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ABSTRACT
Mobile power meters provide a valid means of measuring cyclists’ power output in the field. These field
measurements can be performed with very good accuracy and reliability making the power meter a
useful tool for monitoring and evaluating training and race demands. This review presents power meter
data from a Grand Tour cyclist’s training and racing and explores the inherent complications created by
its stochastic nature. Simple summary methods cannot reflect a session’s variable distribution of power
output or indicate its likely metabolic stress. Binning power output data, into training zones for
example, provides information on the detail but not the length of efforts within a session. An alternative
approach is to track changes in cyclists’ modelled training and racing performances. Both critical power
and record power profiles have been used for monitoring training-induced changes in this manner. Due
to the inadequacy of current methods, the review highlights the need for new methods to be
established which quantify the effects of training loads and models their implications for performance.
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Introduction

Mobile power meters are devices that can be fitted to a
bicycle to measure cyclists’ power output in the field. The
detailed data obtained from power meters can then be used
to monitor and evaluate cyclists’ training and race perfor-
mances. This power output data can be gathered in a range
of field conditions including cycling on the road, track, off-
road or even indoors. The data obtained can also be used in
different way depending on the cycling discipline to inform
decisions relating to cycling position and technique (i.e., the
effect of position or technique change on physiological para-
meters at a set power output), competition demands, and
team and equipment selection. Power meters were first devel-
oped in the 1980s with SRM (Schoberer Rad Messtecnik, Jülich,
Welldorf, Germany) generally being acknowledged as the first
to produce a commercially available system. Early adopters of
the SRM system included the East German national cycling
team, and Greg Lemond in the European professional peloton.
Since its inception the SRM power meter has established itself
as the standard against which others are compared. In recent
years, the market for power meters has developed consider-
ably and there are now a number of manufacturers producing
devices (e.g., Cycleops Powertap, Stages Cycling Powermeter,
Garmin Vectors). Their technological approaches to measuring
power output vary, but the most common method is to use
strain gauges to measure the torque generated by the cyclist.
Power output can be measured from a number of locations in
the propulsive transmission system of a bicycle. Thus power
meters can derive their measurement from the shoe (e.g.,
Zone DPMX), pedal (e.g., Garmin Vector), crank (e.g., Stages
Powermeter), bottom bracket axle (e.g., Rotor INpower), chain

(e.g., Wattbike), or hub (e.g., Cyclops Powertap). The utility and
success of these approaches depend upon the particular
power meter’s measurement method and location. The major-
ity of commercially available power meters measure torque
directly at the pedal, crank or rear wheel. The specific position
of the power meter on the bicycle can be important for some
cyclists. For example, track sprinters may be more interested in
monitoring torque produced, i.e., at the pedal or crank, rather
than power output delivered to the wheel (at the hub).
However, the primary concern for most power meter users is
their validity sensitivity, reproducibility and, repeatability of
measurement.

Validity

The validity of the power meter can be high where power
output is measured directly and calculated from its derivatives,
angular velocity multiplied by torque Abbiss et al. (2009). For
example, at the rear hub angular velocity is calculated from
wheel rotation, and torque from the force transmitted by the
chain to the hub. The principle is similar at the pedal or crank,
except angular velocity is given by cadence. The use of strain
gauges allows accurate measurement of torque, but they are
sensitive to changes in ambient temperature (Gardner et al.,
2004; Wooles, Robinson, & Keen, 2005). Therefore, care is
needed in calibration, especially at the start of the ride, if the
bicycle is moved from a warm to a cold location, for example.
The placement of the strain gauges dictates whether mea-
sured torque is separate for each leg, combined across both
legs or measured for only one leg (and doubled).
Instrumenting the pedals allows the torque pattern of left
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and right legs to be measured separately. This makes possible
analysis of negative forces, generated as the pedal rises
between bottom and top dead centre, and any bilateral asym-
metry in pedalling style. Measurement of the combined tor-
que of both legs occurs where the bicycle is instrumented
anywhere in its propulsive transmission after the bottom
bracket axle. This method cannot quantify ineffective torque,
although some gross pedalling asymmetry may still be detect-
able. Moreover, although some power meters purport to
examine negative forces, this requires a constant measure-
ment of angular velocity, which most devices do not measure,
instead calculating average angular velocity at every revolu-
tion. A simple approach to determining power output is to
bond strain gauges to a single crank and measure the torque
from one leg only. Total power output is calculated as double
the measured value, by assuming an equal and symmetrical
contribution for the unmeasured leg. The validity of this
assumption for pedalling symmetry remains unclear. Smak,
Neptune, and Hull (1999) found that asymmetry is related to
limb dominance, and reported asymmetry ranging from 0.5%
to 2.0%. Carpes, Mota, and Faria (2010) reviewed a number of
studies with asymmetry values ranging from 5% to 20%. They
also noted that increasing cadence and power output tend to
improve indices of symmetry. Therefore, where an overall
measure of work rate in the field is required, power meters
relying on a single crank measurement may be sufficient. For
careful comparison between cyclists and work rates, stable
bilateral symmetry should not be assumed though.

The principle of the power meter is valid, but the expected
power output and its accuracy can vary according to the mea-
surement conditions. The location of the power meter on the
bicycle affects the expected power output. Frictional losses
especially from the drive train dissipate some of the energy
input. Therefore, a difference in simultaneous torque measure-
ments should be found where these are made before and after
the drive train, e.g., from the pedal and hub, respectively. Drive
train frictional losses are thought to be proportional to the total
power output and have been suggested to amount to ~2.4%
(Kyle, 1988; Martin, Milliken, Cobb, McFadden, & Coggan, 1988).
Regardless of where they are located, most commercially avail-
able power meters measure angular velocity simply by detect-
ing complete hub or crank rotations. As a consequence when
angular velocity is low or changes notably within a single revo-
lution, the power meter’s sensitivity may be affected. Most
power meters are unable to evaluate power output until its
angular velocity is well above zero. Even once a minimum
angular velocity threshold is exceeded, changes within a single
revolution cannot be detected. For both of these reasons power
output measurement may not be accurate under conditions
involving low angular velocity or marked acceleration, such as
when evaluating standing starts (Bertucci, Crequy, &
Chiementin, 2013; Martin, Gardner, Barras, & Martin, 2006).
Under these conditions of low or variable cadence and high
torque, it may be preferable to evaluate torque separately.

Accuracy and reliability

The high accuracy and reliability of commercially available
power meters have been demonstrated repeatedly (Bertucci,

Duc, Villerius, Pernin, & Grappe, 2005; Gardner et al., 2004;
Jones & Passfield, 1998; Martin, Milliken, Cobb, McFadden, &
Coggan, 1998; Wooles et al., 2005). The early studies (Jones &
Passfield, 1998; Martin et al., 1998) mounted SRM power
meters onto a laboratory friction-braked ergometer for com-
parison. Both studies found an R2 > 0.99, and Jones & Passfield
reported 95% limits of agreement to be as low as 0.3%
between ergometer and power meter. But the assumption
that a rope-braked laboratory ergometer provides an accurate
reference calibration has been questioned (Franklin, Gordon,
Baker, & Davies, 2006; Gardner et al., 2004). Gardner et al.
(2004) examined 26 power meters from two different manu-
facturers (SRM and Powertap), re-testing 15 power meters
after 11 months’ use. They found that both manufacturers’
power meters had similar reproducibility (~2.5% error), with
good long-term reliability over 11 months’ of use. Wooles
et al. (2005) performed repeat calibrations on 185 SRM devices
across a period of 18 months. Their reported mean percentage
drift in the calibration factor was only −0.15 once three
devices with mechanical problems were excluded. Gardner
et al. (2004) noted that some discrepancy in power measure-
ment between SRM and Powertap devices was evident at high
power outputs when used in the field. Bertucci et al. (2005)
reported similarly high agreement when comparing the same
manufacturers’ power meters, and the same exception for the
highest power outputs. Indeed, it is noted that most validity
and reliability studies have been conducted across power out-
puts typical of elite endurance riders. Therefore for starts and
sprints such as in the studies of Martin et al. (2006), and
Bertucci et al. (2013), it may be worth checking that the
linearity of response is maintained across the expected range
of measurement. Furthermore, fastidious attention to routine
maintenance, e.g., checking tightness of crank and chain ring
bolts can be critical to achieving replicable results. In more
recent studies not all power meter manufacturers have com-
pared favourably with criterion devices (Bertucci et al., 2013
[G-Cog], Duc, Villerius, Bertucci, & Grappe, 2007 [ErgomoPro],
Hurst & Atkins, 2006 [Polar S710], Kirkland, Coleman, Wiles, &
Hopker, 2008 [ErgomoPro], Millet, Tronche, Fuster, Bentley, &
Candau, 2003 [Polar S710]). Consequently, it appears that the
reasonable accuracy of commercial power meters should not
be assumed until verified. Once established though, power
meters can be used for monitoring training and performance
with a long-term accuracy and reproducibility of 2.5% or less.
Gardner et al. (2004) point out that this level of accuracy may
still present an issue in detecting changes important to com-
petitive cyclists.

Analysing power output data from training and
races

Cyclists from recreational to elite use power meters to exam-
ine in detail the power output profile for their training or race
performances. There are several studies characterising the
power output of notable competitive events (Abbiss, Straker,
Quod, Martin, & Laursen, 2010; Ebert et al., 2005; Vogt et al.,
2006, 2007). In flat road races mean power output for elite
men was found to be 220 ± 22 W or 3.1 ± 0.2 W·kg−1, and for a
hilly time trial 392 ± 60 W or 5.5 ± 0.4 W·kg−1 (Vogt et al.,
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2006). Mean power output for elite women in flat road races
was 192 ± 21 W or 3.3 ± 0.3 W⋅kg−1 (Ebert et al., 2005). In
contrast to racing, however, there is relatively little informa-
tion or analysis of power meter training data, especially for
elite cyclists over the course of a season.

To assist in exemplification of how power data from train-
ing and racing can be analysed, we present power meter data
from the 2011 season of a prolific Grand Tour cyclist in the
form of a case study. To enable use to present this data within
the review we obtained local university ethics committee
approval and informed consent from the cyclist for the use
of his data. During the year the Grand Tour cyclist completed
1143 h of training and covered a total of 35,622 km. He
competed regularly throughout the 2011 season most notably
in the Tirreno-Adriatico, the Spring Classics, the Criterium du
Dauphine, the Tour de France, the Eneco Tour and the World
Road Championships. In this review, we have restricted our
discussion to consider only methods of data interpretation
that have been published in peer-reviewed journal articles.
There are further proprietary methods, such as Normalised
PowerTM and Training Stress ScoreTM that we do not review
here as they have not been validated in scientific studies
published in peer-reviewed journals despite their common
use by coaches and cyclists.

Interpreting mean power output

Figure 1(a,b) illustrates the 30-s rolling mean power output
from two training sessions. Analysis for many scientists, ath-
letes and coaches may consist of simple visual inspection to
identify characteristics of interest, such as the highest power
output, the number of intervals completed or the extent of
variation in power output. The mean power output for a
training session provides one method of summarising or
“smoothing” the variation seen in Figure 1. Reducing a train-
ing session to a single number is attractive. The mean power
output calculated for sessions in Figure 1(a,b) are 125 W and
269 W, respectively. However, these mean values provide no
indication of the degree of variability in power output evident
in Figure 1.

Reflecting the implications of such variability usefully pre-
sents a major challenge for power meter data analysis. Often
the mean power output will not be commensurate with the
physiological strain a cyclist experiences unless the training

session is constant power in nature. Coggan (2003) proposed
the use of an exponentially weighted mean or “normalized
power” output to reflect the added stress a cyclist perceives
during variable intensity sessions. Using the “normalized
power” approach, data are smoothed using a 30-s moving
average (as this is the approximate time constant for many
physiological processes [e.g., heart rate] to respond to a
change in exercise intensity), before being raised to the fourth
power (derived from a regression of blood lactate concentra-
tion against exercise intensity). The transformed values are
then averaged with the fourth root taken to provide the
“normalized power”. Constant intensity sessions result in this
weighted mean remaining unchanged from the actual mean,
but for variable intensity sessions it increases as a function of
the proportion of higher intensity training completed. As an
example the weighted means of the two sessions in Figure 1
(a,b) are increased by their variability from 125 W to 158 W
and from 269 W to 307 W, respectively. Although widely used
by cyclists to summarise their training sessions and races, the
use of a “normalized power” or weighted mean has received
limited scientific evaluation (Skiba, 2007). It is important to
note that training sessions with very different physiological
and metabolic characteristics can still result in the same
weighted mean power output. Consequently, a more detailed
analysis of power meter data is required where it is important
to determine how the volume and intensity of training (and
racing) has been distributed. In the sections below we will
propose some alternative methods to address the limitations
of using averaged or weighted mean power outputs.

Binning training data

The mean and weighted mean provide helpful summary sta-
tistics, but cannot convey the power output distribution where
a session is variable in nature. Instead, the power output
distribution within a session can be described by the amount
of time spent within designated training “zones” or data bins.
To present the data visually the bins can be plotted to pro-
duce a session histogram. Indeed previous studies have used a
data binning approach to investigate physiological responses
during training and cycling competitions (Lucía, Hoyos,
Carvajal, & Chicharro, 1999; Palmer, Hawley, Dennis, &
Noakes, 1994). This histogram approach to describing training
data is illustrated below with data obtained from a Grand Tour

Figure 1. Power output for two training sessions from a professional Grand Tour cyclist. Power output is 30-sec rolling mean. See text for further details.
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Cyclist. The histogram illustrated in Figure 2 shows the two
training sessions from Figure 1(a) and (b) separated into time
bins. Ebert et al. (2005) used a similar comparison for two
types of women’s World Cup cycle road races. They calculated
the percentage of total race time spent within four data bins
(0–100 W, 100–300 W, 300–500 W and >500 W). Although
simple, this method is excellent for the purpose of overall
session comparisons (Jobson, Nevill, & Jeukendrup, 2005).

The use of data binning transposes the complex stochastic
power meter data into a simple, easy to interpret output. A
further method for analysing power meter data is to calculate
the maximum mean power output. This method sub-divides
the power meter data into efforts of varying durations or
epochs (typically from 5 to 600 s) rather than intensities. The
maximum mean power output produced for each of these
epochs is then identified (Quod, Martin, Martin, & Laursen,
2010). Changes in the power output associated with each
epoch may better reflect specific training effects. However,
as the data are collected during training and racing, changes
in cadence, gear ratio, drafting, road gradient, environmental
conditions and the tactical nature of mass start road races will
all affect the power output that is recorded in each epoch.
Consequently, it may be more appropriate to examine the
maximum mean power output across a period of training or
series of races rather than for individual sessions (Quod et al.,
2010). Figure 2 demonstrates the maximum mean power out-
put over two periods of the Grand Tour cyclist’s season.

Although simple and clear in use, the histograms depicting
training zones or maximum mean power output have some
limitations. The values used to define each bin largely remain
arbitrary and as such may not capture an important aspect of
the data. However, some research has attempted to address
this limitation by defining the data bin according to certain
physiological landmarks such as the ventilatory or anaerobic
thresholds (Munoz, Cejuela, Seiler, Larumbe, & Esteve-Lanao,
2014). However, the use of these physiological landmarks as a
method to stratify training stress has yet to be fully validated.
As training changes fitness, bin values may also need altering,
but comparison between differently binned data becomes
problematic. Furthermore, the number or duration of efforts
within a given data bin is not apparent. For example, a session
that requires a single 4-min effort at 400 W cannot be differ-
entiated from one with four 1-min efforts at 400 W. The
subsequent training effects of these two sessions may be
very different (Theurel & Lepers, 2008). In this regard,
Figure 3 illustrates data from two different races for the
Grand Tour cyclist. Both races in Figure 3 have exactly the
same mean (236 W), but the variability in power output differs
notably (SD 138 W vs. 205 W). Consequently, it would be
anticipated that the resultant physiological stress from these
two races would be very different. Using a binning method to
analyse the power data would not necessarily be capable of
identifying the difference in the variability of the two races.

Mathiassen and Winkel (1991) proposed exposure variation
analysis as a method to examine activity that is stochastic in
nature. Exposure variation analysis is a versatile data reduction
method that can be used to analyse numerical data which is
recorded continuously over time. Subsequently, exposure var-
iation analysis method has been used to examine not only
how power meter data is distributed between training zones,
but also the duration of sustained bouts too (Abbiss et al.,
2010; Passfield, Dietz, Hopker, & Jobson, 2013). Thus exposure
variation analysis is performed by defining a fixed number of
power bins which represent specific, non-overlapping power
output intervals (in Watts), and a fixed number of acute time
bins that represent specific, non-overlapping intervals of the
time spent (in seconds) in a given power bin. Abbiss et al.
(2010) used exposure variation analysis to compare variations
in the amplitude and time distribution of power meter data for
different cycling events. They found that exposure variation
analysis was able to detect differences in the distribution ofFigure 2. Mean maximal power output for two training sessions from a profes-

sional Grand Tour cyclist. Data are the same as used in Figure 1.

Figure 3. Power output for two races from a professional Grand Tour cyclist. Mean power output in both races is identical but SD varies notably (138 W vs. 205 W).
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power output for different race formats. Moreover, exposure
variation analysis has previously been used to examine the
influence of fatigue and pacing on cycling performance
(Peiffer & Abbiss, 2011). In Figure 4 we use exposure variation
analysis to further examine the two races with similar means
but differing variation in power output from Figure 3. After
exposure variation analysis, Figure 4 shows the distribution of
power output measures across training zones, but also classi-
fied according to the duration of each effort. The effect of the
greater variation in Race B can be seen as longer efforts are
sustained at the higher exercise intensities. However, whilst
this method can differentiate between different race charac-
teristics, it is has yet to be established whether it is sensitive to
training-induced changes (Passfield et al., 2013).

Critical power

An alternative approach to assigning power meter data to bins
or training zones is to model it instead. In recent years prob-
ably the most popular method for modelling endurance per-
formance has been the critical power model. The critical
power model is based upon the hyperbolic relation between
power output (P) and time to exhaustion (t) originally
described by Monod and Scherrer (1965) for bouts of repeti-
tive lifting exercises performed using isolated muscle groups.
A simple two-parameter model provides the mathematical
representation of this relation:

P� CPð Þt ¼ W0 (1)

where P is sustainable power output, CP is critical power, t is
time and W’ is anaerobic capacity.

To determine critical power a cyclist must typically com-
plete 3–5 bouts of exhaustive exercise lasting between 3 and
20 min (Vandewalle, Vautier, Kachouri, LeChevalier, & Monod,
1997). Mean power output from each bout is then modelled
using Equation 1 to construct a power output–duration curve.
Thus the critical power is a relevant parameter for cyclists to
consider as a significant period of time during both road race
and time trial competitions is spent within the severe-intensity
exercise domain (Vogt et al., 2006). Consequently, a significant
proportion of the total energetic contribution must be derived
from the predominantly “anaerobic” parameter of W′. The
critical power model can also be used to inform training and

predict performance, such as monitoring changes in endur-
ance fitness; assessing the effectiveness of training on specific
points on the curve and determining a cyclist’s relative
strengths and weaknesses.

The traditional method of critical power determination
required cyclists to complete exhaustive exercise bouts on
separate days in a laboratory (Hill, 1993). Recent studies have
proposed two alternative methods for estimating critical
power output from a single testing session; a 3 min test
(Vanhatalo, Doust, & Burnley, 2007) and a field test (Karsten,
Jobson, Hopker, Jimenez, & Beedie, 2014a). Vanhatalo et al.
(2007) proposed that the power output sustained during the
final 30 s of a 3 min all-out test corresponds to critical power.
In a follow up study (Vanhatalo, Doust, & Burnley, 2008), these
researchers also found the 3 min test to track training-induced
changes in critical power. However, recent studies indicate
that the interpretation of the 3 min test is controversial.
Dekerle, Barstow, Regan, and Carter (2014) found high intra-
subject variability in the agreement between 3 min test and
critical power, whilst Karsten, Jobson, Hopker, Passfield, and
Beedie (2014b) suggest that the ergometer used may also
affect agreement. As an alternative single visit protocol,
Karsten, Jobson, Hopker, Stevens, and Beedie (2015) found a
field test comprising of three all-out trials of 3, 7 and 12 min,
with 30-min recovery, provides a measure of critical power
(Karsten et al., 2014a, 2015). Indeed, Karsten (2014) has shown
that critical power can be estimated reasonably from the peak
3-, 7- and 12-min power output values observed during train-
ing (i.e., without employing a specific test protocol). Figure 5
illustrates critical power calculated in this manner from the
combined training and racing data obtained from the Grand
Tour cyclist over the course of a season. Both training and race
data are used to construct the critical power profile so as to
capture the absolute peak 3-, 7- and 12-min efforts that the
cyclist was capable of during the period of observation. It can
be seen that the Grand Tour cyclist’s critical power and W′
were highest during his main competitive phase of the season
(Dauphine, National Championships, Tour de France, Eneco
Tour). The obvious double peak in critical power suggests
this method of analysis may reflect changes in fitness.
Interestingly, the second peak in the cyclist’s critical power,
and his highest W′, is seen in October which was associated
with his preparation for and competition in Paris-Bourges and
Paris-Tours races. There are, however, obvious limitations with

Figure 4. Exposure variation analysis for two races from a professional Grand Tour cyclist. The frequency of data observed between the different intensities (W) is
shown. Different symbols are used to show the effort duration (seconds). Data are the same as used in Figure 3.
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the critical power model in that it is asymptotic in nature, and
typically restricted to efforts between 3 and 20 min
(Vandewalle et al., 1997).

Record power profile

It has long been recognised that human performances are not
asymptotic but tend follow an exponential curve (Kennelly,
1906). The record power profile (Pinot & Grappe, 2011)
acknowledges this by using maximum power output for dif-
ferent durations to generate a power output–duration curve
that is much more extensive than the 3–20 min used to
calculate critical power (Vandewalle et al., 1997; Vanhatalo
et al., 2007). Thus, the record power profile extends the pre-
viously mentioned MMP and CP methods of analysis by estab-
lishing the relationship between different sequential records
of power output and the corresponding time training/race
durations during a whole race season.

Figure 6 shows the record power profile for the Grand Tour
cyclist over different phases of the cycling season. The record
power profile is constructed from time intervals of 5 s to
5 min, and then over 5 to 240 min. The record power profile
presents the exponential curve that reflects mean record
power output of 12 W⋅kg−1 (5 s) and 3 W⋅kg−1 (4 h). In
Figure 6 the average of all training and racing data for the
specified time period are presented. Figure 6 shows power

output for the May–August period is higher than for any other
time point of the season. It is also apparent that 5 s to 5 min
power output is higher in September–December than
January–April. In contrast, 5 to 240 min power output is
lower in September–December than January–April. The record
power profile can be divided into sections; from 5 s to 5 min
the profile decreases by ~50% regardless of time of the sea-
son. From 5 min to 60 min the profile decreases by 30% in
January–April and October–December respectively, but by less
(27%) in May–August. From 60 min to 240 min a decline of
20% in January–April and October–December, is slightly less
(19%) than in May–August.

Variability in power output

As with many other behavioural and physiological processes,
cycling power output is highly irregular or stochastic, even
during apparently steady-state exercise. The variance or stan-
dard deviation of the data set provides an indication of the
extent to which power output varies during training and
racing. In Figure 3, we presented data from two races for the
Grand Tour cyclist with exactly the same mean power output
of 236 W, but where the standard deviation was quite differ-
ent (Figure 3(a) = 138 W vs. Figure 3(b) = 205 W). Despite the
identical mean power output, the higher variation in power
output is likely to be indicative of a more stressful race and
therefore could be useful to monitor and evaluate. Tucker
et al. (2006) noted that during time-trial type efforts, the
large variability in power output between and within a
group of 11 cyclists, also exhibited a high degree of self-
similarity. This observation suggests that the standard devia-
tion is not the best index for monitoring power output varia-
bility during training and racing. Instead, methods that
provide a calculation of long-range correlations in time series
data such as detrended fluctuation analysis (DFA) may be
more appropriate. Within DFA analysis stronger correlations
suggest a more predictable, regular time series, whereas
weaker correlations indicate a less predictable time series
(Peng, Havlin, Stanley, & Goldberger, 1995). The main advan-
tage of using DFA as opposed to other analytical methods
(such as spectral analysis) is that it is robust in regard to non-
stationary, or unpredictable, data in the time series (Chen,
Ivavnov, Hu, & Stanley, 2002). A DFA was performed on the
race data presented in Figure 3 (Figure 3(a) DFA = 1.07 and

Figure 5. Critical power modelled from power meter data of a professional
Grand Tour cyclist. Critical power is calculated from all training and racing data
each month. Error bars show SD.

Figure 6. Record power profile for a professional Grand Tour cyclist over three different phases of the cycling season (January–April, May–August and September–
December). Figure 6(a) shows the record power profile for efforts of 5 s to 5 min. Figure 6(b) shows the record power profile for efforts more than 5 to 240 min.
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Figure 3(b) DFA = 0.87, respectively). These results are consis-
tent with the anticipated physiological stress of the different
races (Theurel & Lepers, 2008). Further research is required to
establish whether this method reflects real physiological phe-
nomena, or the wider applicability of fractals.

Modelling training and performance

Monitoring training sessions and race performances with a
power meter provides an opportunity for the relation between
them to be modelled. Power meter data could be used to
form the input for a model used to predict future performance
and to prescribe and optimise training. Banister, Calvert,
Savage, and Bach (1975) proposed a systems theory approach
to modelling the responses to endurance training.
Subsequently developed by others (Busso, 2003; Morton,
1997) their approach attempted to abstract the training pro-
cess into an impulse-response-based mathematical model. The
model was characterised by a training impulse and a perfor-
mance response linked by a mathematical “transfer function”
(Busso & Thomas, 2006). This modelled function follows the
general form:

Performance ¼ fitness from trainingð Þ � fatigue from trainingð Þ

Calvert, Banister, and Savage (1976) suggested that training
data could be used to calculate an elicited fatigue response
(that decreases performance), and two fitness responses (that
increase performance). Hellard et al. (2006) suggested that
modelling-based research could provide information about
inter-individual differences and inform the construction of
individualised training programmes. However, Taha and
Thomas (2003) observe that current models (e.g., Busso,
2003; Jobson, Passfield, Atkinson, Barton, & Scarf, 2009;
Morton, 1997) do not correspond with contemporary under-
standing of physiological mechanisms and are unable to dis-
tinguish the specific effects of different training impulses.
Furthermore, inter-study and inter-subject variability in
model parameter estimates limit the ability to develop and
apply a generalisable model. Addressing the latter issue, some
of the present authors examined whether individualised para-
meter values can be determined from the relation between
power output and heart rate data (unpublished study).
However, this method was successful, the resulting model
cannot determine an individual’s capacity for fatigue.
Consequently, impulse-response models might inform training
planning theory, but alternative models are required to pro-
duce acceptable accuracy (Busso & Thomas, 2006).

Training adaptation is a complex non-linear problem
because the biological system changes itself (Pfeiffer &
Hohmann, 2012). Recognising this, Edelmann-Nusser,
Hohmann, and Henneberg (2002) and Pfeiffer and
Hohmann (2012) used a non-linear multi-layer perceptron
neural network to model the performance of an Olympic-
level swimmer. In both cases, the model produced a “pre-
diction error” of less than 1%. But whilst the predictive
power of neural networks is impressive, they function as a
“black box” and cannot explicitly identify causal relation-
ships (Hellard et al., 2006). A further problem is that

“training” neural network models requires a large amount
of training data to be collected from athletes over a pro-
longed period of time. In predicting the performance of a
single swimmer, Edelmann-Nusser et al. (2002) and Pfeiffer
and Hohmann (2012) overcame this problem by training the
model with data from a second swimmer. This method
proved to be successful but, as noted by the authors, it
may have been fortuitous that the adaptive response of
both athletes was similar.

Future directions and considerations

Since the introduction of the first commercially available
power some 30 years ago, the availability and use of power
meters has changed considerably. From current trends, it
seems likely that the cost and specification of commercially
available power meters will continue to improve. These devel-
opments will facilitate our ability to monitor cyclists’ training
and racing with the accuracy necessary to detect meaningful
changes in performance. This in turn will require an improve-
ment in our current methods for visualising and analysing
large volumes of training data such as that proposed by
Kosmidis and Passfield (2015). Particularly challenging is the
development of novel methods and metrics for quantifying
the training load given the stochastic nature of cyclists’ train-
ing and racing. A further challenge is to develop useful and
valid models linking training and performance. An exciting
prospect for the future is to be able to model the effects of
individual cyclist’s training on performance. This would mean
that cyclists’ training and consequent performance could be
optimised with the appropriate analysis of their power meter
data. Perhaps the most significant issue of all, however, is that
despite so many different ways to analyse power output, there
is not a single reference measurement of performance. It is
difficult to evaluate the implications of different methods of
analysis of power meter data without being able to bench-
mark against corresponding changes in performance.
Consequently, the biggest issue with many of the methods
of analysis discussed is that they have not been able to use a
model that has clear input and output variables. In this regard
a promising approach may be to develop new ways of analys-
ing large amounts of training and race data that links time
spent in training to a flexible model of performance (Kosmidis
& Passfield, 2015).
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