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DISCRETE MOVING FRAMES ON LATTICE VARIETIES AND

LATTICE BASED MULTISPACES

GLORIA MARÍ BEFFA AND ELIZABETH L. MANSFIELD

Abstract. In this paper, we develop the theory of the discrete moving frame
in two different ways. In the first half of the paper, we consider a discrete
moving frame defined on a lattice variety and the equivalence classes of global
syzygies that result from the first fundamental group of the variety. In the
second half, we consider the continuum limit of discrete moving frames as
a local lattice coalesces to a point. To achieve a well-defined limit of dis-
crete frames, we construct multispace, a generalization of the jet bundle that

also generalizes Olver’s one dimensional construction. Using interpolation to
provide coordinates, we prove that it is a manifold containing the usual jet

bundle as a submanifold. We show that continuity of a multispace moving
frame ensures that the discrete moving frame converges to a continuous one
as lattices coalesce. The smooth frame is, at the same time, the restriction of
the multispace frame to the embedded jet bundle. We prove further that the
discrete invariants and syzygies approximate their smooth counterparts. In
effect, a frame on multispace allows smooth frames and their discretisations to

be studied simultaneously. In our last chapter we discuss two important ap-
plications, one to the discrete variational calculus, and the second to discrete

integrable systems. Finally, in an appendix, we discuss a more general result
concerning equicontinuous families of discretisations of moving frames, which
are consistent with a smooth frame.
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Key words: discrete moving frame, discrete invariants, local and global syzygies
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1. Introduction

The theory and the applications of Lie group based moving frames are now well
established, and provide an “invariant calculus” to study differential systems which
are either invariant or equivariant under the action of a Lie group. Associated with
the name of Élie Cartan [11], who used repères mobile to solve equivalence problems
in differential geometry, the ideas go back to earlier works, for example by Cotton
[13] and Darboux [14].

Moving frames were further developed and applied in a substantial body of work,
in particular to differential geometry and exterior differential systems; see for ex-
ample papers by Green [19] and Griffiths [20]. From the point of view of symbolic
computation, a breakthrough in the understanding of Cartan’s methods for differ-
ential systems came in a series of papers by Fels and Olver [16, 17], Olver [51, 52],
Hubert [27, 28, 29], and Hubert and Kogan [30, 31], which provide a coherent, rig-
orous and constructive moving frame method. The resulting differential invariant
calculus is the subject of the textbook, [38]. There are now an extensive number of
applications, including to the integration of Lie group invariant differential equa-
tions [38], to the Calculus of Variations and Noether’s Theorem, (see for example
[21, 22, 37]), and to integrable systems (for example [40, 43, 44, 45]). Moving frame
methods have been extended to Lie pseudo-groups [54]. We note that the calcula-
tion of invariants of Lie group actions, using older “infinitesimal” methods, are well
documented in many texts (see for example, [2, 53]). The use of moving frames to
calculate invariants compares favourably to the older methods in those cases where
the frame can be explicitly calculated, since then the invariants are obtained by the
substitution of the frame into the group action, while infinitesimal methods rely
on the solution of first order quasi-linear partial differential equations. Even where
the frame cannot be calculated, the full symbolic “invariant calculus” using moving
frames, is still available, as is explained in detail in the text, [38]. For calculating
Lie symmetry groups, however, the infinitesimal methods will always be needed, as
the equations for the infinitesimals are linear, while those for the group parameters
themselves are highly nonlinear.

The first results for the computation of discrete invariants using group-based
moving frames were given by Olver who called them joint invariants in [52]; mod-
ern applications to date include computer vision [50] and numerical schemes for
systems with a Lie symmetry [56, 34, 35, 36, 41]. While moving frames for discrete
applications as formulated by Olver do give generating sets of discrete invariants,
the recursion formulae for differential invariants which were so successful for the
application of moving frames to calculus based results, do not generalize well to
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joint invariants. In particular, joint invariants do not seem to have recursion for-
mulae under the shift operator that are computationally useful. To overcome this
problem, the authors, together with Jing Ping Wang, introduced the notion of a
discrete moving frame which is essentially a sequence of frames [42]. In that pa-
per we prove discrete recursion formulae for small computable generating sets of
invariants, which we call the discrete Maurer–Cartan invariants, and investigated
their syzygies, that is, their recursion relations. The main application to date has
been to discrete integrable systems, with the authors of [47] proving that discrete
Hamiltonian structures for Wn-algebras can be obtained via a reduction process.
We note that a sequence of moving frames was also used in [35] to minimize the
accumulation of errors in an invariant numerical method.

In this paper, we extend the theory of discrete moving frames in two ways. The
first is to consider a discrete moving frame defined on a lattice variety, which can be
thought of as the vertices, or 0-cells, together with their adjacency information, in
a discrete approximation of a manifold. We describe their associated cross-sections
and define Maurer–Cartan invariants and local syzygies. In Section 3.2 we further
classify global syzygies and prove that they are associated to topological aspects
of the variety, like representatives of the discrete fundamental group of the lattice
variety, with properties like twisting.

The second extension, beginning in Section 4 and for the rest of the paper, is
to consider families of discrete frames and how their continuum limits may define
smooth frames. Our interest in this second case is how discrete invariants and their
recursion relations limit to differential invariants and their differential syzygies. We
show not only that the limits exist, but also that a well defined continuum limit
of discrete frames may be achieved by embedding it in a smooth family of discrete
ones.

In order to provide a general framework, we construct a manifold which we call
the lattice based multispace and which generalises, in some sense, the curve based
multispace of Olver [51]. The multispace is a generalization of the jet bundle which
contains the jet bundle as a submanifold. It also contains the space of lattices as
an open subset. The main problem with the definition of the lattice multispace is
the fact that multivariate interpolation is not well-defined in general. To avoid this
problem we restrict the lattices to sets of points covered by the general construction
of de Boor and Ron ([6], [7], [8]), to what we call corner lattices. A corner lattice
is one with just enough data to guarantee the approximation of a smooth jet. We
restrict as well the types of coalescencing that can take place to be those along
hyperplanes. We show that de Boor and Ron’s interpolating family is well defined
on corner lattices and is smooth under coalescing, smooth in the sense that the
associated Lagrange polynomials converge to the Hermite ones as the vertices of
the lattice coalesce. Once the choice of lattice and conditions on coalescing are
settled, we can use the interpolating coefficients to define the coordinate system in
the multispace manifold. We notice that one can possibly consider other forms of
lattices and coalescing, and that our theory will hold true as far as the smoothness
of de Boor-Ron’s family is preserved.

Once the multispace is proved to be a smooth manifold, we can naturally de-
fine a group action on it, and hence we can talk about smooth moving frames on
multispaces. A moving frame on the lattice based multispace is, simultaneously, a
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(i) Lagrange (ii) Hermite (iii) Taylor
Interpolation Interpolation Approximation

Figure 1. Under coalescence of the points at which the interpola-
tion is calculated, Lagrange interpolation becomes Hermite inter-
polation, ending with the Taylor approximation to a surface when
all the interpolation points coalesce. By taking coordinates for the
lattice based multispace to be the grid points and the Lagrange
interpolation coefficients, the jet bundle is naturally embedded.

smooth moving frame defined on the jet bundle, and a frame defined on local differ-
ence approximations to the derivatives, depending on what point of the multispace
the moving frame is evaluated. By defining a moving frame on multispaces, one
has simultaneously the full power of both the smooth and the discrete frames, and
the smoothness of the multispace frame will ensure that we can move freely be-
tween discrete, discrete/differential and smooth frames, ensuring that the discrete
frame converges to the continuous one as the points in the corner lattices coa-
lesce to create the jet. We also show that the continuity carries over to invariants
and syzygies as well. Therefore, any smooth geometric construction carried out
with a multispace lattice, invariants and syzygies, ensures that the final discrete,
or discrete/differential result is an approximation of the corresponding continuous
construction.

In section 5 we use the multispace construction in two different applications. The
first application is to a class of finite difference variational shallow water systems,
which have both the correct continuum limit as well as the necessary symmetries
for Noether’s theorem to yield conservation laws for energy, and linear and angular
momenta, in both the finite difference case and the smooth limit. This is motivated
by the desire to achieve an analogue of the conservation of potential vorticity in a
numerical approximation to these equations.

The second application concerns discretizations of completely integrable systems.
Most well known completely integrable PDEs are linked to some geometric back-
ground and the PDE can be interpreted as, for example, the equation induced on
invariants by a geometric evolution of curves, or like the Codazzi–Mainardi equa-
tions, are associated to the geometry of some type of surface. Discrete lattice
systems also have similar interpretations [3]. The question to ponder is whether
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or not the same geometric construction performed in the continuous case to gener-
ate the PDEs can be carried out in the discrete case, while guaranteeing that the
result will be a discretization of the PDE; this might be useful as a base to study
the more interesting questions of when the discretization will be also completely
integrable. Here we show two such processes. The Boussinesq equation is induced
on centro-affine invariants by an evolution of star-shaped curves. We construct the
multispace version of the construction to obtain a geometric discretization. We
show that a modification of the construction generates an integrable discretization
which appeared in [47]. The study of how these different discretizations might be
related is underway. In the second example we describe the multispace version of
the well-known construction of the Sine–Gordon equation as the Codazzi–Mainardi
equations for Euclidean surfaces of negative constant curvature. This interpretation
has been widely used to study pseudo-spherical surfaces as generated by solutions
of Sine–Gordon, see [12] and [57]. Every step of the construction is guaranteed to
discretize the continuous version, while preserving the geometric meaning of the
elements involved. The Sine–Gordon is in fact one of several equations describing
the surface, but which decouples from the others. In this discretization the equa-
tions remains coupled and its integrability is not clear, but the construction itself
is a non-trivial example of the use of mixed discrete-smooth moving frames. The
connection between multispace and integrability is under study.

Finally, in an appendix, we discuss a more general result concerning the dis-
cretisation of smooth moving frames, and the continuum limit of equicontinuous
families of discrete moving frames, with an example.

The authors would like to thank Peter Olver and Amos Ron for discussions, and
especially the two referees whose lengthy and detailed comments greatly improved
this paper.

2. Background

2.1. Moving frames. Given a Lie group G acting on a manifold M with a left
action, so that

G×M →M, h · (g · z) = (hg) · z,

one can define a right (resp. left) group-based moving frame as a map which is
equivariant with respect to the action on M and the inverse right (resp. left) action
of G on itself, specifically,

ρ :M → G, ρ(g · z) = ρ(z)g−1 (resp. ρ(g · z) = gρ(z)) .

We call such an equivariant map a right (resp. a left) moving frame. The inverse
of a right moving frame is a left one, and vice versa.

Given a group G acting on a manifold M , the existence of a moving frame on
the open subset U ⊂M is guaranteed if:

(i) the orbits of the group action all have the same dimension and foliate U ,
(ii) there is a transverse cross-section K to the orbits such that for each orbit

O, the intersection O ∩K contains a single point, and
(iii) the group element taking z ∈ O(z) (where O(z) is the orbit through z) to

O(z) ∩ K, is unique.

In this case, a right moving frame ρ : U → G is given by ρ(z) · z ∈ K, that
is, ρ(z) is the unique element of G taking z to the unique element of K ∩ O(z).
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Since K is transverse to the orbits, the frame defines local coordinates given by
z 7→ (ρ(z), ρ(z) · z) ∈ G×K.

In the continuous case of moving frames, the manifold M could be the jet space
J (ℓ)(Rp,M). In this case it is known ([17]) that provided the action is locally
effective on subsets, as ℓ grows the prolonged action of G on J (ℓ)(Rp,M) becomes
locally free. The work of Boutin ([9]) discusses what happens for products Mq

as q grows, with G acting with the diagonal action. In any event, we make the
assumption that for large enough dimension, there is a neighborhood of the identity
in the group in which a moving frame can be obtained locally.

A common way to obtain the moving frame is through a normalization process.
One can describe normalization equations as those defining the transverse section,
K, to the orbits of the group. If the normalisation equations are given as {Φ = 0},
then the conditions above for the existence of a moving frame are the conditions
under which the implicit function theorem can be applied to solve Φ(g · z) = 0 for
g = ρ(z). Since both g = ρ(h · z) and g = ρ(z)h−1 solve Φ(g · (h · z)) = 0, and
the implicit function guarantees a unique solution, then ρ(h · z) = ρ(z)h−1, that
is, ρ is equivariant. Typically, the normalisation equations, for which K is the zero
set, are algebraic. Indeed, in many applications, the cross-section is a coordinate
plane, so that the normalisation equations involve certain coordinates being set to a
constant. Since there will be many transverse cross-sections to the orbits, the choice
of K can greatly decrease (or increase) the calculations involved. Part of the “art”
of the moving frame in applications is the choice of cross-section, or equivalently,
the choice of normalisation equations.

Given a moving frame (left or right) one can generate all possible invariants of
the action. Indeed, if ρ is a right moving frame, the expressions

ρ(u) · v

for any u, v ∈M are clearly invariant; their coordinates are called the normalized
invariants. One can easily see that any invariant of the action is a function of these,
using the replacement rule: If I : M → R is invariant under the action, so that
I(g · v) = I(v) for all g ∈ G, then setting g = ρ(u), one obtains

I(ρ(u) · v) = I(v).

Different choices of the manifold M gives rise to different familiar cases. For
example, if M is the jet space J (∞)(Rp, P ) for some manifold P where G acts,
and G acts on M via the natural prolonged action given by the chain rule, then ρ
would generate moving frames on p-submanifolds and the invariants will be stan-
dard differential invariants (for example, curvatures, torsions, etc). If M = P k is
the Cartesian product of a manifold P where G acts, and G acts on M through the
diagonal action, then the invariants are the so-called joint invariants (see [52]).

Remark 2.1. In this portion of the paper we are interested in the induced action
on N -gons, that is, on sets of N points in M , or alternatively, an element of MN .

The authors of [42] defined discrete moving frames, essentially a choice of group
element associated to each vertex in an equivariant way. The discrete moving
frame can be defined to act naturally under the shift operator, greatly simplifying
calculations with discrete (difference) equations. We next review this definition.
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Let GN denote the Cartesian product of N copies of the group G. Allow G to
act on the left on GN using the diagonal action g · (gr) = (ggr). We also consider
what we have called the “right inverse action” g · (gr) = (grg

−1).

Definition 2.2 (Discrete moving frame). We say a map

ρ :MN → GN

is a right (resp. left) discrete moving frame if ρ is equivariant with respect to the
diagonal action of G on MN and the inverse right (resp. left) diagonal action of
G on GN . Since ρ((xr)) ∈ GN , we will denote by ρs its sth component, that is
ρ = (ρs), where ρs((xr)) ∈ G for all s. Equivariance means,

ρs(g · (xr)) = ρs((g · xr)) = ρs((xr))g
−1 (resp. gρs((xr)))

for every s. Clearly, if ρ = (ρs) is a right moving frame, then ̺ = (ρ−1
s ) is a left

moving frame.

Remark 2.3. In any given application, it is advisable to ensure the parity of an
action and of the equivariance of a frame; see [38] for a discussion of the subtleties
involved. In what follows, we will use ρ to denote a right frame, and ̺ to denote a
left frame.

As in the original group-based moving frame definition, if (us) ∈ MN , one can
define invariants,

Irs = ρs · ur

for a right frame, or Irs = ̺−1
s ·ur for a left frame. The coordinates of these invariants

for any r generate all other invariants even when s is fixed (see [42]). We note that
the action induces an action on the coordinate functions, the same as it induces an
action on any function, specifically, g · f(ur) = f(g ·ur). The components of Irs will
be invariant as Irs is, and they are called the normalized invariants.

We next describe a smaller set of invariants, the so-called Maurer–Cartan invari-
ants.

Definition 2.4. Let (ρs) be a right (resp. left) discrete moving frame evaluated
along an N -gon. Then the element of the group

Ks = ρs+1ρ
−1
s (resp. ̺−1

s ̺s+1)

is called the right (resp. left) s-Maurer–Cartan element for ρ (resp. ̺). We call the
equation ρs+1 = Ksρs (̺s+1 = ̺sKs) the discrete right (resp. left) s-Frenet–Serret
equation.

The coordinates of the Maurer–Cartan elements, together with the normalized
invariants Iss , generate all other invariants. See [42] for more details. Note that for
G ⊂ GL(n,R) a matrix group, the Maurer-Cartan invariants will be the components
of the Maurer–Cartan matrices.

2.2. Lattices. Lattices are subsets of Z
p with a variety of properties. We first

define adjacency.

Definition 2.5. Two points m, n ∈ Z
p are said to be adjacent if

∑

j

|mj − nj | = 1.
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Definition 2.6. We say that a subset Γ ⊂ Z
p is a connected lattice if it consists of

a single point, or, if between any two points m1, m2 ∈ Γ there is a path, m = n1,
n2, . . .nN = m2 such that ni is adjacent to ni+1 for i = 1, . . . , N − 1.

(i) (ii)

(iii) (iv)

Figure 2. In (ii) and (iii), Γ is connected. The subsets in (i), (iv)
are not connected; the subset in (i) has four components and that
in (iv) has three.

Natural operators on Z
p are the well-known shift operators, namely Ti, i =

1, . . . , p where

Ti(n1, . . . , ni, . . . , np) = (n1, . . . , ni + 1, . . . , np).

We will also consider lattices in a manifold.

Definition 2.7. The image of a lattice Γ ⊂ Z
p in a manifold M by a map Φ : Γ →

M is denoted by L, and is also called a lattice. We assume this map to be injective,
a condition which will be relaxed under controlled conditions in the second part of
this paper. The adjacency in L is determined from that of Γ.

Since we will be working in coordinate charts, we can assume from the beginning
that the lattice L ⊂M is contained within one coordinate chart for the manifold, so
that for all practical purposes we can assume the manifold is Rn, or a parametrized
surface with the parameters serving as local coordinates. We will also assume that
lattices are connected as one can study each connected component separately.

The lattice itself does not need to be covered with one lattice neighborhood,
however. We define next a lattice variety, which will allow us to work on lattice
models of spheres and tori.

Remark 2.8. Another name for our lattice variety could be ‘lattifold’, since we
define it to be a manifold like object but modelled on Z

p rather than R
p. The

construction given here is related to that given in [39].

Definition 2.9. A lattice variety L ⊂M is a set that can be covered by a countable
number of lattices Lα ⊂ M , each of which is the image under an injection φα of a
connected lattice Γα ⊂ Z

p for some fixed p. Every adjacency in L is contained in at
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least one of the Lα. Furthermore, in the overlap Lα ∩Lβ , the gluing map φα ◦ φ−1
β

preserves adjacency. We call (Lα, φα) a local lattice coordinate system.

Lattice coordinates essentially introduce a local order in the lattice (inherited
from Z

p through φα) so one can clearly define shifts. We say that a shift map
is defined at a point in L, if it is defined in at least one chart. Since the chart
interchange maps preserve adjacency, the existence of a shift map is well-defined.

3. Moving frames on Lattices and Lattice Varieties

Let L be a lattice variety and let N be the number of vertices in L, which we
assume to be either finite or at most countable. Let LN be the set of p-lattice
varieties in M with N vertices.

3.1. Moving frames, invariants and Maurer–Cartan invariants. Let G be a
group acting on LN (for example, if the lattice lives inside a manifold with a group
action, the action would be the one induced on the lattice), and for simplicity
assume that it is a left action (that is, g · (h · u) = (gh) · u. A parallel description
can be made for right actions.

A discrete moving frame will associate an element of the group to each vertex in
the lattice in an equivariant fashion.

Definition 3.1. [Moving frames on lattices]
Let U be a subset of LN . We say

ρ : U → GN

is a right (resp. left) discrete moving frame on U whenever ρ is equivariant with
respect to the action of G on LN and the inverse right (resp. left ) diagonal action
of G on GN . That is, if ρ = (ρi)

N
i=1 denote the components of ρ in GN , then

ρi(g · L) = ρi(L)g
−1 (resp. ρi(g · L) = gρi(L)),

with |Γ| = N .

If ρ is a right frame, then ̺ = ρ−1 is a left frame, and it suffices to develop
the theory for only one of the parities. Henceforth we restrict ourselves to right
frames. In general, moving frames exist only locally, which is the reason why we
need to restrict its domain in LN . Given a lattice variety L, and a coordinate
system indexed by Γ ⊂ Z

p, the moving frame ρ assigns group elements at each
vertex (thus N of them). We will call ρR the moving frame at the vertex R ∈ Γ.
Note when the index is applied we are assuming the use of local variety coordinates.

It is a simple matter to go from a moving frame to a discrete moving frame by
taking a family of cross-sections, one per lattice vertex, as stated in the following
result.

Proposition 3.2. Let {SR ⊂MN |R ∈ Γ}, be a family of sections, indexed locally
by Γ, with SR transverse to the orbit of G at L viewed as a point of MN (recall that
G acts on MN by the diagonal action; transversality is with respect to the orbit in
MN ). Let g = (gR) ∈ GN be uniquely determined by the condition

(1) gR · L ∈ SR

for L ∈ LN and R ∈ Γ in some coordinate system for L. Then (gR) = (ρR) is a
local right discrete moving frame.
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The proof of this statement is straightforward from the discussion of the moving
frame. We note that a moving frame is defined as an element of the group on the
entire lattice, but normalization equations give frames defined only locally. The
interchange maps from one domain to another will play a role in what follows.
Remark on Notation. From now on a multi-index will denote the use of local
lattice coordinates, while the lack of it will indicate global definitions. Also, we will
denote by ρR an individual component of ρ, or the moving frame at the vertex uR.
Notice also that even though we will denote by ρ(L) the moving frame along L,
each ρR will, in the examples, depend on only finitely many vertices.

Example 3.3. Consider 1-lattices - or polygons - in the Euclidean plane. The
group E(2) can be identified with the subgroup of GL(3,R) given by

(2) g =

(
1 0
b Θ

)

with Θ ∈ O(2) and b ∈ R
2. It acts on R

2 as
(
1 0
b Θ

)(
1
u

)
=

(
1

Θu+ b

)

with u ∈ R
2. We choose as our transverse cross-section, the one given in coordinates

by ρn ·un = 0 and ρn ·un+1 = e1||∆un||, where ∆un = un+1−un. If ρn is displayed
in the matrix representation as in (2), solving the system

ρn · un = Θnun + bn = 0, ρn · un+1 = Θnun+1 + bn = Θn∆un = ||∆un||e1

results in the left moving frame

̺n = ρ−1
n =

(
1 0

−Θ−1
n bn Θ−1

n

)
=

(
1 0 0

||∆un||e1
un

||∆un||
−J un

||∆un||

)

where J =

(
0 1
−1 0

)
is the canonical symplectic matrix.

Definition 3.4 (Invariants and normalized invariants). We say the function on LN

I : LN → R

is a lattice invariant under the action of G if I(g ·L) = I(L) for any g ∈ G, L ∈ LN .
A local invariant will have the same property in some coordinate chart.

Given a right moving frame ρ on p-lattices, we call the invariants

IR = ρR(L) · L

the normalized invariants, where ρ(L) = (ρR(L)) with ρR(L) ∈ G. Once we choose
coordinates in L, given by (uJ), the local invariants are defined to be

IMR = ρR((uJ)) · uM

for R,M ∈ Γ. These are clearly invariants of the action.

The normalized invariants generate all other local invariants. In fact, they do
generate them even when R is fixed.

Proposition 3.5. If I is any lattice invariant, then I can be written as a function
of the normalized invariants INR for any fixed R ∈ Γ.
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Proof. This is an immediate consequence of the so-called replacement rule. Let
(uN ) represent the vertices of the lattice variety. If I = I((uN )) is an invariant of
the action, then I(g · (uN )) = I((uN )) for all g ∈ G, and in particular for ρR((uJ)).
Thus

I(ρR((uJ)) · (uN )) = I((INR )) = I((uN ))

which shows us how to write I in terms of the normalized invariants with R fixed.
�

From this wealth of invariants we will be selecting a few, the so-called Maurer–
Cartan invariants. They are the discrete analogue of the invariants defining the
classical Frenet–Serret equations and, like their continuous counterpart, together
with the set {IRR |R ∈ Γ} they will form a generating system.

From now on we will extend the shift operators in the standard way to algebraic
functions of uJ using the properties Ti(uJuR) = TiuJTiuR. We can also apply a
shift to ρJ by sending ρJ to ρJ+ei or we could apply it to ρJ by shifting the variables
uR that ρJ depends on. But notice that unless the sections in (1) are shifts of each
other (i.e. SR+ei = TiSR for all i = 1, . . . p and all R ∈ Γ), these two operations
do not need to produce the same result. Given that in many of our situations and
in all of our examples we do assume the sections to be invariant under the shifts,
we will abuse the notation and denote all these maps by Ti, so that, for example,
TiρJ = ρJ+ei .

Definition 3.6. (Maurer–Cartan invariants) Let ρ be a right moving frame along
p-lattices. We define the right (R, i)-Maurer–Cartan group element to be K(R,i),
the element of the group given by

K(R,i) = (TiρR) ρ
−1
R = ρR+eiρ

−1
R .

Its local coordinates (or the entries of the matrix, if G ⊂ GL(n,R)), will be called
the (R, i)-Maurer–Cartan invariants.

Definition 3.7. (Diagonal invariants) We denote further the set {ρR((uJ)) · uR =
IRR |R ∈ Γ} to be the set of diagonal invariants.

Theorem 3.8. Let ρ be any right moving frame. The (R, i) Maurer–Cartan invari-
ants, i = 1, . . . , p, R ∈ Γ, together with the diagonal invariants, ρR((uJ)) ·uR = IRR ,
R ∈ Γ, generate all other invariants for the action of G on LN .

Proof. The proof is based on what are commonly known as the recursion formulae.
Directly from the definitions we get that

K(R,i) · I
M
R = (TiρR)ρ

−1
R · (ρR · uM ) = ρR+ei · uM = IMR+ei

and from

(3) K(R,i) · I
M
R = IMR+ei

we have
IMR = K−1

(R,i) · I
M
R+ei .

Now, since Γ is connected, givenM ∈ Z
p, any R ∈ Z

p is related toM ∈ Z
p through

either recurrently increasing or decreasing its individual components, using the shift
operator. At each step the invariant obtained when increasing or decreasing the
components in M is generated by those in previous steps and by Maurer–Cartan
invariants. Thus, we can start using IMM and reach IMR , for any R, using both
versions of the recursion formulas. This proves the statement of the theorem. �
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Example 3.9. The simplest example is the translation group viewed as a subgroup
of GL(n+ 1,R) and acting on R

n as

g · u = π

((
1 0
a I

)(
1
u

))
= π

((
1

a+ u

))
= a+ u,

where π is the projection in the last n components. If (uR) is a p-lattice in R
n,

a transverse section to the orbit of the group at uR is given by uR = 0. Thus,
the moving frame is determined by g · uR = 0, which implies a = −uR. The
normalized invariants are IMR = ρR · uM = uM − uR, while the Maurer–Cartan

matrices are ρR+eiρ
−1
R whose only non-constant entries are the Maurer–Cartan

invariants uR − uR+ei , R ∈ Γ, i = 1, . . . , n . It is straightforward to show that the

IMR can be written in terms of the Maurer–Cartan invariants IR+ei
R . Note that in

this example, IRR = 0 for all R ∈ Γ and they do not contribute to the generating set
of invariants.

Example 3.3 cont. In the case of the Euclidean plane, we found a right moving
frame given by

(4) ρn =

(
1 0

−Θnun Θn

)

where

Θ−1
n =

(
un

||∆un||
−J un

||∆un||

)
.

The normalized invariants in this case are given by

ρn · um = Θn(um − un) =
1

||∆un||

(
un · (um − un)

det(un, um − un)

)

for any n,m. Notice that ρn ·un+1 = ||∆un||e1. The Maurer–Cartan matrix is given
by

(5) ρn+1ρ
−1
n =

(
1 0

−Θn+1Θbn + bn+1 Θn+1Θ
−1
n

)

where

−Θn+1Θnbn + bn+1 = −Θn+1(un+1 − un) =
1

||∆un+1||

(
−un+1 ·∆un
det(un+1, un)

)

and

Θn+1Θ
−1
n =

1

||∆un+1||

1

||∆un||

(
un+1 · un det(un, un+1)

− det(un+1, un) un+1 · un

)
=

(
cosαn sinαn

− sinαn cosαn

)
,

where αn is the angle between un+1 and un. Therefore, a generating set for the
Maurer–Cartan invariants are ||∆un|| and αn, for all n. Since the normalized in-
variants are also generated by ||∆un|| and the angle between un and um, the Maurer–
Cartan invariants generate all the basic ones. Note that, as in the previous example,
IRR = 0 for all R ∈ Γ and they do not contribute to the generating set of invariants.
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3.2. Maurer–Cartan Syzygies. In this section, we analyse in detail the relation-
ships that can exist among the Maurer–Cartan invariants.

Remark 3.10. (Syzygies involving the diagonal invariants). In some cases, the
additional generating invariants, the “diagonal invariants” IRR (see Definition 3.7)
may be non-constant. These invariants obey the trivial recurrence relations, TiI

R
R =

Ti (ρR · uR) = (TiρR) ρ
−1
R+ei

IR+ei

R+ei
= IR+ei

R+ei
. It can happen that the Maurer–Cartan

and the diagonal invariants are not independent of each other, and these dependen-
cies can then be regarded as syzygies between them. Indeed, consider the group
G = (R,+) as a scaling action on the positive real line, ǫ · un = exp(ǫ)un with
the normalisation equation, ρn · un+1 = 1. Then ρn = − log un+1, I

n
n = un/un+1

and ρn+1 · ρ−1
n = log Inn . We conjecture that there are no syzygies involving the

diagonal invariants that do not arise from either the trivial recurrence relations
between them given above, or those involving the Maurer–Cartan invariants de-
scribed in this section, together with the dependencies between the diagonal and
the Maurer–Cartan invariants.

3.2.1. Basic local syzygies. From the definition of Maurer–Cartan element, K(N,i) =

(TiρN ) ρ−1
N , we have

TjK(J,i) = (TjTiρJ)Tjρ
−1
J = (TjTiρJ)ρ

−1
J K−1

(J,j)

and also
TiK(J,j) = (TiTjρJ)Tiρ

−1
J = (TiTjρJ)ρ

−1
J K−1

(J,i).

Given that shifts commute, we obtain

(6)
(
TjK(J,i)

)
K(J,j) =

(
TiK(J,j)

)
K(J,i).

This expression gives us a number of algebraic relationships between the different
Maurer–Cartan invariants. We will refer to these as basic local syzygies, a discrete
generalization of the differential syzygies that are satisfied by differential invariants,
such as the Codazzi–Mainardi equations for Euclidean invariants defined on sur-
faces. The above syzygies generate most of the possible algebraic relations among
Maurer–Cartan invariants. Further independent syzygies may be created by the
topology of the lattice L.

Definition 3.11. We say two syzygies are equivalent up to basic syzygies if one of
them is an consequence of the other together with syzygies of the form (6).

To describe global syzygies, we need first to define the discrete fundamental
group of the lattice and related material standard in the study of the topology of
graphs [48].

3.2.2. Discrete fundamental group. Let L be a p-lattice in M , that is, the image
of a map from a connected p-dimensional subset Γ of Zp to M . As before, we will
denote the image of J ∈ Γ as φ(J) = uJ ∈ M . For simplicity, let us assume that
Γ = Z

p, although one can apply much of what we will say next to other cases.
Notice that, in principle, we are allowing cases when the map φ is not 1-to-1 so L
does not need to have a trivial topology.

Definition 3.12. (Paths) We say a subset γ ⊂ L is a path of length r joining two
points a, b ∈ M , if it can be ordered as γ = {xi}

r
i=0, with x0 = a, xr = b and xi

adjacent to xi+1, for all i = 0, . . . r − 1. We say the path is closed if a = b; we say
it is simple if xi 6= xj for any i 6= j (except perhaps x0 = xr if closed). Notice that
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Figure 3. Examples of the two basic homotopies applied to the
blue paths

by giving the vertices of the path in a certain order we are implicitly assigning an
orientation to it. This will be relevant once we associate syzygies to closed paths.

Definition 3.13. (Edge) Given a path γ in a lattice, γ = {xi}
r
i=0, we say the

ordered pair [xi, xi+1] is an edge of the path. The ordering gives an orientation of
the edge.

Definition 3.14 (Sum of paths). Consider the set of all closed paths with base
point a. One can define the sum of two such paths by concatenation; that is, if
{xi}

r
i=0 and {yj}

s
j=0 are two paths, their sum is given by {xi}+ {yj} = {zk}

r+s+1
k=0

with
zi = xi, i = 0, . . . , r, zr+j+1 = yj , j = 0, . . . , s.

If the paths are not closed, but xr = y0, one can equally define the sum of the paths
by concatenation.

Definition 3.15 (Basic homotopy). A transformation of a path {xi}, ψ({xi}) =
{yj} is a basic homotopy if {yj} is equal to {xi} except for

(1) adding or removing a subpath of the form [xi, xi+1] + [xi+1, xi];
(2) changing a subpath of the form [xi, xi+1] + [xi+1, xi+2] by one of the form

[xi, z] + [z, xi+2], where xi, xi+1, xi+2, z form a basic square of the lattice.

Transformations (1)–(2) are called the two basic homotopies.

Figure 3 shows examples of basic homotopies.

Definition 3.16. We say the two paths {xi}
r
i=0 and {yj}

s
j=0 joining a and b, are

homotopically equivalent if x0 = a = y0, xr = b = ys and either the paths are equal,
or one can be transformed to the other by a finite sequence of basic homotopies.

By construction, homotopy of paths joining a and b is an equivalence relation.
Figure 4 shows pairs of homotopic and nonhomotopic paths.

Definition 3.17 (Discrete fundamental group). Consider the space of all closed
paths based at a, and let π1(L, a) be the set of homotopy classes of these paths.
The operation above endows π1(L, a) with a group structure. We call π1(L, a) the
discrete fundamental group of L.
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The lattice is missing the inner vertices: the red path
wraps around the missing tube while the blue one 
is homotically equivalent to the constant path at a.

a=b

Figure 4. The red and blue paths on the left are homotopically
equivalent, with the yellow and green paths showing the sequence
of basic homotopies required, while the ones on the right are not.

The fundamental group does not depend on the point a chosen, as far as the
lattice is connected. (It suffices to join a to a different point b using a path γ, and
use γ to relate closed paths based on a to those based on b by conjugation, as done
in the continuous case.)

3.2.3. Syzygies associated to closed paths on a lattice and global syzygies. Assume
we have a moving frame along a path. To each edge of the path we can associate
a Maurer–Cartan matrix of invariants as follows:

Assume either that xi = uJ and xi+1 = TkuJ = uJ+ek , or that xi+1 = T −1
k uJ =

uJ−ek . To [xi, xi+1] we associate the matrix

(7) K(J,k) = Tk(ρJ)ρ
−1
J = ρJ+ekρ

−1
J

in the first case, and

(8) K−1
(J−ek,k)

=
(
Tk(ρJ−ek)ρ

−1
J−ek

)−1
= ρJ−ekρ

−1
J

in the second case.
We note that the choice of Maurer–Cartan matrix depends on the orientation of

the path, with an edge being associated to the inverse matrix if the orientation is
reversed.

Next we will associate a group element K(γ) to each path γ on the lattice,
namely, the product of the Maurer–Cartan matrices along the path. From the
definition of the Maurer–Cartan matrices in terms of the discrete frame, it will be
evident this product telescopes to involve only the discrete frame at the endpoints of
the path, provided the discrete frame is defined along the whole path. Nevertheless,
in terms of the components of the Maurer–Cartan matrices, the Maurer–Cartan
invariants, the product will not telescope – this is the syzygy. Evaluating K(γ) for
closed paths γ, leads to relations on the invariants. It becomes important to find
those relations which are non-trivial, in the sense that they are not an algebraic
consequence of basic local syzygies, given in Equation (6).
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x1=uJ x4=uJ+ej

x3=uJ+ej+ek
x2=uJ+ek

K1= J+ek
 J

-1
K3= J+ej

  J+ej+ek

-1

K4= J  J+ej

-1

K2= J+ek+ej
 J+ek

-1 

Figure 5. In this Figure, we see that along the closed path
(x1, x2, x3, x4 = x1) we have K4K3K2K1 = e, the identity in G.
This is equivalent to the basic local syzygy, Eqn. (6).

In what follows, we will show that K(γ) is a homotopy invariant. Evaluating
K(γ) on closed paths which are not homotopic to the constant trivial path leads
to relations on the Mauer-Cartan invariants which cannot be obtained in terms of
the basic local syzygies.

We start with paths which lie in the domain of a discrete frame. This, of course,
need not be the case since the existence of moving frames is guaranteed only locally.
If we need to cover the lattice with several coordinate patches on which discrete
moving frames exist, we will obtain invariant transition matrices associated with
the cover of the lattice defined by the domains of the discrete moving frames. We
discuss this more involved case later in this section.

Definition 3.18. Assume a discrete frame exists along a path γ. The product of
the Maurer–Cartan matrices along γ is denoted K(γ). Specifically, for the path
{xi}

r
i=0, we have

K
(
{xi}

i=r
i=0

)
= K([xr−1, xr]) · · ·K([x0, x1]),

where K([xi, xi+1]) is the Maurer–Cartan element associated to the edge [xi, xi+1]
as in (7)-(8) so that K([xi, xi+1]) = K−1([xi+1, xi]). If γ is the constant (trivial)
path, we define K(γ) = e.

It is evident that if γ = γ1 + γ2, then K(γ) = K(γ2) · K(γ1). (See Definition
3.14 ).

In Figure 5, we illustrate the basic local syzygy, in the form K({x1, x2, x3, x1}) =
e along a closed path of length four.

Proposition 3.19. Let γ1 and γ2 be two paths joining a and b in the lattice L
for which a discrete moving frame exists. Assume that γ1 is homotopic to γ2, then
K(γ1) = K(γ2).

Proof. Since a homotopy is a finite composition of basic homotopies, it suffices to
show that if γ1 and γ2 differ by a basic homotopy, then K(γ1) = K(γ2).

In the case (1), this is trivial since the only difference between K(γ1) and K(γ2)
is a product of the form KiK

−1
i = e. In the case (2) it is equally simple since

they differ only by a product KiKi+1 appearing in K(γ1) and KjKj+1 appearing
in K(γ2), with KiKi+1 = KjKj+1 being a local syzygy since their vertices form a
square in the lattice.
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�

The discussion thus far lifts naturally to lattice varieties, since adjacency and lo-
cal shift maps are well defined. The following corollary is an immediate consequence
of the previous proposition.

Corollary 3.20. If our lattice variety is covered by one coordinate system and
there exists a moving frame defined everywhere, each class [γ] of the fundamental
group of the lattice defines what we will call a global syzygy of the Maurer–Cartan
invariants, in the form K(γ) = e.

For example, if a discrete frame is defined on an annular lattice L, then there
will be a path not homotopic to the constant path within L, but K(γ) = e for all
closed paths.

Before turning to consider paths which move through different domains, we note
the following.
Important Assumptions. We already have the assumption on the coordinate
charts Lα which cover our lattice variety, that every edge appears in at least one
Lα, and so every Maurer–Cartan matrix can be written in (at least one) coordinate
system. We assume further that every edge is in a domain of a discrete frame.
In this way, every Maurer–Cartan matrix, every transition matrix, and their local
products, can be expressed with respect to a single set of coordinates. By taking a
refinement of our coordinate cover as necessary, we therefore assume that our cover
consists of sets which are domains of both frames and coordinate charts, and that
every edge appears in at least one element of the cover.

We can associate a group element K to a path moving through different do-
mains, by patching local products of Maurer–Cartan matrices, assuming the local
neighborhoods where the different discrete frames are defined overlap. Overlapping
conditions are often used to coordinate the geometry in different coordinate do-
mains; in our case, the existence of overlap in the domains of the frames is needed
to coordinate the frame on adjacent parts of the path where the domains change.
On paths in our lattice varieties, overlapping of domains is guaranteed by the condi-
tion that every edge, that is, every pair of adjacent points, lies in at least one of the
domains. Indeed, suppose we have two subpaths {x0, . . . , xi} and {xi+1, . . . , xj}
of a path, and assume we can find a moving frame ρs at xs, s = 0, . . . i and a
different moving frame ρ̂s for s = i+1, . . . , j. Since the edge [xi, xi+1] must lie in a
domain, then at least one of xi or xi+1 must lie in both domains, or there is a third
domain so that we can split our path into three subpaths, {x0, . . . , xi}, {xi, xi+1},
{xi+1, . . . , xj}, each of which lie in the domain of a frame.

So, consider two subpaths {x0, . . . , xi} and {xi, xi+1, . . . , xj} of a path, where
xi is the guaranteed point of overlap, and where we have a moving frame ρs at xs,
s = 0, . . . i and a different moving frame ρ̂s for s = i, i+ 1, . . . , j. Then we define
M(xi) = ρ̂iρ

−1
i so that ρ̂i = M(xi)ρi . Clearly, since both ρi and ρ̂i are right

equivariant, the matrix M(xi) is invariant. Then, to the path γ = {x0, . . . , xj} we
can associate the product of invariant matrices

K(γ) = (ρ̂j ρ̂
−1
j−1)(ρ̂j−1ρ̂

−1
j−2) . . . (ρ̂i+1ρ̂

−1
i )M(xi)(ρiρ

−1
i−1) . . . (ρ1ρ0)

= K̂j−1 . . . K̂iM(xi)Ki−1 . . .K0

with the invariant matrix M(xi) linking the Maurer–Cartan matrix in one coordi-
nate system to the next.
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Definition 3.21. If a vertex x lies in the domains of both the discrete frame ρ and
the discrete frame ρ̂, we say the group element

(9) M(x; ρ̂, ρ) = ρ̂(x)ρ(x)−1

is the transition Maurer–Cartan matrix at the vertex x, associated with the change
of frame from ρ to ρ̂.

If a vertex lies in the intersection of several frame domains, there will be co-cycle
conditions. For example, if x ∈ dom(ρα) ∩ dom(ρβ) ∩ dom(ρδ), then clearly

(10) M(x; ρδ, ρβ)M(x; ρβ , ρα)M(x; ρα, ρδ) = e.

Two equal closed paths can have different group elements K(γ) if the choices
of either the initial or the final moving frames are different. Thus, our element of
the group depends not only on γ but also on the initial and final choice of moving
frame. In this case we will denote the group element above

K(γ;α, β)

for the element of the group that starts in dom(ρα) and ends in dom(ρβ), and
where these are the choices of frame for the calculation of the initial and final
Maurer–Cartan matrices. By analogy, we will also denote byM(x;α, β) the matrix
M(x; ρα, ρβ).

Lemma 3.22. K(γ;α, β) does not depend on the choice of coordinates or moving
frames one chooses along γ, only on the initial and final ones.

Proof. Assume at some point x we make different choices of moving frame at a
point x in the overlap of (at least two) different frame domains, so we move from
ρµ to ρη for one path and from ρµ to ρν for the other. In that case we introduce the
transition factor M(x; η, µ) in one of the lifts, and M(x; ν, µ) in the other one, and
we continue the different paths using the corresponding choices. At some point we
need to come back to a common choice, even if that happens only at the end of the
path. But when we expand the different factors of K(γ;α, β) in terms of moving
frames, the intermediate factors all vanish as we saw before, and the difference
is only at the beginning and at the end of the product. Thus, without losing
generality we can assume that we come back to a common moving frame right after
we introduce the split.

That is, a path includes the factor

M(x;β, η)M(x; η, µ),

while the other includes
M(x;β, ν)M(x; ν, µ).

But using (10) we have that both these factors are equal to M(x;β, µ), and hence
they are equal. �

We now argue that K(γ;α, β) is still a homotopy invariant for paths that start
and end with the α and β choice of moving frame, even if the path moves through
changing domains of discrete frames (and changing coordinate systems). Consider
Figure 6, in which we assume that [x, y], [y, z] are edges in the domain of ρ, while
[x, t] and [t, z] are edges in the domain of ρ̂. We consider paths γi running from x0,
in the domain of ρ, to y0 in the domain of ρ̂. If γ1 goes via x and t, then we must
switch from ρ to ρ̂ at x. We achieve this by using the matrix M(x) = ρ̂(x)ρ(x)−1

(which is invariant as the frames are right frames), and then defining K(γ1) to be
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x0

y0

y

x

z

t

Domain for

Domain for

Figure 6. Several ways a path can move through an interchange.

K(γ1) = K̂([t, y0])K̂([x, t])M(x)K([y, x])K([x0, y])

= ρ̂(y0)ρ̂(t)
−1
(
ρ̂(t)ρ̂(x)−1

) (
ρ̂(x)ρ(x)−1

)
ρ(x)ρ−1(y)ρ(y)ρ(x0)

−1

= ρ̂(y0)ρ(x0)
−1.

Considering the path γ2 from x0 to y0 via z results in

K(γ2) = K̂([t, y0])K̂([z, t])M(z)K([y, z])K([x0, y])

which is also equal to ρ̂(y0)ρ(x0)
−1 by a similar argument, and thus we have

(11) K(γ1) = K(γ2).

Since we have homotopy invariance of the K element within domains, in this way
we can see that even passing through a change of domain, we maintain homotopy
invariance.

In order to prove homotopy invariance in general, we construct a “lift” L̄, of
L, with respect to a cover, satisfying our assumptions, of L. We can use this lift
to keep track of which discrete frame we are using at each point on our paths in
L. The lift L̄ that we construct is not a lattice variety in general, and does not
lie in M , but nevertheless serves our purpose here. To construct L̄, we take the
disjoint union of the charts, together with their edges (adjacencies), and for every
x ∈ Lα ∩ Lβ , we take a new adjacency, or edge, [x|α, x|β ], and let this be a new
edge in L̄, with the associated Maurer–Cartan element being ρβρ

−1
α , the transition

Maurer–Cartan matrix. See Figure 7, which shows the lifting for the case of Figure
6. Define the projection from L̄ to L as the natural projection that collapses the
different copies of the vertices which lie in intersections of charts. That is

π : L̄ → L, π(xi) =

{
xi if xi belongs only to one domain

x if xi = xα where xα is a lift of x ∈ Lα

.
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x0

y0

y

x

z

t

Domain for

Domain for

z

x

Figure 7. The situation of Figure 6 translated to L̄, the “lift” of L.

A path γ̄ in L̄ is a lift of a path in L when the projection of γ̄ is γ. Lifts may
not be unique, as they depend, for example, on the element of π−1(a) at which
the path begins, where a is the initial vertex of γ.

Changing from one frame to another along a path is, in L̄, simply proceeding
from one vertex to another, with the transition Maurer–Cartan elements, Definition
3.21, being the group element associated to the new edge. We note that a change of
coordinates simply changes the local labelling of the points, and so is less important
when considering the group element associated to a path.

We now show that in L̄ we have new basic local syzygies obtained from the
transition Maurer–Cartan matrices. These new local syzygies allow us to obtain a
result similar to that of Proposition 3.19, but for the more general situation where
we need to change domains of our moving frames. Consider Figure 8. Let the
domain of ρ be Lα and the domain of ρ̂ be Lβ . Consider the simple closed path γ =
{x|α, x|β , y|β , y|α, x|α}. If K([yβ , xβ ]) = ρ̂(y)ρ̂(x)−1, K([xβ , xα]) = ρ̂(x)ρ(x)−1,
K([yβ , yα]) = ρ̂(y)ρ(y)−1, K([yα, xα]) = ρ(y)ρ(x)−1, the K element for this path
is,

K(γ) =
(
ρ(x)−1ρ(y)

) (
ρ(y)ρ̂(y)−1

) (
ρ̂(y)ρ̂(x)−1

) (
ρ̂(x)ρ(x)−1

)
= e

showing this path defines a basic syzygy in L̄.
Finally, we define the monodromy of a closed path in L. When such a path is

lifted to L̄ it need not be closed, as it may begin in one frame domain and return
in another. Consider the lift γ̄ of a path γ beginning at x0 in the domain of the
frame ρα, and ending at x0 in the domain of the frame ρβ . We can close the path
in L̄, by adding to γ̄, the edge [x0|β , x0|α], but in principle this need not happen.
Therefore, the element of the group associated to the lift would not be equal to e,
but rather to M(x;α, β) (or its inverse, depending on the orientation). We call this
group element the monodromy of the lift.

We can now state the more general theorem concerning homotopy invariance.



DISCRETE MOVING FRAMES 21

t

z
x

y

domain of ρ!!

L

domain of ρ!!

L

α

β

t

zx

x

y

y

ββ

α
α

L

Lift of path in Lpath {t,x,y,z} in L

Figure 8. New edges in L̄ give rise to new local syzygies, here,
K([yβ , xβ ])K([xβ , xα]) = K([yβ , yα])K([yα, xα])

Theorem 3.23. To each path γ in the lattice variety L, and to each choice of
initial and final moving frame, we can associate a group element, K(γ, α, β), such
that if γ1 and γ2 are homotopic in L, then K(γ1, α, β) = K(γ2, α, β).

Proof. We first note that L̄ has essentially a global moving frame, in the sense that
every vertex has an equivariant group element associated, namely ρα for xα and ρβ
for xβ , and so on. Hence we can define K(γ) for any path, the same way we did
previously.

We first note that if {ā} is any closed path lifting the trivial path {a} to L̄, then
the co-cycle conditions (10) are given by K(ā) = e. When we lift a path γ to L̄, we
need to keep track of which discrete frame we are working in, but as we saw before,
the element K(γ;α, β) is affected only by the beginning and end choices.

Assume two paths are homotopically equivalent, and let’s lift the homotopy.
By construction of L̄, we can assume the endpoints of the lift of the homotopic
paths also remain fixed and determined by the α and β choices. As in the proof of
Proposition 3.19, it will suffice if we show that two paths that differ by one of the
basic homotopies have the same K(γ;α, β), even if we need to change the moving
frame domain. But this was already proved in the argument concerning Equation
(11). �

The syzygy of any closed path γ, where the domain of the discrete frames are
considered to be the same at the end and at the beginning, is K(γ;α, α) = K(γ) =
e, while those where α 6= β will have a non trivial monodromy K(γ;α, β) =M 6= e.
Furthermore, different choices of α give rise to the same syzygy: the group elements
are related by conjugation

K(γ;α, α) = ραρ
−1
β K(γ;β, β)ρβρ

−1
α ,
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Figure 9. Discrete toroidal lattice variety, with periodicities T1 =
8 and T2 = 6

.

and the transition matrices ραρ
−1
β are essentially a change of coordinates. Indeed,

a frame defines a local coordinate system of the form U × K where U is a neigh-
bourhood of the identity in G and K is the cross-section which has invariants for
coordinates ([38], Chapter 4.) We thus have the following corollary.

Corollary 3.24. Let [γ] be the homotopy class of a closed path γ in L. Each
element [γ] of π1(L) gives rise to a syzygy on the Maurer–Cartan invariants, in the
form K(γ) = e.

Notice that associating a syzygy to a closed path with a monodromy is essentially
the same as associating a syzygy to the closed path for which the beginning and
end moving frames are the same. Indeed, K(γ;α, α) = K(γ, α, β)M(x;β, α), and
hence K(γ;α, α) = e is the same syzygy as K(γ;α, β) =M(x;α, β).

Example 3.25. Consider a bi-periodic lattice L = {zn,m}n,m∈Z with zn+kT1,m =
zn,m and zn,m+kT2

= zn,m for some periods T1, T2 ∈ Z. For simplicity, assume
we can find a global moving frame ρ = (ρn,m). The topology of this lattice is
comparable to that of a torus, and one can easily show that

π1(L) = Z
2.

The two generators of π1(L) (marked in Figure 9 with different colors) are repre-
sented by the two global syzygies

K0,mK1,m . . .KT1−1,m = e, Kn,0Kn,1 . . .Kn,T2−1 = e.

If a global moving frame does not exist, then the product might be equal to a
monodromy matrix that will depend on the choice of moving frame at the beginning
and the end of the closed path. If we choose the same moving frame, then the
syzygy will be independent of the point chosen as beginning and end, and it will
be as above.

4. Continuous limits of the discrete picture: lattice based

multispace

In this section we show how one can construct a continuous moving frame embed-
ded in a smooth family of discrete frames by coordinating the transverse sections
that determine them in a way that guarantees the convergence of the discrete family
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to the continuous one. This is achieved using our lattice based multispace, in which
derivatives and their finite difference approximations exist in a single manifold con-
taining both the jet bundle and Cartesian products of the base space. Both smooth
and discrete frames are then part of a single frame on this multispace, and their
relationship is given by the continuity of the multispace frame under coalescence.
We show in this case that not only moving frames but also discrete invariants and
local discrete syzygies converge to differential invariants and differential syzygies
respectively. We will use our multispace constructions to describe discretizations
of integrable systems, and to finite difference models of variational systems, in §5.
In the Appendix, we will show that more generally, an equicontinuous family of
discrete frames will converge to a smooth frame.

First of all, we recall the definition of “multispace for curves”, as developed
by P.J. Olver in [51]. Olver provides coordinates for his space of pointed curves
in terms of the Lagrange approximation of the curve via interpolation at specific
(given) points. The coordination of the discrete and the smooth pictures is a con-
sequence of the fact that Lagrange interpolation becomes Hermite interpolation
under coalescence. In order to provide coordinates for our higher dimensional gen-
eralisation of Olver’s construction, we need to restrict our ‘pointed surfaces’ to
those where the Lagrange and Hermite interpolations are similarly related and to
where the interpolations vary in a smooth manner with respect to the data. The
details of the interpolation are critical, since the coefficients of the interpolation
polynomial will define the desired coordinates. We use the theory of multivariate
polynomial approximation due to de Boor and Ron, [6], [7] and [8], described in
§4.2. We then describe our lattice based multispace and prove that it is a mani-
fold. In fact, we detail two related versions of multispace, one containing the jet
bundle J(M,R) and one containing the jet bundle J(U,M) where U ⊂ R

p for any
p ≤ dimM . Both arise in the applications. Thereafter we show that the limit
of the discrete Maurer–Cartan matrices are the smooth Maurer–Cartan matrices
and that the local syzygies (Equation 6) limit to the so-called zero curvature con-
dition of the smooth Maurer–Cartan matrices, in §4.4. We also describe mixed
discrete/continuous cases.

4.1. Olver’s multispace for curves. The idea behind the definition of multispace
is to create a manifold where both discrete and continuous cases coexist in one over-
arching smooth construction, where the continuous frame is a limit of the discrete,
and the limit of the discrete data is the continuous data. Multispace resembles the
jet spaces, but includes also discrete versions of the jet spaces.

Given a manifold M , define the nth jet space of M at p ∈ M , and denote it by
Jn
p , to be the equivalence class of submanifolds of M with order of contact n at p.

The jet bundle is defined as

Jn(M) = ∪p∈MJ
n
p ,

with the standard bundle structure. We let C(n) = C(n)(M) denote the set of all
(n + 1)-pointed curves contained in M ; that is, the set of (z0, . . . , zn;C), where C
is a curve and zi are n+ 1 points in C, not necessarily distinct. We denote by

ni = #{j | zj = zi}

the number of points that coincide with zi.
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Definition 4.1. (Multispace for curves) Let C and C̃ be two (n+1)-pointed curves

C = (z0, . . . , zn;C); C̃ = (z̃0, . . . , z̃n; C̃).

The distinguished points can coincide. We say that C and C̃ have nth order multi-
contact if, and only if there exists a permutation π : {0, 1, . . . , n} → {0, 1, . . . , n}
such that

zi = z̃π(i), and jni−1C|zi = jni−1C̃|zπ(i)
, for each i = 0, . . . , n,

where jkC denotes the kth jet of the curve C.
The nth order multi-space, denoted M (n), is the set of equivalence classes of

(n + 1)-pointed curves in M under the equivalence relation of nth order multi-
contact. The equivalence class of an (n+ 1)-pointed curve C is called its nth order
multi-jet, and is denoted by jnC ∈M (n).

When all the points are distinct, then two curves belong to the same equivalence
class whenever they have the distinguished points zi in common. Thus, we can
identify this special subset with the off-diagonal Cartesian product, denoted by
M⋄(n+1) in [51]. On the other hand, if all the points coincide, then the class is
equal to the jet class. Thus, both extremes can be found in one space, together
with all the intermediate cases. In the first part of [51] the main result is the
following theorem.

Theorem 4.2. If M is a smooth m-dimensional manifold, then its nth order mul-
tispace M (n) is a smooth manifold of dimension (n+ 1)m, which contains the off-
diagonal part M⋄(n+1) of the Cartesian product space as an open, dense submani-
fold, and the nth order jet bundle Jn(M) as a smooth submanifold.

The topology is inherited from that of the manifold M , and the proof is based
on finding coordinate systems in a neighborhood of an equivalence class jnC. The
coordinate system is given by the classical divided differences and their limits. That
is, given a curve C with n+ 1 distinguished points {z0, . . . , zn} and with a certain
order of contact ni − 1 at each point, there exists a unique polynomial p of degree
n such that p(zi) = C(zi) and such that p(k)(zi) = C(k)(zi) for any k ≤ ni and
any i = 0, . . . , n. The polynomial is a natural representative of the class C and
its coefficients provide smooth coordinates in a neighborhood of C. Of particular
importance is that the coordinates are smooth under the coalescence of points zi.
For more details, see [51].

In the second part of the paper [51], the author assumes there is a Lie group G
acting on the manifoldM , and he defines the action of this group on the multispace
as that naturally induced by it: the action on the differential part is the prolonged
one, and explicit formulae for the action of the group on classical divided differences
are given. He also explains how, assuming that one chooses a cross section to
the orbit of the group at a point C, and requiring the local cross-section to be
transverse also to the jet space (thus defining a cross-section for the prolonged
action on Jn), then one can find a moving frame for the action of the group on the
multispace with the desired property, that is, the resulting moving frame will be
the standard continuous moving frame when restricted to jets, and the discrete one
when restricted toM⋄(n+1). The overarching continuity of the multispace manifold
guarantees that one is the continuous limit of the other as the points coalesce.

We note several features of Olver’s multi-space for pointed curves:
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(i) the curve C is not parametrised and the points zi on the curve need not be
labelled in order with respect to some parametrisation,

(ii) coalescence can take place between any two of the zi on the curve, see Figure
10,

(iii) none of the zi are distinguished in the sense that one of them is a natural base
point for a projection of the multispace to M ,

(iv) the pointed curve jnC is essentially a set of points with a contact condition
at each point.

z0

z4

z2=z3

z1

z5

z0

z2=z3

z1=z4

z5

0-jet
1-jet

Before coalescing After coalescing

Figure 10. Coalescence of distinguished points in a pointed curve
does not require the points to be adjacent, in some sense, on the
curve. Here the coalescence takes place along the straight line.
Note there needs to be a well defined tangent of C at the point of
coalescence.

In our construction of a higher dimensional lattice based multispace, and hence
its restriction to a single variable, only a version of property (iv) remains.

Our next section describes an interpolation scheme which can be applied to our
geometric construction.

4.2. Multivariate interpolation. One of the main problems with multivariate
interpolation is that the solution to the interpolation problem is not unique in gen-
eral and it might not even exist; a well-known theorem describing this phenomena is
the Mairhuber–Curtis Theorem [60]. For example, if we fix the values of a function
f(x, y) at the two points (1, 2), (−1, 1) and we want to find a polynomial in x and
y of minimum order, such that it coincides with the function at those points, we
can use f(x, y) = a+ bx or f(x, y) = a+ by, and there is no reason why we would
chose one over the other. On the other hand, if we fix the value of the function
at (1, 2) and (1,−1), then the first choice is not appropriate unless the function
has the same value at both points, while the second one works. Thus, the choice
of interpolating polynomial might depend on the data, it might not be unique, or
even exist, and sometimes there is no reason to favor one choice over a different
one. In the p = 1 interpolation case none of these problems exist.

Thus, a main question in multivariate interpolation is: is there a family of polyno-
mials which can interpolate the values of a given function and which has properties



26 GLORIA MARÍ BEFFA AND ELIZABETH L. MANSFIELD

like generality, minimal degree, uniqueness and having a well-defined Hermite poly-
nomial (one for which not only the values of the polynomial, but also its derivatives
at the points coincide with those of the function) as points coalesce? These are the
properties we will need if we want to use them to define smooth coordinates in our
multi-space. This question was answered by C. de Boor and A. Ron in [6], [7] and
[8]; we describe below their solution to the interpolation problem as it applies to
our particular case.
Interpolation Notation Let Π be the set of p-variate polynomials, and Π′ its
algebraic dual. Let Λ be a subspace of Π′. We will denote by Πk the subset of
polynomials of degree less than or equal to k.

Definition 4.3. We say that P ⊂ Π is correct for Λ if for any continuous linear
functional F on Λ there exist a unique q ∈ P such that

F (λ) = λ(q)

for any λ ∈ Λ. We also say P interpolates Λ.

The dual space Π′ can be identified with functions analytic at the origin o, using
the bilinear form

(12) 〈f, q〉 =
∑

J∈Z
p

+

DJf(o)DJq(o)

J !
,

where q is a p-variate polynomial and f is a function analytic at the origin. One
can also use formal power expansions at the origin instead of analytic functions in
the obvious way, without too much trouble. See [6], [7] for more details.

Example 4.4. Lagrange Interpolation. If Λ is spanned by point-evaluations, Λ =
〈λθ〉θ∈Θ with λθ(p) = p(θ), θ ∈ R

p, finding P correct for Λ solves a Lagrange
interpolation problem. Indeed, if Θ represents a finite number of points in the
parameter space D ⊂ R

p, and λθ is evaluation at an element of Θ, then one can
check that the power series representing λθ is the Taylor expansion of eθ·x (see [6],
[7]). An analytic function F defines a continuous linear functional on Λ via (12)
and F (λθ) = 〈F, eθ·x〉 = F (θ). Thus, P is correct if for any F there exists p ∈ P
such that

F (λθ) = F (θ) = λθ(p) = p(θ)

for all θ ∈ Θ, which is the definition of Lagrange interpolation, see Example 4.9.

Example 4.5. Hermite Interpolation. If we choose instead the set

Λ = {λq,θ}θ∈Θ,q∈V⊂Π

where

λq,θ(p) = λθ (q(∇)(p)) = q(∇)(p)(θ)

and where ∇ is the gradient vector and q ∈ V ⊂ Π is a properly chosen polyno-
mial with coefficients reflecting the differential data we need to match (for example,
q(x, y) = x2 if we wish to match the second derivative in x), then the associated
power series representing λq,θ is q(x)eθ·x (see[6], [7]). Therefore, finding P correct
for Λ is equivalent to finding a family of polynomials P such that for any linear func-
tional on Λ represented by an analytic function F , there exists a unique polynomial
p ∈ P with the property

F (λq,θ) = 〈F, q(x)eθ·x〉 = q(∇)(F )(θ) = λq,θ(p) = q(∇)(p)(θ)
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for all θ ∈ Θ and all q ∈ V . The different choices of V allow us to find unique poly-
nomials that coincide with F and different choices of derivatives, or combinations
of derivatives, on Θ. This is the solution to the Hermite interpolation problem, see
Example 4.10.

Definition 4.6. Given a formal power series at x = 0, call it f , we denote by f↓
the homogeneous term in the power expansion of f of lowest order.

For example, if θ,x ∈ R
p, eθ·x↓ = 1.

Definition 4.7. Given a finite subset Λ ⊂ Π′, we can identify each of its elements

with formal power series at the origin using (12), and we can consider Λ̂ to be the
vector space spanned by Λ as represented by these series. Define the vector space

Λ↓ := span{f↓, f ∈ Λ̂}.

For example, if we consider the planar case, and Θ = {(1,−1), (0, 2)}, then
e(1,−1)·x = 1 + x − y + . . . and e(0,2)·x = 1 + 2y + . . . . Since e(1,−1)·x − e(0,2)·x =
x − 3y + . . . , we have that Λ↓ is the linear space spanned by the polynomials

p1(x, y) = 1 = e
(1,−1)·x
↓ and p2(x, y) = x− 3y =

(
e(1,−1)·x − e(0,2)·x

)
↓
.

From now on, if Θ is a data set, we say that Λ↓ is continuous on Θ if whenever
the data Θ′ is close to Θ in the standard product topology, then Λ′

↓ is close to Λ↓

in the standard topology of polynomial spaces.
The following theorem is a compilation of results found in [8]. Since our con-

structions are lattice based, we assume that Λ is defined as in the Lagrangian
interpolation associated to a lattice of points Θ ⊂ R

p, in which case we also write
Λ as ΛΘ. We omit the superscript Θ where the dependence of Λ on Θ is clear.

Theorem 4.8. ([8]) The space Λ↓ has the following properties:

(1) Well defined. For any finite Θ, the assignment Λ → Λ↓ exists, is unique
and Λ↓ is correct for Λ.

(2) Continuity. Recall that Πk is the set of p-variate polynomials of degree
less or equal to k. If Πk ⊆ Λ↓ ⊆ Πk+1, then the assignment Λ → Λ↓ is
continuous with respect to Θ.

(3) Coalescence =⇒ Osculation. That is, the Lagrange interpolation be-
comes the Hermite interpolation under coalescence, provided the coalescence
is well controlled, so that data points coalesce along embedded curves.

(4) Λ↓ is closed under differentiation and it is spanned by a homogeneous basis.
(5) Minimal degree. Λ↓ has minimal degree.

(6) Monotonicity. If Θ ⊂ Θ′, then ΛΘ
↓ ⊂ ΛΘ′

↓ .

(7) Cartesian product =⇒ tensor product. If Θ and Θ′ are two data
sets, then

(13) ΛΘ×Θ′

↓ = ΛΘ
↓ ⊗ ΛΘ′

↓ .

(8) Constructible. The space Λ↓ can be constructed in finitely many arith-
metic steps.

Notice that once an interpolating family is chosen, the actual interpolation prob-
lem reduces to solving a linear system of equations. Indeed, one would choose a
linear combination of a basis generating Λ↓ and write a linear system for the coef-
ficients using the values of the function we wish to interpolate on the interpolating
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data. The solution of the linear system will define the proper combination of the
basis and hence the interpolating polynomial for the function.

It is essential that our construction of multispace ensures that the interpolation
problem satisfies Properties (2) and (3) of the above theorem. To quote de Boor
and Ron [8], concerning Property (2) in the above theorem, (note that Λ↓ is denoted
as ΠΘ in the original [8])

“ . . . If Θ ⊂ R
3 consists of three points, then one would choose ΠΘ ⊂

Π1 (as our scheme does) but if one of the three points approaches
some point between the two other points, this choice has to change
in the limit and hence cannot change continuously. As it turns out,
our scheme is continuous at every Θ for which Πk ⊆ ΠΘ ⊆ Πk+1,
for some k.”

Next, we quote de Boor and Ron [8], concerning Property (3) in the above
theorem.

“ . . . If, eg, a point spirals in on another, then we cannot hope
for osculation. But if, eg, one point approaches another along a
straight line, then we are entitled to obtain, in the limit, a match
at that point also of the directional derivative in the direction of
that line.”

These limitations on continuity and coalescence mean that in our construction
of our multispace, we cannot be as free in our choice of generalisation of the one
dimensional pointed curves used to construct Olver’s one dimensional multispace,
as might seem possible. We return to this discussion in §4.3.

Example 4.9. In the Lagrange interpolation case, assume Θ ⊂ R
p is given, as be-

fore, by (1, 2) and (−1, 1), and assume {λθ}θ∈Θ are the associated point-evaluation

functionals. Thus, we have two series generating Λ̂, namely

ex+2y = 1 + x+ 2y + o(||x||), e−x+y = 1− x+ y + o(||x||).

A basis for the vector space generated by these two series are the series of ex+2y =
1 + x+ 2y + o(||x||) and ex+2y − e−x+y = 2x+ y + o(||x||), and so

Λ↓ = span{1, 2x+ y}.

If we choose as Θ the points (1, 2) and (1,−1), then the generators of Λ̂ are the
same as before, but

Λ↓ = span{1, y}

as expected.
If we choose four points of the form (1, 2), (1+ ǫ, 2), (−1, 1), (−1, 1+ ǫ), then the

four series generating Λ̂ are

f1 = 1+(1+ǫ)x+2y+
1

2
((1+ǫ)x+2y)2+o(||x||2), f2 = 1−x+(1+ǫ)y+

1

2
(−x+(1+ǫ)y)2+o(||x||2)

and

f3 = 1 + x+ 2y +
1

2
(x+ 2y)2 + o(||x||2), f4 = 1− x+ y +

1

2
(−x+ y)2 + o(||x||2).
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Since (f1 − f3)↓ = ǫx and (f2 − f4)↓ = ǫy, if ǫ 6= 0, then 1, x and y will be three of
the four generators for Λ↓. A fourth will be given by

(
1

ǫ
(2(f1 − f3) + f2 − f4)− f3 + f4

)

↓

= (2 + ǫ)x2 −
1− ǫ

2
y2,

and hence

Λ↓ = span{1, x, y, (2 + ǫ)x2 −
1− ǫ

2
y2}

will generate the interpolating polynomials.

Example 4.10. In the Hermite interpolation case, assume we would like to instead
find interpolating polynomials that coincide with a function at (1, 2) and (−1, 1),
and, say, with its partial with respect to x at (1, 2) and with respect to y at (−1, 1).
In this case, the polynomials qi generating the Hermite data are, at (1, 2), q1(x, y) =
x, and at (−1, 1) q2(x, y) = y. One can see (see [6], [7]) that λq1,(1,2) is represented

by the analytic function f(x) = xex+2y, while λq2,(−1,1) is defined by g(x) = ye−x+y.

Since Λ = span{λ(1,2), λ(−1,1), λq1,(1,2), λq2,(−1,1)}, Λ̂ has four generators, namely

f1 = xex+2y = x+ x2 + 2yx+ o(||x||2), f2 = ye−x+y = y − xy + y2 + o(||x||2)

and

f3 = ex+2y = 1+x+2y+
1

2
(x+2y)2+o(||x||2), f4 = e−x+y = 1−x+y+

1

2
(−x+y)2+o(||x||2).

Some simple and direct calculations show that (f3)↓ = 1, (f1)↓ = x, (f2)↓ = y and
(2f1 + f2 − f3 + f4)↓ = 2x2 − 1

2y
2. Thus,

Λ↓ = span{1, x, y, 2x2 −
1

2
y2}.

The interpolating polynomials in the previous example converge to these as ǫ→ 0.

We are now ready to define a lattice based multi-space in several variables.

4.3. Multispaces in several variables. We define two related versions of multi-
space, the first containing the jet bundle Jℓ(M,R) and the second containing the
jet bundle Jℓ(U,M) where U ⊂ R

p is open.
We first recall that a point in the jet bundle Jr(M,R) is represented by a triple

[x, f, U ]r where x ∈ U ⊂ M , the set U is open, and f : U → R, is a Cr function.
We say that the triple [x, f, U ]r ∼ [x′, f ′, U ′]r if x = x′ and if, in some coordinate
chart containing x, f and f ′ have the same derivatives up to order r, ([26], page
60.) The equivalence class [x, f, U ]r is known as the r-jet of f at x. If Tr(f)(x)
is the order r Taylor polynomial of the (sufficiently smooth) function f at x, then
[x, f, U ]r ∼ [x, Tr(f)(x), U ]r, so we speak of Tr(f)(x) as being the r-jet of f at x.
Further, the coefficients of the rth order Taylor polynomials form local coordinates
of the jet bundle Jr(M,R). It is this construction that we generalise first.

To construct our multi-space which both contains and generalises the jet space
Jℓ(M,R), we proceed as follows:

1. We first define the kinds of lattices Γ that we will take as the models of domains
for a mixed discrete-continuous jet at a point in M . They will be sets of points in
Z
p with “directional multiplicities” or more precisely, “required contact conditions”

attached. Our model lattices will come equipped with a base point. We show
further that these models have the properties required for the de Boor and Ron
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interpolation of functions on them to be smooth, both as their image in M is
varied and under coalescence.

2. Next, for a model lattice Γ ⊂ Z
p ⊂ R

p, we let U ⊂ R
p be an open set,

diffeomorphic to the unit disc in R
p, containing Γ. Let φ be a diffeomorphic map of

U into M , and f : φ(U) → R a function. Our multi-jet will then be an equivalence
class of quadruples [Γ, φ, f, U ], where [Γ, φ, f, U ] ∼ [Γ′, φ′, f ′U ′], if the base points
of φ(Γ) and φ(Γ′) agree; if φ(Γ) = φ′(Γ′) as sets; if whenever uJ = φ(xJ) = φ′(x′J ′)
the required contact conditions on xJ and x′J ′ are the same; and if the contact
conditions induced on φ(Γ) by those on Γ are all zero when evaluated on f − f ′,
see Figure 11.
3. Finally, the multi-space fibre over x will be defined as the union of all equivalence
classes of multi-space jets with base point x. Our coordinates on the fibre are
those which assign to each [Γ, φ, f, U ], both the coefficients of the image of Γ and
the coefficients of the de Boor and Ron interpolant polynomial. In this way, we
have the usual bundle topology on our multi-space which relates naturally to both
local coordinates on M and to the coordinates on the fibre over x. Our multi
space contains the jet bundle Jℓ(M,R) for each ℓ, as an embedded submanifold,

specifically as multi-jets where the lattice is a single point with multiplicity
(
p+ℓ
p

)

(the number of derivative terms up to order ℓ on p-space), and the interpolation is
given by the ℓth order Taylor polynomial.

w=(1,0)

xJ xJ'

x0

U 

w

xJ

x0

xJ

x0

w

xJ' -> xJ

coalesce

|R2

!(U)!

M

u0

uJ

v

Figure 11. After coalescence, the zeroth order contact condition
at uJ′ is replaced by D(f ′)|uJ

(v) = D(f)|uJ
(v) where v =

D(φ)|xJ
(w).

The second multispace we will define, containing Jℓ(Ω,M) where Ω is an open set
of Rp, is related to the first, by considering the function f , in the above construction,
to be each of the coordinate functions on M , evaluated on the image of U .

4.3.1. Basic definitions. As before, from now on we will assume that our lattices
are connected.
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Definition 4.11. We say the lattice Γ has an ℓ-corner distribution, or a corner
distribution of length ℓ, if it has the following inductive description:

If p = 1, the lattice is a connected lattice with ℓ + 1 vertices. Notice that the
number ℓ refers to the degree of the derivative one gets when all points coalesce
into one point, not to the number of points in the sublattice.

For any p the lattice is a connected lattice containing ℓ+ 1, (p− 1)-dimensional
disjoint corner lattices of lengths 0, 1, . . . , ℓ. Figure 12 shows four corner lattices
for p = 2 of lengths 4, 3, 2 and 2 (clockwise from the first quadrant). Figure 13
shows a forward p = 3 corner distribution. We will consider corner lattices with a
distinguished point x0.

x0
x0

x0

x0

Figure 12. Corner lattices will allow the definition of finite dif-
ferences needed to approximate a Taylor polynomial.

x0

Figure 13. A forward p = 3 corner lattice of length ℓ = 3.

Corner distributions contain exactly enough points to define interpolating poly-
nomials that will converge to Taylor polynomials upon coalescing. For example, if
p = 2, and ℓ = 2, and u0,0 is the base point, a possible interpolating polynomial
will have coefficients which are a linear combination of the terms

1,∆xf(u0,0),∆yf(u0,0),∆
2
xf(u0,0),∆

2
yf(u0,0),∆y∆xf(u0,0)
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where ∆x|u0,0
is the operator ∆x|u0,0

(f) = f(u1,0) − f(u0,0), and similarly with
∆y|u0,0 . To be able to uniquely determine an interpolating polynomial with those
coefficients we will need to use all the vertices in a corner distribution like the one
in the first quadrant of Figure 12, with length ℓ = 2 instead of 3. Different corner
lattices will produce different types of interpolating polynomials, using forward,
backwards or other types of differences.

Figure 14. Corner lattices under repeated coalescence of hyper-
planes, indicated by black arrows. A red arrow indicates a zeroth
and a first order contact condition is required at that point in the
interpolation, an arc indicates a zeroth, first and second order con-
tact condition, a plane indicates all zeroth, first and second order
contact conditions in the plane are required. The squared points
are the base points.

From now on we will assume that all lattices Γ have a corner distribution of
length ℓ with base point x0. When several lattices are involved we will denote the
base point of Γ by xΓ and the base point of φ(Γ) by uΓ = φ(xΓ).

Lemma 4.12. Assume our data Θ is given by evaluating a function on the points
of a corner lattice Γ of length ℓ. Then

Λ↓ = Πℓ.

Proof. Consider the monomials corresponding to polynomials of order ℓ. That
is all monomials of the form xI where |I| ≤ ℓ is a multi-index I = (i1, . . . , ip)

and xI = xi11 . . . x
ip
p . We want to show that these monomials are generators for

Λ↓. Thus, we want to show that they generate f↓, where f is any possible linear
combination of eθ·x, θ ∈ Θ. Therefore, it suffices to show that the coefficients of the
monomials xI , |I| ≤ ℓ, in the Taylor expansions of eθ·x form an invertible matrix.
Notice that we have the same number of monomials as points and hence the matrix
is square.

Next, notice that the coefficients of these Taylor expansions are multiples of the
monomials themselves evaluated at the point θ (since we are simply substituting
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xi by θixi in the expansion). Therefore, the matrix of coefficients is given by a
multiple of the matrix with rows (θI), θ ∈ Θ, where θI has the different monomials
in some prescribed order. This means that if the matrix were not to be invertible,
we would have a combination

∑
I aIθ

I = 0 for aI ∈ R which will be valid for all
θ ∈ Θ. That is, the points in Θ lie in an algebraic variety of order ℓ.

But this is not possible: our points lie on ℓ + 1 distinct hyperplanes, and ℓ
of them contain enough points to make the hyperplane unique (only one of them
contains a single point and does not determine it). That means the polynomial
must factor through the ℓ linear equations that define the hyperplanes and must
have at least order ℓ. But the extra single point left does not belong to any of
the hyperplanes, and hence to ensure the point also lies in the variety we will need
to use a polynomial of order at least ℓ + 1. Therefore the matrix of coefficients is
invertible and

Λ↓ = Πℓ.

�

This lemma ensures that property (2) in Theorem 4.8 is satisfied when we use
corner lattices. Next, we consider coalescence of the points in the lattice, leading
to a change in the lattice, an increase in the contact order and to our Lagrange
interpolation becoming a Hermite interpolation. We restrict the coalesce to be along
coordinate hyperplanes in the model lattices; we call these kinds of coalescence
hyperplane coalescence. See Figure 14. Forbidden coalescences are also illustrated
in Figure 15. We note that hyperplane coalescence maintains the basepoint of the
lattice, although not in general the contact condition there. Coalescence means, in
effect, that we consider some lattice points to not be distinct.

Figure 15. Examples of forbidden coalescence. We restrict coa-
lescence to being along coordinate hyperplanes, which maintains a
coordinate structure.

Since we want the multispace to be closed under hyperplane coalescence, we
consider coalesced model lattices to come equipped with certain required contact
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conditions specified at particular points of the lattice. Suppose two points, u0 and
u1 = u0 + hv coalesce as h → 0. Then the interpolation goes from matching the
values of the function f at u0 and u1, to matching the values f(u0) and D(f)|u0(v).
See Figure 11.

Repeated coalescence leads to higher order Hermite interpolation problems. If
you begin with a corner lattice and coalesce along hyperplanes repeatedly, you will
arrive at a single point at which the interpolation for a function f is simply the
Taylor polynomial for f , with the order of the Taylor polynomial being the length of
the corner lattice. In this way, the jet bundle Jℓ(M,R) is a subset of our multispace.
See Figure 14.

From now on we will abuse the notation and denote the (coalesced) model lattice
also as Γ and the contact conditions on it by C(Γ). Under the map φ : U ⊃ Γ →M ,
φ(Γ) inherits contact conditions which we will denote by C(φ(Γ)).

The result of Lemma 4.12 remains unchanged under coalescence, as shown in
the next lemma.

Lemma 4.13. Assume Γ is a hyperplane coalesced corner lattice of length ℓ. Then
Λ↓ = Πℓ.

Proof. We can show this by induction. Assume that θ̂Ĵ = θJ + hei approaches θJ
along the ei direction, that is, as h → 0 , for J ∈ Γ, Ĵ ∈ Γ̂ (that is for those data

points in a hyperplane coalescing into another one, Γ and Γ̂ are indexing the two
hyperplanes). Except for the coalescing of a corner, we would have more than one
point coalescing into one since we are using limits of hyperplanes. That is, for a
given J , we will have more than one Ĵ limiting it. Once more we want to prove that

the coefficients of the monomials xI in the expansion of exp(θ · x), for any θ 6= θ̂Ĵ
and xi exp(θJ · x) for a given J ∈ Γ, and any Ĵ ∈ Γ̂ related under the limit, define
an invertible matrix. Let us fix J ∈ Γ and let us number those limiting θJ as θj ,
j = 1, . . . , p. As in the proof of Lemma 4.12, the coefficient of xI in exp(θi · x) is
given by θIi /I!, and one can directly check that the coefficient of xI in xi exp(θj ·x)
is given by

1

I!
θI−ei
j ki

if I = (k1, . . . , kp) and I − ei = (k1, . . . , ki − 1, . . . , kp), for j ∈ J . Assume that
the matrix formed by these coefficients is not invertible. It means that there is a
polynomial of degree ℓ of the form

(14)
∑

|I|≤ℓ

aIx
I

that vanishes on all θ ∈ Θ except for θ̂j . As we saw in the proof of Lemma 4.12,
we would need an ℓ-order polynomial to describe a polynomial vanishing on those
points, given by the product of ℓ linear equations representing the ℓ hyperplanes
(one of them will not be unique if it corresponds to a corner, since it is determined
only by one point, but we can just make any choice). Now, if the lemma were not
true, we would additionally need to satisfy the relation

∑

|I|≤ℓ

aIθ
I−ei
j ki = 0,
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where I = (k1, . . . , kp). This is simply the derivative of the polynomial (14) with
respect to xi. Thus, the polynomial (14) needs to have order of contact 2 at the
points on the hyperplane that coalesced, Typically one would need a second order
polynomial along the hyperplane to achieve that, which would increase the degree
of (14) to ℓ + 1. Higher orders of contact would result from a higher number of
coalescing hyperplanes and the order of the polynomial would generically increase
accordingly, proving the lemma.

�

U
(U)

M

coordinate 
chart in M

(U)

R
f

f'

Figure 16. The data for a multispace element. The figure shows
functions f and f ′ which agree on the contact conditions at the
lattice points, φ(Γ). We have [Γ, φ, f, U ] ∼ [Γ, φ, f ′, U ].

The definition of elements of our multispace as equivalence classes of functions
which agree on images of lattices, is illustrated in Figure 16.

Definition 4.14. We define the multispace (M,R)
(ℓ)
p as the set of equivalence

classes of quadruples [Γ, φ, f, U ], where (Γ, C(Γ)) is a (possibly hyperplane coa-
lesced) corner lattice of length ℓ; U is an open set of Rp for some p ≤ dim(M),
diffeomorphic to the unit disc and containing Γ; the map φ : U →M is an embed-
ding of U into a single coordinate chart ofM , and the map f : φ(U) → R is smooth
of order ℓ. We say two quadruples are equivalent, [Γ, φ, f, U ] ∼ [Γ′, f ′, φ′, U ′], if
the base points of φ(Γ), φ(Γ′) agree, that is φ(xΓ) = φ′(xΓ′), if φ(Γ) = φ′(Γ′),
C(φ(Γ)) = C(φ′(Γ′)) and the contact conditions evaluate to zero on f − f ′, that is,
both f and f ′ satisfy the same contact conditions on each vertex of φ(Γ). (We note
the contact conditions are linear.)
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4.3.2. The Main Theorem: multispaces are manifolds which contain the jet bundle.

Denote by Lℓ
p(M,R) the subset of (M,R)

(ℓ)
p given by non-coalesced lattices, that

is a lattice with zeroth order contact conditions at every vertex. Denote also by
Jℓ
p(M,R) the space of regular jets of maps from p-dimensional submanifolds of M

to R. The main purpose of this section is to prove the following theorem.

Theorem 4.15. Let M be a manifold of dimension m. Then, there exists a topol-

ogy and a differential structure that makes (M,R)
(ℓ)
p into a smooth manifold of

dimension (m+ 1)
(
p+ℓ
p

)
, with the jet space Jℓ

p(M,R) as a smooth submanifold and

with Lℓ
p(M,R) as an open submanifold.

Before we start proving the theorem we recall that the main difficulty in defin-
ing interpolating polynomials is determining the family of polynomials with which
we choose to interpolate. Once this is determined, the actual interpolating coeffi-
cients are simply given by the solution of a linear system of equations defined by
the equality conditions we need to satisfy at the chosen points. Therefore, they
will change smoothly insofar as the linear system (and hence the family of inter-
polating polynomials) changes continuously. Lemmas 4.12 and 4.13 together with
Theorem 4.8 show that we are indeed in the smooth regime of the de Boor and Ron
interpolation method.

Proof. First of all, let us show that (M,R)
(ℓ)
p is a bundle over the manifold M .

Let us call xΓ the base point of Γ. The fibre over u ∈ M is the set of equivalence

classes, [Γ, φ, f, U ] where u satisfies φ(xΓ) = u. Define π : (M,R)
(ℓ)
p →M to be the

projection map

(15) π([Γ, φ, f, U ]) = φ(xΓ) = u.

Let us first restrict to Lℓ
p(M,R). In order to have a well defined coordinate

labelling on the lattice, we need to describe an ordering on the vertices. The
first point will always be the base point. Although any ordering will do, we can
order them by induction: if the lattice is one dimensional we move from smallest
coordinate to largest coordinate in R. If the lattice is two dimensional, then we
order the hyperplanes from smallest length to largest length, and then order in each
hyperplane as in the one dimensional case. In addition to its place in the ordering
of the lattice points, each point in the lattice will have a coordinate inM . Since the
image of the lattice lies in a single coordinate chart, these coordinates are consistent
across the lattice, once the chart is designated. Thus the dimension of the set of
embedded lattices is m

(
p+ℓ
p

)
. This set can be considered as a submanifold of MN ,

where N =
(
p+ℓ
p

)
, with the subspace topology, and evidently has coordinates in

terms of the coordinates on M .
If the lattices are coalesced, the coalesced vertices will have repeated coordinates,

as many as the multiplicity requires. The set of coalesced lattices will have measure
zero since it is the level set of some functions depending on coordinates.

If we now consider the relevant polynomial interpolation pf of a (sufficiently
smooth) function f on the embedded image of the corner lattice, we find that it can

be described by
(
p+ℓ
p

)
coefficients. Since, by construction, [Γ, φ, f, U ] ∼ [Γ, φ, pf , U ],

we may add these coefficients to the coordinates of the equivalence class. That
these coefficients can be used as coordinates follows from knowing that we are
in the regime where the de Boor and Ron interpolation is unique and depends
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smoothly on the data, and from the fact that the coordinates of interpolations on
the coalesced lattices are well behaved limit points of those on the non coalesced
lattices.

A simple counting tells us that we have, in total, (m+1)
(
p+ℓ
p

)
coordinates needed

to specify the equivalence class in each element of the fibre.

The bundle (M,R)
(ℓ)
p is taken to be the disjoint union of the fibres, and π as

in (15) is its projection. We may take the usual bundle topology given by the
smoothness of the local trivializations defined by the coordinates

V ⊂ (M,R)(ℓ)p → R
m(p+ℓ

p ) × R
(p+ℓ

p )

which turns the space into a manifold. The map π is clearly smooth since the
basepoint is simply the first element in the list of lattice points.

We have already shown that Jℓ
p(M,R) ⊂ (M,R)

(ℓ)
p , indeed, it is embedded as

the submanifold whose first set of coordinates is the diagonal ∆ in MN , where
N =

(
p+ℓ
p

)
. We note the standard jet space is Jℓ(M,R) = Jℓ

m(M,R).

Notice that if we perturb slightly an uncoalesced lattice Γ, the lattice will re-
main uncoalesced, and so the subspace of classes of the form [Γ, φ, f, U ], with Γ an
uncoalesced corner lattice, is open.

�

Remark 4.16. Although we have required the image of a lattice in M to be
within a single coordinate chart of M , this restriction is perhaps not vital. The
generalisation requires, firstly, keeping track of which chart as well as the coordinate
given by the chart, in the lattice part of the coordinates for the multispace element.
Secondly, it requires the construction of interpolations which agree on intersections
of coordinate charts.

We now construct our second multispace, (Ω,M)
(ℓ)
p , where Ω ⊂ R

p, p ≤ dimM ,
which represents local approximations to embedded parametrized p-submanifolds
in M .

Definition 4.17. We define the multispace (Ω,M)
(ℓ)
p to be the set of equivalence

classes of triples [Γ, φ, U ] where Γ ⊂ U ⊂ Ω ⊂ R
p is a (possibly coalesced) lattice

of length ℓ; U is an open set of Ω ⊂ R
p, diffeomorphic to the unit disc, where

φ : U →M is smooth of order ℓ and where φ(U) is contained in a single coordinate
chart of M . We say two triples are equivalent, [Γ, φ, U ] ∼ [Γ′, φ′, U ′] if the base
points of Γ, Γ′ agree; if φ(Γ) = φ′(Γ′); if C(φ(Γ)) = C(φ′(Γ′)); and if φ(U) and
φ′(U ′) have the same order of contact (as submanifolds) at φ(Γ) as indicated by
C(φ(Γ)).

Theorem 4.18. Let M be a manifold of dimension m. There exists a topology and

a differential structure that makes (Ω,M)
(ℓ)
p into a smooth manifold of dimension

2m
(
p+ℓ
p

)
.

Proof. The proof of this theorem is almost identical to that of Theorem 4.15. In
local coordinates in M , we can write φ = (φ1, . . . , φm). We would then apply the

process in Theorem 4.15 to produce m
(
p+ℓ
p

)
coordinates that determine the lattice,

plus m
(
p+ℓ
p

)
coordinates determining the interpolating polynomial for φk with data

Γ, for each k = 1, . . . ,m. The remainder of the proof is identical to that of Theorem
4.15. �
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The main purpose of our multispace construction is to show that a frame on a
multispace is simultaneously a frame on the jet bundle and a frame on the set of all
local lattice based discretisations. We now proceed to discuss how the group action
on M induces a group action on multispace. We then show that a moving frame on
multispace is simultaneously a smooth and a discrete frame, with the smooth frame
being the limit of the discrete, and that the discrete Maurer–Cartan invariants and
their syzygies coalesce to the smooth ones.

4.3.3. The action of a group on (M,R)
(ℓ)
p . Let G be a group acting on M × R,

G×M × R →M × R.

Recall the equivalence classes in (M,R)
(ℓ)
p have the form [Γ, φ, f, U ] where Γ ⊂ U ⊂

R
p, φ : U →M and f : φ(U) → R. Then for each g ∈ G there is an induced action

on the map (φ, f) : U ×φ(U) →M ×R given by (g · (φ, f)) (x, z) = g · (φ(x), f(z)) .
Denote the components of g · (φ, f) to be g · (φ, f) = ((g · (φ, f))1, (g · (φ, f))2) ∈

M × R. Then the action of G on (M,R)
(ℓ)
p is given by

g · [Γ, φ, f, U ] = [Γ, (g · (φ, f))1, (g · (φ, f))2, U ].

We note that (g ·(φ, f))1 may be an embedding only for g in a neighbourhood of the
identity. In this case we would have a local group action as defined in [53]. Since
the action of G on M ×R preserves the order of contact, this action is independent

of the representative of the class and is thus well-defined on (M,R)
(ℓ)
p .

If, in a particular application G acts only on M , one can extend to an action on
M ×R by taking g · (z, t) = (g ·z, t), that is the identity action on the R coordinate.

If Γ is a single point so that [Γ, φ, f, U ] is an element of Jℓ
p(M,R), the induced

action is the standard prolonged action, that is, as induced by the chain rule, while
if the lattice Γ is uncoalesced and the group does not act on the parameter R, the
action is the diagonal action on MN where N =

(
p+ℓ
p

)
.

4.3.4. The action of a group on (Ω,M)
(ℓ)
p . Let G be a group acting on M

G×M →M

and let [Γ, φ, U ] ∈ (Ω,M)ℓp be an element of our multispace. Since φ : U ⊂ Ω →M ,
we may define g · φ : U → M by (g · φ)(x) = g · (φ(x)). Define the action of G on

M
(ℓ)
p to be

g · [Γ, φ, U ] = [Γ, g · φ, U ].

Again, since the action of G on U ×M preserves the order of contact, this action is

independent of the representative of the class and is thus well-defined on (Ω,M)
(ℓ)
p .

Further, the action restricted to Jℓ
p(Ω,M) ⊂ (Ω,M)

(ℓ)
p is the standard prolonged

action induced by the chain rule.
Notice that one could consider more general actions on M ×U , but we will omit

it here to avoid further complications.

4.3.5. Moving frames on (M,R)
(ℓ)
p , (Ω,M)

(ℓ)
p . We are now in a familiar situation:

we have a smooth manifold (M,R)
(ℓ)
p , or (Ω,M)

(ℓ)
p and the action of a Lie group

G on it. Thus, we can investigate the use of the standard moving frames method
developed in [17] to establish the existence of a moving frame for the multispace.

Assume the action of the group G on (M,R)
(ℓ)
p , or (Ω,M)

(ℓ)
p , is such that the

existence of a local moving frame is guaranteed (see §2.1). Let us choose a point
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in L ∈ (M,R)
(ℓ)
p or (Ω,M)

(ℓ)
p and let S be a section transverse to the orbit of G

through L. Using the standard moving frame method, we would get a local moving

frame ρ, defined for all L̂ ∈ (M,R)
(ℓ)
p , or (Ω,M)

(ℓ)
p in some neighbourhood of L, as

the group element such that ρ · L̂ ∈ S. That is, ρ is an equivariant continuous map

ρ : U ⊂ (M,R)(ℓ)p → G ( resp. ρ : U ⊂ (Ω,M)(ℓ)p → G)

where U is an open neighborhood of L.

Remark 4.19. We note that there are results detailing conditions under which
an action on a jet bundle will become free and regular for a sufficiently large pro-
longation, that is, by considering sufficiently high order derivative terms [17]. A
discussion of the related results for a product action, under a sufficiently large num-
ber of products, is given by Boutin [9]. We conjecture that similar results will hold
for actions on multispace.

Before proving our results, we give a simple example. The first example refers

to the multispace, (R2,R)
(ℓ)
1 .

Example 4.20. We consider the two dimensional group G = R
+
⋉ R acting on

M×R = R
2×R as (λ, ǫ) ·(x, y, u(x, y)) = (x, y, λu+ǫ). We take φ to be the identity

map for simplicity. At the corner lattice Γ = {(x0, y0), (x0 + h, y0), (x0, y0 + k)}
with (x0, y0) the base point, the multi jet coordinates are the lattice coordinates, and
the coefficients of the linear interpolant to some function u on these three points.
The interpolant is

p(u)(x, y) = A+B.(x− x0) + C.(y − y0)

= u(x0, y0) +
u(x0 + h, y0)− u(x0, y0)

h
(x− x0)

+
u(x0, y0 + k)− u(x0, y0)

k
(y − y0).

Thus the coordinates coming from the interpolant are

(A,B,C) =

(
u(x0, y0),

u(x0 + h, y0)− u(x0, y0)

h
,
u(x0, y0 + k)− u(x0, y0)

k

)
.

We see that the coefficients are functions of u at the lattice points and so the induced
group action on these coordinates is the natural action on functions. We thus have

(λ, ǫ) · (A,B,C) = (λA+ ǫ, λB, λC).

Under coalescence, A→ ux and B → uy, and the group action is indeed then that
obtained via prolongation (i.e. the chain rule) on the jet coordinates.

Remark 4.21. (The restriction of a multispace frame to the embedded jet bundle
defines a smooth frame.) In the above example, we have given the normalisation
equations as being for the uncoalesced lattice. The normalisation equations for the
frame on the coalesced lattices and the embedded jet bundle are given implicitly
by the relevant continuum limit (if this does not exist, or the result is not smooth
on all multispace, then we do not have a frame on multispace). We note that
normalisation equations for a frame on multispace in a domain which includes
the embedded jet bundle, necessarily defines normalization equations for a smooth
frame on the embedded jet bundle, by restriction, even where their definition is
given implicitly by a continuum limit. This is illustrated in Example 4.23.
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Theorem 4.22. Assume ρ is a local moving frame for the action of G on (M,R)
(ℓ)
p

(resp. (Ω,M)ℓp) determined by a section transverse to an orbit of G. Assume that

the section is also transverse to the orbit through a point L ∈ J
(ℓ)
p (M,R) (resp.

Jℓ(Ω,M)), that is, the domain of the multispace frame includes L.
Denote by ρ(Q) the multispace frame at Q, and by ρ(L) the smooth moving frame

which is obtained by the restriction of the normalisation equations for ρ to the jet
space, evaluated at L. If L and Q have the same base point, then as Q coalesces to
L,

ρ(Q) → ρ(L).

Proof. We prove the result for (M,R)
(ℓ)
p , the other case being similar. Notice

that ρ(L) is the standard moving frame on jet spaces obtained through a section
transverse to the prolonged orbits, which is the multispace section restricted to the

jet bundle. We note that Jℓ
p(M,R) is a submanifold of (M,R)

(ℓ)
p , invariant under

the action of the group, so that the orbit of G through a point L ∈ Jℓ
p(M,R) is

equal to the prolonged orbit.

The proof is now immediate from the fact that the moving frame on (M,R)
(ℓ)
p

is a smooth map. �

In Appendix A, we will show a different convergence theorem for families of
discrete frames.

Example 4.23. Continuing with our previous example 4.20, a moving frame ρ is
defined by (λ, ǫ) · (A,B,C) = (0, 1, ∗) where ∗ will be the invariant, (λ, ǫ) · C|ρ.

This yields (λ, ǫ)|ρ =
(

h
u(x0+h,y0)−u(x0,y0)

,− hu(x0,y0)
u(x0+h,y0)−u(x0,y0)

)
or in the standard

matrix representation of this group,

(16) ρ =




h

u(x0 + h, y0)− u(x0, y0)
−

hu(x0, y0)

u(x0 + h, y0)− u(x0, y0)
0 1


 .

We saw that as h→ 0, we obtain the correct induced group action on ux. We now
see further that the limiting frame

(17) ρ(x, u, ux) =




1

ux
−

u

ux

0 1




is obtained both from the limit of the normalisation equations, (λ, ǫ) · (ux, u) =
(1, 0) as well as being the limit of the frame itself. We therefore have a frame on
multispace, so that both the discrete and the smooth cases are handled by the one
calculation of the frame on multispace.

4.4. The continuous limit of invariants and syzygies. We return to our dis-
cussion of discrete moving frames in the previous section, in which we have a lattice
variety LN embedded in some manifold, and a discrete frame is a map ρ : LN → GN

where N is the number of points in the lattice. Suppose now that adjacent ver-
tices in the lattice variety begin to coalesce. Under what conditions will the discrete
frame converge to a smooth frame, ρ̄? Furthermore, under what kinds of conditions
will we have

(18) ρn+1ρ
−1
n ∼ ρ̄(z + ǫv)ρ̄(z)−1 ∼ exp

(
ǫ (Dρ̄) ρ̄−1

)
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where D is an invariant differential operator? And when will the discrete local
syzygies converge to the local differential syzygies?

Example 4.24. Let us go back to our running example 4.20. Setting
ρi = ρ(xi, yi, u(xi, yi), u(xi + hi, yi), u(xi, yi + ki)) and calculating ρ1ρ

−1
0 , we have,

using Equation (16),

ρ1ρ
−1
0 =




h1(u(x0 + h0, y0)− u(x0, y0)

h0(u(x1 + h1, y1)− u(x1, y1))

h1(u(x0, y0)− u(x1, y1)

u(x1 + h1, y1)− u(x1, y1)

0 1


 .

If we now set (x1, y1) = (x0 + h̄, y0) and h0 = h1 = h (say), so that the second
lattice is the shift of the first, by (h̄, 0), then

d
dh̄

∣∣
h̄=0

ρ1ρ
−1
0

=


 −

ux(x0 + h, y0)− ux(x0, y0)

u(x0 + h, y0)− u(x0, y0)
−

hux(x0, y0)

u(x0 + h, y0)− u(x0, y0)
0 0




→h→0

(
−
uxx
ux

∣∣
(x0,y0)

−1

0 0

)

= ρxρ
−1|J2(M).

Alternatively, using the method we will apply in Example 4.29, we have setting
u(x+ h̄, y) = u(x, y) + h̄ux(x, y) +O(h̄2), that
(19)

ρ1ρ
−1
0

=


 1−

ux(x0 + h, y0)− ux(x0, y0)

u(x0 + h, y0)− u(x0, y0)
h̄+O(h̄2)

hux(x0, y0)

u(x0 + h, y0)− u(x0, y0)
h̄+O(h̄2)

0 1




∼ exp


h̄


 −

ux(x0 + h, y0)− ux(x0, y0)

u(x0 + h, y0)− u(x0, y0)
−

hux(x0, y0)

u(x0 + h, y0)− u(x0, y0)
0 0






∼ exp
(
h̄ρxρ

−1
)

as above. We note that ∂/∂x is an invariant operator since the independent vari-
ables are invariant under the action, so that ρxρ

−1 is invariant. Cases where the
independent variables participate in the action require more care, as we indicate
below.

Our first theorem concerns the convergence of the discrete Maurer–Cartan in-
variants to the smooth Maurer–Cartan invariants of the smooth frame.

We consider the case where the discrete frame (ρR) on the lattice variety LN ⊂M
can be viewed as a multispace frame ρ, with

ρJ = ρ([ΓJ , φ, U ]), uJ = φ(xJ),

where xJ is the basepoint of ΓJ .
Assume the point TixJ is also part of ΓJ so that TiuJ = φ(TixJ). If we have a

path from Ti(uJ) to uJ in the multispace indicating their coalescence, we can use the
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multispace frame to differentiate Ti(ρJ)ρ
−1
J with respect to the path parameter at

uJ . We state and prove the next theorem for a multispace of the formM = (Ω,M)ℓp,
and then we discuss the other case in Remark 4.26.

Theorem 4.25. Let a multispace M with the embedded jet bundle J be given. Let
a path in M be given, ǫ 7→ [Γ(ǫ), φ, U ] for 0 ≤ ǫ ≤ 1. Let u(ǫ) be the base point
of φ(Γ(ǫ)). Assume that both paths and the coalescence φ(Γ(ǫ)) → φ(Γ0) lie in the
domain of a multispace frame ρ. Set ρ(ǫ) = ρ([Γ(ǫ), φ, U ]), that is, ρ evaluated at
the point [Γ(ǫ), φ, U ]. If v = d/dǫ|ǫ=0u(ǫ), then

(20) lim
Γ(0)→Γ0

[
d

dǫ

∣∣∣
ǫ=0

ρ(ǫ)ρ−1(0)

]
= (D(v)ρ) ρ−1

where D(v) =
∑
vi∂/∂xi is the directional derivative.

The theorem follows from standard results concerning smooth functions on man-
ifolds.

Remark 4.26. For a multispace of the form M = (M,R)
(ℓ)
p , it is possible that

the independent variables participate in the group action, and then (D(v)ρ) ρ−1

may not be invariant. We recall that a smooth frame on a jet bundle yields a
canonical, maximal set of invariant differential operators. Indeed, on a manifold
with coordinates u, if g · u = ũ, then we define

(21) Di =
∂

∂ũi

∣∣∣
g=ρ

=

(
∂ũ

∂u

)−T

ij

∣∣∣
g=ρ

∂

∂uj

Rewriting the partial derivatives in (20) in terms of the invariantized deriviatives,
by inverting equation (21), yields an expression from which the right hand side of
equation (18) may be obtained, provided we are careful about the curve ǫ → u(ǫ)
used in Theorem 4.25 to obtain v.

Consider the example of a scaling action on a single independent variable, so M
is the positive real line, and G is the group of positive real numbers under standard
multiplication. Suppose f : M → R is invariant under the group action. Let the
frame be given by ρ([Γ, φ, f, U ]) = 1/u where u is the image of the basepoint of Γ.
Then the single invariant operator is u∂/∂u. If we take our path of coalescence to
be u(ǫ) = u+ ǫ, then D(v) in the statement of the Theorem will not be invariant.
However, if we take u(ǫ) = (1 + ǫ)u, then it will be.

Suppose that D(v) =
∑

i vi∂/∂ui. Inverting Equation (21) yields expressions of
the form ∂/∂ui =

∑
k AikDk, so that

D(v) =
∑

i

vi
∑

k

AikDk =
∑

k

(
∑

i

viAik

)
Dk =

∑

k

v̄kDk = D(v̄)

where the last equality defines the vector v̄. To ensure that D(v̄) is an invariant
directional derivative, we must have that the components of v̄ are either constants
or more generally, invariants.

We note that for the operators Di defined in (21), that Diρρ
−1 can be calculated

using only the equations for the transverse section that determines the frame and
the infinitesimal action, see [38] for details.

Example 4.27 (Special Euclidean group action on curves in the plane). The group
is SO(2)⋉R

2 with the standard linear action of translation and rotation of curves



DISCRETE MOVING FRAMES 43

on the plane, specifically,
(
x(t)
y(t)

)
7→

(
x̃(t)
ỹ(t)

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x(t)− a
u(t)− b

)
.

If one takes the standard matrix representation of SO(2) ⋉ R
2, so that the action

involves the inverse of the group element, then the equivariance of the frame will be
ρ(g · z) = gρ(z).

The multispace frame calculation is as follows. We take an order 2 interpolation
as we wish to achieve a multispace approximation of the curvature. If we interpolate
the curve (x(t), u(t)) at Γ = {t0, t0 + h1, t0 + h2} with base point t0, we get

p(x(t)) = A(x) +B(x).(t− t0) +
1
2C(x).(t− t0)

2

= x(t0) +
(h21 − h22)x(t0) + h22x(t0 + h1)− h21x(t0 + h2)

h1h2(h2 − h1)
(t− t0)

+
(h2 − h1)x(t0)− h2x(t0 + h1) + h1x(t0 + h2)

h1h2(h2 − h1)
(t− t0)

2,

and similarly for p(u(t)) = A(u) + B(u).(t − t0) +
1
2C(u).(t − t0)

2. The induced
action on the coefficients is that induced on (x(t), u(t)) so for example

g ·B(u) =
(h21 − h22)g · u(t0) + h22g · u(t0 + h1)− h21g · u(t0 + h2)

h1h2(h2 − h1)

=
1

h1h2(h2 − h1)

[
(h21 − h22)(cos θ(x(t0)− a) + sin θ(u(t0)− b))

+h22(cos θ(x(t0 + h1)− a) + sin θ(u(t0 + h1)− b)))

−h21(cos θ(x(t0 + h2)− a) + sin θ(u(t0 + h2)− b))
]
.

The normalisation equations g · A(x) = 0, g · A(u) = 0 and g · B(u) = 0 yield the
frame at Γ to be

a = x(t0), b = u(t0), tan θ =
(h21 − h22)u(t0) + h22u(t0 + h1)− h21u(t0 + h2)

(h21 − h22)x(t0) + h22x(t0 + h1)− h21x(t0 + h2)
.

In the limit as h2 → h1, we have

tan θ →
ut(t0 + h1)− 2u(t0 + h1) + 2u(t0)

xt(t0 + h1)− 2x(t0 + h1) + 2x(t0)

and then finally as h1 → 0, we have tan θ → ut/xt as expected, indeed, yielding the
smooth frame as determined by the limit of the normalisation equations.

If we take the standard matrix representation of SO(2) ⋉ R
2 to represent the

frame, with the equivariance as above, then the invariant Maurer-Cartan matrix will
be ρ([Γ′, u, φ, U ])−1ρ([Γ, u, φ, U ]), and the components of this yield the discrete mul-

tispace Maurer–Cartan invariants for this frame. Further, ρ ·B(x) →
(
x2t + u2t

)1/2
so that we may treat ρ · B(x) as the multispace approximation to the infinitesimal
arc length.

In the above example, we used an invariant parameter t to describe the curve
(x(t), u(t)). If instead we parametrise the curve as (x, u(x)), so that the parameter
participates in the group action and the operator ∂/∂x is not invariant, then greater
care is required. For example, the group action on the interpolation curve, written
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as p(u)(x) = A(x, u) + B(x, u)(x− x0) + C(x, u)(x− x0)
2, looks like g · p(u)(x) =

A(x̃, ũ) + B(x̃, ũ)(x − x̃0) + C(x̃, ũ)(x − x̃0)
2. Solving for the multispace frame in

this case seems nontrivial. Such examples will be examined elsewhere.

Now assume we have four lattice points, uJ , T1uJ , T2uJ and T2T1uJ = T1T2uJ ,
and that we have two paths connecting uJ with T2T1uJ = T1T2uJ via each of
the T1uJ and T2uJ respectively. If we can associate the discrete frame with a
multispace frame and differentiate the local syzygy associated with the discrete
frame with respect to the path parameters at uJ , we obtain the differential syzygy
associated with the multispace frame at uJ . Indeed, let a discrete frame (ρJ) at
the points uJ , T1uJ , T2uJ and T1T2uJ be associated with the multispace frame ρ so
that ρJ = ρ(zJ) for some zJ = [ΓJ , φ, U ] in the relevant multispace M, uJ = φ(xJ).
Then, the local syzygy is

(22) T1(K2)K1 = T2(K1)K2, K1 = ρ(T1zJ)ρ(zJ)
−1, K2 = ρ(T2zJ)ρ(zJ)

−1,

where TizJ = [TiΓJ , φ, U ] and TiΓJ is the shift of ΓJ by Ti, with base point TixJ
and TiuJ = φ(TixJ) = φ(xJ+ei). Here we are assuming that the shifts of ΓJ

remain within U . Now let ziJ(ǫi) be paths in the multispace lying within U , with
ziJ(0) = zJ , z

i
J(1) = TizJ , z

i
J(ǫi) = [Γi

J(ǫi), φ, U ] and uiJ(ǫi) = φ(xiJ(ǫi)), x
i
J(ǫi) the

base point of Γi
J(ǫi). We denote

v =
d

dǫ1

∣∣∣
ǫ1=0

u1J(ǫ1), w =
d

dǫ2

∣∣∣
ǫ2=0

u2J(ǫ2),

and

Kv =
d

dǫ1

∣∣∣
ǫ1=0

ρ(z1J(ǫ1)))ρ(zJ)
−1, Kw =

d

dǫ2

∣∣∣
ǫ2=0

ρ(z2J(ǫ2)))ρ(zJ)
−1.

We assume that the parametrisation of these paths with respect to ǫ yield invari-
ant differential operators in the case where the independent variables participate
in the group action, see Remark 4.26.

Theorem 4.28. After differentiating twice, once each with respect to the path
parameters ǫ1 and ǫ2 and coalescencing the lattice of the multispace point zJ to its
associated jet point, and under the conditions just stated, the local syzygy, equation
(22), becomes the continuous basic syzygy associated to ρ(zJ)

(23) D(w)Kv = D(v)Kw + ([D(w),D(v)]ρ) ρ−1 + [Kv,Kw].

Proof. The core of the proof is standard. We assume a matrix representation of
the frame, and note that Taylor’s Theorem is valid.

To ease the notation, we set ǫ1 = h and ǫ2 = k, and simplify to where v =
d/dh|h=0φ(x0+he1) and w = d/dk|k=0φ(x0+ke2) in local coordinates, so that we
evaluate our frame at the multispace elements with lattice basepoints at uJ = φ(x0),
T1uJ = uJ,1 = φ(x0 + he1), T2uJ = uJ,2 = φ(x0 + ke2) and T2T1uJ = uJ,1,2 =
uJ,2,1 = φ(x0 + he1 + ke2). We denote the partial derivative operators ∂/∂ǫi as ∂i.

Denoting TiρJ = ρJ,i we have

KJ,1 = ρJ,1ρ
−1
J , KJ,2 = ρJ,2ρ

−1
J ,

and for sufficiently small h and k, there will exist, dropping the index J for clarity,
matrices X1 and X2 in the Lie algebra of G such that

K1 = exp
(
hX1 +O(h2)

)
, K2 = exp

(
kX2 +O(k2)

)
.
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We have

(24) ∂1ρ · ρ
−1 = X1, ∂2ρ · ρ

−1 = X2

and

T2X1 = X1 + k∂2X1 +O(h2), T1X2 = X2 + k∂1X2 +O(k2).

Then

T2K1 = exp
(
hT2X1 +O(h2)

)

= exp
(
hX1 + hk∂2X1 +O(k2, h2)

)

T1K2 = exp
(
kT1X2 +O(k2)

)

= exp
(
kX2 + hk∂1X2 +O(k2, h2)

)
.

Applying the Baker Campbell Haussdorff formula, [59],

log (exp(X) exp(Y )) = X + Y + 1
2 [X,Y ] + higher order brackets,

we have

log (T2K1 ·K2)) = hX1 + hk∂2X1 + kX2 +
1
2 [hX1 + hk∂2X1, kX2] +O(k2, h2)

= hX1 + kX2 + hk
(
∂2X1 +

1
2 [X1, X2]

)
+O(k2, h2),

log (T1K2 ·K1)) = kX2 + hk∂1X2 + hX1 +
1
2 [kX2 + hk∂1X2, hX1] +O(k2, h2)

= hX1 + kX2 + hk
(
∂1X2 +

1
2 [X2, X1]

)
+O(k2, h2).

Equating the two formulae by imposing the local syzygy, differentiating with respect
to both h and k and then sending h, k → 0, yields, after a slight rearrangement,

(25) ∂2X1 − ∂1X2 = [X2, X1] .

Finally, we need to rewrite Equation (25) in terms of the invariant differential
operators. The formula given in Equation (21) shows that the partial derivatives ∂i
can be written as a linear sum of the invariant operators with invariant coefficients.
We must then back substitute for the ∂i, including rewriting the Xi = ∂iρ · ρ

−1 in
terms of the Djρ · ρ

−1. The final result yields the extra terms in the case that the
invariant operators do not commute. �

Example 4.29. We conclude the running example, 4.20. We set the points (xi, yi),
i = 1, 2, 3 to be (x1, y1) = (x0 + h̄, y0), (x2, y2) = (x0, y0 + k̄) and
(x3, y3) = (x0 + h̄, y0 + k̄). We then calculate the four matrices, K10 = ρ1ρ

−1
0 =

exp (X10), K31 = ρ3ρ
−1
1 = exp (X31), K20 = ρ2ρ

−1
0 = exp (X20) and K32 =

ρ3ρ
−1
2 = exp (X32). Direct calculation gives, setting ∆1F = F (x0+h, y0)−F (x0, y0)
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for a function F ∈ {u, ux, uy, uxy} in the formulae to ease the notation,

X10 = −h̄




∆1ux
∆1u

ux(x0, y0)

∆1u

0 0


+O(h̄2)

X20 = −k̄




∆1uy
∆1u

uy(x0, y0)

∆1u

0 0


+O(k̄2)

X31 = X20 − h̄k̄X̃31 +O(h̄2, k̄2)

= X20 − h̄k̄




∆1ux∆1uy +∆1uxy∆1u

(∆1u)
2 h

uy∆1ux + uxy∆1u

(∆1u)
2

0 0


+O(h̄2, k̄2)

X32 = X10 − h̄k̄X̃32 +O(h̄2, k̄2)

= X10 − h̄k̄




∆1ux∆1uy +∆1uxy∆1u

(∆1u)
2 h

ux∆1uy + uxy∆1u

(∆1u)
2

0 0


+O(h̄2, k̄2)

where this defines X̃31 and X̃32. The local syzygy is K31K10 = K32K20, and apply-
ing the Baker Campbell Hausdorff formula to this yields

X10 +X31 +
1

2
[X31, X10] = X32 +X20 +

1

2
[X32, X20] +O(h̄2, k̄2).

The equation for the lower order terms simplifies to

(26) X̃32 − X̃31 = [X10, X20].

This last equation is straightforward to verify. Finally, taking the limit as h → 0,
Equation (26) yields the differential syzygy for ρ evaluated on the jet bundle,

∂

∂y

(
ρxρ

−1
)
−

∂

∂x

(
ρyρ

−1
)
= [ρyρ

−1, ρxρ
−1],

where recall ρ on the jet bundle is given in Equation (17).

Similar relationships exist when we take limits only in one of the variables,
producing an evolution of discrete submanifolds. For example, if p = 2 and S has
coordinates (x, y), then if Ki

J,2 = ρJ+e2(z
i
J)ρ(zJ)

−1 and NJ = d
dx (KJ)K

−1
J , then

when we take limits in the calculation in the proof of the theorem as xJ+e1 → xJ
we have

d

dx
(K(J,2)) = NJ+e2 −K(J,2)NJK

−1
(J,2)

which is a mixed syzygy that often appears describing invariant evolutions of poly-
gons in terms of coordinates in their moduli spaces, as in [42] and [47]. Among
these evolutions one often finds completely integrable discretizations of well known
completely integrable PDEs. These results are really key to some of the applications
in our next section.



DISCRETE MOVING FRAMES 47

5. Applications

5.1. Application to the design of a Lagrangian for a variational numerical

scheme for a shallow water system. This example is motivated by the need for
finite difference versions of variational shallow water problems which are invariant
under the so-called particle relabelling symmetry. We consider the base space to
have coordinates (a, b, t), where (a, b) is the fluid particle label at time t = 0. The
two dimensional dependent variable space is (x, y) = (x(a, b, t), y(a, b, t)), which is
the position of the fluid particle at time t, so that (x(a, b, 0), y(a, b, 0)) = (a, b). The
particle relabelling action is given by

g · a = A(a, b), g · b = B(a, b), AaBb −AbBa = 1

together with g · x = x, g · y = y and g · t = t. It can be seen that the particle
relabelling group is the group of area preserving diffeomorphisms of the (a, b) plane
(or at least the domain of interest in the (a, b) plane). Further, it is known that the
invariants of this group action are x, y, t, and ∆ = xayb − xbya and its derivatives
under the invariant differential operators,

∂

∂t
,

∂

∂x
=
yb
∆

∂

∂a
−
ya
∆

∂

∂b
,

∂

∂y
= −

xb
∆

∂

∂a
+
xa
∆

∂

∂b
.

The aim is to design a multispace version of the Lagrangian for variational shal-
low water problems, which have the form,

(27) L[x, y] =

∫
L(x, y, xt, yt, xayb − xbya) da db dt.

This family of Lagrangians is each invariant under translations in time, translations
in both a and b, rotations in the (a, b) plane, and more generally, the full particle
relabelling group. Noether’s Theorem [2, 49, 53] then yields conservation of energy,
linear and angular momenta, and potential vorticity [1].

If we take the simplest corner lattice with base point (a0, b0, t0) to be

Γ = {(a0, b0, t0), (a1, b1, t0), (a2, b2, t0), (a3, b3, t1)}

then the (linear) interpolation of x is given by

x(a, b, t) ∼ x(a0, b0, t0) +M(xa)(a− a0) +M(xb)(b− b0) +M(xt)(t− t0)

where this defines the coefficients M(xK), and we have

M(xa) =
1

A

∣∣∣∣∣∣

1 x(a0, b0, t0) b0
1 x(a1, b1, t0) b1
1 x(a2, b2, t0) b2

∣∣∣∣∣∣
, M(xb) =

1

A

∣∣∣∣∣∣

1 a0 x(a0, b0, t0)
1 a1 x(a1, b1, t0)
1 a2 x(a2, b2, t0)

∣∣∣∣∣∣
and

M(xt) =
1

(t1 − t0)A

∣∣∣∣∣∣∣∣

1 a0 b0 x(a0, b0, t0)
1 a1 b1 x(a1, b1, t0)
1 a2 b2 x(a2, b2, t0)
1 a3 b3 x(a3, b3, t1)

∣∣∣∣∣∣∣∣
where

A =

∣∣∣∣∣∣

1 a0 b0
1 a1 b1
1 a2 b2

∣∣∣∣∣∣
is the area, |(a1 − a0, b1 − b0) ∧ (a2 − a0, b2 − b0)|. The interpolant for y is similar,
with y(ai, bi, ti) replacing x(ai, bi, ti) in the above formulae.
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We consider the Lie group SL(2)⋉R
2 acting on the (a, b) plane as the standard

(right) equiaffine action,
(
a
b

)
7→

(
g · a
g · b

)
=

(
δ −β
−γ α

)(
a− ǫ1
b− ǫ2

)

so that (ǫ1, ǫ2) ∈ R
2 is the translation vector, and αδ − βγ = 1, and that g · x = x,

g · y and g · t = t. This group is contained within the particle relabelling symmetry
group, and is just big enough to obtain the area invariant, which we do next.

The induced action on the coefficients in the interpolants is given by, for example,

g · M(xa) =
1

A

∣∣∣∣∣∣

1 x(a0, b0, t0) g · b0
1 x(a1, b1, t0) g · b1
1 x(a2, b2, t0) g · b2

∣∣∣∣∣∣
,

noting that g · A = A, indeed, A is an invariant as is easily seen.
We take the normalisation equations g·(a0, b0) = (0, 0), g·M(xa) = 1, g·M(xb) =

0 and g · M(ya) = 0. Then the multispace frame is (ǫ1, ǫ2) = (a0, b0) and

(
δ −β
−γ α

)
=

(
M(xa) M(xb)
M(ya)
M(∆)

M(yb)
M(∆)

)

where M(∆) = M(xa)M(yb)−M(xb)M(ya). Evaluating the remaining coefficient
on the frame, we obtain the invariant,

I(M(yb))) = g · M(yb)
∣∣∣ρ

= M(∆)

=
1

A

∣∣∣∣∣∣

1 x(a0, b0, t0) y(a0, b0, t0)
1 x(a1, b1, t1) y(a1, b1, t1)
1 x(a2, b2, t2) y(a2, b2, t2)

∣∣∣∣∣∣
.

Calculating the continuum limit of M(∆) we obtain xayb − xbya, which is ∆, the
area invariant, as expected. Further, the continuum limit of the frame is

ρ→




xa xb

ya
xayb − xbya

yb
xayb − xbya


 .

This is the smooth frame obtained with the smooth limit of the normalisation
equations, that is, {x̃a = 1, x̃b = 0, ỹa = 0}.

We observe that bothM(xt) andM(yt) are invariant under the equiaffine action.
Thus, we propose the multispace analogue of the Lagrangian (27) to be

(28) M (L[x, y]) =
∑

Γ

L (x, y,M(xt),M(yt),M(∆)) A (t1 − t0)

where the sum is over all corner lattices stacked into a mesh, as in Figure 17. The
factor A (t1 − t0) is the multispace approximation of the volume form, dadbdt, and
is needed to obtain the correct continuum limits for the conservation laws for energy
and the linear momenta.

Finite difference Euler Lagrange equations and Noether’s conservation laws can
be calculated in the standard way [23, 32, 33]; the details and the results of this
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Figure 17. Length one lattices stacked as a mesh, for a finite
difference variational problem. Shown here is single time slice for
the shallow water problem.

calculation will be explored elsewhere. It is interesting to observe that the multi-
space Lagrangian, (28) is invariant under a discrete analogue of the particle rela-
belling symmetry. Indeed, looking at Figure 17, one can use a different element
of SL(2) ⋉ R

2 on each basepoint of each individual corner lattice, inducing an ac-
tion on the whole of the corner lattice, provided that certain consistency conditions
hold, specifically, that if a vertex is in the intersection of two corner lattices, that
their image under the two different group elements is the same. The Lagrangian
(28) is clearly invariant under this discretisation of the particle relabelling group,

the discretisation being a subgroup of
(
SL(2)⋉R

2
)R

where R is the number of
corner lattices on a time slice of the mesh. Using this symmetry group to study
the Lagrangian requires relaxing the assumption that we use the same action of the
group at every lattice (i.e. we relax the assumption of the product action). This
would require an extension of the theory developed in this paper, which we consider
elsewhere.

5.2. Discretizations of completely integrable PDEs. The geometry of curves
and surfaces have been linked to integrable systems repeatedly in the literature, see
[24, 45, 58], for example. A drawback of the application of the results in this paper
to finding completely integrable disccretizations of completely integrable systems
is that one needs to choose a type of approximation (forward, backwards, linear or
higher order, etc) a priori to find the limit. On the other hand, any two choices
of discrete moving frames (be the one associated to a certain type of limit or any
different one) will always be associated by a gauge transformation. This means
that if one finds a discrete integrable system associated to any given choice of
moving frame, one might be able to relate it to a different choice and perhaps
link it to the continuous case. This was done in [47], where the authors found
discrete integrable systems that were the discretization of Adler–Gel’fand–Dikii
integrable evolutions, both of them linked to the projective geometry of curves
and polygons. The authors of [47] also found a way to obtain two Hamiltonian
structures associated to the discrete system through a reduction process, a process
that was later extended to other semisimple homogeneous spaces in [46]. Different
approaches were used, for example in [3] and in other works of these authors to
construct completely integrable discretizations of integrable systems with the use
of lattice models in Euclidean, projective and conformal geometry. Their approach
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is quite different from the one used in [47] and in this paper, in that they choose
lattices with different geometric properties to achieve discretizations. The following
are just some examples of the connection between continuous and discrete models,
in the equi-centro affine and the Euclidean space. Both of these examples use mixed
multispace discrete/continuous models, and although the first example only uses
discrete coordinates to construct the multispace moving frame, the second example
will make full use of both.

5.2.1. Integrable discretizations of Boussinesq equations. In this example we make
use of mixed differential/difference coordinates in the multispace. For reasons that
will become clear later, we will also assume that the lattice variety has a monodromy
in the discrete variable (a global property). That is, un+T (t) = m · un(t) for any
n ∈ Z, with T the period and some monodromy m ∈ SL(3,R). This ensures that
the invariants will be T -periodic in n.

Continuous case

First we describe the situation when we are in continuous jets with two param-
eters (x, t). It is well known (see for example [10]) that the Boussinesq equations

(q0)t +
1

6
q′′′1 +

2

3
q1q

′
1 = 0, (q1)t − 2q′0 = 0

where the prime denotes d/dx, can be obtained as the evolution induced on equi-
centro-affine curvatures by a certain evolution of curves. Let our manifold be M =
R

3 with G = SL(3,R) acting linearly on it. Within M consider parametrized
surfaces on (x, t). Thus, in this example u(x, t) ∈ R

3, unlike in previous examples
when we consider graphs of the form (x, y, u(x, y)). Hopefully this will not confuse
the reader. We will define the following cross-section:

(29) ρ · u = e3, ρ · u′ = e2, ρ · u′′ = de1

where ei are the standard unit vectors in R
3. Clearly d = det(u, u′, u′′). This

defines uniquely a right moving frame whose left companion is given by

ρ−1 = (
1

d
u′′, u′, u).

Let us assume that

(30) d = det(u′′, u′, u) = 1,

that is we will parametrize the surface so that the curves associated with t fixed are
parametrized by the equi-centro-affine arc-length (these curves are in one-to-one
correspondence with projective curves, see [10]. In that case the left x-Maurer–
Cartan matrix associated to it is given by

Q = ρ(ρ−1)′ =




0 1 0
k1 0 1
k2 0 0




where u′′′ = k1u
′ + k2u. Next we will gauge this frame to a different left frame

ρ̂ = ρ−1g by the element

g =




1 0 0
0 1 0

−k1 0 1


 .
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The resulting x-Maurer–Cartan matrix is given by

K = g−1g′ + g−1Qg =



0 1 0
0 0 1
b a 0




where a = k1 and b = k2 − k′1. Gauging the system can be seen as changing the
coordinates, the results can always be gauged back to the original setting.

We will next consider the syzygy

(31) ut − u′′ +
2

3
au = 0

which describes a precisely chosen evolutionary equation for curves whose flow will
be tracing our parametrized surface. With this condition, the left t-Maurer–Cartan
matrix is easily seen to be given by

N = ρ̂−1ρ̂t =



−(w1 + 1/3a) w0 1

v1 w1 0
v2 w2

1
3a




for some entries vi, wi. The local basic syzygies (or the compatibility condition
between x and t) are given by

Kt = Nx + [K,N ]

and they can be used to solve for N so that

w0 = 0, w1 =
1

3
a, w2 = b+

1

3
a′, v1 = b+

2

3
a′, v2 = −b′ −

2

3
a′′.

We can further find two more syzygies given by

at − 2b′ − a′′ = 0, bt +
2

3
a′′′ + b′′ −

2

3
a′a.

This system of equations is equivalent to the Boussinesq equation. Indeed, if a = q1
and b = 1

2q
′
1 − q0, we have

(q0)t +
1

6
q′′′1 +

2

3
q1q

′
1 = 0, (q1)t − 2q′0 = 0

which is the standard Boussinesq equation.

Multispace case

Assume now that we move in the multispace away from a continuous jet to a
mixed discrete/continuous multispace submanifold, where x is now discrete and t
is continuous. Let us choose lattices containing (xn, t), (xn+1, t), (xn+2, t) and such
that xr+1 − xr = ∆xr = c is constant for any r. That is, we will restrict to lattices
with sides of equal length. The cross-section (29) evaluated on lattices of this form
will be given by

ρ · un = e3, ρ · (un+1 − un)/c = e2, ρ · (
1

c2
(un+2 − 2un+1 + un)) = e1

where 1 = (1/c3) det(un+2, un+1, un) and ui = u(xi, t). The left moving frame
associated to this cross section is given by

ρ−1 = (
1

c2
(un+2 − 2un+1 + un),

1

c
(un+1 − un), un)
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=
(
un+2 un+1 un

)



c−2 0 0
−2c−2 c−1 0
c−2 −c−1 1




which can clearly be gauged to

η =
(
un+2, un+1, un

)
.

The multispace subspace (30), when restricted to our partially coalesced lattices,
becomes

(32) det(un+2, un+1, un) = c3

for all n. Let us introduce one last gauge by the matrix

g =




1 0 0
−an−1 1 0

0 0 1


 ,

where an is to be found. If un+3 = kn1 un+2 + kn2 un+1 + un, then, the discrete
x-Maurer–Cartan matrix associated to ρ = ηg is given by

Kn =




0 1 0
bn an 1
1 0 0




where bn = kn2 and an = kn−1
1 . As before, the t-Maurer–Cartan matrix is given by

Nn = ρ̂−1
n (ρ̂n)t =



−(wn

1 + rn2 ) wn
0 rn0

vn1 wn
1 rn1

vn2 wn
2 rn2




and the local basic syzygy is

K−1
n (Kn)t = Nn+1 −K−1

n NnKn.

This syzygy solves for Nn in terms of ri

wn
0 = rn+1

1 ; wn
1 = rn+1

2 + anr
n+1
1 + bnr

n+1
0 ; wn

2 = rn+1
0 ;

vn1 = rn−1
0 + bn−1r

n
1 ; vn2 = rn+2

1 − anr
n+1
0 ,

and it provides the condition for preserving the restriction to the multispace sub-
manifold (32), namely

(33) rn+2
2 + rn+1

2 + rn2 + an+1r
n+2
1 + bn+1r

n+2
0 + bnr

n+1
0 = 0.

If the map rn2 → rn+2
2 + rn+1

2 + rn2 = (T 2 + T + 1)rn2 is invertible (which is true if
N 6= 3s for any s as shown in [47]), this condition solves for rn2 in terms of rn1 and
rn0 . The syzygy also describes (an)t and (bn)t to satisfy

(an)t = (1 + anbn+1)r
n+2
0 − (anbnr

n+1
0 + rn−1

0 )

+ (bn + anan+1)r
n+2
1 − (bn−1r

n
1 + a2nr

n+1
1 ) + anr

n+2
2 − anr

n
2

(bn)t = rn+3
1 − (bnan+1r

n+2
1 + rn1 )− (an+1 + bnbn+1)r

n+2
0

− b2nr
n+1
0 + anr

n
0 − (bnr

n+2
2 + 2bnr

n+1
2 ).

If further we impose the syzygy

(34) (un)t +
1

bn−1
(un+2 − anun+1) +

2

3
un = 0
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then we can see that rn0 = 1
bn−1

, rn1 = 0 and rn2 = −(T 2 + T +1)−1(T +1) bnbn = − 2
3

is the solution of (33) for these choices. Then

(an)t =
1

bn+1
−

1

bn−2

(bn)t = −
an+1

bn+1
+

an
bn−1

and the changes

αn = −
1

bnbn+1bn+2
, βn = −

an+1

bnbn+1

transform this equation in the integrable discretization of Boussinesq

(αn)t = αn(βn+2 − βn−1)

(βn)t = αn−1 − αn + βn(βn+1 − βn−1).

This system appears in [25].
It is not clear to us how to systematically connect integrable discrete systems and

evolutions of polygons as given by (34). In the continuous case there is a general link
between Hamiltonian evolutions at the level of the invariants and evolution of curves
on geometric manifolds which are homogeneous of the form G/H or (G ⋊ R

n)/G
with G semisimple (see [43], [44]), but the situation in the discrete case is not so
clear in general. In particular, the syzygies (31) and (34) are not the restriction
of the same syzygy on different points in the multispace, even when we account
for all the different changes introduced by gauges. Still, it is widely known that
certain evolutions of polygons result in completely integrable discrete systems (see,
for example, [4] in the Euclidean case and [3] in more cases with further restrictions
on the lattices). The multispace allows us to construct geometrically without the
need to account for the limits. We include one more example along these lines and
further use of multispace in this area will appear elsewhere.

5.2.2. Discretization of the Sine–Gordon equation. It is well known that the Codazzi–
Mainardi equations for Euclidean surfaces in R

3 with constant negative Gauss cur-
vature includes a Sine–Gordon equation, a well known completely integrable sys-
tem, that decouples from the rest of the determining equations for the surface. The
Codazzi–Mainardi equations are simply syzygies for a well-chosen moving frame,
hence using the multispace framework we will be able to find a discretization of the
Sine–Gordon equation with strong geometric meaning as determining mixed lat-
tice/surfaces with negative Gauss curvature. It is not clear to us if the discretization
below is completely integrable as it becomes part of a system of equations defining
the lattice/surface, rather than decoupling to discretize Sine–Gordon individually.
A discrete Sine–Gordon equation on lattices was also defined in [3], although the
conditions that the authors imposed on their lattices are not impose here. Further
study on the connection between both approaches will appear elsewhere.

We review the continuous case first.

5.2.3. Sine–Gordon as syzygy of Euclidean surfaces with constant negative curva-
ture. Let G be the Euclidean group represented as the subgroup of GL(4,R)

(35) g =

(
1 0
v Θ

)
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where v ∈ R
3 and Θ ∈ SO(3). The group acts in R

3 with the standard action

g · u = Θu + v which coincides with the one induced by g

(
1
u

)
. Let u(x, y) be

a parametrized surface and assume that x and y are normalized to measure the
arc-length in the x and y direction. That is, assume that ||ux|| = ||uy|| = 1. Let us
define a moving frame through the normalizations

ρ · u = 0, ρ · ux = e1, ρ · uy = cosαe1 + sinαe2

where α is the angle formed by ux and uy. Solving the equations we obtain that
v = −Θu and

ΘT =
(
ux

1
sinα (uy − cosαux) n

)

where n = 1
sinα (ux × uy) is the standard normal unit vector determined by the

parametrization. Using the traditional notation uxx = Γ1
11ux + Γ2

11uy + en, uxy =
Γ1
12ux + Γ2

12uy + fn, uyy = Γ1
22ux + Γ2

22uy + gn, we can write the Maurer–Cartan
matrices as

N̂ = ρxρ
−1 =

(
0 0

−(Θu)x Θx

)(
1 0
u ΘT

)
=

(
0 0

−e1 ΘxΘ
T

)

K̂ = ρyρ
−1 =

(
0 0

− cosαe1 − sinαe2 ΘyΘ
T

)

where

N = ΘxΘ
T =




0 sinαΓ2
11 e

− sinαΓ2
11 0 1

sinα (f − cosαe)
−e −1

sinα (f − cosαe) 0


(36)

K = ΘyΘ
T =




0 sinαΓ2
12 f

− sinαΓ2
12 0 1

sinα (g − cosαf)
−f −1

sinα (g − cosαf) 0


 .(37)

Substituting these values in the local syzygy K̂x = N̂y + [K̂, N̂ ] and selecting the
R

3 component, we get the equation

0 =



− cosα
− sinα

0




x

−




0
− sinαΓ2

12

−f


+cosα




0
− sinαΓ2

11

−e


+sinα




sinαΓ2
11

0
−1
sinα (f − cosαe)


 .

The last entry is trivial, the first solves for the value

Γ2
11 =

−1

sinα
αx,

while the second one simplifies to Γ2
12 = 0, whenever sinα 6= 0. The SO(3) portion

of the syzygy is given by

(38) Kx = Ny + [K,N ].

If we write down the equation that does not involve derivatives of the second fun-
damental form (the equations defined by the (1, 2) entry), we have

(
sinαΓ2

11

)
y
=

−f

sinα
(f − cosαe) +

e

sinα
(g − cosαf),

which becomes

αxy = −
1

sinα
(eg − f2).
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If K is the Gauss curvature, we know that K = eg−f2

EG−F 2 , where E = ||ux|| = G =

||uy|| = 1 and F = ux · uy = cosα. Thus, the equation becomes

αxy = − sinαK

which is the Sine–Gordon equation whenever K is constant and negative.
Notice that this equation is not enough to determine the surface. Indeed, solving

for α only determines the first fundamental form (or metric), and the knowledge
of the Gauss curvature does not suffice to determine the second fundamental form.
Indeed, one would need two more equations to do so, given by the two remaining
entries (1, 3) and (2, 3) of the SO(3) portion of the local syzygy, i.e. (38). Thus, the
surface is determined upon solving a system of 3 equations, one of which decouples
and is equal to Sine–Gordon.

5.2.4. A differential–difference Sine–Gordon evolution as a syzygy of a mixed smooth-
discrete lattice. Assume we have a smooth family of polygons, or a mixed (1, 1)-
lattice (one continuous direction and one discrete one) of the form yr, yr+1 in the
y direction and continuous 1-jet in the x direction. As far as we use the same
multispace cross-section, we will have guaranteed that discrete invariant data ap-
proximates the continuous one. Thus, consider the transverse section

ρr ·ur = ρr ·u(x, yr) = 0; ρr ·pux = ||ux||e1;
1

y1 − y0
(ρr ·T ur−ρr ·ur) =

||∆ur||

∆y0
wr

where ρr is as in (35); T ur = ur+1 = u(x, T yr) = u(x, yr+1); ·p is the prolonged
action given by ρr ·pux = Θux; and wr is a unit vector with wr = cosαre1+sinαre2
where αr = αr(x) is the angle between ux and ∆ur, ∆ur = (T − 1)ur. From here,
the multispace cross section defines vr = −Θrur, Θrux = ||ux||e1 and Θr∆ur =
||∆ur||wr. With these choices the right moving frame becomes

ρr =

(
1 0
vr Θr

)
, vr = −Θrur

with

ΘT
r =

(
tr nr br

)

tr =
(ur)x
||(ur)x||

; nr =
1

sinαr

(
∆ur
||∆ur||

− cosαrtr

)
; br = tr × nr.

From now on, and for convenience, we will drop the subindex to denote position
unless the situation is confusing, indicating a change in position by the application
of the shift operator (T ku = ur+k). We will calculate the left Maurer–Cartan
matrices, the more geometrically significant one (those in the continuous case are
right ones). The left Maurer–Cartan matrices are given by

K̂ = ρT ρ−1 =

(
1 0

−Θu Θ

)(
1 0
T u T ΘT

)
=

(
1 0

||∆u||w K

)

where K = ΘT Θ−1; and by

N̂ = ρ(ρ−1)t =

(
1 0

−Θu Θ

)(
0 0
ux (ΘT )x

)
=

(
0 0

||ux||e1 N

)

where N = Θ(Θ−1)x. The local syzygies are given by

(39) (K̂)x = K̂T N̂ − N̂K̂.
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As we did in the continuous case, and to ensure convergence, we will restrict to the
submanifold of the multispace defined locally by

||ux|| = 1
||∆ur||

|∆yr|
= 1.

For simplicity we will restrict further to those lattices where |∆yr| = ǫ for all r (and
hence ||∆ur|| = ǫ).

Equation (39) breaks into two equations, namely

wt = Ke1 −Nw − e1(40)

Kt = KT N −NK.(41)

Assume K factorizes as

(42) K = Y

(
Ω 0
0 1

)

with Ω ∈ SO(2), for some Y = exp

(
0 y

−yT 0

)
(this is always possible when T Θ

is closed enough to Θ so that K is closed enough to the identity). Assume further
that

Ω =

(
cos k − sin k
sin k cos k

)
=
(
v v̂

)

v and v̂ denoting the two columns of Ω. We will denote with a hat the transforma-

tion v̂ =

(
0 −1
1 0

)
v = Jv, and so ŵ = Jw. Finally, denote N by

(43) N =

(
Λ z

−zT 0

)
, Λ =

(
0 ν
−ν 0

)
, z =

(
z1
z2

)
.

With this notation (40) can be rewritten and simplified to equations

−sy · v = z · w(44)

w · e1 = w · v + cy · v y · w(45)

αx = −ν +
1

sinα
(1− cos k − cy · v y2)(46)

where s = 1
||y|| sin ||y||, c =

1
||y||2 (cos ||y|| − 1), and as usual yT = (y1, y2).

The remaining three equations that will determine the lattice/surface are given
by the three entries in the so(3) component (41). We will only reproduce the portion
corresponding to Sine–Gordon, that is the (2, 1) entry of (41). After some long, but
straightforward algebraic manipulations, the equation becomes

(47) kx + c det(y, yx) = T ν − cos ||y||ν + s det(y, z).

Looking at (37) and (36), and comparing it to (42) and (43), we see that

s det(y, z)

discretizes the determinant of the first two entries of the last column in both (37)
and (36). That is, s det(y, z) discretizes

det

(
f e

1
sinα (g − cosαf) 1

sinα (f − cosαe)

)
= − sinαK
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were K is the Gauss curvature of the surface. Therefore, we can define

K = −
s

sinα
det(y, z) = −

sin ||y||

||y|| sinα
det(y, z)

to be the discrete Gauss curvature for the lattice/surface. Then, (47) becomes

kx + c det(y, yx) = T ν − cos ||y|| − sinαK.

This will be a discretization of Sine–Gordon, together with the other equations in
the system.

Appendix A. Equicontinuous families of discrete frames

In this Appendix, we use the Arzela–Ascoli Theorem to give a general conver-
gence result for an equicontinuous family of moving frames. This provides a rigorous
foundation to a variety of examples involving the discretisation of a smooth frame.

Let M be a manifold, and let G be a Lie group with local metric d. The set
GM consists of all continuous maps from M to G, and we give it the compact-open
topology, defined as that generated by finite intersections of the so-called subbasic
sets,

(A, V ) = {f ∈ GM | f(A) ⊂ V }

where A ⊂ M is open and V ⊂ G is compact. A sequence of maps converging in
this topology is uniformly convergent on compact subsets.

Definition A.1. A family F ⊂ GM is said to be equicontinuous at y0 ∈ M if for
all ǫ > 0 there exists a neighbourhood U(y0) ⊂M such that for all ρ ∈ F ,

ρ(U(y0)) ⊂ B(ρ(y0), ǫ) = {g ∈ G | d(g, ρ(y0)) < ǫ}.

Theorem A.2. Suppose that a family of left (resp. right) moving frames F ⊂ GM

satisfies the following:

(1) F is equicontinuous on M , and
(2) the set

{ρ(y) | ρ ∈ F}

has compact closure for each y.

Then F is a compact and equicontinuous family of moving frames.

Proof. We give the proof for F a family of left frames, the proof for right frames is
analogous. The conditions of the Theorem are precisely those of the Arzela–Ascoli
Theorem, ([15], XII, Theorem 6.4), which yields that the family F is compact and
equicontinuous. We need only show that its elements are also equivariant with
respect to the group action on M . Fix y ∈ M and f ∈ F , and let ǫ > 0 be given.
By the definition of the closure of the set F and the continuity of the group action,
there is a ρ ∈ F and a neighbourhood U of the identity e ∈ G such that for g ∈ U
we have both d(f(g · y), ρ(g · y)) < 1

2ǫ and d(g · f(y), g · ρ(y)) <
1
2ǫ. Then

d(g · f(y), f(g · y)) < d(f(g · y), ρ(g · y)) + d(ρ(g · y), g · f(y))
= d(f(g · y), ρ(g · y)) + d(g · ρ(y), g · f(y))
< ǫ,

so that f is equivariant, as required. �
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Example A.3. Consider the scaling and translation action of R2 given on a equi-
variant family of Lipschitz continuous curves (x, y(x)) in the plane by g ·(x, y(x)) =
(x, exp(λ)y + k). A smooth frame is given by g ·y = 0, g ·yx = 1, or (exp(λ), k)

∣∣
ρ
=

(1/yx,−y/yx); the domain of this frame has yx > 0. Suppose now we wish to
discretise this frame in a way that is compatible with the smooth frame and with
forward difference, that is yn+1 = yn + αyx. Then the discrete frame ρn would be
obtained by the normalisation equations, g · yn = 0, g · yn+1 = α, so that

ρn =

(
α

yn+1 − yn
,

−αyn
yn+1 − yn

)
.

This family of frames is straightforwardly seen to be equicontinuous, to have the
smooth frame as its continuum limit, and to have the smooth Maurer–Cartan in-
variants as the limit of the discrete ones, provided the parameter α scales as the
mesh size xn+1 − xn.
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[11] É. Cartan, Oeuvres complètes, Gauthier-Villiars, 1952–55.
[12] S.S. Chern and K. Tenenblat, Pseudo–spherical surfaces and evolution equations, Stud. Appl.

Math. 74 (1986), 55–83.
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