
Megson, G.M., Cadenas, J.O., Sherratt, R.S., Huerta, P. and Kao, W.C. (2013)
A parallel quantum histogram architecture. IEEE Transactions on Circuits
and Systems II, Express Briefs, 60 (7). pp. 437-441. ISSN 1549-7747.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/57358/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/TCSII.2013.2258263

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/57358/
https://doi.org/10.1109/TCSII.2013.2258263
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

10880

1



Abstract— A parallel formulation of an algorithm for the

histogram computation of n data items using an on-the-fly data

decomposition and a novel quantum-like representation (QR) is

developed. The QR transformation separates multiple data read

operations from multiple bin update operations thereby making

it easier to bind data items into their corresponding histogram

bins. Under this model the steps required to compute the

histogram is n/s + t steps, where s is a speedup factor and t is

associated with pipeline latency. Here, we show that an overall

speedup factor, s, is available for up to an eightfold acceleration.

Our evaluation also shows that each one of these cells requires

less area/time complexity compared to similar proposals found in

the literature.

Index Terms— Histogram, parallel architectures, parallel

algorithms, quantum representation.

I. INTRODUCTION

HE advancement of image sensor technology tends to

produce higher resolutions for digital cameras. Once a

picture is taken it requires compression, possible

watermarking, and transmission. Histogramming techniques

are used in various forms in all these processes and thus a fast

histogramming technique is of great interest to designers of

consumer based electronics.
In this paper we propose a novel encoding that allows

implicit parallelism to be exploited to produce a range of fast

efficient architectures. Currently, camera designers can only

use down-sampled image data to reduce the time of histogram

analysis. If the histogram analysis can be performed while the

image is being read from the sensor, the histogram can be

evaluated in real time. This is an important feature, for

example, in the auto exposure function since the scene

brightness measurement should be done before the next

exposure cycle starts. Also, some other enhancement

techniques such as auto-level stretching, colour saturation

enhancements (all typical stages in image processing pipelines

of digital cameras [1]) become easier to perform while

reducing time significantly. Current techniques such as tone

G. M. Megson is with the School of Electronics and Computer Science,

University of Westminster, London W1T 3UW, UK (e-mail:

g.megson@westminster.ac.uk).

J. O. Cadenas and R. S. Sherratt are with the School of Systems
Engineering, The University of Reading, Reading RG6 6AX, UK (e-mail:

{o.cadenas, r.s.sherratt}@reading.ac.uk).

P. Huerta is with Escuela Técnica Superior, Universidad Rey Juan Carlos,

Madrid, Spain (e-mail: pablo.huerta@urjc.es).

 W. C. Kao is with Department of Applied Electronics Technology,

National Taiwan Normal University, Taipei, Taiwan (e-mail:
jungkao@ntnu.edu.tw).

reproduction are sometimes bypassed because the current

system-on-chip (SoC) solutions cannot meet real-time

requirements [2]. The algorithm and architectures presented

here are suitable for full integration within a camera sensor

thus allowing real-time analysis to become possible.

In a recent paper we proposed an array of cells to compute

the histogram in a parallel and pipelined fashion [3]. These

architectures can accept multiple pixels at a time and update

multiple histogram bins at a time without the need of explicit

memory blocks which makes the histogram computation fast.

Further implementations in FPGA technology of these

architectures found that the cells become too complex for

processing more than 4 pixels in parallel per clock cycle [4].

This paper takes a different approach and follows a

parallelisation of the generic serial histogram algorithm as the

starting point. As a result of the consequent reformulation and

manipulation of the algorithm, the internal structure of the

cells is simplified compared to [3, 4] and consequently array

architectures for processing 8 pixels per clock cycle become

feasible. The twist behind the reformulation is that we recode

the histogram algorithm using a quantum-like representation

(QR); this produces a separating function that can be easily

parallelised.

The quantum histogram algorithm is presented in Section II.

Sketches of architectures for the computation of histogram

using the QR representation are given in Section III while

implementation in ASIC technology is given in Section IV

with reference to a specific example. The paper ends with a

brief discussion and some final conclusions in Section V.

II. QUANTUM HISTOGRAM ALGORITHM

To compute the histogram for a non-negative set of n

integers where the data values correspond directly to the

histogram bins (such as pixels in a grey-scale image) it

follows that:

 for i=1 to n do

 histogram[data[i]]= histogram[data[i]]+1

It is assumed item data[i] takes any value in the range 0, ..., m-

1 (for a data item of k-bits then m = 2
k
), and computation

proceeds in O(n) time steps. A step is the cost of an increment

and two look-up operations. In essence, the histogram

accumulates a count for each data[i] into one of m bins

(contained as array histogram). The bin accumulated is the

one labelled with a tag number equal to the data[i] value itself.

Direct synthesis of the algorithm using space-time

transformations or re-timing [5] is not straightforward because

the index data[i] of the histogram creates a run-time

dependency. This means that any data flow graphs cannot be

A Parallel Quantum Histogram Architecture

G. M. Megson, J. O. Cadenas, Member, IEEE, R. S. Sherratt, Fellow, IEEE, P. Huerta and W.C. Kao,

Senior Member, IEEE

T

10880

2

known until run-time. To overcome this problem we either

place bounds on the size of data[i] and work with bounded

graphs where the routing information and control signals are

constrained or attempt to reformulate the algorithm into

something easier to handle. In the former case this restricts the

parallel structures implicit in the method and so the types of

architecture that can be generated.

Our approach here is to reformulate the method in a novel

way to expose and develop more parallelism. This

reformulation step is often counter-intuitive because it

essentially slows the sequential algorithm in order to produce

an algorithmic form in which the data dependencies will

accelerate the parallel implementation. The way this is

achieved is by introducing redundancy and temporary storage

to effectively break-up and manipulate the critical data

dependencies. In our case this intermediate step will result in a

faster overall outcome.

A. Quantum representation

First, consider a quantum formulation of a basic data item to

be recognized by the histogramming method (such as a pixel).

Suppose we have access to the bits encoding data[i], since

data[i] < m the number of bits is log2m and so data[i] = dk-1dk-2

... d0 where k = log2m.

Define these bits of data as a qubits with the form:

 [

] [

] (1)

where ai are probability amplitudes which in this particular

case need only take the values a0=1, a1=0 for bit=0 and a0=0,

a1=1 for bit=1 [6]. The qubits for each data entry data[i]j = dj

defines the j
th

 bit as a 2-element vector. The tensor operator

onto two qubits is then defined as:

 [

] [

] [

]

 (2)

which is easily extended to any number of bits such that, in

general

 [] [[]]

(3)

Note edata[i] = 1 so that the Quantum Representation (or QR),

maps each unique data[i] to a unique m-dimensional vector

such that for two distinct data items data[i] and data[j], the

inner product of the vectors are orthogonal and for two

identical values data[i], data[j] the inner product is unity. This

forms a separating function where each of the n data items can

be mapped to a space of dimension m such that each unique

data point (or pixel) lies on one of the basis vectors spanning

the space. The basis vectors correspond to bins in the

histogram.

B. Quantum histogram

A serial histogram algorithm based on the QR formulation can

be defined as follows:

for i=1 to n do

 r = data[i]0 data[i]1 data[i]k-1 ; // see (3)

 for j = 0 to m-1 do

 histogram[j] = histogram[j] + r[j]

from which it is clear that the algorithm is decomposed into

two steps; the process of reading the input data[i] and the

process of choosing and incrementing the bins. Note that the

calculation of vector r contains implicit parallelism while the

j-loop performing the increment contains redundancy because

only one r[j] item will be non-zero. Both these elements are

hidden in the sequential formulation by the indirect index

which forms the run-time dependency. This separation allows

the splitting of the histogram assembly process into a qubit

maker stage operating on the input data, a QR calculation to

form vector r, and the increment of bins.

Another way to think about the construction is in terms of a

data-dependency graph [7]. A graph for the sequential

computation cannot be drawn until run-time when the data

values are known. In the Quantum histogram formulation

these unknown elements have been rolled back off the graph

to form the inputs to the tensor required to construct r, so that

a static data dependency graph can be constructed. Thus we

can think of the tensor as a black-box that takes the data in and

outputs, r. The architecture inside the box is parameterized by

the number of bits, k, of a data item not the data elements so

its data dependency graph is static for a given data range (m).

Likewise since there is essentially no dependency between

iterations of the j-loop for the increment step, the iterations

can be computed in parallel. Notice that the operation to

compute r is a binary associative operator. Hence, it can be

formulated as a series of unrolled inner step style

computations or as a fan-in operation based on tree

architectures [8, 9]. Consequently it can be formulated either

in linear mode or as a binary tree which we omit for brevity.

Instead we use a binary decoder as the architecture which will

be explained later.

III. ARCHITECTURE FOR QUANTUM HISTOGRAMMING

Since n >> m by definition an architecture for a given size

m size can be built by pipelining the number of data items

from which the histogram is constructed as discussed in

section 2. An architecture to compute the histogram for data[i]

of k bits is represented in block diagram as shown in Figure 1.

The whole histogram computation for a small case of m = 4

bins; two bits for data[i] is shown in Fig. 2.

Fig. 1. Generic quantum histogram architecture for m = 2k bins.

10880

3

A. Quantum pipelined histogram cell

To create a design that is faster than the original sequential

method requires further parallelism. We also note that the

generation of the quantum representation suffers from

scalability issues with the decoder (or butterfly arrangement)

expanding exponentially as a function of the data bit-length.

For example, m = 256 possible data items requires an 8 bit

representation so that the previous architecture requires 8

qubits input vertically which are then expanded by the tensor

butterfly into a 256 element vector with a single element set.

Controlling scalability requires a bound on the maximum

number of bits to represent a piece of data. This can be

achieved by a simple quantization on the input to provide a

more abstract or second level of binning. In the case of m =

256 (consecutive) elements suppose we choose b = 4 second

level buckets. Each bucket captures 64 elements. And, in

general bucket j, captures data items numbered (j-1)*(m/b) +1

to j*(m/b). It follows that the items in any bucket can be

represented by the range 1 … (m/b) using a suitable offset. For

convenience, it is easier to number the bucket range from zero

so that the number of bits required is log2L = log2 (m/b) =

log2m – log2b. In the example this yields 6 = 8-2 bits to cover

a bucket. Thus L = m/b defines the number of bins per bucket.

In this example with L of 6 bits, this implies computing (3) for

j = 0, 1, …, 4 on each bucket for each data item.

A quantum histogram can be pipelined by a linear array of

cells. A cell suitable for pipelined operation is shown in Figure

3. The array consists of b cells and each cell reduces the input

moving left to right until the value fits into the range of a

bucket. The QR tensor is then used to select which item is

chosen within the data set of the bin. For a case of m = 256,

and partition size L = 32 an array will be composed of m/L = b

= 8 cells. Each cell would guard 32 locations in r. In general

an array of b cells computes the histogram on n data items in T

= n + (m/L) – 1 time steps. Since the number of bits required

to encode the data range L controls the size and latency of the

butterfly this can be scaled by choosing the number of cells.

B. Parallel quantum pipelined histogram cell

A quantum histogram cell capable of managing multiple

input data items is shown in Figure 4. This cell accepts two

data items in parallel or s = 2. It is a form of double-pipeline

array with the top half similar to Figure 3 and the bottom half

a mirror image.

This is essentially unrolling the algorithm back in Section

II.B by a factor of two, or index i updated by two in the outer

for loop. This recognizes that there are no data-dependencies

between the n data items used to construct the histogram. The

two parts of the cell are linked by the bin adder where it is

possible that both tensor arrays will attempt to increment the

same bin. Consequently, a bin is incremented by 0, 1, or 2 and

we can use the bits emerging from the tensors to form control

bits to choose the correct increment. This principle can be

extended to higher degrees of pipelining but the increment

arbitration becomes more complex. Hence we describe it for

only the double pipe arrangement.

The double pipe means that the time to compute the

histogram on a set of n data items is essentially reduced by

half compared to a single pipelined computation. In general, if

a cell can accept s data items in parallel, a speedup factor of s

is achieved. Note that for the special case of L = 1 there is only

one qubit and so the tensor butterfly can be removed making

the cell simpler. For s = 2, an array computes the histogram in

T = n/2 + m/2-1 and it is clear that we can scale up to L adders

per bin by adding in the tensor butterfly to generate 2L control

bits rather than two (a pair for each adder in the bin). For the

case of L = m the array reduces to a single cell with one tensor

butterfly controlling an adder bin of n adders. This, in fact, is

one of the first schemes to compute the histogram found in the

literature [11] and still popular in hardware [12]. So we see

that the quantum formulation effectively parameterizes a range

of histogram architectures trading off area and time.

IV. QUANTUM HISTOGRAM ASIC IMPLEMENTATION

An implementation for the parallel computation of the

histogram follows straightforwardly by extending the cells

presented in Figs. 3 and 4. For this discussion, a cell will be

processing s data items (labeled Pin) per clock cycle with each

data item represented as k-bits. The cell will be responsible for

computing a constant of L bins with L being a power of two.

Within the cell each data item needs to be compared against L.

To compute all m = 2
k
 bins we need m/L cells with each cell

occupying a position b from 1 to m/L within the array.

Each cell guards an array of

bins. A cell guards b bins with
the
i
th

 cell responsible for bins
(i-1)*L ... (i*L)-1
So only need to use first log

2
L

bits of Pin
If Pin <L then value is in this

bin array so compute index and
enable bin increment.
If Pin >=L then pass onto next

cell but decrement by L

Fig. 3. A quantum histogram cell suitable for pipelined operation in an array.

Fig. 2. Quantum histogram architecture for m = 4 bins, logic filled with

are AND gates.







 +
d1

d0

 +

 +

 +

10880

4

As each cell passes Pout = Pin –L to the neighboring cell, a

cell with position b receives an input which has already been

discounted by the amount (b-1)*L (Pout should be allowed to

become negative). As a consequence the comparison of Pin to

L only needs to check the k-log2L MSB of Pin and see if they

are all zero.

The log2L LSB bits of Pin are used to generate a QR internal

to the cell corresponding to this smaller block of bits. When

any comparison eq (for q = 1, …, s) becomes true it indicates

that a bin within the cell must be updated and consequently

that comparison bit is used as an enable to the decoder as seen

in Fig. 5. When all comparisons eq are false all decoders are

disabled and no bin update can occur.

The QR bits (decoder’s outputs in Fig. 5) are fed into the

“Bin Adders” block where logic decides which (if any) of the

bins must be updated and more importantly by which amount.

For each bin accumulator, two things need to be decided; the

value by which the bin must be updated and whether a given

bin should be updated or not. The value to be updated is

computed as ∑

 while an enable for each register

adder hj is the Boolean OR of all Ti at position j. Suppose two

data items are being processed in a cell that keeps bins values

4, 5, 6, and 7. If the same bin 5, is selected by the tensor then

the output of each are [0 1 0 0] and [0 1 0 0] respectively,

given a value v1 = 2 only for bin 5 (notice h1 = 1).

If the values were 5, 6 the tensors output [0 1 0 0] and [0 0 1

0] respectively giving v1 = 1 and v2 = 1 with h1 = 1 and h2 = 1

as expected. However, the tensor bits might have been

disabled at the decoder, there is no need to keep the hj signals

in the architecture provided the logic makes vj = 0 for the case

when no bin should be updated.

Table 1 shows area and frequency results in ASIC

technology of a quantum histogram cell of Figure 5 when

processing 2, 4 and 8 data items per clock cycle (s); for each s

value the cell can compute either of 2, 4 and 8 bins per cell

(L). The table also includes the area/time to the cell designs

presented in [4] for comparison. Thus, parallelism can be

exploited for speedup gain (increasing s) or for reducing

latency (increasing L) or both at the expense of extra circuitry.

Note from the results that either speedup can be doubled or

latency can be halved without doubling the cell’s area.

Calculating the histogram computing time in msec/Mpixel,

gives around 2.1, 1.3 and 0.8 for s = 2, 4, 8 respectively; this

implies a sustained time reduction as s increases without being

affected by the number L of bins per cell, suggesting the cell’s

structure scales well in terms of hardware.

V. DISCUSSION AND CONCLUSION

The internal cell architecture capable of processing s data

items per clock cycle as shown in Fig. 5 is composed of

simple and well understood logic blocks interconnected in a

structured manner. This allows a more regular design than our

previous processing cell presented in [4]. This is especially

appreciated when capturing RTL code for the cell, an

important step before synthesis of circuits. This regularity is

maintained even when the number of bins per cell increases.

There are s binary comparators each of log2L bits to generate

enable signals e in Fig. 5. Also, there are s binary decoders

each of L outputs and L accumulators, one for each bin in the

cell.

Synthesis of full arrays for the histogram computation of

256 bins is reported in [3, 4] for up to four data items per

clock cycle and up to four bins per cell. As shown in Table 1,

Bin Control Tensor 2 ~Tensor 2

Tensor 1 Add 2 Add 1
~Tensor 1 Add 1 Add 0

This cell operates with two data inputs so
the computing time is T = (n/2) + (m/L) -1
The top half and the bottom half operate in

the same manner as described previously
but share the Bin Adder.

The bin still has L adders and we have four

signals available to control the addition.

(i) The two enable (dashed) lines operate

the adders if either input passes the test.
(ii) Each adder increments if one output
from either tensor is 1, add 2 if both tensors

are active
If (Pin1<L) or (Pin2<L) Then Bin adder

enabled.

Fig. 4. A quantum histogram cell capable of accepting two

data items in parallel.

TABLE I

AREA AND FREQUENCY FOR HISTOGRAM CELLS ARCHITECTURE

s L=2 L=4 L=8

 Gates MHz Gates MHz Gates MHz

s = 2 583 236 980 222 1749 220
s = 4 779 192 1210 176 2224 175

s = 8 1202 165 1650 150 2648 148

Cells presented in [4]
s = 2 738 228 1015 218 - -

s = 4 1089 173 1386 159 - -

Area (in gate count) and frequency (in MHz) results from ASIC TSMC

0.35µm (up to s = 8 data items per clock cycle and up to L = 8 bins per cell).

Fig. 5. Cell architecture for keeping L bins per cell.

10880

5

with the presented cell architecture, synthesis of cells capable

of processing up to eight data items per clock cycle while

keeping up to eight bins per cell were obtained in a very

straightforward manner. In particular the qubit generation and

tensor butterfly has been replaced by fast binary decoders

using log2L bits [10]. This optimization is illustrated in Fig. 5.

Furthermore, the bin control bits can be implemented

efficiently as carry-save-adder (CSA) tree structures [13]. The

generation of hj signals do not incur extra logic since they

become available as part of the addition process embedded in

either half or full 1-bit adders required for the CSA tree or can

be removed altogether.

Within a cell, each bin accumulator operates in a truly

parallel manner as made explicit by the on-fly quantum

representation derived from a block of incoming data bits. The

critical path is essentially dominated by the adder for the

accumulator plus the CSA tree. This follows because the

comparison and QR generation is relatively shallow in the

level of logic gates owing to the fact that it is dependent on the

number of bits in the encoding not the number of data items.

As expected, the more parallelism in a cell the longer the

critical path becomes. Due to the regularity of the cell, two-

level pipelining (see [14]) can be easily put into place within

the cell to meet more stringent clock frequency (this is to be

reported elsewhere). A histogram array composed of cells as

presented here can operate in streaming mode as data is

directly collected from a source such as a high resolution

camera sensor. For a speedup gain of s, we only require a

sensor to supply s data items per clock cycle. This avoids

accessing internal memory buffers multiple times before

histogram can commence which is typical in solutions that

perform the histogram as a post-processing step once the data

has been stored.

Once a histogram is completed on a block of data the array

can be primed to restart histogramming on a new block of

data, also in a streaming manner, using the same mechanisms

presented in [4]. The cell in [3] requires handcrafting Boolean

logic functions for each s, L parameter; for s = 2 L = 2 these

are equations of three Boolean variables, but for s = 8, L = 8

this would require equations of up to 25 Boolean variables.

The logic for the cells here is better structured.
Recently, a parallel array histogram architecture was

presented in [15]. No pipelining is used and instead a full k:2
k

binary decoder is required to avoid latency of an array. The

design here essentially becomes the design in [15] when L = 2
k

or when all the histogram bins are bound to a single bucket,

thus this work is a more general formulation by offering

design parameters to play with performance/latency trade-offs

to meet requirements of a particular application.

In conclusion, with the reduced complexity of the quantum-

based histogram cells, it becomes very practical to synthesize

circuits capable of accepting up to eight data items per clock

cycle thus allowing for an eightfold speedup factor for the

computation of histograms. This speedup is obtained without

doubling the cell area compared to previous designs. It is also

feasible to maintain up to eight bins per cell favouring

shallower histogram arrays and consequently lower latencies.

The ability to process eight bits means that the arrays deal in

data sizes that are meaningful (e.g. pixels) in the larger context

of the computation. Given the regularity of both cells and

arrays the histogram computation can be integrated closer to

the camera sensor thus enabling a real-time analysis.

REFERENCES

[1] W. C. Kao, S. H. Wang, L. Y. Chen, Y. Lin, “Design considerations of

color image processing pipeline for digital cameras,” IEEE Trans,

Consumer Electron. 52 (2006) 1144-1152
[2] C. T. Chiu, et. al., “Real-time tone-mapping processor with integrated

photographic and gradient compression using 0.13um technology on an

ARM SoC platform,” J. on Signal Proc. Syst. 64 (2011) 93-107.
[3] J. Cadenas, R.S. Sherratt, P. Huerta, “Parallel pipelined histogram

architectures,” Elecron. Lett. 47 (2011) 1118-1120.

[4] J. O. Cadenas, R. S. Sherratt, P. Huerta, W. C. Kao, “Parallel pipelined
array architectures for real-time histogram computation in consumer

devices,” IEEE Trans. Consumer Electron. 57 (2011) 1460-1464.

[5] C. Leiserson, F. Rose, J. Saxe, “Optimizing synchronous circuits by
retiming,” 3rd Caltech Conf. on VLSI, 1 (1993).

[6] M. A. Neilsen and I. L. Chuang, Quantum Computation and Quantum

Information, Cambridge University Press, Cambridge, 2000.
[7] U. Banerjee, “An introduction to a formal theory of dependence

analysis, Springer,” The J. of Supercomputing, 2 (1988), 133-149.

[8] S. Muchnick, Advanced Compiler Design Implementation, Academic
Press, London, 1997.

[9] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to

Algorithms, 2nd Ed. The MIT Press, Cambridge, 2003.
[10] J. F. Wakerly, Digital Design Principles and Practice, 4th ed., Pearson

Prentice Hall, New Jersey, 2006

[11] S. Muller, “A new programmable VLSI architecture for histogram and
statistics computation in different windows,” Proc. Int. Conf. on Image

Processing, DC, USA, (1995), pp. 73-76.

[12] E. Garcia, “Implementing a histogram for image processing
applications,” Xcell Journal Online 38, Xilinx (2000), pp. 46-47.

[13] B. Parhami, Computer Arithmetic, Algorithms and Hardware Designs,

Oxford University Press, New York, 2000.

[14] H.T Kung, L. M. Ruane, D. W. L. Yen, “Two-level pipelined systolic

array for multidimensional convolution,” Image and Vision Compu. 1

(1983) 30-36.
[15] Q. Gan, J. M. P. Langlois, Y. Savaria, “Parallel array histogram

architecture for embedded implementation,” Elecron. Lett. 49 (2013) 99-

101.

