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Abstract—This paper develops a finite time output feedback 

based control scheme for a class of nonlinear second order 

systems. The system representation includes both model 

uncertainty and uncertain parameters. A finite time parameter 

estimator is developed. This facilitates the design of a finite time 

observer based on the well-established step-by-step sliding mode 

observer design approach. A terminal sliding mode control 

scheme is then developed using the corresponding state estimates. 

The methodology is applied to a continuous stirred tank reactor 

system to validate the effectiveness of the proposed approach. 
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I. INTRODUCTION 

Finite time stabilization is an active area of research in 
control theory which has been motivated by increasing 
robustness requirements coupled with demands for enhanced 
tracking performance [1]. Early contributions on continuous 
finite time controllers for the double integrator system appear 
in [2], [3] and subsequently many other results have been 
produced exploring both the theory and application of the finite 
time control paradigm. For the case of a known system 
representation without uncertainty an output feedback based 
finite time controller can be found in [4] and finite time 
stability of a class of time invariant continuous systems can be 
found in [5]. More recent work on the finite time stabilisation 
of a double integrator system can be found in [6] where finite 
time output feedback is studied without considering robustness 
to disturbances. A Lyapunov function for the perturbed double 
integrator is proposed in Reference [7] but the robustness 
claims are presented without proof. An augmented continuous 
sliding mode controller which assumes full state feedback is 
shown to be robust to persisting disturbances but with the 
trade-off that the derivative of the disturbance is required to be 
bounded in [8]. Very recently, the problem of finite-time 
output stabilisation of the double integrator has been addressed 
applying a homogeneity approach. A homogeneous controller 
and a homogeneous observer are designed ensuring finite-time 
stabilization and the robustness of the resulting scheme is 
analysed  [9]. Finite time control via output regulation for a 
chain of integrators subject to both matched and unmatched 
disturbances is presented in [10]. A finite time control 
methodology is developed using a finite time disturbance 
observer.  

This paper considers finite time stabilization by output 
feedback control in the case of an uncertain system where the 
class of second order systems considered is broader than the 
double integrator system which has been the topic of many 
previous contributions. As not all system states can be 
measured, an observer based output feedback control will be 
employed. A number of candidate asymptotic observers have 
been presented for second order nonlinear systems using a 
range of design paradigms including a high gain nonlinear state 
observer [11], a sliding mode observer [12], an adaptive 
nonlinear observer [13] and a robust observer designed using 
Lyapunov techniques and using LMIs [14]. By combining such 
observers with existing state feedback control methodologies, 
various output feedback control strategies have been designed 
[15-17]. It should be noted however that many of these existing 
approaches prescribe asymptotic stability of the output error. 
The price of increased speed of convergence and tighter 
tracking accuracy in these approaches will frequently be a high 
gain system which can prove unacceptable in practice. 

To achieve finite time stability of the closed-loop system, it 
is necessary to use a finite time observer to estimate the states 
for use by the control law. There are several candidate finite 
time stable state observers described in the literature, including 
the super twisting second order sliding mode observer [18], 
terminal sliding mode observer [19] and finite time Lyapunov 
function based observer [20]. Here the step by step observer 
framework is selected because of its straightforward and 
intuitive design approach [21]. This method requires 
computation of the equivalent injection in order to provide an 
estimate of the state estimation error. This yields problems 
when the system contains disturbances and/or uncertainty in 
the dynamics of the measured state and existing contributions 
applying this method for second order nonlinear systems 
assume the corresponding disturbance signals and/or 
uncertainty are known or measurable [22,23]. This is clearly a 
limiting assumption. In this paper, a finite time parameter 
estimator is developed to estimate the corresponding 
uncertainty in the measureable state which can be used in the 
equivalent injection computations within the step by step 
observer design. A novel adaptive finite time observer results 
and an integral terminal sliding mode controller is then 
designed. The parameter estimator, observer and controller are 
all shown to be finite time stable. Finally, the Continuous 
Stirred Tank Reactor (CSTR), a typical chemical engineering 
process, is used to validate the proposed approach.  
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II. PROBLEM FORMULATION 

Consider the following second order nonlinear system  
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Here 1 2,x x R  are the system states,  2g x R  is known 

and  1

2g x
 exists, with both being bounded, u R  is the 

control input,  1 1 2,f x x R ,  2 1 2,f x x R  are known and 

bounded,  1 1 2,d x x R  is uncertain,   1

2 2

nd x R   is known, 

1nR   represents an unknown parameter vector, 0   is a 

constant and y R  is the system output. The following 

assumptions are made on the system (1): 

Assumption 1:  1 1 2 1,d x x  , 1 0   is known. 

Assumption 2:  2 2 2d x   , 2 0   is known. 

Remark 1: Equation (1) can represent a chemical system such 

as the CSTR (23) . If 0  ,  1 1 2, 0f x x   and  1 1 2, 0d x x   

it represents mechanical systems [26]. 
A finite time output feedback control for the system (1)   

which contains uncertainty in the parameters and the dynamics 
is sought. To achieve this objective, an adaptive finite time 
parameter estimation approach is first developed in order to 
facilitate the design of a sliding mode, step by step observer. 
Then, a finite time output feedback sliding mode control can 
be designed by combining the finite time observer with an 
integral terminal sliding mode control strategy. 

III.  A FINITE TIME STABLE OBSERVER 

In this section, a finite time stable observer will be 
designed using a step-by-step observer design combined with 
an adaptive finite time parameter estimator.  

A. Finite time parameter estimator 

Initially assume 1x  and 2x  are measurable. A finite time 

parameter estimator can be designed by using the filter 

method [24]. The dynamic equation of 2x in (1) is first 

rewritten as: 

   2 1 2 2, ,x x x u x                                                  

where      1 2 2 2 1 2, , ,x x u g x u f x x    and  2x   

 2 2d x . Define the following filters: 

 

       

       

2 2 2 2

2 2 2

1 2 1 2 1 2

, 0 0

, 0 0

ˆ, , , , , , , 0,0,0 0

f f f

f f f

f f f

kx x x x

k x x x

k x x u x x u x x u   

  

     

  
 

(3) 

where 0k   is the filter parameter.  

2 2

2
ˆ

f

f f f

x x
x

k
 


  

                                              


Define the following auxiliary filtered regressor matrices: 
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

where 0l  . The solution to (5) is given as: 
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

It is obvious that: 

   1P t Q t 
                                                               



Now, define another auxiliary variable as: 

       ˆW t P t t Q t 
                                                 



where ̂  is the estimate of  . The finite time adaptive 

parameter estimator is then defined by: 

    ˆ sgnTP t W t  
                                                  



where         1sgn [sgn , ,sgn ]T

nW t W t W t . 

Lemma 1 [25]: A vector or matrix function  x  is 

persistently excited (PE) if there exist 0T   and 0   such 

that    
t t

T

t
r r dr I  



 , 0t  . 

Lemma 2 [24]: The matrix  P t  is positive definite and 

satisfies   min P t   for t T  and 0  , 0T  , if the 

regressor matrix  2x  is PE. 

Lemma 3 [26]: If 1 2, , , na a a  are all positive numbers, and 

0 2p  , then the following inequality holds: 

   
2

2 2 2

1 2 1 2

p
p p p

n na a a a a a     
 

The following theorem is now ready to be presented. 

Theorem 1: For system (1), define the estimation error 

ˆ    . If the parameter estimation law is designed as (8), 

and  2x  is PE, then 0   in finite time.  

Proof: Selecting a Lyapunov function as: 

1

1

2

TV  
                                                                   



By using (7-9), it will be: 

    1 sgnT TV P t P t  
                                            



         1
1
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T
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n
V P t P t P t     

  


By using Lemmas 2 and 3, the following equation holds: 
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1

n

i
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
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

1 1 1V V 
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where  1

1 max2     , and 0   as 1st t , 

 1 1 12 0st V  . 

Remark 2: The parameter estimator (9) requires that the 

system states are measurable as in [24]. Frequently, however, 

states such as acceleration and velocity in mechanical systems 

and concentrations in chemical systems cannot be measured. 

To overcome this constraint, the parameter estimator will be 

combined with a step-by-step sliding mode state observer in 

order to develop a novel, adaptive finite time observer and 

parameter estimator.  

B. Finite time state observer 

To design a finite time observer using the step by step 

observer approach, the equivalent injection approach is used 

in the 2x  error dynamics to derive the corresponding 

estimation error for 1x  subsystem. If there are parameter 

uncertainties in the dynamics of 2x , the corresponding 

estimation error for 1x  cannot be obtained. It is thus first 

necessary to estimate the unknown parameters for use in the 

equivalent injection computation within the observer design. 

If 1x  is not measurable, the filters in (3)-(6) are redesigned 

as: 
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
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f f
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     1P t Q t t  

                                                 


where   1nt R    is caused by the error between the 

actual state 1x  and the corresponding estimate. 

An adaptive parameter estimator is designed as: 

       2 2 2
ˆ ˆsgnT TP t W t x d x   

                         


Define the following corresponding finite time observer: 

   

       

1 1 2 1 1 2 1 1 1

2 2 2 1 2 2 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ, sgn

ˆˆ ˆ ˆ ˆ ˆ ˆ, sgn

x x x f x x x x

x g x u f x x d x y x

 
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     

    
   



where 1 2, 0   , 1x  are to be defined. Define the 

estimation error between the plant and observer as: 

1 1 1

2 2 2

ˆ

ˆ

x x x

x x x

 

 
                                                                    



Let:  

     1 1 1 1 2 1 1 2
ˆ ˆ, , ,f x t f x x f x x   ,  

     2 2 2
ˆg x g x g x   ,  

     2 2 2 2 2 2
ˆd x d x d x   ,  

     2 1 2 2 1 2 2 1 2
ˆ ˆ, , ,f x x f x x f x x     

The observer error system may then be expressed as: 

     

       

 

1 1 2 1 1 2 1 1 2 1 1 1

2 2 2 1 2 2 2 2
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ˆ, , sgn

ˆ, +

ˆsgn

x x x f x x d x x x x

x g x u f x x d x d x

y x
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

      

    

      


In order to prove that the observer estimation error 

converges to zero in finite time, it is necessary to impose the 

following assumptions on the terms relating to the plant and 

observer mismatch and the boundedness of the applied control 

signal.  

Assumption 3:  1 1 2 4,f x x   ,  2 5g x    and 

 2 1 2 6,f x x   ,  2 2 7d x    , 4 5 6 7, , , 0     . 

Assumptions 4: The control input u  is essentially bounded.  

Assumption 5:          
i i

P t t P t t   , where  
i
 

denotes the ith element of a vector, 1, ,i n . 

Assumption 6: 1x  is a real root of equation 

   2 1 2 2 1 2
ˆ ˆ ˆ, ,f x x f x x c  , c  is a constant.  

The following result may now be presented.  

Theorem 2: Under Assumptions 1-6, the adaptive state 

observer defined in equation (20) and (21) is finite time stable 

and 1x , 2x  and   converge to zero in finite time.  

Proof:  

Step 1: To prove 2x  will be zero in finite time. 

Selecting a Lyapunov function as: 
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
      

        


In light of Assumptions 3-6, it follows that: 

     

         
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T

T T

n

V x x g x u f x x d x
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      

 

2 2 2 2 2 1 2 2 2,V x g x u f x x d x
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 



       


   



If 2  is large enough,    2 2 2 1 2,g x u f x x      

 2 2d x  1 0  , (27) becomes: 

 2 1 2V x P t   
                                                   



2

2 2 2 1

1 1

2 2

TV x     
                                          



where 2 12  . Let  1 2min ,    and use Lemma 3 

again: 
1

1
2

2 2
2 2

1 1

2 2

TV x V   
 

     
                                   



According to the finite time stability principle, 2x  and   

will be zero after 2st t , 
 0.5

2

0

2
s

V
t


 . 

As 2st t , the following equation holds: 

       

 
2 2 1 2 2 2 2

2 2

ˆ, +

ˆsgn 0

g x u f x x d x d x

y x

 



    

                   
 

Note that, as 2st t , 0  ,  2 0g x  ,  2 2 0d x  , 

then 

   2 1 2 1 1̂, sgn
eq

f x x y x    
                                    

 

After 2st t ,      2 1 2 2 1 2 2 1 2
ˆ ˆ ˆ, , ,f x x f x x f x x   , 

consider Assumption 6 and let: 

  1 1 1̂sgn
eq

x F y x   
                                           

 

where  F   is a smooth function.  

Step 2: To prove 1x  will be zero in finite time. 

Defining   1 1 1 1
ˆ ˆsgn

eq
x F y x x     , and considering 

(23), the following Lyapunov function can be selected as: 

2

3 1

1

2
V x

                                                                        



      3 1 1 2 1 1 2 1 1 2 1 1 1̂, , sgnV x x x f x x d x x x x       

 

   3 1 1 1 1 2 1 1 2 1 1 2, ,V x x x x f x x d x x      
    


     3 1 1 2 1 1 2 1 1 2, ,V x x f x x d x x       
         



If 1  is large enough, there must be a sufficiently large  

such that: 

   1 2 1 1 2 1 1 2 2, , 0x f x x d x x       
                   

Then the following inequality is satisfied:
 

3 2 1V x 
                                                                    

 

It follows that 1 0x   for 3st t ,  3 1 20st x  . In 

light of the above, 1x , 2x  and   converges to zero in finite 

time and the Theorem is proved. 

IV. FINITE TIME OUTPUT FEEDBACK SLIDING MODE CONTROL 

In this section an output feedback Terminal Sliding Mode 

Control (TSMC) will be designed for (1) using the state 

estimates from the observer developed in the previous section. 

The following additional assumption is required on the 

boundedness of the desired trajectory. 

Assumption 7: The desired trajectory ,r ry y R  is bounded.  

By using estimated 2x̂ , the tracking error is defined as: 

2 2
ˆ ˆ

re x y 
                                                                    



A corresponding sign integral terminal sliding mode is 

defined by: 

   
 

2 2

2

2 2 2

ˆ ˆ ˆ

ˆ 0
ˆ ˆ ˆsgn , 0

I

I I

s e e

e
e e e





 

  
                                 



where 0  , as 
 2

4

ˆ 0
s

e
t


 , 2 2 0Ie e   [27]. Using 

(21) it follows that: 

       

 

2 2 1 2 2 2 2 2

2

ˆˆ ˆ ˆ ˆ ˆ ˆ, sgn

ˆsgnr

s g x u f x x d x y x

y e

 



    

 
     



In terms of (36), the terminal sliding mode control can be 

defined as: 

       

 

   

1

2 2 1 2 2 2 2 2

2

1

2

ˆˆ ˆ ˆ ˆ ˆ, sgn

ˆsgn

ˆ ˆsgn

eq

r

s

eq s

u g x f x x d x y x

y e

u g x K s

u u u

 







    


  

 

 
 

 

Theorem 3: If Assumptions 1-7 hold, the tracking error 

2 2 re x y   will be finite time stable and 1x  will be 

Lyapunov stable if the control law is designed as in (42). 

Proof: 

Selecting a Lyapunov function as: 

2

4

1
ˆ

2
V s

                                                                        


       

 

4 2 2 1 2 2 2 2 2

2

ˆˆ ˆ ˆ ˆ ˆ ˆ, sgn

ˆsgnr

V s g x u f x x d x y x

y e

 



    


    


Substituting (42) into (41): 

4
ˆV K s 

                                                                     
 

From (45), 2ê  will reach ŝ  in finite time 
 

5

ˆ 0
s

s
t

K
 , then 

2ê  will converge to zero in finite time along ŝ  after time 

4 5s st t t  . It should be noted that, if 1x̂  and 2x̂  converge to 

1x  and 2x , the control law should be: 



       

   

1

2 2 1 2 2 2 2

1

2

, sgn

sgn

eq r

s

eq s

u g x f x x d x y e

u g x K s

u u u

 



      

 

 



where 

   
 

2 2

2 2

2

2 2 2

0
sgn , 0

r

I

I I

e x y

s e e

e
e e e





 

 

  
 

Substituting (46) into (1): 

 2 2sgne e 
                                                               



It is obvious that 2e  will be zero in finite time. If 2x  

converges to ry  in finite time, the dynamics of 1x  will be: 

   1 1 1 1 1 1, ,r r rx x y f x y d x y    
                          



Selecting a Lyapunov function candidate for (40) as: 

2

5 1

1

2
V x

                                                                        


   2

5 1 1 1 1 1 1 1 1 1 1 2, ,r rV x x x x y x f x y x d x x     
     



   2

5 1 1 1 1 1 1 1 1 2, ,r rV x x y x f x y x d x x    
     



Note that 
ry ,  1 1, rf x y  and  1 1 2,d x x  are all 

bounded, let that     1 1 1 1 2 3, ,r ry f x y d x x    , 3 0   

is a constant.  

5 1 1 3V x x                                                           
 

Then, 1x  will converge to a residual set 3

1 1x x




 
   

 
 

and 1x  is Lyapunov stable. 

V. CASE STUDY:CONTINUOUSLY STIRRED TANK REACTOR 

In this section, a CSTR system is used to illustrate the 

proposed approach. The dimensionless dynamic equations of 

the CSTR are taken from [28]: 

   

     

2 2

2 2

1

1 1 1 1

1

2 2 1 2 2 2

2

1

1

x x

a

x x

a c

x x D x e d

x x BD x e x x u x

y x




  





    

       



 

where 1 2,x x R  are the states, y R  is the system output 

which represents the dimensionless temperature, 1d R  is the 

external disturbance, 2 2d x  in which 2  is the heat transfer 

coefficient. The parameters are set as: 8B  , 0.3  , 

20  , 0.078aD  , 2 0cx  , 1 0.01d  , 0.04  . The 

desired trajectory of the system output is assumed to be: 

 2

2 11
k t

r sy x k e


   

where 2 2.7517sx  , 1 1k   and 2 1k  . The controller 

parameters are chosen as: 100k  , 1l  , 5 , 1 0.5  , 

2 0.5  , 0.2  , 0.2K  .  

Figure 1 shows the evolution of the parameter estimates 

where ̂  converges to   in finite time. Because of the finite 

time parameter estimation, 1x  can be obtained from the 

equivalent injection principle and the state observer stabilizes 

1x̂  and 2x̂  to 1x  and 2x  in finite time as shown in Figures 2-

3. To avoid chattering, a saturation function  y x x    is 

used instead of the sign function  sgny x , where 0   is 

a small constant. By using the saturation function, the control 

input is smooth. 

 
Figure 1 Parameter estimation 

 
Figure 2 Concentration and its estimation 

 

 
Figure 3 Temperature and its estimation 



 
Figure 4 Control input 

VI. CONCLUSION 

The problem of finite time output feedback control for a 

class of second order nonlinear systems has been considered. 

The assumed system representation includes uncertainty in the 

parameters as well as model uncertainty. An adaptive finite 

time parameter estimator is first developed to estimate the 

unknown parameters. This is shown to facilitate finite time 

state observer design. Finally, a terminal sliding mode control 

is developed. The design procedure is straightforward and 

constructive. The proposed approach is validated by using 

simulation of CSTR system. Future work will involve 

practical implementation of the proposed control strategy.  

ACKNOWLEDGEMENT 

Professor Spurgeon gratefully acknowledges support from 

the Chinese Ministry of Education Chang Jiang Scholars 

Programme which supported her visit to the China University 

of Petroleum. 

REFERENCES 

[1] S. Bhat and D. Bernstein, “Finite time stability of continuous 
autonomous systems,” SIAM J. Control Optim. vol. 3, pp. 751-766, 
2000. 

[2] S. Bhat and D. Bernstein, “Finite time stability of homogeneous 
systems, ” Proceedings of the American Control Conference, 1997. 

[3] S. Bhat and D. Bernstein, “Continuous finite time stabilization of the 
translational and rotational double integrators,” IEEE Transactions on 
Automatic Control. vol. 5, pp.  678-682, 1998. 

[4] Y. Hong, J. Huang and Y. Xu, “On an output feedback finite-time 
stabilization problem,” IEEE Transactions on Automatic Control. vol. 2,   
pp. 305-209, 2001. 

[5] E. Moulay and W. Perruquetti, “Finite time stability and stabilization of 
a class of continuous systems,” Journal of Mathematical Analysis and 
Application. vol . 2, pp. 1430-1443, 2006. 

[6] E. Bernuau, W. Perruquetti, D. Efimov, and E. Moulay, “Finite-time 
output stabilization of the double integrator,” 51st IEEE Annual 
Conference on Decision and Control (CDC). pp. 5906–5911, 2012. 

[7] R. Santiesteban, “Time convergence estimation of a perturbed double 
integrator: family of continuous sliding mode based output feedback 
synthesis,” Proceedings of the European Control Conference. pp. 3764-
3769, 2013. 

[8] A. Chalanga, S. Kamal, and B. Bandyopadhyay, “Continuous integral 
sliding mode control: a chattering free approach,” Proceedings of the 
IEEE International Symposium on Industrial Electronics. pp. 1-6, 2013. 

[9] E. Bernuau, W. Perruquetti, D. Efimov, and E. Moulay, “Robust finite-
time output feedback stabilisation of the double integrator,” 
International Journal of Control. Vol. 3, pp. 451-460, 2015. 

[10] S. Li, H. Sun, J. Yang and X. Yu. “Continuous finite-time output 
regulation for disturbed systems under mismatching condition,” IEEE 
Transactions on Automatic Control. Vol. 1, pp. 277-282, 2015. 

[11] H. K. Khalil and L. Praly. “High-gain observers in nonlinear feedback 
control,” International Journal of Robust and Nonlinear Control. vol. 6, 
pp: 993–1015, 2014. 

[12] S. K. Spurgeon. “Sliding mode observers: a survey. International Journal 
of Systems Science,” vol. 8, pp: 751-764, 2008.  

[13] S. J. Yoo. “Adaptive-observer-based dynamic surface tracking of a class 
of mobile robots with nonlinear dynamics considering unknown wheel 
slippage,” Nonlinear Dynamics. Vol. 4, pp. 1-12, 2015. 

[14] L. Hassan, A. Zemouche and M. Boutayeb. “Robust observer and 
observer-based controller for time-delay singular systems,” Asian 
Journal of Control. vol. 1, pp. 80–94, 2014. 

[15] Z. Yu, S. Li and F. Li, “Observer-based adaptive neural dynamic surface 
control for a class of non-strict-feedback stochastic nonlinear systems,” 
International Journal of Systems Science. vol. 1, pp. 194-208, 2016. 

[16] A. Mujumdar, B. Tamhane and S. Kurode. “Observer-based sliding 
mode control for a class of noncommensurate fractional-order systems,” 
IEEE/ASME Transactions on Mechatronics. vol. 5, pp. 2504-2512, 
2015. 

[17] Z. Li, C.-Y. Su, L. Wang, Z. Chen and T. Chai. “Nonlinear disturbance 
observer-based control design for a robotic exoskeleton incorporating 
fuzzy approximation,” IEEE Transactions on Industrial Electronics. vol. 
9, pp. 5763-5775, 2015. 

[18] D. Jorge, L. Fridman and A. Levant. “Second-order sliding-mode 
observer for mechanical systems,” IEEE Transactions on Automatic 
Control. vol.11, pp. 1785-1789, 2005. 

[19] Y. Feng, X. Yu and F. Han. “High-order terminal sliding-mode observer 
for parameter estimation of a permanent-magnet synchronous motor,” 
IEEE Transactions on Industrial Electronics. vol. 10, pp. 4272-4280, 
2013. 

[20] J. Moreno and M. Osorio. “A Lyapunov approach to second-order 
sliding mode controllers and observers,” 47th IEEE Conference on 
Decision and Control, pp.2856-2861, 2008. 

[21] I. Haskara, Ü. Özgüner and V. Utkin. “On sliding mode observers via 
equivalent control approach,” International Journal of Control. vol. 6, pp.  
1051-1067, 1998. 

[22] D. Zhao, S. Li and Q. Zhu. “Output feedback terminal sliding mode 
control for a class of second order nonlinear systems,” Asian Journal of 
Control. vol. 1, pp. 237-247,2013. 

[23] D. Zhao, Q. Zhu and J. Dubbeldam. “Terminal sliding mode control for 
continuous stirred tank reactor,” Chemical Engineering Research and 
Design. pp. 266-274, 2015. 

[24] J. Na, M. N. Mahyuddin, G. Herrmann, X. Ren and P. Barber. “Robust 
adaptive finite-time parameter estimation and control for robotic 
systems,” International Journal of Robust and Nonlinear Control. vol. 16, 
pp. 3045–3071, 2015. 

[25] S. Sastry and M. Bodson. Adaptive Control: Stability, Convergence, and 
Robustness. Prentice Hall: New Jersey, 1989. 

[26] S. Yu, X. Yu, B. Shirinzadeh and Z. Man. “Continuous finite-time 
control for robotic manipulators with terminal sliding mode,” 
Automatica. vol. 11, pp. 1957–1964, 2005. 

[27] C.-S. Chiu. “Derivative and integral terminal sliding mode control for a 
class of MIMO nonlinear systems,” Automatica. vol. 2, pp. 316–326, 
2012. 

[28] M. C. Colantonio, A. C. Desages, J. A. Romagnoli, A. Palazoglu. 
“Nonlinear control of a CSTR: disturbance rejection using sliding mode 
control,” Industrial & Engineering Chemistry Research. Vol. 7, pp.   
2383–2392, 1995. 

 


