden. Light is turned off.
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Figure 8: Dataset generation process. First, we individually collected a number of situation instances for each of the 6 situation patterns induced
in this experiment. Then, for each pattern in the chosen sequence of situation patterns, we randomly select a situation instance of that pattern and
concatenate it to the dataset. This procedure is repeated 10 times, so to generate 10 distinct datasets with the same temporal order of situation

patterns.

is darkness. The predictive situation is characterized
by the presentation of the NAOmark at good light con-
ditions, followed by the presentation of a human face
(demonstrated in Fig. 7). Because this pattern is always
followed by the presentation of an aversive stimulus, it
is then considered to be the pattern of a predictive situa-
tion. On the other hand, all the other patterns (Fig. 6b to
6f) represent safe situations, because they never precede
any aversive event.

Observe that some situation patterns, such as the ones
in Fig. 6b and 6c, are similar to the pattern of the pre-
dictive situation in Fig. 6a. This is because we desire
to verify SAFEL’s capability to effectively differentiate
safe situations from predictive situations, even when the
patterns of these situations are similar.

Although exposition duration and delay of each stim-
ulus was similar among data collections, it was not rig-
orously timed, as it is part of the experiment to evalu-
ate SAFEL’s generalisation capability. Besides, in real
world cases, situation instances of the same situation
pattern may have similar temporal delays, but rarely
equal.
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5.2. Dataset Generation

Fig. 8 demonstrates the process for generating the
datasets used in this experiment. We have generated
10 different datasets, which are composed of the situ-
ation instances collected through the process explained
in Section 5.1. The individually collected situation in-
stances were arranged in the datasets according to a spe-
cific temporal sequence of situation patterns, which is
identical for all the 10 datasets.

To generate a dataset, we randomly selected a situa-
tion instance matching the first situation pattern of the
chosen temporal sequence and concatenated this situ-
ation instance to the dataset. Then we repeated these
steps for all the remaining situation patterns in the cho-
sen temporal sequence (Fig. 8). Because all sensor
noise and failures have been preserved during data col-
lection, a few situation instances may present incom-
plete of fragmented data. To prevent the temporal po-
sitioning of a problematic situation instance influencing
the result, we generated 10 datasets in total using the
above-mentioned method.

Only situation instances with no stimulus presenta-
tion (with the pattern of Fig. 6f) were reused in the same
dataset. Since they are basically the absence of stimula-



tion, situation instances of this pattern are highly similar
to each other, and so they can be reused without affect-
ing the integrity of the experiment. Situation instances
of the remaining patterns (Fig. 6a to 6e) were not reused
in the same dataset.

Each dataset is equivalent to about 4.5 hours testing
and contains 28 aversive situations (and, consequently,
28 predictive situations), which are separated by inter-
vals varying from 2 to 25 minutes representing the set of
safe situations, which may comprise any of the situation
patterns from Fig. 6b to 6f.

5.3. Validation Methodology

The generated datasets have been evaluated accord-
ing to three factors. The first factor evaluates SAFEL’s
performance under different pre-defined situation dura-
tions. SAFEL has been analysed for three situation du-
rations: 20 seconds (Aa = 4 sec), 30 seconds (Aa = 6
sec) and 40 seconds (Aa = 8 sec).

The second factor evaluates SAFEL’s capability to
ignore sensory inputs that are not relevant for predict-
ing the occurrence of aversive stimuli. In this regard,
we evaluated SAFEL on two versions of each generated
dataset, one with and another without sound sensor in-
put. Since there are no particular patterns in the sound
information detected by NAO, it should have small in-
fluence in the final prediction. Thus, SAFEL’s outcome
should be similar for both dataset versions.

Finally, the third factor evaluates the impact of differ-
ent values of inter stimulus interval (ISI) on SAFEL’s
performance. Inter stimulus interval, is the time inter-
val between the offset of the predictive situation and the
onset of the aversive event. For example, in this experi-
ment, the ISI is the time interval starting right after the
presentation of the NAOmark followed by a human face,
and ending right before increasing the darkness level of
the environment.

We have tested three values of ISI: 5, 10 and 15
seconds. The goal of testing different ISIs is to anal-
yse whether the temporal position of relevant events in
the predictive situation can influence SAFEL’s perfor-
mance.

Considering all dataset generations (10 datasets, 3
ISIs and 2 sets of stimuli input, with and without sound
readings) and the 3 situation durations tested, this ex-
periment contains 180 dataset samples in total.

6. Results

All 180 generated datasets were tested indepen-
dently, and their instances were presented sequentially
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to SAFEL, as if it was being executed in the robot at
real time. For each run, we started measuring predictive
performance after the classifier had processed the initial
20% of the respective dataset. This decision was made
because we assume that the classifier would not have
enough samples from each situation type (safe and pre-
dictive) to create a differentiation among them without
learning the initial 20% of the datasets.

We have used the f-measure as performance metric
to evaluate SAFEL’s efficacy for classifying unknown
situations into safe or predictive. The f-measure, also
known as f-score, is the harmonic mean between preci-
sion and recall.

Fig. 9 shows SAFEL’s performance regarding the
three factors mentioned in Section 5.3, which are (1)
situation duration, (2) input set and (3) ISIs. The gen-
erated dataset samples have been divided into groups
within each factor that reflect the features under which
they are being evaluated.

The first factor evaluates the influence of different
values of the situation duration parameter on the clas-
sification performance. It has been divided into three
groups of 60 samples (Fig. 9a). The first group com-
prises all dataset samples with situation duration equals
20 seconds, the second group comprises all samples
with situation duration equals 30 seconds, and the third
group comprises all samples with situation duration
equals 40 seconds.

The second factor evaluates SAFEL’s capability to ig-

$D = 20sec | Hh s
SD = 30sec HH -
SD = 40sec l-}* -
wj/o sound | HH I
w/ sound | i -
ISI = 5 sec HH 3
ISI =10 sec l-|-| I
ISI = 15 sec HH -

0 01 02 03 04 05 06 07 08 09 1

Classification Performance

Figure 9: Average classification performance (f-measure) among
dataset samples per group, where error bars show the 95% confidence
interval of the respective group. Each graphic shows the results for
one of the evaluated factors, which are (a) situation duration (SD), (b)
input set (with or without sound input) and (c) ISIL.



nore sensory information that is irrelevant for the pre-
diction. This factor is divided into two groups of 90
samples (Fig. 9b). The first group comprises all dataset
samples without input from the sound sensor and the
second group comprises all dataset samples with input
from the sound sensor.

The third factor evaluates the influence of different
values of ISI on the classification performance. It is di-
vided into three groups of 60 samples (Fig. 9c). The
first group contains all datasets with Ap = 5 seconds,
the second group contains all datasets with Ap = 10
seconds, and the third group contains all datasets with
Ap = 15 seconds.

In order to study the effects of these three factors
on SAFEL’s classification performance, we have used
the factorial analysis of variance (factorial ANOVA),
where the null hypothesis states that there is no statis-
tically significant difference in the classification perfor-
mance among groups within a given factor, and is re-
jected when p < 0.05.

Through the ANOVA test, we have analysed the sig-
nificance of the main effects (i.e., the three factors in-
dependently) and of the two-way interactions between
factors on the classification performance. The ANOVA
test has not found statistically significant interaction be-
tween factors. The test also found no statistically sig-
nificant difference between groups within the first and
second factors, which are situation duration and input
set, respectively.

This result indicates that there is no significant dif-
ference in the classification performance when varying
the situation duration from 20 to 40 seconds, which re-
inforces the robustness of SAFEL for situation predic-
tion. It also indicates that there is no significant dif-
ference in classification performance between datasets
with and without sound sensor input. This demonstrates
that SAFEL managed to mostly ignore sound informa-
tion, as expected. Because sound input had no particular
patterns regarding the presentation of aversive stimuli,
if SAFEL had significantly considered it for classifying
situations into safe or predictive, the second group of
datasets in Fig. 9b could present much lower predictive
performance.

On the other hand, the ANOVA test has found sta-
tistically significant difference in the classification per-
formance among groups within the third factor (p =
0.0001), which evaluates the variation of the ISI. How-
ever, even though the ANOVA test has found statisti-
cally significant difference among groups, we can ob-
serve through the confidence intervals shown in Fig. 9¢c
that such difference is minimal. We can assert with 95%
confidence level that the (true) performance mean of the
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three groups in Fig. 9c are, respectively, within the in-
tervals [0.66, 0.7], [0.68, 0.72] and [0.62, 0.66]. The
closeness of the confidence intervals indicates that, al-
though the ISI can influence the classification perfor-
mance, such effect is not substantial.

7. Discussion

In this section, we investigate how the positioning
of the events of interest in the predictive situation can
influence the classification performance. This has po-
tentially led to the result observed in Fig. 9c. We
also discuss SAFEL’s performance over time, aiming
at analysing how the prediction of aversive events im-
proves as the robot enriches its knowledge about the
surrounding environment.

7.1. Influence of the Events of Interest

Events of interest are those events that persistently
precede aversive events, but are consistently absent in
safe situations. Hence, events of interest are the set of
events that can provide the most valuable information to
differentiate a safe situation from a predictive situation.
The proper detection and management of this informa-
tion is, therefore, essential for consistently training the
classification tree.

Fig. 10 demonstrates how a particular configuration
of IST and situation duration can affect the classification
performance. In the performed experiment, the events
of interest for predicting the aversive event are the pre-
sentation of a NAOmark for about 5 seconds (red lines
in Fig. 10) followed by the presentation of a human face
for about 5 seconds (blue lines in Fig. 10). The ISI is
represented by dotted black lines, which may have 5,
10 or 15 seconds (Fig. 10a, 10b and 10c, respectively).
Green lines represent the three tested durations of pre-
dictive situations, which are 20, 30 and 40 seconds.

Observe in Fig. 10 that predictive situations always
contain all events of interest, except when Ap = 15
seconds and the situation duration is 20 seconds long
(Fig. 10c). In this case, the first 5 seconds of the events
of interest (i.e., the presentation of the NAOmark) are
left out of the predictive situation. As consequence, an
incorrect pattern of predictive situation is used to train
the classification tree. Instead of NAOmark followed by
face recognition (Fig. 6a), the tree is trained to recog-
nized situations with face recognition only (Fig. 6d) as
predictive. The problem is aggravated by the fact that
some safe situations have the same pattern. As conse-
quence, the tree is trained with inconsistent information,
in which the same situation pattern is sometimes pre-
sented as safe and sometimes presented as predictive.
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Figure 10: Time positioning of the events of interest during predic-
tive situations. The diagram shows the possible scenarios considering
all combinations of situation duration and ISI used in the experiment.
Green lines depict the different situation durations (20, 30 and 40 sec-
onds). The different values of ISI are represented by black dotted
lines, which are (a) 5 seconds, (b) 10 seconds and (c¢) 15 seconds.
Events of interest are depicted by red and blue lines, which represent
the presentation of NAOmark and human face to the robot, respec-
tively.

This could explain the difference in classification per-
formance observed in Fig. 9c.

Fig. 11 shows the average performance for all eval-
uated datasets without sound input. Note that SAFEL
has consistently demonstrated better performance for
datasets where the situation duration is 20 seconds, ex-
cept when Ap = 15 seconds, case in which we can ob-
serve the largest performance decay of the graphic. The
result of Fig. 11 supports the explanation given above,
indicating that the problem demonstrated by Fig. 10c is
indeed the main reason for the discrepancy observed in
Fig. 9c.

In addition, the higher performance obtained when
situation duration equals 20 seconds (in comparison
with the other situation durations tested) shows that
keeping the length of the situation duration as close as
possible to the length of the events of interest leads to
better results (as long as it manages to cover all the
events of interest). One can speculate that if the situ-
ation duration is too large, the classifier may start con-
sidering noise from other events (having happened long
before the aversive event) that are not part of the events
of interest.

In conclusion, the situation duration should not be too
short, neither too large. The ideal scenario is to have the
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Figure 11: Mean classification performance (f-measure) among

datasets generated without sound information, grouped by their sit-
uation duration and ISI.

situation duration just large enough to cover the events
of interest. A way of tackling this problem is to create a
mechanism that allows SAFEL to automatically adjust
the duration of situations, which is an improvement that
we will perform in future work (Section 8).

7.2. Performance Over Time

Through SAFEL, the robot learns continuously dur-
ing its life cycle, thus improving its predictive capabil-
ities with each newly detected stimulus. Fig. 12 shows
the classification outcome and its performance over time
for two of the 180 datasets tested with SAFEL. Fig. 12a
depicts the most common result among the evaluated
datasets and Fig. 12b depicts the worst-case scenario.
We have generated similar graphics for each of the 180
datasets evaluated, which are available online!.

Since situations can partially overlap each other (as
seen in Fig. 3), part of the events of interest for detecting
an aversive event may be in more than one situation.
Thus, it is reasonable that the working memory starts
to predict an aversive event a few situations before the
actual predictive situation. To take into account such
cases, we have considered as true positive any situation
classified as predictive that is in a range of five situations
before the actual predictive situation.

Observe in Fig. 12a that performance increases as the
number of processed situations increases. Classifica-
tion recall is low for the first third of the detected situa-
tions because SAFEL did not predict any of the aversive
events happening during that period. Recall improved

Uhttps://www.cs.kent.ac.uk/people/rpg/cr519/safel
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Figure 12: SAFEL’s performance over time for two of the 180
datasets. Figure (a) and (b) show four graphics each. The first graphic
presents the result of SAFEL’s classification: read-line peaks indicate
the occurrence of aversive events over time and blue-line peaks indi-
cate SAFEL’s predictions for aversive events. The last three graphics
show the f-measure, precision and recall of SAFEL’s classification
over time, respectively. These graphics show two types of over-time
measurement: the first, depicted by the blue line, is the cumulative
performance over the integral test; the second, depicted by the bars,
is a more “instantaneous” over-time measurement. In this case, the
performance is cumulative only in the interval comprised by the re-
spective bar. About 20% of each dataset was used exclusively for
training, so the performance values shown in the last three graphics
contemplate only the remaining 80% of the respective dataset.
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for the second third of the detected situations, but pre-
cision was affected because SAFEL misclassified a few
safe situations during that period. However, towards the
end, both precision and recall improved as a result of
SAFEL correctly classifying most situations in the final
third of the dataset.

This demonstrates that SAFEL’s predictions get more
accurate over time. The classification tree starts empty,
with no knowledge about the current environment,
which explains the low predictive performance in the
beginning of the dataset. As the robot experiences dif-
ferent situations, the tree is fed with information about
the environment and becomes able to provide better pre-
dictions. The more experience the robot gains about the
environment, the higher the accuracy of SAFEL’s pre-
dictions.

The learning process described above is ubiquitous in
nature. For example, most animals that have never seen
or touched fire before could, by curiosity, naively try to
interact with it. After touching it for the first or sec-
ond time, they would be afraid of fire and would avoid
touching it in the future. However, it is important to no-
tice that “being afraid” of fire is only possible after the
animal acquires the knowledge that fire can be harmful.
And the more experiences the animal has with fire, the
bigger its confidence that fire is indeed dangerous.

This learning pattern, in which prediction accuracy
improves over time, is reflected in the majority of the ex-
periments that we have performed with SAFEL, and the
speed with which performance improves varies among
datasets. The exception is the case described in Section
7.1, in which the classification tree is fed with incorrect
patterns of predictive situations.

Fig. 12b shows an example of the performance over
time when predictive situations happen to miss part of
the events of interest (in our case, when the situation
duration is 20 seconds and the ISI is 15 seconds). Fig.
12b shows a slow and modest performance improve-
ment over time, which decays after 2000 situations. In
addition, classification precision is poor from the begin-
ning to the end of the experiment due to the large num-
ber of safe situations classified as predictive. As previ-
ously mentioned, this is because the tree is being trained
with inconsistent information, where the same situation
pattern is sometimes presented as safe and sometimes
presented as predictive. Therefore, in this case, the clas-
sification tree has no basis for providing an accurate pre-
diction.

7.3. Final Considerations

The experiments have demonstrated that, as long as
all events of interest are captured by the predictive sit-



uations, the actual duration of these situations, as well
as their ISI, do not meaningfully influence the classifi-
cation performance. This means that SAFEL is capable
of adapting to different temporal characteristics with-
out performance decay. In addition, Fig. 9 shows that,
although all sensor noises and detection failures have
been preserved, SAFEL was capable of predicting aver-
sive events based on situational information with 67%
of classification performance (f-measure) on average.

8. Conclusion

In this paper we have proposed SAFEL, a situation-
aware computational model capable of learning and
predicting threatening situations through a fear-
conditioning-like procedure. SAFEL is based on the
fear-learning model of the human brain. Experiments
with a NAO humanoid robot have been performed,
which aimed at evaluating SAFEL regarding its capa-
bility to:

. identify events’ temporal order;

identify and differentiate patterns of situations;

associate a particular situation pattern with the im-
minent occurrence of an aversive event;

. ignore environmental stimuli that are irrelevant for
predicting aversive events; and

. adapt to varied temporal characteristics, such as
different situation durations.

Experiment results were positive in all evaluated
aspects, corroborating the potential of artificial fear-
learning models when combined with concepts of situa-
tion awareness to improve a robot’s adaptive behaviour.

Future work involves expanding SAFEL with addi-
tional modules. As mentioned in Section 4, the work
discussed here implements part of a larger architec-
ture [31], which includes an amygdala module in ad-
dition to the hippocampus and working memory. Next,
we will implement an amygdala module, which would
be responsible for accessing the emotional significance
of stimuli (i.e., whether it is aversive). The amygdala
module will then create associations between individ-
ual stimuli and signal its fear perception to other brain
areas, such as the hippocampus.

We will also improve the existing hippocampus mod-
ule. As mentioned in Section 7.1, the duration of situa-
tions may affect the classification performance if it is so
short that part of the events of interest are left out of the
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active period of predictive situations. In the same sense,
very large situation durations may also lead the working
memory to start considering events that are actually ir-
relevant for predicting aversive events. This could lead
to low classification performance.

To address this issue, we will extend the current ver-
sion of SAFEL by implementing either a search mech-
anism [70] or an evolutionary robotics approach [71]
that would automatically adjust the duration of situa-
tions based on the values that yielded best classification
performance in the past. This would reduce the set of
pre-configured parameters of the system and consider-
ably improve the prediction performance.

In addition, we expect to increase the believability of
the robot’s response by tuning the misclassification cost
of predictive situations in the working memory mod-
ule. Most animals that are capable to fear have evolved
to overestimate danger, as the cost of underestimating
a danger is usually much higher than overestimating it
[2]. The same rule applies to real companion robots,
since they inhabit the same world as us. In order to
make SAFEL’s fear responses more biologically plau-
sible, we intend to mimic nature’s tendency to overesti-
mate danger, by increasing the misclassification cost of
predictive situations in the working memory.

Finally, the experiments performed so far have evalu-
ated SAFEL in relation to its main goal of simulating
fear learning and predicting aversive events based on
situational information. However, there are other as-
pects of SAFEL that we will also evaluate in further
experiments. These include, but are not restricted to,
SAFEL’s capability to: associate multiple situation pat-
terns with the same aversive event, associate multiple
types of aversive events, and identify not only stimuli
temporal order, but also intensity.

We will also perform a robust case study, in which
the robot’s success in accomplishing a complex task will
greatly depend on its emotional learning skills, as well
as its capability to predict threats and adapt to environ-
mental changes.
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