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Abstract

The Dirac equation in a rotating frame of reference is derived from first principles. This equation

is employed to exhibit an equivalence between a particle in a Dirac oscillator potential and a free

particle in a rotating frame of reference. A zero-point contribution to the energy of the particle,

resulting from its spin is also noted.
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INTRODUCTION

Even non-relativistic quantum theory contains only a very small number of models that

can be solved analytically. Models such as the particle in a box, the harmonic oscillator and

the hydrogen atom form the basis of our understanding of much of Physics and Chemistry.

In relativistic quantum theory the number of exactly soluble problems is even smaller. One

such model is the Dirac oscillator[1, 2]. This three-dimensional system is defined by the Dirac

equation where the momentum operator has an imaginary effective linear vector potential

added to it:

p→ p + imΩβr, (1)

Here m is the fermion mass, Ω an oscillator frequency, r the vector distance of the fermion

from the origin of the potential, and β is the usual Dirac matrix. As well as being exactly

soluble this model has the interesting property that its non-relativistic limit is the usual

Schrodinger harmonic oscillator with the addition of strong spin-orbit coupling [3]. For a

long time the Dirac oscillator was considered to be an interesting model without applications.

However over the last fifteen years the mathematical aspects of this system have been widely

studied in one, two and three dimensions [4]-[25]. Additionally, this system has been shown

to have an analogy with the (Anti)-Jaynes-Cummings model of quantum optics [26]-[32].

It has also been suggested as a model to describe some properties of graphene [33]. More

recently the Dirac oscillator has been found to contain an abrupt chiral phase transition in

a magnetic field [34]. This phase transition has been examined in a number of extensions

of the model [35] - [39]. After more than 20 years of theoretical activity focussed in the

characterization of the Dirac oscillator, a first experimental realization of this system has

been developed [40].

In this paper our purpose is to demonstrate a previously unsuspected property of the

Dirac oscillator. We demonstrate that there is an equivalence between a particle in the

Dirac oscillator potential and a free particle as viewed from a rotating frame of reference.

THE DIRAC EQUATION

The Dirac equation in a general non-inertial frame in cartesian coordinates has been

derived by Hehl and Ni[41] using standard methods [42–44]. Here we follow their procedure
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to derive the Dirac equation in cylindrical polar coordinates in a rotating frame of reference.

In its most fundamental form the Dirac equation can be written [44]

i~γλ (eλ + Γλ) Ψ = mcΨ (2)

where eλ is the coordinate basis determined by the metric, Γλ are related to the connection

coefficients and γλ are the Dirac matrices in the usual representation [3].

The invariant interval in cylindrical polars is

ds2 = c2dt2 − dr2 − r2dφ′2 − dz2. (3)

Introducing a new angular function φ which is rotating with angular frequency ω relative to

φ′

φ = φ′ − ωt dφ′ = dφ+ ωdt, (4)

inserting this into Equation (3), and some manipulation gives [43]

ds2 =

(
1− ω2r2

c2

)(
cdt− 1

c

r2ω(
1− ω2r2

c2

)dφ)2

− dr2 − r2

1− ω2r2

c2

dφ2 − dz2 (5)

To derive the Dirac equation it is necessary to write this in terms of basis one-forms θj. The

most convenient way to do this is to employ an anholonomic basis such that

ds2 = θ0
2 − θ12 − θ22 − θ32 = gµνdx

µdxν (6)

where gµν is the metric tensor. The basis one-forms consistent with equations (5) and (6)

are

θ0 =
(

1− ω2r2

c2

)1/2(
cdt− 1

c
r2ω(

1−ω2r2

c2

)dφ
)

θ1= dr

θ2 = r
(

1− ω2r2

c2

)−1/2
dφ θ3 = dz (7)

It is difficult to proceed without simplification. If it is assumed that ωr/c can be regarded

as a small parameter and linear terms only are retained then

θ0 = cdt− ωr2

c
dφ, θ1 = dr, θ2 = rdφ, θ3 = dz. (8)

The dual is now defined using

< eν θ
µ >= δµν (9)
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yielding a non-coordinate basis

e0 =
1

c

∂

∂t
, e1 =

∂

∂r
, e2 =

1

r

∂

∂φ
+
ωr

c2
∂

∂t
, e3 =

∂

∂z
(10)

The commutation coefficients are defined by

[eµ, eν ] = Cλ
µνeλ (11)

In our case the only non-zero commutator is

[e1, e2] = − 1

r2
∂

∂φ
+
ω

c2
∂

∂t
= −1

r
e2 +

2ω

c
e0 (12)

leading to commutation coefficients

C2
21 = −C2

12 =
1

r
, C0

12 = −C0
21 =

2ω

c
(13)

All other commutation coefficients are zero. The indices here can be lowered using the

metric tensor and then the Christoffel symbols can be found

Γλνµ =
1

2
(Cλνµ + Cλµν − Cνµλ) (14)

The quantities

Γµ =
1

8
Γλνµ[γλ, γν ] (15)

that appear in the Dirac equation can now be calculated.

Γ0 =
ω

4c
[γ1, γ2], Γ1 =

ω

4c
[γ0, γ2], Γ2 =

1

4r
[γ1, γ2]− ω

4c
[γ0, γ1] (16)

Putting Equations (10) and (16) into (2) finally gives the explicit form of the Dirac equation

in cylindrical polars from the point of view of an observer in a reference frame that is rotating

with angular frequency ω as

i~
{(

γ0 +
ωr

c
γ2
) 1

c

∂Ψ

∂t
+γ1

∂Ψ

∂r
+γ2

1

r

∂Ψ

∂φ
+γ3

∂Ψ

∂z
+

(
1

4r
γ2[γ1, γ2]− ω

4c
γ0[γ1, γ2]

)
Ψ
}

= mcΨ

(17)

The wave function is a 4 component quantity Ψ = (Ψ1 Ψ2 Ψ3 Ψ4)
T . There are two terms here

that contain ω and hence are introduced by the rotation of the observer’s reference frame.

Evaluating the commutators shows that the term in γ0[γ1, γ2] can be written as −ωSz/c

and clearly represents coupling of the particle spin to the rotational motion (Mashhoon

effects[45]). The term in ωr/c includes the angular frequency of rotation, radial distance

and the time derivative of the eigenfunction and represents and clearly couples the orbital

motion to the particle to the rotation (Sagnac effects[46]). In what follows we will explicitly

look at the effect of these terms on the Dirac oscillator.
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THE DIRAC OSCILLATOR IN A ROTATING FRAME OF REFERENCE

Next, consider the Dirac equation above with the addition of the Dirac oscillator potential

according to equation (1). Here we deliberately restrict ourselves to look for solutions

that have Ψ2 = Ψ3 = 0. Then the coupled differential equations obeyed by the non-zero

components of Ψ are

i~
∂Ψ1

∂t
+

~ωr
c

∂Ψ4

∂t
+ i~c

∂Ψ4

∂r
+

~c
r

∂Ψ4

∂φ
+
i~c
2r

Ψ4 − imΩcrΨ4 −
~ω
2

Ψ1 = mc2Ψ1

i~
∂Ψ4

∂t
− ~ωr

c

∂Ψ4

∂t
+ i~c

∂Ψ1

∂r
− ~c

r

∂Ψ1

∂φ
+
i~c
2r

Ψ1 + imΩcrΨ1 +
~ω
2

Ψ4 = −mc2Ψ4 (18)

To solve these start by assuming a time-dependence of the form

Ψn(r, φ, t) = Ψn(r, φ)e−iWt/~ (19)

where W is the relativistic energy. Then the wave functions can be written

Ψ1(r, φ) = ψ1(r)Φ(φ) Ψ4(r, φ) = ψ4(r)Φ(φ) (20)

and the variables in equation (18) can be separated, leading to

Φ(φ) = exp(i(µ+ 1/2)φ). (21)

For the wave function to be continuous this requires that µ is half-integer. Then the simple

substitutions χ1 = ψ1 and iχ4 = ψ4 force the radial part of the Dirac equation to become

real(
W −mc2 − ~ω

2

)
χ1(r)−

ωWr

c
χ4(r) + ~c

dφ4(r)

dr
+

~c(µ+ 1/2)

r
χ4(r)−mΩcrχ4(r) = 0

(
W +mc2 +

~ω
2

)
χ4(r)−

ωWr

c
χ1(r)− ~c

dχ1(r)

dr
+

~c(µ+ 1/2)

r
χ1(r)−mΩcrχ1(r) = 0

(22)

This equation will be solved in two separate ways.

DIRAC OSCILLATOR-LIKE SOLUTIONS

Equation (22) makes clear one of the key insights of this paper. The extra term due to

the rotation of the reference frame and term describing the Dirac oscillator are both linear
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in r and can be combined into one. Defining an effective frequency

η =

(
W

mc2
ω + Ω

)
(23)

and letting χn =
√
rφn equation (22) becomes(

W −mc2 − ~ω
2

)
φ1 + ~c

∂φ4

∂r
+

~c
r

(µ+ 1/2)φ4 −mcηrφ4 = 0

(
W +mc2 +

~ω
2

)
φ4 − ~c

∂φ1

∂r
+

~c(µ+ 1/2)

r
φ1 −mcηrφ1 = 0

(24)

This is just the radial equation which describes the radial part of the 2+1 dimensional Dirac

oscillator and can be solved in the usual way [3, 48]. (note that the solution is not valid for

the case η = 0). The final solution is

Ψ(r, φ, t) = A


(
mη
~

)(µ+1/2)/2
rµLµn

(
mη
~ r

2
)

0

0

− 2i~c
W+mc2+~ω/2

(
mη
~

)(µ+5/2)/2
rµ+1Lµ+1

n−1
(
mη
~ r

2
)

 e−mηr
2/2~ei(µ+1/2)φe−iWt/~

(25)

where Lµn(x) are the generalised Laguerre polynomials for principal quantum number n and

A is a normalisation constant given by

A =

√
n!

πΓ(n+ µ+ 1)

(mη
~

)1/4(
1 +

4nmc2~η
(W +mc2 + ~ω/2)2

)−1/2
(26)

Because W appears in the definition of η it is necessary to solve a simple quadratic equation

to find an expression for it. Doing this yields

W = 2n~ω ±
√
m2c4 +mc2(4n~Ω + ~ω) + 4n2~2ω2 + ~2ω2/4 (27)

which reduces to the standard Dirac oscillator expression for j = l + 1/2 [48] when ω → 0.

FREE PARTICLE-LIKE SOLUTIONS

The solutions (25) have the undesirable property that they do not reduce to the standard

free particle solutions of the Dirac equation when Ω = ω = 0. Those solutions are written in
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terms of Bessel functions. To remedy this it is necessary to define another effective frequency

ξ = ω +
mc2

W
Ω (28)

and let

Φ(φ) = exp(−i(µ+ 1/2)φ). (29)

and following the same procedure as above allows us to write equation (18) as(
W −mc2 − ~ω

2

)
χ1(r)−

ξWr

c
χ4(r) + ~c

dχ4(r)

dr
+

~cµ
r
χ4(r) = 0

(
W +mc2 +

~ω
2

)
χ4(r)−

ξWr

c
χ1(r)− ~c

dχ1(r)

dr
+

~c(µ+ 1)

r
χ1(r) = 0

(30)

We have been unable to find analytic solutions to these equations in terms of Bessel functions

in closed form. However a linear approximation was made in the derivation the Dirac

equation which amounted to assuming ωr/c << 1 Assuming Ω is of the same order as ω

we can write solutions in powers of the small parameter ξr/c. Defining kc = mc/~ as the

Compton wavevector we find

χ1(r) = AJµ+1(kcr) +B
ξr

c
Jµ(kcr) + C

ξ2r2

c2
Jµ+1(kcr) + · · ·

χ4(r) = V Jµ(kcr) +X
ξr

c
Jµ+1(kcr) + Y

ξ2r2

c2
Jµ(kcr) + · · ·

(31)

The next step is to substitute equations (31) into (30) and compare coefficients of ωr/c.

Doing this causes the Bessel functions to cancel and we are left with a set of simultaneous

equations for the coefficients A, B, C, V , X and Y . The determinant associated with these

simultaneous equations determines the energy. In principle we can retain as many terms as

we wish in equation (31) and the Dirac equation can be solved to arbitrary accuracy. In this

case as c→∞ only the first term in the expansion (31) remains which is, indeed, the usual

solution of the free particle Dirac equation in cylindrical polar coordinates.

DISCUSSION

There are a number of noteworthy points to make about these calculations. Firstly let

us return to equations (23) and (24). In the limit Ω→ 0 these represent a free particle in a
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rotating frame of reference. However the solutions stay the same and are identical to those

of a Dirac oscillator with frequency Wω/mc2. This equivalence between two apparently very

different physical systems is the central result of this paper.

Secondly the non-relativistic limit of equation (27) is taken by letting mc2 >> ~Ω, ~ω.

In this limit terms of order ω2 can be ignored and the energy becomes

E = W −mc2 ≈ 2n~(ω + Ω) +
~ω
2

(32)

If ω = 0 this reduces to the usual expression for the energy of the Dirac oscillator [48]. for the

case j = l+1/2. We made this choice in our expression (21). Clearly in equation (32) Ω and

ω are treated equivalently in their quantum number dependence. However there is an extra

term in ω in equation (32) that looks like a zero-point energy and there is no corresponding

term in Ω. In fact this term arises directly from the fact that particle described has spin

1/2. If we had chosen Ψ1 = Ψ4 = 0 and Ψ2 and Ψ3 non-zero this term would have had

the opposite sign. i.e. the direction of rotation of the rotating frame is either parallel or

antiparallel to the fermion spin. So if Sz = ±1/2 in an inertial frame, the spin in a rotating

frame has a different magnitude for the two spin directions. The final term in equation (27)

also arise from the spin, but its sign is independent of which pair of components of Ψ are

chosen to be non-zero.

The solutions (25) do not reduce to the standard solutions of the free particle Dirac

equation when ω = Ω = 0[3]. This leads to the calculation in section which yields a

solution in terms of Bessel functions. Here we take the opposite perspective to that taken

in the previous section. If ω → 0 a particle experiencing the Dirac oscillator potential is

equivalent to a free particle as observed from a frame of reference rotating at frequency

ω = mc2Ω/W . We then find the solutions (31) which reduce to the standard free-particle

solutions in the non-relativistic limit and as ω,Ω→ 0.

Finally we note that even if Ω = 0 the eigenfunctions and the energy are quantised.

This arises from the fact that if we have a stationary state and cylindrical symmetry the

eigenfunction must go to zero as r →∞ if they are to have finite energy. This is not unusual

and has been found in other cases, [49] for example.
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SUMMARY

In this paper we have shown a previously unsuspected equivalence between the Dirac

oscillator and a free particle as observed from a rotating frame of reference. We have also

been that in a rotating frame the spin of the particle results in a zero-point-like term in the

energy eigenvalues.
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