
Ahmad, Eamonn J, Feng, Dejun and Wang, Chao (2017) Analysis on spatial 
and temporal resolution in photonic time stretch frequency domain reflectometry 
based fully distributed fiber Bragg grating sensors.  In: The 15th International 
Conference on Optical Communications and Networks (ICOCN 2016), 24-27 
Sep 2016, Hangzhou, China. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/56282/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1109/ICOCN.2016.7875829

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/56282/
https://doi.org/10.1109/ICOCN.2016.7875829
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


 

All-optical temporal random pattern generation based on photonic time-stretch 
 

Chaitanya K Mididoddi1, Dejun Feng1, 2 and Chao Wang1,* 

 

1School of Engineering and Digital Arts, University of Kent, Canterbury CT2 7NT, United 
Kingdom  

2School of Information Science and Engineering, Shandong University, Jinan 250100, China  
*E-mail: c.wang@kent.ac.uk 

 
 

ABSTRACT 
 
We propose a novel all-optical temporal random pattern 
generation scheme based on photonic time stretch 
involving cascaded Mach-Zehnder interferometers 
(MZIs) with different chirped spectral response. The 
overall spectral response represents a broadband random 
spectral pattern. Temporal random patterns can then be 
generated thanks to photonic time stretch which mirrors 
spectrum encoding to temporal waveform. Tuning of the 
generated temporal patterns is achieved using a rapidly 
tunable optical delay module in one of the MZIs. 

Keywords: Chromatic dispersion, Mach-Zehnder 
interferometer, photonic time stretch, random pattern 
generation, time delay 

 
1. INTRODUCTION 

 
Optical random patterns are widely used in optical 
communications especially in encryption for security, to 
estimate the bit error rate of a communication system and 
in compressed signal processing to explore and utilize the 
signal sparsity. Optical random patterns are traditionally 
generated by modulating optical carriers with 
electronically generated random patterns using electro-
optic modulator. The main difficulties are high cost and 
limited bandwidth in generating high speed electronic 
pseudo-random bit sequences (PRBS).  

As a promising solution, all-optical random pattern 
generation has recently attracted great research interest. 
For example, this problem have been addressed by 
generating random numbers based on chaotic nature in 
lasers [1]. However, the random sequences generated by 
this method are not non-repeatable and non-predictable. 
Repeatable optical random patterns have been generated 
using a spatial light modulator based on space-to-time 
mapping [2]. But the tuning speed of this system is 
limited. In [3], there was a proposal for all optical PRBS 
pattern generation, which however required high speed 
optical clock signal along with complicated dual-drive 
differential Mach-Zehnder modulator (MZM).  

In this paper, we propose a novel all-optical temporal 
random pattern generation method which eliminates the 
need for high speed MZM or high speed electronic PRBS 
generator. This is made possible based on random spectral 
filtering and photonic time stretch. In our system, two 

cascaded Mach-Zehnder interferometers (MZIs) produce 
overall spectral response representing a broadband 
random spectral pattern. Chromatic dispersion stretches 
spectrally shaped ultrashort optical pulses to a random 
temporal pattern thanks to spectrum-to-time mapping [4]. 
Fast tuning of the generated optical patterns can be 
achieved by using a rapidly tunable optical delay module 
in one of the MZIs. 
 

2. PRINCIPLE 
 

The proposed set up is shown in Fig. 1. A mode-locked 
laser (MLL) is used to generate optical pulses at 50MHz 
rate with a full-width half-maximum (FWHM) pulse 
width of 800 fs. After passing through a dispersion 
compensating fiber (DCF) with dispersion value of D 
(ps2), the pulse will be stretched in time leading to 
spectrum-to-time mapping because of higher dispersion 
as per temporal far-field Fraunhofer condition [4]. The 
stretched optical pulses can then be passed through a MZI 
which has a chirped spectral response due to unbalanced 
dispersion in two interference arms [5]. The spectral 
transfer function of MZI-1 can be written as, 
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where ∆𝑡𝑡1  is the fixed delay difference between arms 
and –𝜑𝜑 is the dispersion unbalance. The chirp rate and 
free spectral range (FSR) of the MZI filter can be easily 
tuned by controlling the dispersion unbalance and time 
delay difference between two arms.  

 
Fig.1. Conceptual diagram of proposed experimental setup for 
all-optical random pattern generation. 
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A second cascading MZI has an opposite chirp rate and 
a tunable delay in one arm. The overall spectral response 
of the cascaded MZI filter can then be given by 
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It can be seen from Eq. (2) that the cascaded MZI has a 
spectral response showing randomly modulated spectral 
pattern, which can be controlled by changing the time 
delay within one of the MZIs. Tuning speed of the optical 
delay should be matched to the optical pulse repetition 
rate (tens of MHz). Traditional optical delay lines usually 
have limited tuning speed of only few kHz. Rapidly 
tunable optical time delay modules can be achieved by 
using optical cross switches as mentioned in [6], or 
reconfigurable optical true time delay method as 
mentioned in [7]. 
 

3. RESULTS 
 
To verify the proposed system, numerical simulations 
have been performed using VPI-transmission maker with 
dispersion of the DCF element selected as D = 1274 ps2, 
dispersion mismatch in MZIs, φ set to 6.3728 ps2. The 
time delay in the first MZI is fixed at ∆𝑡𝑡1 = 50 ps , and the 
second MZI has time delay difference of ∆𝑡𝑡2 = 1.25 ps.The 
individual spectral responses of two cascaded MZIs are 
shown in Figs. 2.a and 2.b. Opposite chirp rates have been 
obtained. The broadband optical pulses are spectrally 
shaped by the cascaded MZIs, with the optical spectrum 
of the output is shown in 2.c. It can be seen that randomly 
modulated spectral pattern is achieved. Due to the 
dispersion-induced spectrum-to-time mapping, an optical 
temporal random pattern is finally generated, as shown in 
Fig. 2.d. Perfect mapping between spectrum and time has 
been achieved.    

 

 

 

 
Figure 2. a) Spectral response of the first MZI; b) spectral 
response of the second MZI; c) Optical spectrum of the shaped 
optical pulses; d) the generated optical temporal random 
waveform at the output for ∆𝑡𝑡1 = 50 ps , ∆𝑡𝑡2 = 1.25 ps. 
 

To demonstrate the tunability and repeatability of the 
proposed optical random pattern generation, different 
time delay values in the second MZI have been chosen. 
Figure 4 show the generated optical random patterns at 
various delay steps of ∆𝑡𝑡2 = 1.25 ps, 10 ps, 17.5 ps, and 
25 ps respectively. 
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Fig. 4. a) The output temporal waveform at ∆𝑡𝑡2 = 1.25 ps b) 
∆𝑡𝑡2 = 10 ps c) ∆𝑡𝑡2 = 17.5 ps d) ∆𝑡𝑡2 = 25 ps 
 

To verify the pattern randomness, Fig. 5 shows the 
correlation Z = corr(X,Y) of one generated random 
pattern for a specific delay against 19 other patterns 
generated with different time delays. The X and Y vectors 
correspond to the total 20 random patterns obtained by 
tuning the delay ∆𝑡𝑡2  from 1.25 ps to 25 ps. X=Y 
indicates autocorrelation and X ≠ Y shows cross 
correlation. The maximum cross-correlation from this 
method reaches 63.02% and the average cross correlation 
is 49.7%. 
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Figure 5. Correlation matrix showing self- and cross-correlation 
between the generated patterns. 
 

4. CONCLUSIONS 
 
We have proposed and demonstrated a novel all-optical 
method to generate repeatable all-optical random pattern 
based on cascaded MZI spectral filtering and photonic 
time stretch. The technique features simple structure and 
eliminates the need for expensive high-speed electronic 
and optoelectronic devices.  
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