
Medina, Jose Cadenas (2015) Pipelined median architecture. Electronics
Letters, 51 (24). pp. 1999-2001. ISSN 0013-5194.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/57351/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1049/el.2015.1898

This document version
Pre-print

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/57351/
https://doi.org/10.1049/el.2015.1898
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Pipelined median architecture

J. Cadenas✉
Techset Com
The core processing step of the noise reduction median filter technique
is to find the median within a window of integers. A four-step pro-
cedure method to compute the running median of the last N W-bit
stream of integers showing area and time benefits is proposed. The
method slices integers into groups of B-bit using a pipeline of W/B
blocks. From the method, an architecture is developed giving a
designer the flexibility to exchange area gains for faster frequency of
operation, or vice versa, by adjusting N, W and B parameter values.
Gains in area of around 40%, or in frequency of operation of around
20%, are clearly observed by FPGA circuit implementations compared
with latest methods in the literature.
Introduction: The median filter is a well-established technique for noise
reduction in image processing and yet the concept of the median finds
new applications in image forensics [1], electrocardiography [2] and
in fast processing of real-time systems [3]. For N = 2k + 1 sorted integers
the median is the integer at the middle position. Hardware architectures
for computing the median are broadly classified in sorting-based
methods [4] and non-sorting-based methods [5, 6]. As sort is theoreti-
cally bound by O(NlogN) time, non-sorting methods have emerged
driven by the idea of completing the median in O(W) time, where W
is the bit length of the integers of the unsorted set from where the
median is sought. Typically, in hardware scenarios, W is restricted to
high-resolution analogue-to-digital converters (ADCs) with W≤ 24, or
to bytes for image pixels, thus even for modest values of N, non-sorting
median calculation methods gain an advantage.

Table 1: Window with integers xj = {6, 0, 12, 13, 10, 3, 15, 5, 9}
and on-the-fly addition of B-to-T encoding on 2-bit slices
(xj)10
 (xj)2
positi
on
Block 2
Ltd, Salisbu
A3 A2
ry
A1 A0
 Block 1
 A3 A2
 A1 A0
6
 0110
 01
 1 1
 1 0
 10
 4 4
 4 4
0
 0000
 00
 2 2
 2 1
 00
 4 4
 4 4
12
 1100
 11
 3 2
 2 1
 00
 4 4
 4 4
13
 1101
 11
 4 2
 2 1
 01
 4 4
 4 4
10
 1010
 10✓
 5 3
 2 1
 10
 5 5
 4 4
3
 0011
 00
 6 4
 3 2
 11
 5 5
 4 4
15
 1111
 11
 7 4
 3 2
 11
 5 5
 4 4
5
 0101
 01
 8 5
 4 2
 01
 5 5
 4 4
9
 1001
 10✓
 9 6
 4 2
 01✓
 6 6
 5 4
Ai≥ 5
 1 1
 0 0
 Ai≥ 5
 1 1
 1 0
This Letter develops a non-sorting method to calculate the median as
a four-step procedure; this follows from a reformulation of parallelism at
the bit level of a previous method [6]. Each step is easily implemented
for fast computation with the overall result that the median is computed
three times faster than before, as confirmed here by a timing analysis.
The main features of the previous method are preserved; it computes
the median on a set of N W-bit integers by W/B processing blocks,
where B is a parameter of how many bits of the integers are sliced for
processing. Each block contributes B-bit towards finding the median
in a pipeline stage. Two key ideas are put forward. The first is a parallel
addition at the bit level within each block of computation, whereas pre-
viously, this addition was computed serially. The second is a parallel
decision and selection to carry forward the computation to subsequent
blocks. These key ideas are facilitated by encoding slices of bits using
a binary-to-thermometer code, referred to as B-to-T encoding.

B-to-T encoding: A code of r-1 ones followed by a zero is referred to as
a thermometer code; this is common in fast ADCs [7]. For instance, the
binary code for decimal value 110 = 012 can be written in thermometer
code either as 00012 or as 11102; this Letter uses the latter. For a
binary pattern of B-bit we will express the thermometer code as an
output string of r = 2B bits; the bit vector is denoted as qi for i = 0, …,
2B− 1. In short, for an input i10 the B-to-T encoder sets bits in vector
q with indices i, …, 2B− 1.

Small example: Consider a dataset of N = 9 integers, xj = {6, 0, 12, 13,
10, 3, 15, 5, 9}, each of W = 4 bits (labelled as [3:0]). If xj is sorted the
median is at position P = 5; integer 9 for this set. Partitioning each xj
with B = 2 bits forms W/B = 2 blocks. The two MSBs of x (xj[3:2])
are processed first in Block 2. Block 1 processes the two LSBs
(xj[1:0]) as shown in Table 1. Integers are processed sequentially, and
a B-to-T encoding on the integer slice is performed on the fly on a
4-bit vector (2B) as previously stated. Each one of the bits of this encod-
ing vector is added vertically, also on the fly, as Ai, i = 0, …, 3, starting
from a count of 0. Note this addition is parallel. For instance, bit slice
‘012’ for integer 6 is encoded as ‘1110’ (and added to an initial
‘0000’); then bit slice ‘002’ for integer 0 is encoded as ‘1111’ and
added to the running count of ‘1110’ gives a count of ‘2221’ (second
row under Block 2 in Table 1). After all nine integers are processed
by Block 2 A3, A2, A1, A0 have counts 9, 6, 4, 2, respectively. A
block finds B-bit of the median as the first occurrence of the index i
where Ai≥ P, (for Block 2 this occurs at i = 2 under column A2).

The two MSBs of the median are then found as M[3:2] = ‘102’; inte-
gers 10 and 9 remain median candidates (ticks for Block 2). Next, Block
1 is processed. First, we copy the final sum value to the right of A2 (this
is A1 with value 4, underlined in Block 2) as the initial value for the
addition in Block 1. Second, the slices for integers 6, 0, 12, 13, 3, 15
and 5 (slices in bold italics in Block 1) get nullified so they cannot
update any Ai for Block 1. Computing Ai is as before, on the remaining
integer 2-bit slices. The condition A≥ P is now first satisfied under A1

(i = 1). The two LSBs bits of the median are thus M[1:0] = ‘012’.
Concatenating the results from Blocks 2 and 1 give the median as
M = ‘10012’ = 910 (tick in Block 1).

Median calculation method: From Table 1 a method to calculate the
median is presented as a four-step procedure:

(i) Binary-to-thermometer slice encoding.
(ii) Parallel addition of encoding bits.
(iii) Selection of median slice and setting of sum initial values.
(iv) Nullification of non-median integers.

Step (i) is a code conversion; for slices of B = 2, 3 and 4 bits, fast hard-
ware implementations are easily achieved using look-up tables. Step (ii)
computes Ai in parallel, and as selecting the median slice value for a
block are made on sums Ai, the method must be faster than previous
method [6]. Step (iii) requires 2B parallel comparisons; the selection
of the median is also fast for B = 2, 3 and 4 through the use of
look-up tables or logic. Note median position P remains a constant
for all blocks; setting adders’ initial values for subsequent blocks
requires a selection operation and is made fast with a suitable multi-
plexer. Setting the initial values to adders is implemented through a
simple truth table. Step (iv), the logic for the nullification of integers,
that cannot be the median, is also achieved with simple logic blocks.

x1

x2

xN

xN
[3:2]

M[3:2]
min

xN
[1:0]

...

B-to-T B-to-T

&

4 eqbitsN eqbitsN–1

N wires × 4bits each Æ 4 wires × N wires each

≥ ≥ ≥ ≥

eqbits–1

=

B-to-T. . .

+ +

priority encoder
multiplexing

pipeline cut

+ +

Pin

M[1:0] Pout

N

Fig. 1 Median slice block of computation, encompassing the four steps, to
calculate median on sliding window of N integers

Parallel operation in a sliding window: Maintaining a parallel update
on sums Ai is required for pipelined operation on a streaming sliding
window. Observe B-to-T (step 1) is paramount here to allow for
additions in step (ii) to proceed in parallel and to keep them coherent.
Fig. 1 shows a block diagram to compute the median slice M[1:0] of
Doc: //techsetserver2/journal/IEE/EL/Articles/pagination/EL20151898.3d
Image and visionprocessing anddisplay technology

N integers, B = 2. This requires an array r = 22 adders working in parallel
on B-to-T encoded bits. Each sum is of log2N bits wide to hold a value of
up to N. The block of computation has two outputs; the median slice for
the block, M[1:0], and the initial set value for the sum of the next block
(pout in the figure). These two outputs are shown at the bottom of the
figure, all based on an array of parallel comparators. Note each B-to-T
encoding is inhibited by a single enable bit (circle with ‘&’) to
account for nullification of integers.

Sliding window median architecture: In general, for W-bit integers,
physical blocks of B-bits each account for W/B processing blocks.
Input elements xj are pipelined with N stages to arrange for x1, x2, …,
xN as shown in Fig. 1. An array of 2B adders, each of log2N bits, is main-
tained per block. The current integer gets nullified by comparing, for
equality, the median bits found thus far, by previous blocks, with the
corresponding slice bits of xj. Note the required equality comparison
to nullify integers is of only B-bit for all blocks in a complete architec-
ture and can be omitted for the first block since all integer slices must be
processed by the first block.

All previous outputs from a block, namely M and P, are pipelined
from one block to the next; after W/B processing blocks, the median
M is found, with each block contributing B-bit to M. The median for
each window emerges every clock cycle. Given the median computation
requires W/B blocks with two pipeline registers each, the latency for the
architecture in Fig. 1 is of N + 2(W/B)− 1 clock cycles.

Timing analysis: Fig. 1 layout shows pipeline cuts that can be con-
veniently made anywhere to modify the critical path delay T. Therefore,
a pipeline cut is made such that the critical path of Fig. 1 is essentially
due to the parallel comparator array plus the slower of a priority
encoder or multiplexer. As, at most, a two-level logic is required for a
multiplexing operation, then T = log2N + 2. Previous work had a critical
path of T[6] = 3log2N + 6 for B = 2 [6], so this proposal makes a processing
step, at least, three times faster regardless of any B value. For comparison,
the median architecture in [5], T[5] is basically the delay cost of the carry-
save adder (CSA) tree and at least of log1.5(N/2) + log2N to account for
the final adder [8]. For convenience, Fig. 1 can also be cut such that
the critical path remains essentially the delay cost of the adder (to sum
N bits); this is also the delay cost of a CSA tree in practical terms.
Thus, in this work the claim is that the presented architecture can be con-
veniently made as fast as previous methods for all practical values of N.
Note this is independent of parameter B; however, it seems convenient to
maintain B as small as 2, 3 or 4 bits, in order to keep the on-the-fly encod-
ing as a small look-up table. The sorting-based method in [4], presented as
hardware area-efficient, has a critical path of N−1 logic levels and there-
fore is slower than the time complexity of this work.

Table 2: FPGA resources and frequency of operation for the median
architecture LCBP in [5] and the one presented here
N = 9
 N = 25
LCBP
 Here
 LCBP
 Here
B = 2
 B = 3
 B = 2
CLB (slices)
 459
 254
 284
 668
 652
DFF
 516
 507
 478
 964
 1303
LUT
 632
 336
 567
 766
 975
fmax (MHz)
 327
 332
 286/335
 318
 259/330
Latency, clocks
 8
 7
 5/8
 8
 7/11
Circuit results in FPGA technology: The results for amedian architecture
in [5], referred to as LCBP, and the one presented here for the same FPGA
device is shown in Table 2. These are for the case ofN = 9 and 25 integers
each ofW = 8 bits. The proposed processing block has two pipeline regis-
ters delay and so latency is of 7 clock cycles (2(8/2)− 1 = 7). Note that this
latency (latency per block × number of blocks−1, caused by waiting for a
window ofN integers to fill) is common to both the LCBP and the proposal
here. Table 2 shows that forN = 9 andB = 2, the proposedmethodhere runs
roughly at the same frequency as LCBP architecture but with much less
FPGA resources; this saving can be as high as 40%. For N = 9 and B = 3,
the advantage of the reduced latency (5 clock cycles versus 8 for LCBP)
can be exchanged for a faster frequency (from 286 to 335 MHz) while
settling for the same latency asLCBP. This is so, since each of three proces-
sing cells (W/B = 8/3) is cut-pipelined with three internal registers, so
latency is of 3 × 3− 1 = 8 clock cycles. Area saving is also obvious from
the table for the case B = 3. Once more, the smaller latency can be traded
off (from 7 to 11 clock cycles, 3 × 4−1 = 11) for a frequency increase
(from 259 to 330 MHz); this is a gain of over 20%. The proposal gives a
designer the flexibility to easily trade off an increase in frequency for a
small penalty in latency to any specific architecture ofN integers by choos-
ing a suitable parameter value for B.

Conclusion: The four-step median calculation method proposed here
makes either faster or as fast computations than previous hardware algor-
ithms in the literature. Themedian onN integers completes afterW/B pro-
cessing blocks for a serial stream of W-bit integers when slicing the
integers by B bits. As processing more bits per block may result in
shorter latency, this can be traded off for faster operation. Smaller area
is also observed for some N design parameters. One further improvement
to this design requires finding a way to fuse the adder and the comparison
of Fig. 1 into a single optimised block to make it smaller and faster. The
four-step median method given here is also easily implemented as a fast
programming solution using arrays or trees.

© The Institution of Engineering and Technology 2015
Submitted: 1 June 2015
doi: 10.1049/el.2015.1898

J. Cadenas (School of Systems Engineering, University of Reading,
Reading RG6 6AX, United Kingdom)

✉ E-mail: o.cadenas@reading.ac.uk

References

1 Kang, X., Stamm, M.C., Peng, A., et al.: ‘Robust median filtering foren-
sics using an autoregressive model’, IEEE Trans. Inf. Forensics Sec.,
2013, 8, (9), pp. 1456–1468

2 Niederhauser, T., Wyss-Balmer, T., Haeberlin, A., et al.: ‘Baseline
wander filtering algorithms for long term electrocardiography’, IEEE
Trans. Biomed. Eng., 2015, 62, (6), pp. 1576–1584

3 Atia, M.M., Georgy, J., Korenberg, M.J., et al.: ‘Real-time implemen-
tation of mixture particle filter for 3D RISS/GPS integrated navigation
solution’, Electron. Lett., 2010, 46, (15), pp. 1083–1084

4 Chen, R.D., Chen, P.Y., and Yeh, C.H.: ‘Design of an area-efficient one-
dimensional median filter’, IEEE Trans Circuits Syst. II, 2013, 60, (10),
pp. 662–666

5 Prokin, D., and Prokin, M.: ‘Low hardware complexity pipelined rank
filter’, IEEE Trans. CircuitsSyst. II, 2010, 57, (6), pp. 446–450

6 Cadenas, J., Megson, G.M., Sherratt, R.S., et al.: ‘Fast median calcu-
lation method’, Electron. Lett., 2012, 48, (10), pp. 558–560

7 Hieu, B.V., Beak, S., Choi, S., et al.: ‘Thermometer-to-binary encoder with
bubble error correction (BEC) forflash analog-to-digital converters (FADC)’.
Third Int. Conf. on Communications and Electronics, 2010, pp. 102–106

8 Parhami, B.: ‘Computer arithmetic, algorithms and hardware designs’
(Oxford, 2000)

	Introduction
	�B-to-T encoding
	Small example
	Median calculation method
	Parallel operation in a sliding window
	Sliding window median architecture
	Timing analysis
	Circuit results in FPGA technology
	Conclusion
	References

