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1. Convergence diagnostics for the analysis of the great crested newt data
set. We run three chains, (discarded 50000 iterations, thining = 300) with starting values
for the parameters randomly generated from their parameter space.

For each parameter (N , ω, α, τ , β1 and β2 which are, respectively, the intercept and slope
of the logistic regression model for p with the number of traps in the pond as the covariate,
γ1 and γ2 which are, respectively, the intercept and slope of the logistic regression model
for φ with standardised calendar time as the covariate) we show the three trace plots the
resulting posterior densities and finally the Gelman-Rubin diagnostic plot produced using
the R-package coda.
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Fig. 1: Trace and posterior density plots for (a) N , (b) ω, (c) α, (d) τ .
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Fig. 2: Trace and posterior density plots for (a) γ1, (b) γ2, (c) β1 and (d) β2.
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Fig. 3: Gelman-Rubin diagnostics plots for (a) N , (b) ω, (c) α, (d) τ .
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Fig. 3: Gelman-Rubin diagnostics plots for (a) γ1, (b) γ2, (c) β1 and (d) β2.
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2. Convergence diagnostics for the analysis of the reed warbler data set. We
run three chains, (discarded 50000 iterations, thining = 300) with starting values for the
parameters randomly generated from their parameter space.

For each parameter (N , ω, α, τ , the logistic transformation of capture probability p,
logit(p), the logistic transformation of survival probability, φ, logit(φ)) we show the three
trace plots the resulting posterior densities and the Gelman-Rubin diagnostic plot produced
using the R-package coda.
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Fig. 4: Trace and posterior density plots for (a) N , (b) ω, (c) α, (d) τ , (e) logit(φ) and (f)
logit(p).
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Fig. 5: Gelman-Rubin diagnostics plots for (a) N , (b) ω, (c) α, (d) τ , (e) logit(φ) and (f)
logit(p).
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3. Comparison with an existing model. We compare the results for both case
studies presented in section 3 to those obtained by an existing JS-type model, and specifi-
cally to the Pledger et al. (2009) model.

3.1. Great crested newts. In Fig. 6 (a), we plot the posterior distribution of N obtained
by our proposed model while the horizontal gray dashed bar and the empty circle represent
the 95% asymptotic confidence interval and the point estimate, respectively, obtained for N
by the Pledger et al. (2009) model. This is [30, 32] individuals and it encompasses roughly
64% of the posterior mass for N obtained by our algorithm. In this case, even though
the time between samples (one week) was longer compared to the study of reed warblers,
the number of individuals that could have departed without ever becoming available for
detection is negligible since great crested newts tend to have long stopover at breeding sites
that span a number of weeks.

In Fig. 6 (b), the density estimates for ζ obtained at 500 randomly selected iterations of
our proposed algorithm are shown by the gray lines, with the black line showing the mean
density and the tick marks on the x-axis indicating sampling occasions. The position of
the boxes on the x-axis indicates the values of ζ that fall in the 95% HPD interval while
their height is equal to the lowest density value in the interval. The points represent the
point estimates obtained by the Pledger et al. (2009) model of the proportion of the “super-
population” size that were new arrivals at each sampling occasions. These are connected by
the dashed lines for ease of comparison. The arrival pattern suggested by the Pledger et al.
(2009) suggests more abrupt changes to the population compared to our results, which,
due to the use of the normal mixture model, suggest a much smoother migration to the
ponds. However, both approaches agree that roughly 40% of the individuals were already
present at the start of the study and they also agree on the position of the modes of arrival
times, i.e. week 5 and weeks 9-10.

In Fig. 6 (c), the point estimates obtained by the Pledger et al. (2009) model for φ as
a function of week number, shown by the gray line, agree with our posterior means, but
the 95% asymptotic confidence intervals, shown by the gray dashed lines, are considerably
wider, especially towards the end of the study period when fewer individuals are present.

Finally, the Pledger et al. (2009) model estimates p equal to 0.42 with a 95% asymptotic
confidence interval = (0.33, 0.52) when the number of traps is 8. The corresponding values
for p when the number of traps is 6 are 0.39, (0.30, 0.49). Both sets of values agree with
our results as presented in section 3.1.

3.2. Reed Warblers. In Fig. 7 (a), the histogram represents the posterior distribution
of N obtained by our proposed model while the vertical bar and the empty circle represent
the 95% asymptotic confidence interval and the point estimate, respectively, obtained for
N by the Pledger et al. (2009) model. The Pledger et al. (2009) model gives a lower es-
timate for N because it only accounts for individuals that became available for detection
at least once while our approach also accounts for individuals that might have departed
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Fig. 6: Great crested newt data. Comparison of the results obtained by our proposed model
and the Pledger et al. (2009) model.
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Fig. 7: Reed warbler data. Comparison of the results obtained by our proposed model and
the Pledger et al. (2009) model.

before any sampling occasion took place. The difference is considerable, although the confi-
dence/credible bands are overlapping, because the time between samples (5 days) was long
relative to the average stopover duration of individuals in the population (roughly 8 days).

In Fig. 7 (b), the density estimates for ζ obtained at 500 randomly selected iterations of
our proposed algorithm are shown by the gray lines, with the black line showing the mean
density and the tick marks on the x-axis indicating sampling occasions. The position of the
boxes on the x-axis indicates the values of ζ that fall in the 95% HPD interval while their
height is equal to the lowest density value in the interval. The points represent the point
estimates obtained by the Pledger et al. (2009) model of the proportion of the “super-
population” size that were new arrivals at each sampling occasions. These are connected
by the dashed lines for ease of comparison. The arrival pattern suggested by the two
approaches is similar, with our approach providing a smoother representation of the spikier
arrival pattern obtained by the Pledger et al. (2009) model. We note here that with our
approach we estimate the arrival time of each individual, as opposed to the proportion of
individuals that were new arrivals at each occasion.

Finally, the Pledger et al. (2009) model estimates φ equal to 0.43 with a 95% asymptotic
confidence interval = (0.35, 0.52). The corresponding values for p are 0.17, (0.12, 0.24).
Both sets of values agree with our results as presented in section 3.2.
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4. Sensitivity analysis.

4.1. Specifying different hyperparameters for G0. For both data sets considered in the
paper, we specified G0 to reflect our prior expectation regarding the arrival pattern at the
site: most individuals will arrive during the study period and arrivals are centred around
the middle of the study period. For example, for the data set of great crested newts we set
µ0 = K/2 = 11, ν0 = 4, λ0 = 1 and κ0 = 0.01. In this section we explore the effect on the
posterior density for N and on the mean normalised intensity of arrivals for the data set of
great crested newts for different specifications for G0. We list the five scenarios below, in
each case noting the way in which they differ to the set up used for the analysis presented
in the paper and commenting on the results.

The densities of arrival times sampled from the corresponding priors are plotted in Fig.
8 (a) while the mean normalised intensity of arrivals obtained in each case using our model
is plotted in Fig. 8 (b). The posterior distribution and cumulative posterior distribution
obtained for N in each case are plotted in Fig. 9 while the posterior distribution and
cumulative posterior distribution of the number of individuals with arrival times before the
end of the study period, which we denote by M , in Fig. 10.

1. As in the paper and described above. Even though the prior for arrival times suggests
that most individuals arrived during the study period, the posterior suggests that
about 40% of the individuals where already present at the start of the study.

2. Setting µ0 = 0 i.e. expecting a priori that about half of the individuals will be there
at the start of the study. The prior of arrival times essentially agrees with the data
and the posterior of arrival times matches the one obtained in scenario 1. The same
applies to the posterior obtained for N and for M . Conclusion: the results are robust
to specifying µ0 considerably smaller than in the original analysis (but see comments
about scenario 3 below)

3. Setting λ0 = 10 i.e. expecting a priori that the arrival times of the different clusters
are more variable than in scenario 1 with 95% of the mass of the prior distribution
of σ (approximately) in (1, 3) instead of (0.3, 0.9) which was the case in scenario
1. In this case the prior of arrival times is much flatter and supports arrival times
before the start (like in scenario 2) but more importantly after the end of the study.
This is an important issue since there are no data available after the end of the
study and hence the posterior will be dominated and completely determined by the
prior. As a result, the mean normalised intensity does not drop to 0 for values of
ζ > K as quickly and more individuals contribute to N than in scenario 1. These are
individuals that arrived after the end of the study so in a sense almost fictual since
they have completely been generated by the prior. Hence, unless there is in fact prior
information that arrivals continue after the end of the study, we advise against the
use of such flat priors in this case.
We note here that in scenario 2 the prior supported the arrival of individuals before
the start of the study but that did not have any considerable effect on our inference
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compared to scenario 1, even though there are of course no data available for that
period either. However, there is an important difference between the two periods,
before the start and after the end of the study. For the former, individuals that arrived
have to either depart before the study commences or they have to stay until the data
collection process begins. Since for the study of great crested newts individuals are
estimated to remain until at least the middle of the study, they would have to remain
and be available for detection and hence contribute to the data. Hence, in this case,
prior support for ζ < 1 is in fact penalised by the data for the reason given above
while the same does not apply for prior support for ζ > K. The posterior obtained
for M is not considerably different -although still shifted slightly to the right- to that
obtained under scenarios 1 and 2, further supporting this point. We note that this is
not generally the case and for example if apparent survival was low at the start of
the study then the prior of scenario 2 would also lead to higher values of N and M .

4. Setting κ0 = 0.001 i.e. expecting a priori that the standard deviation of the mean
arrival times of the different clusters is greater than in scenario 1 with 95% of the
prior distribution for µ (approximately) in (33, 95) as opposed to (0.3, 0.9), which
was the case in scenario 1. The density of samples of arrival times from this prior is
practically identical to that of scenario 3 but using a different set of hyperparameters.
As a result, inference is practically identical to that of scenario 3.

5. Setting λ0 = 0.0.1 i.e. expecting a priori that the arrival times of the different clusters
are less variable than in scenario 1 with 95% of the mass of the prior distribution of
σ (approximately) in (0.01, 0.03) instead of (0.3, 0.9) which was the case in scenario
1. In this case, the mean normalised intensity of arrival times obtained is less smooth
than in scenario 1, which results from the fact that the left tail is much shorter and
hence all arrivals that occured before the start of the study are estimated to have
happened right before of the study. Again this is simply the effect of the prior which
suggests that arrivals happen in short abrupt bursts rather than being more spread
out over a number of weeks. Nevertheless, the arrival pattern obtained is similar to
that of scenario 1 and this is also the case for the posterior distribution for N and
M .
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Fig. 8: Sensitivity analysis for the great crested newt data. Density of arrival times sampled
from the five different specifications of G0, (a), and resulting mean normalised intensities,
(b).
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Fig. 9: Sensitivity analysis for the great crested newt data. Posterior distribution of N
and 95% posterior credible intervals shown in the top right corner under the six different
specifications of G0, (a):1, (b):2, (c):3, (d):4, (e):5, (f): posterior cdf for all five scenarios.
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Fig. 10: Sensitivity analysis for the great crested newt data. Posterior distribution of M
which we define here as the number of individuals with ζ ≤ K and 95% posterior credible
intervals shown in the top right corner under the six different specifications of G0, (a):1,
(b):2, (c):3, (d):4, (e):5, (f): posterior cdf for all scenarios.
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4.2. Specifying different priors for α and τ . In this section we assess the effect of the
prior distributions chosen for α and τ on their posterior distributions and also on the
posterior distribution for N by changing the improper Gamma priors used for the analysis
considered in the paper to proper Gamma(1,1) priors for both parameters.



18 E. MATECHOU AND F. CARON.

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

α

P
os

te
rio

r 
de

ns
ity

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
1

2
3

4
τ

P
os

te
rio

r 
de

ns
ity

(b)

n

P
(N

=
n)

30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

95% PCI = (30,37)

(c)

Fig. 11: Sensitivity analysis for the great crested newt data. Posterior distributions ob-
tained for parameters α, (a) and τ , (b) when a Gamma(1,1) prior is chosen (posterior
density shown by the dotted line) for both α and τ instead of the improper Gamma priors
that were considered for the analysis presented in the paper (posterior density shown by
the solid line). The posterior distribution obtained for N is shown in (c) and is practically
indistinguishable to the one obtained in the analysis presented in the paper, which is shown
in Fig. 9 (a).
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4.3. Specifying different prior variances for γ and β. In this section we assess the effect
of the prior variances chosen for the regression coefficients γ1, γ2, β1 and β2 when these
are increased to 102 and 1002 compared to the value of 1 which was chosen for the analysis
presented in the paper.
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Fig. 12: Sensitivity analysis for the great crested newt data. Posterior distributions ob-
tained for the regression coefficients for modelling φ and p when setting the prior variances
to 1 (solid line), 102 (dashed line) and 1002 (dotted line).
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