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 

Abstract— A parallel formulation of an algorithm for the 

histogram computation of n data items using an on-the-fly data 

decomposition and a novel quantum-like representation (QR) is 

developed. The QR transformation separates multiple data read 

operations from multiple bin update operations thereby making 

it easier to bind data items into their corresponding histogram 

bins. Under this model the steps required to compute the 

histogram is n/s + t steps, where s is a speedup factor and t is 

associated with pipeline latency. Here, we show that an overall 

speedup factor, s, is available for up to an eightfold acceleration. 

Our evaluation also shows that each one of these cells requires 

less area/time complexity compared to similar proposals found in 

the literature.   

 
Index Terms— Histogram, parallel architectures, parallel 

algorithms, quantum representation.  

 

I. INTRODUCTION 

HE advancement of image sensor technology tends to 

produce higher resolutions for digital cameras. Once a 

picture is taken it requires compression, possible 

watermarking, and transmission. Histogramming techniques 

are used in various forms in all these processes and thus a fast 

histogramming technique is of great interest to designers of 

consumer based electronics.  
In this paper we propose a novel encoding that allows 

implicit parallelism to be exploited to produce a range of fast 

efficient architectures.  Currently, camera designers can only 

use down-sampled image data to reduce the time of histogram 

analysis. If the histogram analysis can be performed while the 

image is being read from the sensor, the histogram can be 

evaluated in real time. This is an important feature, for 

example, in the auto exposure function since the scene 

brightness measurement should be done before the next 

exposure cycle starts. Also, some other enhancement 

techniques such as auto-level stretching, colour saturation 

enhancements (all typical stages in image processing pipelines 

of digital cameras [1]) become easier to perform while 

reducing time significantly. Current techniques such as tone 
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reproduction are sometimes bypassed because the current 

system-on-chip (SoC) solutions cannot meet real-time 

requirements [2]. The algorithm and architectures presented 

here are suitable for full integration within a camera sensor 

thus allowing real-time analysis to become possible.  

In a recent paper we proposed an array of cells to compute 

the histogram in a parallel and pipelined fashion [3].   These 

architectures can accept multiple pixels at a time and update 

multiple histogram bins at a time without the need of explicit 

memory blocks which makes the histogram computation fast. 

Further implementations in FPGA technology of these 

architectures found that the cells become too complex for 

processing more than 4 pixels in parallel per clock cycle [4]. 

This paper takes a different approach and follows a 

parallelisation of the generic serial histogram algorithm as the 

starting point. As a result of the consequent reformulation and 

manipulation of the algorithm, the internal structure of the 

cells is simplified compared to [3, 4] and consequently array 

architectures for processing 8 pixels per clock cycle become 

feasible. The twist behind the reformulation is that we recode 

the histogram algorithm using a quantum-like representation 

(QR); this produces a separating function that can be easily 

parallelised.  

The quantum histogram algorithm is presented in Section II. 

Sketches of architectures for the computation of histogram 

using the QR representation are given in Section III while 

implementation in ASIC technology is given in Section IV 

with reference to a specific example. The paper ends with a 

brief discussion and some final conclusions in Section V.   

II. QUANTUM HISTOGRAM ALGORITHM 

To compute the histogram for a non-negative set of n 

integers where the data values correspond directly to the 

histogram bins (such as pixels in a grey-scale image) it 

follows that: 

 

    for i=1 to n do  

       histogram[data[i]]= histogram[data[i]]+1 

 

It is assumed item data[i] takes any value in the range 0, ..., m-

1 (for a data item of k-bits then m = 2
k
), and computation 

proceeds in O(n) time steps. A step is the cost of an increment 

and two look-up operations. In essence, the histogram 

accumulates a count for each data[i] into one of m bins 

(contained as array histogram). The bin accumulated is the 

one labelled with a tag number equal to the data[i] value itself. 

Direct synthesis of the algorithm using space-time 

transformations or re-timing [5] is not straightforward because 

the index data[i] of the histogram creates a run-time 

dependency. This means that any data flow graphs cannot be 
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known until run-time. To overcome this problem we either 

place bounds on the size of data[i] and work with bounded 

graphs where the routing information and control signals are 

constrained or attempt to reformulate the algorithm into 

something easier to handle. In the former case this restricts the 

parallel structures implicit in the method and so the types of 

architecture that can be generated.  

 

Our approach here is to reformulate the method in a novel 

way to expose and develop more parallelism. This 

reformulation step is often counter-intuitive because it 

essentially slows the sequential algorithm in order to produce 

an algorithmic form in which the data dependencies will 

accelerate the parallel implementation. The way this is 

achieved is by introducing redundancy and temporary storage 

to effectively break-up and manipulate the critical data 

dependencies. In our case this intermediate step will result in a 

faster overall outcome. 

A. Quantum representation 

First, consider a quantum formulation of a basic data item to 

be recognized by the histogramming method (such as a pixel). 

Suppose we have access to the bits encoding data[i], since 

data[i] < m the number of bits is log2m and so data[i] = dk-1dk-2 

... d0 where k = log2m.  

Define these bits of data as a qubits with the form: 

 

    [
 
 
]    [

 
 
]                   (1) 

 

where ai are probability amplitudes which in this particular 

case need only take the values a0=1, a1=0 for bit=0 and a0=0, 

a1=1 for bit=1 [6].  The qubits for each data entry data[i]j = dj 

defines the j
th

 bit as a 2-element vector. The tensor operator 

onto two qubits is then defined as: 

 

      [
  
 

  
 
] [

  
 

  
 
]  [  

   
 
  
   
 
  
   
 
  
   
 
 ]
 
  (2) 

 
which is easily extended to any number of bits such that, in 

general 

 

    [ ]                [          [ ]    ]
 
(3) 

 
Note edata[i] = 1 so that the Quantum Representation (or QR), 

maps each unique data[i] to a unique m-dimensional vector 

such that for two distinct data items data[i] and data[j], the 

inner product of the vectors are orthogonal and for two 

identical values data[i], data[j] the inner product is unity. This 

forms a separating function where each of the n data items can 

be mapped to a space of dimension m such that each unique 

data point (or pixel) lies on one of the basis vectors spanning 

the space. The basis vectors correspond to bins in the 

histogram. 

B. Quantum histogram 

A serial histogram algorithm based on the QR formulation can 

be defined as follows: 

 

for i=1 to n do  

  r = data[i]0 data[i]1 data[i]k-1 ;                      // see  (3)   

  for j = 0 to m-1 do 

     histogram[j] = histogram[j] + r[j]  

 

from which it is clear that the algorithm is decomposed into 

two steps; the process of reading the input data[i] and the 

process of choosing and incrementing the bins.  Note that the 

calculation of vector r contains implicit parallelism while the 

j-loop performing the increment contains redundancy because 

only one r[j] item will be non-zero. Both these elements are 

hidden in the sequential formulation by the indirect index 

which forms the run-time dependency. This separation allows 

the splitting of the histogram assembly process into a qubit 

maker stage operating on the input data, a QR calculation to 

form vector r, and the increment of bins.  

Another way to think about the construction is in terms of a 

data-dependency graph [7]. A graph for the sequential 

computation cannot be drawn until run-time when the data 

values are known. In the Quantum histogram formulation 

these unknown elements have been rolled back off the graph 

to form the inputs to the tensor required to construct r, so that 

a static data dependency graph can be constructed.  Thus we 

can think of the tensor as a black-box that takes the data in and 

outputs, r. The architecture inside the box is parameterized by 

the number of bits, k, of a data item not the data elements so 

its data dependency graph is static for a given data range (m). 

Likewise since there is essentially no dependency between 

iterations of the j-loop for the increment step, the iterations 

can be computed in parallel. Notice that the operation to 

compute r is a binary associative operator. Hence, it can be 

formulated as a series of unrolled inner step style 

computations or as a fan-in operation based on tree 

architectures [8, 9]. Consequently it can be formulated either 

in linear mode or as a binary tree which we omit for brevity. 

Instead we use a binary decoder as the architecture which will 

be explained later. 

III. ARCHITECTURE FOR QUANTUM HISTOGRAMMING 

Since n >> m by definition an architecture for a given size 

m size can be built by pipelining the number of data items 

from which the histogram is constructed as discussed in 

section 2. An architecture to compute the histogram for data[i] 

of k bits is represented in block diagram as shown in Figure 1. 

 

The whole histogram computation for a small case of m = 4 

bins; two bits for data[i] is shown in Fig. 2.  

 
Fig. 1.  Generic quantum histogram architecture for m = 2k bins. 
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A. Quantum pipelined histogram cell 

To create a design that is faster than the original sequential 

method requires further parallelism. We also note that the 

generation of the quantum representation suffers from 

scalability issues with the decoder (or butterfly arrangement) 

expanding exponentially as a function of the data bit-length. 

For example, m = 256 possible data items requires an 8 bit 

representation so that the previous architecture requires 8 

qubits input vertically which are then expanded by the tensor 

butterfly into a 256 element vector with a single element set. 

Controlling scalability requires a bound on the maximum 

number of bits to represent a piece of data. This can be 

achieved by a simple quantization on the input to provide a 

more abstract or second level of binning. In the case of m = 

256 (consecutive) elements suppose we choose b = 4 second 

level buckets. Each bucket captures 64 elements. And, in 

general bucket j, captures data items numbered (j-1)*(m/b) +1 

to j*(m/b). It follows that the items in any bucket can be 

represented by the range 1 … (m/b) using a suitable offset. For 

convenience, it is easier to number the bucket range from zero 

so that the number of bits required is log2L = log2 (m/b) = 

log2m – log2b. In the example this yields 6 = 8-2 bits to cover 

a bucket. Thus L = m/b defines the number of bins per bucket. 

In this example with L of 6 bits, this implies computing (3) for 

j = 0, 1, …, 4 on each bucket for each data item. 

A quantum histogram can be pipelined by a linear array of 

cells. A cell suitable for pipelined operation is shown in Figure 

3. The array consists of b cells and each cell reduces the input 

moving left to right until the value fits into the range of a 

bucket. The QR tensor is then used to select which item is 

chosen within the data set of the bin. For a case of m = 256, 

and partition size L = 32 an array will be composed of m/L = b 

= 8 cells. Each cell would guard 32 locations in r. In general 

an array of b cells computes the histogram on n data items in T 

= n + (m/L) – 1 time steps. Since the number of bits required 

to encode the data range L controls the size and latency of the 

butterfly this can be scaled by choosing the number of cells. 

 

B. Parallel quantum pipelined histogram cell 

A quantum histogram cell capable of managing multiple 

input data items is shown in Figure 4. This cell accepts two 

data items in parallel or s = 2. It is a form of double-pipeline 

array with the top half similar to Figure 3 and the bottom half 

a mirror image.  

 

 
This is essentially unrolling the algorithm back in Section 

II.B by a factor of two, or index i updated by two in the outer 

for loop. This recognizes that there are no data-dependencies 

between the n data items used to construct the histogram.  The 

two parts of the cell are linked by the bin adder where it is 

possible that both tensor arrays will attempt to increment the 

same bin. Consequently, a bin is incremented by 0, 1, or 2 and 

we can use the bits emerging from the tensors to form control 

bits to choose the correct increment. This principle can be 

extended to higher degrees of pipelining but the increment 

arbitration becomes more complex. Hence we describe it for 

only the double pipe arrangement. 

The double pipe means that the time to compute the 

histogram on a set of n data items is essentially reduced by 

half compared to a single pipelined computation. In general, if 

a cell can accept s data items in parallel, a speedup factor of s 

is achieved. Note that for the special case of L = 1 there is only 

one qubit and so the tensor butterfly can be removed making 

the cell simpler. For s = 2, an array computes the histogram in 

T = n/2 + m/2-1 and it is clear that we can scale up to L adders 

per bin by adding in the tensor butterfly to generate 2L control 

bits rather than two (a pair for each adder in the bin). For the 

case of L = m the array reduces to a single cell with one tensor 

butterfly controlling an adder bin of n adders. This, in fact, is 

one of the first schemes to compute the histogram found in the 

literature [11] and still popular in hardware [12]. So we see 

that the quantum formulation effectively parameterizes a range 

of histogram architectures trading off area and time. 

 

IV. QUANTUM HISTOGRAM ASIC IMPLEMENTATION 

An implementation for the parallel computation of the 

histogram follows straightforwardly by extending the cells 

presented in Figs. 3 and 4.  For this discussion, a cell will be 

processing s data items (labeled Pin) per clock cycle with each 

data item represented as k-bits. The cell will be responsible for 

computing a constant of L bins with L being a power of two. 

Within the cell each data item needs to be compared against L. 

To compute all m = 2
k
 bins we need m/L cells with each cell 

occupying a position b from 1 to m/L within the array. 

Each cell guards an array of 

bins. A cell guards b bins with 
the  
i
th

 cell responsible for bins 
(i-1)*L ... (i*L)-1 
So only need to use first log

2
L 

bits of Pin 
If Pin <L then value is in this 

bin array so compute index and 
enable bin increment.  
If Pin >=L then pass onto next 

cell but decrement by L 

Fig. 3.  A quantum histogram cell suitable for pipelined operation in an array. 

 
Fig. 2.  Quantum histogram architecture for m = 4 bins, logic filled with   

are AND gates. 

 

  

  

  

 + 
d1 

d0 

 + 

 + 

 + 



10880 

 

4 

 

 
As each cell passes Pout = Pin –L to the neighboring cell, a 

cell with position b receives an input which has already been 

discounted by the amount (b-1)*L (Pout should be allowed to 

become negative). As a consequence the comparison of Pin to 

L only needs to check the k-log2L MSB of Pin and see if they 

are all zero.  

The log2L LSB bits of Pin are used to generate a QR internal 

to the cell corresponding to this smaller block of bits.  When 

any comparison eq (for q = 1, …, s) becomes true it indicates 

that a bin within the cell must be updated and consequently 

that comparison bit is used as an enable to the decoder as seen 

in Fig. 5. When all comparisons eq are false all decoders are 

disabled and no bin update can occur.  

The QR bits (decoder’s outputs in Fig. 5) are fed into the 

“Bin Adders” block where logic decides which (if any) of the 

bins must be updated and more importantly by which amount. 

For each bin accumulator, two things need to be decided; the 

value by which the bin must be updated and whether a given 

bin should be updated or not.  The value to be updated is 

computed as    ∑    
 
    while an enable for each register 

adder hj is the Boolean OR of all Ti at position j.  Suppose two 

data items are being processed in a cell that keeps bins values 

4, 5, 6, and 7. If the same bin 5, is selected by the tensor then 

the output of each are [0 1 0 0] and [0 1 0 0] respectively, 

given a value v1 = 2 only for bin 5 (notice h1 = 1).   

If the values were 5, 6 the tensors output [0 1 0 0] and [0 0 1 

0] respectively giving v1 = 1 and v2 = 1 with h1 = 1 and h2 = 1 

as expected. However, the tensor bits might have been 

disabled at the decoder, there is no need to keep the hj signals 

in the architecture provided the logic makes vj = 0 for the case 

when no bin should be updated.  

Table 1 shows area and frequency results in ASIC 

technology of a quantum histogram cell of Figure 5 when 

processing 2, 4 and 8 data items per clock cycle (s); for each s 

value the cell can compute either of 2, 4 and 8 bins per cell 

(L). The table also includes the area/time to the cell designs 

presented in [4] for comparison. Thus, parallelism can be 

exploited for speedup gain (increasing s) or for reducing 

latency (increasing L) or both at the expense of extra circuitry. 

Note from the results that either speedup can be doubled or 

latency can be halved without doubling the cell’s area. 

Calculating the histogram computing time in msec/Mpixel, 

gives around 2.1, 1.3 and 0.8 for s = 2, 4, 8 respectively; this 

implies a sustained time reduction as s increases without being 

affected by the number L of bins per cell, suggesting the cell’s 

structure scales well in terms of hardware.  

V. DISCUSSION AND CONCLUSION 

The internal cell architecture capable of processing s data 

items per clock cycle as shown in Fig. 5 is composed of 

simple and well understood logic blocks interconnected in a 

structured manner. This allows a more regular design than our 

previous processing cell presented in [4]. This is especially 

appreciated when capturing RTL code for the cell, an 

important step before synthesis of circuits. This regularity is 

maintained even when the number of bins per cell increases. 

There are s binary comparators each of log2L bits to generate 

enable signals e in Fig. 5. Also, there are s binary decoders 

each of L outputs and L accumulators, one for each bin in the 

cell.  

Synthesis of full arrays for the histogram computation of 

256 bins is reported in [3, 4] for up to four data items per 

clock cycle and up to four bins per cell. As shown in Table 1, 

Bin Control  Tensor  2  ~Tensor 2 

Tensor 1 Add 2 Add 1 
~Tensor 1 Add 1 Add 0 

 

This cell operates with two data inputs so 
the computing time is T = (n/2) + (m/L) -1 
The top half and the bottom half operate in 

the same manner as described previously 
but share the Bin Adder. 

 
The bin still has L adders and we have four 

signals available to control the addition. 

 
(i) The two enable (dashed) lines operate 

the adders if either input passes the test. 
(ii) Each adder increments if one output 
from either tensor is 1, add 2 if both tensors 

are active 
If (Pin1<L) or (Pin2<L) Then Bin adder 

enabled. 
  

Fig. 4.  A quantum histogram cell capable of accepting two 

data items in parallel. 

TABLE I 

AREA AND FREQUENCY FOR HISTOGRAM CELLS ARCHITECTURE 

s L=2 L=4 L=8 

 Gates MHz Gates MHz Gates MHz 

s = 2  583 236 980 222 1749 220 
s = 4 779 192 1210 176 2224 175 

s = 8 1202 165 1650 150 2648 148 

Cells presented in [4] 
s = 2 738 228 1015 218 - - 

s = 4 1089 173 1386 159 - - 

Area (in gate count) and frequency (in MHz) results from ASIC TSMC 

0.35µm (up to s = 8 data items per clock cycle and up to L = 8 bins per cell). 

 
Fig. 5.  Cell architecture for keeping L bins per cell. 
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with the presented cell architecture, synthesis of cells capable 

of processing up to eight data items per clock cycle while 

keeping up to eight bins per cell were obtained in a very 

straightforward manner. In particular the qubit generation and 

tensor butterfly has been replaced by fast binary decoders 

using log2L bits [10]. This optimization is illustrated in Fig. 5. 

Furthermore, the bin control bits can be implemented 

efficiently as carry-save-adder (CSA) tree structures [13]. The 

generation of hj signals do not incur extra logic since they 

become available as part of the addition process embedded in 

either half or full 1-bit adders required for the CSA tree or can 

be removed altogether.   

Within a cell, each bin accumulator operates in a truly 

parallel manner as made explicit by the on-fly quantum 

representation derived from a block of incoming data bits. The 

critical path is essentially dominated by the adder for the 

accumulator plus the CSA tree. This follows because the 

comparison and QR generation is relatively shallow in the 

level of logic gates owing to the fact that it is dependent on the 

number of bits in the encoding not the number of data items.  

As expected, the more parallelism in a cell the longer the 

critical path becomes. Due to the regularity of the cell, two-

level pipelining (see [14]) can be easily put into place within 

the cell to meet more stringent clock frequency (this is to be 

reported elsewhere).  A histogram array composed of cells as 

presented here can operate in streaming mode as data is 

directly collected from a source such as a high resolution 

camera sensor. For a speedup gain of s, we only require a 

sensor to supply s data items per clock cycle. This avoids 

accessing internal memory buffers multiple times before 

histogram can commence which is typical in solutions that 

perform the histogram as a post-processing step once the data 

has been stored.  

Once a histogram is completed on a block of data the array 

can be primed to restart histogramming on a new block of 

data, also in a streaming manner, using the same mechanisms 

presented in [4]. The cell in [3] requires handcrafting Boolean 

logic functions for each s, L parameter; for s = 2 L = 2 these 

are equations of three Boolean variables, but for s = 8, L = 8 

this would require equations of up to 25 Boolean variables. 

The logic for the cells here is better structured.  
Recently, a parallel array histogram architecture was 

presented in [15]. No pipelining is used and instead a full k:2
k
 

binary decoder is required to avoid latency of an array. The 

design here essentially becomes the design in [15] when L = 2
k
 

or when all the histogram bins are bound to a single bucket, 

thus this work is a more general formulation by offering 

design parameters to play with performance/latency trade-offs 

to meet requirements of a particular application. 

In conclusion, with the reduced complexity of the quantum-

based histogram cells, it becomes very practical to synthesize 

circuits capable of accepting up to eight data items per clock 

cycle thus allowing for an eightfold speedup factor for the 

computation of histograms. This speedup is obtained without 

doubling the cell area compared to previous designs. It is also 

feasible to maintain up to eight bins per cell favouring 

shallower histogram arrays and consequently lower latencies. 

The ability to process eight bits means that the arrays deal in 

data sizes that are meaningful (e.g. pixels) in the larger context 

of the computation. Given the regularity of both cells and 

arrays the histogram computation can be integrated closer to 

the camera sensor thus enabling a real-time analysis. 
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