
Gherman, Bogdan George (2016) Modular neural networks applied to pattern
recognition tasks. Doctor of Philosophy (PhD) thesis, University of Kent,.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/57814/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/57814/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

MODULAR NEURAL NETWORKS APPLIED TO

PATTERN RECOGNITION TASKS

By

Bogdan George Gherman

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

UNIVERSITY OF KENT

CANTERBURY, UNITED KINGDOM

September 9, 2016

© Copyright by Bogdan George Gherman, 2016

UNIVERSITY OF KENT

SCHOOL OF

SCHOOL OF ENGINEERING AND DIGITAL ARTS

The undersigned hereby certify that they have read and

recommend to the Faculty of Graduate Studies for acceptance a

thesis entitled “Modular Neural Networks Applied to Pattern

Recognition Tasks” by Bogdan George Gherman in partial

fulfillment of the requirements for the degree ofDoctor of Philosophy.

Dated: September 9, 2016

External Examiner:
Name

Research Supervisor:
Dr. Konstantinos Sirlantzis

Examing Committee:
Name

Name

ii

UNIVERSITY OF KENT

Date: September 9, 2016

Author: Bogdan George Gherman

Title: Modular Neural Networks Applied to Pattern

Recognition Tasks

Department: School of Engineering and Digital Arts

Degree: Ph.D. Convocation: Year: 2016

Permission is herewith granted to University of Kent to circulate and

to have copied for non-commercial purposes, at its discretion, the above title

upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH
USE IS CLEARLY ACKNOWLEDGED.

iii

To my Mother & Brother

Abstract

Pattern recognition has become an accessible tool in developing advanced adap-

tive products. The need for such products is not diminishing but on the contrary,

requirements for systems that are more and more aware of their environmental cir-

cumstances are constantly growing. Feed-forward neural networks are used to learn

patterns in their training data without the need to discover by hand the relationships

present in the data.

However, the problem of estimating the required size of the neural network is

still not solved. If we choose a neural network that is too small for a particular

given task, the network is unable to ”comprehend” the intricacies of the data. On

the other hand if we choose a network size that is too big for the given task, we will

observe that there are too many parameters to be tuned for the network, or we can

fall in the ”Curse of dimensionality” or even worse, the training algorithm can easily

be trapped in local minima of the error surface.

Therefore, we choose to investigate possible ways to find the ’Goldilocks’ size

for a feed-forward neural network (which is just right in some sense), being given a

training set.

Furthermore, we used a common paradigm used by the Roman Empire and

employed on a wide scale in computer programming, which is the ”Divide-et-Impera”

approach, to divide a given dataset in multiple sub-datasets, solve the problem for

each of the sub-dataset and fuse the results of all the sub-problems to form the

result for the initial problem as a whole. To this effect we investigated modular

neural networks and their performance.

v

Acknowledgements

The research for writing this thesis was funded by a departmental scholarship

provided by the School of Engineering and Digital Arts at the University of Kent in

Canterbury, United Kingdom.

Special thanks are in order for the following people that showed great support for

my endevour: Dr. Konstantinos Sirlantzis, Dr. Farzin Deravi, Dr. Michael Fairhurst

and Dr. Sanaul Hoque.

Special thanks are due to Dr. Gareth Howells, who supported my paper sub-

mission and attendance at the Forth International Conference on Emerging Security

Technologies (EST-2013).

I am in debt to my former teachers and lecturers that have guided me on the

path of science. I would like to mention only two of them: my general high school

math teacher, Mr. Dušan Mitrić and my undergraduate mentor, Conf. Univ. Dr.

Ing. Valentina E. Bălaş.

I am also thankful to Prof. Tiberiu Spircu from the Department of Medical In-

formatics and Biostatistics at ”Carol Davila” University of Medicine and Pharmacy,

Bucharest, for the great discussions we had about the mathematical formulations.

Some of my friends also need to be mentioned here for their encouragement and

great discussions: Dr. Yiqing Liang, Anabela F. Soares, Michael Gillham, Richard

K. Bonner, Dr. Philippos Asimakoupulos and many others.

But, the greatest acknowledgement has to go to my dear mother Doina-Elena

and my brother Horia. Without whom I would be lost!

I would like to thank everyone who supported me while writing this thesis and

making it possible.

THANK YOU ALL!

Bogdan George Gherman (BSc, MSc)

vi

Table of Contents

Abstract v

Acknowledgements vi

Table of Contents vii

List of Publications x

List of Figures xi

List of Tables xv

Glossary xvii

1 Challenges in Designing Pattern Recognition Systems 1

1.1 Research Problem and Motivation . 5

1.2 Aims and Objectives . 6

1.3 Thesis Outline . 8

2 Neural Networks 9

2.1 Historical Background . 9

2.2 Number of Published Articles . 13

2.3 Artificial Neural Networks for Pattern Classification Applications . . 17

2.4 Neurons as Processing Units . 18

2.5 Feedforward Backpropagation Networks 20

2.6 Training Algorithm . 21

2.7 Modular Neural Networks . 22

2.8 Chapter Conclusions . 24

3 Data Complexity 25

3.1 Introduction . 25

3.2 Meta-Measurements . 26

vii

TABLE OF CONTENTS

3.3 Chapter Conclusions . 39

4 Data Description 40

4.1 Real Life Data . 43

4.1.1 UCI Machine Learning Repository 44

4.2 Synthetically Generated Data . 47

4.2.1 Gaussian Cloud Datasets . 51

4.2.2 Uniformly Distributed Datasets 54

4.3 Meta-Measurement Validation . 60

4.3.1 Classification Training Error and Decision Regions 61

4.3.2 Clustering Validation . 64

4.3.3 Meta-Measurement Feature Ranking 74

4.3.4 Evaluation of Error Introduced During the Creation of Datasets 78

4.4 Chapter Conclusions . 79

5 Decision Boundary Approximation Using Polynomials 80

5.1 Motivation . 81

5.2 Polynomial Order Predicting Methods 81

5.2.1 Statistical Prediction Methods 81

5.2.2 Meta-Measurements Method 85

5.3 Comparative Results . 87

5.4 Chapter Conclusions . 95

6 Neural Network Weight Adaptation 96

6.1 Decision Boundaries of Neural Networks 97

6.2 Weight Adaptation Methodology . 102

6.3 Total Variance Distance . 102

6.4 Experimental Results Assessment . 107

6.5 Chapter Conclusions . 115

7 Modular Neural Network Construction 116

7.1 Experimental Setup . 117

7.2 Results on Synthetic Data . 121

7.3 Results on Realistic Data . 126

7.4 Chapter Conclusions . 130

8 Conclusions 131

8.1 Summary of Work . 131

8.2 Contributions . 132

viii

TABLE OF CONTENTS

8.3 Future Directions of Research . 132

References 134

ix

List of Publications

1. (IN PRINT) Bogdan G. Gherman, Konstantinos Sirlantzis and

Farzin Deravi, ”Optimizing Neural Network Structures to Match

Pattern Recognition Task Complexity”, Book Chapter Submitted

to World Scientific Review on 3rd of February 2015 ;

2. Bogdan G. Gherman and Konstantinos Sirlantzis, ”Polynomial Or-

der Prediction Using a Classifier Trained on Meta-Measurements”,

4th International Conference on Emerging Security Technologies,

9-11 September 2013, Cambridge United Kingdom, pp. 117-120,

doi: 10.1109/EST.2013.26;

3. Bogdan G. Gherman and Konstantinos Sirlantzis, ”Data Complex-

ity Assessment for Constructing Modular Artificial Neural Net-

works”, School of Engineering and Digital Arts Conference, Jan-

uary 2012;

4. Bogdan G. Gherman and Konstantinos Sirlantzis, ”Polynomial Or-

der Estimation to Determine the Number of Hidden Nodes in Feed-

Forward Neural Networks”, School of Engineering and Digital Arts,

Research Group Seminar, November 2012;

5. Bogdan G. Gherman and Konstantinos Sirlantzis, ”Investigation of

the Decision Boundaries of Neural Networks”, School of Engineer-

ing and Digital Arts, Research Group Seminar, May 2012.

x

List of Figures

1.1 Decision boundary produced by four NNs with 1,2,3 and 5 hidden

neurons. 4

1.2 Overall system view of the work presented in this thesis. 6

2.1 Number of publications per year related to neural networks based on

ISI Web of Knowledge in 2009 and 2014 [64] along with the increase

factor from one year to the other. 14

2.2 Single neuron with the summation of the inputs, the non linear acti-

vation functions (tanh) and the resulting output. 19

2.3 Examples of common non-linear transfer functions. 20

2.4 Example of a multi layered, fully connected, Feed-Forward Neural

Network architecture with 3 layers, 2 inputs, 3 hidden nodes and 2

outputs, generally called a 2-3-2 network. 20

3.1 Addition of linearly interpolated data points to the banana dataset . 29

3.2 Example of an extracted angle profile of a decision boundary. 37

4.1 Flow chart of the artificial data generation algorithm. 49

4.2 Plot of a third order polynomial, with its characteristic tangent lines. 51

4.3 The parameters to generate the Gaussian Cloud datasets. a) the

variance σ2 for each order; The perpendicular distance for each order

b) for the INCREASED separation; c) for the NEUTRAL separation;

d) for the DECREASED separation. 53

4.4 Detail showing how the Gaussian clouds are generated, for a polyno-

mial of order 1. 54

4.5 Detail showing how the Gaussian clouds are generated, for a polyno-

mial of order 2. 55

4.6 Scatter plots of Gaussian Clouds of points distributed along a polyno-

mial boundary which has increasing order from 1 to 10, with neutral

separation between the classes. 56

xi

LIST OF FIGURES

4.7 Scatter plots of uniformly distributed datasets with polynomial bound-

ary of order 1 to 10, having NEUTRAL separation between the two

classes. 57

4.8 Scatter plots of uniformly distributed datasets with polynomial bound-

ary of order 1 to 10, having an overlap between the two classes or

DECREASED separation. 58

4.9 Scatter plots of uniformly distributed datasets with polynomial bound-

ary of order 1 to 10, having INCREASED separation between the two

classes. 59

4.10 LDC decision regions, on the GC-Poly-2D database 67

4.11 Hierarchical clustering dendrogram of the GC-Poly-2D database . . . 67

4.12 LDC decision regions, on the GC-Poly-Plus-2D database 68

4.13 Hierarchical clustering dendrogram of the GC-Poly-Plus-2D database 68

4.14 LDC decision regions, on the GC-Poly-Minus-2D database 69

4.15 Hierarchical clustering dendrogram of the GC-Poly-Minus-2D database 69

4.16 LDC decision regions, on the U-Poly-2D database 70

4.17 Hierarchical clustering dendrogram of the U-Poly-2D database 70

4.18 LDC decision regions, on the U-Poly-Plus-2D database 71

4.19 Hierarchical clustering dendrogram of the U-Poly-Plus-2D database . 71

4.20 LDC decision regions, on the U-Poly-Minus-2D database 72

4.21 Hierarchical clustering dendrogram of the U-Poly-Minus-2D database 72

4.22 LDC decision regions, on the ALL-Poly-2D database 73

4.23 Hierarchical clustering dendrogram of the ALL-Poly-2D database . . 73

4.24 Feature efficiency of Meta-Measurement datasets given by INTER-

INTRA criterion. 74

4.25 Feature efficiency of Meta-Measurement datasets given by 1NN crite-

rion. 75

4.26 Feature ranking of Meta-Measurement datasets according to INTER-

INTRA criterion. 76

4.27 Feature ranking of Meta-Measurement datasets according to 1NN cri-

terion. 77

4.28 MSE between the original polynomial and the extracted decision bound-

ary in the datasets . 78

5.1 Overview of the system to test the prediction accuracy of the statis-

tical methods of predicting the polynomial order. 84

5.2 Overview of the system to test the prediction accuracy of the Meta-

measurement method of predicting the polynomial order. 86

xii

LIST OF FIGURES

5.3 Polynomial order prediction accuracy boxplot of the Statistical meth-

ods, evaluated on scenario #1. 90

5.4 Polynomial order prediction accuracy boxplot of the Statistical meth-

ods, evaluated on scenario #2. 91

5.5 Polynomial order prediction accuracy boxplot of the Meta-Measurements

Group 1, evaluated on scenario 2. 92

5.6 Polynomial order prediction accuracy boxplot of the Meta-Measurements

Group 2, evaluated on scenario 2. 93

5.7 Polynomial order prediction accuracy boxplot of the Meta-Measurements

Group 3 (ALL), evaluated on scenario 2. 94

6.1 Schematic of a 2-1-2 neural network. 98

6.2 Output produced by a 2-1-2 NN trained on the XOR problem. a) sur-

faces produced by each individual output neuron; b) decision surface

obtained by y1 − y2; c) contour plot of the output surface y1 − y2. . . 99

6.3 Schematic of a 2-2-2 neural network. 100

6.4 Output produced by a 2-2-2 NN trained on the XOR problem. a)

surfaces produced by each individual output neuron; b) individual

surfaces with decision planes produced by each neuron; c) decision

surface obtained by y1 − y2; d) contour plot of the output surface

y1 − y2. 101

6.5 Graphical representation of the Total Variance Distance between two

Gaussian distributions. 103

6.6 Histogram of the classification errors produced by training 10,000 NNs

a) comparison of the error rates produced without weight adapta-

tion(blue) and weight adapted NNs (red); b) Fitted probability dis-

tributions. 110

6.7 Boxplot of overall classification errors of 10,000 trained NNs. 111

6.8 Comparison of the average error rate and its standard deviation for

the regular and weight adapted experiments. 112

6.9 Total Variance Distance between the probability distributions of the

error rates produced with and without weight adaptation. 112

6.10 Histogram of the best training epoch achieved by training 10,000 NNs

a) comparison of the best epoch produced without weight adapta-

tion(blue) and weight adapted NNs (red); b) Fitted probability dis-

tributions. 113

6.11 Boxplot of best training epoch of 10,000 trained NNs. 114

xiii

LIST OF FIGURES

7.1 Overview of the steps involved in assessing the classification perfor-

mance of the MNN created using a number of hidden nodes suggested

by the Meta-Measurement method (Continued on next page) 119

7.2 Overview of the steps involved in assessing the classification perfor-

mance of the MNN created using a number of hidden nodes suggested

by the Meta-Measurement method (Continuation from the previous

page) . 120

7.3 Total number of parameters for all the 1000 NNs trained and assessed

with each architecture prediction method 123

7.4 Histogram of the number of NNs achieving a particular error rate

divided into 10 bins . 124

7.5 Histogram of the number of NNs that have obtained the best training

epoch divided into 10 bins . 124

7.6 Histogram of the number of NNs that have obtained the training time

divided into 10 bins . 125

7.7 Neural Network gradient averaged for all of the 1000 trained networks

within each of the 5 architecture selection methods 125

7.8 10-fold crossvalidation classification error rates of the MNNs built

with different methods of estimating the number of hidden nodes for

each module. Used dataset: UCI Flower Iris 128

7.9 10-fold crossvalidation classification error rates of the MNNs built

with different methods of estimating the number of hidden nodes for

each module. Used dataset: UCI Yeast 129

xiv

List of Tables

2.1 Journals with most publications on neural networks according to

British Library . 16

3.1 List of Meta-Measurements . 38

4.1 Type designator of the datasets . 41

4.2 Summary of dataset categories. 42

4.3 List of UCI datasets used. 44

4.4 List of attributes of the Abalone dataset. 45

4.5 Values of the parameters to generate the Gaussian Cloud datasets . . 53

4.6 Training errors of 5 classifiers on the 8 groups of Meta-Measurements 62

4.7 Hierarchical Clustering and K-Means Clustering error rates on the 8

groups of Meta-Measurement datasets 65

5.1 Summary of polynomial order prediction accuracies using Statistical

methods evaluated in two classification scenarios. 89

5.2 Summary of polynomial order prediction accuracies using Meta-Measurement

methods evaluated in two classification scenarios. 89

5.3 Non-parametric evaluation of polynomial order prediction accuracy

using Statistical methods, evaluated on scenario #1. 90

5.4 Non-parametric evaluation of polynomial order prediction accuracy

using Statistical methods, evaluated on scenario #2. 91

5.5 Non-parametric evaluation of polynomial order prediction accuracy

using Meta-Measurements Group 1, evaluated on scenario #2. 92

5.6 Non-parametric evaluation of polynomial order prediction accuracy

using Meta-Measurements Group 2, evaluated on scenario #2. 93

5.7 Non-parametric evaluation of polynomial order prediction accuracy

using Meta-Measurements Group 3, evaluated on scenario #2. 94

6.1 Statistics of the error distributions. 111

6.2 Statistics of the best epoch distributions. 114

xv

LIST OF TABLES

7.1 Histogram bin locations for the best epochs. 122

xvi

Glossary

x, n, i, j, k,N italics are used for scalar variables

x,y, z column vectors are in lowercase bold letters

X capital boldface letters are used for matrices

Rm the m dimensional set of real numbers

Dtype,index a dataset of particular type and given index, which groups concep-

tually X, Ω and the ground truth labels ω
(i)
k if they are available

Ω the set of class labels, Ω = {ω1, . . . , ωc}
ωk one possible class label of a sample, where ωk ∈ Ω

ω vector of ground truth labels

ω
(i)
k the ground truth label of sample i, where ω

(i)
k ∈ Ω

X input dataset feature values as an (n×m) matrix

x generic input vector as an (m× 1) column vector

x(i) input sample vector i as an (m× 1) column vector

x
(i)
j scalar input sample value with index i and feature j

where x(i) = [x
(i)
1 , x

(i)
2 , . . . , x

(i)
j]T and x

(i)
j ∈ R

y(i) output vector corresponding to input i

y
(i)
j the jth component of the output vector corresponding to input i

n total number of samples in X which is part of Dtype,index

d number of features or dimensionality of the dataset Dtype,index

c total number of classes in X which is part of Dtype,index, or the

cardinality of the set Ω, c = |Ω|
i, j, k indices for enumerating samples, features and classes respectively

I(a, b) indicator function taking the value 1 if a = b and 0 otherwise

P (A) general notation for the probability of an event A

xvii

GLOSSARY

P (A|B) condional probability of event A conditioned by event B

P (ωk) the prior probability of class ωk to occur

P (ωk|x) the posterior probability that the true class is ωk, given x ∈ Rn

p(x|ωk) the class-conditional probability density function for x given ωk

Σ covariance matrix (not to be confused with the summation operator

which will have boundary conditions specified like this:
∑n

i=1)

PCA Principal Component Analysis

xviii

Chapter 1

Challenges in Designing Pattern

Recognition Systems

I
nformation is ubiquitous as the atmosphere we are breathing. The ancient

Greek philosophers like Plato [58] and Aristotle [2] have realized this more than

two thousand years ago, that we are perpetually surrounded by information,

and what is even more interesting is, that they also formulated the fact that infor-

mation should be grouped into categories. The process of learning is tightly related

with grouping similar information so as to form recurring patterns and conversely,

dispersing information is used to distinguish and discriminate information.

The early philosophers didn’t stop at dreaming just about how to encode in-

formation but, they imagined how to construct machines with human-like abilities.

These ideas were probably the early sparks that ignited the development of early

calculating machines, Automatons, computers and which will probably lead to Gen-

eralized Artificial Intelligence.

An outstanding account of the history of Artificial Intelligence is to be found in

Nils J. Nilsson’s book, entitled: ”The Quest for Artificial Intelligence” [55], where he

shows the timeline of events that have led to the current state of Artificial Intelligence

as we know it.

Information is around us, if we care to encode it either consciously or uncon-

sciously, therefore there is a natural labelling of objects with pieces of information

that requires two more processes namely, storing and retrieving these labels.

Conversely, recognizing patterns belonging to one or more categories is associated

with identification and classification of newly sensed information, which is the main

aim of pattern recognition.

The problem of concern for pattern recognition is to build a system which assigns

newly acquired measurement examples to one of k categories or classes. This process

1

CHAPTER 1. Challenges in Designing Pattern Recognition Systems

is accomplished by first modelling or learning the possible underlying characteristics

of a set of known data that has already been categorised correctly into k classes. This

type of learning is called supervised learning and the process involved in learning is

called training a classifier. A classifier is the realization of a learning algorithm. An

intricate classifier may employ several learning algorithms once, such is the case in

ensemble learning, but the relationship is of the one-to-many type.

Dietrich [15] makes a clear distinction between a classifier and a learning al-

gorithm which is very important, in the context of evaluating the performance of

classifiers which actually is being done, since the assessment of classifiers implies us-

ing a learning algorithm. This distinction between classifiers and learning algorithms

is analogous to the distinction between an object and its class in Object Oriented

Programming. Classifiers are manifestations or incarnations of learning algorithms.

Hence, the two notions are closely related.

The overall goal of pattern recognition is to build classifiers with the lowest

possible error rates that work well for a wide variety of input data.

This poses a problem straight away, for how can we compare the performance of

one learning algorithm with that of another learning algorithm?

The answer to this question is elusive. Since, there is no feasible way of acquiring

all of the values of the population from where the data arises. We can only extract

samples from that population, which in sometimes cases will have only small number

of specimens.

Nonetheless, there are methods of approximating the error a classifier makes on

the whole population. To this effect, there are published works that describe the

methodology for comparing the performance of two classifiers or learning algorithms

one of which is Dietterich’s paper [15], which states that none of the statistical tests

described in the paper, some of them widely used and evaluated in the same paper,

can answer the question whether one algorithm will produce more accurate classifiers

when compared against another learning algorithm. Kuncheva [41] re-iterates the

same findings in her book ”Combining Pattern Classifiers”.

There are multiple reasons for the unreliability of the statistical tests to compare

the performance difference between two classifiers described by [15],[41], namely:

1. all of the statistical tests require using holdout or re-sampling methods, which

reduces the number of available examples in the training set to be smaller

than the total number of examples that are labelled and available at the time

of assessment, which in turn, is much smaller than all the possible input com-

binations of the classifier;

2

CHAPTER 1. Challenges in Designing Pattern Recognition Systems

2. statistical tests require a number of independence assumptions and some nor-

mality assumptions which are often violated;

3. statistical tests that use holdout methods for dividing the existing data into

training and testing sets do not measure the variation resulting from the choice

of training/testing sets nor do they measure the internal randomness of the

algorithm;

4. the choice of the training and testing sets has a major impact;

5. mislabelled ground truth data can be present in the testing sets and this con-

tamination introduces an error constant. The classifier cannot have an error

lower than this constant.

As a consequence of these problems the performance comparisons between two

classifiers has to be viewed as approximate, heuristic tests, rather than rigorously

correct statistical methods, that are not universally correct, regardless of what type

of data was used to evaluate the two classifiers.

Nonetheless, some classifiers are better suited than others for one particular ar-

rangement of the input data. For example, linear or quadratic classifiers are very well

suited for data that has normally distributed sample values, and more importantly

the shape of the decision surface between the k-classes has linear or quadradic shape.

Namely, an m-dimensional hyperplane of the linear classifier or a quadratic surface

in m-dimensional space of the quadratic classifier (where m is the dimensionality of

the data), would be well suited. However, these two examples of classifiers will be

hopelessly incapable of efficiently modelling the intricacies of input data that has a

spatial organization like the dataset shown in Figure 1.1.

Neural Networks (NNs) have the property that they are Universal Approxima-

tors. That is, they can approximate any given function with arbitrary precision given

they have a large enough number of neurons at their disposal and most probably an

equally large number of training samples and training time. Nevertheless, if NNs

do not posses enough neurons, they will not be able to learn the problem that is

presented to them.

This is the case shown in Figure 1.1, where we have a given pattern recognition

problem, the so called Banana dataset, which contains two sets of unlabelled points

that come from two separate distributions that graphically resemble the fruit they

were named after. The problem is to estimate or guess from which of the two

distribution each point is coming from. For this simple experiment, we trained NNs

with varying number of neurons in the, so called, hidden layer. We trained Neural

Networks with 1, 2, 3 and 5 neurons and plotted their decision boundary in Figure

3

CHAPTER 1. Challenges in Designing Pattern Recognition Systems

Figure 1.1: Decision boundary produced by four NNs with 1,2,3 and 5 hidden neu-
rons.

1.1. The top two decision boundaries show that the NNs could not learn the problem

at hand. They will always generate a decision boundary similar to the ones shown in

Figure 1.1, this is a fact that we will prove in Chapter 6 when we talk about weight

adaptation.

It remarkable to see that even with 3 neurons (bottom left graph of Figure 1.1)

the drop in classification error rate has started to flatten out. The selection of 3

neurons in the hidden layer of the NN is the crucial number of neurons needed to

learn the Banana dataset. This is a characteristic of the dataset or the layout of the

points which we consider to be correct.

Increasing the number of hidden neurons shows diminishing returns, even though

the error rate will continue to drop, the training time will increase with the addition

of extra neurons and the network will have to much variability that in extreme cases

it will be able to learn each data point. Which is categorically undesirable because

it will not generalize well unseen new data-points, which is one of the main targets

of pattern classifiers.

Therefore, it is imperative to be able to tailor the number of hidden neurons that

make up the Neural Network to the pattern recognition problem that is to be solved,

4

CHAPTER 1. Challenges in Designing Pattern Recognition Systems

this was the main idea that inspired this present work.

1.1 Research Problem and Motivation

The present thesis will investigate the issues related in designing a Modular Ar-

tificial Neural Network (MANN) for pattern recognition. The goal that we persuade

is two fold.

Firstly, we desire to tackle the problem of selecting the architecture for a neural

network, by seeking the answer to the following question:

”What is the number of hidden nodes a Neural Network architecture re-

quires in order to classify a given dataset (in some sense) optimally?”

Secondly, we address the problem of module selection in a greater scenario of

building a modular classifier based on individual Neural Networks, whose architec-

ture was determined by the process that we stated as our first goal.

Let us elaborate our first goal a bit more in the following paragraphs.

The question of ”how many hidden nodes are required in a Neural Network to

classify a given dataset optimally?”, does not have a straight-forward answer. Several

issues arise straight away from this single question: What are the hidden nodes?

What is the architecture of Neural Network? but more importantly: What is optimal

classification? We shall try to provide an answer to some of these questions.

In order to try to tackle the question of ”What is optimal classification?” we first

have to define a measure of optimality. There are several choices, we have decided

to use the classification accuracy for this purpose. However, we will also investigate

the Mean Squared Error (MSE, equation (2.2)) between the outputs of the Neural

Network and the desired target outputs of the Neural Network and the gradient of

the improvement at each training step or epoch.

We are going to use Feed-Forward Neural Networks that have all the nodes fully

connected to each other.

Protagonists:

� Neural Network

� Decision Boundary

� The link between the decision boundary and the architecture of the Neural

Network

In Figure 1.2 you can find the block diagram of flow chart of the elements that

will be presented in more detail in the following chapters. In the above mentioned

5

CHAPTER 1. Challenges in Designing Pattern Recognition Systems

Figure 1.2: Overall system view of the work presented in this thesis.

figure, the rectangles with rounded corners stand for a conceptional task that was

investigated, whereas the rectangles with sharp corners are denoting information in

the form of collection of databases and datasets.

1.2 Aims and Objectives

Our aim in this present research is to develop a methodology for suggesting

the number of hidden nodes required for a Feed-Forward Back-Propagation Neural

Network (FFBPNN) to have in its hidden layer in order to have the capacity to learn

the given pattern recognition problem that it is being trained on.

With this aim in mind we are proposing several immediate objectives in order to

reach our goal:

1. Firstly, obtain pattern recognition datasets that have an arrangement of the

sample points in recognizable prototypes. We focus on data arrangements

which have polynomial functions as the decision boundary formed between

pairs of classes.

6

CHAPTER 1. Challenges in Designing Pattern Recognition Systems

2. Relate the complexity of the datasets to the order of the polynomial that can be

fitted onto the decision boundary present between the pairs of classes present

in the dataset.

3. Implement algorithms to synthetically generate datasets that have a decision

boundary of a given polynomial order, ranging from 1 to 10.

4. Identify and apply metrics that can be calculated from the training set of a

pattern recognition problem, that can estimate the complexity inherent in the

dataset.

5. Evaluate the prediction power of the complexity metrics.

6. Decompose any pattern recognition problem that has c number of classes into

a p number of 2-class problems, using either a ”1-versus-ALL” or ”1-versus-1”

splitting method. Where p is the given by the binomial coefficient:

p =

(
c

2

)
=

c!

2(c− 2)!

and also,

p is the number of 2-class problems, and

c is the initial number of classes in the dataset.

7. Evaluate the classification performance of Single Neural Networks that have

the architecture parameter suggested by the complexity measurement. This

evaluation will be carried out on synthetic datasets, while comparing the per-

formance of the Neural Networks with other baseline approaches.

8. Improve the performance of Single Neural Networks by choosing the initial

weight parameters of the Neural Networks to approximate the polynomial de-

cision boundary present in the dataset.

9. Evaluate the classification performance of Modular Neural Networks that have

the architecture parameter suggested by the complexity measurement for each

module independently. This evaluation shall be conducted on realistic datasets.

Also, the evaluation will have to include comparisons to control experiments

and baseline performance experiments.

7

CHAPTER 1. Challenges in Designing Pattern Recognition Systems

1.3 Thesis Outline

The thesis is structured in the following way, after this current introductory

chapter we are going to present in Chapter 2 the background to Neural Networks

that will include a brief historical overview, literature review and implementation

details of Neural Networks and Modular Neural Networks.

The third chapter will present the Meta-Measurement metrics devised and cal-

culated to describe the complexity required to classify a given dataset.

In Chapter 4 we will describe the data that was used in experiments throughout

the rest of the thesis.

The fifth chapter will present the experimental setup and results from employing

the complexity measures described in Chapter 3 for approximating decision bound-

aries with several different methods that are being compared.

The sixth chapter will show how to select initial parameters for Neural Network

training based on approximating the rough decision boundary.

The seventh chapter will present the experimental setup and results achieved by

creating Modular Neural Networks trained on synthetic and realistic datasets.

Finally, in Chapter 8 we shall present the final conclusions resulting from our

research and a few future development suggestions.

8

Chapter 2

Neural Networks

T
he following chapter will give a short introduction to Feed-Forward Artificial

Neural Networks (ANNs or simply NNs) and modular realization of such

networks (MANNs or MNNs). After a short historical review, we shall

discuss the following issues related to Artificial Neural Networks:

� the building blocks of Neural Networks: the neurons;

� the connectionist topology of the neurons in a layered organization;

� the back-propagation training algorithm of the NNs.

� and finally the structure of Modular Neural Networks (MNNs).

2.1 Historical Background

The roots of the development of neural networks can be traced back to ideas from

philosophy, psychology and neurology, when people wanted to build autonomous en-

tities long before the present day computers, which, opened the gates to unimagined

possibilities. But only the advent of recent advances and emergence of the following

domains contributed to the development of neural networks according to Mitchell

[51]: philosophy, psychology, neurobiology, Bayesian theory, computational complex-

ity theory, information technology, control theory, cybernetics, information theory

and last but not least: statistics.

Artificial Neural Networks (ANNs) were created by drawing inspiration from

biological brains in order to mathematically model their behaviour and produce

massively parallel computational schemes.

The first formulation of basic Artificial Neural Network Principles were presented

by McCulloch and Pits in 1943 [48], where they assumed the neuron is a binary el-

ement. Later, Donald Hebb introduced the Hebbian Learning Law in his influential

9

CHAPTER 2. Neural Networks

book The Organization of Behaviour [34] where he stated the following: ”repeated

activation of one neuron by another, across a particular synapse, increases its con-

ductance”, which is not necessarily directly used in ANN designs however, it is

employed by Kohonen Self Organizing Maps, Cognitron, NeoCognitron and Large

Scale Memory Storage and Rertrieval (LAMSTAR) Networks.

The earliest ANN, The Perceptron, was proposed by the psychologist Frank

Rosenblatt that appeared in the Psychological Review of 1958 [66], introducing a

learning method for the McCulloch and Pitss neuron model. Frank Rosenblatt’s

widely influential contribution to the field of artificial intelligence was the introduc-

tion of the perceptron, a ”hypothetical nervous system” designed to mimic some

of the organizational systems used in the brain. Rosenblatt and his followers called

their approach connectionist to emphasize the importance in learning of the creation

and modification of connections between neurons.

Widrow and Hoff [78] introduced in 1960 the ”Adaline” (ADaptive LInear NEu-

ron), a single neuron trained by gradient descent rule to minimize the squared error.

In 1969 Minsky and Papert demonstrated the limits of the simple perceptrons,

proving they are not computationally universal, which resulted in a drastic reduction

in research interest in neural networks. However, this hurdle was overcome by the

discovery of the backpropagation training of Multi Layered Perceptrons (MLPs)

by Rumelhart et al. in 1986 [67] which has been since proven that multi-layered

perceptrons with non-linear activation functions are indeed universal approximators.

Simon Haykin [33] provides the following definition for a Neural Network, which

he adapted from Aleksander and Morton in 1990 [1]:

”A neural network is a massively parallel distributed processor made

up of simple processing units that has a natural propensity for storing

experimental knowledge and making it available for use. It resembles the

brain in two respects:

1. Knowledge is acquired by the network from its environment through

a learning process.

2. Inter-neuron connection strengths, known as synaptic weights, are

used to store the acquired knowledge.”

The literature covering neural networks is vast and growing. Amongst the large

number of textbooks and treaties we can suggest the works of Bishop[8], Mitchell

[51], Haykin [33].

Neural networks have applications in: business(financial forecasting, insurance

policy evaluation), aerospace, automotive (manufacturing control), defence, health-

care and others.

10

CHAPTER 2. Neural Networks

Neural networks are part of the broad field of Computational Intelligence which

was first originated in 1990 by the IEEE Neural Networks Council but was first

stated by around the years 1993-1994.

Marks in 1993 [47] made a clear distinction between Computational Intelligence

and Artificial Intelligence, although both seek similar goals, however Bezdek [7]

argues that Computational Intelligence is a subset of Artificial Intelligence.

According to Bezdek [7], a system is called Computationally Intelligent if all the

following are true:

1. it deals with the low level representation of the data (e.g. numeric representa-

tion),

2. has a pattern recognition component which does not employ knowledge in

the Artificial Intelligence sense but, exhibits computational adaptivity, fault

tolerance, and finally;

3. it approaches the speed and accuracy of human performance.

The IEEE Computational Intelligence Society (formerly known as IEEE Neural

Networks Council) defines its subject of interest as Neural Networks, Fuzzy Systems

and Evolutionary Algorithms [17], and is one of the biggest publishers of journal

papers on the subject.

Engelbrecht [21] considers the following six basic approaches on how to achieve

Computational Intelligence, through an individual or a combination of the following:

1. Fuzzy Logic;

2. Neural Networks;

3. Evolutionary Computing;

4. Learning Theory;

5. Probabilistic methods;

6. Swarm Intelligence.

obviously Neural Networks are among them and they are the main focus of this

thesis.

The construction of a Computational Intelligent system has the purpose of mod-

elling a system or a process which is not tractable to mathematical or traditional

modelling techniques because:

1. the processes are too complex to represent mathematically;

11

CHAPTER 2. Neural Networks

2. the models are difficult and/or expensive to evaluate;

3. there are uncertainties in the process’ operation;

4. the process is non-linear, distributed, incomplete and stochastic.

Nils J. Nilsson [55] summarized the field of Artificial Intelligence by dividing the

ideas and achievements of AI research into:

1. Complete AI Systems;

2. Architectures;

3. Processes; and

4. Representations.

Since we are concerned with Neural Networks, which fall into the Computational

Intelligence field according to [7] while according to Nilsson, NNs would fall into the

”Architectures” subset of Artificial Intelligence.

The most important, inherent, properties of Artificial Neural Networks, which

makes them an attractive tool for computational intelligence and arguably artificial

intelligence tasks, according to [33] are:

� generalization;

� graceful degradation;

� adaptation and learning;

� inherent parallelism.

Neural networks are used for the following tasks:

� classification;

� function estimation;

� regression tasks.

The variety of fields of application of neural networks, in their various forms,

is limited only by the ability to measure, quantize and digitize the desired inputs

that will be applied to the neural network. However neural networks do have some

limitations and drawbacks. Among the drawbacks of neural networks we can men-

tion: training data over-fitting tendency, entrapment in local minima of the error

surface and long training time. The main goal of research in the field of artificial

12

CHAPTER 2. Neural Networks

neural networks is to understand and emulate the working principles of biological

neural systems [5]. Biological neural systems consist of billions of individual bio-

logical neurons, interconnected via tens of thousands of synaptic weights to other

neurons. Recent advances in neurobiological sciences have given more insight into

the structure and the workings of the brain which inspired researches in the field of

Machine Learning, Computational and Artificial Intelligence.

However, it is surprising to find that Machine Learning does not only borrow ideas

and solutions from the biological world but also helps understand how biological

brains function on a neuro-physiological level by providing a theoretical framework

for how animals learn. This was achieved through the research and development of

reinforcement learning conducted by Donahue & Seo [16] and earlier work of [68].

2.2 Number of Published Articles

Neural networks have enjoyed a great amount of attention only in the past 20

years, due to their wide applicability and desirable features. Figure 2.1 shows the

increasing trend in published papers related to the application and advances in neural

networks according to ISI Web of Knowledge (WOK) [64]. The number of articles

has been queried in 2009 and revised in 2014 to show the difference which occurred

within roughly 5 years.

The graph shown in Figure 2.1, shows the bars of the number of articles corre-

sponding to the query done 2009 and 2014 in three annotations:

1. trend line of the number of articles reported by WOK to be published in 2009

(dashed blue line);

2. trend line of the number of articles reported by WOK to be published in 2014

(dashed red line);

3. ratio of the number of articles reported by WOK to be published in 2014 over

the number of articles reported to be published in 2009 (dashed and full green

line) with the scale shown on the left-hand side of the figure.

The trend lines for the number of articles reported by WOK to be published

in 2009 and 2014 have been analysed by fitting a linear function on the two sets

of reported number of published articles from the year 1989 onwards, since before

1989 the number of articles returned by the two queries is small. In the case of

the year 1988 there were reported by WOK in 2014 to have been published only

556 articles related to neural networks respectively the 2009 query of the WOK

database returned only 101 articles. Before the year 1988 the number of articles

13

CHAPTER 2. Neural Networks

0

0.5

1

1.5

2

2.5

x 10
4

N
um

be
r

of
 a

rt
ic

le
s

19
62

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
14

WoK article count 2009
WoK article count 2014

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

In
cr

es
e

fa
ct

or
 fr

om
 y

ea
r

20
14

 o
ve

r
ye

ar
 2

00
9

Figure 2.1: Number of publications per year related to neural networks based on ISI
Web of Knowledge in 2009 and 2014 [64] along with the increase factor from one
year to the other.

indexed by WOK are steadily decreasing the further we look back in time. We are

not implying anything about the impact or quality of any of the articles, merely

doing a quantitative assessment.

The first trend line, shown with the dashed blue line, in Figure 2.1, which cor-

responds to the number of articles indexed by the WOK in 2014, has the following

parameters:

y2009(x− 1988) = 460.82x− 633.87

The second trend line, shown with the dashed red line, in Figure 2.1, which

corresponds to the number of articles indexed by the WOK in 2014, has the following

parameters:

y2014(x− 1988) = 858.66x− 655.67

From the coefficients of the two trend-lines we can see that the average growth

in the indexed number of articles relating to neural networks queried in 2009 was

about 460 articles per year in the period 1988 to 2009 and respectively in the query

14

CHAPTER 2. Neural Networks

done in 2014 the number of articles per year was 858, an almost two fold increase in

the number of articles searchable in the Web Of Knowledge database.

This two fold increase is also evident when we calculate the ratio between the

number of articles returned from the query done in 2014 over the number of articles

returned by the query done in 2009. After removing the values that produced division

by zeros, we have plotted this ratio also in Figure 2.1, with the green colour and

using the scale on the right side of the graph. Values are plotted with a dashed green

line for the time period between the years 1962 and 1990, respectively for the period

between the years 2009 and 2014 where the ratio is meaningless either because there

are very few number of articles or there is no information in the query done in 2009

about publication done between 2009 and 2014.

From this analysis we can see that the development and application of neural

networks has began with an explosion of publication around the year 1990 and it

is a field that is benefiting from an increased interest, by a growing number of

publications indexed by the Web Of Knowledge indexing service [64].

An important source of bibliographic and citation information was the British

Library’s searchable catalogue, which includes conference proceedings, journals and

books. Among the reported 56 million items the British Library has on record, there

were a total of hits 111,587 for the term ”neural networks”.

We conducted a search to find the most influential journals relating to neural

networks. The result of this search is shown in Table 2.1.

15

CHAPTER 2. Neural Networks

Table 2.1: Journals with most publications on neural networks according to British
Library

Number of
Name of journal publications

Lecture Notes in Computer Science
16,080

Journal on Data Semantics

IEEE International Conference on Neural Networks 4,198

Proceedings of SPIE, The International
3,747

Society for Optical Engineering

Neural Networks 3,085

Intelligent Engineering Systems through
2,158

Artificial Neural Networks

Neurocomputing: An International Journal 1,705

Proceedings of the International Joint Conference
1,674

on Neural Networks

World Congress on Neural Networks 1,246

Neural Networks for Signal Processing 772

International Conference on Artificial Neural Networks (ICANN) 712

IEE Conference Publication 611

European Symposium on Artificial Neural Networks,
558

Computational Intelligence and Machine Learning (ESANN)

Proceedings of the Australian Conference on Neural Networks 423

Cellular Neural Networks and their Applications (CNNA) 398

Communications in Computer and Information Science 388

International Conference on Fuzzy Logic and Neural Networks 267

Brazilian Symposium on Neural Networks 176

International Symposium on Artificial Neural Networks 122

Proceedings of the International Workshop on Applications of
80

Neural Networks to Telecommunications

TOTAL: 38,400

16

CHAPTER 2. Neural Networks

2.3 Artificial Neural Networks for Pattern Clas-

sification Applications

Neural Networks (NNs) are part of the machine learning scientific discipline,

which is concerned with the design and development of algorithms that allow com-

puters to learn based on data, such as from sensor data or off-line databases. They

are suitable for performing the following types of general tasks: pattern classification,

regression, and clustering [33].

There are several paradigms of learning which apply to pattern recognition

[33],[18]:

1. supervised learning;

2. unsupervised learning;

3. reinforcement learning and active learning.

We are going to employ in our research the first paradigm of learning, namely

the supervised learning paradigm.

The goal of NNs is not to learn an exact representation of the training data itself,

but rather build a model of the process that generates the data. This problems is

said to be well posed if an input always generates a unique output and the mapping

is continuous.

Supervised learning is an ill posed problem, given the training or input examples

that are a subset of the Input-Output relationship, an approximate mapping is

needed to be estimated. However, the input data might be noisy, imprecise and it

might be insufficient to uniquely construct the mapping.

Regularization techniques can transform an ill-posed problem into a well posed

one, in order to stabilize the solution by adding some auxiliary, non-negative func-

tional of constrains [59], [73].

In this research we are concerned with solving pattern classification tasks using

Neural Networks (NNs). The NNs are adapting their internal parameters (network

connection weights) to model their output according to the input from the envi-

ronment they are taking the information from. This process is generally called

”learning” of the NN.

The parameters can be learnt in three different paradigms:

1. Using prescribed outputs for some of the inputs (desired outputs) which are

evaluated as correct or incorrect by a third party, this is called Supervised

Learning, and the input/output data is said to be labelled;

17

CHAPTER 2. Neural Networks

2. Using a task independent measure of quality that will require the network to

behave in a self organizing manner, which is called Unsupervised Learning;

3. The Input to Output mapping of the network is performed continuously in

order to improve on scalar performance measure, this is called Reinforcement

Learning. The data in the latter two paradigms is said to be unlabeled and

in contrast with the labelled data, this kind of data is readily available and

inexpensive to obtain.

The manner in which the neurons are organized is closely related with the learning

algorithm used to train the network. According to Mehrotra et al. [49], Neural

Networks can be categorized according to their topology, i.e. the way neurons are

organized as the following types:

1. Fully connected Networks

2. Single Layer Networks feed-forward Networks

3. Multilayer feed-forward Networks

4. Acyclic Networks

5. Modular Neural Networks

We will need to add that feedback links can exist between the nodes, so that the

outputs of a particular node are connected to nodes from which the particular node

receives a connection. According to Haykin [33] these types of networks are called

Recurrent Networks. In the next two sections we will deal with two types of NNs,

namely Feed-forward and modular networks, which are the main types of networks

in our research.

2.4 Neurons as Processing Units

The Neural Network consists of processing units called nodes or neurons, that

take the summation of the inputs and map it through a non-linear function to

produce an output. An example of a single neuron can be seen in Figure 2.2, where

a neuron with three inbound inputs x1, x2, x3 are pictured, along with the biasing

connection w1 and also the summation output, which is then passed through the

tanh function is labelled as y1. The neurons or nodes (as they are also called) are

arranged in layers and connect the inputs of the Neural Network to the outputs

of the network, see Figure 2.4 for an example of a Neural Network with 2 inputs,

18

CHAPTER 2. Neural Networks

3 hidden nodes and 2 outputs. The neural network presented in Figure 2.4 has 3

layers.

The non-linear activation function in Figure 2.4 for each of the neurons is the

hyperbolic tangent, this activation function was also in the rest of our work. Ex-

amples of other common activation functions to be employed by the neurons can be

seen in Figure 2.3.

Tanh()Σ

x1

b1

x3

w1

w3

y1w2x2

Figure 2.2: Single neuron with the summation of the inputs, the non linear activation
functions (tanh) and the resulting output.

A hidden node or neuron is the processing unit in a Neural Network that is

located between the input layer and output layer of a Neural Network.

yk = tanh

(
nk∑
j=0

wj,k · xk

)
(2.1)

where

yk = the output of kth layer node

wj,k = is the weight associated with input k into layer j

xk = the input into the kth layer

nk = the number of nodes in the kth layer

MSE =
1

N

N∑
i=0

(ti − yi)
2 (2.2)

where:

N = the number of training samples

ti = the ith desired output of the network

yi = the ith output produced by the network at a given training state

19

CHAPTER 2. Neural Networks

(a) Step (b) Piecewise linear (c) Sigmoid

(d) Tanh

Figure 2.3: Examples of common non-linear transfer functions.

2.5 Feedforward Backpropagation Networks

Backpropagation, or propagation of error, is a common method of teaching ar-

tificial neural networks how to perform a given task. It was first described by Paul

Werbos in 1974, but it wasn’t until 1986, through the work of David E. Rumelhart,

Geoffrey E. Hinton and Ronald J. Williams, that it gained recognition, and it led to

revival of the research of artificial neural networks.

Figure 2.4: Example of a multi layered, fully connected, Feed-Forward Neural Net-
work architecture with 3 layers, 2 inputs, 3 hidden nodes and 2 outputs, generally
called a 2-3-2 network.

According to Simon Haykin [33], the back-propagation algorithm has emerged as

20

CHAPTER 2. Neural Networks

the workhorse for the design of feedforward networks known as multilayer percep-

trons (MLP).

As shown in Figure 2.4, a multilayer perceptron has an input layer of source

nodes and an output layer of neurons (i.e., computation nodes); these two layers

connect the network to the outside world. In addition to these two layers, the

multilayer perceptron usually has one or more layers of hidden neurons, which are

so called because these neurons are not directly accessible. The hidden neurons

extract important features contained in the input data.

The back-propagation learning algorithm is simple to implement and somewhat

computationally efficient in that its complexity is linear in the connection weights

of the network. However, a major limitation of the algorithm is that it does not

always converge or it can be extremely slow, particularly when we have to deal with

a difficult learning task that requires the use of a large network.

Despite these shortcomings of the MLP architecture and training algorithms,

these networks are used in solving problems where the dimensionality is small and

the amount of training data is sufficient so that the ”Curse of dimensionality” is

avoided, as for example in the recent work published by: Foody [24] in 1995, Blamire

[9] in 1996 and more recently in 2003 the work of Pal and Mather [56]. The perfor-

mance of the MLP is dependent on the quality of the training data, a fact that was

neglected a bit by previous studies but Taskin Kavzoglu [39] in 2009 has improved

the classification accuracy by 2-3 percent by eliminating outliers, using training set

refinement, supports the premise that MLPs are still viable to solve current prob-

lems.

For a good generalization the number of examples in the training set N , has to

be several times larger than the neural network’s capacity [79]:

N ≫ Nw

Ny

where Nw is the total number of weights or free parameters and Ny is the total

number of output units.

2.6 Training Algorithm

Neural Networks (NN) have two distinct modes of operation:

1. Learning mode, parameter estimation or training of the NN;

2. Running mode or testing of the NN.

21

CHAPTER 2. Neural Networks

2.7 Modular Neural Networks

The best description of the Modular Neural Networks (MNN) has been given by

Ronco and Gawthrop in their technical report from 1995 [65], where they define the

MNN in comparison with ”global” back-propagation and clustering neural networks.

Here they state that a modular network is the most likely to combine the desirable

features of the two aforementioned classes of networks. It is pointed out that a

MNN has to have its modules assigned problem specific sub tasks, and not just any

sub-task, resulting from an arbitrary decomposition scheme that might not have any

physical meaning. The reason for dividing the problem, that we want to solve, into

sub tasks that are physically meaningful, is desirable from at least two stand points:

1. the number of variable parameters is reduced to a number large enough to

provide a good solution;

2. the network becomes tractable, so that the internal workings of the network

have some meaning attached and are not just black boxes that cannot be

inspected easily.

Further in this report and in the survey of Auda and Kamel [4], we find the steps

needed to be accomplished by the designer of a MNN:

1. Decomposition of the main task into sub-tasks;

2. Organization of the modular architecture;

3. Communication between the modules and decision fusion.

Modular neural networks possess the conceptual means to overcome some of the

shortcomings of back-propagation multi-layered networks (BP-NNs) and the benefits

of clustering networks. Here are some of the problems BP-NNs face:

1. Flat area or local minima in the error surface, leading to slow convergence to

a solution if it is not trapped in local minima when it will fail to converge at

all.

2. Interference in the input data, i.e. the so called ”spatial crosstalk” that is best

seen in the ”what and where” type of problems where a BPNN has problems

retaining both of the aspects of the problem in a single architecture. Imagine

breaking down the task into ”what” and ”where”, now it is subjectively obvious

that the resulting system will perform better than the system that tries to solve

the whole problem by itself. This way of task decomposition is often denoted

22

CHAPTER 2. Neural Networks

in the literature as ”Divide and conquer” (from the Latin: ”Divide et Impera”

which was a very successful way of the Roman Empire to triumph over its

enemies). It must be pointed out that the term ”Divide and conquer” refers to

any task decomposition and there exists a learning rule in modular networks

with the same name described by Fu, Lee and Pao [27], that splits the training

data in two hopefully easier to learn regions with very desirable outcome.

3. Closely related to the previous problem of BP-NNs is the problem of ”temporal

crosstalk”, where the network is trained to do one task and afterwards it is

trained to do another task. Usually the network will tend to forget the first

task it has learned as it learns the second one.

The idea of using multiple modules or committees to realize a complex task can

be traced back to the published work of Nilsson [54] in 1965, where he considered a

network having a layer of elementary perceptrons followed by a vote taking percep-

tron in the second layer. This approach is based on the same common engineering

principle ”divide and conquer” stated previously. The combination of experts is said

to constitute a committee machine, these machines can be classified in two major

categories [33]:

1. Having Static Structure, where the responses of several experts are combined

by means that do not involve the input signal or pattern. Major approaches

in this class are: ensemble averaging and boosting of weak learning algorithms

(e.g. Adaboost);

2. Having a Dynamic Structure, where several modular networks are used to

learn the whole input space and the output of each module is mediated by an

integrating unit to produce the final output. Major architectures in this class

are: the Mixture of Experts (ME), gated experts and hierarchical mixture of

experts.

The previous research on MNNs is assessed in a very good and concise manner in

the referenced papers [65] [4] and the references therein. Some problems still remain

to be solved so the modular networks can be efficiently implemented for various

applications, namely:

1. How to split the input space properly, such that the decomposition can be

beneficial to both learning and generalization;

2. How to decide the proper number of experts in a committee machine for a

particular task.

23

CHAPTER 2. Neural Networks

However, the problem of task decomposition was studied in the paper produced

by Lu and Ito [44], where they consider that task decomposition can be roughly

divided into three classes as follows:

1. Explicit Decomposition, before learning the problem is divided into a set of sub-

problems by the designer of the system using domain and a priori knowledge

about the problem. The difficulty lies with the fact that a large amount of prior

knowledge is required and also this knowledge has to be properly translated

to the system;

2. Class Decomposition, again, before learning the problem is broken down into

a set of sub-problems so that a problem having K classes is divided into K, two

class problems; An example is presented in reference [44] where a significant

gain in performance is achieved compared with classical global neural networks;

3. Automatic Decomposition, where a problem is decomposed into a set of sub-

problems by the process of learning. The former two methods are more efficient

because the task is decomposed before the learning, but this latter method

is more general since it does not require any prior knowledge. Most of the

automatic methods fall into this category, for instance: the mixture of experts

[52] and the multi-sieving network.

The multi classifier system presented here [52] describes the usage of a MNN

to recognize shapes in an industrial robotic vision project. Another example of

the classification discriminatory power of MNNs is presented in [60] where the re-

sults suggest that MNNs achieved comparable to Support Vector Machines while

the proposed method was slightly surpassed by Exponential Radial Basis Function

kernels, the method did prove to be better than the SVM using Gaussian radial basis

function.

2.8 Chapter Conclusions

In this chapter we have given an introduction to Neural Networks and Modular

Neural Networks along with a review of the literature on the topic.

We have found that Neural Network research is still very active and productive,

thus, our research is novel and has a valid place within the field.

24

Chapter 3

Data Complexity

T
his chapter describes the problem related to the definition of data complexity

for pattern recognition datasets and describes the method that we employed

to tackle this problem by calculating additional measurements on the input

training dataset in order to obtain a uniform complexity measure of the dataset. The

order of the polynomial which is associated to the complexity of the dataset will be

used later on to suggest the number of hidden nodes to be used in the architecture

of the neural networks or modules of neural networks.

3.1 Introduction

Complexity is an illusive term, we seem to understand straight away what is

meant when the word arises in a conversation, yet there is no useful quantitative

definition of the word.

Here is how Random House Webster’s Electronic Dictionary defines the term

complex, the second definition is the most appropriate for our endeavour:

com-plex (adj., kuhm pleks’)

characterized by a complicated or involved arrangement of parts,

units, etc.: complex machinery.

This definition does not hint of a usable quantitative insight into what complexity

is! We turn our attention to information theory where in turn we find in-computable

or impractical measures of complexity in the form of the Kolmogorov complexity and

the Universal Distribution [43].

Following the work of Tin Kam Ho and Mitra Basu in 2002 [35] and their latter

book of Ho, Basu and Law [6] we are describing the complexity of the datasets based

on measurements calculated on the training data itself.

25

CHAPTER 3. Data Complexity

In order to define the complexity of an input dataset, we have resorted to using

several measurements that characterize the intricacies of the dataset, which we asso-

ciated further on, with the order of a polynomial that can be fitted onto the decision

boundary between the two classes within the input dataset. We have named these

additional measurements, meta-measurements, because they are aiding in defining

the complexity of the data.

The mapping between the meta-measurements and the polynomial order of the

decision boundary is predicted by a machine learning classifier. Thus, we are intro-

ducing another abstraction layer between the data and the actual classifier that is

supposed to do the actual classification task. This layer of abstraction is supposed

to evaluate the input training data and select a suitable classifier or in the case of

modular neural networks make suggestions to alter the architecture of the modules

in a neural network.

We set out to investigate methods of finding a suitable classifier for the train-

ing data that is available to estimate its parameters, this was hinted by previous

published work of Cano in 2013 [12], Cavalcanti 2012 [13] and Sotoca in 2006 [71].

However, we did not find a reference to an automated system that would select

a suitable classifier based on measurements obtained from the training data.

In the following section, we shall describe the definition of the meta-measurements

to be calculated on the input data, which can be seen as complexity measurement,

since they will be able to distinguish, for example in the simplest case, between a

linearly separable dataset and a dataset which has a decision boundary of a poly-

nomial of second order. The latter dataset will obviously have a higher complexity

than the former.

The examination pertaining the potential validity of the proposed method is

deferred to section 4.3 of chapter 4 when we will have discussed also the datasets

used in the evaluation.

3.2 Meta-Measurements

Meta-measurements are measurements taken on the input training data of a

pattern recognition problem, that can be associated with the complexity of the

dataset on which they are calculated. We have chosen the meta-measurements to

investigate from the literature and we have proposed some new meta-measurements.

The chosen meta-measurements were selected because of their descriptive ability

for the spatial distribution of the sample points belonging to the two classes present

in the classification dataset.

26

CHAPTER 3. Data Complexity

A concise list of all the meta-measurements can be found in Table 3.1 at the end of

this section. In this table the meta-measurements which have a star in parenthesis

(*) besides their shorthand name have been inspired from Ho and Basu’s paper

from 2002 [35] with slight modifications which will be mentioned when they are

detailed. The other meta-measurements are grouped together by the first one or two

letters in their name. These have a capital ”E” to denote entropy measurements,

the capital letters ”FE” for feature evaluation measurements, ”S” for statistical

measurements, ”G” for geometrical measurements and finally ”A” for the angle

profile measurements. The vector correlation measurement stands alone in its own

group named ”VC”.

An important note about all of employed meta-measurements is that, they all

work with datasets having at most two classes, they are not adapted to work with

more than two classes. However, by splitting the k-class problem either in a ”1

versus ALL” or ”1 versus 1” fashion they are adapted to work even for this type of

datasets.

F1: Multi-dimensional Fisher’s discriminant ratio

The first meta-measurement is the Fisher’s discriminant ratio (F1) that is

adapted to work with multi dimensional data.

It is defined as:

F1 =
(µ1 − µ2)

2

σ2
1 + σ2

2

where µ1 and µ2 are the means of the feature values in vectorial form, respec-

tively σ1 and σ2 are the variances of the two classes.

Ho, Basu and Law [6] use the maximum value of the Fisher discriminant over

all the features of the dataset, however we employ the definition of the dis-

criminant that takes into account all features as suggested by Xu and Lu [81].

The employed multi-dimensional Fisher criterion is used to measure the linear

separability of the feature space obtained using Fisher Discriminant Analysis.

F2: Volume of overlap

The volume of overlap (F2) meta-measurement is used to calculate the area

or generally, in higher dimensions, the volume, of the overlap between the two

classes in the dataset.

It calculates the area (or volume) of the bounding box of the samples belonging

to each of the two classes and it finds the region which is overlapping and it

normalizes it by the area/volume of the largest bounding box of all the samples

from both classes together.

27

CHAPTER 3. Data Complexity

If the two bounding boxes are disjoined and do not have any common points

between them, then the value of this measurement is the area/volume of the

smallest region between the two bounding boxes. This is yielded by the nega-

tive sign of the measurement.

The F2 measurement is defined as:

F2 =
∏
i

MINMAXi −MAXMINi

MAXMAXi −MINMINi

MINMAXi = min
(
max

i
(∀xi ∈ ω1), max

i
(∀xi ∈ ω2)

)
MAXMINi = max

(
min

i
(∀xi ∈ ω1), min

i
(∀xi ∈ ω2)

)
MAXMAXi = max

(
max

i
(∀xi ∈ ω1), max

i
(∀xi ∈ ω2)

)
MINMINi = min

(
min

i
(∀xi ∈ ω1), min

i
(∀xi ∈ ω2)

)
where i = 1 . . .m is the index of the features in the dataset and maxi (∀xi ∈ ω1)

should be read as the maximum of all feature values with index i that belong

to class ω1, with the other operators having the similar meaning.

F3: Feature Efficiency

This meta-measurement counts the number of sample values that are separated

by each feature and takes the maximum value across all the features. A sample

is counted if it falls outside of the overlapping region between the two classes.

CL1: LD Classifier error rate

This measurement is defined as the training error produced by the Linear

Discriminant Classifier on the dataset that is being investigated and assessing

its performance on the same dataset, therefore providing the, so called, training

error rate. The classifier implementation is taken from the PRtools toolbox

[20] and [74].

CQ1: QD classifier error rate

In the case of this measurement the Quadratic Discriminant Classifier [20]

and [74] is used but the methodology is the same as for the QD1 and CQ

measurements.

CK1: KNN classifier error rate

In the case of this measurement the K-Nearest Neighbour Classifier [20] and

28

CHAPTER 3. Data Complexity

[74] is used but the methodology is the same as for the CL1 and CQ1 mea-

surements.

Figure 3.1: Addition of linearly interpolated data points to the banana dataset

LL1: LD classifier non-linearity

The following three meta-measurements (LL1, LQ1 and LK1) make use of

linearly interpolated points between pairs of points from the dataset that is

being investigated.

Figure 3.1 shows the banana shaped dataset along with the interpolated points

that were added along the segments that connect the pairs of points from the

original dataset. The added points are labelled with the same label as the pair

of points that were used to generate it.

The LL1 meta-measurement is calculated by training a Linear Discriminant

Classifier on the original dataset and assessing its performance on the set of

linearly interpolated points alone.

The LDC or Bayes-Normal-1 classifier employed here is described in [74] and

the implementation is from the PRTools Matlab Toolbox [20].

29

CHAPTER 3. Data Complexity

LQ1: QD classifier non-linearity

This measurement uses the same methodology as in computing the LL1 and

LK1 meta-measurements, with the only difference that the employed classifier

is the Quadratic Discriminant Classifier (QDC) or also mentioned as Bayes-

Normal-2 classifier, described in [74].

LK1: KNN classifier non-linearity

This measurement uses the same methodology as in computing the LL1 and

LQ1 meta-measurements, with the only difference that the employed classifier

is the K-Nearest Neightbour classifier described in [74].

VC: Vector Correlation between features and labels

The vector correlation measurement was inspired by the work of Hanson et.

al [32] which has been adapted to work with dimensionality d > 2.

Given two sets of vectors: zi =
[
zi,1 . . . zi,j

]
and wi =

[
wi,1 . . . wi,j

]
with n vectors in each set, each vector having d components or having the

dimensionality d.

i = 1, . . . , n is the index of the vector in the set of n vectors, and j = 1, . . . , d

is the index of the jth component of the vector.

Individual feature statistical variation for each set of vectors has the following

notation: σz,j or σw,j which represents the individual standard deviation of

feature j of the first set of vectors z respectively the second set of vectors w.

The vector correlation is defined as:

VC = sign(ξ)

√∑d
k=1

∑d
p=1 (σz,k,w,p)

2 + 2|ξ|
σ2
zσ

2
w

where, σz,k,w,p is the covariance between the feature index k of vector set z and

feature index p in vector set w, both of which can take values between 1 . . . d;

and

ξ = det



σz,k,w,p . . . σz,k,w,p

...
. . .

...

σz,k,w,p . . . σz,k,w,p




The two sets of vectors used to calculate the vector correlation are on one hand

the raw feature values of dataset, and on the other hand, are the average class

vectors corresponding for each vector in the raw feature set. Therefore, we are

measuring how closely correlated are the feature values of the dataset to the

class centres.

30

CHAPTER 3. Data Complexity

E1: Average Shannon entropy

The Shannon entropy is calculated for each independent feature in the dataset,

then it is averaged across all the features.

The Shannon information theoretic entropy of a set of values xi with proba-

bilities pi(xi) is defined as [70]:

E1 = H(x) = −
nx∑
i=1

pi(xi) log(pi(xi))

We have used a non-parametric approach to estimate the probability distri-

bution pi(xi) without assuming any shape of the probability function. In this

sense, the range [mini (x),maxi (x)] was divided into nx number of bins having

the width w which equals:

w = 2 IQR (x)n1/3

where, IQR (x) is the inter-quartile range of the values in x. This heuristic of

estimating the bin width is named the Freedman-Diaconis rule [26].

The values are counted into their corresponding bin and the resulting frequency

count is then normalized by the total number of values found in x, therefore,

pi(xi) is a pseudo-probability estimation of a particular value xi to be observed.

The convention was used that 0 log(0) = 0, since limp→0 p log(p) = 0.

E2: Average MAXIMUM variance entropy

The maximum variance entropy is calculated, according to the formula given

below, for each independent feature in the dataset, then it is averaged across

all the features.

E2 = V (x) =
1

2
log(2 π e VAR(x))

where, VAR (x) is the statistical variance of the variable x.

E3: Total Shannon entropy

The total Shannon entropy is the summation instead of the average of the

entropies (E1) corresponding to each feature column in the dataset.

E4: Total MAXIMUM variance entropy

The total maximum variance entropy is the summation instead of the average

of the entropies (E2) corresponding to each feature column in the dataset.

31

CHAPTER 3. Data Complexity

FE1: Feature evaluation criterion, Inter-Intra distance

The following 6 meta-measurements (FE1 to FE6) are feature evaluation crite-

rions obtained from the PRTools Matlab toolbox [20] and described in [74].

This feature evaluation criterion was calculated using the following Mat-

lab statement: FE1{i} = feateval(input dataset, ’in-in’);

FE2: Sum of Mahalanobis distances

This feature evaluation criterion was calculated using the following Mat-

lab statement: FE2{i} = feateval(input dataset, ’maha-s’);

FE3: Minimum Mahalanobis distances

This feature evaluation criterion was calculated using the following Mat-

lab statement: FE3{i} = feateval(input dataset, ’maha-m’);

FE4: Sum of squared Euclidean distances

This feature evaluation criterion was calculated using the following Mat-

lab statement: FE4{i} = feateval(input dataset, ’eucl-s’);

FE5: Minimum of squared Euclidean distances

This feature evaluation criterion was calculated using the following Mat-

lab statement: FE5{i} = feateval(input dataset, ’eucl-m’);

FE6: 1-Nearest Neighbour Leave-One-Out classification performance

This feature evaluation criterion was calculated using the following Mat-

lab statement: FE6{i} = feateval(input dataset, ’NN’);

S1: Average Skewness

Skewness is the ratio of the mean cubed deviation from the mean cube of the

standard deviation [40] and [50]

S1 = β1 =

(
E [X − µX]

3

σ3

)2

The average is taken of the univariate skewness of each feature column of the

dataset.

S2: Maximum Skewness

The maximum skewness (S2) is calculated with the same formula as the average

skewness (S1) but the maximum value across all the columns or features of the

dataset is retained as opposed to the mean of S1.

32

CHAPTER 3. Data Complexity

S3: Minimum Skewness

The minimum skewness (S2) is calculated with the same formula as the average

skewness (S1) but the minimum value across all the columns or features of the

dataset is retained as opposed to the mean of S1.

S4: Minimum absolute Skewness

The minimum absolute skewness (S3) is calculated with the same formula as

the average skewness (S1) but the minimum of the absolute value across all

the columns or features of the dataset is retained as opposed to the mean of

S1.

S5: Average Kurtosis

The univariate kurtosis of a set of observations is defined as the ratio of the

forth moment about the mean to the forth power of the standard deviation:

S5 = β2 =

(
E[X − µX]

4

σ4

)
− 3

The univariate kurtosis of each feature column of the dataset is calculated and

the average value across all feature columns is stored.

S6: Maximum Kurtosis

The maximum kurtosis is evaluated from the individual kurtosis values of the

feature columns in the dataset calculated with the same formula as above.

S7: Average inter-features correlation

In order to obtain the following meta-measurements (S7, S8 and S9), the sam-

ple Pearson correlation coefficients are calculated between pairs of feature

columns of the dataset under investigation. The Pearson correlation coeffi-

cients are well established in the literature [22], [40], [62] and are defined as:

S7 = ρX,Y =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)√∑n
i=1

(
Xi − X̄

)2√∑n
i=1

(
Yi − Ȳ

)2
The vectors X and Y are replaced, in turn, by the column feature values of

the dataset. For the S7 meta-measurement we stored the average between all

the pairs of correlation coefficients.

S8: Maximum inter-feature correlation

The correlation coefficient is calculated as described in the meta-measurement

S7 and for this meta-measurement the maximum value is stored.

33

CHAPTER 3. Data Complexity

S9: Minimum inter-feature correlation

The correlation coefficient is calculated as described in the meta-measurement

S7 and for this meta-measurement the minimum value is stored.

S10: Average feature to label correlation coefficient

For the following three meta-measurements (S10 to S12), we calculated the cor-

relation coefficients between each individual feature column and the class label

vector of the dataset. The formula for calculating the correlation coefficients

are the same as the one employed for the S7,S8 and S9 meta-measurements,

but for the present meta-measurement (S10) we stored the mean value of all

the coefficients calculated between the feature columns and the class labels.

S11: Minimum absolute feature to label correlation

The correlation coefficient is calculated as described in the meta-measurement

S10 and for this meta-measurement the minimum of the absolute value is

stored.

S12: Maximum absolute feature to label correlation

The correlation coefficient is calculated as described in the meta-measurement

S10 and for this meta-measurement the maximum of the absolute value is

stored.

S13: STATLOG γ

The following three data characterization measurements were inspired from

the STATLOG project [50].

S13 = γ = 1− 2p2 + 3p− 1

6(p+ 1)(q − 1)

(
q∑

i=1

1

ni − 1
− 1

n− q

)

where

p = the number of features or attributes of the dataset;

q = the number of classes in the dataset;

n = the total number of observations in the dataset;

ni = the number of observations in the dataset that belong to class i,

n = n1 + n2 + · · ·+ nq.

S14: STATLOG M

This measurement is equal to Box’s M test statistic, which is defined as:

S14 = M = γ

q∑
i=1

(ni − 1) log |S−1
i S|

34

CHAPTER 3. Data Complexity

where

γ = S13 defined above;

Si = the unbiased estimators of the covariance matrix of the samples belonging

to the i-th class;

S = the unbiased estimator of the i-th sample covariance matrix;

S15: STATLOG SD ratio

This measurement is the geometric mean ratio of standard deviations, ex-

pressed in the following form:

S15 = SD ratio = exp

(
M

p
∑q

i=1(ni − 1)

)

G1: Boundary rotation angle

The decision boundary between two classes in the dataset is obtained by train-

ing a K-Nearest Neighbour (K-NN) classifier using the whole given dataset.

Then, a probing dataset it created using a mesh of coordinate values in the

range of [-1 , 1] for each dimension.

This probe dataset is then classified by the K-NN classifier in order to obtain

a classification label. From this predicted label we can approximate where

the decision boundary is lying by doing a linear interpolation between the

coordinates of the probing mesh.

This decision boundary is then re-sampled with a constant number of sample

points and by dividing the Euclidean length of the boundary into equal lengths.

We used 18 number of sampling points empirically and because this will give

us 16 angles between the consecutive segments.

This re-sampled decision boundary will be employed in the calculation of the

following meta-measurements: G1, G2 and A1-A16.

The angle of the segment formed by the first point and the last point in the

decision boundary made with the horizontal axis is measured and stored for

this meta-measurement.

G2: Number of intersections of the decision boundary with itself

The re-sampled decision boundary is investigated by taking, in turn, all the seg-

ments and assessing whether they intersect any of the remaining line segments

in the re-sampled decision boundary. If they do, then both of the segments

are marked in a signalling matrix that they have intersected, in order not to

35

CHAPTER 3. Data Complexity

count twice for both the segments. Multiple intersections are also accounted

for, by marking all pairs of segments that intersect as such in the signalling

matrix. The signalling matrix has a number of lines and columns that equals

the number of line segments.

The assessment whether two line segments intersect is done by solving the

linear equations associated with the two line segments and then applying the

boundary conditions.

In order to reduce the number of iterations, not all line segments are checked

against all the other line segments, but instead, for a given line segment with

index i, only the line segments with indices greater than i are checked, thus

reducing the number of assessments.

G3: Length of the extracted decision boundary

It has been suggested by previous research Macia et. al [45] and Prudencio

et. al [63] that the length of the decision boundary is a good descriptor of

dataset complexity. Macia et. al [45] estimate the length of the decision

boundary by creating a Minimum Spanning Tree from the data points of a

given dataset using the Euclidean distances as a dissimilarity metric, then

they count the number of connecting points of opposite classes and divided by

the total number of connections.

We used a direct approach in estimating the length of the decision boundary.

Since, we already have a rough decision boundary obtained from using a KNN

classifier, as described in the paragraphs pertaining the G1 meta-measurement,

we just calculate the length of the decision boundary obtained from the KNN

classifier.

A1-A16: Angle profile of the decision boundary

We have chosen to give the name ”angle profile” to the ordered set of angles

between consecutive line segments in the decision boundary formed between

the two classes in the dataset being investigated.

An example of angle profile is the following: 6.24°, -5.25°, -3.86°, -1.91°, -76.44°,

-60.26°, -8.03°, -0.06°, 4.12°, 6.01°, 100.91°, 34.57°, 1.89°, 2.97°, 13.69°, 2.47°this

corresponds to the re-sampled decision boundary in Figure 3.2.

In Figure 3.2 we show graphically the set of angles between all successive pairs

of segments (depicted with thick black line) that were obtained by re-sampling

the original estimate of the decision boundary (shown with the green line)

between the two classes.

36

CHAPTER 3. Data Complexity

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Feature 1

F
ea

tu
re

 2

6.
24

°
−

5.
25

°
−3

.8
6°

−1
.9

1°
−7

6.
44

°

−60.26°

−8.03°
−0.06°

4.12°

6.01°

100.91°

34.57°

1.
89

°
2.

97
°

13
.6

9°
2.

47
°

Figure 3.2: Example of an extracted angle profile of a decision boundary.

37

CHAPTER 3. Data Complexity

Table 3.1: List of Meta-Measurements

Nr. Name Description

1 F1(*) Multi-dimensional Fisher’s discriminant ratio
2 F2(*) Volume of overlap
3 F3(*) Feature efficiency

4 CL1(*) LD classifier error rate
5 CQ1(*) QD classifier error rate
6 LL1(*) LD classifier non-linearity
7 LQ1(*) QD classifier non-linearity
8 LK1(*) KNN classifier non-linearity
9 VC Vector Correlation between features and labels

10 E1 Average Shannon entropy
11 E2 Average MAXIMUM variance entropy
12 E3 Total Shannon entropy
13 E4 Total MAXIMUM variance entropy

14 FE1 Feature evaluation criterion, Inter-Intra distance
15 FE2 Sum of Mahalanobis distances
16 FE3 Minimum Mahalanobis distances
17 FE4 Sum of squared Euclidean distances
18 FE5 Minimum of squared Euclidean distances
19 FE6 1-Nearest Neighbour Leave-One-Out performance

20 S1 Average Skewness
21 S2 Maximum Skewness
22 S3 Minimum Skewness
23 S4 Minimum absolute Skewness
24 S5 Average Kurtosis
25 S6 Maximum Kurtosis
26 S7 Average inter-feature correlation
27 S8 Maximum Inter-feature correlation
28 S9 Minimum Inter-feature correlation
29 S10 Average feature to label correlation
30 S11 Minimum absolute feature to label correlation
31 S12 Maximum absolute feature to label correlation

32 S13 STATLOG γ
33 S14 STATLOG M
34 S15 STATLOG SD ratio

35 G1 Boundary rotation angle
36 G2 Number crossings of the decision boundary with itself
37 G3 Length of the extracted decision boundary

38 - 53 A1 - A16 Decision boundary angle profile

38

CHAPTER 3. Data Complexity

3.3 Chapter Conclusions

In this chapter we have presented a brief introduction to dataset complexity eval-

uation and also described all of our proposed measurements that can be calculated

from a training dataset that will be used in selecting the architecture of, single and

latter modular, neural networks.

We have presented 53 measurements, that we named ”Meta-Measurements”.

These meta-measurements are inspired from several fields, namely from: information

theory entropy, pattern recognition feature evaluation, statistical data description

and geometrical measurements of the decision boundary. These have been adapted

and we have modified several these meta-measurements labelled F1, VC, E1-E4, to

fit our purpose of data complexity evaluation.

Even though these individual features have been present in the literature in

one form or another, they have not been used in this way to caracterize dataset

complexity. This is why our approach is novel.

The prediction power of these meta-measurements will be investigated in the

second part of Chapter 4 in Section 4.3 but also we are going to dedicate Chapter

5 to the investigation of the performance obtained by training several classifiers to

recognize the order of polynomial that can be fitted onto a decision boundary, thus

providing a complexity assessment of a given dataset. Furthermore, in Chapter 7

these meta-measurements will guide the architecture selection process in order to

construct Modular Neural Networks for pattern classification.

39

Chapter 4

Data Description

I
n this chapter we will present the formalities of the data, describe the sources of

realistic data, the pre-processing involved in importing the data into a common

workable format and also the generation of artificial data, since both will be

used in subsequent experiments.

The mathematical software package that was used throughout all the experiments

described in this thesis is MathWorks Matlab , Release R2012a together with the

additional pattern recognition toolbox PRTools, Version 4.1.10 (released 25-June-

2010), which can be downloaded from this location [20].

The data employed and generated in the present work is organized hierarchically

in two layers. At the lower layer we have the “dataset” and at a higher layer we

have the “database” which can contain several datasets.

A dataset, as we shall see later in this paragraph, contains amongst others, the

raw sample feature values and their corresponding class labels. In general we can say,

that one dataset contains the data associated with one pattern recognition problem.

The grouping of several datasets we shall denote as a “database”, irrespective of

any Relational DataBase Management Systems (e.g. MySQL, Oracle, IBM DB2 and

many others). The word database shall be used in the rest of this document to refer

to just the arrangement of datasets that have a common property. For example, the

database of UCI Repository datasets.

A dataset will be denoted in this document by Dtype,index, where the type of

dataset and the index identifying a particular dataset are used as subscripts. The

designator types of datasets that we have examined are listed in Table 4.1. The

subscript index will have a numeric value for the artificially generated datasets and

a textual value for the datasets containing real life feature values.

The first two dataset designator types (uniform, gaussian) represent the group

of synthetically generated datasets, while latter 2 designators (U , M) represent

40

CHAPTER 4. Data Description

Type
designator Description

uniform Uniformly distributed random dataset with polynomial
boundary

gaussian Dataset of clouds of Gaussians with polynomial boundary
U UCI repository datasets
M MNIST machine learning benchmark dataset

Table 4.1: Type designator of the datasets

datasets collected from real life environments and made available for benchmarking

machine learning algorithms, each of these types of datasets are going to be discussed

in separate sections.

Any particular dataset indicated by Dtype,indexit is in fact a conceptual grouping,

of two major items:

� The matrixX of feature values corresponding to each sample item, with feature

values belonging to the ith sample are noted by x(i) = [x
(i)
1 , . . . , x

(i)
n]T and each

individual feature value j of sample i being a real number x
(i)
j ∈ R.

X is an (n×m) matrix, with the samples arranged across the n rows, and the

features of each sample arranged across the m columns.

X =



(x(1))T

...

(x(i))T

...

(x(n))T


The individual components x(i) of X are column vectors, hence they are trans-

posed in order to be assigned to X

� The vector of ground truth class labels ω, with the true labels of sample i are

noted by ω(i)

ω =



ω(1)

...

ω(i)

...

ω(n)


The conceptual analogy toDtype,indexwas inspired from the programming paradigm

that was employed. The data was stored inMatlab PRTools’ dataset objects have

41

CHAPTER 4. Data Description

the ability to store more information associated with a dataset object, for example

it can store prior probabilities of the classes or other user information, which we will

not describe here. Further information is available in the toolbox documentation

[20] and associated book by [74]. However it is crucial to emphasize the implicit

association in a dataset, between the sample features and their corresponding label

for each sample.

During the course of our investigation we have used two main sources for our

data, firstly the so called “Real Life” data and secondly, “Synthetically Generated”

data.

Table 4.2: Summary of dataset categories.

Dataset category Count Details

Real life datasets
– UCI ML Repository 10 Multi-class datasets

(see table 4.3)
– MNIST benchmark 1 Multi-class dataset

(see section ??)
Synthetically generated datasets
– Training data:
– Uniformly distributed polynomial 2 class, polynomial boundary
– Normal separation 1.000 orders from 1 to 10, 100 each
– Increased separation 1.000 orders from 1 to 10, 100 each
– Decreased separation 1.000 orders from 1 to 10, 100 each

– Gaussian clouds 2 class, polynomial boundary
– Normal separation 1.000 orders from 1 to 10, 100 each
– Increased separation 1.000 orders from 1 to 10, 100 each
– Decreased separation 1.000 orders from 1 to 10, 100 each

– Testing data:
– Uniformly distributed polynomial 2 class, polynomial boundary
– Normal separation 1.000 orders from 1 to 10, 100 each
– Increased separation 1.000 orders from 1 to 10, 100 each
– Decreased separation 1.000 orders from 1 to 10, 100 each

– Gaussian clouds 2 class, polynomial boundary
– Normal separation 1.000 orders from 1 to 10, 100 each
– Increased separation 1.000 orders from 1 to 10, 100 each
– Decreased separation 1.000 orders from 1 to 10, 100 each

Total number of datasets: 12.011

The “Real life data”, stands for the data that was obtained from the physical

world by some sort of a measurement. These datasets contain samples belonging to

more than two classes. This category hosts datasets from the UCI Repository of Ma-

chine Learning [25], as well as the MNIST dataset benchmark dataset of handwritten

42

CHAPTER 4. Data Description

digits.

The second category of data was generated deterministically by algorithms that

will be described in section 4.2. Even though these datasets were generated deter-

ministically they contain variability by employing pseudo-random number generators

built-in the Matlab software package.

As shown in Table 4.2, there are two databases of synthetically generated datasets

having 6,000 datasets each as it will be described in the later section. The reason for

their presence is determined by the need to reduce the bias of the training and testing

algorithm which requires that the testing set is coming from the same model as the

training set but has not been presented to the training algorithm. This behaviour is

suggested by most references for best practices in assessing the pattern performance

including L. I. Kuncheva [41] and the Proben1 benchmark problems & benchmarking

rules by Prechelt [61].

In order to characterize a dataset’s complexity we need the two types of data

sources mentioned above. Obviously we need real-life data, since this is the type

of data we would like our systems to operate upon. Beside the real-life data , we

need to have some controlled examples of data, therefore we used the synthetically

generated datasets. Since, these have a complexity that we can influence and vary

during the generation process of such datasets.

4.1 Real Life Data

The datasets that fall within the ”Real Life” category were obtained from one of

the following sources:

� The UCI Machine Learning Reopository [25]

� The MNIST benchmark dataset for Neural Networks

The “Real life datasets” contain more than two distinct classes. When this is the

case, then we must first decompose the c-class problem into a number, p of 2-class

problems.

We need to have this decomposition in order to be able to calculate the complexity

measurements we have discussed in the previous chapter, which, at the moment, can

only operate with datasets that have only two classes.

The number of 2-class problems is given by the binomial coefficient:

p =

(
c

2

)
=

c!

2(c− 2)!

43

CHAPTER 4. Data Description

where,

p is the number of 2-class problems, and

c is the initial number of classes in the dataset.

The first sub-category is data retrieved from the UCI Machine Learning Reposi-

tory [25] and is generally used as benchmarks for machine learning algorithms. This

is a desirable characteristic of these datasets since the results produced on these

datasets are comparable with other works in the same field.

4.1.1 UCI Machine Learning Repository

The details of the datasets that were employed from the UCI Machine Learning

Repository [25] are listed in table 4.3. The table gathers the most essential details

about the employed datasets, namely the name of the dataset, the number of fea-

tures, the number of classes in the dataset, the average number of samples per class

and the total number of samples per class.

Table 4.3: List of UCI datasets used.

Nr. Dataset name

Number
of

features

Number
of

classes

Average
samples
per class

Total
number of
samples

1 abalone (*) 8 3 1, 392.33 4, 177
2 anneal (*) 31 5 179.6 898
3 iris 4 3 50 150
4 yeast (*) 8 10 148.4 1, 484

Some of the values in the column relating to the average number of samples have

an asterisk sign (*) corresponding to the dataset which has unequal number samples

in each class. In this case only the ”iris” dataset has equal number of samples per

class (50 in this case), all the others have a varying number of samples per class,

which can also be noticed by the fact that the average number of samples is not an

integer, but a rational number, in some cases, not all.

Why were these datasets chosen?

These datasets were chosen for three main reasons:

� firstly, because many researchers used them in the past and there are compar-

ative results on the exact same datasets;

� secondly, these datasets do not have missing values;

� and thirdly they have a fairly large number of samples within each dataset.

44

CHAPTER 4. Data Description

In the paragraphs to follow we are giving the details about the structure of each

dataset from the UCI Repository along with references to the classification accuracies

reported in the literature.

1. The Abalone Dataset

This classification task implies predicting the age of abalone sea snail from

8 physical measurements. Traditionally the age of abalone is determined by

cutting the shell through the cone, staining it, and counting the number of

rings through a microscope, which is time consuming.

Number of features/attributes: 8

Out these 8 features 7 are real valued and one has discrete values, having 3

possible categorical values.

The summary of the attributes is given in Table 4.4.

Predicted attribute: The number of rings of the abalone sea snail.

Number of classes: 21

Samples per class: [15, 57, 115, 259, 391, 568, 689, 634, 487, 267, 203, 126,

103, 67, 58, 42, 32, 26, 14, 6, 9]

Total number of samples: 4168

Table 4.4: List of attributes of the Abalone dataset.

Name
Data
type Unit Description

Sex nominal - M, F, and I (infant)
(predicted attribute)

Length continuous mm longest shell measurement
Diameter continuous mm perpendicular to length
Height continuous mm with meat in shell
Whole weight continuous grams whole abalone
Shucked weight continuous grams weight of meat
Viscera weight continuous grams gut weight (after bleeding)
Shell weight continuous grams after being dried
Rings integer +1.5 gives the age in years

The UCI repository holds the dataset with 4177 samples, but during our ex-

periments we had to remove 9 samples from the dataset because they were

containing only 1 or 2 samples belonging to classes 1, 2, 24, 25, 26, 27 and

29. These samples clearly couldn’t possibly convey enough information to be

able to build a model for classification. However, the samples in this dataset

are still highly overlapping which lead to the conversion of the labels from

45

CHAPTER 4. Data Description

values ranging between 1 – 29 into 3 age bands for the abalone snails and re-

distributing the aforementioned few samples into the 3 age bands. Grouping

ring numbers 1 to 8 in the first age band, ring numbers 9 to 10 were assigned

to band two, and finally ring numbers 11 and higher were assigned to the third

age band.

From the original data the examples with missing values were removed (the

majority having the predicted value missing), the UCI repository holds the

data files that do not contain the samples with missing values, hence we con-

sidered that this dataset does not have samples with missing values. Also, the

ranges of the continuous values have been scaled for use with an ANN (by

dividing by 200).

Data comes from the original, non-machine-learning related, study of Warwick

et. al. [53] from 1994.

2. The Annealing Dataset

This is a classification problem donated by David Sterling and Wray Buntine,

which is related to the work published in 1988 [11].

Number of features/attributes: 31

Number of classes: 5

Samples per class: [8, 99, 684, 67, 40]

Total number of samples: 898

Predicted Attribute: One of the categorical labels: ”1”, ”2”, ”3”, ”5” and

”U”

The dataset stored in the UCI Repository had some shortcomings that were

fixed in order to use this dataset. Firstly, there was a class described in the

raw data file that didn’t have any samples. This was class labeled ”4” which

has been removed since it was superfluous. The other issue was with constant

feature values across all the samples of the dataset and didn’t convey any infor-

mation. These attributes were removed from the dataset, their index numbers

in original UCI dataset were: [2, 19, 23, 26, 29 and 31]. Therefore, originally

the dataset had 37 attributes, however in the present work we only used 31.

3. The Iris Flower Dataset

This is a very well known classification problem created by R.A. Fisher [23],

Duda & Hart [19] and many others.

Number of features/attributes: 4

Number of classes: 3

46

CHAPTER 4. Data Description

Samples per class: [50, 50, 50]

Total number of samples: 150

Predicted Attribute: One of the categorical labels: ”Iris Setosa”, ”Iris Ver-

sicolour” and ”Iris Virginica”

The data set contains 3 classes of 50 instances each, where each class refers to

a type of iris plant. One class is linearly separable from the other two, whereas

the other two are not linearly separable from each other.

4. The Yeast Dataset

Number of features/attributes: 8

Out these 8 features 7 are real valued and one is discrete feature.

Number of classes: 10

Samples per class: [463, 429, 244, 163, 51, 44, 35, 30, 20, 5]

Total number of samples: 1484

Predicted Attribute: Localization site of protein within a cell as a non-

numeric or categorical attribute.

Classification accuracy of 55% was initially reported by [36] and more recently

[57] reported a slightly lower best accuracy of 54% when using a mixture of

3 maximum entropy models. [3] reported an accuracy of 58.3% ±0.6 using a

modified boosting algorithm.

4.2 Synthetically Generated Data

In order to characterize the spatial distribution of the data-points in a pattern

recognition dataset arriving to a pattern recognition system we have decided to use

polynomials that can be superimposed to the decision boundary of the input data.

Hence, in order to assess the performance of the systems we have developed, we

needed some ”ground truth” data that had polynomial decision boundaries of a

known polynomial order. Therefore, we generated synthetically such datasets with

the orders of the polynomials ranging from 1 to 10. These datasets will be discussed

in the remainder of this section.

Before we dwell into the description of the algorithms used to generate the syn-

thetic datasets, we have to stop to define what decision boundaries are.

A decision boundary is characteristic for a given dataset and a given classifier.

Any classifier produces a decision boundary in the feature space of the given problem.

A decision boundary of a given pattern recognition problem is the locus of points

in the feature space of the pattern recognition problem that has equal posteriori

47

CHAPTER 4. Data Description

probability produced by a given classifier. Therefore, if a new sample that is to be

classified lies exactly on the decision boundary the classifier will not have enough

information to assign it to one class or the other. It will assign a class label in a

deterministic or random fashion, not based on any factual or learned information.

However, this case is rather infrequent and does not present a major impediment

in the pattern recognition world. The reason why we are concerned with decision

boundaries is because any classifier produces a decision boundary.

We have generated datasets of two classes and two features (i.e. a 2 dimensional

dataset) where the decision boundary formed between the two classes is a polynomial

of a known order n = [1, . . . , 10].

The employed polynomials have the following general form:

P (x) =
n∑

i=0

aix
i = anx

n + an−1x
n−1 + · · ·+ a1x

1 + a0x
0

where ai are the coefficients of the polynomial and n is the highest power of x which

appears in P (x) or the order of the polynomial.

The data that we used in our experiments was artificially generated in order to

have only two classes and a separating decision boundary between the two classes,

a polynomial curve of a known order ranging from 1 to 10. Also, the data points

that are generated have only 2 features (or a dimensionality of 2), therefore it can

be represented in 2 dimensions and graphed easily.

The datasets that were generated can be grouped in two categories based on the

distribution of the data points, as follows:

1. Uniformly distributed random feature values;

2. Normally distributed random feature values, that form Gaussian clouds around

points lying on each side of the polynomial decision boundary.

Within each of these groups we have generated datasets with: positive separation

(i.e.: more pronounced separation), negative separation (i.e.: less separation and

more pronounced overlap in some cases) or neutral separation distance from the

decision boundary itself.

We have generated 6,000 datasets as it was mentioned in table 4.2, which consists

of datasets having polynomial orders from 1 to 10 and 100 datasets having the same

order, in two categories of data point distribution (Uniform and Gaussian clouds)

with 3 degrees of separation.

The flowchart of the algorithm used to generate all the synthetic datasets can

be seen in Figure 4.1. In this figure the blocks coloured in light blue represent

48

CHAPTER 4. Data Description

Generate n+1 random points in

2D, in the range [-1, 1]

Fit a polynomial of order n

P(x)

Generated polynomial decision

boundary, P(x)

Generate Gaussian Clouds

on either side of the

polynomial graph and label

them depending on which

side they are situated

Divide the graph of the

polynomial into segments and

raise a perpendicular on each

segment

Label the sample points in 2

distinct classes, depending

on which side of the graph

they are situated

Generate Uniformly

distributed random points in

the range [-1, 1]

Uniformly distributed data

points in 2 classes with a

polynomial decision

boundary of order n

Gaussian clouds of data

points in 2 classes with a

polynomial decision boundary

of order n

Validate Polynomial

Is P(x) valid?

Gaussian Cloud Dataset Uniformly Distributed Dataset

YES

NO

6b

5b

7b

6a

5a

7a

2

1

4

3

Figure 4.1: Flow chart of the artificial data generation algorithm.

49

CHAPTER 4. Data Description

algorithmic components, respectively the blocks coloured in green represent data

outputs. From this figure we can see that the algorithm has 3 common algorithmic

components that generate and validate the polynomial P (x), these are numbered 1,

2 and 3, with the generated polynomial is numbered 4 in Figure 4.1. Whereas, for

each category of datasets (i.e. Uniform and Gaussian Clouds) the final 2 algorithmic

blocks are different. That is to say that in order to generate a dataset of the Gaussian

Cloud type (labelled 7a) we need to follow steps 5a and 6a respectively. To generate

a Uniformly distributed dataset (labelled 7b) we need to follow steps 5b and 6b.

In the following paragraphs we shall discuss the details of the common pathway

of generating the synthetic datasets, while the details pertaining each dataset type

will be discussed in sections 4.2.2 and 4.2.1.

The first step of the algorithm to generate the synthetic datasets depicted in

Figure 4.1, is to obtain n+1 random pairs of coordinates in the 2-dimensional plane

(xk, yk) where xk, yk ∈ [−1, 1] and k = 1, . . . , n+ 1.

These points are used in the second step which interpolates upon these n + 1

points a unique polynomial P (x) of order n.

The third step in the algorithm validates the polynomial by performing the fol-

lowing checks:

1. Sample points along the graph of the polynomial P(x), and make sure there are

enough points that fall in the region bounded by -1 and 1 on either dimensions;

2. The graph of the polynomial P (x) divides the region of the plane bounded by

-1 and 1 on either dimensions into roughly the equal regions, without a major

imbalance;

3. Verify that the number of tangent lines to graph of the polynomial is not less

than n.

If all of these checks are passed, the polynomial P (x) is deemed to be suitable

for later use as a decision boundary for the synthetic dataset that is to be generated

in both of the dataset categories mentioned above. When any of these checks fails,

the polynomial will be abandoned, and a new one will be generated by jumping to

the first step in the flowchart shown in Figure 4.1 and the process is repeated until a

polynomial is found to pass all these checks. Rejecting a polynomial happens rather

infrequently, but these checks are used to filter out malformed or trivial polynomials.

The tangent lines to the graph of the polynomial that are used in the validation

checks mentioned above are exemplified in Figure 4.2. Since, there are infinite num-

ber of tangent lines to the graph of the polynomial, we have chosen to consider only

50

CHAPTER 4. Data Description

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Order of the polynomial: 3, number of tangets: 3

Figure 4.2: Plot of a third order polynomial, with its characteristic tangent lines.

a representative number of tangents to the graph, that is equal to n the order of the

polynomial.

The considered tangent lines are the following:

� 2 tangent lines at the border of the graph, i.e. at the points (−1, P (−1)) and

(1, P (1)). These are shown in Figure 4.2 as green dashed lines;

� Respectively, the tangent lines at the point of inflection of the graph of the

polynomial. That is, at the location (xinflection, P (xinflection) where the second

order derivative of P (x) vanishes. This tangent line is shown in Figure 4.2 as

the green full line.

The specifics generation of the datasets that have a polynomial boundary of a

given order n is discussed next, in the following section.

4.2.1 Gaussian Cloud Datasets

We have generated Gaussian Cloud datasets with 3 types of separation between

the two classes, as it was mentioned in Table 4.3, namely:

51

CHAPTER 4. Data Description

1. Neutral separation, see Figure 4.6;

2. Increased or positive separation;

3. Decreased or negative separation.

In order to describe the generation algorithm for the datasets of a Gaussian Cloud

type, we have to refer to Figures 4.4 and 4.5.

From this figure we can observe how the datasets are generated.

Firstly, the graph of the polynomial P (x) is sampled in the range [0, 1]. Any

points that are outside the range [0, 1] are removed.

Then, line segments are considered by taking two consecutive points from the

sampled graph of the polynomial. The endpoints of the line segments are depicted

in Figures 4.4 and 4.5 by the blue diamond symbols.

For each of these line segments, perpendiculars are raised from the midpoint

of each of the line segments on either side of the line segments. The length of the

perpendiculars are given by the formula below and are show in the bar plot in Figure

4.3b), c) and d).

The endpoints of these perpendiculars form the centres of the cloud of points

that will be generated. These endpoints are visible in Figures 4.4 and 4.5 as blue

crosses with a circle around the cross.

These clouds of points will follow a Gaussian distribution:

Xcloud,i ∼ N (µi,Σi)

where µi is the coordinate of the end of the perpendicular raised on the line seg-

ment obtained from sampling the graph of the polynomial and sigma is the circular

covariance matrix:

Σi =

[
σ2
i 0

0 σ2
i

]
The variance σ2

i is changing for each order i = 1...10 of the polynomial according

to this formula:

σ2
i = 1/(200 · i)

The perpendicular distance is varying with each order of the polynomial accord-

ing to following formula:

PERPENDICULAR DISTANCE =

=
MULTIPLICATIV E SEPARATION

i
+ SEPARATION

52

CHAPTER 4. Data Description

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5
x 10

−3
The variance of the Gaussian Clouds

for each order.

Order of polynomial
a)

V
ar

ia
nc

e

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

The perpendicular distance of the Gaussian Clouds
for the PLUS separation.

Order of polynomial
b)

Le
ng

th
 o

f t
he

 p
er

pe
nd

ic
ul

ar

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

The perpendicular distance of the Gaussian Clouds
for the NEUTRAL separation.

Order of polynomial
c)

Le
ng

th
 o

f t
he

 p
er

pe
nd

ic
ul

ar

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

The perpendicular distance of the Gaussian Clouds
for the MINUS separation.

Order of polynomial
d)

Le
ng

th
 o

f t
he

 p
er

pe
nd

ic
ul

ar

Figure 4.3: The parameters to generate the Gaussian Cloud datasets. a) the variance
σ2 for each order; The perpendicular distance for each order b) for the INCREASED
separation; c) for the NEUTRAL separation; d) for the DECREASED separation.

Where the SEPARATION term is equal, in turn, to SEPARATION PLUS,

SEPARATION NEUTRAL and SEPARATION MINUS depending on what kind of

dataset that is to be generated.

The values of the parameters discussed above are as follows:

Table 4.5: Values of the parameters to generate the Gaussian Cloud datasets

Name of the variable V alue

MULTIPLICATIVE SEPARATION = 0.50
SEPARATION PLUS = 0.05
SEPARATION NEUTRAL = 0.00
SEPARATION MINUS = −0.04

The clouds of points that are generated on one side of the line segment will be

assigned one class and the points generated on the other side of the line segment

will be assigned another class, which is shown in Figures 4.4 and 4.5 as green and

53

CHAPTER 4. Data Description

red stars symbols.

This process is repeated for all the line segments the particular polynomial P (x)

has.

−0.2 0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

Order of poly.: 1, Sample: 2, Nr.of Gaussians: 35, Nr.of samples: 490

Figure 4.4: Detail showing how the Gaussian clouds are generated, for a polynomial
of order 1.

Examples of Gaussian Cloud datasets are shown in Figure 4.6, where we can

observe a sample for each polynomial order ranging from 1 to 10 of the decision

boundary.

4.2.2 Uniformly Distributed Datasets

The generation algorithm for this dataset is outlined in Figure 4.1, and the steps

labelled 1, 2, 3, 4, 5b and 6b. Steps 1 to 4 are already described in 4.2. The

reminder of steps (5b and 6b) will be described in this section.

Firstly, the two dimensional plane region bounded by the range [0, 1] is filled

with points.

In the second step, the points generated in the above step are thresholded, that

is, they are assigned one of two class labels depending whether they lie above or

below the graph of the polynomial.

The Uniformly distributed datasets are generated with 3 types of separation:

54

CHAPTER 4. Data Description

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

Order of poly.: 2, Sample: 2, Nr.of Gaussians: 19, Nr.of samples: 513

Figure 4.5: Detail showing how the Gaussian clouds are generated, for a polynomial
of order 2.

1. Neutral separation, see Figure 4.7;

2. Increased or positive separation, see Figure 4.8;

3. Decreased or negative separation, see Figure 4.9.

In order to produce the datasets with increased and decreased separation the

data-points of one class are shifted along the vertical dimension with a constant.

55

CHAPTER 4. Data Description

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(a) Poly. order 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(b) Poly. order 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(c) Poly. order 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(d) Poly. order 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(e) Poly. order 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(f) Poly. order 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(g) Poly. order 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(h) Poly. order 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(i) Poly. order 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(j) Poly. order 10

Figure 4.6: Scatter plots of Gaussian Clouds of points distributed along a polynomial
boundary which has increasing order from 1 to 10, with neutral separation between
the classes.

56

CHAPTER 4. Data Description

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(a) Poly. order 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(b) Poly. order 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(c) Poly. order 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(d) Poly. order 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(e) Poly. order 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(f) Poly. order 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(g) Poly. order 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(h) Poly. order 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(i) Poly. order 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(j) Poly. order 10

Figure 4.7: Scatter plots of uniformly distributed datasets with polynomial boundary
of order 1 to 10, having NEUTRAL separation between the two classes.

57

CHAPTER 4. Data Description

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(a) Poly. order 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(b) Poly. order 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(c) Poly. order 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(d) Poly. order 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(e) Poly. order 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(f) Poly. order 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(g) Poly. order 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(h) Poly. order 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(i) Poly. order 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(j) Poly. order 10

Figure 4.8: Scatter plots of uniformly distributed datasets with polynomial bound-
ary of order 1 to 10, having an overlap between the two classes or DECREASED
separation.

58

CHAPTER 4. Data Description

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(a) Poly. order 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(b) Poly. order 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(c) Poly. order 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(d) Poly. order 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(e) Poly. order 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(f) Poly. order 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(g) Poly. order 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(h) Poly. order 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(i) Poly. order 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature #1

F
ea

tu
re

 #
2

(j) Poly. order 10

Figure 4.9: Scatter plots of uniformly distributed datasets with polynomial boundary
of order 1 to 10, having INCREASED separation between the two classes.

59

CHAPTER 4. Data Description

4.3 Meta-Measurement Validation

In order to determine the degree of suitability of our proposed Meta-Measurements,

we investigated the training error of 5 classifiers and also the unsupervised cluster-

ing of the Meta-Measurements values obtained from the synthetically generated

database of datasets, for which we have the ground truth labelling of the polynomial

order of the decision boundary within each individual dataset.

The validation of meta-measurements was conducted on the synthetically gener-

ated training database of datasets, described in Section 4.2 on page 47 and summa-

rized in Table 4.2 on page 42.

For this purpose we divided the training database of 6,000 datasets in 8 groups,

in the following manner:

1. Gaussian Cloud polynomial decision boundary (which have been abbreviated

as: GC-Poly-2D);

2. Gaussian Cloud with increased separation (GC-Poly-Plus-2D);

3. Gaussian Cloud with decreased separation (GC-Poly-Minus-2D);

4. Uniform polynomial boundary (U-Poly-2D);

5. Uniform with increased separation (U-Poly-Plus-2D);

6. Uniform with decreased separation (U-Poly-Minus-2D);

7. all the above groups combined into one(ALL-Poly-2D);

8. and finally all the above groups combined into one, but without applying the

feature reduction step (ALL-Poly).

On each individual group of datasets we have calculated all the Meta-Measurements

as described in previous section (Section 3.2) and appended the polynomial order of

each originating dataset as a label. This also forms a dataset which lends itself to

be analysed, we shall call this dataset the Meta-Measurement Dataset.

Because of the large number of features in the Meta-Measurement Dataset (i.e.

51), we employed Fisher mapping, also known as Linear Discriminant Analysis

(LDA), to reduce the number of features to 2. Fisher mapping or LDA maxi-

mizes the inter-class scatter and minimizes the within class scatter, which is tied

to R.A.Fisher’s name [22] and described in many pattern recognition texts such as

[28], [19], [77] just to name a few.

The Fisher or LDA mapping was used to reduce the 51 features of the Meta-

Measurement Dataset to just 2 spatial features with all the benefits that the Fisher

60

CHAPTER 4. Data Description

mapping has to offer, but mainly in the interest of visual inspection of the Meta-

Measurements.

This reduced 2DMeta-Measurement Dataset and also the whole Meta-Measurement

Dataset with all the features are then used in following four types of experiments:

1. train and test the performance of 5 classifiers, for which the obtained decision

regions are plotted;

2. to perform unsupervised clustering then compare this labels produced by clus-

tering with the ground truth labels;

3. evaluate the contribution of each feature, by ranking the feature’s usefulness

according to a calculated criterion;

4. calculate the error introduced in the synthetic data generation process. We are

measuring the Mean Squared Error (MSE) between the graphs of the original

generating polynomial and the estimated boundary produced by the generation

of 2-class datasets with a decision boundary given by the original polynomial

(as described in 4.2) then approximating this decision boundary with a KNN

classifier.

In the following four sections we are going to describe the experiments mentioned

above.

4.3.1 Classification Training Error and Decision Regions

The classification errors of the LDC, QDC, KNN, 1NN and 3NN classifiers ob-

tained for each of the Meta-Measurement groups of data can be seen in Table 4.6.

Also, in Table 4.6 we can find the references to the figures where the decision regions

produced by each classifier can be found.

The classifiers have been chosen for their simplicity of operation which can reveal

the possible underlying structure of the data.

The Linear Discriminant Classifier (LDC) and Quadratic Discriminant Classifier

(QDC) were chosen because they assume normally distributed data. The K-Nearest

Neighbour classifier (KNN) and its variations using only 1 nearest neighbour(1NN),

respectively 3 nearest neighbours(3NN), do not assume any particular distribution

of the data and this is why they are so successful, however these require to store

all the training samples for their operation. A description of their internal workings

can be found in [20].

The Matlab code that was used to produce the training error estimates and the

plots of the decision regions is shown in the box below.

61

CHAPTER 4. Data Description

Table 4.6: Training errors of 5 classifiers on the 8 groups of Meta-Measurements

Classifier error rates 2D-Decision

Database name LDC QDC KNN 1NN 3NN Regions

GC-Poly-2D 29.40% 29.26% 27.34% 0.00% 20.05% See Fig. 4.10
GC-Poly-Plus-2D 40.66% 42.58% 37.91% 0.00% 27.06% See Fig. 4.12
GC-Poly-Minus-2D 3.02% 3.02% 3.02% 0.00% 2.06% See Fig. 4.14

U-Poly-2D 48.21% 47.66% 44.64% 0.00% 31.18% See Fig. 4.16
U-Poly-Plus-2D 46.84% 45.88% 45.60% 0.00% 30.63% See Fig. 4.18
U-Poly-Minus-2D 49.86% 48.35% 40.66% 0.00% 33.10% See Fig. 4.20

ALL-Poly-2D 50.41% 49.59% 47.34% 0.00% 33.20% See Fig. 4.22

ALL-Poly 44.21% 22.92% 0.00% 0.00% 31.85% N/A

REDUCED_NUMBER_OF_DIMMENSIONS = 2;

transformed_fisher_metames_set = fisher_transform(...

meta_measurements, ...

[], ...

[], ...

REDUCED_NUMBER_OF_DIMMENSIONS);

% Classify the FISHER features

w1 = ldc(transformed_fisher_metames_set);

e1 = testc(transformed_fisher_metames_set, w1);

figure();

scatterd(transformed_fisher_metames_set, ...

REDUCED_NUMBER_OF_DIMMENSIONS);

plotc(w_to_plot, ’col’);

legend({’Class 1’,’Class 2’,’Class 3’,’Class 4’,’Class 5’, ...

’Class 6’,’Class 7’,’Class 8’,’Class 9’,’Class 10’}, ...

’Location’, ’NorthEastOutside’);

By examining the error rates of the 5 classifiers in Table 4.6 we observe that

there are three behaviour patterns to be seen in the values shown in this table.

1. Firstly, we see that for 7 out of 8 groups of Meta-Measurements and 4 out of

62

CHAPTER 4. Data Description

5 classifiers, the classification error is spread between over 31% to just under

64% (we omit the the 4th column of values corresponding to 1NN and the 3rd

row of values corresponding to the GC-Poly-Minus-2D dataset). A distinct

decrease in the error rate is to be seen by the nearest neighbourhood classifiers

as opposed to the Bayesian classifiers of first and second orders.

It should be noted that the KNN classifier is optimized to minimize the ”Leave-

One-Out” Error and it takes a variable number of neighbours opposed to 1 or

3 number of neighbours used by the 1NN and 3NN classifiers, that are fixed

by design.

Also, it is important to take into account that the classification problem posed

by us here implies a decision between 10 classes, the orders ranging from 1

to 10 of the polynomial that can be fitted onto the decision boundaries of

the synthetically generated datasets. In these circumstances, the chance of

guessing the correct order by randomly guessing with a uniform probability

distribution is 1 in 10 or 10%. Which actually would equate to a 90% error

rate, since error rate = 100%− accuracy rate.

Therefore, the error rate achieved by these classifiers on the mentioned groups

of datasets is better than random guessing by a factor of 1.5 to 3 times reduced

error rate.

2. Secondly, the 1NN classifier consistently achieves a perfect classification rep-

resented by the 0.00% error rate, which is an indication that it is actually

over-trained and it will produce a poor generalization performance.

As a side note, when we do an experiment and train a 1NN classifier on a

2-dimensional dataset that is composed of sample points of the two classes

are drawn from the same uniform distribution with values for both classes

in the same range [a, b], that is, the two classes are completely confused, we

find that the training error of this classifier is exactly 0.0%. In other words,

the 1NN classifier is notoriously over-fitting the training data. Which makes

sense, because if we think about how the 1NN classifier operates, it stores all

the training samples, then when it is tested on the same training data, all

the distances to the closest learned samples are zero. Therefore, the training

error for this classifier is in most cases meaningless, it does not convey any

information about what the classifier has learnt because it actually has stored

all the training data perfectly. Nonetheless, if the 1NN classifier is tested on

data that has not been used in the training of the classifier, this testing error

is an estimation of what the classifier has learnt.

63

CHAPTER 4. Data Description

3. Thirdly, the error rate on the GC-Poly-Minus-2D group of Meta-Measurements

is in-between the two behaviours described above. It is not a perfect classifica-

tion and it is nowhere close to the theoretical maximum achieved by randomly

guessing. This suggests that the classifiers trained on the GC-Poly-Minus-2D

group of Meta-Measurements had extracted the meaningful patterns existing

in this dataset and it is very likely that the generalization performance on this

dataset and these given classifiers will be good.

The Table 4.6 also lists the figure numbers of the decision regions produced by

the LDC classifier on each of the training groups of datasets in 2-dimensions. From

these figures we can see the actual distributions of the Meta-Measurement Dataset

values transformed by a Fisher Mapping into 2-dimensions, obtained for each known

order of the polynomial decision boundary present in the synthetically generated

datasets.

It has to be said that the Fisher Mapping is not orthogonal and the Fisher Map-

ping was calculated for each of the Meta-Measurement groups individually. There-

fore, the scatter-plots in the figures mentioned in 4.6 are not directly comparable.

Nonetheless, the scatter-plots are extremely useful in observing how the Meta-

Measurements separate the individual polynomial orders of the decision boundary.

Also, the scatter-plots are useful to assess how the classifier (in this case the Linear

Discriminant Classifier), has learned and produced its decision regions.

There is a ”Not Available” (or ”N/A”) entry in Table 4.6 for the ”ALL-Poly”

group, that corresponds to the Meta-Measurements calculated on all of the synthetic

datasets, in this instance we have not applied Fisher Mapping and therefore this is

not a 2-dimensional dataset, for this dataset we cannot produce the scatter plot of

the decision regions.

From all of the observations made above we can draw the conclusion that the

best classifier to use in order to classify the order of the polynomials to be fitted

onto the decision boundary of an new incoming dataset would be the one trained on

the GC-Poly-Minus Meta-Measurement dataset.

4.3.2 Clustering Validation

The second set of validation checks that have been conducted are the unsu-

pervised clustering validations. For this purpose we have used the same Meta-

Measurement datasets as described in the previous section, but we have applied two

types of unsupervised clustering algorithms:

1. Hierarchical Clustering [37];

64

CHAPTER 4. Data Description

2. K-Means Clustering.

Both unsupervised clustering algorithms were given the correct number of clus-

ters they are suppose to find, then the algorithms had been run, and the labelling

that was produced by each of algorithms is checked against the ground truth la-

bellings of each Meta-Measurement datasets. The results of this experiment can be

seen in Table 4.7 along with the reference to the figure that shows the dendrogram

produced by the hierarchical clustering for each of Meta-Measurement datasets.

Table 4.7: Hierarchical Clustering and K-Means Clustering error rates on the 8
groups of Meta-Measurement datasets

Clustering method

Database name H-Clust K-Means Dendrogram

GC-Poly-2D 47.80% 33.65% See Fig. 4.11
GC-Poly-Plus-2D 78.30% 44.64% See Fig. 4.13
GC-Poly-Minus-2D 22.53% 15.38% See Fig. 4.15

U-Poly-2D 64.15% 57.14% See Fig. 4.17
U-Poly-Plus-2D 67.03% 56.18% See Fig. 4.19
U-Poly-Minus-2D 66.62% 53.85% See Fig. 4.21

ALL-Poly-2D 86.36% 57.44% See Fig. 4.23

ALL-Poly 81.68% 80.06% N/A

From Table 4.7, we can observe that the Hierarchical Clustering algorithm is

consistently outperformed by the K-Means algorithm in the error rate of identifying

the correct clustering labels, even for the same Meta-Measurement Dataset. The

Hierarchical Clustering algorithm produces error rates between about 86% to 48%

(in the best case), whereas the K-Means clustering algorithm is producing error rates

between 80% and 51% in 6 out 7 scenarios but a very low error rate of just 15.38%

for the GC-Poly-Minus-2D dataset.

While even Stephen C. Johnson, the proposer of the Hierarchical Clustering

algorithm [37], has noted when he was invited to comment in Thomson Reuter’s

Current Content - This Week’s Citation Classic [38] about his article from 1967,

that had more than 770 citations, he wrote: ”it is very easy to get a computer’s

blessing without confronting the data’s deficiencies”. For this reason we have plotted

the decision surfaces produced by the LDC classifier and also the dendrograms that

stand at the basis of the Hierarchical Clustering algorithm.

However, if we examine the layout of the polynomial orders produced by the

transformed meta-measurements in Figures 4.10, 4.12, 4.16, 4.18, 4.20 and 4.22, we

can see that for most of the experiments that points with different labels are confused

65

CHAPTER 4. Data Description

and overlapping, with the exception of the ”GC-Poly-Minus-2D” group of datasets,

where the different labels are visibly separated as it can be seen in Figure 4.14.

The dendrograms shown in Figures 4.11, 4.13, 4.15, 4.17, 4.19, 4.21 and 4.23

represent on the horizontal axis the number of samples in each cluster, while the

vertical axis represents the Euclidean distance between the clusters that were found.

A dendrogram should be interpreted as a tree-like graph that shows the distances

where two clusters are merged into one. There are several inverted ”U”-shaped lines

in a typical dendrogram, which might have uneven legs. The length of each leg

represents the distance to the nearest cluster.

Therefore, we would like to maximize the distance between clusters for a good

classification.

A full dendrogram shows all the clusters that can be formed from a given dataset,

up-to the cluster containing only one sample, which is impractical when there are

many samples in a dataset. For this reason, we select a number of clusters that are

to be shown in the dendrogram.

66

CHAPTER 4. Data Description

Figure 4.10: LDC decision regions, on the GC-Poly-2D database

 96 4 89 7 1 2 1 233 566 1
0

5

10

15

20

25

30

35

40

45

50

Figure 4.11: Hierarchical clustering dendrogram of the GC-Poly-2D database

67

CHAPTER 4. Data Description

Figure 4.12: LDC decision regions, on the GC-Poly-Plus-2D database

 74 16 44 1 31 260 439 10 123 2
0

1

2

3

4

5

6

7

8

9

Figure 4.13: Hierarchical clustering dendrogram of the GC-Poly-Plus-2D database

68

CHAPTER 4. Data Description

Figure 4.14: LDC decision regions, on the GC-Poly-Minus-2D database

 99 1 378 114 3 3 101 102 198 1
0

10

20

30

40

50

60

Figure 4.15: Hierarchical clustering dendrogram of the GC-Poly-Minus-2D database

69

CHAPTER 4. Data Description

Figure 4.16: LDC decision regions, on the U-Poly-2D database

 73 42 1 49 279 4 4 10 470 68
0

1

2

3

4

5

6

7

8

Figure 4.17: Hierarchical clustering dendrogram of the U-Poly-2D database

70

CHAPTER 4. Data Description

Figure 4.18: LDC decision regions, on the U-Poly-Plus-2D database

 74 16 44 1 31 260 439 10 123 2
0

1

2

3

4

5

6

7

8

9

Figure 4.19: Hierarchical clustering dendrogram of the U-Poly-Plus-2D database

71

CHAPTER 4. Data Description

Figure 4.20: LDC decision regions, on the U-Poly-Minus-2D database

 66 60 161 212 13 39 8 390 50 1
0

1

2

3

4

5

6

7

8

Figure 4.21: Hierarchical clustering dendrogram of the U-Poly-Minus-2D database

72

CHAPTER 4. Data Description

Figure 4.22: LDC decision regions, on the ALL-Poly-2D database

 608 8 457 841 3935 13 3 95 34 6
0

2

4

6

8

10

12

14

Figure 4.23: Hierarchical clustering dendrogram of the ALL-Poly-2D database

73

CHAPTER 4. Data Description

4.3.3 Meta-Measurement Feature Ranking

The meta-measurement values were computed on the synthetically generated

datasets described in Chapter 4.2, then we have ranked each of the meta-measurements

to see how much discrimination power it possesses. We have done this by assessing

the ranking using two criterions:

1. Inter-Intra distance criterion;

2. 1-Nearest Neighbour (1NN) leave-one out classification accuracy.

Each criterion is applied in turn to each individual feature, then the values of the cri-

terions is sorted in descending order to yield the ranking of the features in decreasing

importance to the selected criterion.

0 5 10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

GC−Poly
GC−Poly−Plus
GC−Poly−Minus
U−Poly
U−Poly−Plus
U−Poly−Minus
ALL−Poly

Figure 4.24: Feature efficiency of Meta-Measurement datasets given by INTER-
INTRA criterion.

The first criterion we used to rank each individual meta-measurement feature is

the Inter-Intra distance which is defined as the ratio between the scatter between the

class means and the scatter within classes. A large value of this criterion indicates

74

CHAPTER 4. Data Description

0 5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

GC−Poly
GC−Poly−Plus
GC−Poly−Minus
U−Poly
U−Poly−Plus
U−Poly−Minus
ALL−Poly

Figure 4.25: Feature efficiency of Meta-Measurement datasets given by 1NN crite-
rion.

a better separation, the values of this criterion are plotted in Figure 4.24, where on

the horizontal axis we have the feature number and on the vertical logarithmic axis

we have the Inter-Intra criterion value.

The second criterion we used is the leave-one-out classification accuracy of the

first Nearest Neighbour, the values obtained in this manner are plotted in Figure

4.25, where on the horizontal axis we have the feature number and on the verti-

cal logarithmic axis we have the leave-one-out 1NN classification accuracy criterion

value.

The actual ranking of the features is presented in an innovative way for each

criterion in Figure 4.26 and Figure 4.27. We have chosen to depict graphically the

way the ranking order of the features changes for 7 datasets.

Using the two sets of figures described above we can identify what feature pro-

duced a particular value of the criterion.

75

CHAPTER 4. Data Description

F1

F1

F2

F2

F3

F3

LL1

LL1

LK1

LK1

LQ1

LQ1

CL1

CL1

CQ1

CQ1VC

VC

E1

E1

E2

E2

E3

E3

E4

E4

FE1

FE1

FE2

FE2

FE3

FE3

FE4

FE4

FE5

FE5

FE6

FE6

S1

S1

S2

S2

S3

S3

S4

S4

S5

S5

S6

S6

S7 S7

S8 S8

S9 S9

S10

S10

S11

S11

S12

S12

S13

S13

S14

S14

S15

S15

G1

G1

G2

G2

G3

G3

A1

A1

A2

A2

A3 A3

A4 A4

A5

A5

A6

A6

A7

A7

A8

A8

A9

A9

A10

A10

A11

A11

A12

A12

A13

A13

A14

A14

A15

A15

A16

A16

FE2

FE3

FE1

F1

S15

S14

LK1

F2

CQ1

LQ1

G3

CL1

FE4

FE5

S12

LL1

F3

FE6

S11

E4

G2

E2

S10

S6

E3

S7

S8

S9

S1

S13

VC

A2

S2

S5

A15

S4

A10

E1

A6

A3

A4

A12

A13

G1

A11

A7

A14

A5

A8

A16

A9

S3

A1

FE2

FE3

FE1

F1

S15

S14

F2

G3

F3

LK1

CQ1

FE4

FE5

LQ1

S12

CL1

LL1

S11

G2

FE6

E2

E4

S10

S1

E3

S6

S7

S8

S9

VC

S2

S5

S4

E1

A8

A3

A14

A12

G1

A15

A2

A16

A4

A10

A1

A7

A6

A9

S13

S3

A13

A5

A11

FE2

FE3

FE1

F1

S15

FE6

S14

LK1

CQ1

LQ1

F2

G3

CL1

LL1

S12

FE4

FE5

G2

F3

S11

E4

E2

S10

S13

S7

S8

S9

S6

E3

VC

S1

S2

S5

A15

S4

A3

E1

A4

A14

A2

A8

A12

A6

G1

A16

A7

A13

A10

S3

A9

A1

A5

A11

FE6

G3

F1

LK1

S15

FE1

FE2

FE3

S14

CQ1

LQ1

FE4

FE5

CL1

LL1

S12

F2

G2

F3

VC

S11

S13

S10

A15

A2

A1

G1

A14

A16

A4

A7

A8

A3

A13

A9

E2

A6

E4

A5

A11

E3

S4

S3

S5

S1

E1

S2

S6

A10

A12

S7

S8

S9

G3

FE6

F1

LK1

FE1

FE2

FE3

CQ1

S15

S14

FE4

FE5

LQ1

CL1

LL1

F3

F2

S12

G2

VC

S11

S13

S7

S8

S9

E4

E2

S10

S1

A12

A2

S5

S2

A1

A7

G1

A9

A5

A4

S4

A3

A10

A16

A11

A6

S6

A14

E3

A13

E1

S3

A8

A15

G3

LK1

F1

S15

S14

FE1

FE2

FE3

LQ1

FE4

FE5

CQ1

LL1

CL1

S12

G2

F3

F2

VC

S11

FE6

S7

S8

S9

S13

S10

E2

E4

S5

S4

A13

A16

S3

A2

S2

A15

A1

S1

A11

A12

E1

S6

E3

A9

G1

A6

A14

A7

A4

A3

A10

A5

A8

Unranked GC-Poly GC-Poly-Plus GC-Poly-Minus U-Poly U-Poly-Plus U-Poly-Minus ALL-Poly

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

#13

#14

#15

#16

#17

#18

#19

#20

#21

#22

#23

#24

#25

#26

#27

#28

#29

#30

#31

#32

#33

#34

#35

#36

#37

#38

#39

#40

#41

#42

#43

#44

#45

#46

#47

#48

#49

#50

#51

#52

#53

Figure 4.26: Feature ranking of Meta-Measurement datasets according to INTER-
INTRA criterion.

76

CHAPTER 4. Data Description

F1

F1

F2

F2

F3

F3

LL1

LL1

LK1

LK1

LQ1 LQ1

CL1

CL1

CQ1

CQ1

VC

VC

E1

E1

E2

E2

E3

E3

E4

E4

FE1

FE1

FE2

FE2

FE3

FE3

FE4 FE4

FE5 FE5

FE6

FE6

S1

S1

S2

S2

S3

S3

S4

S4S5

S5

S6

S6

S7

S7

S8

S8

S9

S9

S10

S10

S11

S11

S12

S12

S13

S13

S14

S14

S15

S15

G1

G1

G2

G2

G3

G3

A1

A1

A2

A2

A3

A3

A4

A4

A5

A5

A6

A6

A7

A7

A8

A8

A9

A9

A10

A10

A11

A11

A12

A12

A13

A13

A14

A14

A15

A15

A16

A16

F2

LK1

G3

CQ1

F3

LQ1

S15

S14

FE6

S13

LL1

CL1

FE1

FE2

FE3

F1

FE4

FE5

S12

G1

A2

S11

S10

S4

A15

A8

A12

A9

S3

E2

S5

A13

S7

S8

S9

A7

A5

E4

G2

A4

A6

A10

A11

A3

A16

S2

A1

A14

E3

VC

S1

S6

E1

G3

F3

F2

CQ1

S15

LK1

LQ1

S14

S13

FE2

FE3

FE1

CL1

S12

G1

LL1

FE6

F1

FE4

FE5

S3

S5

A2

S10

S6

A8

S4

S11

A10

A6

A14

S1

E2

E4

A7

A5

A4

A13

A15

E3

A3

G2

A9

S7

S8

S9

A11

VC

S2

A12

A16

A1

E1

FE6

LK1

G3

F2

LQ1

F3

CQ1

S14

S15

CL1

FE1

FE2

FE3

LL1

FE4

FE5

F1

S10

S13

S12

G2

A2

G1

S11

A9

E4

E2

A15

S3

A8

A12

A5

A16

S4

A4

A14

A7

S7

S8

S9

A13

A1

A6

S6

A10

S5

A3

A11

S2

E3

S1

VC

E1

G3

LK1

LQ1

CQ1

F1

LL1

CL1

FE6

FE4

FE5

FE2

FE3

FE1

S14

S15

F2

S12

A9

A12

G1

G2

A2

A8

A10

VC

A7

F3

A13

S10

A1

A5

A11

S2

A16

A15

A14

E3

A6

S11

S13

S6

S7

S8

S9

A3

A4

S4

E2

E4

S3

E1

S1

S5

G3

LK1

CQ1

LQ1

G1

CL1

F1

FE6

LL1

FE2

FE3

FE1

FE4

FE5

S14

S15

F3

F2

S12

A7

G2

A3

A2

S10

A11

A14

A9

A4

A8

A10

E3

A1

VC

A12

A6

A5

A13

A16

S2

S11

A15

S4

S13

E4

S5

E1

S1

S3

S7

S8

S9

S6

E2

G3

LK1

LQ1

F1

CQ1

LL1

CL1

FE1

FE4

FE5

S14

S15

FE2

FE3

S12

S10

F3

G1

A2

F2

FE6

A11

S1

A10

A1

E3

A9

A14

S11

G2

A7

S13

A12

VC

E4

S3

A15

E2

S4

A3

E1

A13

A4

S7

S8

S9

A6

A16

A5

S2

A8

S6

S5

Unranked GC-Poly GC-Poly-Plus GC-Poly-Minus U-Poly U-Poly-Plus U-Poly-Minus ALL-Poly

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

#13

#14

#15

#16

#17

#18

#19

#20

#21

#22

#23

#24

#25

#26

#27

#28

#29

#30

#31

#32

#33

#34

#35

#36

#37

#38

#39

#40

#41

#42

#43

#44

#45

#46

#47

#48

#49

#50

#51

#52

#53

Figure 4.27: Feature ranking of Meta-Measurement datasets according to 1NN cri-
terion.

77

CHAPTER 4. Data Description

4.3.4 Evaluation of Error Introduced During the Creation

of Datasets

In this sub-section we are going to evaluate the discrepancy that was poten-

tially produced when the synthetic datasets were created. We wanted to validate

the datasets that we have generated. We needed to have 2-class datasets that have

a polynomial boundary of a particular order, but how far away were the decision

boundaries that can be estimated from the data points alone from the original gen-

erating polynomial? To answer this question we have measured the Mean Squared

Error between the original generating polynomial and the decision boundary esti-

mated by a KNN classifier, the results are aggregated per individual orders and

shown in a boxplot format in Figure 4.28.

Order 1 Order 2 Order 3 Order 4 Order 5 Order 6 Order 7 Order 8 Order 9 Order 10

0

0.02

0.04

0.06

0.08

0.1

0.12

Polynomial order

Figure 4.28: MSE between the original polynomial and the extracted decision bound-
ary in the datasets

From this figure we can observe that the error introduced is below 0.01 for the

first 4 polynomial orders that we generated and then gradually increases for higher

orders.

78

CHAPTER 4. Data Description

4.4 Chapter Conclusions

In this chapter we have presented the realistic datasets and synthetic datasets

that we will be using in the experimental sections of this thesis.

For the synthetic datasets we have shown two methods of generating datasets,

namely the Gaussian Cloud method and the Uniformly Distributed method.

The presented data generation named Gaussian Clouds is novel method and

is designed to alleviate the problems that occur when the separation is increased

between the two classes. It does this by creating a number of clouds of Gaussian

distribution along the perpendicular to the graph that is being used as a generating

curve.

This chapter contains samples of datasets relating to each category of datasets

that we have generated.

79

Chapter 5

Decision Boundary Approximation

Using Polynomials

I
t is well known that, according to Stone-Weierstrass approximation theorem

[72] and [76], polynomials can approximate as closely as desired any continuous

function defined on an interval.

Decision boundaries in pattern recognition tasks can be viewed as discrete points

sampled from a continuous function defined on an interval; hence, fitting a polyno-

mial is a sensible choice to characterize the complexity of such a decision boundary.

Decision boundaries represent a are very important characteristic of every pat-

tern classifier system. In fact, every classifier’s main role is to estimate the boundary

present between the two (or more) classes within a pattern recognition problem, to

the lowest possible error. Therefore, examining the decision boundary formation

process in a pattern classifier is of an upmost importance. In our work we have

focused on the formation of the decision boundary within Feed-Forward Backprop-

agation NNs. Our interest in decision had beared its fruits in this current chapter

and chapter 6

Within this chapter we are investigating the shape of the decision boundary

formed between c = 2 classes of 2-dimensional feature values in a generic pattern

recognition system, as described by Duda & Hart [19], in order to obtain a complex-

ity measure of the pattern recognition problem at hand that will guide the automatic

model selection process used in a later phase of automated classifier selection de-

scribed in Chapter 7.

The proposed method of estimating the order of the polynomial using Meta-

Measurements has surpassed the prediction accuracy of statistical methods that

assess the goodness of fit as shown further in this chapter and in published conference

proceedings [30].

80

CHAPTER 5. Decision Boundary Approximation Using Polynomials

5.1 Motivation

The motivation for our research arose from the desire to select a suitable classifier

for the given classification problem or to choose a neural network architecture that

improves the classification performance because it tries to detect the shape of the

data points of the pattern recognition problem instead of relying on heuristics or

rules of thumb based on the number of samples.

Our experimental investigation assesses the ability of several statistical methods

suggested in the past surveys [80],[75], and our proposed machine learning approach

to predict the order of the polynomial that can approximate the decision boundary

formed between two classes of feature values. In order to do this the statistical

methods are obtaining the decision boundary between the two classes from a K-

Nearest-Neighbour classifier and then trying to estimate the optimal polynomial

order to fit to the decision boundary to optimize the Least Squares Error of fitting.

On the other hand, our proposed method calculates 53 meta-measurements from the

feature values themselves as described in Chapter 3, then we tested several classifiers

that were trained offline on these meta-measurements for predicting the order of the

polynomial that can be fitted onto the decision boundary based on information

learned from these measurements.

5.2 Polynomial Order Predicting Methods

We have investigated two major categories of order prediction methods:

1. Statistical prediction methods, where we have evaluated 13 prediction criteria

with their associated algorithms for obtaining the prediction, presented in

Sub-Section 5.2.1.

2. Machine Learning method having Meta-Measurements as features, in this cat-

egory of order prediction methods we have investigated the performance of 6

classifiers on the Meta-Measurements presented in Sub-Section: 5.2.2.

In the following sub-sections we will describe these two categories in more detail.

5.2.1 Statistical Prediction Methods

The input to both methods are the feature values of sample points belonging

to one dataset and the output is the prediction of the polynomial order that can

estimate the decision boundary between the two classes of patterns in the dataset.

81

CHAPTER 5. Decision Boundary Approximation Using Polynomials

The statistical methods need to obtain a rough estimate of the decision boundary

separating the two classes. This was achieved by employing a K-Nearest Neighbour

classifier which is non-parametric and does not assume any distribution underlying in

the data. The process of selecting the polynomial order to approximate the decision

boundary is done on this rough estimate of the decision boundary.

The considered polynomial models to choose from have the following generic

form:

y = β0 + β1x+ · · ·+ βpx
p + ϵ

where p = 1, , k with k = 10 and ϵ is the error term.

The boundary is obtained using a sequential sampling of the KNN mapping using

the COUNTOURC MatLab function.

We have implemented the following criterions for predicting the order of the

polynomial that can be fitted onto the decision boundary:

1. Kolmogorov-Smirnov pairwise test on the residuals

2. ”Biggest Jump” algorithm on SSE

3. ”Biggest Jump” algorithm on the Standard Deviation

4. Predicted polynomial order from the POLYDEG.M function created by Damien

Garcia, [29]

5. Minimum AIC

6. Runs Test, Maximum P-Value

7. Chi2 H Value, Algorithm chooses first occurrence of the value 1 (i.e. where

the null hypothesis can be rejected)

8. Chi2 Minimum P-Value

9. K-S H Value, (Same algorithm as 7)

10. K-S Minimum P-Value

11. Hardcoded threshold on the Standard Deviation, set at 0.10

12. T-Test on the SSE, that tries to determine the outlier starting from the highest

fitted polynomial order towards the lowest polynomial order

13. T-Test on the Standard Deviation (same algorithm as 12)

82

CHAPTER 5. Decision Boundary Approximation Using Polynomials

13 methods used to predict the order of the polynomial. Not all of them are inde-

pendent of one another.

The statistical model selection criterions that we implemented are the following:

Mean Squared Error (STAT MSE)

MSE(p) = (SSE(p))/(n− (p+ 1))

Mallows Cp (STAT MCp) [46]

MCp = (SSE(p))/(MSE(p))− (n− (p+ 1))

Akaikes Information Criterion (STAT AIC) [10]

AIC(p) = ln(SSE(p)) + (p+ 1)(2/n)

Bayesian Information Criterion (STAT BIC) [69]

BIC(p) = ln(SSE(p)) + (p+ 1)(ln(n)/n)

For all the statistical methods above, p = is the order of the polynomial that will

be tested, which is a positive integer in the range p=1, , 10; k = is the largest order

of the polynomial to be fitted; n = represents the number of samples;

SSE(p) = residual sum of squares for the polynomial model of order p.

The algorithm for deciding upon what order to predict was the same for all 4

implemented methods, namely choose the order of the polynomial that minimizes

the 4 corresponding criterion values.

83

CHAPTER 5. Decision Boundary Approximation Using Polynomials

Input dataset

Obtain rough

boundary from

KNN

Predicted order

of polynomial

Apply polynomial

fitting of poly. with

orders from 1 to 10

Evaluate

goodness of fit

criterions

MSE

MCp

AIC

BIC

Calculate prediction

accuracy

Largest
decrease
in MSE

Figure 5.1: Overview of the system to test the prediction accuracy of the statistical
methods of predicting the polynomial order.

84

CHAPTER 5. Decision Boundary Approximation Using Polynomials

5.2.2 Meta-Measurements Method

Prediction method using a classifier trained on the computed Meta-Measurements

This method takes a different approach to predicting the order of the polynomial

to be approximated to the decision boundary of the two classes within a dataset

then the statistical methods. It calculates all the 34 meta-measurements described

in Section 3 on the datasets generated artificially as shown in Section 4.2. These

computed meta-measurements form the training set of a classifier. The trained

classifier is then used on another database (called the testing set) of another 6,000

datasets that are generated by the same function as the first, only this time we used

a different initial seed of the random number generator, hence the two databases are

distinct but are generated by the same principles, and the latter will contain data

that has not been presented to classifier in its training stage. In our investigation

we have used 6 different classifiers, namely:

1. Linear classifier based on normal densities (LDC);

2. Quadratic classifier based on normal densities (QDC);

3. K-nearest neighbour classifier (KNNC), where the parameter K is optimized

to minimize the leave one out error;

4. 1-nearest neighbour (1NNC);

5. 3-nearest neighbour (3NNC);

6. Fishers minimum least square linear classifier (FISHERC).

Empirically the quadratic classifier (QDC), proved to be the best suited classifier

for the problem at hand.

We have evaluated the performance of the 4 statistical methods of predicting the

order of the polynomial and our proposed method using meta-measurements tested

on two different scenarios, each of which has different interpretations of correct

classification counts.

In the first scenario the accuracy is calculated by counting only the exact matches

between the predictions generated by each method against the true order of the

polynomial.

Whereas, in the second scenario, the accuracy is calculated by counting the exact

matches between the predictions and the true order, but also allows for order over-

estimation by including as a correct prediction where the order of the polynomial is

greater than the true order.

85

CHAPTER 5. Decision Boundary Approximation Using Polynomials

All the experiments were carried out by writing functions and scripts for the

MATLAB 2012 programming environment and we have also used portions from the

academic version of PRTools [20].

Testing

Database

Calculate

META-

Measurements

Training

Database

Train Classifier

Calculate META-

Measurements

Trained

Classifier

Test the

classifier

Test the

classifier

Evaluate

Training Error

Offline Online

Predicted order

of polynomial
Predicted order

of polynomial

Evaluate

Testing Error

Figure 5.2: Overview of the system to test the prediction accuracy of the Meta-
measurement method of predicting the polynomial order.

86

CHAPTER 5. Decision Boundary Approximation Using Polynomials

5.3 Comparative Results

The following pages compare the experimental results of predicting the order of

the polynomial to be best fitted on the decision boundary that is present in our

synthetically generated dataset.

Table 5.1 presents the prediction accuracy of statistical methods of estimating

the goodness of fit using 5 criterions across two evaluation scenarios (detailed in

previous section).

For scenario one, the best prediction accuracy is achieved by the Largest Decrease

in Mean Standard Error (L.I. MSE) with 17.85% and a standard deviation of 0.41%

with the other 4 selection criterion methods all having an accuracy close or below

10%. Given that all these experiments needed to predict the correct from a range of

1 to 10, having a accuracy of 10% is as good as random guessing the order. Having

an accuracy lower than 10% means that the given selection criterions are worse at

predicting the correct order than random guessing it. The low accuracy of exact

estimating exactly the goodness of fit was an unexpected find of our research.

For scenario two, the prediction accuracy increases dramatically. The best selec-

tion criterion is now the Minimum Mean Standard Error (MIN MSE) criterion with

69.99% across the 10 cross-validation runs, which represents a more than seven fold

increase in accuracy as compared to scenario one. This scenario is more lenient by

accepting an over-estimation of the predicted order, which is fine in most cases but

it leads to selecting a too complicated model for the given dataset.

The results summarized in table 5.1 are expanded in Figure 5.3 to show a

graphical box-plot of the obtained accuracies and in Table 5.3 that shows the non-

parametric evaluation of the distribution of accuracy values resulting from the 10-fold

cross-validation for scenario one.

The results summarized in table 5.1 are expanded in Figure 5.4 to show a

graphical box-plot of the obtained accuracies and in Table 5.4 that shows the non-

parametric evaluation of the distribution of accuracy values resulting from the 10-fold

cross-validation for scenario two.

From the comparison of the results obtained by the statistical methods of pre-

dicting the order of the polynomial using we can confirm that these methods cannot

exactly predict the correct order of the polynomial at most they can predict with

an accuracy slightly greater than random guessing. Furthermore, when assessed on

predicting the correct order or over-estimating they achieve moderate results (e.g.

69.75%).

Table 5.2 shows the results of the polynomial order prediction method using

meta-measurements and 5 trained classifiers over the same two scenarios (the exact

87

CHAPTER 5. Decision Boundary Approximation Using Polynomials

prediction scenario and the exact prediction with overestimation scenario) but using

3 sets of meta-measurements:

� MM Group 1 - The complexity Meta-Measurements (MM) with indices be-

tween 1 and 34;

� MM Group 2 - The graphical angle profile Meta-Measurements (MM) with

indices between 38 and 53;

� MM Group 3 - All the Meta-Measurements (MM) with indices between 1 and

53;

These 3 groups of Meta-Measurements were selected in order to find which group

is better suited to do the prediction and whether the angle profile Meta Measure-

ments are increasing the prediction accuracy when used together with the complexity

measurements.

From table 5.2 we observe that the complexity Meta-Measurements in group 1,

are achieving the best result on their own and the addition of the Meta-Measurements

in Group 2 lowers the prediction accuracy to the levels of the prediction accuracy

of Group 2 alone. Therefore, we shouldn’t use all Meta-Measurements, Group 1 is

achieving 93% in scenario 1 of exact classification and 96.62% in scenario 2, where

overestimating is allowed.

The difference between the best statistical accuracy 17.85% in scenario 1 and

69.75% in scenario 2, is astonishing when compared to the best results achieved by

the Complexity Meta-Measurements which achieve 93% and 96.63% in their respec-

tive scenarios.

The results summarized in table 5.2 are expanded in Figure 5.4 to show a

graphical box-plot of the obtained accuracies and in Table 5.4 that shows the non-

parametric evaluation of the distribution of accuracy values resulting from the 10-fold

cross-validation for scenario two.

The results summarized in table 5.2 are expanded in Figure 5.4 to show a

graphical box-plot of the obtained accuracies and in Table 5.4 that shows the non-

parametric evaluation of the distribution of accuracy values resulting from the 10-fold

cross-validation for scenario two.

The results summarized in table 5.2 are expanded in Figure 5.4 to show a

graphical box-plot of the obtained accuracies and in Table 5.4 that shows the non-

parametric evaluation of the distribution of accuracy values resulting from the 10-fold

cross-validation for scenario two.

88

CHAPTER 5. Decision Boundary Approximation Using Polynomials

Table 5.1: Summary of polynomial order prediction accuracies using Statistical
methods evaluated in two classification scenarios.

MIN
MSE

MIN
MCp AIC

MIN
BIC

L.D.
MSE

Statistical methods
Scenario #1 Average: 9.77% 9.79% 8.74% 7.76% 17.85%
Standard deviation: ±0.38 ±0.35 ±0.38 ±0.34 ±0.41

Scenario #2 Average: 69.99% 69.75% 56.85% 40.14% 30.28%
Standard deviation: ±0.47 ±0.48 ±0.71 ±0.52 ±0.34

Table 5.2: Summary of polynomial order prediction accuracies using Meta-
Measurement methods evaluated in two classification scenarios.

Bayes
Normal

1

Bayes
Normal

2
1-NN

Classifier
3-NN

Classifier
Fisher
Classifier

Complexity Meta Measurements - with indices from 1 to 34
Scenario #1 Average 40.06% 37.06% 93.04% 77.67% 38.91%
Standard Deviation (±0.51) (±0.40) (±0.32) (±0.33) (±0.59)

Scenario #2 Average 73.78% 87.17% 96.62% 87.84% 68.81%
Standard Deviation (±0.70) (±0.70) (±0.27) (±0.44) (±0.81)

Graphical Meta Measurements - with indices from 38 to 53
Scenario #1 Average 23.94% 40.69% 82.29% 56.70% 24.88%
Standard Deviation (±0.42) (±0.72) (±0.47) (±0.37) (±0.44)

Scenario #2 Average 48.23% 59.91% 89.11% 68.91% 46.97%
Standard Deviation (±0.62) (±3.22) (±0.44) (±0.59) (±0.59)

All Meta Measurements - with indices from 1 to 53
Scenario #1 Average 41.62% 46.45% 82.44% 56.88% 40.56%
Standard Deviation (±0.45) (±2.81) (±0.53) (±0.43) (±0.56)

Scenario #2 Average 72.02% 66.98% 88.67% 68.02% 65.70%
Standard Deviation (±0.74) (±5.05) (±0.34) (±0.40) (±0.65)

89

CHAPTER 5. Decision Boundary Approximation Using Polynomials

MIN_MSE MIN_MCp AIC MIN_BIC L.I. MSE

8

10

12

14

16

18

Investigated STAT method

P
re

di
ct

io
n

ac
cu

ra
cy

 (
%

)

STAT method 10−fold crossvalidation accuracies for scenario #1

Figure 5.3: Polynomial order prediction accuracy boxplot of the Statistical methods,
evaluated on scenario #1.

Table 5.3: Non-parametric evaluation of polynomial order prediction accuracy using
Statistical methods, evaluated on scenario #1.

MIN
MSE

MIN
MCp AIC

MIN
BIC

L.D.
MSE

Average value 9.77 9.79 8.74 7.76 17.85
Standard deviation ±0.38 ±0.35 ±0.38 ±0.34 ±0.41

Minimum 9.11 9.26 7.81 7.15 17.26
Lower whisker 9.11 9.26 8.46 7.15 17.26
Lower 25% percentile 9.48 9.48 8.65 7.54 17.61
Median 9.83 9.83 8.87 7.77 17.71
Upper 75% percentile 9.96 9.96 8.96 8.00 18.28
Upper whisker 10.31 10.31 9.13 8.24 18.43
Maximum 10.31 10.31 9.13 8.24 18.43

Percentage in Q1 20.0% 20.0% 10.0% 20.0% 20.0%
Percentage in Q2 50.0% 50.0% 50.0% 50.0% 50.0%
Percentage in Q3 30.0% 30.0% 30.0% 30.0% 30.0%

Percentage of outliers 0.0% 0.0% 10.0% 0.0% 0.0%
Number of outliers 0 0 1 0 0

Number of samples 10 10 10 10 10

90

CHAPTER 5. Decision Boundary Approximation Using Polynomials

MIN_MSE MIN_MCp AIC MIN_BIC L.I. MSE

30

35

40

45

50

55

60

65

70

Investigated STAT method

P
re

di
ct

io
n

ac
cu

ra
cy

 (
%

)

STAT method 10−fold crossvalidation accuracies for scenario #2

Figure 5.4: Polynomial order prediction accuracy boxplot of the Statistical methods,
evaluated on scenario #2.

Table 5.4: Non-parametric evaluation of polynomial order prediction accuracy using
Statistical methods, evaluated on scenario #2.

MIN
MSE

MIN
MCp AIC

MIN
BIC

L.D.
MSE

Average value 69.99 69.75 56.85 40.14 30.28
Standard deviation ±0.47 ±0.48 ±0.71 ±0.52 ±0.34

Minimum 69.41 69.13 55.85 39.50 29.65
Lower whisker 69.41 69.13 55.85 39.50 29.65
Lower 25% percentile 69.50 69.28 56.30 39.69 30.02
Median 69.94 69.69 56.78 40.05 30.36
Upper 75% percentile 70.39 70.07 57.43 40.50 30.46
Upper whisker 70.65 70.46 58.07 41.15 30.81
Maximum 70.65 70.46 58.07 41.15 30.81

Percentage in Q1 20.0% 20.0% 20.0% 10.0% 20.0%
Percentage in Q2 50.0% 50.0% 50.0% 60.0% 50.0%
Percentage in Q3 30.0% 30.0% 30.0% 30.0% 30.0%

Percentage of outliers 0.0% 0.0% 0.0% 0.0% 0.0%
Number of outliers 0 0 0 0 0

Number of samples 10 10 10 10 10

91

CHAPTER 5. Decision Boundary Approximation Using Polynomials

Bayes−Normal−1 Bayes−Normal−2 1−NN Classifier 3−NN Classifier Fisher

70

75

80

85

90

95

Investigated classifier

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

%
)

10−fold crossvalidation results for scenario #2

Figure 5.5: Polynomial order prediction accuracy boxplot of the Meta-Measurements
Group 1, evaluated on scenario 2.

Table 5.5: Non-parametric evaluation of polynomial order prediction accuracy using
Meta-Measurements Group 1, evaluated on scenario #2.

Bayes
Normal

1

Bayes
Normal

2
1-NN

Classifier
3-NN

Classifier
Fisher
Classifier

Average value 73.78 87.17 96.62 87.84 68.81
Standard deviation ±0.70 ±0.70 ±0.27 ±0.44 ±0.81

Minimum 73.06 86.07 96.17 86.78 67.65
Lower whisker 73.06 86.07 96.44 87.56 67.65
Lower 25% percentile 73.22 86.69 96.46 87.72 68.17
Median 73.50 87.13 96.60 87.92 68.81
Upper 75% percentile 74.30 87.48 96.63 88.09 69.48
Upper whisker 75.06 88.26 96.63 88.41 69.85
Maximum 75.06 88.26 97.11 88.41 69.85

Percentage in Q1 20.0% 20.0% 10.0% 10.0% 20.0%
Percentage in Q2 50.0% 50.0% 50.0% 50.0% 50.0%
Percentage in Q3 30.0% 30.0% 10.0% 30.0% 30.0%

Percentage of outliers 0.0% 0.0% 30.0% 10.0% 0.0%
Number of outliers 0 0 3 1 0

Number of samples 10 10 10 10 10

92

CHAPTER 5. Decision Boundary Approximation Using Polynomials

Bayes−Normal−1 Bayes−Normal−2 1−NN Classifier 3−NN Classifier Fisher

45

50

55

60

65

70

75

80

85

90

Investigated classifier

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

%
)

10−fold crossvalidation results for scenario #2

Figure 5.6: Polynomial order prediction accuracy boxplot of the Meta-Measurements
Group 2, evaluated on scenario 2.

Table 5.6: Non-parametric evaluation of polynomial order prediction accuracy using
Meta-Measurements Group 2, evaluated on scenario #2.

Bayes
Normal

1

Bayes
Normal

2
1-NN

Classifier
3-NN

Classifier
Fisher
Classifier

Average value 48.23 59.91 89.11 68.91 46.97
Standard deviation ±0.62 ±3.22 ±0.44 ±0.59 ±0.59

Minimum 47.33 55.35 88.43 67.70 46.04
Lower whisker 47.33 55.35 88.43 67.70 46.04
Lower 25% percentile 47.69 56.48 88.89 68.61 46.61
Median 48.23 60.12 89.11 68.92 47.03
Upper 75% percentile 48.74 62.22 89.39 69.44 47.37
Upper whisker 49.19 65.15 89.74 69.57 47.80
Maximum 49.19 65.15 89.74 69.57 47.80

Percentage in Q1 20.0% 20.0% 20.0% 20.0% 20.0%
Percentage in Q2 50.0% 50.0% 50.0% 50.0% 50.0%
Percentage in Q3 30.0% 30.0% 30.0% 30.0% 30.0%

Percentage of outliers 0.0% 0.0% 0.0% 0.0% 0.0%
Number of outliers 0 0 0 0 0

Number of samples 10 10 10 10 10

93

CHAPTER 5. Decision Boundary Approximation Using Polynomials

Bayes−Normal−1 Bayes−Normal−2 1−NN Classifier 3−NN Classifier Fisher

60

65

70

75

80

85

90

Investigated classifier

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

%
)

10−fold crossvalidation results for scenario #2

Figure 5.7: Polynomial order prediction accuracy boxplot of the Meta-Measurements
Group 3 (ALL), evaluated on scenario 2.

Table 5.7: Non-parametric evaluation of polynomial order prediction accuracy using
Meta-Measurements Group 3, evaluated on scenario #2.

Bayes
Normal

1

Bayes
Normal

2
1-NN

Classifier
3-NN

Classifier
Fisher
Classifier

Average value 72.02 66.98 88.67 68.02 65.70
Standard deviation ±0.74 ±5.05 ±0.34 ±0.40 ±0.65

Minimum 71.13 59.63 88.20 67.35 64.89
Lower whisker 71.13 59.63 88.20 67.35 64.89
Lower 25% percentile 71.46 64.35 88.31 67.81 65.17
Median 71.84 65.40 88.66 68.00 65.67
Upper 75% percentile 72.48 69.57 88.98 68.20 66.04
Upper whisker 73.43 72.04 89.11 68.70 66.74
Maximum 73.43 77.67 89.11 68.70 66.74

Percentage in Q1 20.0% 20.0% 20.0% 20.0% 20.0%
Percentage in Q2 50.0% 50.0% 50.0% 50.0% 50.0%
Percentage in Q3 30.0% 20.0% 30.0% 30.0% 30.0%

Percentage of outliers 0.0% 10.0% 0.0% 0.0% 0.0%
Number of outliers 0 1 0 0 0

Number of samples 10 10 10 10 10

94

CHAPTER 5. Decision Boundary Approximation Using Polynomials

5.4 Chapter Conclusions

This chapter presented the evaluation of statistical methods for estimating the

order of the polynomial that can approximate efficiently the decision boundary of two

dimensional, two class pattern recognition problems and compared these with our

proposed method of accomplishing the same task using a machine learning approach

and the proposed meta-measurements.

The advantages and disadvantages of the best statistical method and our pro-

posed method were highlighted with experimental results.

Our proposed method achieved an accuracy of 96.62% as opposed to 69.99% when

accepting that over-estimating the order of the polynomial that is to be predict is

acceptable. Which, for most of the cases it is, but it does lead to more complicated

models, that can over-fit or have convergence problems. Therefore, it is desirable

to aim for exact prediction of the polynomial order. In this scenario our proposed

achieved 93% accuracy as opposed to just under 18%, which is not substantially

more than random guessing.

In the light of these results, we believe that our proposed method has a large

achievement in advancing the field.

The presented approach can be applied to pattern recognition problems with

C > 2 number of classes by using task decomposition. However, further research

needs to address feature spaces with higher number of dimensions.

The work presented in this chapter will be used throught the rest of the work,

namely in Chapter 6, where we investingate further the decision boundary of Neural

Networks and propose a novel method of adapting the initial connection weights of

the network to improve classification error.

Furthermore, the Meta-Measurement method proposed in this chapter will be

used in Chapter 7, where we construct Modular Neural Networks for which the

number of hidden neurons will be predicted with this method.

95

Chapter 6

Neural Network Weight

Adaptation

I
n this chapter we shall talk about a technique developed by the authors, to

improve the classification accuracy and reduce the number of training epochs

of the feed-forward back-propagation neural networks when trained on data

that has a decision boundary that is polynomial or it can be approximated to a

polynomial.

The decision boundary that a back-propagation feed forward neural network can

produce is first investigated analytically and validated graphically. The decision

boundary is dependent on the number of neurons which are present in the hidden

layer of the network. From this investigation we have arrived to the idea tune

the initial starting weights of the network and found that this would have several

desirable outcomes compared to the control scenario when the initial weights are

initialized with random values. This conclusion has been reached after comparing

the proposed weight adaptation scheme to a control experiment.

We found that the tuning of the initial values of the connection weight of the

neural network according to our proposed method has the follows benefits:

� The classification error rate is reduced;

� The number of training epochs needed before the training algorithm meets the

stopping criteria is decreased.

This has been achieved by tuning the initial values of the weights of the neurons

so that they reproduce the location of tangent lines to the polynomial graph at the

inflection points of the graph where the second order derivative becomes zero and

also the tangents to the graphs of the polynomial at the boundaries of the considered

96

CHAPTER 6. Neural Network Weight Adaptation

graphing ranges (e.g. [0, 1]). These tangent lines will be referred to later in this

chapter as ”characteristic tangent lines”.

6.1 Decision Boundaries of Neural Networks

In order to investigate the decision boundary produced by a NN, we first have

to take account of the factors that can influence the shape of the decision boundary,

these are generically named the architecture of the NN.

The generic architecture of a neural network is defined by:

1. The number of input nodes

2. The number of layers

3. The number of hidden nodes

4. The number of output nodes

5. The presence/absence of feedback loops

6. The ”connectedness” of the network (fully or partially connected)

7. The topological/hierarchical organisation

8. The type of activation function of the nodes

We are concerned with just the number of hidden neurons in the hidden, middle,

layer of the neural network. While we assume constant values to all the other

parameters of the network architecture.

The neural networks we for which we are investigating the decision boundaries

have the following characteristics:

1. Two input neurons nodes, since the classification problems we are trying to

solve have two dimmensions;

2. Have an input, output and a single hidden layer;

3. A variable number of hidden nodes, ranging from 1 to 10;

4. Two output nodes, since the data we are trying to classify has two classes;

5. The networks we investigate do not have feedback loops (they are feed-forward

networks);

97

CHAPTER 6. Neural Network Weight Adaptation

Tanh()Σ
x1

b1

x2

iw1

iw2

Tanh()Σ

b21

Tanh()Σ

b22

y1

y1

lw1

lw2

Figure 6.1: Schematic of a 2-1-2 neural network.

6. Are fully connected, missing connections can be training by setting the con-

nection weigths to zero;

7. Their topological layout is equivalent to a directed graph;

8. The activation function is the hyperbolic tangent.

Having considered what architecture of NN we are taking into account during

investigation we have set out to analytically derive the formulation of the decision

boundary produced by the NN for a given number of hidden neurons in the hidden

layer.

We have started to investigate the simplest NN with just one hidden node/neuron

in the hidden layer, the schematic of such a network can be seen in Figure 6.1. The

first step undertaken in the analytical derivation of the decision boundary was to

express the outputs of the NN given the inputs, this is given by Equation 6.1. Which

is easy to do since the data flows through the NN just in one direction since the NN

is feed-forward. {
y1 = tanh (b21 + lw1 tanh (b1 + iw1x1 + iw2x2))

y2 = tanh (b22 + lw2 tanh (b1 + iw1x1 + iw2x2))
(6.1)

Since the decision boundary is defined to be the locus of points of equal proba-

bility, we make the outputs equal y1 = y2 and then solve for x2 with respect to x1,

this gives us Equation 6.2.

x2(x1) =

1
2
log
(
− b21−b22+lw1−lw2

b21−b22−lw1+lw2

)
− b1

iw2

− iw1

iw2

x1 (6.2)

98

CHAPTER 6. Neural Network Weight Adaptation

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
1

x
2

y 1 a
nd

 y
2

y1
y2

(a) Output surfaces

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1.5

−1

−0.5

0

0.5

x
1

y
1
 − y

2

x
2

y 1 −
 y

2

(b) Difference of outputs

−1.5−1−0.5

0

0

0.5

0.5

x
1

x 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) Contour

Figure 6.2: Output produced by a 2-1-2 NN trained on the XOR problem. a) surfaces
produced by each individual output neuron; b) decision surface obtained by y1 − y2;
c) contour plot of the output surface y1 − y2.

In order to validate the obtained decision boundary expression we have plotted

the individual outputs y1, y2 as the blue and red surface plots. Superimposed on

this graph we have plotted the calculated decision boundary (obtained as described

above) with a thick black line. There are also 4 data points represented on this graph

by black circles with blue and red thick outlines, which represent the datapoints

corresponding to the XOR problem. The surface plots are calculated by sampling

the x1 and x2 values in the [−1,+1] range. For the simple NN architecture with one

node in the hidden layer and some arbitrary values for the connection weights we

obtained the following plots, shown in Figure 6.2. This figure has three sub-figures,

sub-figure a) shows the individual outputs y1, y2; sub-figure b) shows the combined

output y1 − y2 which is the decision boundary produced by the network; sub-figure

c) shows the combined output y1−y2 as a contour. The examination of these figures

99

CHAPTER 6. Neural Network Weight Adaptation

Tanh()Σ
x1

b11

x2

iw11

iw12

Tanh()Σ

b21

Tanh()Σ

b22

y1

y1

lw11

lw12

Tanh()Σ

b12

lw21

lw22

iw21

iw22

Figure 6.3: Schematic of a 2-2-2 neural network.

and many other examples of NNs we have concluded that our model of the decision

boundary is perfectly aligned with the actual decision boundary that is formed by

the examined NN.

Next we tried to apply the same derivation process to the NN with two hidden

nodes, pictured schematically in Figure 6.3 and wrote the Equation 6.3 that expresses

the outputs in terms of the inputs.

y1 = tanh (b21 + lw11 tanh (b11 + iw11x1 + iw21x2)+

+ lw21 tanh (b12 + iw12x1 + iw22x2))

y2 = tanh (b22 + lw12 tanh (b11 + iw11x1 + iw21x2)+

+ lw22 tanh (b12 + iw12x1 + iw22x2))

(6.3)

Trying to solve the Equation 6.3 for x2 with respect to x1 when y1 = y2 is

impossible to express using algebraic operators and Taylor approximations or other

functional expansions are not feasible.

However, if we replace the non-linear, hyperbolic tangent, function with a linear

function then we obtain a good approximation to the following system of equations:

We looked at the linear expression of the inputs to the hidden nodes:{
y1 = (b11 + iw11x1 + iw21x2)

y2 = (b12 + iw12x1 + iw22x2)
(6.4)

For which we obtain the following solutions:
x2(x1) = − b11

iw21

− iw11

iw21

x1

x2(x1) = − b12
iw22

− iw12

iw22

x1

(6.5)

100

CHAPTER 6. Neural Network Weight Adaptation

(a) Output Surfaces (b) Output Decision Planes

(c) Difference of outputs (d) Output Contour

Figure 6.4: Output produced by a 2-2-2 NN trained on the XOR problem. a)
surfaces produced by each individual output neuron; b) individual surfaces with
decision planes produced by each neuron; c) decision surface obtained by y1− y2; d)
contour plot of the output surface y1 − y2.

These linear equations 6.5 define planes in the feature space x1,x2 and the inter-

section of these planes with the ”zero plane” is approximating the decision boundary

that the 2-2-2 NN will produce. For validating our findings we have trained a 2-2-2

NN on the XOR binary classification problem and plotted same three types of sub-

figures a), c) and d), as shown for the examination of the 2-1-2 NN, but for the NN

with two nodes in the hidden layer we have added an extra Sub-Figure, subfigure

b), to show the planes formed by the system of equations 6.5. The Sub-Figure 6.4a)

shows the calculated output surfaces y1,y2 against the NN inputs x1,x2 along with

the thick black lines that were obtained analytically above; b) show the same as a)

but with the decision planes superimposed; c) this sub-figure shows the final output

y1 − y2; d) depiction of the contour-plots formed by the calculated output of the

NN y1 − y2 and the analytically obtained decision boundary shown with thick black

101

CHAPTER 6. Neural Network Weight Adaptation

lines.

6.2 Weight Adaptation Methodology

We have developed the following methodology to adapt the initial values of the

connection weights of the NN that is required to perform the classification on a given

dataset. We are going to trial our methodology on Uniformly Distributed synthetic

data that is generated using the same principles as described in section 4.2, having

polynomial order ranging from 1 to 10, with a known polynomial expression. The

neural networks are then adapted to have their decision boundaries aligned closely

to the characteristic tangent lines of the generating polynomial. Then the dataset

is split into 90% training set and 10% testing set out of the 1,000 data points. One

thousand datasets are generated for each polynomial order giving a total of 10,000

datasets and 10,000 adapted and later trained neural networks which will be assessed

on their classification performance. Thus we obtain 10,000 classification error rates

for each NN on one separate dataset. The same exact training and testing datasets

will also be used to train the control experiment NN where the connection weights

are not adapted. The results of the comparison between our proposed method of

adapting connection weights and the control experiment are shown in the following

sections.

6.3 Total Variance Distance

Before we dive into the presentation of our experimental results, we are going to

make a slight detour, and present some aspects of our methodology for comparison.

For this reason we are going to describe the use of the statistical total variance

distance between two probability distributions.

Let us consider that we have two Gaussian distributions of the error values of

our two sets of experiments, we shall name these e1 and e2. For clarity we will also

assign some arbitrary values to σ and µ.

e1 ∼ N (µ1, σ1
2) where

{
µ1 = 0 and

σ1 = 4
(6.6)

e2 ∼ N (µ2, σ2
2) where

{
µ2 = 5 and

σ2 = 1
(6.7)

A graphical representation of the two Gaussian distributions is shown in Figure

102

CHAPTER 6. Neural Network Weight Adaptation

6.5. This figure will be used to describe how the Total Variance Distance was

calculated.

−15 −10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Gaussian pdf 1

Gaussian pdf 2

Figure 6.5: Graphical representation of the Total Variance Distance between two
Gaussian distributions.

Two Gaussian probability distributions of are compared using the Total Variance

Distance adapted from Levin, Peres and Wilmer [42]. This distance metric was

chosen because it conveys the dissimilarity information between the two distributions

in one single real number that belongs to the semi-closed interval [0, 1), where a

distance of 0 corresponds to two distributions which have exactly the same means

and standard deviations, while the distance value will tend to reach the value 1

asymptotically, for the ever dissimilar Gaussian distributions, but will not reach the

value 1, it will get infinitesimally close to 1. The two distributions however skewed

they may be, they still have an intersection point and a very small (sometimes

negligible) common overlap area.

The Total Variance Distance (or TV distance) effectively measures the common

area under the two probability distribution functions.

103

CHAPTER 6. Neural Network Weight Adaptation

The Total Variance distance on discrete events ∥ · · · ∥TV discrete is defined as:

∥e1 − e2∥TV discrete =
1

2

∑
x∈Ω

|e1(x)− e2(x)| (6.8)

However, we are not concerned with the measurement of the distance between

discrete probability distributions, we would like to have the same measurement of

distance for continuous probability distributions. Therefore, we modify the above

definition by summing the absolute values between the integrals of the probability

distributions on the intervals where the probability distributions have a constant

relationship to one another. That is to say, that we split the interval (−∞,∞)

where we do the integration, to intervals where one particular probability distribution

function is always larger than the other. The splits are therefore given by the points

of intersection between the two probability distribution functions.

In order to write down the analytical form of the total variance distance for the

continuous case of the probability density function we need to define the set of points

of intersection between the two functions, which we will later see that it will consist

of mostly two points, that we shall refer to as x1 and x2. Also, we will assume that

x1 ≤ x2.

The two intersection points x1 and x2 are represented on Figure 6.5 by the large

crosses and the values are represented by the vertical dashed lines.

Now we can write down the analytical form the total variance distance for con-

tinuous probability distributions ∥ · · · ∥TV , as:

∥e1 − e2∥TV =
1

2

(∣∣∣∣∫ x1

−∞
pdf1(x) dx−

∫ x1

−∞
pdf2(x) dx

∣∣∣∣ +
+

∣∣∣∣∫ x2

x1

pdf1(x) dx−
∫ x2

x1

pdf2(x) dx

∣∣∣∣ +
+

∣∣∣∣∫ +∞

x2

pdf1(x) dx−
∫ +∞

x2

pdf2(x) dx

∣∣∣∣) (6.9)

In order to obtain the values for x1 and x2, we equalize the two Gaussian prob-

ability distributions. The Gaussian probability distribution function (pdf) has the

following analytic form, for each of the two distribution separately:

pdf1(x) =
1

σ1

√
2π

e
− (x−µ1)

2

2σ1
2 (6.10)

104

CHAPTER 6. Neural Network Weight Adaptation

and

pdf2(x) =
1

σ2

√
2π

e
− (x−µ2)

2

2σ2
2 (6.11)

By equalling the equations of the two Gaussian distributions (6.10) and (6.11)

we obtain (6.13) and solving for x we obtain the coordinates of the intersection

points. Also, we observe that, generally, the two graphs have at most two intersection

points since the equation is essentially a quadratic equation in x (after we apply the

logarithm with base e to both sides of the equation), unless of course, the two

distributions have the same σ and µ in which case the two distributions will have

an infinite number of common points. However this case is trivial and will be dealt

with separately.

pdf1(x) = pdf2(x) (6.12)

1

σ1

√
2π

e
− (x−µ1)

2

2σ1
2 =

1

σ2

√
2π

e
− (x−µ2)

2

2σ2
2 (6.13)

We proceed to solve for x by taking the logarithm of both sides of (6.13):

ln

(
1

σ1

√
2π

· e− (x−µ1)
2

2σ1
2

)
= ln

(
1

σ2

√
2π

· e− (x−µ2)
2

2σ2
2

)
(6.14)

and rearranging:

ln

(
1

σ1

√
2π

)
− (x− µ1)

2

2σ1
2

= ln

(
1

σ2

√
2π

)
− (x− µ2)

2

2σ2
2

(6.15)

(x− µ2)
2

2σ2
2

− (x− µ1)
2

2σ1
2

= ln

(
σ1

σ2

)
(6.16)

σ1
2(x− µ2)

2 − σ2
2(x− µ1)

2

2σ1
2σ2

2
= ln

(
σ1

σ2

)
(6.17)

σ1
2(x− µ2)

2 − σ2
2(x− µ1)

2 = 2σ1
2σ2

2 · ln
(
σ1

σ2

)
(6.18)

finally to obtain this quadratic form in x:

(σ1
2 − σ2

2) · x2 + 2(µ1σ2
2 − µ2σ1

2) · x +

105

CHAPTER 6. Neural Network Weight Adaptation

+ µ2
2σ1

2 − µ1
2σ2

2 − 2σ1
2σ2

2 · ln
(
σ1

σ2

)
= 0 (6.19)

By using term identification we can discover the coefficients of the quadratic

equation. We will use the following notation for the coefficients of x:
α = σ1

2 − σ2
2

β = 2(µ1σ2
2 − µ2σ1

2)

γ = µ2
2σ1

2 − µ1
2σ2

2 − 2σ1
2σ2

2 · ln
(

σ1

σ2

) (6.20)

Hence, we obtain a standard quadratic form for our initial equation (6.13):

αx2 + βx+ γ = 0 (6.21)

Therefore the solutions of the quadratic equation, given the notation we em-

ployed, is the following conditional set with four branches:

x ∈



{
−
(
β−
√

β2−4αγ
)

2α
,−

(
β+
√

β2−4αγ
)

2α

}
if α ̸= 0{

− γ
β

}
if α = 0 ∧ β ̸= 0

C if α = 0 ∧ β = 0 ∧ γ = 0

∅ if α = 0 ∧ β = 0 ∧ γ ̸= 0

(6.22)

The first branch in (6.22) is satisfied when |σ1| = |σ2|, since the standard devi-

ation is always positive we can drop the absolute value bars and the condition to

have the first branch as: σ1 = σ2.

The second branch of (6.22) is satisfied when the standard deviations are the

same σ1 = σ2 and β ̸= 0 (which implies that the means are different), in this case

the equation will have a double solution that will be equal i.e. x1 = x2 =
µ1−µ2

2
.

The third branch of the same equation (6.22), represents the case when the two

distributions have exactly the same means and standard deviations.

Finally, the last branch of equation (6.22), is never possible, because that will

imply that if β = 0 =⇒ µ1 = µ2 and γ ̸= 0 =⇒ µ1
2 ̸= µ2

2, which is impossible.

Therefore, the original equation (6.13) and its quadratic equivalent equation (6.21)

will always have two distinct, two equal or an infinite number of solutions.

If we substitute the values of the Gaussian distributions shown in Figure 6.5 into

(6.22) we obtain the intersection points of the two Gaussian distributions to have

106

CHAPTER 6. Neural Network Weight Adaptation

the horizontal coordinates x1 = 3.1573 and x2 = 7.5094 respectively.

The methodology of comparing two Gaussian distribution using the Total Vari-

ance Distance for continuous probability distributions is found to be useful and will

be employed in the next section, when the Gaussian distributions of two performance

indicators are use to compare the efficiency of adapting the initial weights of NNs.

6.4 Experimental Results Assessment

We have conducted two sets of experiments to determine the usefulness of our

proposed method: one experiment is the control experiment where weight adaptation

is not used, the other experiment is using the weight adaptation method that we

have just discussed. Both sets of experiments consist of creating 10,000 datasets of

polynomial order, where each dataset is classified by a feed-forward neural network.

The classification error of each individual neural network is retained then the mean

and standard deviation is computed. The mean and standard deviation is then

compared with the mean and standard deviation of a ”control” experiment in which

the weight adaptation algorithm is disabled, therefore establishing a baseline for

comparison.

For both the control the experiment and our proposed weight adaptation exper-

iment we assess the following groups of performance assessment measures:

� parametric (Gaussian) and non-parametric (percentile) distribution estimation

of the classification error rate;

� the total variance distance between the estimated probability distribution of

the classification error;

� the number of epochs needed to reach the best validation error of the neural

network.

Using 10,000 datasets, a neural network is trained and tested for each dataset,

based on the methodology described in Section 6.2 for each of the two experiment

sets. Figure 6.6, subfigure a), shows the histogram of the percentage error rate

produced by the two experiments. On the horizontal axis we show the percentage

error as the bin centre. While on the vertical axis the percentage of NNs that have

achieved a classification error that falls in the respective histogram bin. From this

sub-figure, we can observe that more than 5% of the NNs produce a classification

error between 0% and 4% in the experiment that uses our proposed weight initial-

ization.

107

CHAPTER 6. Neural Network Weight Adaptation

The second Sub-Figure 6.6 b), shows the Gaussian probability distribution of

the NNs to achieve a classification error rate for the two experiments. Performing a

statistical significance test we conclude that the probability distributions estimated

for the control experiment and the experiment which uses our proposed weight adap-

tation methodology shows that at the significance level of 5% the means of the two

sample sets do not come from the same population.

To examine further the classification error, we looked at non-parametric distribu-

tion estimators in the form of percentage quartiles. For this reason we have included

the boxplot in Figure 6.7 and a summary in Table 6.1. From the tabular form of

the non-parametric distribution estimation, we observe a slight difference of 0.6% in

the overall average value of the classification error across all of the 10,000 datasets

and a halving of the standard deviation of the classification error, which suggests a

narrower grouping of the classification error rates around the mean. Another insight

which was gained from the non-parametric analysis was the reduction of the outliers

by 5% or 528 samples, produced by our proposed weight adaptation as compared to

the control experiment.

The evaluations which were discussed in the paragraphs above, evaluate the

classification error as a whole on the 10,000 datasets that have polynomial decision

boundaries ranging from 1 to 10. Therefore, we also investigated in Figure 6.8 the

classification error grouped by the polynomial order of the decision boundary within

the datasets.

From Figure 6.8 we can see that the mean classification error for the control ex-

periment (shown as the dark blue bars) is higher for the first polynomial orders of 1 to

8 than the corresponding classification error of the weight adapted networks (shown

as light blue bars). For order 9 and 10, the control experiments achieve marginally

smaller error rate than the weight adapted NNs, but these datasets have very compli-

cated decision boundaries. However, the weight adapted networks outperform their

regular/control counterparts by performing much better on lower order polynomial

decision boundaries, especially for the first order polynomial boundary. Also, the

standard deviation of weight adapted networks is much smaller, meaning they are

more consistent, this is especially true for lower order polynomial boundaries in the

datasets employed.

The next analysis group we have performed was to employ the newly adapted

Total Variance Distance measure we have discussed in Section 6.3 on the estimated

Gaussian distributions of the classification error rates produced by the control and

our weight adapted neural networks. The results of this analysus is shown in Figure

6.9, from which we can observe that Total Variance Distance shows a more than 0.9

value of dissimilarity between the two estimated error distributions in case of the

108

CHAPTER 6. Neural Network Weight Adaptation

first order polynomial decision boundaries and a decreasing dissimilarity as the order

of the polynomial is increasing. This presents consistent and concise formulation of

the findings presented so far.

The final group of performance assessment measures we investigated the number

of training epochs required for the NNs to reach the best performing epoch (on

the validation set). The histograms of the best epochs and Gaussian distribution

estimates of the two sets of experiments are shown in Figures 6.10 and the non-

parametric evaluation results are shown in Figure 6.11 and Table 6.2.

109

CHAPTER 6. Neural Network Weight Adaptation

2
6

10
14

18
22

26
30

34
38

42
46

50
54

58
62

66
70

74
78

82
86

90
010203040506070809010
0

H
is

to
gr

am
 o

f t
he

 tr
ai

ni
ng

 e
rr

or
s

(P
ol

yO
rd

er
=

A
LL

)
R

E
G

U
LA

R
 N

N
 M

ea
n:

 1
.7

8(
+

/−
4.

21
),

 P
O

LY
 N

N
 M

ea
n:

 1
.1

3(
+

/−
2.

08
),

 D
IS

T
A

N
C

E
: 0

.6
5

Im
pr

ov
em

en
t i

n
th

e
1s

t b
in

 (
0%

 to
 4

%
)

is
 5

.4
9%

T

ot
al

 v
ar

ia
nc

e
di

st
an

ce
 b

et
w

ee
n

P
D

F
s:

 0
.3

34
83

2

C
la

ss
ifi

ca
tio

n
tr

ai
ni

ng
 e

rr
or

 (
%

)

a)

Percentage of NNs that achieved that training error, out of the total 10000 NNs

R

E
G

U
LA

R
P

O
LY

 A
D

A
P

T
E

D

0
10

20
30

40
50

60
70

80
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n
F

un
ct

io
n

of
 th

e
tr

ai
ni

ng
 e

rr
or

s

S

ta
t s

ig
ni

fic
an

ce
 o

f R
E

G
U

LA
R

 &
 A

D
A

P
T

E
D

 m
ea

ns
, H

=
1,

 P
=

6.
26

12
6e

−
43

R
ej

ec
tin

g
th

e
hy

po
th

es
is

 th
at

 th
e

tw
o

m
ea

ns
 c

om
e

fr
om

 th
e

sa
m

e
po

pu
la

tio
n!

H
E

N
C

E
, T

H
E

 M
E

A
N

S
 O

F
 T

H
E

 T
W

O
 S

A
M

P
LE

S
 X

 &
 Y

 *
**

D
O

*N
O

T
*C

O
M

E
**

*
F

R
O

M
 T

H
E

 S
A

M
E

 P
O

P
U

LA
T

IO
N

!!!
S

ig
ni

fic
an

ce
 le

ve
l:

 5
.0

0%
 (

A
LP

H
A

=
0.

05
00

)

C
la

ss
ifi

ca
tio

n
tr

ai
ni

ng
 e

rr
or

 (
%

)

b)

Probability of NNs to achieve that training error

P

D
F

 R
E

G
U

LA
R

P
D

F
 P

O
LY

 A
D

A
P

T
E

D

F
ig
u
re

6.
6:

H
is
to
gr
am

of
th
e
cl
as
si
fi
ca
ti
on

er
ro
rs

p
ro
d
u
ce
d
b
y
tr
ai
n
in
g
10
,0
00

N
N
s
a)

co
m
p
ar
is
on

of
th
e
er
ro
r
ra
te
s
p
ro
d
u
ce
d
w
it
h
ou

t
w
ei
gh

t
ad

ap
ta
ti
on

(b
lu
e)

an
d
w
ei
gh

t
ad

ap
te
d
N
N
s
(r
ed
);
b
)
F
it
te
d
p
ro
b
ab

il
it
y
d
is
tr
ib
u
ti
on

s.

110

CHAPTER 6. Neural Network Weight Adaptation

CONTROL ADAPTED WEIGHTS

0

10

20

30

40

50

60

70

80

90

C
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

Boxplot of classification error rates

Figure 6.7: Boxplot of overall classification errors of 10,000 trained NNs.

Table 6.1: Statistics of the error distributions.

CONTROL
ADAPTED
WEIGHTS

Average value 1.7775 1.1301
Standard deviation 4.2129 2.0796

Minimum 0 0
Lower whisker 0 0

Lower 25% percentile 0.1 0.1
Median 0.5 0.5

Upper 75% percentile 1.4 1.4
Upper whisker 3.3 3.3

Maximum 88.6 65.1

Percentage in Q1 17.12% 16.95%
Percentage in Q2 57.12% 57.56%
Percentage in Q3 12.35% 17.46%

Percentage of outliers 13.41% 8.03%
Number of outliers 1, 294 766

Total number of samples 10, 000 10, 000

111

CHAPTER 6. Neural Network Weight Adaptation

Figure 6.8: Comparison of the average error rate and its standard deviation for the
regular and weight adapted experiments.

Figure 6.9: Total Variance Distance between the probability distributions of the
error rates produced with and without weight adaptation.

112

CHAPTER 6. Neural Network Weight Adaptation

10
0

20
0

30
0

40
0

50
0

60
0

70
0

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

H
is

to
gr

am
 o

f t
he

 b
es

t e
po

ch
s

(P
ol

yO
rd

er
=

A
LL

)
R

E
G

U
LA

R
 N

N
 M

ea
n:

 2
8.

82
(+

/−
29

.5
9)

,
P

O
LY

 N
N

 M
ea

n:
 2

2.
78

(+
/−

26
.3

4)
,

D
IS

T
A

N
C

E
: 6

.0
5

T
ot

al
 v

ar
ia

nc
e

di
st

an
ce

 b
et

w
ee

n
P

D
F

s:
 0

.0
98

07
25

B
es

t e
po

ch
 n

um
be

r
w

he
n

tr
ai

ni
ng

 h
as

 s
to

pp
ed

a)

Number of NNs that achieved that epoch number

R

E
G

U
LA

R
P

O
LY

 A
D

A
P

T
E

D

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
0

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0.
01

2

0.
01

4

0.
01

6

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n
F

un
ct

io
n

of
 th

e
nu

m
be

r
of

 e
po

ch
s

re
ac

he
d

S
ta

t s
ig

ni
fic

an
ce

 o
f R

E
G

U
LA

R
 &

 A
D

A
P

T
E

D
 m

ea
ns

, H
=

1,
 P

=
2.

84
87

9e
−

52
R

ej
ec

tin
g

th
e

hy
po

th
es

is
 th

at
 th

e
tw

o
m

ea
ns

 c
om

e
fr

om
 th

e
sa

m
e

po
pu

la
tio

n!
H

E
N

C
E

, T
H

E
 M

E
A

N
S

 O
F

 T
H

E
 T

W
O

 S
A

M
P

LE
S

 X
 &

 Y
 *

**
D

O
*N

O
T

*C
O

M
E

**
*

F
R

O
M

 T
H

E
 S

A
M

E
 P

O
P

U
LA

T
IO

N
!!!

S
ig

ni
fic

an
ce

 le
ve

l:
 5

.0
0%

 (
A

LP
H

A
=

0.
05

00
)

B
es

t e
po

ch
 n

um
be

r
w

he
n

tr
ai

ni
ng

 h
as

 s
to

pp
ed

b)

Probability distribution of NNs that achieved that epoch number

R

E
G

U
LA

R
P

O
LY

 A
D

A
P

T
E

D

F
ig
u
re

6.
10
:
H
is
to
gr
am

of
th
e
b
es
t
tr
ai
n
in
g
ep

o
ch

ac
h
ie
ve
d
b
y
tr
ai
n
in
g
10
,0
00

N
N
s
a)

co
m
p
ar
is
on

of
th
e
b
es
t
ep

o
ch

p
ro
d
u
ce
d
w
it
h
ou

t
w
ei
gh

t
ad

ap
ta
ti
on

(b
lu
e)

an
d
w
ei
gh

t
ad

ap
te
d
N
N
s
(r
ed
);
b
)
F
it
te
d
p
ro
b
ab

il
it
y
d
is
tr
ib
u
ti
on

s.

113

CHAPTER 6. Neural Network Weight Adaptation

CONTROL ADAPTED WEIGHTS

0

100

200

300

400

500

600

700

E
po

ch
 n

um
be

r

Boxplot of best achieved training epoch

Figure 6.11: Boxplot of best training epoch of 10,000 trained NNs.

Table 6.2: Statistics of the best epoch distributions.

CONTROL
ADAPTED
WEIGHTS

Average value 28.8212 22.776
Standard deviation 29.5947 26.3375

Minimum 0 0
Lower whisker 0 0

Lower 25% percentile 13 11
Median 21 16

Upper 75% percentile 34.5 26
Upper whisker 66 48

Maximum 608 717

Percentage in Q1 22.10% 21.77%
Percentage in Q2 52.90% 52.81%
Percentage in Q3 17.75% 17.89%

Percentage of outliers 7.25% 7.53%
Number of outliers 710 727

Total number of samples 10, 000 10, 000

114

CHAPTER 6. Neural Network Weight Adaptation

6.5 Chapter Conclusions

In this chapter we have described the problems encountered when we tried to

determine the analytical expression of the decision boundary formed by a feed-

forward neural network. We have formulated two conjectures:

Conjecture one:

The geometrical complexity of the decision boundary, a Neural Network can produce,

is determined by its architecture.

Conjecture two:

The problem of finding the analytical expression of the decision boundary of a Neural

Network is analogous to finding the roots of a polynomial of order 5 or higher

analytically. Which is impossible by using algebraic operators, proven by the Abel-

Ruffini theorem (Paolo Ruffini 1799 and Niels Henrik Abel in papers published in

1824 and 1826).

We tried two approximation methods for finding the analytic expression of the

decision boundary:

1. 2nd order polynomial approximation of eθ+tx2 We could have tried higher poly-

nomial orders 4, 6, 8 ... but solving such high order polynomials is cumbersome

and impossible using algebraic expressions.

2. 3rd order polynomial and McLaurin series approximation of tanh(x). We could

have tried orders 5, 7, 9, but we faced the same problems.

Finally, we obtained good results of approximating the decision boundary by

replacing the non-linear transfer function of the neuron with a linear function and

investigating the contribution of individual neurons.

By using these findings we have implemented and tested a direct method to

adjust the initial weights of a neural network to approximate the decision boundary

found in the training data. This method shows an improvement in the number of

epochs needed to learn the pattern recognition problem and reduced the probability

of the neural network being trapped in local minimum of the error surface.

115

Chapter 7

Modular Neural Network

Construction

T
he challenge of solving pattern recognition problems has led us to the con-

struction of a modular neural network system, as described by Mitzias and

Mertzios [52], Lu and Ito [44] , but further enhanced by our proposed Meta-

Measurement architecture selection methodology detailed in Chapter 5 This archi-

tecture selection methodology has proven to be better at estimating the polynomial

order complexity than statistical methods as shown in Chapter 5 and in our pub-

lished work [31].

The current chapter will describe the following items in detail:

1. The creation of a modular neural network system to be used for multi-class

pattern recognition;

2. The designed system’s performance evaluation on the synthetic datasets;

3. And finally, the designed system’s performance evaluation on realistic datasets

and comparison with other baseline classifiers.

The main benefit of our proposed method is that it overcomes over-fitting by

consistently selecting a number of hidden nodes for the architecture of the neu-

ral network modules that is closer to the ideal number, that was used to generate

synthetic datasets with polynomial decision boundaries for our experiments. The

Meta-Measurement method also proved itself to be superior to statistical methods

of assessing the goodness of fit.

116

CHAPTER 7. Modular Neural Network Construction

7.1 Experimental Setup

The polynomial order of the decision boundary present in a 2-class dataset is

predicted using the Meta-Measurement method and the best Statistical Method

presented in previous chapters. The order of the polynomial will be used as the

number of hidden nodes in the architecture selection process for creating a Modu-

lar Neural Network (MNN). This MNN is then used to classify a dataset and the

performance of such a MNN architecture will be assessed.

The outline of the steps involved in creating the Modular Neural Network (MNN)

for pattern recognition are shown in Figures 7.1 and 7.2. The system diagram had

to be split on two separate pages for readability.

In order to create and test a Modular Neural Network we have split the data

available for the given pattern recognition problem into 3 sets, a training set, a

validation set and a testing set. The training set is used to update the parameters of

the neural network module. The validation set is used to determine at what epoch

to stop updating the parameters of the neural network module. Finally, the testing

set, is used exclusively as ground truth provider to calculate the accuracy of the

prediction given by the MNN.

The steps involved in creating and testing the MNN are as follows:

1. Partition the initial data available into three sets: training, validation and

testing sets;

2. Compute the eigen-values/vectors from the training set alone;

3. Apply PCA to reduce the dimensionality of the dataset to 2 (this step is used

only for the statistical methods to work, and is applied uniformly to all other

methods);

4. Normalize the scale of the resulting transformed datasets based on parameters

estimated from the training set alone;

5. Split the training and validation sets using a 1-versus-1 scheme into p sub-

datasets;

6. Create all the modules of the MNN by applying these steps for each of p

sub-datasets;

(a) Obtain the meta-measurements or statistical polynomial order predictions

for each sub-dataset;

(b) Create and train each a neural network module. Stop the training when

Mean Squared Error calculated on the validation set is increasing.

117

CHAPTER 7. Modular Neural Network Construction

After completing this step training of the MNN has completed. Now the MNN is

ready to be used in testing mode or in running mode. The testing procedure requires

the following steps:

1. Apply the testing set, that has not been split into multiple sub-datasets, but

is in its raw form, to all of the modules in the MNN;

2. Fuse the decisions from all the modules to form the output decision. This

forms the class prediction that the MNN makes given the testing set.

3. Compare the predictions made by the MNN to the labellings of the testing set.

The result of this comparison is used as the classification error rate that will

be reported.

It is very important to note that the training and validation sets are assumed

to be known at the time of designing the MNN. But, the testing set is assumed to

be unknown at the time of designing the system. Therefore only the training and

validation sets are split into p 2-class sub-datasets.

We have taken extreme care in designing this system to reduce the biases intro-

duced by improper handling of the data available for estimating the parameters of

the classifier system (training and validation sets) and not to be contaminated with

the testing set.

Positive bias can be introduced in the performance evaluation of a system if

we use all of the available data to obtain the eigen-vectors during a PCA feature

reduction step. Also, a positive bias will be present in the evaluation if we use the

whole dataset to obtain the normalization parameters (mean vectors and scaling

factor vectors). In both cases, only the portion of the dataset that is reserved for

training is used to obtain the eigen-vectors and normalization parameters.

We have clearly separated the steps taken to mitigate this positive bias as it can

be seen in Figure 7.1. Another important detail that has to be mentioned is that

the ”Sample Mean” calculated during the PCA step is not the same as the ”Sample

Mean” that is used to normalize the data after the PCA step.

118

CHAPTER 7. Modular Neural Network Construction

Partition Data

Real-Life

Multi-Class

Dataset

Training Set

(multi-class)

Testing Set

(multi-class)

Validation Set

(multi-class)

Principal

Component

Analysis

Eigen-vectors

Eigen-values

Sample mean

Transformed

Training Set

Transformed

Testing Set

Transformed

Validation Set

Normalize to

 [-1, 1]

range

Sample Mean

Normalization

factor

Mean adjust samples & project each

sample within each set onto the

obtained Eigen-vectors

Transformed &

Normalized

Training Set

Transformed &

Normalized

Testing Set

Transformed &

Normalized

Validation Set

Normalize the Validation & Testing

Sets using the same factor and mean

(Continued on the next page)

Figure 7.1: Overview of the steps involved in assessing the classification perfor-
mance of the MNN created using a number of hidden nodes suggested by the Meta-
Measurement method (Continued on next page)

119

CHAPTER 7. Modular Neural Network Construction

(Continued from
the previous page)

Create a Neural Network

module for each of the “P”

splits with a number of hidden

nodes equal to the order of the

polynomial

Split dataset

in to “P” sub-

datasets

Calculate Meta-

Measurements on each

sub-dataset

Apply trained classifier to

estimate the order of the

boundary

Predicted

Polynomial

Order

Train & Validate each module

of the Neural Network

Trained Modular Neural

Network

Apply un-split testing set

to all modules of the MNN

Split dataset

in to “P” sub-

datasets

Calculate classification

error rate on the

Training Set

Transformed &

Normalized

Training Set

Transformed &

Normalized

Testing Set

Transformed &

Normalized

Validation Set

Fuse the decision from all

modules to produce final

classification label

Calculate classification

error rate on the

Testing Set

Figure 7.2: Overview of the steps involved in assessing the classification perfor-
mance of the MNN created using a number of hidden nodes suggested by the Meta-
Measurement method (Continuation from the previous page)

120

CHAPTER 7. Modular Neural Network Construction

7.2 Results on Synthetic Data

We have assessed the performance of 1,000 MNNs, created using the procedure

described in the previous section, on 1,000 synthetically generated 2-class datasets

that are described in Section 4.2, with a decision boundary of known order between

1 to 10.

The number of hidden nodes corresponding to each NN module is suggested by

one of the 5 prediction methods:

1. Our own novel method using so called Meta-Measurements (denoted as META

in subsequent figures);

2. Statistical methods that assess the fit of a polynomial of order 1 to 10 to the

decision boundary (denoted as STAT in subsequent figures);

3. An Oracle that guesses the order (between 1 to 10) of the polynomial that can

be fitted to the decision boundary by randomly drawing samples from a uni-

formly distributed probability distribution (denoted as RAND in subsequent

figures);

4. An Oracle that always guesses the true order of the polynomial decison bound-

ary since it is known from the data generation step (denoted as TRUE in

subsequent figures);

5. An Oracle that always returns the maximum possible order, which in our case

is 10 (denoted as ALL10 in subsequent figures).

The last three architecture prediction methods are included as a simple comparison

to analyse the validity of our proposal.

We have analysed the performance of the MNN systems from 5 points of view.

� Firstly, we summarize the total number of parameters that were suggested by

each of the 5 prediction methods in Figure 7.3 which shows a bar chart with

the total count of all the connection weights in all the generated NN modules.

The bar graph shows for each bar the actual total count of connection weights

and the relative percentage variation considering the number of connections

suggested by the TRUE oracle as the base of comparison, which has a 100%

percentage in its corresponding bar.

From this figure we can observe that the RAND, META and TRUE methods

of suggesting the architecture of modules, produce roughly the same number

of connection weights, about 23,000 and relative percentage close to 100%.

121

CHAPTER 7. Modular Neural Network Construction

The other two prediction methods (STAT and ALL10) are overestimating the

number of parameters. Obviously, the ALL10 method overestimates grossly

the number of parameters by always using the most complicated NN module

regardless of the complexity of the dataset. This method also provides the

upper limit to the number of parameters.

� The second type of analysis we have done is to create, for each architecture

suggestion method, a histograms showing the number of NNs achieving one of

the following performance evaluation measures:

– classification performance, see Figure 7.4; The horizontal axis shows the

bin centres of the histogram while vertical axis shows the number of NN

modules to fall in each bin. The bins have following centre location:

While the bin edges are the following:

– best achieved training epoch, see Figure 7.5; The horizontal axis shows

the bin centres of the histogram while vertical axis shows the number of

NN modules to fall in each bin. The bins have following centre location:

While the bin edges are the following:

– best achieved training time, see Figure 7.6. The horizontal axis shows the

bin centres of the histogram while vertical axis shows the number of NN

modules to fall in each bin. The bins have following centre location:

[0.36s, 1.04s, 1.73s, 2.41s, 3.09s, 3.78s, 4.46s, 5.14s, 5.83s, 6.51s]

The bin width is 0.68 seconds, while the bin edges are the following:

Table 7.1: Histogram bin locations for the best epochs.

Bin number Lower bin location Upper bin location

1 0.02s 0.70s
2 0.70s 1.38s
3 1.38s 2.06s
4 2.06s 2.74s
5 2.74s 3.42s
6 3.42s 4.10s
7 4.10s 4.78s
8 4.78s 5.46s
9 5.46s 6.14s
10 6.14s 6.82s

� The final analysis is showing the average gradient between all 1,000 NNmodule.

122

CHAPTER 7. Modular Neural Network Construction

RAND STAT META TRUE ALL10
0

20

40

60

80

100

120

140

160

180

Comparison of total number of parameters produced for all the datasets by each method
RUN179

22512

97.88%

37448

162.82%

24448

106.30%
23000

100.00%

41000

178.26%

NN Architecture Selection Method

N
um

be
r

of
 p

ar
am

et
er

s

Figure 7.3: Total number of parameters for all the 1000 NNs trained and assessed
with each architecture prediction method

All the networks in the 5 architecture prediction methods seem to be learning

the problems at the same rate as it can be seen from Figure 7.7.

The bars for all of the 5 architecture suggestion methods are shown grouped on

the same figure, one figure for each performance evaluation measure per figure.

From Figure 7.4 we can observe a common trend for all of the 5 architecture

suggestion methods, they all seem to perform in the same fashion regardless of the

chosen architecture.

The same is true for the best epoch reached, as it can be seen from Figure 7.5.

Only slight variations are to be observed among the 5 architecture prediction

methods.

However, when we examine the training time required for the individual NN

modules we observe that the ALL10 method produces a slightly larger number of

NN that need a time between 2.74seconds & 3.42seconds to train.

123

CHAPTER 7. Modular Neural Network Construction

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0

100

200

300

400

500

600

Bins of error rate values centered at these values (%)

C
ou

nt
 o

f N
N

s
th

at
 fa

ll
w

ith
in

 e
ac

h
bi

n

Histogram of the classification error rate by each prediction method, RUN 179

Rand.
Stat.
META
True
All 10

Figure 7.4: Histogram of the number of NNs achieving a particular error rate divided
into 10 bins

10 30 50 70 90 110 130 150 170 190
0

100

200

300

400

500

600

700

800

900

Bins of best epoch number centered at these values

C
ou

nt
 o

f N
N

s
th

at
 fa

ll
w

ith
in

 e
ac

h
bi

n

Histogram of best epoch number needed to train the NNs by each prediction method, RUN 179

Rand.
Stat.
META
True
All 10

Figure 7.5: Histogram of the number of NNs that have obtained the best training
epoch divided into 10 bins

124

CHAPTER 7. Modular Neural Network Construction

0.36 1.04 1.73 2.41 3.09 3.78 4.46 5.14 5.83 6.51
0

100

200

300

400

500

600

700

800

900

Bins of training time at these values (seconds)

C
ou

nt
 o

f N
N

s
th

at
 fa

ll
w

ith
in

 e
ac

h
bi

n

Histogram of the time needed to train the NNs by each prediction method, RUN 179

Rand.
Stat.
META
True
All 10

Figure 7.6: Histogram of the number of NNs that have obtained the training time
divided into 10 bins

20 40 60 80 100 120 140 160 180 200

10
−3

10
−2

10
−1

10
0

Average gradient NNs − RUN 179

Epoch number

A
ve

ra
ge

 g
ra

di
en

t

Rand
Stat
Meta
True
All10

Figure 7.7: Neural Network gradient averaged for all of the 1000 trained networks
within each of the 5 architecture selection methods

125

CHAPTER 7. Modular Neural Network Construction

7.3 Results on Realistic Data

This section contains the experimental results obtained from the training and

and testing of various Modular Neural Network (MNN) realizations using different

module types compared to some baseline monolithic classifiers that were trained and

tested on the entire dataset without building modular configuration.

The experiments were conducted on two datasets, namely the ”Iris” flower dataset

and ”Yeast” datasets described in Section 4.1.1.

The architecture of each module of the MNN is suggested by one of the following

methods:

1. Our own novel method using Meta-Measurements to determine the number of

hidden nodes for each module of the network (denoted as MNN-META);

2. A variation of the above mentioned Meta Measurement method that tries 9

rotations of the input data and chooses the module with the lowest training

error (denoted as MNN-META-ROT);

3. An oracle based method that suggests the number of hidden nodes of each

module by randomly drawing a sample from a uniform distribution (denoted

as MNN-RAND);

4. An oracle based MNN construction method that always suggests to use 10

hidden nodes for each module of the MNN (denoted as MNN-ALL10);

5. An SVMwith Gaussian Kernels [14] of order predicted by the Meta-Measurement

method (denoted as MSVM-META);

6. An SVM with Gaussian Kernels [14] of order set to be always 10 (denoted as

MSVM-ALL10);

7. Ensemble of classifiers (denoted as ENS);

8. K-Nearest Neighbour Classifier with the parameter determined by the ”leave-

one-out” method (denoted as KNNC);

9. Nearest Neighbour Classifier (denoted as 1NNC);

10. Nearest Neighbour Classifier considering 3 neighbours(denoted as 3NNC);

11. Linear Discriminant Classifier (denoted as LDC);

12. Quadratic Discriminant Classifier (denoted as QDC);

126

CHAPTER 7. Modular Neural Network Construction

13. Fisher Discriminant Classifier (denoted as FISHERC);

14. Single/Monolithic Support Vector Machine classifier trained & tested on the

entire input dataset(denoted as SVM-GK);

15. A large NN is used with 50 nodes in the hidden layer for each module (denoted

as BIG-NN).

The results of testing all these MNNs and baseline classifiers on the Iris flower

dataset is summarized in Figure 7.8, where the 10 fold cross-validation classification

error rates are are shown as bar chart, one bar for each classifier that was tested

on the UCI iris flower dataset, described in Section 4.1.1. From this figure we

can observe that the lowest classification error of 2.7% is achieved by the LDC

classifier, the large monolithic neural network (denoted as BIG-NN in Figure 7.8)

has produced an average error rate of 4%. Whereas, the modular neural networks

that had the architecture suggested by our Meta-Measurement method produced

an error rate of 11.3% (MNN-META) and 4.7% (MNN-META-ROT). This has the

following consequences:

� The very large NN denoted by BIG-NN in Figure 7.8 is definitely over-sized for

the problem at hand, by having 50 nodes in the hidden layer. This is because

the modular NN created using our Meta-Measurement architecture suggesting

method (MNN-META-ROT) has achieved an error rate which is very close to

the big monolithic NN. This was done using 3 modules, each module consisting

of a NN with less then 10 neurons in the hidden layer;

� Our proposed method effectively reduced over-fitting of neural network by

choosing less than 10 neurons for each module;

� Even the modular neural network (MNN-RAND) performed quite well, achiev-

ing a 5.3% error rate, but it has to be taken into account that this method

suggested the number of hidden nodes in the hidden layer by choosing ran-

domly numbers between 1 and 10. Meaning, that it was choosing from a

limited pool of possibilities. If it were to choose from numbers between 1 and

100, then it would have averagely chosen around 50 nodes, which would re-

sult in over-sized networks. Our method, also bounded by the same number

of choices, consistently chose less then 10 nodes for the hidden layer, which

suggests that even if it would had more possibilities to choose from it would

still chose a low number of nodes for the architecture of the hidden layer.

The classification error rates of testing the MNNs and baseline classifiers on the

Yeast dataset can be seen in Figure 7.9.

127

CHAPTER 7. Modular Neural Network Construction

0

2

4

6

8

10

12

14

16

18
Average 10−fold cross validation classification error rates of the each built system

10
−

fo
ld

 c
ro

ss
va

lid
at

io
n

cl
as

si
fic

at
io

n
er

ro
r

%

M
NN−M

ETA

M
NN−M

ETA−R
OT

M
NN−R

AND

M
NN−A

LL
10

M
SVM

−M
ETA

M
SVM

−A
LL

10
ENS

KNNC
1N

NC
3N

NC
LD

C
QDC

FIS
HERC

SVM
−G

K

BIG
−N

N

11.3%

4.7%

5.3%

7.3% 7.3%

6.7%

7.3%

5.3% 5.3%

4.7%

2.7%

3.3%

14.0%

16.7%

4.0%

Figure 7.8: 10-fold crossvalidation classification error rates of the MNNs built with
different methods of estimating the number of hidden nodes for each module. Used
dataset: UCI Flower Iris

The Yeast dataset is a more difficult pattern recognition problem than the Iris

flower dataset, this is suggested by the previously achieved best classification error

rate of 41.7%, which is due to a larger overlap of the classes in the feature space.

The Yeast pattern recognition problem is also more difficult because it has 10 classes

to discriminate, so the theoretical uniform distribution of random guessing would

yield a 90% error rate of guessing the correct class without any prior information.

The experimental results show the following error rates, in increasing order:

40.4% (LDC), 41.4% (SVM-GK), 42.7% (KNNC). The large network (BIG-NN)

achieved a 49% error rate while our Meta-Measurement methods produced the fol-

lowing classification error rates: 66.6% (MNN-META) and 54.5% (MNN-META-

ROT), which have not surpassed the baseline classifiers, but this has to do with

128

CHAPTER 7. Modular Neural Network Construction

0

10

20

30

40

50

60

70

80

90

100
Average 10−fold cross validation classification error rates of the each built system

10
−

fo
ld

 c
ro

ss
va

lid
at

io
n

cl
as

si
fic

at
io

n
er

ro
r

%

M
NN−M

ETA

M
NN−M

ETA−R
OT

M
NN−R

AND

M
NN−A

LL
10

M
SVM

−M
ETA

M
SVM

−A
LL

10
ENS

KNNC
1N

NC
3N

NC
LD

C
QDC

FIS
HERC

SVM
−G

K

BIG
−N

N

66.6%

54.5% 55.0%

52.4%

49.1% 49.8%
51.4%

42.7%

50.3%
48.5%

40.6%

99.1%

44.9%

41.4%

49.0%

Figure 7.9: 10-fold crossvalidation classification error rates of the MNNs built with
different methods of estimating the number of hidden nodes for each module. Used
dataset: UCI Yeast

the choice of maximum number of hidden nodes to be ten. Therefore, our pro-

posed method were limited in what they could learn and hence produced a higher

classification error.

From this experiment we can conclude the following:

� We can see that even the large NN with 50 nodes, could only achieve an error

rate of 49%, which is almost 9% higher than the lowest achieved by the LDC

classifier. If we would have extended the highest number of hidden nodes to

be more than 50 then we could have possibly achieved comparable results with

the other baseline classifiers;

� Implementing dataset rotation within the MNN-META-ROT experiment has

proved beneficial;

129

CHAPTER 7. Modular Neural Network Construction

� The Meta Measurement method helped improve the classification accuracy of

the modular SVM trial, where we can see an improvement in the classification

error rate of (MSVM-META) 0.7% as opposed to the (MSVM-ALL10).

The exaggerated 99.1% error rate produced by the Quadratic Discriminant Clas-

sifier is due to a systematic error of the underlying classifier, which was out of the

scope of our work to investigate.

All the presented classification error rates have been obtained by running the

same experiment in a 10-fold cross-validation setup.

7.4 Chapter Conclusions

This chapter presented the experimental results from assessing the performance

of Modular Neural Networks on synthetic an real life pattern recognition problems

using the architecture selection method described in Section 5.

Our methods of architecture selection show promising results for solving the

problem of over-fitting of neural networks which can be applied to pattern recognition

problems having any number of classes by splitting the original problem in sub-

problems that are solved by modules consisting of back-propagation neural networks.

As it was shown in Sub-Section 7.2, the selected number of hidden nodes of the

NNs were very close to the true number required by the synthetically generated data

and preserved the same classification performance and training time as compared to

the other control experiments that were conducted.

The META method selected overall 6.3% more hidden nodes than the truly

required number which was considered as the baseline for comparison, while the

statistical method recommended 62.8% more hidden nodes in the architecture of the

NNs, thus greatly over-fitting the problems at hand.

On real-life pattern recognition problems our proposed methods have shown com-

parable results while not surpassing the baseline classifiers have successfully over-

come over-fitting. On the UCI Iris flower dataset the MNN-META-ROT method

achieved 4.7% classification error rate, while only surpassed by LDC (2.7%), QDC

(3.3%) and the vastly larger BIG-NN with 50 hidden nodes that achieved 4.0% error

rate in a 10-fold cross-validation scenario.

On the UCI Yeast dataset the MNN-META-ROT method achieved 54.5% error

rate in discriminating the 10 classes, compared to the 41.7% reported in the liter-

ature, which was surpassed by the LDC classifier with 40.6% error rate, but it has

done this while being vastly under-sized to solve this problem at hand.

130

Chapter 8

Conclusions

T
his final chapter contains the summary of work presented in this thesis,

highlights the contributions of this thesis and provides a provides further

directions worth of investigation that have arisen from our research but

could not be pursued because of time limitations.

8.1 Summary of Work

Our contributions can be summarized as follows, based on the aims and objectives

set forth in Section 1.2:

1. We have successfully developed algorithms to generate data synthetically with

a polynomial of a given order as the decision boundary between the two classes.

See Chapter 4, Section 4.2.

2. We have identified 53 meta-measurements, to characterize the complexity of

datasets in Section 3.2.

3. A machine learning method, called ’Meta-Measurement’ method, was devel-

oped to estimate the polynomial order of the decision boundary between the

data points of a two class pattern recognition problem. Very good success rate

was achieved in the testing of this method compared with statistical methods

of evaluating the goodness of fit. See Section 4.3 and Chapter 5.

4. We have proposed a method of improving the learning rate of neural networks

by adapting the initial weights of the network to fit the polynomial functions

that can be superimposed on the decision boundary found in the training set.

See Chapter 6 for details.

131

CHAPTER 8. Conclusions

5. Modular Neural Networks were constructed, whereby each module has the

architecture suggested by the ”Meta-Measurement” method. Our method was

compared to Statistical methods of goodness of fit and also compared with

3 oracle based methods. The oracles were random guessing, stating the true

order or always suggesting the maximum order anytime they were questioned.

The classification performance of the MNNs built with suggestions made by

these 5 methods is presented in Section 7.2 of Chapter 7.

6. The MNNs trained on realistic datasets were explored in Section 7.3.

8.2 Contributions

The main contributions to knowledge that our research has provided are as fol-

lows:

1. We have found a novel method of estimating the goodness of fit for polynomial

approximation that vastly surpasses the statistical methods that were tested;

2. Using this selection method we have developed a method for suggesting the

number of hidden nodes in the architecture of a multi-layered back-propagation

neural network, having a single hidden layer of nodes in the hidden layer. By

this method we have reduced the chances of the NN to overfit the data given;

3. We have investigated and found a great correlation between the decision bound-

ary in a 2-class pattern recognition problem, a polynomial that can be super-

imposed on this decision boundary and the number of hidden nodes in a NN

that can solve that pattern recognition problem;

4. We have developed a method to fine tune the connection weights of the NN to

approximate the decision boundary to be found in the training data.

8.3 Future Directions of Research

Further researched can be channelled in the following directions:

1. Investigating the decision boundaries graphical in higher dimensional spaces,

higher than 2;

2. The Meta-Learning, architecture selection and classifier selection are fields that

can benefit from great improvement. We have limited our scope to associating

132

CHAPTER 8. Conclusions

polynomial functions to decision boundaries. But other functions lend them-

selves to be investigated. For example the choices available for model selection

do not need to be restricted to polynomial functions with orders between 1 to

10, for example Bezier curves and trigonometric functions can be added to the

choices a meta-learning algorithm has;

3. Investigating polynomial orders higher than 10 or at least provide the possibil-

ity to the architecture selection algorithm to choose from polynomial orders,

for example 50 or 100;

4. Investigate the architecture suggestion for more than 1 hidden layer, which

has the potential to vastly improve the network capacity of learning non-linear

problems.

133

References

[1] Igor Aleksander. Advanced Neural Computers, chapter: The Logic of Neural

Cognition. International Symposium on Neural Networks for Sensory And Mo-

tor Systems, 1990.

[2] Aristotle. Physics / Translated with commentaries and glossary by Hippocrates

G. Apostle. Bloomington : Indiana University Press, 1969.

[3] Vassilis Athitsos and Stan Sclaroff. Boosting nearest neighbor classifiers for

multiclass recognition. Proceedings of IEEE Workshop on Learning in Computer

Vision and Pattern Recognition, page pp. 45, 2005.

[4] Gasser Auda and Mohamed Kamel. Modular neural networks: A survey. In-

ternational Journal of Neural Systems, Volume: 9, Number: 2:129–151, 1999.

[5] Farooq Azam. Biologically Inspired Modular Neural Networks. PhD thesis,

Blacksburg, Virginia, May 2000.

[6] Mitra Basu and Tin Kam Ho. Data Complexity in Pattern Recognition. Springer

(Advanced Information and Knowledge Processing), 2006.

[7] J. C. Bezdek. What is Computational Intelligence? Computational Itelligence

Imitating Life. IEEE Press, New York, 1994.

[8] Christopher M. Bishop. Neural networks for pattern recognition. Oxford:

Clarendon Press, 1995.

[9] P. A. Blamire. The influence of relative sample size in training artificial neural

networks. International Journal of Remote Sensing, 17 (1):223–230, 1996.

[10] Hamparsum Bozdogan. Model selection and akaikes information criterion (aic):

The general theory and its analytical extensions. Psychometrika, Volume 52,

Issue 3:pp. 345–370, 1987.

134

REFERENCES

[11] W.L Buntine and D. Stirling. Interactive induction. Artificial Intelligence Ap-

plications, 1988., Proceedings of the Fourth Conference on, pages pp. 320–326,

1988.

[12] José-Ramón Cano. Analysis of data complexity measures for classification.

International Journal of Expert Systems with Applications, Vol. 40:pp. 4820–

4831, 2013.

[13] George D. C. Cavalcanti, Tsang Ing Ren, and Breno A. Vale. Data complex-

ity measures and nearest neighbor classifiers: A practical analysis for meta-

learning. IEEE 24th International Conference on Tools with Artificial Intelli-

gence, Vol. 1:pp. 1065 –1069, 2012.

[14] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector

Machine, March 2013.

[15] T. G. Dietterich. Approximate statistical tests for comparing supervised clas-

sification learning algorithms. Neural Computation, Volume: 10 Issue: 7:pp.

1895–1923, 1998.

[16] Christopher H. Donahue and Hyojung Seo. Attaching valueas to actions: Ac-

tion and outcome encoding in the primate caudate nucleus. The Journal of

Neuroscience, Volume: 28, Number: 18:pp. 4579–4580, 2008.

[17] Y. Dote and S. J. Ovaska. Industrial applications of soft computing: A review.

Proceedings of IEEE, 89(9):1243–1265, 2001.

[18] Ke-Lin Du and M. N. S. Swamy. Neural networks and statistical learning.

Springer London, 2014.

[19] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.

Wiley Interscience, 2nd edition, 2001.

[20] Robert P.W. Duin and et. al. PRTools: The Matlab Toolbox for Pattern Recog-

nition. Published electronically: http://www.prtools.org/, Last retrieved:

2012.

[21] A. P. Engelbrecht. Computational Intelligence: An Introduction. John Wiley

& Sons, Ltd., 2nd edition, 2007.

[22] R. A. Fisher. Statistical Methods for Research Workers, 13th ed. Hafner, 1958.

135

http://www.prtools.org/

REFERENCES

[23] R.A. Fisher. The use of multiple measurements in taxonomic problems. Annual

Eugenics also in ”Contributions to Mathematical Statistics” (John Wiley, NY,

1950), Volume 7, Part II:179–188, 1936.

[24] G. M. Foody. Using prior knowledge in artificial neural network classifica-

tion with a minimal training set. International Journal of Remote Sensing, 16

(2):301–312, 1995.

[25] A. Frank and A. Asuncion. UCI Machine Learning Repository. Published

electronically: http://archive.ics.uci.edu/ml, Last retrieved: 2013.

[26] David Freedman and Persi Diaconis. On the histogram as a density estimator:

l2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,

Vol. 57, Issue 4:pp 453–476, 1981.

[27] Hsin-Chia Fu, Yen-Po Lee, and et al. Divide-and-conquer learning and modu-

lar perceptron networks. IEEE Transactions on Neural Networks, Volume 12,

Number: 2, 2001.

[28] Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition, Second

Edition. Academic Press, 1990.

[29] Damien Garcia. AIC polynomial degree estimation function for Matlab . Pub-

lished electronically: http://www.biomecardio.com/matlab/polydeg.html,

Last retrieved: 2010.

[30] Bogdan G. Gherman and Konstantinos Sirlantzis. Data complexity assessment

for constructing modular artificial neural networks. In School of Engineering

and Digital Arts Conference, 20 January 2012.

[31] Bogdan G. Gherman and Konstantinos Sirlantzis. Polynomial order prediction

using a classifier trained on meta-measurements. 4th International Conference

on Emerging Security Technologies, pages pp. 117–120, 2013.

[32] Brian Hanson, Katherine Klink, Kenji Matsuura, Scott M. Robeson, and Cort J.

Willmott. Vector correlation: Review, exposition, and geographic application.

Annals of the Association of American Geographers, Vol. 82, No. 1:pp.103–116,

1992.

[33] Simon S. Haykin. Neural networks and learning machines. Harlow; London:

Pearson Education, 3rd international edition, 2009.

[34] Donald Hebb. The Organization of Behavior. John Wiley, New York, 1949.

136

http://archive.ics.uci.edu/ml
http://www.biomecardio.com/matlab/polydeg.html

REFERENCES

[35] Tin Kam Ho and Mitra Basu. Complexity measures of supervised classification

problems. IEEE Transactions on Pattern Analysis and Machine Intelligence,

Volume: 24, Issue: 3:pp. 289 – 300, 2002.

[36] Paul Horton and Kenta Nakai. A probablistic classification system for predict-

ing the cellular localization sites of proteins. Intelligent Systems in Molecular

Biology, St. Louis, USA, pages pp. 109–115, 1996.

[37] Stephen C. Johnson. Hierarchical clustering schemes. Psychometrika, 32:241–

254, 1967.

[38] Stephen C. Johnson. This week’s citation classic. ISI Current Contents, Number

25, 24 June 1985.

[39] T. Kavzoglu. Increasing the accuracy of neural network classification using

refined training data. Environmental Modelling & Software, Volume: 24: Issue:

7:850–858, 2009.

[40] M.G. Kendall, A. Stuart, and J.K. Ord. The advanced Theory of Statistics, Vol

3, Design and Analysis and Time Series, Chapter 44. Griffin, London, Forth

Edition, 1983.

[41] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.

A Wiley-Interscience publication, 2004.

[42] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and

Mixing Times. American Mathematical Society, 2009.

[43] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and Its

Applications. Springer -Verlag, 2nd edition, 1997.

[44] Bao-Liang Lu and Masami Ito. Task decomposition and module combination

based on class relations: A modular neural network for pattern classification.

IEEE Transactions on Neural Networks, Volume: 10, Number: 5, 1999.

[45] Núria Macià, Ester Bernadó-Mansilla, and Albert Orriols-Puig. Preliminary

approach on synthetic data sets generation based on class separability measure.

19th International Conference on Pattern Recognition, ICPR 2008, pages pp.

1–4, 2008.

[46] C. Mallows. Some comments on cp. Technometrics, Vol. 15, No. 4:pp. 661–675,

1973.

137

REFERENCES

[47] R. Marks. Intelligence: Computational versus artificial. IEEE Transactions on

Neural Networks, 4(5):737–739, 1993.

[48] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas imminent

in nervous activity. Bulletin of Mathematical Biophysics. V. 5, 1943.

[49] Kishan Mehrotra, Chilukuri K. Mohan, and Sanjay Ranka. Elements of Artifi-

cial Neural Networks, 2nd Printing. MIT Press, 2000.

[50] D. Michie, D.J. Spiegelhalter, and C.C. Taylor. Machine Learning, Neural and

Statistical Classification. New York; London : Ellis Horwood, 1994.

[51] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.

[52] Dimitris A. Mitzias and Basil G. Mertzios. A neural multiclassifier system for

object recognition in robotic vision applications. Science Direct, Measurement,

36:315–330, 2004.

[53] Warwick J. Nash, Tracy L. Sellers, Simon R. Talbot, Andrew J. Cawthorn, and

Wes B. Ford. The population biology of abalone (haliotis species) in tasmania.

i. blacklip abalone (h. rubra) from the north coast and islands of bass strait.

Sea Fisheries Division, Technical Report No. 48, 1994.

[54] N. J. Nilsson. Learning Machines: Foundations of Trainable Pattern Classifying

Systems. New York; McGraw Hill, 1965.

[55] N. J. Nilsson. The quest for artificial intelligence: a history of ideas and achieve-

ments. Cambridge University Press, 2010.

[56] M. Pal and P. M. Mather. An assessment of effectiveness of decision tree meth-

ods for land cover classification. Remote Sensing of Environment, 86 (4):554–

565, 2003.

[57] Dmitry Pavlov, Alexandrin Popescul, David M. Pennock, and Lyle H. Ungar.

Mixtures of conditional maximum entropy models. Proceedings of International

Conference on Machine Learning, pages pp. 584–591, 2003.

[58] Plato. Republic : 1-2.368c4 / Plato ; with an introduction and commentary by

Chris Emlyn Jones. Warminster : Aris & Phillips, 2007. Ancient Greek and

English text on facing pages.

[59] T. Pogio and F. Girosi. Networks for approximation and learning. Proceedings

of the IEEE, 78(9):1481–1497, 1990.

138

REFERENCES

[60] Panayiota Poirazi, Costas Neocleous, and et al. Classification capacity of a

modular neural network implementing neurally inspired architecture and train-

ing rules. IEEE Transactions on Neural Networks, Volume: 15, Number: 13,

2004.

[61] Lutz Prechelt. Proben1 - A Set of Neural Network Benchmark Problems and

Benchmarking Rules. Technical Report 21/94, Fakultät für Informatik, Univer-

sität Karlsruhe, September 30, 1994.

[62] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-

nery. Numerical Recipes in C, The Art of Scientific Computing, 2nd ed. Cam-

bridge University Press, 1992.

[63] Ricardo B. C. Prudencio, Carlos Soares, and Teresa B. Ludemir. Uncertainty

sampling methods for selecting datasets in active meta-learning. The 2011

International Joint Conference on Neural Networks (IJCNN), pages pp. 1082–

1089, 2011.

[64] Thomson Reuters. ISI Web Of Knowledge. Published electronically: http:

//www.webofknowledge.com/, Last retrieved: February 2014. Query String:

”Topic=(neural networks) Refined by: [excluding] General Categories=(ARTS

& HUMANITIES) Timespan=All Years”.

[65] Eric Ronco and Peter Gawthrop. Modular neural networks: a state of the art.

Technical report: Csc-95026 (may 12, 1995), Centre for System and Control,

University of Glasgow UK, 1995.

[66] Frank Rosenblatt. The perceptron: A probabilistic model for information stor-

age and organization in the brain. Psychological Review, American Psychological

Association, Volume 65, Number 6:pp. 386–408, 1958.

[67] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-

tations by error propagation. in Parallel Distributed Processing: Explorations

in the Microstructures of Cognition, 1986.

[68] Wolfram Schultz, Peter Dayan, and P. Read Montague. A neural substrate of

prediction and reward. Science, Vol. 275, No: 5306:pp. 1593–1599, 1997.

[69] G. Schwarz. Estimating the dimension of a model. The Annals of Statistics,

Volume 6, Number 2:pp. 461–464, 1978.

[70] C. E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, Vol. 27:pp. 379–423, 623–656, 1948.

139

http://www.webofknowledge.com/
http://www.webofknowledge.com/

REFERENCES

[71] J. M. Sotoca, R. A. Mollineda, and J. S. Sánchez. A meta-learning framework

for pattern classification by means of data complexity measures. Inteligencia

Artificial, Revista Iberoamericana de Inteligencia Artificial, Vol. 29:pp. 31–38,

2006.

[72] M. H. Stone. The generalized weierstrass approximation theorem. Mathematics

Magazine, Volume 21, Number 4 (Mar. - Apr., 1948):pp. 167–184, 1948.

[73] A. N. Tikhonov. On solving incorrectly posed problems and method of regular-

ization. Doklady Akademii Nauk USSR, 151:501–504, 1963.

[74] F. van der Heijden, R. P. W. Duin, D. de Ridder, and D. M. J. Tax. Classifi-

cation, Parameter Estimation and State Estimation, An Engineering Approach

using Matlab. John Wiley & Sons, Ltd., 2004.

[75] Aki Vehtari and Janne Ojanen. A survey of bayesian predictive methods

for model assessment, selection and comparison. Statistics Surveys, Volume

6:pp.142–228, 2012.

[76] W.R. Wade. An Introduction to Analysis, 2nd Ed. Upper Saddle River, NJ:

Prentice-Hal, 2000.

[77] Andrew R. Webb. Statistical Pattern Recognition. John Wiley & Sons, Ltd.,

2002.

[78] B. Widrow and M. E. Hoff. Adaptive switching circuits. Proceedings IRE

WESCON Conference,New York, pages pp. 96–104, 1960.

[79] B. Widrow and M. A. Lehr. 30 years of adaptive neural networks: Perceprons,

MADALINE and backpropagation. Proceedings of IEEE, Volume 78, Number

9:pp. 1415–1442, 1990.

[80] Mingyang Xu and Michael Golay. Survey of model selection and model combi-

nation. Social Science Research Network (SSRN), (January 1, 2008):Available

at SSRN: http://ssrn.com/abstract=1742033 or http://dx.doi.org/10.

2139/ssrn.1742033, 2008.

[81] Yong Xu and Guangming Lu. Analysis on fisher discriminant criterion and

linear separability of feature space. International Conference on Computational

Intelligence and Security, Vol. 2:pp. 1671–1676, 2006.

140

http://ssrn.com/abstract=1742033
http://dx.doi.org/10.2139/ssrn.1742033
http://dx.doi.org/10.2139/ssrn.1742033

