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Abstract 

 

This paper presents a method for the multimode monitoring of combustion stability under 

different oxy-gas fired conditions based on flame imaging, principal component analysis and 

kernel support vector machine (PCA-KSVM) techniques. The images of oxy-gas flames are 

segmented into premixed and diffused regions through Watershed Transform method. The 

weighted color and texture features of the diffused and premixed regions are extracted and 

projected into two subspaces using the PCA to reduce the data dimensions and noises. The 

multi-class KSVM model is finally built based on the flame features in the principal component 

subspace to identify the operation condition. Two classic multivariate statistic indices, i.e. 

Hotelling’s T2 and squared prediction error (SPE), are used to assess the normal and abnormal 

states for the corresponding operation condition. The experimental results obtained on a lab-

scale oxy-gas rig show that the weighted color and texture features of the defined diffused and 

premixed regions are effective for detecting the combustion state and that the proposed PCA-

KSVM model is feasible and effective to monitor a combustion process under variable 

operation conditions. 

 

Keywords: Combustion stability, Flame imaging, Kernel support vector machine, Principal 

components analysis, Multimode process monitoring 

 

1. Introduction 

	

The monitoring and diagnostics of combustion stability in combustion systems such as fossil-

fuel fired boilers, gas turbines and combustion engines are required to maintain the combustion 

efficiency, low pollutant emissions and the system safety, particularly under variable operation 
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conditions (Huang and Yang, 2009; Candel, 2002). This has increasingly become crucial due 

to the recent trend of using low-quality fuels, fuel blends, biomass and oxy-fuels, which often 

cause unstable flames and thus many combustion problems including low combustion 

efficiency and high pollutant emissions (e.g., NOx, SO2) (Huang and Yang, 2009). The 

combustion stability is a broad perception largely related to the quality of flames and depends 

on many factors including the burner structure, fuel types, air-to-fuel ratio, and the balance 

between the velocities of flame and the ignitability of fuel, etc. (Huang and Yang, 2009; Sun 

et al., 2013). Significant effort has been made to develop monitoring and diagnostic techniques 

to assess the quality of flames theoretically and experimentally and hence the performance of 

the combustion process (Ballester and García-Armingol, 2010). Among those, soft-computing 

incorporating flame imaging and image processing techniques have attracted an increasing 

attention for both laboratorial and industrial applications in recent years.  

 

In general, the imaging and soft-computing based combustion process monitoring has two main 

steps, i.e., flame imaging and characterization, and the state monitoring (normal or abnormal). 

Previous studies on flame characterization have laid the foundation for the combustion process 

monitoring (Qiu et al., 2011; Huang and Zhang, 2008). For example, Qiu et al. (2011) used 

watershed transformation to segment the regions of interest in coal-fired flame images, which 

can be very useful for the flame characterization. Huang and Zhang (2008) analyzed the color 

features of diffused and premixed methane flames based on the RGB (Red, Green and Blue) 

and HSV (Hue, Saturation, Value) color image models. A combination of flame imaging and 

soft-computing techniques has also been used for combustion monitoring (González-

Cencerrado et al., 2015; Li et al., 2012; Fleury et al., 2013; Chen et al., 2011; Chen et al., 2013; 

Wang and Ren, 2014; Sun et al., 2015). For example, Li et al. (2012) developed flame image-

based burning state recognition systems (i.e., over burning, under burning and normal burning) 
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of a rotary kiln using heterogeneous features, and fuzzy integral and a segmentation-free 

approach used for extracting flame features. Wang and Ren (2014) studied the texture features 

of flame images and developed a generalized learning vector neural network model to monitor 

the combustion state of a rolling burner. Sun et al. (2013; 2015) suggested a methodology for 

diagnosing abnormal conditions of the combustion process through direct flame imaging and 

kernel PCA. A universal index derived from the statistical analysis of flame images was 

proposed to assess the stability of flame in terms of its color, geometry and luminance. Whilst 

the above work has proved the feasibility of combining the flame imaging and soft-computing 

techniques on combustion process monitoring but most of them are considered for detecting 

the process under an individual operation condition, (i.e., single-mode process). The main 

problem of the single-mode monitoring methods is that they are based on an assumption that 

the process is operated under a consistent condition which makes them invalid if the operation 

changes.  

 

In practice, however, modern combustion systems often operate under variable conditions (i.e., 

multimode process) so as to meet demands for fuel availability and operation feasibility (Dunia 

et al., 2012; Van den Kerkhof et al., 2012). The occurrence of such operation changes is part 

of the normal process behaviors while single-mode monitoring methods are incapable of 

categorizing these changes. In other word, the existing single-mode monitoring methods have 

failed to detect abnormal combustion behaviors from normal operation changes under variable 

conditions. It is therefore the multimode approaches are highly desirable for the combustion 

stability monitoring and diagnosis under variable operation conditions. 

 

The multimode process monitoring is mainly regarded to identify the process conditions and 

states (normal or abnormal) under a variety of operation conditions (Qi et al., 2010). Generally, 
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multimode process monitoring methods are divided into three categories, namely global-

models, adaptive-models and local-models. The global models build a uniform model to 

monitor all the operation conditions (Ma et al., 2012; Song et al., 2014) and in these models, 

multimode data are transformed into an approximately unimodal or Gaussian distribution using 

standardization algorithms, and single-model based monitoring methods are then carried out 

for state monitoring. For example, Ma et al. (2012) developed a local neighborhood 

standardization strategy based PCA for fault detection in multimode processes. Song et al. 

(2014) proposed an improved dynamic neighborhood preserving embedding method and 

combined it with PCA for multimode monitoring. However, it is difficult to consider all 

operations’ changes in one uniform model. Adaptive models, which adjust the monitoring 

models according to the mode changes, update frequently as the condition changes (Jin et al., 

2006; Lee et al., 2006). For example, Jin et al. (2006) proposed a robust recursive PCA 

modeling procedure to reflect the operating mode change whilst Lee et al. (2006) employed if-

then rules for detecting the operation condition changes. However, updating the model 

parameters depends on experience and process knowledge. Due to the complexity of the 

combustion process, flame properties do not normally show regular variance among operation 

conditions. Therefore, the global-model methods and adaptive-models are not suitable for 

flame image based multimode combustion process monitoring. Finally, local-models identify 

the operation condition by using clustering methods and detect the state of the corresponding 

condition (Tong and Yan, 2013). For instance, Chu et al. (2004) proposed a strategy which 

employed the support vector machine (SVM) and an entropy-based variable selection method 

for the fault detection and operation mode identification in processes with multimode 

operations. Zhu et al. (2012) applied k-independent component analysis-principal component 

analysis (k-ICA-PCA) in the process pattern construction and multimode monitoring. Jiang 

and Yan (2014) also integrated mutual information-based multi-block PCA, joint probability 
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and Bayesian inference techniques in the multimode monitoring of a plant-wide process. The 

proposed schemes were validated through numerical multimode plant-wide example and the 

Tennessee Eastman benchmark process. However, the main problem in these local models is 

that the condition identification is usually based on raw data and suffers from the abnormalities 

and noise of variables. This is the case in the flame imaging based multimode combustion 

monitoring. The features extracted from the flame images, which are considered as the input 

variables, suffer from various noises either from the imaging system or combustion process as 

well as abnormalities. Therefore, it is difficult to determine the most suitable model for every 

new sample. As a result, the existing local models are not effective for identifying the 

combustion operations and a new local model based method for combustion process 

monitoring is desirable.  

 

In this paper, a new flame image characterization method and combination of PCA and kernel 

SVM (KSVM) techniques are proposed for monitoring the multimode combustion process. 

This combined method improves the performance of condition identification as compared to 

KSVM. Image processing algorithms are developed to segment flame images into premixed 

and diffused regions, the characteristics of which are considered to be highly related to the 

combustion conditions (such as the fuel type, fuel/air ratio etc.) (Huang and Zhang, 2008). A 

global PCA model is built to extract the flame features, and the KSVM technique is employed 

to identify the combustion operation condition. Hotelling’s T2 and SPE statistics (Sun et al., 

2013) are then used to assess the state of the condition.  

 

2. Methodology  

 

2.1 General Principle 
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Fig. 1 shows the technical strategy of the proposed flame imaging and soft-computing based 

technique for the multimode combustion process monitoring. Flame images are firstly captured 

using a digital imaging system (refer to section 3.1). The flame region is then extracted after 

subtracting the background noise using appropriate threshold value (Sun et al., 2013). The 

extracted flame region is then segmented into ‘premixed’ and ‘diffused’ regions using 

Watershed transform (refer to later section) (Qiu et al., 2011). Consequently, the color and 

texture features of the premixed and diffused regions are extracted. The flame features in the 

principal subspace are calculated and used as the dimensionally reduced inputs of the KSVM 

model. Finally, the PCA-KSVM model is built based on the flame feature vectors to identify 

the operation conditions. With the use of the PCA-KSVM model, the operation conditions are 

identified, and the occurrence of abnormal events in different combustion processes are 

detected by two traditional multiple variable statistics, T2 and SPE. 

 

2.2 Flame Image Processing 

2.2.1 Segmentation of Premixed and Diffused Regions 

The segmentation of the premixed and diffused regions from flame images is an essential step 

for extracting features of the flame. Flames can be premixed, diffused, or somewhere in 

between depending on the fuel to air ratio (Fristom, 1995). Studies on the flame color have 

shown that a premixed flame has typically a blue color whilst a diffused flame appears to be a 

red/orange color, which can be the very effective indicators of the combustion condition and 

state (Huang and Zhang, 2008). In this study, a segmentation method based on the Watershed 

transform (Qiu et al., 2011) is used to segment a flame image into the premixed and diffused 

regions. The Watershed transform is chosen because it has a good response to the weak edges 

such as flame outer contours (Qiu et al., 2011). In the image processing, the luminous region 

of the flame image is firstly separated from the background by setting an appropriate threshold 
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(Sun et al., 2013). Let IRGB=[ iR, iG, iB ] (where iR, iG, iB are the intensity values of red, green, 

and blue components of a flame image, respectively) be the complete RGB image of the flame 

region and a grey–scale flame image I, is converted from the IRGB image (ITU-R, 1995).  

 

The diffused region ID, and the premixed region IP, are calculated as follows, 
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where WS(×) is the Watershed transform, l and m are the numbers of image rows and columns, 

respectively. µ and ν are the pixel coordinates, µ=1, 2,…, l, ν=1,2,…, m.  

 

2.2.2 Feature Extraction 

To reduce the noises as well as to ensure that the flame features extracted are representative of 

flame image characteristics as possible, both the weighted color features and the texture 

features are extracted from the segmented flame regions. The weighted color features, F1 = [fr, 

fg, fb], are composed of the color features of the diffused and premixed regions, and expressed 

as follows,	
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where rP, gP, bP, rD, gD, bD represent the mean intensity values of the red, green, and blue 

components of the premixed and diffused regions, respectively. β is the weight which is the 

ratio of the area of the premixed region (AP) and the whole flame area (AP+AD) (as shown in 

Fig. 2), i.e.,  

 
DP

P

AA
A
+

=b . (6) 

 

In addition to the color features, the texture features are calculated for the diffused and 

premixed regions (Haralick et al., 1973). A total of 14 texture features are extracted for each 

region based on the grey-level co-occurrence matrix, f1, f2,⋯, f14, as listed in Table 1. They are 

a set of numerical parameters related to the flame image inner structure, such as homogeneity, 

grey-tone linear dependencies, contrast and the complexity. The texture features for diffused 

and premixed regions are denoted as F2= [fD1, fD2,⋯, fD14], and F3=[fP1, fP2,⋯,fP14]. Finally, 

feature matrix, F, is defined as, 

 F= [F1 F2 F3]. (7) 

 

2.3 PCA-KSVM Model for Combustion Condition Monitoring  

	
2.3.1 Principal Component Analysis and Kernel Support Vector Machine  

A. Principal Component Analysis (PCA) 

The PCA is a well-established multivariate statistic model which projects standardized data 

into two orthogonal subspaces so as to reduce the dimensions of the data (Joe Qin, 2003). As 

it plays an important part in the proposed PCA-KSVM model, a brief introduction is given 

below for a reader convenience. In general, a PCA model can be described as, 

 EPTX +¢= , (8) 
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where X is an M´N matrix of data (M is the number of samples, N is the number of features). 

T is a score matrix, P is a loading matrix, and E is the matrix of residuals. If the correlation 

matrix of X is R where R=X¢X/(M-1), the singular value decomposition of R can be represented 

as (Joe Qin, 2003), 

 UUDR ¢= , (9) 

where U is an N´N unitary matrix. D is the characteristic value matrix, i.e., D=diag(l1, l2,⋯, 

lN), l is the characteristic value. Letting ui be an N vector, U can then be described as U=[u1, 

u2, …, uN]. When the number of principal components (PCs) is k, the loading matrix can be 

expressed as P=[u1, u2, …, uk]. 

 

B. Kernel Support Vector Machine 

As one of the traditional classifiers, a support vector machine (SVM) model determines the 

optimal separation hyperplane that can divide the training set into two classes and has widely 

been used in many applications in the field of mode identification (Chu et al., 2004; Gunn, 

1998). For non-linear mapping data, the kernel function, which represents an inner product 

between samples in a high-dimensional space, is introduced in the SVM model, so called 

KSVM which is capable of transferring the non-linear data into a separable space. Suppose 

input training matrix M
iii yx 1},{ =  consists input data xi∊RN and the corresponding 

classification result { }1, 1iy Î - + , a KSVM classifier can be expressed as, 

 ])('sgn[)( bxωxy += f , (10) 

where f(·) is a non-linear mapping function, b is the bias and ω is a weight vector. Kernel 

function Θ(xi , xj)= f(xi)´f(xj) is used for implicitly mapping the input data into a high-

dimensional feature space without knowing the function f(·). Therefore, the optimization 

problem in the KSVM classifier can be expressed as (Gunn, 1998),  
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where a is the Lagrange multiplier, C is the penalty parameter of the error term. The kernel 

function used in this study is a 3-degree polynomial function. Let ia  be the optimum solution 

for the problem, then the non-linear classifier is,  

 ÷
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),(sgn a . (12) 

Although the KSVM is originally designed as a binary classifier, there are three different 

approaches that address a multi-class problem, i.e., all-together, one-against-all and one-

against-one approaches (Sun et al., 2004). The one-against-one method is used in this study 

because it is faster in training and testing with better recognition rates in comparison to other 

approaches.  

 

2.3.2 Construction of the PCA-KSVM Model 

Fig. 3 is the block diagram of the proposed PCA-KSVM model, where xτi (i=1,2,…, N) is the 

vector in the variable matrix Xτ for the τth (τ=1, 2, …, S) condition. In the PCA-KSVM, the 

global PCA model as described in section 2.3.3 is used for the feature selection whilst the 

multi-classifier contains S(S-1)/2 binary KSVMs for total S conditions are built for operation 

condition identification. Following that, T2 and SPE statistics are calculated to detect the 

abnormalities of the corresponding conditions. Details of the method are described as follows. 

	

Step 1: Construction of PCA-KSVM model  

To reduce the feature dimensions and identify the operation condition, a global PCA model 

and a multi-class KSVM model are constructed in this step. If original image feature matrix for 
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operation condition τ (τ=1, 2, …, S) is noted as Xτ, feature matrix X for total S conditions can 

then be defined as,  

 X= [X1 X2 …XS]. (12) 

Unitary matrix U can be calculated according to (9). The loading matrix in the principal 

subspace, Pglobal, can therefore be expressed as,  
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Score matrix in the principal subspace, global
c XPT = , is the input of the KSVM and can be 

calculated as:  
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Therefore, the KSVM model can be expressed as, 

 ])('sgn[ bTωy c += f . (15) 

In the KSVM models, the one-against-one approach, which constructs a binary classifier for 

every pair of distinct operation conditions, is employed to achieve multi-classification. 

Therefore, in this study total S(S-1)/2=6 binary KSVMs are built for S=4 conditions. The ‘Max-

Wins’ voting strategy is implemented in these classifiers to determine the final output. The 

final output of the KSVMs is the operation condition. Details of ‘Max-Wins’ voting strategy 

can be found elsewhere in (Sun et al., 2004).  

 

Step 2: Selection of model parameters  
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The number of principal components, k, is the main parameter which determines the 

performance of the PCA-KSVM model. To ensure that the PCA-KSVM model has a prominent 

performance, k should be selected according to the accuracy of the operation condition 

identification, i.e. kAcc , which is expressed as, 

 ( ) %10011
1

´÷
÷
ø

ö
ç
ç
è

æ
--= å
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M

i
iik M

Acc tt , (16) 

where τi represents the identified condition for the ith sample and it  is the true condition.  

 

Step 3: Abnormality detection 

 

Once operation condition τ is identified by the PCA-KSVM model, the value of T2 and SPE 

are calculated and compared to their control limits to detect abnormalities (Joe Qin, 2003), i.e.,  

 2
2

2
1

2
ttt ct £¢

-
= xPD kT , (17) 

 22SPE tdttt £= )x'PP-(Ξ , (18)  

where Ξ is an identity matrix. Dτ and Pτ are the characteristic value matrix and loading matrix 

for the τth operation condition. χτ 2 and δτ2 are the control limits of T2 and SPE, respectively. The 

detailed determination of control limits χτ 2 and δτ2 can be found elsewhere (Joe Qin, 2003). 

The statistics above the control limits means that the process is under an abnormal state, and 

the deviation of the statistics from the control limits indicates the abnormal level. The statistics 

under the control limits means that the process is under a normal state.  

 

3. Experimental Results 

3.1 Experimental Set-Up 
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To examine the effectiveness of the proposed PCA-KSVM model for combustion condition 

and state monitoring, experiments were carried out on a lab-scale oxy-gas combustion test rig 

under a range of operating conditions. Oxy-fuel combustion is a combustion technology 

developed to tackle carbon oxide (CO2) emissions in fossil fuel combustion, where the air is 

replaced by oxygen and recycled flue gas to oxidize the fuel (Hu et al., 2000). Fig. 4 shows the 

schematic diagram and the overview of the experimental set-up. Propane was used as the fuel 

and CO2 was used to simulate the flue gas. The primary and secondary O2/CO2 flows were 

supplied and mixed with the fuel so that four different combustion conditions are generated. 

Table 2 summarizes the fuel, O2, and CO2 supplies whilst Table 3 gives the summary of the 

test conditions. In all the test conditions, the equivalent oxygen-fuel ratio (the ratio of actual 

Air–fuel ratio to stoichiometry for a given mixture. 1.0 is at stoichiometry, <1.0 rich mixtures, 

and >1.0 lean mixtures) was set to 1.25. The digital imaging system used to capture flame 

images was previously developed which has mainly an optical probe with a field view of 90° 

and an industrial RGB (Red, Green and Blue) digital camera with a 1/3 inch imaging sensor of 

1280 (h)×1024 (v) pixels at a frame rate of 25 frames per second (Sun et al., 2013). In the 

experiments, a total of 230 flame images were captured for each test condition in an open and 

relatively steady environment. The captured 230 images are then categorized into normal and 

abnormal samples based on statistical analysis of the features in (7). Table 4 summarizes the 

numbers of the normal and abnormal samples under different test conditions. Note that, due to 

the complex dynamic nature of the combustion, the transient processes are neglected in the 

image collection.  

 

3.2 Results and Discussion 

The flame images acquired under each test condition were processed, and the premixed and 

diffused regions of the flame image were segmented using the image segmentation method as 
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described in Section 2.2. Fig. 5(a) shows the example of 2-D flame images captured under the 

four test conditions, whilst Fig. 5(b) and (c) show the corresponding segmented premixed and 

diffused regions. It can clearly be seen that the premixed and diffused regions have different 

characteristics in nature for the different conditions in terms of the luminous region, luminance 

level and color composition. In particular, the area of the premixed region decreases and the 

diffused region (luminosity of the flame) increases with the oxygen supply. It is worth 

mentioning that the segmentation accuracy is slightly influenced because the boundaries of the 

diffused and premixed regions are unclear in OF27 and OF30. While the inaccuracy of the 

features caused by the segmenting errors can be reduced by employing PCA in process 

monitoring. 

 

The mean value of the weighted color features for the four test conditions are illustrated in Fig. 

6. The standard deviations of the mean value of the weighted color are also indicated as error 

bars in the figure. As can be seen, the mean values of fr and fg increase and fb decreases with 

the oxygen level, indicating that the dominated region of the flame has changed from 

‘premixed’ to ‘diffused’. In addition, the maximum standard deviation is 0.4% observed at 

operating condition OF30, which suggests that the weighted color features extracted are stable 

and reliable. The results illustrate that the weighted color features represent well the 

information of premixed and diffused regions. The texture features of 230 flame images (each 

condition) is calculated from grey-level co-occurrence matrix, which have numerical means 

about the texture characteristics of the flame images. The averages of the texture features for 

the premixed and diffused regions under different operations are summarized in Table 5 and 

Table 6, respectively. It is clear that the most texture features extracted from the flame images, 

especially the diffused region, exhibit a close relationship with the operation condition. Both 
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the weighted color and the texture features are then used as inputs to train the PCA-KSVM 

model. 

 

In the training stage, a total of 640 flame images for four operation conditions (160 for each 

condition) were processed and the features were used as the training data. To determine the 

number of k and ensure the performance of the PCA-KSVM model, the identification accuracy 

of the conditions [refer to Eq. (16)] was assessed under different numbers of principal 

components (PCs). 10-fold cross validation is employed for selecting the optimal number of k 

(Kohavi, 1995) and ensured that the selected number of PCs is robust for different samples. In 

the 10-fold cross validation, the training set is firstly divided into 10 groups randomly with the 

equal number of image samples (i.e., 64 images in each group). 9 out of 10 groups are used to 

train the PCA-KSVM model and the remained group is to test the trained model. The 

identification accuracy of the different number of PCs is calculated using the equation (16) and 

the condition identification accuracy is shown in Fig. 7. It is clear that the accuracy increases 

rapidly with the number of PCs and reaches 99.7% when the number of PCs is 6. The accuracy 

decreases undulately when the number of PCs is 7 or over because the increased principal 

components may introduce more noise and abnormalities. In this study, an irregular trend has 

been observed for the identification accuracy due to the complexity of the flame image features 

and lack of training data. But it still conforms to the expected trend of this case. Based on this 

assessment, the optimal number of PCs, k = 6 is set for test stage in this study. 

 

Once the PCA-KSVM model is trained, flame images, which contain both normal and 

abnormal samples under different combustion conditions, were used to evaluate the 

performance of the proposed PCA-KSVM. A total of 280 images (70 flame images for each 

condition) were processed and their features were extracted for the testing purpose. The result 
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of the output is composed of two parts, i.e. the operation condition identification and the state 

recognition. The condition identification is firstly detected and the process state (normal or 

abnormal) is then determined for the corresponding operation condition.  

 

Fig. 8 illustrates the results of the condition identification and it can clearly be seen that the 

trained PCA-KSVM method successfully identified the change of the operation conditions. 

The accuracy of the proposed method for the condition identification is more than 99% even 

when some abnormalities occur. In order to evaluate the effectiveness of the PCA-KSVM, the 

performance of the PCA-KSVM is compared with that of the KSVM and the results are shown 

in Fig. 8. It shows that there are more false identifications of KSVM compared to the PCA-

KSVM. Table 7 shows the identification accuracy of PCA-KSVM and KSVM. As can be seen, 

the identification accuracy increases with oxygen level for both PCA-KSVM and KSVM. It is 

attributed to that the diffused region increases while the differences of the diffused region are 

more significant than the premixed region for different conditions. Besides, it is obvious that 

the PCA-KSVM outperformed the KSVM in terms of the condition identification accuracy. 

This is mainly due to the fact that, in the PCA-KSVM, the interference of the noise and 

abnormalities is removed by the PCA. The results have shown that the combination of the PCA 

and KSVM can effectively reduce the adverse effect of noise and abnormalities in the operation 

condition identification. 

 

Fig. 9(a) and (b) show the results of the state monitoring for the corresponding operation 

condition. As can be seen from Fig. 9, T2 and SPE control limits vary for different operation 

conditions due to the fact that flame features extracted vary with the conditions and thus the 

control limits must be adjusted to reflect such changes. It is clear that, for the normal samples, 

computed T2 and SPE statistics are below the control limits, while for the abnormal samples, 
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either T2 or SPE statistics is above the control limits. It can therefore be concluded that the 

proposed process monitoring method can recognize abnormal states when they occur in each 

condition.  

 

It should, however, be noted that there are some missed detections of abnormalities in the 

results. This may be because that the training data in this experiment is limited and can be 

improved by increasing the number of training data. In addition, the PCA-KSVM is a data 

driven modeling approach, therefore flame data for all objective operation conditions should 

be used to train the PCA-KSVM model. It should also be mentioned that, in this study, the 

flame images were captured on the lab-scale combustion rig – the flame has distinct premixed 

and diffused regions. In large-scale burners, however, flames may not exhibit obvious 

distinctions in color due to the fuel type, burner structure, air/fuel ratio, etc. In such cases, the 

algorithms may have to be improved by taking into considerations different flame features, 

particularly the color features as inputs to the PCA-KSVM model. 

 

 

4. Conclusions 

This paper presents a novel flame imaging and PCA-KSVM based process monitoring method 

to monitor the state of oxy-gas combustion under multiple operation conditions. By employing 

the Watershed transform, the flame images are segmented into diffused and premixed regions. 

The weighted color and texture features are extracted as the inputs of the proposed PCA-KSVM 

model. In the PCA-KSVM model, the PCA and KSVM are combined to identify the 

combustion operation condition and the Hotelling’s T2 and SPE statistics have been used to 

determine the process state. The experimental results on a lab-scale oxy-gas combustion test 

rig have demonstrated that the weighted color and texture features extracted using the proposed 
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image processing algorithms are capable of representing the characteristics of the flame. 

Furthermore, the results have also shown that the PCA-KSVM outperforms the KSVM in 

identifying the operation condition. The method proposed is effective in detecting the 

combustion state in multimode processes. 
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Fig.1 Technical strategy for multimode monitoring of oxy-gas combustion through flame 
image processing and PCA-KSVM.	
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Fig. 2 A typical flame image with diffused and premixed regions. 
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Fig. 3 Block diagram of the PCA-KSVM model. 
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 (a) Schematic of the system.     (b) Photo of the set-up. 

 

 

Fig. 4 Experimental set-up.  
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(a) Flame images under the four test conditions. 

				 				 				 	

(b) Segmented diffused region for the flame images (a). 

              

 

(c) Segmented premixed region for the flame images (a).	

Fig. 5 Flame images and their segmented premixed and diffused regions under four 

experimental conditions.  
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Fig. 6 Weighted color features for four test conditions. 
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Fig. 7 Accuracy of the condition identification for the different number of principal 

components.  
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Fig. 8 Results of condition identification by the PCA-KSVM and KSVM in the test stage. 
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(a) T2 statistic. 

 

	

(b) SPE statistic. 

 

Fig. 9 Results of the state monitoring.   
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Table 1. List of texture features. 

 Texture features  Texture features 
f1 angular second moment f8 sum entropy 
f2 contrast f9 entropy 
f3 correlation f10 difference variance 
f4 sum of squares f11 difference entropy 
f5 inverse difference moment f12-f13 information measures of 

correlation f6 sum average  
f7 sum variance f14 maximum correlation 

coefficient 
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Table 2. Summary of fuel/O2/CO2 supplies. 

	

Fuel/O2/CO2 supply Value 

Propane (C3H8) 0.014 g/s 

Oxygen (O2) 0.064 g/s 

Primary O2 + CO2  15% of O2 + CO2 

Secondary O2 + CO2  85% of O2 + CO2 
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Table 3. Summary of the test conditions. 

	

Test 

condition 

Volume (%) Mass (%) 

O2 CO2 O2 CO2 

OF21 21 79 16.20 83.80 

OF25 25 75 19.51 80.49 

OF27 27 73 21.20 78.80 

OF30 30 70 23.76 76.24 
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Table 4. Test samples under different test conditions. 

	

	

Test condition Normal samples Abnormal samples 

OF21 1-190 191-230 

OF25 1-219 220-230 

OF17 1-225 226-230 

OF30 1-210 211-230 
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Table 5. Texture features for the premixed region (x10-2). 

 

 

Features f1 f2 f3 f4 F5 f6 f7 f8 f9 f10 f11 f12 f13 f14 

OF21 0.852 0.007 0.989 0.725 0.999 2.312 5.096 0.358 0.363 0.062 0.018 -0.962 0.700 0.921 

OF25 0.857 0.011 0.988 0.929 0.999 2.370 5.948 0.342 0.344 0.062 0.013 -0.973 0.692 0.924 

OF27 0.995 0.032 0.796 0.104 0.999 2.023 4.284 0.023 0.024 0.062 0.007 -0.758 0.170 0.998 

OF30 0.996 0.070 0.789 0.199 0.999 2.031 4.632 0.021 0.022 0.062 0.007 -0.767 0.164 0.998 
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Table 6. Texture features for the diffused region. 

 

Features f1 f2 f3 f4 F5 f6 f7 f8 f9 f10 f11 f12 f13 f14 

OF21 0.916 0.007 0.979 0.360 0.999 2.155 4.330 0.230 0.234 0.062 0.020 -0.929 0.578 0.957 

OF25 0.855 0.013 0.996 2.453 0.998 2.637 11.414 0.432 0.436 0.062 0.029 -0.948 0.738 0.924 

OF27 0.743 0.041 0.998 11.473 0.995 3.878 44.087 0.753 0.761 0.061 0.057 -0.941 0.861 0.861 

OF30 0.763 0.076 0.996 12.479 0.996 3.905 48.778 0.659 0.665 0.062 0.045 -0.949 0.836 0.872 
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Table 7. Comparison between the identification accuracies of PCA-KSVM and KSVM. 

 

 

Operation condition  

identification accuracy 

Condition 

OF21 OF25 OF27 OF30 

PCA-KSVM (%) 99.4 99.5 100.0 100.0 

KSVM (%) 78.5 87.1 90.0 100.0 

 

 

 

 


