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Abstract 

Recent advances in genome sequencing are improving our better  understanding of 

genetic variation. However, the investigation of the genotype-phenotype relationship 

is still challenging, especially for the interpretation of the myriad of discovered 

genetic variants that weakly relate to disease.  

Recently, researchers have confirmed that disease causing genetic variants typically 

occur at functional sites, such as protein-protein or protein-ligand interaction sites. 

Giving this observation, several bioinformatics tools have been developed. This 

thesis first details VarMod (Variant Modeller), an algorithm that predicts whether 

nonsynonymous single nucleotide variants (nsSNVs) affect protein function.  

  

The recent Ebola virus outbreak in West Africa demonstrated the potential for the 

virus to cause edipdemics and highlighted our limited understanding of Ebola virus 

biology. The second part of this thesis focuses on the investigation of the molecular 

determinants of Ebolavirus pathogenicity. In two related analyses knowledge of 

differing pathogenicity of Ebolavirus species is used. Firstly, comparison of the 

sequences of Reston viruses (the only Ebolavirus species that is not pathogenic in 

humans) with the four pathogenic Ebolavirus species, enabled the identification of 

Specificity Determining Positions (SDPs) that are differentially conserved between 

these two groups. These SDPs were further investigated using analysis of protein 

structure and identified variation in the Ebola virus VP24 as likely to have a role in 

determining species-specific pathogenicity. The second approach investigated 

rodent-adapted Ebola virus. Ebola virus is not pathogenic in rodents but it can be 

passaged to induce pathogenicity. Analysis of the mutations identified in four 

adaption studies identified that very few mutations are required for adaptation to a 

new species and once again the VP24 is likely to have a central role. Subsequent 

molecular dynamics simulations compared the interaction of Ebola and Reston virus 

VP24 with human karyopherin alpha5. The analysis suggests that Reston virus VP24 

has weaker binding with karyopherins and we propose that this change in binding 

may reduce the ability of Reston VP24 to inhibit human interferon signaling. 
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Chapter 1: 

Introduction  
 

 

 

This thesis encompasses two main research lines, first the development of a 

computational algorithm (varMod) to predict the effects of nonsynonymsous single 

nucleotide variants (nsSNVs) and secondly an analysis of genetic variation in 

Ebolaviruses to understand how they affect human pathogenicity. The thesis is 

presented as a series of papers, one focusing on predicting the effects of genetic 

variation, while three consider genetic variation within Ebolaviruses.    

 

1.1 Genetic variation 

Each individual is unique as a result of genetic variation. Therefore understanding 

genetic variation and how it alters phenotype will advance our knowledge of the 

extent of genetic variation between individuals. This has been greatly increased in 

recent years as a consequence of the advances in genome sequencing. While it took 

multiple teams a decade to sequence the human genome (Hattori, 2005; Abecasis et 

al., 2010), there are now many projects that sequence large populations of humans, 

for example the 1000 genomes project in much shorter times (Auton et al., 2015; 

Sudmant et al., 2015; Abecasis et al., 2012). 

 

1.1.1 Types of genetic variation 

There are multiple types of genetic variation: 

• Single nucleotide variants (SNVs) – a single base differs between an 

individual and the reference genome 

• Copy number variation (CNV) – a region of the genome that has a different 

number of copies compared to the reference genome 

• Insertions and deletions (indels) – bases deleted or inserted into the genome 

• Structural Variants (SVs) –  changes in larger portions of the genome 
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sequence that result in a structural change of the genome and thus in a 

change of chromosome assembly. 

 

These types of variation can affect both coding and non-coding regions of the 

genome. However, given our limited understanding of the role of non-coding 

regions (The Encode Project consortium, 2004; Birney et al., 2007), it is difficult to 

interpret the effects of variation located in non-coding regions of the genome, unless 

they are located in known regulatory regions. 

 

SNVs are classified into synonymous, when the base change does not cause a 

change in the coded amino acid, non-synonymous where the encoded amino acid  is 

changed and nonsense when a stop codon in introduced. SNVs that occur fairly 

frequently in a population (typically more than 1% of a population) are referred to as 

single nucleotide polymorphisms (SNPs).  

 

1.1.2 Human Genetic Variation 

After the discovery of DNA (Watson and Crick, 1953), in 2003, human genetics has 

seen probably the most revolutionary discovery, with the first release of an entire 

reference sequence of the human genome (The Human Genome Project 

Consortium, 2004). Since then, the increased interest in understanding the biological 

basis of heredity, has led to the establishment of several international projects, in 

order to collect and catalogue human genetic variation, and among them the first 

two were the 1000 Genome Project (Gibbs et al., 2003; The International HapMap 

Consortium, 2004; Thorisson & Smith, 2005; Frazer et al., 2007; Buchanan et al., 

2012; Auton et al., 2015) and the HapMap project. This section describes these 

catalogues and other current projects. 

 

1.1.2.1 The Human Genome Project 

The Human Genome Project (HGP) started in 1990 and was completed in 2003 

with the initial draft published in 2000 (Lander et al. 2001). It was an international  

effort primarily by research groups in the US, UK, Japan, Germany, France and 

China. The project saw the introduction of shotgun sequencing that rapidly 
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increased the speed at which sequencing was performed. It also saw a notable 

conflict between public and private interests, when a private parallel project from 

Celera Genomics wanted to patent the genomic sequence (Williams-Blongero, 

2004).  

Along with sequencing the human genome, the project aimed also to develop new 

technologies, to study and interpret the human genome and also to establish Ethical, 

Legal and Social Implications of Human Genomics (ELSI). ELSI was the first 

regulatory body to assess issues in genomic research, for example privacy of the 

genetic information and other important issues that could affect individuals and 

society. Sequencing of the human genome revealed that the human genome contains 

approximately 20,500 genes a similar number to that found in mice. The human 

genome project took almost 13 years to complete and more than 10 billion dollars to 

sequence just a single reference genome. This was a milestone in genetics and paved 

the way for many advances, with scientists now able to sequence a genome for a few 

thousands dollars and taking less than a day.  

 

1.1.2.2 The HapMap Project 

The HapMap project was launched in 2002 and it was completed three years later. It 

is an international consortium of academic researchers and private companies 

(International HapMap Consortium 2003; International HapMap Consortium 2007;  

Gibbs et al., 2003). A haplotype is a combination of alleles within a region of a 

chromosome. The HapMap project was set up with the idea to create a haplotype 

map of the human genome, to describe how human genetic variation is shared 

among individuals in different populations. The main goal of this project is to 

understand how SNPs and other genetic variants organise in the different 

chromosomes and how genes can affect drug response by making the generated data 

available to the scientific community. The project used genotyping techniques and 

consisted of three main phases: the first, when more than 1 million SNPs where 

found in 269 DNA samples from different individuals coming from four main 

populations; the second phase, in 2007, where over 3.1 million of SNPs were 

genotyped in 270 individuals. In 2010, the same consortium published genotyping 

results for 1.6 million common SNPs in 1,184 individuals from 11 populations. This 
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latest analysis was called HapMap3 and represented an integrated data set of 

common and also rare alleles. The HapMap project was the first to perform a large-

scale Genome Wide Association study. 

 

1.1.2.3 The 1000 Genomes Project 

The 1000 Genome Project was launched in 2008 and concluded in 2015 (Wood et 

al., 2013; Abecasis et al., 2012; Abecasis et al., 2015). It is currently the largest public 

catalogue of human genetic variation with a frequency greater than 1% in the studied 

populations. The main goal of this project was the identification of human 

polymorphisms with a minor allele frequency (MAF) greater than 1%. The 1000 

Project was performed in multiple stages. The first one, a pilot phase which had the 

goal of developing and assessing strategies for sequencing a large number of 

individuals in the most informative way. It used three levels of sequencing. For two 

sets of trios (parents and child) high coverage genome sequencing was performed 

(average 42x). For 179 individuals low coverage (2-4 X) whole genome sequencing 

(WGS) was performed and finally target exon capture (906 randomly selected genes) 

was performed on a larger set of 697 individuals from four populations. This initial 

phase of the project identified nearly 15 million SNPs, 1 million indels and 20,000 

structural variants. They demonstrated that this dataset had identified the vast 

majority of common variants and that each individual had between 250-300 loss of 

function SNPs and between 50-100 variants associated with inherited disease 

(Abecasis et al., 2010). 

 

In the second phase, completed in 2012 (Altshuler et al, 2012) a total of 1,092 

genomes were sequenced from across 14 different populations. The techniques used 

in this phase were a combination of low-coverage (2-6 X), whole genome and whole 

exome sequencing (WES) (with coverage up to 100 X) and dense SNP genotyping. 

This phase discovered over 38 million SNPs, with 1.4 million short insertions and 

deletions (indels) and more than 14,000 larger deletions. This phase removed over 

1.7 million low quality SNPs from the first phase. 

 

The third phase was completed in 2015 (Sudman et al., 2015; Abecasis et al., 2015) 
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and considered both Structural variants (SVs) and single nucleotide changes. The 

study revealed 68,818 structural variants (SVs) in 2,504 unrelated individuals coming 

from 26 populations. It found 8 classes of structural variants, enriched on 

haplotypes identified in GWAS studies; these variants were largely shown to be 

specific to individual continental groups (Sudman et al., 2015).  

 

The final outcome of the project was the identification of 88 million variants, of 

which 84.7 millions were SNPs, 3.6 millions were short insertions and short 

deletions and over 60,000 were structural variants. Of this total 762,000 variants 

were rare (i.e. present in very few individuals). The main and conclusive finding of 

this third phase was the extent of genetic variants that were shared among 

individuals from different populations. 

 

Now that the 1000 Genome Project is complete, it is under the administration of the 

International Genome Sample Resource (IGSR) which is an entity formed within 

the EMBL-EBI institution with the aim of maintaining and ensuring usability of the 

1000 Genome Project data, to expand it by adding new genomic data and even by 

including new population data.   

 

1.1.2.4 Rare variation 

Rare variants occur in a small proportion of the population (MAF < 1%) but 

interestingly individuals have many of them (Nelson et al, 2012; Tennessen et al., 

2012). The identification of rare variants requires deep sequencing to enable these 

variants to be called with confidence and not classed as sequencing errors. 

 

The 1000 Genome Project (Phase II) classed rare variants as those with a MAF < 

0.1% and they found individuals did not have many, estimated at around 200. There 

are a few available catalogues of rare genetic variants, such as the Exome Sequencing 

Project (ESP) (Exome Variant Server) and others coming from independent studies 

(Tennessen et al., 2012; Nelson et al., 2012; Keinan and Clark, 2013).  

 

Nelson and collaborators sequenced 202 drug target coding genes in 14,002 
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individuals, through a Whole Exome Sequencing study. They identified a large 

number (1 every 17 bases) of novel variants that were population specific, 

geographically clustered and most interestingly they were more likely to be 

functional. In fact, more than 95% of the variants discovered were rare (MAF <0.1) 

and more than 74% were private variants (present only in a single individual) (MAF 

<0.01). The study considered how these rare variants could help our understanding 

of disease risk. The samples from 14,002 individuals included 10,621 samples from 

12 case control studies of common disease. The drug targets genes were selected 

according to a GlaxosmithKline set considered for drug repositioning candidates. 

Genes used for the study were reduced to 202 in order to make the analysis feasible. 

The genes included 12 genes coding for marketed drug targets, 44 genes encoding 

Phase I to III terminated drug targets, 76 genes encoding genes under clinical 

development targets and 70 genes encoding targets under (or interesting for) pre-

clinical development. The set of genes was compared to the NHGRI, catalogue of 

already published Genome Wide Association Studies (http://www.ebi.ac.uk/gwas/), 

with HGMD catalogue, where they found an overlap of fifty three genes and with 

the OMIM database (Hamosh et al., 2005; McKusick, 2007), where they found a 

notable overlap, for a total of 46 variants in 25 genes. Furthermore they compared 

their set of genes with the rest of protein coding genome defined by GENECODE, 

were they found an overlap of almost 20,503 and importantly they found Gene 

Ontology characteristics in terms of biological process, cellular components and 

molecular function for 20,340 genes.  This study has clearly opened a new window 

for the interpretation of rare variants, by discovering that 95% of variants that were 

rare, more than 74% were private variants and more than 90% were novel. The 

aggregation studies additionally showed that around the 37% of rare alleles were 

predicted to be deleterious. Their findings contrast with the initial results on rare 

alleles found by the 1000 Genomes, as they had predicted individuals would only 

have around 200 rare variants. 

 

Another project performed deep exome sequencing for 15,585 protein coding genes, 

in 2,440 individuals in two  populations (Tennessen et al., 2013). Like the Nelson 

study, they discovered more than 500,000 single nucleotide variants, over 86% of 
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these were rare, and 82% were rare and population specific. In order to prove that 

the variants were functional they used four different methods for non-synonymous 

variants (Polyphen2, SIFT, MutationTaster and a likelihood ratio test and 

additionally they used three conservation based methods, GERP (Genomic 

Evolutionary Rate Profiling, Cooper et al., 2005), Phylop (Cooper et al., 2005) and 

another tool designed by the authors and called SFS-Del). This study showed that 

rare variants and their high frequency can be explained by the explosive population 

growth in Europe and Africa. Furthermore they mapped over 31,000 non-

synonymous variants onto structure, whether the protein structure was available, 

they classified the variants according to structural categories (i.e. if the variant was 

buried, part of a ligand binding site or active site or involved in hydrogen bonding, 

or potential charge or if forming a cavity or if in a over packing region). They 

observed that rare variants were particularly enriched in ligand binding and active 

sites and involved in hydrogen bonding.  

 

1.1.2.5 Current projects 

Current projects are sequencing a larger number of individuals and with a focus on 

obtaining data and performing analysis that is relevant to disease and clinical 

treatment, to drive precision (or personalised) medicine. The 100,000 Genome 

Project aims to sequence the genome of 100,000 patients with a rare inherited 

disease or cancer, across 70,000 individuals and is being run by Genomics England 

and associated organisations (Cranage, 2015; http://www.genomicsengland.co.uk/). 

The Genomics England Project will compare individual’s Genome data with health 

clinical data and medical records, including family information (for rare diseases, 

more than one individual in a family is being sequenced, e.g. a child with the disease 

and both of their parents), in order to find a better treatment for individuals and 

contribute precision medicine.  

 

The Personal Genome Project (PGP) (Church, 2005;  

http://www.personalgenomes.org/) has a similar aim and was founded in 2005, by 

Professor George M. Church of Harvard University. The goal of the PGP is to 

sequence the complete genomes of 100,000 individuals along with phenotypic data, 
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making the results available to the community in order to aid to the development of 

personal genomics and to enable personalised or precision medicine. The project is 

still ongoing and an increasing number of volunteers are taking part in the project. 

 

1.1.2.6 Databases of genetic variation 

The myriad genetic variants discovered with sequencing projects are available in a 

range of databases. dbSNP (Sherry et al., 2001) was founded by the National Center 

for Biotechnology Information (NCBI) and it collects variants across 53 different 

organisms, and the last release (146, March 2016) just for Humans contained over 

150 million referenced SNP (RefSNPs) and 538 million submitted SNPs (subSNP). 

 

Humsavar (http://www.uniprot.org/docs/humsavar) is a catalogue of Human 

Polymorphysms and disease mutations. It is developed by UniProt, the Swiss 

Institute of Bioinformatics (SIB), the European Bioinformatics Institute (EBI) and 

the Protein Information Resource (PIR). This database counts 27,861 disease 

variants, 38,352 polymorphisms and 7,549 unclassified variants, for a total of 73,762 

variants. The small number of variants is due to them being present in protein 

regions and also being a focus on the variants being classified into categories 

indicating if they have a role in disease. 

 

Clinvar ( http://www.ncbi.nlm.nih.gov/clinvar/) (Harrison et al., 2016) is a database 

of medically relevant variants, so it collects variants that are phenotypically 

significant. It is defined as a database of “the relationship between human variations 

and the phenotype” and it is based on phenotypic information from MedGen 

(Halavi et al., 2013). 

 

VariBench (Sasidharan & Vihinen 2013) is a database of genetic variants that was 

developed primarily for benchmarking of methods that predict if SNVs are 

deleterious. It contains disease causing missense variants, neutral high frequency 

SNPs, protein stability affecting missense variants, variants affecting transcription 

factor binding sites and variants affecting splice sites. 
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1.2 The Genotype to Phenotype Relationship 

 

Knowledge of human genetic variation enables investigation of the genotype to 

phenotype relationship to understand how genetic variants are associated with 

particular traits, particularly those associated with disease.  

Diseases are often classified into monogenic, when a variant in a single gene is 

responsible for the trait and complex disease, such as coronary disease, where many 

variants contribute to the trait (Manolio et al., 2009; Eichler et al., 2010; Lehner, 

2013). Monogenic and complex diseases are complicated by environmental factors. 

The OMIM (Online Mendelian Inheritance in Man) (Hamosh et al., 2005; 

McKusick, 2007) catalogue is a resource that collects genetic variants that are 

associated with phenotypes. The last release contains nearly 24,000 entries and it is 

vastly used to interpret and associate variants with disease. 

Despite extensive research carried out to date, there is still a large gap in the 

interpretation of the myriad of the collected variation data, with much of the 

heritability remaining unexplained (Eichler et al., 2010). In fact, it still challenging to 

predict the predisposition to a certain disease or how many complex diseases, such 

as cancer or cardiovascular disease that are caused by many factors, or Mendelian 

disorders which are caused by abnormal alterations in a single gene, can be related to 

heritability (Zuk et al., 2014; Liu & Leal, 2012; Lippert et al., 2013).   

 

All these considered factors mean a need for new insights to personalised or 

precision medicine, which represents the efforts to combine genetic information of 

individuals and use them identify the predisposition to a disease and to design a 

“individuals-size” medical treatment. Precision medicine is described later, in section 

1.2.3. 

 

1.2.1 Genome Wide Association Studies 

In order to understand how genetics relates to a trait and therefore assess the 

heritability for that trait, genetic association studies have been developed. One of the 

most popular means for this purpose has been the development of Genome Wide 

Association Studies (GWAS) (Daly, 2012). GWAS are a combination of statistical 
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tests and genotyping techniques whose aim is to determine the effect of SNPs on a 

trait. This approach has been widely used for the International HapMap project. 

Genotyping techniques can detect simpler and less informative relationships in 

comparison to genome sequencing techniques. However, GWAS are able to 

perform a large number of association tests, and thanks also to the use of SNP chips 

they can associate SNPs to disease.  The use of SNP chips is a limitation of many 

GWAS as the study is limited to the number of SNPs tested on the chip and will not 

detect other novel SNVs. As a result many GWAS have considered common 

variants but with very low proportion of individuals in a population that carry the 

allele that is associated with the phenotype; this last concept is defined as penetrance 

and its relationship with allele frequency in population is shown in figure 1.1:  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Penetrance of Variants over their allele frequency is shown in this figure. Their effects on 

disease is shown in the graph meaning the missing heritability. The figure has been reproduced from 

Manolio et al., 2009. 

 

1.2.2 Use of Next Generation Sequencing (NGS) 

The advances achieved in sequencing techniques, such as Next Generation 

Sequencing (NGS) also referred to as high throughput sequencing can aid the 

discovery of new rare (MAF <0.1) and even de-novo (or private, MAF <0.01) variants 

(DePristo, et al. 2011).  

NGS represent improvements in the speed of sequencing but also in the costs and 

in the accuracy which is notably increased from the previous generation sequencing. 



Chapter1: Introduction 

 17 

Importantly, NGS allowed the discovery of rare variants in many samples. GWAS 

studies as well as NGS have contributed to the ENCODE project (Birney et al., 

2007; Sloan et al., 2015), to annotate and experimentally validate gene loci in the 

Human Genome.  

 

1.2.3 Personalised/precision medicine 

Each individual has a unique set of variants in their genome that will determine 

traits, including the risk for disease and response to drugs. Personalised medicine 

can be used in two ways: firstly, in a preventative manner, for example knowledge of 

an individual’s risk for particular disease could alter their behaviour or to even seek 

treatment. A good example of this is the identification of BRCA1 and BRCA2 

mutations, where women may choose preventative measures as they have a high risk 

of developing breast cancer (Brookes et al., 2015; Zeidan et al., 2015). 

 

Secondly personalised medicine can be used when an individual is ill and their 

genomic information used to identify the most suitable treatment. For example, if 

multiple possible treatments are available is there one that the patient will have a 

better response to? (Ng, et al., 2009). An example is the use of targeted molecules to 

to treat myeloid leukemia, by overcoming AML  (Acute Myeloid Leukemia) cell 

resistance to drug therapy (Gojo and Karp, 2014).  

 

More recently personalised medicine has been referred to as precision medicine 

(Peterson et al., 2013; Katsnelson 2013), meaning a more precise and effective 

approach to identify a specific patient strategy to identify the best therapy based on 

the patient’s genetics, environmental and lifestyle factors.  

 

A branch of precision medicine is Pharmacogenomics, which is a combination of 

Pharmacology and genomics and whose main goal is to understand how genes affect 

individual's response to a certain drug (Karczewski et al., 2012; Altman et al. 2012; 

Hopkins & Groom, 2002).  

 

1.3 How genetic variation leads to altered phenotype 
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All types of genetic variation (SNVs, CNVs, SVs and indels) may be associated with 

a trait. The research in this thesis largely considers non-synonymous single 

nucleotide variants (nsSNVs) in protein coding regions and therefore this section 

focuses on such variation. Until recently, synonymous variants were thought to be 

non-functional as they do not alter the protein amino acid sequence. However 

recent research has observed positive selection of synonymous variants in cancer 

genomes and proposed that synonymous variants can be functional (Supek et al., 

2014). Hence, it is possible that such variants may alter regulatory regions or alter 

the speed of mRNA translation and affect protein folding (Shabalina et al., 2013). 

However, our understanding of the effects of synonymous variation are not well 

defined and therefore focus is placed on non-synonymous SNVs. 

 

1.3.1 Analysis of nsSNVs associated with disease  

A number of studies have analysed the properties of nsSNVs that are associated 

with disease. Such research typically considers the location of nsSNVs in protein 

sequence or structure and compares the prevalence of disease associated and neutral 

variants in different regions of the protein.  

 

It is a widely accepted theory that disease-causing sites are much more conserved 

than neutral ones (Kumar et al., 2001). Thus, the fact that functional sites are 

evolutionary conserved, has made sequence conservation one of the most important 

factors used by bioinformatics tools to pinpoint these functional residues in protein 

sequences and aid methods. The use of orthologues (orthologues are two or more 

sequences which descend from the same ancestors and they are separated by 

speciation events) in multiple sequence alignments, to calculate conservation has 

been used in methods such as SIFT (Kumar et al., 2013) and it has been shown to 

give a better perfomance.  

 

Initial studies of the location of SNVs in protein structure, showed that disease 

causing variants are enriched in the protein core, where they are most likely to affect 

protein stability and possibly protein function (Burke et al., 2007; Yue & Moult, 

2005).  
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David et al., (2012) extended  these previous structural analyses to consider the role 

of protein-protein interfaces. Using the humsavar database of variants (from 

UniProt, Pundir et al., 2016) they mapped variants onto protein complexes from 

Interactome3D (Mosca et al., 2012). In agreement with previous studies, they 

observed a preference for disease-associated variants to be located in the protein 

core. Additionally, they observed an enrichment of disease-associated nsSNVs in 

protein-protein interfaces, confirming the importance of protein-protein interactions 

in cellular function.  

 

Similarly Bordner and Zorman (Bordner & Zorman, 2013) considered nsSNVs 

present in ligand-binding sites. The authors performed large scale homology 

modelling of the human proteome to investigate disease-associated nsSNVs. They 

analysed variants from the Human Gene Mutation Database (HGMD) 

(http://www.hgmd.cf.ac.uk/ac/index.php), COSMIC 

(http://cancer.sanger.ac.uk/cosmic), UniProt and dbSNP  (Sherry et al., 2001). They 

performed a structure-based approach to infer the effects of variants on binding 

sites. In their pipeline they used homology modelling to predict binding sites and 

Machine learning approaches to classify variants.   

The authors found that disease-associated missense mutations were enriched in 

binding sites compared to neutral variants. 

 

Protein function is not only influenced by protein-protein or protein-ligand 

interactions but it is also dictated by other processes, including post translational 

modifications (PTMs). Nussinov et al. (2012) proposed  “Allosteric PTM codes” and 

described the influence of PTMs on protein function through two main 

mechanisms: by orthosterically influencing binding (for example they can disrupt 

protein-protein interactions) and by allosterical conformational changes in the 

functional site. More recently Li et al., (2014) showed that disease associated 

mutations affect PTM sites and thus protein function.  

 

1.4 SNV prediction methods  

The trends (described above) that show nsSNVs that are associated with disease are 
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enriched with particular properties enabled the development of methods that can 

predict if a nsSNV will affect protein structure and/or function and be deleterious. 

This section provides a summary of those methods that are most widely used.  

 

1.4.1 Sorting Intolerant from Tolerant (SIFT) 

Sorting Intolerant from Tolerant (SIFT; Kumar et al., 2013) classified amino acid 

substitutions for SNPs or indels; this method is based on the principle that 

mutations occurring in conserved regions are less likely to be tolerated and 

consequently more likely to be functional. SIFT generates a multiple sequence 

alignment including distantly related orthologues. Its fundamentals consist in 

building a theoretical model based on sequence homology that considers features 

such as conservation, hydrophobic conservation, difference from known mutations 

in a multiple sequence alignment and that is able to predict if the substitution is 

tolerated or not by using a score derived from position-specific scoring matrices 

with Dirichlet distributions. The obtained SIFT score is a probability that the 

mutation is functional and it ranges from 0 to 1. The closer the value is to 0 the 

more likely the mutation is functional. 

 

1.4.2 PolyPhen2 

PolyPhen2, Polymorphism Phenotyping V2 (Adzhubei et al., 2013), also predicts if 

genetic variants are deleterious. In contrast to SIFT, PolyPhen2 uses information 

from both orthologues and paralogues  (paralogues are two or more sequences 

which are separated only by gene duplication), protein structural features and 

machine learning. The sequence and structural features  comprise: sequence 

annotations from Uniprot and from DSSP,  bond annotations (disulphide bonds 

and covalent links in proteins), UniprotKB and Swiss-Prot functional site 

annotations (binding site information, enzyme active sites, metal binding sites, 

lipidated residues, glycosylated residues, non-standard amino acids and other 

modification sites), UniprotKB and Swiss-Prot region annotations (membrane 

crossing regions, membrane-contained regions with no crossing, repetitive sequence 

motif or domains, coiled coil regions, endoplasmic reticulum targeting sequences 

and sequences cleaved during maturation), PHAT score (only for positions 



Chapter1: Introduction 

 21 

annotated as transmembrane) and multiple features relating to secondary structure 

from DSSP , Ramachandran maps, normalised B-factors, ligand contacts, inter-chain 

contacts and functional site contacts. The method uses all these features to classify 

the substitution, according to a Naive Bayes probabilistic classifier, through a 

supervised learning machine approach. PolyPhen2 is trained with two datasets, 

HumVar, which is most useful when considering Mendelian disease and HumDiv, 

which is best used for complex traits. PolyPhen2 can also classify variants as causing: 

loss of function, gain of function, drug resistance and switch of function mutations.  

 

1.4.3 Other SNV prediction tools 

PolyPhen2 and SIFT represent the most widely used methods for predicting if 

SNVs are deleterious. Other  methods are described briefly below. 

 

MutationAssessor (Reva et al., 2011) bases the prediction of the effect of variants on 

conservation and specificity (i.e. differential conservation between subfamilies). It 

was validated on a set of 60,041 variants, 78% of which predicted to be disease-

associated. The method is based on three hypotheses: mutations that are 

evolutionary conserved are more likely to be functional;  those that are not are more 

likely to be neutral; evolutionary conservation patterns can discriminate between 

functional and non functional mutations. According to this, the final functional 

score in derived from the conservation score and from the specificity score as well.  

 

Yates and collaborators developed Suspect (Yates et al., 2014), which uses both 

sequence and structural features. The unique feature of SuSpect is the use of 

interaction network centrality as a feature, which was demonstrated to improve 

predictions.  In benchmarking SuSpect obtained better performance than other 

existing methods. 

 

CONDEL (CONsensus DELeteriousness score of missense SNVs) (Gonzalez-

Perez and Lopez-Bigas, 2011) is another popular method for SNV effect prediction. 

Condel uses a combination of scores from SIFT, Polyphen2, MutationAssessor,  

FATHMM (Functional analysis through Hidden Markov Models,  
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http://fathmm.biocompute.org.uk/) and Ensembl-variation. The method 

performed better than other existing method during the benchmarking phase. It is 

now part of the FannsDB (Functional annotations for non Synonymous SNVs 

Database), a database of functional annotation for non-synonymous variants that 

integrates data from Ensembl (www.ensembl.org) and dbNSFP 2.1(Liu et al., 2011; 

Liu et al., 2013). 

 

However, one of the main problems observed with these methods is that they 

individually perform well in benchmarking but they often show little agreement 

between methods (Chun and Fay, 2009). This makes it important to continue to 

develop new methods that try to improve upon existing approaches. During the 

course of my PhD I have developed VarMod a method for predicting the functional 

effects of nsSNVs (Pappalardo & Wass, 2014), which is described in Chapter 2.    

 

1.5 Ebolaviruses 

Viruses are non cellular entities which use the host cell machinery to replicate and 

cause infectious disease.  Ebolaviruses (figure 1.2) are negative single stranded RNA 

viruses (RNA genome is complementary to the viral mRNA). The Ebolavirus genus 

belongs to the Filoviridae family and Mononegavirales order. Ebolaviruses are 

divided into four human pathogenic species, (Ebola– formerly called Zaire, Taï 

Forest, Sudan and Bundibugyo) and one non-human pathogenic species (Reston). 

The species are named after where they were discovered.  The first two Ebola virus 

species (Sudan viruses and Ebola viruses) were originally discovered in 1976 (Pattyn 

et al., 1977; International Commission Report, 1976; Report of a 

WHO/International Study Team, 1978) and until 2014 there had been a limited 

number of small outbreaks.  

 

To date Reston viruses have only demonstrated pathogenicity in non-human 

primates and were first identified in Reston (Virginia, USA in 1989-1990), then in 

Siena (Italy, in 1992-1993) and most recently in Texas (1996). In 2008 Reston virus 

was found in domestic pigs in the Philippines. Reston antibodies have been reported 

in a few human individuals, but none of them developed Ebola Hemorrhagic Fever 
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or Ebola Virus Disease (EVD), thus demonstrating the lack of pathogenicity in 

humans. 

 

In this section the Ebolavirus cycle of infection, its genome and details of the 

current outbreak in West Africa are introduced. 

 

 
Figure 1.2: The Ebolavirus particle and the Ebolavirus genome. The figure has been adapted from 

Takada et al., Front. Microbiol. 2012. 

 

 

1.5.1 The Cycle of Ebolavirus Infection 

The Ebolavirus infection cycle contains the following steps:  

1. First the virus particle detects the surface of the host cell though the protein 

GP binding to a host cell receptor  

2. it then penetrates the cell through a mechanism of Macropinocitosis  

3. once in the cytosol, it fuses to the endosomal membrane of the vescicle in 

which it is contained and the ribonucleocapsid is releases into the cytosol, 

where it will start to be processed  by host cell enzymes 

4.  the negative RNA uses the complementary strand to form mRNA, which is 

translated using the host cell machinery.  
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5. New replicated viruses follow an actin-dependent transport and they are 

released in the form of new virions through a mechanism of budding.  

 

Ebolavirus is responsible for EVD which is a deadly disease. During the last 

outbreak (2014) the WHO registered 11,325 confirmed deaths with the main locus 

in Guinea, Sierra Leone and Liberia. Other minor cases have been registered in 

Nigeria, Mali and Senegal. Four cases of Ebola infections have also been imported in 

United States and two in Europe, one in United Kingdom and another in Spain. In 

total  28,657 cases of infections have been confirmed, as of 8th May 2016. 

 

1.5.2 The Ebolavirus genome and protein function  

The Ebolavirus genome is around 19K nucleotide bases long and contains seven 

genes, which encode nine different proteins (figure 1.3). The proteins are: the 

nucleoprotein (NP), RNA dependent RNA polymerase (L), glycoprotein (GP), 

soluble GP (sGP), small soluble GP (ssGP) and four structural proteins that are 

called viral protein 24, 30, 35 and 40 (VP24, VP30, VP35 and VP40). The gene GP 

encodes GP, sGP and ssGP. These multiple forms of GP are generated as a result of 

RNA editing  (Mehedi et al., 2013). Given the small number of proteins in the 

Ebolavirus genome, the proteins need to be multifunctional (Xu et al., 2014).  

 

 

Figure 1.3: The Ebolavirus Genome. The 3' terminal and the 5' terminal are shown. Over each gene 

the correspondent protein with deposited PDB structure is shown in grey cartoon. For L protein 

there is no known structure but there are models available.  
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The Glycoprotein GP is the main protein responsible for viral entry into the host cell 

GP contains a mucin domain which has a highly glycosylated glycan caps (it is heavily 

glycosylated) which is important for the viral entry and probably also for immune 

system escape. The GP1 subunit binds to the host cell receptor(s), the actual 

receptor(s) remain unknown, although the Niemann-Pick C1 (NPC1) receptor is 

known to be required for virus entry (Miller et al., 2012). Subunit GP2 is involved in 

the fusion of the virus with the host cell membrane.  The function of sGP and ssGP 

remains unclear. 

The function of the protein L is as an RNA-dependent RNA polymerase. It forms a 

complex with NP, VP30 and VP35 to form the Ebolavirus RNA-dependent RNA 

polymerase nucleocapsid complex, essential for the generation of viral mRNA.  

 

VP35 is a multifunctional enzyme. As described above it is part of the RNA-

dependent RNA polymerase complex and it also has a role in preventing interferon 

signalling. This function is performed by VP35 dimers binding double stranded viral 

RNA and preventing them being recognised by the host cell immune system. This 

has made protein VP35 attractive as a therapeutic target and many scientists tried to 

study and develop VP35 inhibitors, but still without any positive outcome (Binning at 

al, 2014).  

 

The matrix protein VP40 exists in multiple different oligomeric forms, with each 

having a different function. The VP40 dimer has a role in membrane trafficking. The 

hexamer is functional in virus assembly and budding and the VP40 octamer has 

function in transcriptional regulation.  

 

The minor matrix protein VP24 which has probably on of the most intriguing role in 

the suppression of the immune response, since it blocks the whole Interferon 

Signalling Pathway by blocking the Janus/Kinase and Signal transductors and 

activators of transcription, the Jack/STAT pathway. 

Interferons Alpha and Beta, together with Natural Killer cells (NK), are the first 

agents that the human Immune system produces as innate response when a virus 

attacks the human cells. Interferons bind to their receptors and activate the JACK-
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STAT pathway and therefore activate the transcription of genes able to block the 

viral replication in the infected host cells. Ebolavirus is able to escape the human 

immune system in several ways and it is able to escape not only the innate but also 

the adaptive response, for example the production of antibodies. It has been recently 

observed that Ebolavirus is able to block the production of Interferons by mean of 

its protein VP24.  This last, in fact, competes with the phosphorylated transcription 

factor STAT1 for the binding with Karyopherins, which belong to the Importin 

complex. Proteins that are translocated into the nucleus, generally contain a 

sequence that is called classical nuclear localisation signal (cNLS) and that is 

recognized by Karyopherins. STAT1 is classified as non classical NLS (ncNLS) and 

it is recognized by Karyopherins by a mechanism of dimerisation and 

phosphorylation. When VP24 competes with STAT1, it binds Karyopherin and the 

transcription factor cannot be translocated into the nucleus and the whole 

Interferon Signalling Pathway is blocked, since the Jack/Stat pathway is inactivated. 

This process is shown in figure 1.4. 
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Figure 1.4: The mechanism of Inhibition of the Signalling pathway in normal cells (A) and in 

presence of Ebolviruses (B). Ebolavirus protein VP24 is shown in red spheres it prevents the binding 

of STAT1 (blue cartoon) to KPNA5 (cyan cartoon). In this way the Interferon Signalling gene 

Expression path is blocked. The figure has been adapted from Daugherty & Malik, Cell Host & 

Microbe, 2014. 

 

1.5.3 The current Ebola virus outbreak 

The current Ebola virus outbreak in West Africa has demonstrated that members of 

the Ebolavirus family pose a significant threat to human health on a large scale 

(Quaglio et al., 2016). It was of unprecedented size resulting in 28,639 confirmed 

cases and 11,316 deaths as of 28th February 2016 (www.who.int). Previous Ebola 

virus outbreaks were small ranging from a few to a few hundred infected individuals 

Until 2014 the outbreak in Uganda in 2000 was the largest, affecting 425 individuals 

and resulting in 224 deaths (La Vega et al., 2015). Given the limited size of previous 

outbreaks it was largely thought that Ebola outbreaks would remain small as they 

occurred in small villages in Africa with very limited travel connections and 

therefore effectively contained themselves. The current outbreak started in Guinea 

in December 2013 and with regular flare-ups it has still not been declared over 

(www.who.int). This outbreak has provided evidence of Ebola viruses persisting in 

immune-privileged sites and remaining infective for long periods. This includes 

persisting in the eye (Varkey et al., 2015)  and the presence of Ebola virus in semen a 

year after recover from the disease and possible sexual transmission (Christie et al., 

2015; Deen et al., 2015; Mate et al., 2015). This complicates effective outbreak 

control. The risk of new transmission from these persistent infections is not 

currently known; however, taken together, these findings caused concerns about 

future large outbreaks (Quaglio et al., 2016). 

 

Next generation sequencing has provided extensive sequencing data on Ebola virus 

genetics and evolution during the current outbreak (Gire et al., 2014; Loriere et al., 

2014; Tong et al., 2015; Carroll et al., 2015; Hoenen et al., 2015; Quick et al., 2016). 

These studies have enabled the identification of mutations in the virus and with 

them tracking of the outbreak into lineages.   
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The first study by Gire et al., (Gire et al., 2014)  sequenced 99 Ebola virus genomes 

from Sierra Leone. Their work suggested a high evolutionary rate of 1.9x10-3 

substitutions per site per year, approximately two fold more than the rate between 

outbreaks. Later studies indicated lower rates closer to 1.0x 10-3 substitutions per 

site per year, in agreement with previous rates observed between outbreaks (Loriere 

et al., 2015; Tong et al., 2015; Carroll et al., 2015; Hoenen et al., 2015). It has been 

suggested that a short sampling time used to obtain the 99 genomes did not allow 

deleterious mutations to be selected against and as such inflated the evolutionary 

rate (Gire et al., 2014; Carroll et al., 2015). The analysis of Gire et al., supported the 

outbreak being caused a single transmission from an Ebola virus reservoir followed 

by human-to-human transmission. 

 

Hoenen et al., (2015) sequenced Ebola viruses present in infected individuals in Mali. 

They identified a limited number of nonsynonymous amino acid changes and those 

observed did not map to functional regions of Ebola virus proteins. They propose 

that during the outbreak the virus has been undergoing limited evolution with no 

evidence of increased virulence or transmissibility (Hoenen et al., 2015). Phylogenetic 

analysis of a larger set of Ebola viruses from Sierra Leone identified three different 

lineages, and multiple sub-lineages (Tong et al., 2015). Carroll et al., (2015) sequenced 

179 Ebola virus patient samples from Guinea, phylogenetic analysis identified two 

lineages (A and B). Lineage A was present earlier in the outbreak (not observed after 

July 2014) and thought to have been contained by response to the outbreak. 

However, lineage B shows spread across Guinea, Sierra Leone and Liberia.   

 

Loriere et al., (2015) identified three lineages present in 85 patients infected in 

Guinea. The rate of substitutions is similar to the other studies but they observed 

nonsynonymous substitutions in the GP, L and VP35, proteins, some of which may 

be functional. Some GP variants are present in the mucin like domain and Loriere et 

al., (2015) proposed that they could alter the shape of the virus or affect glycoslyation 

of GP (Loriere et al., 2015). In VP35, mutations were identified in the domain 

associated with interferon inhibition but, the functional affect, if any, of this variant 

remains unclear. 
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An alternative approach considered 65 genomes from a range of outbreaks and 

infections in both great apes and humans (Azarian et al., 2015), with a focus on GP 

as it is the most variable Ebolavirus protein. Their findings suggest that the evolution 

observed is primarily due to neutral genetic drift and based on this they propose that 

it is unlikely that strained with altered transmission mechanisms or with altered 

pathogenicity will emerge. 

 

The most recent sequencing project from the West Africa outbreak performed ‘real-

time’ sequencing in the field (results available within 24 hours) (Quick et al., 2016) by 

using MinION nanopore sequencers. Using this approach 142 Ebola virus genomes 

from Guinea were sequenced during 2015. They identified that the viruses largely 

belonged to two main lineages GN1 and SL3. SL3 originated in Sierra Leone and 

spreaded to Guinea, whereas GN1 was confined to Guinea. 

 

Combined together these studies suggest that Ebola viruses are not evolving towards 

easier transmission or changes in virulence. Importantly, the many sequences now 

available enable extensive computational analysis of Ebola to understand how it 

functions and what determines pathogenicity.  

 

1.6 Bioinformatics methods and resources used in this thesis 

In order to carry out the research described within this thesis, several Bioinformatics 

tools for variant modelling and for protein engineering have been used and this 

section describes the majority of them:  

  

1.6.1 3DLigandSite 

3DLigandSite (Wass et al., 2010) uses protein structural modelling to predict protein 

ligand binding sites. For a given query sequence 3DLigandSite models the protein 

structure using Phyre2 (Kelley et al., 2015) and uses the model to perform a 

structural search of a database of ligand-bound protein structures from the protein 

databank. Alignment of the model with similar structures from this database map 

the ligands onto the model structure. Clustering of the ligands is performed and 
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binding sites predicted based on these clusters. The method has performed well in 

the Critical Assessment of techniques for Protein Structure (e.g. CASP8, Tress et al., 

2009). 

 

1.6.2 Phyre2  

There is a large gap between the number of protein sequences present in UniProt 

and the number of solved protein structures. Phyre2 (Protein Fold 

Homology/Analogy Recognition Engine) (Kelley & Sternber 2009, Kelley et al., 

2015) build 3D structures of protein with no known structure by identifying 

templates for the query by using hhsearch (Soding et al., 2005) to search a fold 

library extracted from. The method predicts the secondary structure using Psi-pred 

(Buchan et al., 2013) and Diso-pred (Ward et al., 2004) (this last for disordered 

regions in proteins) and then it constructs HMM (Hidden Markov Model) models of 

the protein sequence. The 3d structure is build, the loops are refined by mean of 

loop libraries, accounting for loops up to 15 amino acids in length and the side 

chains are modelled too, with more than 80% accuracy.  

 

1.6.3 Interactome3d 

Interactome3D (Mosca et al., 2013) is a bioinformatics tool for the structural 

annotation of Protein-Protein Interactions. Interactome3D identifies complexes in 

the PDB that can be used as templates for known pairs of interacting proteins 

present in databases such as IntAct (Orchard et al, 2014). The templates either 

represent the full protein structures or they can just represent the interaction of 

individual domains within a protein sequence, using 3did (Mosca et al., 2013). The 

method initially collected over 12,000 protein-protein interactions, including 

experimentally validated and newly discovered interactions, in eight organisms. The 

last release in 2015 doubled the size of the resource, including data for a further 

eight organisms.  

 

1.6.4 FoldX 

Protein folding is tightly connected to protein function. FoldX (Schymkowitz et al, 

2005) is a force field for energy calculations and protein design. FoldX can predict 



Chapter1: Introduction 

 31 

the effect of mutations on protein stability and it can calculate the energy of 

interaction in protein-protein and in protein-DNA complexes. The energy that is 

calculated by FoldX takes into account empirical values coming from experimental 

data.  

 

1.6.5 mCSM 

mCSM is a structure based method for predicting the effect of mutations in proteins 

by using graph-based signatures (Pires et al., 2014). The methods considers how 

mutations may affect protein stability, protein-protein affinity and  protein-DNA. 

The method uses a machine learning approach and the novelty of the method is the 

introduction of a graph-based signature that represents each mutation as a signature 

of a pharmacophoric count vector that will be considered to train the classification.  

The method uses a machine learning approach to predict the impact of the 

mutations. Like FoldX the method is a structure based predictor and they both are 

accurate, although mCSM showed a better performance than FoldX.  

 

1.6.6 Specificity Determining Positions (SDPs) 

The proteins in a protein family may have many different functions. For example in 

an enzyme family this may be different substrate specificities, with the enzyme 

performing effectively the same reaction but on different substrates. In the 1990’s 

methods were initially developed to identify such positions    (Casari et al., 1995; 

Lichtarge et al. 1996) that could be present within a protein family. Such positions 

are now largely referred to as Specificity Determining Positions (SDPs) and they 

have been demonstrated to be enriched at functional sites such as ligand-binding 

and protein-protein interfaces (Rausell et al., 2010).  

 

In the research presented in Chapter 3 the s3det algorithm (Rausell et al., 2010) was 

used to predict SDPs. This method splits protein family into subfamilies and relates 

SDPs to functional regions, according to the structural proximity to catalytic sites, 

ligand-binding sites of small molecules and protein-protein interaction sites. 

 

s3det is based on a statistical method termed Multiple Correspondence Analysis 
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(MCA) which is very similar to Principal Component Analysis (described later). The 

program encodes a multiple sequence alignment (MSA) into a binary matrix, and the 

coordinates of the matrix are transformed into “Principal Axes” that are not 

correlated; the sequences are then projected onto these Principal Axes. The methods 

can be used in supervised manner, where the proteins are split into subfamilies 

determined by the user. Alternatively in the unsupervised format s3det can uses K-

mean clustering to group the sequences into subfamilies. The MCA analysis is based 

on the “pseudovaricentric relationship” between the projected sequences and the 

projected residues which infers that “the centre of the masses of any group of 

sequences points to those residues particularly associated to them”. This is the 

principle by which the authors determined the SDPs in their study.   Figure 1.5 shows 

an example of SDPs that are conserved within all the Ebolavirus species but differ 

between them, for example R (Arginine) and T (Threonine) which are conserved 

within Zaire, Sudan, Bundibugyo and Taï Forest but differ in all the Reston species 

(many Valine and Serine in this example). 

 

Figure 1.5: Specificity Determining Positions (SDPs) in the different Ebolavirus Species are shown in 

two different groups: group 1, for human pathogenic species and group 2 for Reston, the only non 

human pathogenic species. Arginine R and Threonine are conserved within group 1 but they change 

respectively in Valine and Serine in group 2, where they are still conserved. These two positions are 

considered SDPs. 
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1.6.7 Machine Learning – Support Vector Machines (SVMs)  

Machine Learning is widely used in bioinformatics in the development of prediction 

algorithms. The basic premise of machine learning is to predict a particular property, 

for example protein function or whether a nsSNV is deleterious, using of a set of 

features. Machine learning algorithms are trained using a dataset where the 

properties are already known, so that the algorithm can learn how to associate the 

values of the features with the property being predicted. This often results in the 

algorithm learning rules or trends that associate the features with the predicted 

property.  

 

Machine Learnings consist of three main statistical fundamentals:  first, 

classification, which is a supervised method and for which we know to which class 

data belong to; second, clustering, which is unsupervised since it groups the data but 

ignores the labels and third, regression, which is supervised and consists on building 

a separation of the different groups according to the labels. In statistics, supervised 

learning can be divided into classification and regression. Classification is part of 

pattern recognition methods and it assumes that data labels are finite and discrete, 

whilst regression gives a function estimation and labels depend on a continuous set 

of data.  

 

Support Vector Machines (SVMs; Vapnik, 1995) are a widely used type of 

supervised machine learning method. SVMs have been successfully applied in the 

development of methods for the prediction of protein function (Wass et al., 2012), 

genetic mutations on protein stability, for protein folding recognition, for protein 

structure classifications, for secondary structure predictions or even for cancer 

classification using gene expression data (Petryszak et al., 2013; Kapushesky et al., 

2012).   

 

SVMs are based on the principle that algorithms “learn” according to a class of 

tasks. Typically they depend on several parameters and their choice is not always 

straightforward. The larger is the number of parameters the more complex is the 

task.   



Chapter1: Introduction 

 34 

SVMs are based on a similarity function that is referred to as a kernel. A kernel is a 

class of algorithm for pattern recognition that allows the use of implicit coordinates 

and obtaining high dimensional feature space. Whether the extraction of the features 

can be very expensive, kernels can decrease costs by computing inner products, 

implicitly. Kernels take into account the distances in a feature space, they compute 

matrices and they give an estimation of similarity. 

Given a set of data, one can embed it in a vector space and look for linear relations 

in that space. Kernels allow to specify the inner product function between points in 

that space, by considering all the pairwise inner products. So, for example, given a 

vector space X the inner products are:     

  

 

(1.6.1) 

                                                                   

The use of kernels has been extensively used in multivariate statistics algorithms 

based on eigenproblems, for example Support Vector Machine Learnings (SVMs), 

Principal Component Analysis (PCA), Canonical correlation analysis and others. 

There are several types of kernels, among the most important the linear (also the 

simplest), polynomial kernels, radial basis function kernels and sigmoid kernels. 

Linear kernels are applied to linearly separable problems.  

 

The simplest SVM uses a linear kernel to build a hyperplane to separate two groups. 

The hyperplane separates two groups with the criterion to maximise the margins 

which separate the groups. The elements of the groups which intersect the two 

margins are called support vectors. A simplification of an SVM is shown in figure 1.6: 
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Figure 1.6: Simplification of SVMs. The first group (blue spheres) is separated from the second 

group (red spheres) by an optimal hyperplane (green line) and it is called the maximum margin 

classifier. The spheres of each group that intersect the dotted margins are termed support vectors. 

The equation wx+b=0 describe the optimal hyperplane whilst wx+b=-1 and  wx+b=+1 represent the 

lines that describe the closest margins to one side and the other. 

 

1.6.8 Molecular Dynamics basis and principles 

Molecular dynamics simulations are computer calculations that model the motion of 

atoms and molecules as a function of time. The first molecular dynamics simulation 

was solved in 1977, when a bovine pancreatic trypsin inhibitor in a vacuum was 

simulated for less than 10 ps. (McCammon et al., 1977). MD can be a very 

informative method for protein folding, for conformational changes and on binding 

free energies. Molecular simulations can predict with good approximation the 

behaviour of molecules in solvent, in double phase or in membranes. MD can help 

the understanding and interpretation of molecular recognition with high confidence, 

especially where experiments are not possible; it can also aid in the refinement of X-

ray crystallography and NMR structures.  

 

Molecular dynamics simulations give, as output, an ensemble of configurations that 

essentially represent the coordinates and the velocities of the studied system as 

function of time. This output is referred to as a trajectory.  

 

The statistical basis of Molecular Dynamics is based on the principles described 
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below. Given a system with multiple components, its internal Energy can be 

described by its Hamiltoninan:  

 

(1.6.2) 

 

 

where K(p) is the kinetic energy of the system, and U(r) is its potential energy. The 

Hamiltonian asserts that the sum of K(p) and U(r) is equal to the sum of the 

momentum p of a particle i divided by two times its mass and summed to its 

potential Energy U at each position ri. The probability distribution, for the atoms in 

the system in each point is given by the Boltzmann distribution:  

 

 

 (1.6.3) 

 

 

 

where kBT is the Boltzmann constant. Given that it is impossible to know the 

Boltzmann probability for all states, when we study microscopic systems we refer to 

the ergodic hypothesis, which states that for an infinitely long system all the 

accessible micro states will have thermodynamics and dynamics averages which will 

coincide: 

 

  

(1.6.4) 

 

 

 

in this equation the first term in angle brackets [A(r,p)]T refers to thermodynamics 

averages and the second one [A(r,p)]Z to the dynamics averages, where T is the time 

length of the trajectory and Z is a canonical partition function referring to an integral 

over all space phase. Since MD deals with discrete (and not infinitesimal) objects 
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one can apply this principle.  

 

Classical Molecular dynamics allows the study of thermodynamics and kinetics 

properties, according the  Newton's second law: 

 

                                                  

 

            (1.6.5) 

                                                    

                                                      

 

 

where F is the force that is applied to the particle, m is the mass of the particle and a 

its acceleration.   

 

A force field describes all the intra and inter molecular interactions, in terms of the 

potential energy of the system. It is the sum of all the energetic terms that contribute 

to the potential energy of the system.  The force field follows two fundamental 

equations: Schrödinger’s equation and the Born-Oppenheimer approximation. 

 

The Schrödinger equation describes a molecular system by a relativistic time-

dependent point of view.  

 

                 (1.6.6) 

                                                                      

This equation needs to be adjusted, especially for systems with many atoms. For this 

reason the Born-Oppeneimer approximation is fundamental in MD. This 

approximation asserts that electrons adjust their dynamics accordingly to the atomic 

position changes as described in the following equation:  
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         (1.6.7) 

 

The force field represent the ensemble of the bonded interactions, such as angle, 

dihedral and improper (plane-plane) and non bonded interactions such as Van der 

Waals and Electrostatics.  

 

The Periodic Boundary Condition (PBC) asserts that atoms interact with their 

neighbours and also with the periodic atom corresponding to the mirror image of 

itself. PBC are very useful in MD, especially for large systems. After the simulation 

one should be aware of this artefact and apply the Minimum Image Convention 

(MIC) which ensures that the atoms interact only with the closet image inside the 

box of the simulation.  

 

An Example of PBC is shown in the figure 1.7. Here the solvation box has been filled 

with waters and the protein is shown in the central black box. The other boxes show 

the closest periodic mirror image, necessary to make the system infinite-like.  When 

a particle leaves a simulation box (for example the circle inside the central box) it is 

immediately replaced by the same atom from the opposite periodic image. 
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Figure 1.7: PBC in a simulation box. The Protein is shown in blue cartoons and water molecules in 

red sticks. The central box marked in bold is the simulation box whereas all the others represent 

periodic images of the central one. In this example, Periodic Boundary Conditions allow atoms that 

interact with others outside the simulation box, to be replaced by other atoms coming from the 

bottom periodic image and keep the system in equilibrium during the simulation. Simultaneously the 

same substitution occurs across all the boxes. 

 

1.6.8.1 MD protocol:  

Each molecular dynamics simulation consists of different steps:   

1. defining the initial velocities (according to the Maxwell distribution) and 

creating the topology file. 

2. defining the unit cells  

3. adding solvent molecules 
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4. neutralising the system, adding ions 

5. Energy minimisation (relaxation of the structure to assure that there are not 

steric clashes or inappropriate geometries) 

6. Equilibration phase, which is a critical phase for the entire simulation; this 

step consists of two phases: stabilisation of temperature (isothermal-

isochoric), where the canonical ensemble NVT (where N refers to the 

number of particles in the system, V to the volume of the system and T to 

the absolute temperature) is defined (this ensures that the number of 

particles, volume and temperature is constant); and as second phase, the 

stabilisation of pressure (isothermal-isobaric) and thus of stabilisation of the 

density. During the equilibration, it is standard procedure to apply restraints, 

in order to equilibrate the solvent around the protein, and in this way getting 

a bigger control of the simulation. 

7. Production 

8. Analysis  

 

The protein structures used for MD simulations need to have a good crystal 

structure resolution without missing backbone atoms; then the molecule is fitted 

into a box which will be filled with solvent molecules (if the simulation is in solvent; 

simulations can also be performed in a vacuum); then the temperatures and the 

pressure are assigned and the system is energetically minimised according to the 

initial and the rescaled velocities, temperatures and pressures; during the 

minimisation phase at specific temperature one can also use restraints, in order to 

have more control of the whole simulation. Finally, the production phase, where the 

simulation starts for a specific length of time.   

 

1.6.9 Principal Component Analysis 

 

Principal Component Analysis (PCA) is a linear transformation, widely used to 

analyse the motion of proteins during Molecular Dynamics (MD) simulations. PCA 

is used to reduce the dimensionality of a problem and in the case of MD it can aid 

interpretation of the motion in terms of eigenvectors and eigenvalues. Given a 



Chapter1: Introduction 

 41 

motion, the eigenvalue corresponds to the weight of the eigenvector to the motion 

of a protein.   

 

The aim of the PCA for MD trajectories is to determine the predominant direction 

for all the structural changes. Considering a system with N atoms, we can describe 

the internal motion according to the following covariance matrix:  

     

 

(1.6.8) 

 

 

where the values in round brackets ( … ) are the values of the masses in Cartesian 

Coordinates and the ones in angle brackets < … > are  the average of all the 

sampled conformations. This covariance matrix is then diagonalised in order to 

obtain 3N eigenvectors (Vi) and eigenvalues (Vi ). These describe the motions and 

they can be projected into Principal Components:  

  

                                                                                                                     

(1.6.9)  

                                                                  

 

 

It has been shown that the majority of the fluctuations of a system can be described 

by the first principal component. There are several ways to visualise PCA and one of 

them is to use a porcupine visualisation, where Cα atoms are linked to cones which 

have the same direction of the eigenvector. Each cone has a length which is 

proportional to the amplitude of the corresponding motion.  An example is shown 

in figure 1.8: 
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Figure 1.8: Porcupine visualisation of Principal Component 1 and 2 in Ebola VP24 protein shown in 

blue cartoon, in complex with human Karyopherin Alpha 5, shown in gray cartoons. In red sticks a 

series of mutations occurring at the interface are shown. The yellow cones represent the amplitude of 

the C alpha movements, as obtained with Principal Component Analysis. 

 

 

1.7 Organisation of this thesis 

The two main research lines: 

• the development of VarMod, a computational algorithm to predict the 

effects of single nucleotide nonsynonymous single nucleotide variants  

• analysis of genetic mutations occurring in Ebolaviruses to understand how 

they affect human pathogenicity.  

 

The thesis is divided into the following six chapters:  

 

The Introduction Chapter has described the state-of-the-art for the analysis of human 

genetic variation, an introduction to Ebolaviruses and  the methods used to analyse 

mutations present in Ebolavirus genomes.  

 

Chapter 2, contains the article entitled “Varmod: Modelling the functional effects of 

nonsynonymous variants” published in Nucleic Acid Research Journal (Pappalardo & 
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Wass, 2014).  

 

In Chapter 3, contains the article entitled “Conserved differences in protein sequence 

determine the human pathogenicity of Ebolaviruses” describes analysis to identify 

the molecular determinants of Ebolavirus Pathogenicity; published in Scientific Reports 

(Pappalardo et al., 2016).  

 

Chapter 4 - “Analysis of Ebola virus mutations present in rodent adaption 

experiments”. This manuscript considers the structural analysis of Ebolavirus 

mutations obtained from several adaptation studies inducing pathogenicity in mice 

and guinea pigs; this work is in preparation and will shortly be submitted to Genome 

Biology. 

 

Chapter 5 - “Molecular dynamics analysis of Ebola virus pathogenicity” This chapter 

builds upon the results from chapter 3 and uses molecular dynamics to investigate 

mutations in VP24 and how this may affect binding to the human protein 

Karyopherin alpha5. This work is in preparation and will soon be submitted to 

PLOS Computational Biology. 

 

Chapter 6 - Discussion.   
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Chapter 2: 

 

VarMod: modelling the functional 

effects of non-synonymous variants 
 

M. Pappalardo & M.N. Wass (2014), “VarMod: modelling the functional effects of 

non-synonymous variants”, Nucleic Acids Res., 42: W331–W336. 

 

 

This work was entirely developed by my supervisor, Mark Wass and me. I developed 

the vast majority of the back end scripts and analysis that are performed by VarMod. 

This includes: 

1. Generation of multiple sequence alignments and calculation of conservation 

2. Structural modelling of the query protein 

3. Analysis of structural properties (e.g. solvent accessibility and secondary 

structure) 

4. Analysis of protein-protein interactions and the proximity of variants to 

interfaces 

 

The machine learning element was implemented with my supervisor. My supervisor 

developed the front end of the webserver, we worked together on the overall design 

of the website and  I tested the server. 
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2.1 Abstract 

 

Unravelling the genotype–phenotype relationship in humans remains a challenging 

task in genomics studies. Recent advances in sequencing technologies mean there 

are now thousands of sequenced human genomes, revealing millions of single 

nucleotide variants (SNVs). For non-synonymous SNVs present in proteins the 

difficulties of the problem lie in first identifying those nsSNVs that result in a 

functional change in the protein among the many non-functional variants and in 

turn linking this functional change to phenotype. Here we present VarMod (Variant 

Modeller) a method that utilises both protein sequence and structural features to 

predict nsSNVs that alter protein function. VarMod develops recent observations 

that functional nsSNVs are enriched at protein–protein interfaces and protein–

ligand binding sites and uses these characteristics to make predictions. In 

benchmarking on a set of nearly 3000 nsSNVs VarMod performance is comparable 

to an existing state of the art method. The VarMod web server provides extensive 

resources to investigate the sequence and structural features associated with the 

predictions including visualisation of protein models and complexes via an 

interactive JSmol molecular viewer. VarMod is available for use at  

http://www.wasslab.org/varmod. 

 

 

 

2.2 Introduction 

 

The ability to sequence genomes has resulted in the identification of millions of 

genetic variants, particularly single nucleotide variants (SNVs), within the human 

population as highlighted by the 1000 genomes project (1000 Genome Project 

consortium, 2010; Abecasis et al., 2012). Additionally, other studies have 

demonstrated that individuals have many rare SNVs (Nelson et al., 2012; Tennessen 

et al., 2012). The data generated by such studies provide a unique resource for 

investigating the genotype to phenotype relationship. However, this is a complex 

problem as demonstrated by Genome Wide Association Studies (GWAS), which 
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have identified many variants associated with disease risk but have only explained a 

limited amount of heritability (Eichler et al., 2010). Additionally, in these studies, it is 

difficult to identify causal variants from a selection of candidate SNVs in the regions 

of the genome associated with the particular disease. 

There is therefore a need to develop methods to identify SNVs, in our case non-

synonymous SNVs (nsSNVs), that are likely to affect the function of the protein in 

which they are present and are more likely to be associated with a change in 

phenotype. A number of methods have been developed previously (reviewed in 

(Peterson et al.,2013), with the Sorting Intolerant From Tolerant algorithm (SIFT, 

Sim et al.,2012) and PolyPhen (Adzhubei et al., 2010) being among the most well 

known. SIFT uses residue conservation in multiple sequence alignments to identify 

function altering nsSNVs, while PolyPhen uses machine learning to combine features 

from both sequence and structure. 

Here we have developed VarMod a new method for identifying functional nsSNVs. 

VarMod develops our recent research in which we demonstrated that disease 

associated nsSNVs are enriched at protein–protein interfaces (David et al., 2012). 

Additionally, in GWAS, we have previously used structural modelling of ligand 

binding sites to identify likely candidates for association with disease (Chambers et 

al., 2010; Chambers et al., 2011; Chambers et al., 2009). For example, in a kidney 

disease genome wide association study (Chambers et al., 2010), we demonstrated that 

the variant rs13538 results in a phenylalanine to serine change located in the acetyl 

Co-enzymeA binding site of the protein NAT8 and proposed that the variant may 

have an effect on the activity of the enzyme (Chambers et al., 2010). VarMod builds 

upon these observations and uses structural modelling of ligand binding and protein–

protein interface sites to generate features that are combined with other features such 

as residue to conservation to identify functional nsSNVs. The VarMod web server 

provides an overall prediction made using a machine learning approach (a support 

vector machine) to combine the data from the different individual analyses. 

Additionally the server provides users with extensive resources to investigate the 

results from the separate analyses. 
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2.3 Methods 

2.3.1 The Varmod Algorithm 

VarMod obtains features from multiple analyses, which are combined using a 

support vector machine (SVM) (Vapnik, 1999) to make an overall prediction. The 

data sources used are described below. Sequence conservation is calculated using 

Jensen–Shannon divergence (Capra and Singh, 2008). Homologues of the query 

sequence are identified by PSI-BLAST (Altschul et al., 1997) using an approach 

shown to optimise results (Chubb et al., 2010), where the query sequence is initially 

searched against UniRef50 to generate a sequence profile that is used to search 

against the full UniProt sequence database (Uniprot Consortium, 2012). The query 

sequence and homologues are aligned using MUSCLE (Edgar, 2004) and the 

resulting multiple sequence alignment used to calculate the Jensen–Shannon 

divergence. 

To perform the structural analysis, a structural model of the query protein is 

generated. To do this, template structures in the protein databank (PDB) (Rose et al., 

2013) are identified using hhblits (Remmert et al., 2012) by searching a PDB 

sequence database representative at 70% sequence identity. Templates are selected 

with an hhblits probability (probability that the template and query sequence are 

homologous) score >80% and such that as much of the sequence is covered without 

redundantly modelling the same region of the protein multiple times. Initial structural 

models are generated using an approach based on the one used by Phyre2 (Kelley 

and Sternberg, 2009; Bennet-Lovsey et al., 2008). Side chains are added and 

optimised using pulchra (Rotkiewicz and Skolnick, 2008). Small molecule binding 

sites are modelled using 3DLigandSite (with default parameters) (Wass et al., 2010) 

with the structural model used as the input. 

Protein–protein interface sites are modelled using an approach based on 

Interactome3D (Mosca et al., 2012). The Interactome3D high confidence set of 

protein–protein interactions with template complexes in the PDB was used to 

generate models of the complexes. For each sequence–template pair the sequence is 

modelled using the template by applying the structural modelling approach described 

above. 
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The features used in the SVM fall into two areas of sequence and structural features 

(a full list is available in Supplementary Table S1). The sequence features include 

residue conservation (the Jensen–Shannon convergence) and three features that 

represent the change of amino acid properties of size/mass, charge and functional 

group. The size/mass change of the amino acid is represented by the ratio of the 

mass of the two amino acids. To consider the change in charge between the two 

amino acids, the 20 amino acids are grouped according to charge (Supplementary 

Table S2). The feature representing the change in the charge of the amino acid 

considers changes between these charge groups, with values set in Supplementary 

Table S3. A further feature represents the change of chemical functional group 

present in the amino acid side chain. The amino acids are grouped as described by 

Innis et al. (Innis et al., 2004) (Supplementary Table S4) and the feature captures 

changes between these functional groups. 

The structural features use the ligand binding site, interface site and general structural 

features of the model. Where ligand-binding sites have been identified the distance of 

the variant to the binding site is calculated and used as a feature. When a variant is in 

a binding site, two further features capture results from the 3DLigandSite analysis. 

Where interface sites have been predicted, a further feature represents the distance of 

the variant to an interface site. Two features represent the type of secondary 

structure that the variant is located in. The first uses the secondary structure types 

classified by DSSP (Joosten et al., 2011; Kabsch and Sander, 1983), while a second 

feature reduces these to the three main categories of helix, sheet and coil. A final 

feature represents the solvent accessibility (calculated using DSSP). 

The features generated are input into each of the five optimised SVM models 

generated during cross-validation (details below) to predict whether each variant is 

functional or non-functional. The outputs from each of the SVM models are 

converted to probabilities as described in Platt (Platt, 1999). An ensemble approach 

is taken with the probability from each SVM model weighted according to its 

accuracy in cross validation. The weighted probabilities are summed and normalised 

to generate a final probability for the VarMod prediction. 
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2.3.2 Generating a test set 

Dataset 5 from VariBench (Sasidharan and Vihinen, 2013) was used to train and test 

VarMod. This dataset contains human pathogenic and neutral variants, excludes 

cancer mutations and is clustered so that protein sequences share no >30% 

sequence identity. This set was initially split with 1401 pathogenic and 1527 neutral 

variants retained for final testing. The remaining 11 336 pathogenic and 12 737 

neutral variants were split into five groups by protein sequence to perform 5-fold 

cross-validation to ensure that variants from each individual sequence appear in only 

1-fold. 

 

2.3.3 SVM training  

The SVMs were generated by SVMlight (Joachims, 1999) using a linear kernel. For 

each of the 5-folds, three were used for training, a further fold was used for 

validation and the SVM tested on the remaining fold. The SVMs were optimised for 

the trade off between training error and margin and also the cost factor to identify 

how training errors on positive examples should outweigh those on negative 

examples. 

 

2.3.4 Comparison with Polyphen 

To compare VarMod performance with PolyPhen-2, the final test set of nsSNVs 

was run on the PolyPhen-2 web server (on 1 March 2014).  Predictions were made 

using the two different classifiers available (HumDiv and HumVar) with default 

settings. The ROC and Precision–Recall analyses of PolyPhen-2 were performed by 

varying the ‘pph2_prob’ score. Additionally VarMod performancs was compared to 

SuSpect (Yates et al., 2014). The final test set of nsSNVs was submitted to the 

SuSpect web server in June 2016. The ROC and Precistion-Recall analysis for 

SuSpect was performed by varying the threshold for the probability score associated 

with SuSpect predictions. 
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2.3.5 Evaluating VarMod Performance  

The performance of VarMod was assessed using the set of sequences from 

VariBench that were not used in cross-validation. The performance of VarMod on 

the test set of sequences was assessed using the measures of specificity, sensitivity 

(recall), precision and a Receiver Operator Characteristic (ROC) analysis. The ROC 

curve and Precision–Recall graph in Figure 2.1 show the performance of VarMod 

and the comparison with PolyPhen-2 and SuSpect. The ROC analysis shows that 

VarMod performance is comparable to both PolyPhen-2 and SuSpect. Interestingly, 

in the ROC analysis, neither of the PolyPhen-2 classifiers reaches the point 0,0 

which is due to a small number of high confidence false positive predictions (i.e. 

neutral variants predicted to be pathogenic). This may reflect that PolyPhen-2 has 

been trained using different sets of pathogenic and neutral variants. It has also been 

previously observed that there is limited overlap between the predictions of different 

methods (Chun and Fay, 2009). The precision-recall analysis shows similar 

performance between VarMod and PolyPhen-2. However, SuSpect outperforms 

both methods. It is possible that SuSpect is simply better than the other methods, 

however for both PolyPhen-2 and SuSpect we do not know if sequences present in 

this final test set were also used in training. SuSpect was trained using the UniProt 

Humsavar dataset and then benchmarked using VariBench, ensuring that they 

removed any sequences from VariBench that were present in the training set (Yates 

at al., 2014). To fairly test the methods the test set should not contain any sequences 

that were present in the training set.  
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Figure 2.1: Benchmarking VarMod. Analysis of the VarMod and PolyPhen-2 predictions on the non-

cross validation test set. (A) ROC analysis, (B) precision–recall graph.  

 

2.4 Results 

 

2.4.1 The VarMod web server 

The VarMod web server is available at  http://www.wasslab.org/varmod. Users are 

required to submit a protein sequence (raw sequence or FASTA formatted) or a 

UniProt accession, and a list of variant positions (e.g. A45C, where the single letter 

code is used to define the amino acids). A UniProt accession is required to perform 

the protein–protein interface analysis (optional). Processing time for each 

submission varies from 5 min to a few hours. Structural data has been pre-computed 

for all of the UniProt human principal protein isoforms, so submissions using these 

sequences are processed in a few minutes. Where other sequences are submitted, the 

structural models and binding sites need to be modelled thereby increasing the 

running time to a few hours. 

 

2.4.2 Results Output 

 

The display of VarMod results is split into multiple sections (Figures (Figures 2.2 

and 2.3). The first section provides a summary table of the analyses performed and 

the overall prediction made for each of the submitted nsSNVs. This table is colour 

coded to highlight the results from the individual analyses/features to indicate if 

they suggest the variant could affect protein function. For example, the binding site 

column is coloured red if the variant is in the binding site and the colour changes to 

blue the more distant the variant is from a known ligand-binding site. The summary 

table enables the user to see the overall result and to identify analyses that may be of 

interest for further inspection. 

The sequence and structure sections display the main analyses. The sequence section 
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displays the protein sequence, colour coded to highlight multiple features including 

residue conservation, ligand binding sites and protein–protein interfaces. The 

summary results and sequence view can be downloaded as a PDF file. 

The structural section first displays the details of the structural templates and models 

of the protein that have been generated (one for each region/domain for which a 

template was identified). A JSmol ( www.jmol.org) molecular viewer forms the main 

part of the structural section and initially displays the model with the highest 

confidence (probability from hhblits alignment). The JSmol viewer enables 

visualisation of the modelled protein and by default is coloured to highlight the 

functional regions of the protein (ligand-binding and protein–protein interface sites) 

and the nsSNVs (red). A control panel to the right of the display enables the user to 

investigate the nsSNVs by displaying a different model, or modifying the display style 

(cartoon/spacefill or sticks representations) and colour of the whole protein, nsSNVs 

or functional sites. The user is able to generate high quality images of the displayed 

model by clicking on the ‘generate image’ button, enabling the analysis to be used for 

reports or publications. 

The location of the nsSNVs in relation to the protein–protein interface sites can be 

explored further via the modelled complexes. The complex models are listed in a 

table, which also indicates the nsSNVs that are present in the model and if they occur 

within an interface. The complexes can be viewed in a separate JSmol viewer 

accessed from a link for each of the entries in the list. 
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Figure 2.2: Display of VarMod results. The results for variants in Phosphorylase b kinase gamma 

catalytic chain (UniProt accession P15735). The variants shown are known to have a role in Glycogen 

storage disease 9C. (A) The prediction summary table, showing the overall VarMod prediction and 

summarising the output from the different analyses. Results are colour coded to indicate the likely 

relevance of the changes, with features that suggest the variant is likely to be functional coloured red 

with the colour scale ranging to blue for features that are least likely to lead to functional changes. (B) 

The VarMod sequence display, residues are coloured to indicate conservation and the presence of 

ligand binding and interface sites. (C) The VarMod structural view.  
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Figure 2.3: The VarMod interactions view for investigating variants located at protein–protein 

interfaces. 

 

2.5 Discussion 

 

VarMod was developed to use recent observations that disease associated nsSNVs 

are frequently located at ligand-binding and protein–protein interface sites and to 

automate manual approaches that we have previously used to analyse GWAS 

candidate nsSNVs. We have demonstrated that VarMod performance on a large and 

established benchmark set is comparable to an existing state of the art method 

(PolyPhen-2). The VarMod server provides a resource for users to identify 

functional nvSNVs and to investigate the individual features associated with these 

variants. Plans for future improvements to the server include increasing the number 

of interface and binding site features such as considering how variants may alter 

binding energies and options to submit variants in alternative formats such as 

Variant Call Files (VCF), which will facilitate high throughput analysis of nsSNVs 

identified from sequencing studies. 
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3.1 Abstract 

Reston viruses are the only Ebolaviruses that are not pathogenic in humans. We 

analyzed 196 Ebolavirus genomes and identified specificity determining positions 

(SDPs) in all nine Ebolavirus proteins that distinguish Reston viruses from the four 

human pathogenic Ebolaviruses. A subset of these SDPs will explain the differences 

in human pathogenicity between Reston and the other four ebolavirus species. 

Structural analysis was performed to identify those SDPs that are likely to have a 

functional effect. This analysis revealed novel functional insights in particular for 

Ebolavirus proteins VP40 and VP24. The VP40 SDP P85T interferes with VP40 

function by altering octamer formation. The VP40 SDP Q245P affects the structure 

and hydrophobic core of the protein and consequently protein function. Three VP24 

SDPs (T131S, M136L, Q139R) are likely to impair VP24 binding to human 

karyopherin alpha5 (KPNA5) and therefore inhibition of interferon signaling. Since 

VP24 is critical for Ebolavirus adaptation to novel hosts, and only a few SDPs 

distinguish Reston virus VP24 from VP24 of other Ebolaviruses, human pathogenic 

Reston viruses may emerge. This is of concern since Reston viruses circulate in 

domestic pigs and can infect humans, possibly via airborne transmission.  

 

3.2 Introduction 

Four of the five members of the genus Ebolavirus (Ebola viruses, Sudan viruses, 

Bundibugyo viruses, Taϊ Forest viruses) cause hemorrhagic fever in humans 

associated with fatality rates of up to 90%, while Reston viruses are non-pathogenic 

to humans (Feldmann and Geisbert, 2011; Weingartl et al., 2013)  (see Materials and  

Methods for the Ebolavirus nomenclature). So far there have been three Reston virus 

outbreaks in nonhuman primates:  1989-1990 in Reston Virginia, USA, 1992-1993 in 

Siena, Italy, and 1996 in a licensed commercial quarantine facility in Texas. All cases 

were traced back to a single monkey breeding facility in the Philippines. During these 

outbreaks five human individuals were tested positive for IgG antibodies directed 

against Reston virus. Moreover, Reston virus was found in 2008 in domestic pigs in 

the Philippines. Seroconversion was detected in six human individuals. None of the 

11 individuals that were seropositive for Reston virus antibodies reported an Ebola-
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like disease (Miranda and Miranda, 2011) . 

The reasons underlying the differences in human pathogenicity between Reston 

viruses and the members of the other Ebolavirus species remain unclear. 

Understanding of the molecular causes of these differences would enhance our 

understanding of Ebolavirus function and pathogenicity and aid investigation into 

treatment of Ebolavirus infection.  Here, we performed an in silico analysis of the 

genomic differences between Reston viruses and human pathogenic Ebolaviruses to 

identify conserved changes at the protein level that explain the differences in 

Ebolavirus pathogenicity in humans. 

 

Ebolaviruses encode nine proteins including nucleoprotein (NP), glycoprotein (GP), 

soluble GP (sGP), small soluble GP (ssGP), RNA dependent RNA polymerase (L), 

and four structural proteins termed VP24, VP30, VP35, and VP40 (Feldmann and 

Geisbert, 2011; Mehedi et al., 2011; La Vega et al., 2015). GP, sGP, and ssGP are 

produced from the GP gene by alternative RNA editing (Feldmann and Geisbert, 

2011; Mehedi et al., 2011; La Vega et al., 2015). Many of the Ebolavirus proteins 

have multiple functions. In the virion, the NP-encapsulated RNA genome associates 

with VP35, VP30, and L to form the transcriptase-replicase complex. VP35 and 

VP24, a membrane-associated structural protein, antagonize the cellular interferon 

response. The matrix protein VP40 fulfills critical roles during virus assembly and 

release. GP, the only transmembrane surface protein, is responsible for host cell 

binding and virus internalization ( Feldmann and Geisbert, 2011; Basler, 2014). Little 

is known about the functional roles of the secreted proteins sGP and ssGP 

(Feldmann and Geisbert, 2011; Miranda and  Miranda, 2011; Mehedi et al., 2011; 

Hoenen et al., 2015). 

 

Despite the small Ebolavirus genome we still have a limited understanding of 

Ebolaviruses and what causes their pathogenicity and why Reston viruses are not 

human pathogenic (Feldmann and Geisbert, 2011; Basler, 2014; Zhang et al., 2012). 

The importance of understanding these differences is highlighted by the current 
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Ebola virus outbreak in Western Africa, which is the first large outbreak and has 

resulted in 27,345 suspected cases and 11,184 deaths to date (www.who.int, as of 14th 

June 2015). During this outbreak many additional Ebola virus genomes were 

sequenced enabling us to perform the first comprehensive comparison of the non-

human pathogenic Reston virus to all four human pathogenic Ebolaviruses. While 

some studies (Zhang et al., 2012; Bale et al., 2013; Clifton et al., 2014) have compared 

the differences between individual Reston virus proteins derived from a certain strain 

with their equivalent derived from one strain of a human pathogenic species, none 

have performed a systematic analysis of all available protein sequence information 

from all (known) Ebolavirus species.  

 

Our large scale analysis of nearly 200 different Ebolavirus genomes focussed on 

combining computational methods with detailed structural analysis to identify the 

genetic causes of the difference in pathogenicity between Reston viruses and the 

human pathogenic Ebolavirus species. Central to our approach was the identification 

of Specificity Determining Positions (SDPs), which are positions in the proteome 

that are conserved within protein subfamilies but differ between them (Casari et al., 

1995; Rausell et al.,2010) and thus distinguish between the different functional 

specificities of proteins from the different Ebolavirus species. SDPs have been 

demonstrated to be typically associated with functional sites, such as protein-protein 

interface sites and enzyme active sites (Rausell et al.,2010). The SDPs that we have 

identified and that distinguish Reston viruses from human pathogenic Ebolaviruses, 

arguably, contain within them a set of amino acid changes that explain the 

differences in pathogenicity between Reston viruses and the four human pathogenic 

species, although a contribution of non-coding RNAs (that may exist but remain to 

be detected) cannot be excluded (Basler, 2014; Teng et al., 2015). The subsequent 

structural analysis was performed to identify the SDPs that are most likely to affect 

Ebolavirus pathogenicity, using an approach that is similar to those used to 

investigate candidate single nucleotide variants in human genome wide association 

and sequencing studies by us and others (Chambers et al, 2011; Chambers et al., 

2010; Chambers et al., 2014; Palles et al., 2013). 



Chapter 3: Conserved differences in protein sequence determine the human pathogenicity of Ebolavirus  

 59 

3.3 Results 

3.3.1 Specificity Determining Positions (SDPs) Analysis 

196 Ebolavirus genomes were obtained from the Virus Pathogen Resource (ViPR, 

Pickett et al., 2012), consisting of 156 Ebola viruses, 7 Bundibugyo viruses, 13 Sudan 

viruses, 3 Taϊ Forest viruses, and 17 Reston viruses (online Methods). Phylogenetic 

analysis of the whole genomes and the individual proteins separated the Ebolavirus 

species from each other (Supplementary Figure S1). There is good agreement 

between all the trees. The Reston virus sequences are most closely related to Sudan 

virus than the other three Ebolavirus species. In accordance with previous studies 

(Morikawa et al., 2007; Gire at al., 2014; Liu et al., 2015; Vogel, 2015; Hoenen et al., 

2015), we observed high intra-species conservation with greater inter-species 

variation (Figure 3.1 and Supplementary Table 1). The surface protein GP exhibited 

the greatest variation (Figure 3.1), most likely as a consequence of selective pressure 

exerted by the host immune response (Liu et al., 2015). 

 

Using the S3Det algorithm (Rausell et al., 2010) (Materials and Methods), we 

identified 189 SDPs that are differentially conserved between Reston viruses and 

human pathogenic Ebolaviruses (Figure 3.2, Supplementary Figure 2, Supplementary 

Tables 2-9). These SDPs represent the most significant changes between the Reston 

virus and the human pathogenic Ebolaviruses so 
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Figure 3.1. Conservation of Ebolavirus proteins. Heatmaps of intra- and inter species sequence 

identity for Ebolavirus proteins. (EBOV, Ebola virus; BDBV, Bundibugyo virus; SUDV, Sudan virus; 

TAFV, Taϊ Forest virus; RESTV, Reston virus). 

 

a subset of these SDPs must explain the difference in pathogenicity. SDPs were 

present in each of the Ebolavirus proteins representing between 2.4% of residues in 

sGP to 5.9% of residues in VP30 (Figure 3.2B). Comparison of the SDPs with 
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previously published mutagenesis studies (Xu et al., 2014) (online Methods) provided 

no explanation for their functional consequences (Supplementary Table 10).  

 

 

 

Figure 3.2. Ebolavirus SDPs. A) genomic overview of Ebolavirus conservation. SDPs are shown as  

red lines with protein conservation (blue graph). B) The number of SDPs in each of the Ebolavirus 

proteins is shown with details on: the number of SDPs that were mapped onto protein structures and 

the numbers that were identified to have potential roles in changing pathogenicity by either affecting 

protein-protein interactions (interface) or changing protein structure-function. These changes were 

classed as probable, where there is high confidence of the effect and possible where there is a lower 

level of confidence in the observations. 

 

 

3.3.2 Structural Analysis 

Full-length structures for VP24 and VP40 were available, as well as structures for the 
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globular domains of GP, sGP, NP, VP30, and VP35 (Supplementary Table 11). It 

was not possible to model the oligeromerization domains of VP30 and VP35 nor the 

structure of L apart from a short 105 residue segment of the 2239 residue protein, 

which contained a single SDP. 47 SDPs could be mapped onto Ebolavirus protein 

structures (or structural models where structures were not available, see online 

Methods). Most SDPs are located on protein surfaces (Supplementary Figure 3) and 

are therefore potentially involved in interaction with cellular and viral binding 

partners and/or immune evasion. Based on our combined computational and 

structural analysis we find evidence for eight SDPs that are very likely to alter protein 

structure/function, with six affecting protein-protein interfaces and two that with the 

potential to influence protein integrity and hence affect stability, flexibility and 

conformations of the protein (Table 3.1). Five additional SDPs may alter protein 

structure/function but the evidence supporting them is weaker (Supplementary 

Tables 12-18). Two of these weaker SDPs were present in NP (A705R, R105K - all 

SDPs are referred to using Ebola virus residue numbering and show the human 

pathogenic Ebolavirus amino acid first and the Reston virus amino acid second). 

A705R is likely to introduce a salt bridge with E694 and R105K will alter hydrogen 

bonding (Supplementary Table 12). The three other SDPs with weaker evidence were 

present in the glycan cap in GP (see below). The eight confident SDPs were present 

in V24, VP30, VP35, and VP40. The VP40 and VP24 SDPs revealed the most 

changes that may  relate to differences in human pathogenicity (see below). 

 

 

Table 3.1. SDPs that are likely to alter Reston virus protein structure and function. 

Protein   SDP      Interface  Protein Integrity 

 VP24 T131S KPNA5 interface  

 VP24 M136L KPNA5 interface  

 VP24 Q139R KPNA5 interface  

 VP24 T226A  Loss of Hydrogen bond 

 VP40 P85T Octamer interface  

 VP40 Q245P  Breaks α helix 

 VP30 R262A Dimer interface – loss of Hydrogen bond   

 VP35 E269D Dimer interface  
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3.3.3 Multiple SDPs are present in the GP glycan cap 

GP is highly glycosylated and mediates Ebolavirus host cell entry. Subunit GP1 binds 

to the host cell receptor(s). Subunit GP2 is responsible for the fusion of viral and 

host cell membranes. However, their cellular binding partners remain to be defined 

(Feldmann and Geisbert, 2011; Miller et al., 2012; Dahlmann et al., 2015; Herbert et 

al., 2015). Reverse genetics experiments have suggested that GP contributes to 

human pathogenicity but is insufficient for virulence on its own (Groseth et al., 

2012). We identified SDPs in both GP1 and GP2 (Supplementary Figure 4 and 

Supplementary Table 12). Three SDPs (I260L, T269S, S307H) are located in the 

glycan cap that contacts the host cell membrane (Supplementary Figure 4B-C).  

These changes (particularly S307H at the top of the glycan cap) alter the electrostatic 

surface of GP (Supplementary Figure 4D) and may therefore alter GP interactions 

with cellular proteins, however given the glycosylation of GP, it is unlikely that these 

residues would physically contact the host cell membrane and none of them are near 

glycosylation sites. So it is not clear what role they may have. GP binding to the 

endosomal membrane protein NPC1 is necessary for membrane fusion (Miller et al., 

2012). However, residues important for NPC1 binding (identified by mutagenesis 

studies in Miller et al., 2012) were conserved in all analyzed Ebolaviruses and the 

SDPs were not located close to them (Supplementary Figure 5). Thus differences in 

NPC1 binding do not account for differences in Ebolavirus human pathogenicity. 

This finding is in concert with very recent data indicating that NPC1 is essential for 

Ebolavirus replication as NPC1-deficient mice were insusceptible to Ebolavirus 

infection (Herbert et al., 2015). 

 

It was not possible to predict the consequences of SDPs in sGP and ssGP (Fig. S23), 

as there is a lack of functional information available for these proteins (Miranda and 

Miranda, 2011; Mehedi et al., 2011). A 17 amino acid peptide derived from Ebola 

virus or Sudan virus GP exerted immunosuppressive effects on human CD4+ T cells 

and CD8+ T cells while the respective Reston virus peptide did not (Yaddanapudi et 

al., 2006). We identified one SDP in the peptide, which represents the single amino 

acid change (I604L) previously observed between Reston virus and Ebola virus 
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(Yaddanapudi et al., 2006), demonstrating that this difference is conserved between 

Reston viruses and all human pathogenic Ebolaviruses. 

 

 

3.3.4 Changes in the VP30 dimer may affect pathogenicity 

Analysis of the VP30 SDPs provided novel mechanistic insights into the structural 

differences previously observed between Reston virus and Ebola virus VP30 (Clifton 

et al., 2014) and that may contribute to the differences observed in human 

pathogenicity between Reston virus and Ebola virus. VP30 is an essential 

transcriptional co-factor that forms dimers via its C-terminal domain and hexamers 

via an oligomerization domain (residues 94-112) (Hartlieb et al., 2003). The VP30 

hexamers activate transcription while the dimers do not, and the balance of hexamers 

and dimers has been suggested to control the balance between transcription and 

replication (Hartlieb et al., 2007). Crystallization studies have shown that Ebola virus 

and Reston virus dimers are rotated relative to each other (Clifton et al., 2014). We 

observed two SDPs (T150I, R262A) in the dimer interface that can at least partially 

explain the structural differences between Ebola virus and Reston virus VP30 

dimers. Ebola virus R262 is part of the dimer interface and forms a hydrogen bond 

with the backbone of residue 141 in the other subunit, whereas Reston A262 does 

not and is not part of the dimer interface (Figure 3.3). The removal of the two 

hydrogen bonds (in the symmetrical dimer) is likely to lead to the different Reston 

and Ebola virus dimer structures. mCSM predicts this change to be destabilizing with 

a ΔΔG-0.969 Kcal/mol. The Reston virus conformation also buries functional 

residues A179 and K180 potentially affecting protein function (Clifton et al., 2014) 

(Figure 3.2). Moreover, our findings show that the Ebola virus conformation is 

conserved in all human-pathogenic Ebolaviruses suggesting that it is relevant for 

human pathogenicity.  
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Figure 3.3. SDPs present in the VP30 dimer. The dimer structure of both Ebola virus (PDB structure 

2I8B) and Reston virus (PDB structure 3V7O) VP30 are shown with SDPs indicated (red – Ebola 

virus, blue – Reston virus) and functional residues (brown – A179, K180). a) Cartoon representation: 

For the Ebola virus the hydrogen bond of R262 with the residue 141 of the other subunit is shown. b) 

enlarged display of the hydrogen bond between R262 and the backbone of residue 141. c) Surface 

representation of the reverse face of the dimer from A, showing the location of the functional residues 

A179 and K180 within the dimer. 

 

3.3.5 VP35 SDP present in dimer interface 

VP35 is a multifunctional protein that antagonizes interferon signaling by binding 

double stranded RNA (dsRNA). Structural data are available for both the Ebola virus 

and Reston virus VP35 monomer and an asymmetric dsRNA bound dimer (Bale et 



Chapter 3: Conserved differences in protein sequence determine the human pathogenicity of Ebolavirus  

 66 

al., 2013; Leung et al., 2010; Leung et al., 2009; Kimberlin et al., 2010). These 

structures are highly conserved, however functional studies have demonstrated that 

Reston virus VP35 is more stable, has a reduced affinity for dsRNA, and exerts 

weaker effects on interferon signaling (Leung et al., 2010). The increased stability is 

proposed to be due to a linker between the two subdomains having a short alpha 

helix in the Reston virus structure (Leung et al., 2010). Our analysis shows that the 

sequence of this linker region is completely conserved in all of the genomes, however 

an SDP is located close to the linker (A290V). One SDP (E269D) is present in the 

dimer interface and the shorter aspartate side chain in Reston virus VP35 results in 

increased distances with the atoms that this aspartate forms hydrogen bonds with: 

R312, R322, and W324 (Ebola virus numbering; Supplementary Table 13). mCSM 

predicts this change to be slightly destabilizing to the complex (ΔΔG -

0.11Kcal/mol). This has the potential to alter the stability of the dimer and thus the 

ability of VP35 to prevent interferon signaling. 

 

It has recently been demonstrated that a VP35 peptide binds NP and modulates NP 

oligomerization and RNA binding to NP (Leung et al., 2015). There are two SDPs 

(S26T, E48D) in this region. S26T is located on the periphery of the interface. E48D 

lies outside the solved structure but is within the region required for binding to NP. 

Both SDPs represent minor changes that maintain the chemical properties of the side 

chains. Thus, there is no evidence suggesting substantial differences in the binding of 

this peptide to NP. 

 

3.3.6 VP40 SDPs may alter oligomeric structure 

VP40 exists in three known oligomeric forms (Bornholdt et al., 2013). Dimeric VP40 

is responsible for VP40 trafficking to the cellular membrane. Hexameric VP40 is 

essential for budding and forms a filamentous matrix structure. Octameric VP40 

regulates viral transcription by binding RNA. Two SDPs (P85T and Q245P) can 

affect VP40 structure. P85T occurs at the VP40 octamer interface site (Figure 3.4) in 

the middle of a run of 14 residues that are completely conserved in all Ebolaviruses 

(Figure 3.4a). In the Ebola virus structure, it is located in an S-G-P-K beta-turn, 
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where the proline at position 85 (P85) confers backbone rigidity. The change to 

threonine (T) at this residue in Reston viruses introduces backbone flexibility and 

also provides a side chain with a hydrogen bond donor, potentially affecting octamer 

structure and/or formation. mCSM predicted this change to have a destabilizing 

effect (ΔΔG -0.626Kcal/mol). The Q245P SDP introduces a proline residue into an 

alpha helix (Figure 3.4B), which most likely breaks and shortens helix five, resulting 

in the destabilization of helices five and six and a change in the hydrophobic core. 

Interestingly mCSM predicted this change to have little effect on the stability of the 

protein (predicted ΔΔG 0.059Kcal/mol). Thus, P85T and Q245P may affect VP40 

function and human pathogenicity. 
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Figure 3.4. The P85T SDP is present in the VP40 octamer interface. a) Consensus sequence for the 

region around P85T in Ebolavirus species (R, Reston virus; E, Ebola virus; S, Sudan virus; B, 

Bundibugyo virus; T, Taϊ Forest virus). Black squares indicate positions that are completely conserved 

in all genomes, red squares SDPs. b) segment of VP40 showing the Q245P SDP (red) from PDB 

structure 1ES6. c) The VP40 dimer, with SDPs colored red and shown in stick format (PDB structure 
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4LDB). d) The VP40 octamer, P85 shown in red (side- and top-view) from PDB structure 4LDM. e) 

Two subunits from the VP40 octamer, P85 is colored red in sphere format, and the SDP I122V is 

shown as yellow in stick format. 

 

 

3.3.7 VP24 SDPs affect KPNA5 binding 

VP24 is involved in the formation of the viral nucleocapsid and the regulation of 

virus replication (Feldmann and Geisbert 2011; Morikawa et al., 2007;Mateo et al., 

2011; Mateo et al., 2011; Watt et al., 2014). VP24 also interferes with interferon 

signaling through binding of the karyopherins α1 (KPNA1), α5, (KPNA5), and α6 

(KPNA6) and subsequent inhibition of nuclear accumulation of phosphorylated 

STAT1 and through direct interaction with STAT1 (Xu et al., 2014; Reid et al., 2006; 

Reid et al., 2007; Zhang et al., 2012). Eight VP24 SDPs are in regions with available 

structural information (Supplementary Tables 17-18). Seven of these are present on 

the same face of VP24 (Figure 3.5A) suggesting that they affect VP24 interaction 

with viral and/or host cell binding partners. The SDPs T131S, M136L, and Q139R 

are present in the KPNA5 binding site (Figure 3.5). M136 and Q139 are part of 

multi-residue mutations in Ebola virus VP24 that removed KPNA5 interactions 

(Supplementary Table 17) (Xu et al., 2014) and are adjacent to K142 (Figure 3.5A), 

mutants of which have shown reduced interferon antagonism (Llinykh et al., 2015). 

Xu et al., investigated the effect of VP24 mutations on binding to KPNA5 using 

coimmunoprecipitation pull down experiments and compared the bands obtained in 

the gel with wild type protein. This approach is not quantitative but the strength of 

the band provides an indication of the extent to which binding is affected. For 

R137A and R137A, T138A,Q139A the band is very weak. For F134A/M135A it is 

intermediate between these previous two mutations and the wild type. Therefore, 

M136L and Q139R can exert significant effects on VP24-KPNA5 binding. 

Additionally, T226A results in the loss of a hydrogen bond between T226 and D48 

in Reston virus VP24 (Figure 3.5B), with the potential to alter structural integrity and 

influence protein function. Analysis using mCSM predicts the T226A change to be 

destabilizing with a ΔΔG -0.935 Kcal/mol. mCSM predicted seven of the eight 

analysed SDPs to be destabilizing (Supplementary Table 2). 
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VP24-mediated inhibition of interferon signaling may be critical for species-specific 

pathogenicity (Xu et al., 2014; Mateo et al., 2011; Reid et al., 2006; Reid et al., 2007; 

Zhang et al., 2012). In this context, VP24 was a critical determinant of pathogenicity 

in studies in which Ebola viruses were adapted to mice and guinea pigs that are 

normally insusceptible to Ebola virus disease(La Vega et al., 2015; Mateo et al., 2011; 

Volchkov et al., 2000; Ebihara et al., 2006; Dowall et al., 2014). The adaptation-

associated VP24 mutations in rodents are located in the KPNA5 binding site with 

some of them being very close to the VP24 SDPs T131S, M136L, and Q139R that 

we determined to be in the KPNA5 binding site (Figure 3.5C-D, Supplementary 

Table 19). Additionally some of the mutations are similar to the SDPs in that they 

would remove hydrogen bonds within VP24 (e.g. T187I, T50I, Figure 3.5E-F, & 

Supplementary Table 19) or alter hydrogen bonding with KPNA5 (H186Y, Figure 

5F & Supplementary Table 19). Thus there is strong evidence suggesting that the 

VP24 SDPs have a role in rendering the Reston virus non-pathogenic in humans. 
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Figure 3.5. Ebola virus VP24 SDPs and complex with KPNA5. a). VP24 Structure (grey) in complex 

with KPNA5 (cyan) (PDB structure: 4U2X), with VP24 SDPs (red) and K142 colored blue. b) T226 

(red) hydrogen bond with the backbone of D48 (blue). c) VP24 showing residues mutated in rodent 

adaptation experiments (magenta) and SDPs identified in this study (red). d) Ebola virus VP24 in 

complex with KPNA5, reverse view shown from A. SDPs are coloured red and residues mutated in 

adaptation experiments are coloured magenta; VP24 (grey) and KPNA5 (cyan) complex with residues 

mutated during adaptation (magenta) and SDPs (red). F) Hydrogen bonds formed by VP24 T50. G) 

Hydrogen bonds formed by VP24 H186, and T187. Intrachain bonds are colored black and hydrogen 

bonds between VP24 and KPNA5 are colored blue.  
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3.4 Discussion 

In this study, we have combined the computational identification of residues that 

distinguish Reston viruses from human pathogenic Ebolavirus species with protein 

structural analysis to identify determinants of Ebolavirus pathogenicity. The results 

from this first comprehensive comparison of all available genomic information on 

Reston viruses and human pathogenic Ebolaviruses detected SDPs in all proteins but 

only few of them may be responsible for the lack of Reston virus human 

pathogenicity.  

Our analysis mapped 47 of the 189 SDPs onto protein structure, so additional SDPs 

may be relevant but the structural data needed to reliably identify them is missing. 

Although it is difficult to conclude the extent to which each individual SDP 

contributes to the differences in human pathogenicity between Reston viruses and 

the other Ebolaviruses, we can identify certain SDPs that have a particularly high 

likelihood to be involved. SDPs present in the oligomer interfaces of VP30, VP35, 

and VP40 may affect viral protein function. VP24 SDPs may interfere with VP24-

KPNA5 binding and affect viral inhibition of the host cell interferon response. These 

findings suggest that changes in protein-protein interactions represent a central cause 

for the variations in human pathogenicity observed in Ebolaviruses. VP24 and VP40 

in particular contain multiple SDPs that are likely to contribute to differences in 

human pathogenicity. Where possible the SDPs have been considered collectively, 

such as for VP24, where most of the SDPs are present on a single face of the protein 

(Figure 3.5A) and three of them are present in the interface with KPNA5. Beyond 

this it is difficult to interpret how any combination of SDPs might be responsible for 

the differences in human pathogenicity.  

Our data also demonstrate that relevant changes explaining differences in virulence 

between closely related viruses can be identified by computational analysis of protein 

sequence and structure. Such computational studies are particularly important for the 

investigation of Risk Group 4 pathogens like Ebolaviruses whose investigation is 

limited by the availability of appropriate containment laboratories. 

 



Chapter 3: Conserved differences in protein sequence determine the human pathogenicity of Ebolavirus  

 73 

The role of VP24 appears to be central given the large number of SDPs we identify 

as likely to affect function, particularly KPNA5 binding. This is also highlighted by 

the similarity between these SDPs and the mutations that occur in adaptation 

experiments in mice and guinea pigs (Basler, 2014; Leung et al., 2009; Watt et al., 

2014; Reid et al., 2006; Reid et al., 2007). Consequently, the mutation of a few VP24 

SDPs could result in a human pathogenic Reston virus. Given that Reston viruses 

circulate in domestic pigs, can be spread by asymptomatically infected pigs, and can 

be transmitted from pigs to humans (possibly by air) (Weingartl et al., 2013; Barrette 

et al., 2009; Marsh et al., 2011), there is a concern that (a potentially airborne) human 

pathogenic Reston viruses may emerge and pose a significant health risk to humans. 

Notably, asymptomatic Ebolavirus infections have also been described in dogs 

(Weingartl et al., 2013) and Ebola virus shedding was found in an asymptomatic 

woman (Akerlund et al., 2015). Thus, there may be further unanticipated routes by 

which Reston viruses may spread in domestic animals and/or humans enabling them 

to adapt and cause disease in humans. 

 

In summary our combined computational and structural analysis of a large set of 

Ebolavirus genomes has identified amino acid changes that are likely to have a crucial 

role in altering Ebolavirus pathogenicity. In particular the differences in VP24 

together with the observation that Ebolavirus adaptation to originally non-

susceptible rodents results in rodent pathogenic viruses (Basler, 2014; Leung et al., 

2009; Watt et al., 2014; Reid et al., 2006; Reid et al., 2007)  suggest that a few 

mutations could lead to a human pathogenic Reston virus. 

 

3.5 Materials and methods 

3.5.1 Ebolavirus nomenclature 

The nomenclature in this manuscript follows the recommendations of Kuhn et al., 

(2010). The genus is Ebolavirus. It is only italicized if the name refers to the genus but 

not if it refers to physical viruses or virus parts or constituents such as proteins or 

genomes. The species are Zaire ebolavirus (type virus: Ebola virus, EBOV), Sudan 
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ebolavirus (type virus: Sudan virus, SUDV), Bundibugyo ebolavirus (type virus: 

Bundigugyo virus, BDBV), and Taϊ Forest ebolavirus (formerly Côte d’Ivoire 

ebolavirus; type virus: Taϊ Forest virus, TAFV). 

 

3.5.2 Ebolavirus Genome Sequences 

196 complete Ebolavirus genomes were downloaded from Virus Pathogen Resource, 

VIPR (http://www.viprbrc.org/brc/home.spg?decorator=vipr) (Pickett et al., 2012). 

The 196 genomes comprise 156 Ebola virus (EBOV), 17 Reston (RESTV), 13 Sudan 

(SUDV), 7 Bundibugyo (BDBV) and 3 Taï Forest (TAFV) species (Supplementary 

Table 20). Open Reading Frames (ORFs) in the genomes were identified using 

EMBOSS (Rice et al., 2000). The ORFs were then mapped to the nine Ebolavirus 

proteins. 

 

3.5.3 Multiple Sequence Alignments and identification of specificity 

determining positions 

Multiple sequence alignments were generated for each of the Ebolavirus proteins 

using Clustal Omega (Sievers et al., 2011), with default settings. Protein sequence 

identities between the different sequences were obtained from the Clustal Omega 

output. The effective number of independent sequences (or effective number of 

sequences, see table S21) in an alignment indicates given redundancy in the 

sequences, how many different sequences there are effectively. So if all of the 

sequences are highly similar, there is little diversity in the alignment and the effective 

number of sequences is low. The effective number of independent sequences present 

was calculated for the alignment for each protein by building an HMM for the 

alignment using hmmer (Mistry et al., 2013). The effective number of independent 

sequences identified ranged from 88 for the VP24 and L proteins to 148 in NP 

(Table S21). 

 

The s3det algorithm (Rausell et al., 2010) was used to predict specificity determining 

positions (SDPs) using a supervised mode with sequences assigned to predetermined 

groups/subfamilies with all of the human pathogenic sequences in one group and the 
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Reston virus sequences in a second group.  The sensitivity of the SDP analysis to the 

number of sequences used was considered by subsampling the sequences (see 

Supplementary Methods and Supplementary Figs S6-S8). SDPs were compared to 

known functional residues (many from mutagenesis studies) in Ebolavirus proteins 

catalogued in UniProt (Uniprot Consortium, 2014) and in the literature. 

 

 

3.5.4 Phylogenetic Trees 

Bayesian Phylogenetic trees were generated using BEAST v1.8.2 (Bouckaert et al., 

2014), then the consensus tree for each set of 10000 trees was calculated with 

TreeAnnotator and the node labels obtained analyzing the trees with FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/). TreeAnnotator and BEAUti, are part of 

the BEAST package. 

 

The Maximum Likelihood Phylogenetic trees were generated using RaxML8 

(Stamatakis, 2014). A full Maximum Likelihood analysis and 1000 Bootstrap replicate 

searches were run in order to obtain the best scoring ML tree for each set of 

sequences. 

 

Phylogenetic trees were generated using default settings in both BEAST and 

RaxML8, according to the type of input data. All phylogenetic trees were analyzed 

and plotted using the R “ape” package (Paradis et al., 2004).  

 

3.5.5 Structural Analysis 

Where available, protein structures for the Ebolavirus proteins were obtained from 

the protein databank (Rose et al., 2015). Where full length protein structures were 

not available the proteins were modelled using Phyre2 (Kelley et al., 2015). SDPs 

were mapped onto the protein structures using PyMOL. Solvent accessibility for 

SDPs was calculated using DSSP (Joosten et al., 2011).  

 

The Reston virus structures of GP1 and GP2 were modeled using one-to-one 

threading in Phyre2 (Kelley et al., 2015) with the EBOV GP trimer structure (PDB 
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code 3CSY) used as a template. A model of a Reston virus GP trimer structure was 

generated by aligning the modelled Reston virus GP1 and GP2 structures to their 

corresponding chains in the Ebola virus trimer.  

 

The Coulombic Electrostatic Potential for the proteins was calculated using Delphi, 

with default parameters (Smith et al., 2012). The electrostatics map was visualized 

and analyzed using Chimera (Pettersen et al., 2004). 

 

mCSM (Pires et al., 2014) was used to predict the effect of each individual SDP on 

the stability of the protein. The Ebola virus structures were used as input and the 

relevant amino acid changed to the one present in the Reston virus.  
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Chapter 4: 

Structural consequences of the 

genomic changes associated with 

Ebola virus adaptation to rodents 
 

 

Morena Pappalardo, Mark J Howard, Jeremy S Rossman, Martin Michaelis, Mark N 

Wass 

 

This manuscript is currently in preparation for submission to Genome Biology. In this 

project I have performed the research, which is primarily protein structural analysis 

of mutations that occur in adaptation of Ebola virus to rodents. Interpretation of the 

likely effects of the mutations was performed in discussion with my supervisor.  
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1. Abstract 

The potential for Ebola virus to cause large outbreaks and many thousands of deaths 

has recently been demonstrated in West Africa. Ebola viruses are pathogenic in 

humans and primates but not in rodents. We have analysed the mutations identified 

in four different experiments that adapted Ebola virus to rodents to identify and 

understand the molecular determinants of host-specific Ebola virus pathogenicity. 

We identified 33 different mutations across the four studies, with only two mutations 

present in more than one study. For three proteins, VP24, GP and NP, mutations 

were observed in all four studies. Structural analysis suggests that the changes in GP 

and NP may have an effect on protein function but with limited functional 

knowledge of the regions of the protein they are located in, it is not possible to infer 

further. Clear functional effects were identified for six of the seven mutations present 

in VP24. Three of these mutations are located in the VP24 interface with 

karyopheerin a5 and we propose that they may have a role in adapting Ebola VP24 

binding to karyopherins from novel hosts. A further three mutations either change 

hydrogen bonding or will result in conformational changes in the protein. Based on 

our analysis we propose that VP24 is central to adaptation of Ebola virus to new 

hosts. 

 

 

4.2. Introduction  

The recent Ebola virus outbreak in West Africa, which is still seeing flare-ups in 

infection, http://www.who.int/ was the first outbreak of a member of the Ebolavirus 

family in humans that reached epidemic size (Frieden, et al., 2014; Alexander, et al., 

2015). It has resulted so far in 28,639 confirmed cases and 11,316 deaths as of 28th 

February 2016 (www.who.int), though these figures are thought to underestimate the 

actual numbers (Meltzer, et al., 2014). Hence, this epidemic provided the first 

evidence that Ebolaviruses can sustainably spread among humans and cause large 

outbreaks that affect tens of thousands of individuals, possibly even more. 

 

The research on Ebola viruses is limited by the availability of safety level 4 

laboratories and a lack of disease models in small rodents. A major issue in the 
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establishment of rodent models is that species including mice, guinea pigs, and 

hamsters are generally not susceptible to Ebola virus infection and disease. 

Therefore, Ebola viruses that cause lethal disease in rodents need to be established 

by virus adaptation via serial passaging in these species (Shurtleff & Bavari, 2015). 

Despite indications that these models reflect human disease at least in part, a better 

understanding of the similarities and differences between natural Ebola virus disease 

in humans and the disease caused by rodent-adapted Ebola virus strains in rodents is 

needed (Shurtleff & Bavari, 2015; Cross et al., 2015). 

A number of studies reported on the genetic changes associated with Ebola virus 

strains to mice, guinea pigs, and hamsters (Ebihara et al., 2006; Dowall et al., 2014; 

Cross, et al., 2015; Volchkov,  et al., 2000). Here, we applied an in silico approach to 

predict the consequences of these sequence changes in the virus genome on the 

structure and function of the Ebola virus-encoded proteins in order to improve our 

understanding of the processes, underlying Ebola virus adaptation to rodents and to 

gain further insights into the differences of Ebola virus replication in experimental 

rodent models relative to natural human infection. 

 

 

4.3. Results 

We focus our analysis on four studies that adapted Ebola virus in rodents. Three of 

them adapted Ebola to guinea pigs (Dowall, et al., 2014; Volchkov et al., 2000; Cross 

et al., 2015) and one in mice (Ebihara, et al., 2006). In each study multiple passaging 

of the virus in the rodent species was performed, three of the studies sequenced the 

virus once it had become pathogenic, while Dowall et al., (Dowall, et al., 2014) 

sequenced the virus after each passage, thus providing greater detail on the mutations 

occurring during the adaptation process and the ability to identify whether they are 

lost or retained during passaging.  

 

Ebolaviruses have a small genome containing seven genes that encode nine proteins.  

The proteins are glycoprotein (GP), soluble GP (sGP), small soluble GP (ssGP), 

RNA dependent RNA polymerase (L), nucleoprotein (NP), and four structural 

proteins that are called VP24, VP30, VP35 and VP40. Therefore, there are a small 
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number of proteins to investigate for having a role in determining host pathogenicity. 

However, given the small size of the genome, most Ebolavirus proteins are 

multifunctional, which may make it difficult to identify the functional effects of 

individual mutations. 

 

 

Table 4.1 Summary of mutations identified in Ebola virus rodent adaptation experiments. *L26F is 

present in two studies so total number of unique mutations is 5 for VP24. Two different adaptations 

experiments were performed in Volchkov et al., and these are listed separately in the table. §data is 

only available for VP24 mutations in Volchkov-2. 

 

 Ebihara Dowall Volchkov-1 Volchkov-2 Cross Total 

NP 1 1 1 N/A 2 5 

GP 3 2 1 N/A 1 7 

L 1 11 1 N/A 0 13 

VP24 1 1 3 1 2 7* 

VP30 0 0 0 N/A 0 0 

VP35 1 1 0 N/A 0 2 

VP40 0 0 0 N/A 0 0 

       

Total 7 16 6 1§ 5 32 

 

 

4.3.1. Initial comparison of the different adaptation experiments 

Over the four studies 33 unique protein coding mutations were identified in the 

rodent adapted Ebola virus genomes. In all four studies mutations were present in 

multiple proteins (Table 4.1), with mutations in the glycoprotein (GP), nucleoprotein 

(NP), the RNA dependent RNA polymerase (L) and viral protein 24 (VP24) in each 

of the separate studies (Table 4.1). Mutations in VP35 were observed in two studies. 

No mutations were observed in the remaining proteins, VP30 and VP40, although 

mutations were present in both VP30 and VP40 (as well as the other Ebolavirus 

proteins) during passaging in the Dowall study but these mutations were not retained 

in later passages (Dowall, Matthews, et al., 2014).  
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Only two mutations were observed in multiple studies (GP I554T and VP24 L26F), 

which may provide stronger evidence for a role of these mutations in the adaptation 

process. The GP I554T mutation was observed in both the Ebihara et al.,(Ebihara, et 

al., 2006) and Cross et al., (Cross, et al., 2015) studies, while VP24 L26F was observed 

in the Dowall et al., (Dowall, et al., 2014) and Cross et al., (Cross, et al., 2015) studies. 

Further investigation revealed that threonine is commonly observed at residue 544 in 

GP (see methods), while isoleucine is present in the original Mayinga strain. 

Therefore, it seems unlikely that this mutation is relevant to adaptation in guinea 

pigs. For VP24 L26F reverse genetics studies have associated the mutation with 

increased virulence in rodents (Mateo, et al., 2011).  

 

Overall analysis of the four studies suggests that only a small number of mutations 

are required to adapt Ebola virus to rodents (Table 1), with six mutations present in 

the Volchkov and Cross studies, seven in the Ebihara study and 16 in the Dowall 

study (most of these in L). However, without further analysis it is not clear if all of 

these mutations play a role in the adaptation process or if there are a few specific 

mutations present in each study that are responsible for the change in pathogenicity. 

Nor is it apparent if there is a single adaptation mechanism (i.e. mutation to a 

particular protein or set of proteins) or if there are multiple different pathways to 

pathogenicity. 

 

To gain insight into this set of mutations we performed a structural analysis, mapping 

the mutations onto the available Ebola virus proteins and complexes, supplemented 

with structural modelling where structures were not available (see methods). The 

potential structural effects of the mutations were manually investigated and 

additionally their effect on protein stability predicted using mCSM (Pires, 2014), a 

computational method designed to predict the effect of point mutations on protein 

structure and stability. Our structural analysis was performed to investigate the 

mutations present in all four studies 1) to identify  structural elements that are most 

relevant to the development of Ebola virus pathogenicity in a new host and 2) to 

estimate how easily Ebolaviruses may adapt to new hosts. 
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In total 22 of the 33 mutations were mapped onto protein structures or models. 

Neither of the two mutations (A12V, N204D) present in VP35 could be modelled. 

The A12V mutation appears to be a conservative change of amino acid and is located 

in the N terminal dimerisation domain, while the N204D mutation is located just 

before the RNA binding domain. Notably, VP35 was only found mutated in two out 

of four studies suggesting that mutations in VP35 are not essential for Ebolavirus 

adaptation to a novel species. 

 

4.3.2 Mutations in the glycoprotein may affect protein structure  

The glycoprotein (GP) mediates host cell entry and has long been speculated to have 

a role in pathogenicity (Feldmann & Geisbert, 2011). GP consists of two subunits: 

GP1 binds to the host cell surface receptor(s). GP2 is needed for the fusion of the 

virus membrane with the host cell membrane. The exact process and host cell 

binding partners during virus binding and membrane fusion remain only partially 

understood (Miller, et al., 2012). However, GP binding to the endosomal membrane 

protein NPC1 appears to be required for membrane fusion (Miller, et al., 2012). 

Across the four studies six different mutations are observed in GP (Table 4.2). Four 

of these mutations could be mapped onto available GP structures (Figure 4.1). The 

most striking mutation is S65P. S65 is a buried residue. The mutation S65P 

introduces a proline into the middle of a beta sheet, this is likely to alter or disrupt 

the beta sheet and it will also result in the loss of a hydrogen bond with E100 (Figure 

4.1). Both of these effects are likely to result in conformational change within GP. 

However, the extent of the conformational change, how it would affect GP function, 

or how it may have a role in adaptation remain unclear from the structural analysis. 

The second mutation D49N is located at the edge of the interface between GP1 and 

GP2. The D49 side chain is not present in the crystal structure suggesting that the 

side chain is moving. Analysis of the possible side chain conformations indicated that 

it could form a hydrogen bond with N595. However, mutation would reduce the 

charge and asparagine would still enable a hydrogen bond to be formed between the 

subunits. So it may be that a hydrogen bond is formed with asparagine at position 49 

but not aspartate. However, it is not clear what functional effect this change would 

have. The third mutation S246P is located on a surface loop towards the area of the 
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protein that binds the host cell membrane, so it is possible that this mutation could 

alter host cell interactions but without knowledge of the receptor and binding site, 

there is no evidence to support this. Finally, GP is heavily glycosylated (Lennemann 

et al., 2014; 2015), which further aggravates the interpretation of the functional 

consequences of mutations in GP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Mutations in GP during adaptation to rodents. The GP trimer consists of GP1 (grey 

colours) and GP2 (blue, yellow, green) dimers. A) Adaptation mutations in GP are shown in red. B) 

The adaptation mutation S65P will result in loss of a hydrogen bond with the backbone of E100. 

 

 

 

 

4.3.3. Mutations present in the nucleoprotein 

Three of the five mutations present in NP could be mapped onto the protein 

structure (Figure 4.2). Adjacent residues S647 and F648 (mutations: S647Y and 
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F648L) in the C terminal domain are mutated in separate studies, suggesting that 

either this is a region that can tolerate mutations or that the mutations could be 

linked to adaptation to the new host. F648 is tightly packed with side chains from the 

adjacent alpha helix (Figure 4.2). The change to leucine will reduce the size of the side 

chain and could  result in local conformational change. S647 is located on the protein 

surface, the mutation to tyrosine results in a large increase in side chain size but 

retains the ability to form hydrogen bonds (possibly with interaction partners). 

 

The third mutation (S72G) in NP is located in the N terminal domain. S72 forms a 

hydrogen bond with the backbone of P42, which is lost on mutation of S72 to 

glycine (Figure 4.2B). This may result in increased flexibility in this region but the 

functional consequences cannot be reliably predicted. 

 

The function of these regions of NP are not well established, making it difficult to 

interpret the possible effect they may have on protein structure and function and 

how this may relate to Ebola virus pathogenicity. 
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Figure 4.2. Adaptation mutations in NP. A) Adaptation mutations S647Y (red spheres) and F648L 

(red sticks) in the C terminal domain of NP occurred in separate adaptation mutations. B) NP residue 

S72 forms a hydrogen bond with the backbone of P42 (black dashed line). This bond is lost with the 

adaptation mutation S72G.  

 

4.3.4. Mutations in the RNA dependent RNA polymerase may not be related 

to pathogenicity 

Thirteen mutations were reported in the RNA dependent RNA polymerase (L) from 

three of four studies (Table 4.1),   11 of them from the Dowall et al., study (Dowall, et 

al., 2014). This study monitored the mutations that occurred in every passage until 

the virus had adapted to Guinea pigs and caused disease. Notably, 10 out of these 11 

mutations were only identified in the final passage, whereas mutations in NP, VP35, 

and GP had become visible within the first three passages. Thus, it remains unclear 

whether these mutations would have been maintained during further replication 

cycles in Guinea pigs. In this context, as only three out of four adaptation studies 

reported mutations in L does not suggest an essential role of L in Ebolavirus host 

tropism. Additionally, the Y1271STOP mutation results in a stop codon and, hence, 

in a truncated protein, that is unlikely to be functional (full length L is 2212  residue 

so long so nearly half the protein would be missing). This mutation is therefore 

unlikely to be associated with enhanced pathogenicity and further questions a pivotal 

role of L for Ebolavirus adaptation to a novel species.  

 

4.3.5. Multiple mutations in VP24 are likely to be associated with Ebola virus 

pathogenicity 

VP24 is multifunctional and is involved in the formation of the viral nucleocapsid, 

the regulation of virus replication and the prevention of interferon signalling 

(Feldmann & Geisbert, 2011; Mateo, et al., 2011; Watt, et al., 2014; Reid, Leung, 

Hartman, et al., 2006). VP24 interferes with interferon signalling through binding of 

STAT1 and the karyopherins α1 (KPNA1), α5, (KPNA5), and α6 (KPNA6) (Xu, et 

al., 2014). This binding prevents nuclear accumulation of phosphorylated STAT1 and 

therefore inhibits interferon signalling. 
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Changes in the sequence of VP24 were detected in all of the studies that investigated 

the genomic consequences associated with Ebola virus adaptation to rodents (Table 

4.1). VP24 may need to adapt to interfere with STAT1 and/or the karyopherins of a 

novel species. Structural analysis using the complex of VP24 with human KPNA5 

provided insight into the likely effects of six of the seven  VP24 mutations found in 

rodent-adapted Ebola virus strains. Only the possible consequences of the M71I 

mutation remained elusive. Three mutated residues (H186Y, T187I, K142E) are 

present in or adjacent to the interface site with human KPNA5 (Figure 4.3). Hence, it 

is possible that these mutations enable or alter the interaction of VP24 with rodent 

karyopherins. The wild type H186 forms a hydrogen bond in the interface with 

residue T434 in human KPNA5 (Figure 4.3B). The hydroxyl group in the mutated 

tyrosine would still be able to form a hydrogen bond with KPNA5 T434, but may 

also enable its interaction with rodent karyopherins. The T187I mutation removes 

intramolecular hydrogen bonds with the backbone of residues H186 and E203 (Figure 

4.3C). This is likely to increase flexibility in this area. K142E is adjacent to the human 

KPNA5 interface site and mutations in K142 have been shown to inhibit the 

interferon signalling (Ilinykh, et al., 2015). This mutation reverses the charge of the 

side chain. It is possible that this could result in local conformational changes. 

Overall mutations in the residues that interface with KPNA5 may modulate VP24 

interactions with rodent karyopherins. 

 

The other three mutations (L26F, T50I and L147P) all have some effect on the 

structure of VP24. mCSM predicted L26F to have the most destabilising effect on 

VP24 (Table 4.2). L26 is located at the end of an alpha helix and is packed against two 

other alpha helices, resulting in the side chain being largely buried (Figure 4.3D). 

Given the tight packing it is possible that the mutation to a larger side chain 

associated with the change from leucine to phenylalanine requires some 

conformational change to accommodate the increased size, although there is no 

indication of what effect this would have on VP24 function. However, given that this 

mutation was observed in two independent adaptation experiments (Dowall, et al., 

2014; Cross, et al., 2015) and also in reverse genetics studies (Mateo, et al., 2011), it 

seems likely that it has a role in the adaptation to rodent hosts. 
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T50I removes intramolecular hydrogen bonds with the VP24 backbone residues Q36 

and K52 (Figure 4.3E). This is likely to increase flexibility in this region of the protein. 

L147P is located towards the end of an alpha helix. The mutation to proline is likely 

to result in the breaking of this helix, reducing its length and leading to 

conformational change in this region. So both of these mutations, while it is not clear 

how they relate to adaptation, will have an effect on VP24 structure and or dynamics. 

 

Many of these mutations would typically be considered to be unfavourable to a 

protein, with changes present in interface sites, resulting in the loss of hydrogen 

bonds and others likely to cause conformational changes. This makes it likely that 

these mutations are relevant to the adaptation of Ebola virus to rodent hosts. This 

contrasts with other mutations identified during passaging in the Dowall et al study, 

which are similarly unfavourable but are not retained in later passages (see below). 

This makes it likely that these mutations are relevant to the adaptation of Ebola virus 

to rodent hosts.  
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Figure 3. Mutations in VP24 during adaptation to rodents. A) VP24 (grey) in complex with 

karyopherin a5 (PDB code: 4U2X), adaptation mutations are colour red and shown in stick format. B) 

VP24 H186 forms a hydrogen bond with KPNA5 T434. C) H186 forms intramolecular hydrogen 

bonds (black dashed lines) with the backbones of H186 and E203. D) Residue L26 is buried so 

mutation L26F may affect the conformation of the protein. E). Adaptation mutation T50I will result 

in loss of hydrogen bonding to the backbones of Q36 and K52. 

 

 

 

4.3.6. Mutations that are not retained during passaging may have detrimental 

effects on protein structure and function 

The extensive sequencing analysis in the Dowall study (Dowall,  et al., 2014) enabled 

the investigation of mutations that occurred during the passaging process but were 

not retained in later passages and instead reverted to wild type. We were able to 

analyse 24 of these 40 mutations. Our analysis demonstrates that many of these 

mutations are likely to be destabilising to the Ebolavirus proteins (Table 4.3 and Figure 

4.4A). The mutations that are not retained tend to have lower BLOSUM substitution 
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scores than the adaptation mutations (Figure 4.4A), showing that such amino acid 

changes occur less frequently in nature and therefore may be more likely to alter 

protein structure/function. Additionally, a group of four non retained mutations are 

predicted by mCSM to be highly destabilising (ΔΔG > -2.5 Kcal/mol) whereas only 

one of the adaptation mutations has a similar prediction (Tables 4.2 and 4.3). 

However for the rest of the mutations there is not much difference in the predicted 

effect on stability (Tables 4.2 and 4.3). 

 

In NP both W191R and V323D are predicted to be highly destabilising to the 

protein structure (ΔΔG of -2.973 and -3.339 Kcal/mol respectively). Structural 

analysis indicates that mutation of W191 to arginine would introduce a charged 

residue in the interior of the protein in a hydrophobic region (Figure 4.4A). This may 

also alter the hydrogen bond that W191 forms with E61, although arginine at 

position 191 would still retain functional groups to form a hydrogen bond with E61. 

Similarly, V323D introduces a charged residue in a buried region, part of this region 

is hydrophobic, although H327 and E351 form a hydrogen bond and are adjacent to 

V323. Mutation V323D introduces further negative charge into this region and a 

hydrogen bond acceptor  so this mutation is likely to alter the protein conformation 

(Figure 4.4C). 

 

In VP40, M259R introduces a larger, charged side chain, in a region that is partially 

exposed but is surrounded largely by hydrophobic residues. Our analysis also 

suggests that arginine at residue 259 could give hydrogen bond with N257, so there is 

also the possibility that  may form hydrogen bonds with adjacent side chains.  

 

Both temporal changes in VP30, L214P and Q248R, are likely to affect the structure 

and or function of VP30 (Figure 4.4D). L214 is buried and located in the last turn of 

an alpha helix. Mutation to proline is likely to shorten the helix and therefore result 

in conformational change. Q248R is in the VP30 homodimer interface site (Figure 

4.4D). The backbones of adjacent residues L247 and L249 form hydrogen bonds 

with the other subunit (Hartlieb, et al., 2007) (Figure 4.4D). Although this is a 

relatively conservative substitution, it will increase the charge and size of the amino 
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acids and it seems likely that the proximity of this mutation to the interface will have 

an effect on VP30 dimer stability. 

 

So it seems likely that some of these mutations that are not retained in later passages 

is because they are deleterious to Ebola protein function and therefore are selected 

against during further passaging. 

 

 

 

Figure 4. Analysis of mutations that occur during passaging that are not retained in later passages. A) 

Barchart showing BLOSUM substitution scores for the adaptation mutations (i.e. those mutations that 

are retained; red) and those that are not retained (blue). B) Mutation W191R (cyan) in NP is observed 

during passaging. The mutation is located in a buried region. C) Mutation V323D (cyan) in NP, is 

located close to H327 and E351 (blue; which form a hydrogen bond – black dashed line). D 

Mutations L214 and Q248R (red) in VP30 are not retained during passaging. Zoom in region shows 

hydrogen bonding (cyan) around Q248 in the VP30 homodimer interface.   

 

 

4.4 Discussion 

The relevance of the mutations in GP is not clear. The high level of glycosylation of 

this protein makes it difficult to predict whether (and if yes, how) the mutations may 
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modulate virus tropism and pathogenicity. Notably, reverse genetics experiments 

indicated that GP contributes to human pathogenicity but is insufficient for virulence 

on its own (Groseth, Marzi, Hoenen, et al., 2012). This appears to indicate that Ebola 

viruses tolerate a substantial number of changes in the sequence of GP without 

losing virulence. It is also difficult to predict the relevance of the five NP mutations 

identified in rodent-adapted Ebola virus strains. Some evidence suggests that at least 

some of the mutations may well be involved in the determination of virus virulence 

in a certain host, but conclusive evidence is missing. Notably, GP and NP display 

together with L the greatest variability in their sequences (Jun, et al., 2015). Therefore, 

some variation in these sequences may not be surprising. 

 

Modelling of the VP24 mutations suggests that they are all likely to modulate the 

virus-host cell interaction. In particular, H186Y, T187I, and K142E are likely to be 

relevant for the modulation of the host cell interferon response. Therefore, there is 

strong evidence that changes in VP24 are required to enable Ebola virus adaptation 

to a novel host. This notion is in accordance with evidence suggesting that VP24 may 

be a determinant of pathogenicity among different Ebolaviruses (Zhang, et al., 2012). 

The retention of these mutations while other mutations that occur during passaging 

of the Dowall study but are not retained in further passages, suggests that these 

mutations have a role in rodent pathogenicity.  

 

We have recently suggested that VP24 may be central to explaining how Reston 

viruses are the only Ebolavirus species that are not pathogenic in humans 

(Pappalardo, et al., 2016). We identified multiple residues in VP24 that are 

differentially conserved between Reston viruses and the four human pathogenic 

Ebola virus species. Three of these residues are located in the VP24-KPNA5 

interface site and we proposed that they result in impaired binding of Reston VP24 

with karyopherins and thus a reduced ability to inhibit interferon signalling. So in two 

different contexts we have observed differences in VP24 that are related to species-

specific pathogenicity, thus together they provide strong evidence for VP24 in 

determining host pathogenicity.  
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Given our analysis, how many mutations are required to alter Ebola virus host 

pathogenicity? Notably, our analysis has shown that only very few mutations may be 

required for the adaptation of an Ebolavirus to a novel host. In total, the different 

adaptation experiments resulted in 5 (Cross), 6 (Volchkov-1), 7 (Ebihara), or 16 

mutations (Dowall) (Dowall, et al., 2014). As described above, 11 of the 16 mutations 

in the Dowall et al. study (Dowall, et al., 2014) occurred in L, it remains unclear 

whether these mutations would have been sustained during further passaging in 

guinea pigs (see above). This also means that only 4 to 5 mutations were detected in 

these genes per individual adaptation experiment. So this may represent a minimum 

number of coding mutations required in an Ebola virus genome to enable 

Ebolaviruses to cause disease in a novel, previously non-susceptible host. It is 

reasonable to assume that not every mutation is essential for Ebolavirus adaptation 

to a novel host, so this required number of mutations may be even lower.  

 

The adaptation of the human-pathogenic Ebolavirus species, Ebola, Sudan, 

Bundibugyo, and Taϊ Forest viruses to humans that might result in increased 

virulence does not appear to be a major concern. Their virulence in humans is 

extremely high they  are still considered to be deadly to humans (Feldmann & 

Geisbert, 2011; Gray, et al., 2014). Hence, adaptation of human-pathogenic 

Ebolaviruses to humans (which would ultimately result in Ebolaviruses that circulate 

in humans as reservoir species) would be expected to result rather in a decrease of 

pathogenicity to achieve a balance between virulence and pathogen fitness and/or 

transmission. However, the potential of Ebolaviruses to adapt to novel host species 

may be of relevance with regard to the potential threat exerted by the non-

pathogenic member of the Ebolavirus genus, the Reston viruses. Reston viruses and 

Ebola viruses are known to circulate in pigs, and can be transmitted from pigs to 

humans (possibly by air) (Weingartl, 2013; Barrette, et al., 2009; Marsh, et al., 2011; 

Osterholm, et al., 2015; Atherstone, et al., 2015; Pan,  et al., 2014; Olson, et al., 2012; 

Miranda & Miranda, 2011). Moreover, dogs have been suggested to become infected 

and may play a role during virus transmission to humans and as potential reservoir 

species (Osterholm, et al., 2015; Weingartl, 2013) (Olson, et al., 2012). 
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Table 4.2. Mutations identified during serial passaging of rodents. The table details protein structural 

analysis of the mutations including their BLOSUM62 substitution score, solvent accessible surface 

area and the predicted change in protein stability from mCSM. All studies considered adaptation in 

Guinea pigs with the exception of the Ebihara et al., study, which used mice, indicated with * in the 

study column. #The mutation in GP I544T, is commonly a T in Ebola virus and the structure 

available contains a threonine at this position. Therefore the mCSM analysis considered the mutations 

from threonine to isoleucine. 

 

Protein Mutation Study 

BLOSUM62 

score 

Solvent 

Accessible 

Surface Area 

mCSM 

ΔΔG 

(Kcal/mol) 

mCSM 

Effect 

NP S72G Ebihara* 0 0 -1.126 destabilizing 

NP N566S Dowall -1 - - - 

NP A575T Cross 0 - - - 

NP S647Y Cross -2 86 -0.652 Destabilizing 

NP F648L Volchkov 0 21 -0.86 Destabilizing 

VP35 A12V Ebihara* 0 - - - 

VP35 N204D Dowall 1 - - - 

GP D49N Dowall 1 71 0.398 Stabilizing 

GP S65P Ebihara* -1 6 -0.011 Destabilising  

GP V203I Dowall 3 - - - 

GP S246P Ebihara* -1 49 -0.253 Destabilising  

GP D397G Volchkov -1 - - - 

GP I544T Ebihara* -1 54# -0.556# Destabilising  

GP I544T Cross -1 54# -0.556# Destabilising 

VP24 L26F Dowall 0 0 -0.644 Destabilizing 

VP24 L26F Cross 0 0 -1.656 Destabilizing 

VP24 T50I Ebihara* -1 9 0.109 Stabilizing 

VP24 M71I Volchkov 1 75 -0.216 Destabilizing 

VP24 L147P Volchkov -3 94 -0.636 Destabilizing 

VP24 L147P Mateo -3 94 -0.636 Destabilizing 

VP24 H186Y Volchkov-2 2 7 0.563 Stabilizing 

VP24 T187I Volchkov -1 4 -1.157 Destabilizing 

VP24 K142E Cross 1 52 -0.082 Destabilizing 
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L N38K Dowall 0 18 0.062 Stabilizing 

L G707A Dowall 0 1 -0.497 Destabilizing 

L T820A Volchkov 0 6 0.081 Stabilizing 

L T930A Dowall 0 0 -2.245 Destabilizing 

L L940P Dowall -3 8 -1.713 Destabilizing 

L F934L Ebihara* 0 0 -3.187 Destabilizing 

L Y1271stop Dowall - - - - 

L N1478I Dowall -3 - - - 

L I1532V Ebihara* 3 - - - 

L A1546E Dowall -1 - - - 

L S1998T Dowall -2 - - - 

L N2144K Dowall 0 - - - 

L F2151V Dowall -1 - - - 

 

 

 

 

 

Table 4.3. Analysis of mutations identified during passaging in Dowall et al., (Dowall, Matthews, 

Garcia-Dorival, et al., 2014) but not retained in later passages. 

Protein Mutation BLOSUM62 score 

Solvent Accessible 

surface Area (Å2) 

mCSM ΔΔG 

(Kcal/mol) 

NP W191R -3 0 -2.973 

NP V323D -3 7 -3.339 

NP L414R -2 - - 

VP35 S129P -1 - - 

VP35 I246A -1 0 -2.783 

VP40 E15Q 2 - - 

VP40 P66S -1 63 -0.431 

VP40 M259R -1 27 -1.569 

GP M1K -1 - - 

GP R11K 2 - - 

GP V92L 1 20 -0.345 

GP P187L -3 63 -0.357 

GP I465T -1 - - 

GP S493P -1 - - 

GP R638K 2 - - 



Chapter 4: Structural consequences of the genomic changes associated with Ebola virus adaptation to rodents  

 95 

GP Y652F -1 - - 

GP Y668C -2 - - 

VP30 L214P -3 0 -1.935 

VP30 Q248R 1 118 -0.269 

VP24 F29V -1 2 -1.342 

VP24 A43P -1 0 0.55 

VP24 K218R 2 47 -0.759 

L G30W -2 - -1.123 

L R161W -3 - -0.155 

L N525D 1 - 0.288 

L K537R 2 - -0.058 

L L538P -2 - -0.564 

L I669S -2 - -3.029 

L M705T -1 - -1.14 

L S826Y -2 - -0.642 

L S868P -1 - 0.207 

L F879L 0 - 0.376 

L I943R -3 - -1.589 

L T993A 0 - -1.262 

L L1096S -2 - -1.977 

L S1308P -1 - - 

L F1733Y 3 - - 

L L1763P 3 - - 

L H1949Q 0 - - 

L L2197P 0 - - 
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Table 4.4: Ebola virus protein structures and templates used for modelling;  

PROTEIN OLIGOMERIC 

STATE 

PDB/TEMPLATE REGION IN 

SEQUENCE 

GP Trimer of 

Heterodimers 

3CSY (structure) 31-310 

502-599 

sGP Dimer 3s88I (model) 32-287 

L Monomer 5a22T (model) 8-1140 

L Monomer 4n48A (model) 223-328 

NP (C-

terminal) 

Monomer 4QB0 (structure) 645-739 

NP (N-

terminal) 

Monomer 4YPI (structure) 39-384 

VP24 Heterodimer 4M0Q (structure) 10-231 

VP24 Heterodimer 4U2X (structure) 16-231 

VP30 Dimer 2I8B (structure) 140-266 

VP35 Heterodimer 4IBB (structure) 218-340 

VP35 Dimer of heterodimers 3L25 (structure) 209-340 

VP40 Monomer 1ES6 (structure) 44-321 

VP40 Dimer 4LDB (structure) 44-319 

VP40 Hexamer 4LDD (structure) 45-188 

VP40 Octamer 4LDM (structure) 69-188 

 

 

4.5. Methods 

The mutations identified during Ebola virus adaptation to rodents were extracted 

from four studies (Dowall, et al., 2014; Ebihara, et al., 2006; Volchkov, et al., 2000; 

Cross, et al., 2015). 

 

Available Ebola virus proteins were obtained from the protein databank, where 

structures were not available they were modelled using Phyre2 (Kelley et al., 2015). 

The structures used and templates for models are listed in Table 4.4. The adaptations 

were mapped onto the protein structures and their location in the structure analysed 

using PyMOL. mCSM was used with default parameters to calculate the effect of the 

adaptation mutations on protein stability (Pires, et al. 2014). Solvent accessible 

surface area was calculated using DSSP (Joosten, et al., 2011).  
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For the I554T mutation in GP, the protein structure (pdb code: 3CSY) already had a 

threonine at position 554. To UCSC genome browser (Kent et al., 2002) was used 

determine what residues are typically present at this position. This revealed that the 

original Mayinga 1976 strain has isoleucine at position 554, but the the vast majority 

of other Ebola virus genome sequences have threonine at position 554. As a result 

I554T was not classed as an adaptation mutation.  
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5.1. Abstract 

The extent of Ebolavirus pathogenicity and ability to cause epidemics has recently 

been demonstrated by the outbreak in West Africa. Of the five Ebolavirus species 

(Ebola, Tai Forest, Bundibugyo, Sudan and Reston), only Reston viruses are not 

pathogenic in humans. We have recently proposed that conserved amino acid  

differences in the Ebolavirus protein VP24 between Reston viruses and the four 

human-pathogenic Ebolaviruses may explain this difference in pathogenicity. VP24 

inhibits interferon signalling by binding to both STAT1 and karyopherins to prevent 

STAT1 accumulation in the nucleus and this consequently blocks interferon 

signalling. Here we used molecular dynamics to investigate the effect of these 

conserved differences on the interaction of VP24 with Karyopherin alpha5. In the 

simulations we observed that Reston virus VP24 has many anti-correlated 

movements with KPNA5 in comparison to the interaction of Ebola virus VP24 with 

KPNA5. Additionally the dynamics of the Reston virus VP24 with KPNA5 more 

closely resemble those of Ebola virus VP24 with mutation R137A, which is known 

to remove binding of Ebola virus VP24 with KPNA5. Our results therefore support 

the basis that the interaction of Reston virus VP24 with KPNA5 is different to that 

of Ebola virus VP24 and given the anti correlated interactions observed it is likely 

that binding is reduced.  

 

  

5.2. Introduction 

The pathogenicity of Ebola virus has been highlighted by the recent outbreak in 

West Africa (Quaglio et al., 2016) with more than 11,316 thousand deaths and 28,639 

confirmed cases as of 28th February 2016 (www.who.int). Suppression of the host 

immune response is a prominent feature of Ebola virus infection, which may explain 

the high fatality rate observed in the last outbreaks. Ebolaviruses do this through at 

least three proteins, GP, VP35 and VP24 (Hoenen et al., 2015; Ilinykh et al., 2015; 

Bale et al., 2015; Kimberlin et al., 2009). The Ebola virus protein VP24, binds the 

transcription factor STAT1 and karyopherins (known to bind Karyopherin  α1, α5 

and α6 in humans) to prevent transport of STAT1 to the nucleus and it therefore 

inhibits interferon signalling (Xu et al, 2014). VP35 prevents interferon signalling by 
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binding to viral double stranded RNA, which prevents triggering interferon 

signalling. Additionally, GP is a surface protein responsible for interaction with the 

host cell receptors and entry of the virus into host cells. It is thought that GP’s 

glycan cap provides a mechanism for escaping the immune system.  

 

We are interested in identifying the molecular determinants of Ebolavirus 

pathogenicity to further our understanding of how Ebolaviruses infect and kill hosts 

and how we can combat this.  There are five known Ebolavirus species, Ebola virus 

(formally called Zaire), Sudan virus, Bundibugyo virus, Taϊ forest virus and Reston 

virus (Kuhn et al., 2010). Reston viruses are not pathogenic in humans, while the 

four other species are. In a recent study we identified differences between the four 

human-pathogenic Ebolavirus species and Reston viruses that are likely to explain 

their difference in human pathogenicity (Pappalardo et al., 2016). Our key finding 

was the presence of amino acid differences between the Ebola and Reston VP24 

proteins that correspond to the interface site between Ebola virus VP24 and human 

karyopherin alpha 5 (KPNA5). We proposed that the different interface amino acids 

present (T131S, N132T, M136L, Q139R –Ebola virus residue listed first and Reston 

virus residue second) at this site in Reston VP24 are likely to reduce the affinity for 

Reston VP24 with human karyopherins and therefore limit the ability of Reston 

viruses to inhibit interferon signalling via this mechanism. 

 

Xu et al. (2014) characterized the Ebola VP24 and KPNA5 complex by a 

combination of structural and biochemical analysis. They crystallised the Ebola VP24 

with the Armadillos 7-10 of KPNA5 and investigated the effect of VP24 mutations 

on binding to KPNA5 using coimmunoprecipitation pull down experiments and 

compared the bands obtained in the gel with wild type protein. This approach is not 

quantitative but the strength of the band provides an indication of the extent to 

which binding is affected. For R137A and R137A, T138A,Q139A the band is very 

weak. For F134A/M135A it is intermediate between these previous two mutations 

and the wild type. Additionally the same study also observed that while most single 

point mutations in the VP24 interface (except R137A) had little effect on binding to 

KPNA5, combinations of mutations in VP24 (F134A/M136A and 
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R137A/T138A/Q139A) resulted in near loss of binding to KPNA5 (Xu et al., 2014). 

These included some of the positions that vary between Ebola and Reston viruses, 

which further support our hypothesis that Reston VP24 has different binding 

properties with KPNA5. In the previous chapter mutations present in experiments 

adapting Ebola virus to rodents, Figure 5.1 shows mutations coming from both 

analyses. 

 
Figure 5.1: Adaptational and experimental mutations in protein VP24; protein VP24 is shown in gray 

cartoon and protein KPNA5 is shown in blue cartoon. Adaptation mutations are shown in yellow 

sticks and experimental mutation coming from Xu et al. (2014) are shown in red sticks. 

 

In this study we use protein structural analysis and molecular dynamics simulations 

to investigate Ebola and Reston VP24 and their interaction with KPNA5 to consider 

our hypothesis that amino acid changes in Reston virus VP24 affect binding to 

KPNA5. This is done in the context of the mutagenesis data from Xu et al., (2014), 

enabling comparison of simulations with experimental (in vitro) data and their use to 
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interpret the molecular dynamics simulations where experimental data is not 

available. 

 

5.3. Methods 

5.3.1. Modelling of a RESTV-VP24 KPNA5 complex  

The EBOV and RESTV VP24 sequence share 81.3% sequence identity and 96% 

similarity. The protein structures were aligned using Chimera (Pettersen et a., 2004) 

and a model for RESTV VP24 in complex with human Karyopherin Alpha 5 built 

using MODELLER 9.0 (Webb et al., 2014). The RESTV VP24 crystal structure 

(PDB 4D9O) and the EBOV VP24-KPNA5 complex (PDB 4U2X) were used as 

templates for the new model. 200 models were obtained and the one with the lowest 

DOPE score was selected.    

 

5.3.2. Comparison of interfaces 

PISA (Krissinel et al., 2007) and mCSM (Pires et al., 2014) were used to analyse the 

interfaces in the complexes. POPSCOMP (Kleinjung & Fraternali, 2005) was used to 

determine the contribution of the individual residues to the hydrophilicity and 

hydrophobicity at the interface, according to their solvent accessible surface area 

(SASA), using default parameters. The residues were classified as being part of the 

core, support or rim regions of the interface according to the change in SASA (when 

% of hydrophobicity was greater than 40 and difference in SASA was less then 10 Å2 

the residue was considered as core, otherwise it was rim).   

 

5.3.3. Molecular Dynamics simulations 

Molecular dynamics simulations were performed for the wild type forms of EBOV-

VP24 and RESTV-VP24 in complex with human KPNA5. Other simulations were 

performed on the EBOV-VP24-KPNA5 complex with mutations introduced into 

VP24 where the effect on KPNA5 binding had been experimentally determined (Xu 

et al., 2014). The mutations considered were: 1)R137A, 2)Q139A, 3)F134A,M136A 

and  4) R137A-Q139A.  

 

Molecular dynamics simulations were performed using Gromacs 5.0.5  (Abraham et 
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al., 2015) using the GROMOS96 53a6 force field (JCC 2004 vol 25 pag 1656). 600 ns 

trajectories were obtained for the Ebola virus VP24-KPNA5 complex and the model 

of Reston VP24-KPNA5 complex. 200 ns trajectory was obtained for R137A and 

F134A,M136A and 100 ns  for all other simulations. 

We applied our in-house protocol to prepare the molecules for the simulations: to 

neutralise each system counter atoms Na+ were added to the solvated proteins, 

according to the different total charge in each system. The system was then 

minimised and equilibrated according to the Maxwell distribution temperature 

(300K), passing through three different temperatures,  at 100K, 200K and 300K 

using restraints,  and then equilibrated again using the same temperature steps but 

without restraints. This approach is generally done to avoid artifacts. Velocities were 

generated using the gen-vel option, using a random seed (gen-seed). 

 

5.3.4. Molecular Dynamics Analysis 

Trajectories were analysed using the GROMACS analysis tools, VMD tools and the 

Bio3D package for R (Grant et al., 2014). Analyses for the wild type complexes were 

carried out from 280ns to 600 ns, which is the range of simulation where the RMSD 

reached the plateau in the two cases. 

For the analysis, standard Periodic Boundary Conditions were removed and 

Minimum Image Convention (MIC) were applied to all the trajectories. Rotational 

and translational movements were then deleted in order to perform the Principal 

Component Analysis. Secondary structure plots for trajectories were obtained using 

the DSSP (Kabsch and Sander, 1983)  tool in gromacs. Root mean square deviation 

(RMSD) and fluctuation (RMSF) from the initial starting complex were obtained 

using Bio3D, as well as the PCA analysis and correlation plots.  

 

5.4. Results 

To investigate how the interactions of Ebola and Reston virus VP24 with KPNA5 

may differ we performed molecular dynamics simulations of both of these 

complexes. We then performed simulations of the Ebola virus VP24 complex with 

KPNA5 with mutations introduced in VP24 that are known to alter binding. This 

was done to enable comparison with the Reston virus simulation.  
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5.4.1 Initial Comparison of the interface between EBOV and RESTV VP24 

with KPNA5 

A model of RESTV VP24 and human KPNA5 was generated using the RESTV 

VP24 structure and the recently solved crystal structure of EBOV VP24 complex 

with human KPNA5 as a template (see methods). The interface residues, as well as 

the energies and bonds in this model and in the EBOV VP24-KPNA5 complex were 

first compared using PISA (Krissinel & Henrick, 2007) and POPSCOMP (Kleinjung 

& Fraternali, 2005).  The PISA analysis identified a smaller interface area in the 

RESTV complex with a slightly lower binding energy but with seven fewer hydrogen 

bonds (nine in the RESTV complex compared to 16 in the EBOV complex).  We 

then compared the interfaces after minimisation during the initial state of the 

molecular dynamics trajectory (zero ns) and at the end of the simulation (600 ns). In 

the EBOV complex nine hydrogen bonds were found at the beginning of the 

trajectory (0 ns) but only seven remained at the end of the trajectory. For the RESTV 

complex, eleven hydrogen bonds were present at zero ns and nine remained at 

600ns. In total three hydrogen bonds were equivalent in the two complexes in the 

first snapshot, whilst only two of them overlapped at the end of the simulation 

(Figure 5.2B), (between VP24 137- KPNA 480 and VP24 138- KPNA5 480). The 

hydrogen bonds involving residue Q139, which is one the residues that is mutated in 

our study, and the proximal residue R140 are lost in the RESTV complex. This is 

interesting since residue R140 forms a hydrogen bond with E474 and a salt bridge 

with E475 at the interface.5.  The H-bond given with residues E474 has 1.91 Å 

distance. Residue R140 has an accessible surface area of 191.04 Å2, a buried surface 

area of 117.29 Å2 (70% of the interface is buried) and a solvation energy effect of  -

0.99 Kcal/mol. Interestingly at the end of the simulation in the RESTV complex, the 

VP24 residue R137 forms a hydrogen bond with L479 and two salt bridges residues 

with D480 and E483 in KPNA5 (Figure 5.2B).  Mapping the hydrogen bonds at the 

interface (figure S1) we observed that residue R137 undergoes different 

conformational changes that make it essential for the stability of the interface, 

according to the mCSM and the FoldX predictions and our MD results (see later).  
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POPSCOMP (Kleinjung & Fraternali, 2005) is an extension of the POPs server 

(Fraternali and Cavallo, 2002), it calculates the buried solvent accessible surface area 

(SASA) in protein complexes. We found that the total difference in the buried SASA 

differs in the two complexes, it is slightly higher for the EBOV complex with respect 

to the RESTV complex which has  a smaller interface. Seven of the twelve EBOV 

VP24 residues in the interface are also present in the RESTV VP24 interface with 

KPNA5 (Figure 5.2, Figure 5.3). Five of the ten EBOV KPNA5 residues are 

equivalent in the RESTV_KPNA5 interface with their respective VP24. This shows 

that while there is overlap, there are also considerable differences between the known 

EBOV VP24-KPNA5 complex and the modelled RESTV VP24-KPNA5 complex 

(Figure 5.3). POPSCOMP predicted that the interface is weaker in the RESTV 

complex at the end of the trajectory the interface area with KPNA5 is much smaller 

than the initial conformation. 

 

 

Table 5.1: Pisa and POSPCOMP Interface Analysis from the initial crystal structures 

 EBOV-COMPLEX 
crystal structure 

RESTV-COMPLEX 
model 

PISA results  

Interface Area ( Å2 ) 1065.9 977 

Solvatation Free Energy 
(ΔΔG, Kcal/M) 

-9.2 -9.5 

H-Bonds 16 9 

PISA results at 0 ns  

Interface Area ( Å2 ) 1099.7 1055.1 

Solvatation Free Energy 
(ΔΔG, Kcal/M) 

-8.5 -8.6 

H-Bonds 9 11 

PISA results at 600 ns  

Interface Area ( Å2 ) 1119.2 1076 

Solvatation Free Energy 
(ΔΔG, Kcal/M) 

-10 -9.1 

H-Bonds 7 11 
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POPSCOMP results 

 
Hydrophobic difference 

(Å2) 

1042.28 1002.35 

Hydrophilic difference 
(Å2) 

772.73 713.95 

Total difference 
(Å2) 

1815.06 1716.43 
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Figure 5.2: Ebola virus VP24 complex with KPNA5. A) VP24 is coloured grey and KPNA5 is blue. 

Residues differentially conserved between Ebola and Reston viruses in the interface site are shown in 

red stick format and labeled with the Ebola virus amino acid, residue number followed by the Reston 

virus amino acid. B) Hydrogen bonds present at the beginning of the MD trajectory (EBOV 0, 

RESTV 0) and at the end of the (EBOV 600, RESTV 600), red squares indicated that a hydrogen 

bond is present. C) Residues present in the VP24-KPNA5 interface at 0 and 600ns for both EBOV 

and RESTV VP24. Interface part indicates if the residue is part of the core (C), support (S) or rim (R) 

regions of the interface. Note EBOV represents Ebola virus and RESTV Reston virus. 
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Figure 5.3: Interface Residues predicted by POPSCOMP were mapped onto structure. On the top of 

the figure the EBOV Interfaces for VP24 (gray cartoon) and KPNA5 (yellow cartoon) are shown. 

Residues that contribute to the interfaces are shown in stick (red for VP24 and blue for KPNA5). On 

the bottom of the figure the RESTV Interfaces for protein VP24 (gray cartoon) and for KPNA5 (cyan 

cartoon) are shown. Residues that contribute to the Interfaces are shown in sticks (magenta for VP24 

and yellow for KPNA5).   

 

5.4.2. Predicted effects of Mutations at the Interface VP24-KPNA5 interface 

Next we used mCSM (Pires, Ascher & Blundell, 2014) and FoldX (Schymkowitz, 

Borg, Stricher, et al., 2005) to consider how each of the residues in the EBOV VP24 

interface that is a different amino acid in RESTV VP24 may affect the stability of the 

complex. mCSM also predicted the effect on the affinity of the complex (see 

methods).  For the mutations with experimental data mCSM predicts that both point 

changes reduce the stability and the affinity of the complex, with the R137A 
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mutation having a greater effect (predicted (ΔΔG -1.066 Kcal/mol change in 

complex affinity) than Q139A (Table 2). The FoldX predictions agree with mCSM 

for both point mutations. Additionally FoldX was able to consider combinations of 

mutations simultaneously and predicted that both the F134A/M136A, and R137A-

Q139A mutations reduce stability of the complex with a very large reduction of more 

than 7Kcal/ml for the F134A,M136A combination. These predictions are generally 

in agreement with the experimental observations that R137A and the two multiple 

mutation sets nearly remove all binding of EBOV VP24 with KPNA5 (Xu, Edwards, 

Borek, et al., 2014a).  

 

Next we considered how the conserved amino acid differences between EBOV and 

RESTV VP24 may affect stability of the EBOV VP24 complex when the RESTV 

residues are introduced into the EBOV structure (Table 5.2). Again mCSM predicted 

that all of the changes would reduce the stability and affinity of the complex (with 

the exception of M136L, where a small increase in affinity is predicted). The changes 

in stability are similar to the predicted change for R137A, which is known to reduce 

binding. FoldX also predicts reduced stability for two of these four point changes, 

with increased stability predicted for M136L and Q139R, although the ΔΔG for 

M136L is predicted to be very small (0.18Kcal/mol). It also predicts a slightly less 

stable complex with all four amino acid changes present (Table 5.2). Overall these 

predictions suggest that individually the amino changes are likely to reduce the 

stability and affinity of the complex. This provides some initial support for our 

proposal that the binding affinity for KPNA5 by RESTV and EBOV VP24 proteins 

differs.  
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Table 5.2: mCSM and FoldX stability changes for single amino acid changes in the EBOV VP24 –

KPNA5 complex.  

 

Mutation mCSM stability 
(ΔΔG - Kcal/mol) 

mCSM PP 
affinity 
(ΔΔG - 

Kcal/mol) 

FoldX stability 
(ΔΔG - 

Kcal/mol) 

Experimental point mutations 

R137A -0.805 -1.066 -0.68 

Q139A 
 

-0.386 -0.239 -0.33 

F134A,M136A NA NA -7.3 

R137A,T138A,Q139A NA NA -1.02 

Conserved amino acid differences between EBOV and RESTV VP24 

T131S 
 

-1.295  -0.317  -0.42  

N132T 
 

-0.617  -2.65  -1.22  

M136L 
 

-0.814  0.166  0.18  

Q139R 
 

-1.058  -0.995  1.59  

T131S,N132T,M136L,Q139R NA NA -0.3 
 

 

 

 

 

5.4.3. Molecular Dynamics Analysis 

To further our analysis molecular dynamics simulations were performed on the 

EBOV V24- KPNA5 complex and the model of RESTV VP24 with KPNA5. 

Simulations over 600ns were obtained with the trajectories trimmed using the last 

320ns (280-600ns).  RMSD of the main chain C-Alphas was stable for both 

complexes (Supplementary Figure S2). The RMSD of the RESTV VP24-KPNA5 model 

is greater than the EBOV complex, (Supplementary Figure S2), this could indicate a 

difference in the interaction between RESTV VP24 and KPNA5 but could also 

partly reflect that the simulation is based on a model rather than a solved structure, 
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which may result in greater movement to accommodate the best conformation. 

For VP24 some minor differences in fluctuation (i.e. Root mean squared fluctuation 

– RMSF) were observed between the RESTV and EBOV proteins. One of these 

differences coincide with the interface site at residues 113  (Figure 5.4A).  Residue 113 

is located in an alpha helix at the interface. For KPNA5 there are larger differences in 

RMSF in four regions, three of which coincide with the complex interface (Figure 

5.4A). The most pronounced difference is around residues 477 and 479 ( a loop 

region between two alpha helices) , where there is very little fluctuation of KPNA5 in 

the EBOV VP24 complex (around 1 Å) but in the RESTV VP24 complex there is a 

peak of 8 Å. The greater fluctuation in KPNA5 suggests that the interaction with 

RESTV VP24 differs from that with EBOV VP24.  

 

 

Analysis of the secondary structure (using DSSP – see methods) during the 

simulation revealed minor changes in the secondary structure occurring at the 

interface site (Supplementary figure S3). The most important changes were found 

around residue 76 where there is a prevalence of turns in EBOV becoming coils in 

RESTV. Residues 133 and 134 (shown in figure S3), as well as residue 146, which are 

proximal to the binding interface lose their bend and beta bridge structure to become 

unstructured in the RESTV complex The largest changes in secondary structure were 

found in KPNA5, particularly in two regions between residues 365-375 and 385-395 

(figure S3), the second region which is involved in binding VP24, losses it’s alpha 

helical structure after 220 ns in the RESTV complex. 

 

Cross correlation analysis was performed to consider how the proteins move in 

relation to each other. Using a threshold of 0.7 to explore the correlated motions, the 

RESTV complex has more unrelated motions, meaning there is much greater 

movement of VP24 and KPNA5 away from each other (figure 5.4B). Additionally, the 

RESTV complex showed a higher number of correlated motions and this probably 

reflects the adaptation movements that VP24 and KPNA5 undergo when they try to 

form a complex.   To further support our analysis Principal Component Analysis 

confirmed the different movements in the two complexes as shown in figure 5.4C-D; 
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we calculated Principal components one and two and projected the RESTV principal 

components onto the EBOV ones. (figure 5.4D). This projection shows that the 

movements are in different directions (figure 5.4D). We scaled principal components 

1 and 2 using gromacs tools and we projected the eigenvectors into a porcupine 

visualisation (see figure 5.4C).  The first three eigenvectors describe 47.6% of the 

conformational variance for the EBOV complex and 48.80% or the RESTV 

simulation. This denotes great conformational changes in both cases with 1.2% more 

flexibility.  

 

Gromacs Hydrogen bond analysis identified an average of 14 interface hydrogen 

bonds for the EBOV complex and only 11 H-bonds for the RESTV complex, (using 

3.8 Å for donor/acceptor distance and 40 Å for the cut-off of the angle; Figure 5.5). 

This agrees with the PISA analysis which found fewer hydrogen bonds in the 

RESTV starting model.  
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Figure 5.4. Molecular dynamics simulations of Ebola and Reston virus VP24 interaction with 

KPNA5. A) RMSF graph is shown, where in black line the fluctuation for EBOV complex and in red 

line the one for RESTV are shown. B) The cross correlation analysis is shown in both complexes; red 

lines represent the correlated movements whereas the blue lines represent the anticorrelated ones; C) 

Principal Component Analysis is shown in porcupine visualization for both complexes. D) Principal 

Component Analysis Projection for EBOV complex (from white to black) and for the RESTV (from 

blue to red). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: H-bond analysis during MD simulations. In black the EBOV complex and in red the 

REST one. The Gaussian curves represent the mean of H-bonds occurring at the Interface during 600 

ns of simulation.  

 

 

5.4.4. Analysis of mutations in the EBOV VP24-KPNA5 complex 

The mutagenesis studies performed by Xu et al., (Xu, Edwards, Borek, et al., 2014b) 

provide an opportunity to perform simulations and match them with experimental 

data, which can be used to make further inferences about the RESTV VP24-KPNA5 

simulations. The R137A and F134A,M136A, R137A-Q139A mutations are known to 

have a significant effect on the binding of EBOV VP24 and KPNA5. 200 ns MD 

simulations were performed for R137A and for F134A,M136A and 100 ns simulation 
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for the others. Additionally Q139A is known to individually have a minimal effect on 

binding and this was used as a control. Initial RMSD and RMSF analysis showed 

greater changes for the R137A and F134A-M136A mutations, while the simulation 

with the Q139A and R137A-Q139A mutations behaved similarly to the wild type 

complex (Figure 5.6), particularly with the RMSD and RMSF of the complex with 

R137A-Q139A showing very little difference to the wild type complex. This is 

surprising given that this combination of mutations is known to reduce binding of 

VP24 and KPNA5. In all simulations greater fluctuations in VP24 was observed 

around the site of the mutation (Figure 5.6) . Mutation R137A causes an increase in 

fluctuation of almost 1 Å in the proximal residues at the binding interface. The same 

is shown for mutations F134A-M136A, where the change is larger ( 2 Å) and the 

upper peak in KPNA5 reaches almost 12 Å.  

Cross correlation Analysis showed correlated and anti-correlated moves in the 

mutated complexes (Figure 5.7 and Supplementary Figure S9). For mutation R137A 

(Figure 5.8) there were very few correlated movements between the two proteins, 

instead there were strong anti-correlated movements a few residues from the 

mutation, suggesting that it may have an allosteric effect. These anti-correlated 

motions suggest that the two proteins are moving away from each other and this 

agrees with experimental evidence as this mutation nearly abolished interaction 

between VP24 and KPNA5. 

 
Principal component analysis for this complex with mutation R137A revealed a large 

change in the contributions to the variation from the first three principal 

components; 56.1% of the movement is explained by the first principal component 

compared to 33.4% for the wild type complex.  Projection of the first two principal 

components onto those for the wild type complex demonstrates that the movement 

of the proteins differs (Figure 5.7). 

 

The correlation analysis for the complex with F134A and M136A mutations 

identified that most correlated movements are intra chain, with very few correlated 

movements between the two proteins (supplementary figure S9). Again the presence of 

many anti-correlated movements between the two chains indicates that they are 
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moving apart and this is in agreement with experimental evidence that these 

mutations largely remove binding to KPNA5.Alanine 134 is located in a big web of 

anti-correlated movements, whereas Ala 136 is involved in correlated movements. 

Residue136 is mapped onto the cross correlation map.  Principal Component 

Analysis (see Table 5.3) demonstrated that the proteins move away from each other 

(Supplmentari figure S9). 

 

 

 

 
 

 

Figure 5.6: Root mean squared fluctuation of Ebola VP24-KPNA5 complex with point mutations. 

The dots under the lines represent the location of the mutations within protein VP24; the two protein 

in the complex are separated by a black line. A) RMSF mutation R137A is shown in red line and the 

EBOV wild type one. B) RMSF for mutation Q139A is shown in blue line and the EBOV wild type 

one. C) RMSF for mutations F134A,M136A are shown in magenta and the EBOV wild type one; D) 

RMSF for mutations R137A-Q139A are shown in yellow line. 
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Figure 5.7. Molecular dynamics simulation of Ebola virus VP24 complex with KPNA5 with point 

mutations (R137A) in VP24. A) The cross correlation analysis is shown: in red lines the correlated 

movements and in blue lines the anticorrelated ones; protein VP24 is shown in blue cartoon and 

KPNA5 in gray cartoon; the mutation is shown in yellow sphere. B) Porcupine visualization of the 

Principal Component Analysis: protein VP24 is shown in gray cartoon and KPNA5 in blue cartoon; 

the mutation is shown in yellow spheres whereas the cones represent the amplitude of the movements 

according to the PCA. C) PCA projection of the wild type EBOV complex (from white to black) and 

for the mutation R137A (from blue to red).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Residue R137 changes its conformation at zero (A) and at 600 ns (B). This last allows the 

interaction with KPNA5, giving a H-bond and a Salt Bridge with residue Asp 480.  
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Table 5.3: Eigenvalue Ranking 

 

Eigenvalue 
Rank 

EBOV - % 
of variance 

R137A - % 
of 

variance 

Q139A - 
% of 

variance 

F134A-M136A - 
% of variance 

R137A-Q139A - % 
of variance 

1 33.4 56.1 28.8 50.30 27.3 

2 48.1 64.2 51.1 65.8 37.6 

3 54.9 67.1 61.9 72.1 46.5 
 

 

 

5.3.5. Solvation properties at the interface 

We calculated the solvation properties of the interface in the EBOV VP24 with 

human KPNA5 complex and in RESTV VP24 with human KPNA5 complex and 

estimated the water density on a grid of points constructed around the residues at the 

interface. We were interested in understanding how the water molecules were 

distributed at the interface and how they contributed to the binding of VP24 and 

KPNA5 (Figure 5.3). In figure 5.9 the spheres represent the most visited grid points 

coloured from red to blue, with red being a lower value for the visited grid point and 

blue a higher number of water visits. In this way we could define the red spheres as 

density of “dynamical water” visits and the blue spheres as “permanent” water visits.    

Our findings showed that in the EBOV complex residues N185 H186 E203 P204 

and D205 are visited by permanent waters (Figure 5.9A).  Additionally in the Reston 

complex we found residues at the interface visited by permanent waters E203 P204 

D205 D124 and R137 (Figure 5.8B). This analysis revealed regions with permanent 

water visits in both the EBOV and RESTV complexes with overlap between both 

complexes (permanent waters at E203, P204 and D205 in both complexes).  These 

residues belong to a loop interacting with KPNA5 defying a cavity where the water 

molecules are trapped.  

Furthermore we performed the same analysis for the EBOV complex with the 

mutation R137A and we found that in this complex the interface is visited by 

“dynamical” waters only and no region solvated by permanent waters has been 

identified. This was due to the fact that, during the simulation, protein VP24 moved 
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apart from KPNA5 opening a cavity where the waters can enter and be dynamic due 

to the loss of physical restrictions (Figure 5.9C and Figure 5.10).   

                        A) 

B)  

 
                                C) 
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Figure 5.9: The spheres represent the most visited grid points coloured from red to blue, with red 

being a low value for the visited grid point and blue a high number of water visits. In this way we 

could define the red spheres as density of “dynamical water” visits and the blue spheres as 

“permanent” water visits.   A) EBOV VP24 with human KPNA5 complex shows a presence of 

permanent waters that interact with N185 H186 E203 P204 and D205. B) RESTON VP24 with 

human KPNA5 complex shows a presence of permanent waters that interact with residues E203 P204 

D205 D124 and R137. C) EBOV VP24 R137A with human KPNA5 complex shows a presence of 

dynamic waters only due to the opening of the cavity identify by the loop with the residues E203 P204 

and D205. 

  

 

 

 
 

Figure 5.10: The distance over the time of D205 of VP24 with R396 of KPNA5. The starting 

distance is 8 Å and the final one 14 Å. This increase in the distance shows the opening of the cavity.  

 

 

5.4. Discussion 

We started with a hypothesis that the conserved difference between Reston and 

Ebola virus VP24 proteins in the interface site with KPNA5 are likely to alter the 

interaction of Reston VP24 with KPNA5 compared to the interaction of Ebola 

VP24 with KPNA5. We have performed multiple analyses and simulations to gain 

insight into how this interaction may be altered. The molecular dynamics simulation 



Chapter 5: Investigating Ebola virus pahogenicity using Molecular Dynamics  

 
 

 

120 

of the wild type complexes (Figure 5.4), indicated that there are greater fluctuations in 

KPNA5 when in complex with Reston VP24 than with Ebola VP24. This was 

further backed up by the cross-correlation analysis, which revealed more correlated 

movements in the Reston complex but also many that were anti-correlated.  

 

The analysis of the complexes with mutations that significantly reduce Ebola VP24 

binding with KPNA5 can be used to put these results into context. The cross 

correlation analysis for the complexes with F134A/M136A and R137A mutations 

contained many more anti-correlated movements and the proteins move away from 

each other (Figure 5.7, figure S9). In contrast while there are many anti-correlated 

movements between Reston VP24 and KPNA5, there are also many correlated 

movements. This may therefore suggest that there is greater interaction between 

these two proteins than the mutated Ebola VP24 proteins where binding is largely 

lost. It may be possible that such a change is possible to affect the ability of Reston 

viruses to prevent interferon signaling.  
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Chapter 6: 
 

Discussion 

 

 This thesis has presented four pieces of work that are all related to genetic variation. 

Three of them focussed on analysis of genetic variants in Ebolaviruses with the aim 

of determining how they alter pathogenicity in different species. This chapter 

considers those chapters together and also compares the work in Chapter three with a 

similar study that also compares Ebola and Reston viruses.  

 

6.1 Is protein VP24 responsible for Ebolavirus pathogenicity? 

6.1.1 Combined analysis in our studies suggested that VP24 is a determinant 

for Ebolavirus pathogenicity. 

Chapter three represents the beginning of our Ebolavirus research, which led onto the 

research detailed in chapters four and five. In combination these studies represent a 

comprehensive computational analysis of Ebolavirus genomes, their variation and 

the effects on the encoded proteins, ranging from analysis between different 

Ebolavirus species to mutations induced in adaptation experiments in rodents. The 

central theme throughout this research has been to understand molecular 

determinants of Ebolavirus pathogenicity.  

 

The central finding in Chapter three was that there are very few differences between 

human pathogenic Ebolavirus species and Reston viruses (there are fewer than 200 

SDPs) and the analysis pointed largely at VP24 as having a role in pathogenicity, due 

to the presence of multiple SDPs in the interface site with KPNA5. This hypothesis 

was supported by information from mutagenesis studies where Ebola virus VP24 

interaction was disrupted by changes to residues that agree with some of the 

observed SDPs. However, the mutagenesis studies mutated pairs or trios of residues 

and each of these only partially overlaps with the SDPs. 
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This led into the research detailed in Chapter five, with the aim of using more detailed 

analysis of the VP24 and KPNA5 interface, particularly the use of molecular 

dynamics to study the interaction. This analysis supports our hypothesis in chapter 

three that the interaction between VP24 and KPNA5 differs for Ebola and Reston 

virus VP24. In Chapter three we proposed that the different amino acids present in 

Reston VP24 were likely to impair the interaction with KPNA5 and thereby prevent 

the virus from inhibiting the human interferon response. The molecular dynamics 

analysis of the Reston VP24 with KPNA5, supports our hypothesis; compared to 

the Ebola VP24 complex there are many more anti correlated movements between 

the two subunits. However, there are also correlated movements, overall suggesting 

that the two proteins may interact but with reduced affinity. The comparison of this 

simulation with simulations of Ebola virus VP24 that are known to disrupt binding 

further support this observation, as they clearly demonstrate the anti-correlated 

movements that are introduced between the two proteins. In effect we use this 

comparison to interpret the results of the simulation for Reston VP24 with KPNA5.  

 

While Chapter three utilised the difference in human pathogenicity between 

Ebolavirus species, Ebolaviruses are not pathogenic in rodents. As presented in 

Chapter four this has enabled experiments in rodents (primarily Guinea pigs) to induce 

pathogenicity through multiple passaging of Ebola virus through multiple 

generations of test animals. Our analysis of the mutations present in these different 

studies highlighted that very few mutations may be required for adaptation of Ebola 

virus to a new species. This agrees with our analysis in Chapter three, where it seems 

that only a few variants may render Reston viruses non-pathogenic in humans. 

 

Additionally analysis of the adaptation experiments highlighted mutations in VP24, 

with it being mutated in all of the four studies (Dowall et al., 2014; Ebihara et 

al.,2006; Cross et al.,2015; Volchkov et al., 2000). 



Chapter 6: Discussion  

 123 

 

 

 

Figure 6.1: VP24 SDPs and adaptation mutations mapped into its complex with KPNA5. Protein 

VP24 is shown in gray cartoon and KPNA5 in blue. SDPs are shown in red sticks while adaptation mutations in 

yellow sticks.  

 

The location of the VP24 SDPs and the mutations from the adaptation experiments 

were mapped onto the VP24 structure (Figure 6.1). This demonstrates that many of 

the adaptation mutations are in close proximity to the SDPs or are in the interface 

site with KPNA5 (e.g. T187I and H186Y). Additionally we observed that the SDPs 

and rodent adaptation mutations had similar effects by either altering hydrogen 

bonding with KPNA5 or removing hydrogen bonds within VP24. This observation 

further supports the argument that VP24 has an important role in determining 

pathogenicity. 

 

The combination of the findings from Chapters three, four and five provides strong 

evidence for VP24 having an important role in determining host pathogenicity. It 

now remains for experimental validation of these findings, which is now being 

initiated by collaborators. 

  
 

 

6.1.2 Comparison of Chapter 3 with Cong et al.,  
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Another study has also recently compared the genome sequences of Ebola and 

Reston viruses (Cong, Pei, & Grishin, 2015). Cong et al., used a total of 124 

Ebolavirus genomes (compared to 196 that we considered). Our analysis identified 

SDPs between the human pathogenic species and the Reston species. Cong et al., 

used a similar approach, they identified identified positions in the proteins where 

there is greater conservation among the human pathogenic Ebolavirus species than 

between the Reston genomes. Using this approach they identified 215 differentially 

conserved positions. In contrast we identified a smaller number of SDPs 189. 

Analysis of the positions identified by the two studies indicates that the greater 

number of sequences used in our study removes some of the positions that classed 

as conserved by Cong et al. 

 

Cong et al., also performed modelling of protein structures and mapping of the 

differentially conserved positions onto the structures. They used a different 

approach to us, using HHpred (Söding, et al., 2005) and iTASSER (Roy et al., 2010). 

They identified a model for part of the RNA-dependent RNA polymerase catalytic 

domain (L protein) and also a model for the N-terminal zinc finger domain of VP30. 

The template used to model L was not identified by Phyre2 when we performed 

modelling and this appears to be because the structure had just been released and 

may not have been added to the fold library (when modelling was later performed 

for the work in Chapter four, a template was identified and the model used in the 

analysis). Additionally the template used for the N-terminal domain of VP30 is of 

low quality with hhblits only returning a 52% probability that the query and template 

are homologous. Cong et al., propose that functional residues (i.e. the Zinc binding 

residues) are conserved therefore increasing the confidence that the template and 

query are homologous. 

 

Comparison of the SDPs from  Chapter three with the positions identified by Cong et 

al., demonstrated a considerable overlap of 133  positions, 6 in VP24, 16 in VP35, 

16 in VP30, 7 in VP40, 19 in NP, 16 in GP and 53 in L (Table 6.1). Cong et al., did 

not consider sGP (without sGP we identified 180 SDPs) explaining some of the 

difference. The positions that were present in one study but not the other were 
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investigated to identify if there was an explanation for the different results. While 

many of the SDPs are completely conserved as one amino acid in Reston viruses 

and completely conserved as a different amino acid in the human pathogenic 

species, there are SDPs where there is a little variation in the amino acids observed. 

Comparing the positions between the two studies we found that such positions 

explain the different findings.  

 

In our analysis, these positions would be less confident SDPs as they are not 

completely conserved in each group. So the different results obtained can be 

explained by both the different methods used and the different sets of sequences. 

Cong et al., used fewer sequences, so there will be some positions that are conserved 

in their set but in our larger set of sequences are more variable. The opposite is also 

true, some positions that are variable in the Cong et al., set, with more sequences 

present in our analysis, this variability could be reduced sufficiently for it to be 

predicted to be an SDP. Additionally, both studies used different methods to 

identify the differentially conserved positions, so there will be some positions that 

are predicted by one method but not the other regardless of the different sequences 

used. It is not possible to easily to split the effects of the different methods and 

sequences.  

Table 6.1: Comparison of SDPs in our study and in Cong et al.  

Protein SDPs Conserved in Cong et al., Total Number of common positions  
VP24 L17M 

V22I 
V31I 
T131S 
N132T 
M136L 
Q139R 
T226A 
S248L 
 
 
 
 

- 
- 
- 
T131S 
N132T  
M136L 
Q139R 
T226A 
S248L 

6 
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VP30 
 
 
 
 
 
 
 

- 
- 
- 
T52N 
V53L 
T63I 
E93D 
T96N 
R98H 
K107R 
S111I 
K116S 
- 
A120S 
- 
T150I 
Q157R 
I159L 
R196H 
E205D 
R262A 
S268Q 
 

G20P 
V25S  
Y39R  
T52N  
V53L 
T63I 
E93D 
T96N 
R98H 
K107R 
S111I  
L116S 
N117Q 
A120S 
Q135S 
T150I 
Q157R 
- 
R196H 
E205D 
R262A 
S268Q 

16 

VP35 
 
 
 
 
 
 
 
 
 

- 
- 
S26T 
E48D 
D76E 
- 
- 
E85K 
S92M 
V97T 
- 
T101N 
S106A 
V121I 
A154S 
T159V 
E160D 
G167K 
S174A 
I181L 
- 
E269D 
A290V 
- 
V314A 
Q329K 
 

T5L 
L25T 
S26T 
E48D 
D76E 
C79Y 
N80V 
E85K 
S92M 
V97T 
Q98S 
- 
S106A 
- 
A154S 
T159V 
E160D 
G167K 
S174A 
- 
I258T 
E269D 
A290V 
A291P 
V314A 
Q329K 

16 
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VP40 
 
 
 
 
 

- 
T46V 
P85T 
I122V 
- 
G201N 
F209L 
Q245P 
H269Q 
- 
I293V 
- 
E325D 
 

M14N 
T46V 
P85T 
- 
A128I 
G201N 
F209L 
Q245P 
H269Q 
T277Q 
- 
V323H 
E325D 

7 

NP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R4G 
- 
E16 
S30T 
R39K 
P42S/Q42S 
- 
I56V 
V64I 
R105K 
M137L 
F212Y 
K274R 
S279A 
- 
K374R 
- 
K416N 
Y421Q 
D426E 
D435N 
- 
D443E 
T453I 
- 
D492E 
P497A 
- 
- 
P526 
- 
T563S 
I565V 
P602T 
- 
N641Q 
- 
A705R 
- 
D716N 
G717N 
 

R4G 
T15G 
- 
S30T 
R39K 
- 
I52M 
- 
- 
R105K 
M137L 
F212Y 
K274R 
S279A 
K373R 
K374R 
A411L 
K416N 
Y421Q 
D426E 
D435N 
Q442L 
D443E 
T453I 
V458A 
D492E 
- 
Q507S 
S511I 
- 
N551R 
T563S 
- 
- 
E633L 
- 
S647K 
A705R 
T714Y 
D716N 
- 

19 
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GP 
 
 
 
 
 
 
 
 
 
 
 

M1G 
G2S 
F31I 
V37I 
- 
V45A 
V75I 
- 
S196A 
- 
E207D 
S210T 
I260L 
- 
T269S 
- 
S308H/ L307H 
R325G 
- 
- 
- 
- 
H354L 
- 
- 
Q403P 
S418E 
- 
T448P 
- 
R498K 
R500K 
N514D 
Q521V 
L547V 
I584L 
D607S 
K622E 
- 
Q638H 
D642L 
W644L 
T569I 
 

- 
- 
F31I 
- 
Q44K 
V45A 
- 
E156N 
S196A 
L199A 
- 
S210T 
- 
Y261R 
T269S 
T283P 
S307H 
- 
T335P 
E337T 
H339N 
E345T 
H354L 
E359T 
A361E 
- 
- 
A427M 
- 
G488K 
R498K 
R500K 
N514D 
- 
- 
- 
D607S 
K622E 
I627K 
Q638H 
D642L 
W644L 
T659I 

16 
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L V66T 
- 
Q109H 
- 
- 
- 
- 
I136L 
L146V 
- 
- 
- 
A221S 
Q223L 
H227Q 
- 
- 
- 
- 
L276I 
L283V 
Y312F 
A326S 
T330D 
- 
E350D 
T361S 
L365F 
V379I 
- 
Q447H 
P450S 
D465N 
- 
E689S 
S847A 
S868A 
F896Y 
L925F 
A954S 
S995T 
T1024N 
R1073K 
A1119S 
- 
- 
P1163A 
- 
D1189S 
A1214S 
R1217K 
D1237E 
- 
I1255V 
- 
- 

V66T 
E93T 
Q109H 
N120A 
V128T 
E130I 
F132T 
- 
L146V 
L179F 
N201T 
T202I 
A221S 
Q223L 
H227Q 
V229L 
P262V 
V263D 
S274L 
- 
L283V 
Y312F 
A326S 
T330D 
S343Y 
E350D 
T361S 
L365F 
- 
I402N 
Q447H 
P450S 
D465N 
R654H 
E689S 
S847A 
S868A 
F896Y 
L925F 
A954S 
S995T 
T1024N 
R1073K 
A1119S 
Q1149P 
S1154L 
P1163A 
K1171D 
D1189S 
A1214S 
R1217K 
D1237E 
Q1253N 
- 
Y1322L 
R1354K 
 

53 
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T1366A 
S1395T 
I1408M 
I1414L 
S1436N 
K1461Q 
S1473C 
L1488Y 
I1499L 
S1506A 
I1509V 
R1534S 
A1535K 
- 
- 
- 
- 
- 
- 
L1624Y 
C1628S 
- 
- 
V1762I 
- 
- 
- 
- 
V1850Y 
T1873S 
R1916N 
- 
E1941R 
- 
L2008I 
- 
L2044I 
- 
S2077T 
- 
- 
E2098D 
Q2105L 
Q2108E 
Y2131F 
L2157V 
R2168H 
R2175K 
L2177F 
M2186L 
- 

T1366A 
- 
I1408M 
- 
S1436N 
K1461Q 
S1473C 
L1488Y 
- 
S1506A 
- 
- 
- 
A1538S 
V1562L 
E1564S 
T1571K 
Q1608I 
H1619L 
L1624Y 
C1628S 
D1744G 
E1752P 
- 
S1769G 
Q1782L 
R1792H 
W1822L 
V1850T 
- 
R1916N 
K1938Q 
E1941R 
V1955Y 
- 
Q2024G 
- 
P2038V 
S2077T 
K2078G 
R2079L 
E2098D 
Q2105L 
Q2108E 
Y2131F 
L2157V 
R2168H 
R2175K 
L2177F 
M2186L  
L2203F 
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Despite identifying a larger number of differentially conserved positions and 

modelling more of the Ebolavirus protein structures, Cong et al., mapped only 43 of 

the 215 positions they identified onto protein structures. 

 

Cong et al., also focused on protein-protein interfaces and like our study identified 

six differentially conserved positions in interfaces. These include the differences 

present in VP24 that we propose may be relevant to the different pathogenicity 

observed between species. However, they propose that these differences may modify 

the binding between VP24 and KPNA5 but that this is likely to be limited to an 

effect on immune suppression that is unlikely to affect virus pathogenicity.  

 

When considering protein-protein interfaces Cong et al., used the knowledge that 

Reston viruses are pathogenic in primates but not humans. So they considered the 

variability of the host proteins that Ebolaviruses interact with and investigated how 

these interaction partners vary between human and primates. They observed that 

host interaction partners of VP24, VP30 and VP40 are very similar between human 

and primates and therefore these proteins are unlikely to have a role in the different 

Ebolavirus pathogenicity. They found, there is greater sequence divergence in the 

host interaction partners of VP35 and  GP. Based on this they identified two clusters 

of residues that they propose may alter Ebolavirus pathogenicity. The first cluster of 

differentially conserved residues is located in the C terminal region of GP and the 

second cluster is in VP35. We also identified same residues in GP, however we were 

cautious about interpreting their possible effect as their function is unknown and 

while they are present in the glycan cap none of the residues are glycosylation sites or 

close to glycosylation sites. This made it difficult to interpret how they may alter GP 

function and pathogenicity.  

 

The VP35 cluster of residues identified by Cong et al., consists of A290V, A291P, 

V314A and Q329K. With the exception of A291P, these positions were also 

identified in our study, we observe variability between the human pathogenic species 

at position 291 and it is therefore not predicted to be an SDP. These changes had 

previously been identified in experimental research  (Leung et al., 2015), and are 



Chapter 6: Discussion  

 132 

thought to stabilise the protein structure. The experimental study also observed 

reduced binding of VP35 to dsRNA and weaker inhibition of interferon signalling 

(Leung et al., 2015). The authors of this study thought that these effects were unlikely 

to explain the lack of Reston virus pathogenicity in humans (Leung et al., 2015). 

 

In summary, both studies used very similar approaches but resulted in different 

interpretations. Our analysis highlighted VP24 as the availability of a complex 

structure with a host protein provided good evidence. If such data had been available 

for the other Ebolavirus proteins it is possible that other positions would have been 

identified that are likely to alter pathogenicity. While neither study is conclusive, they 

both provide avenues for wet lab experiments to validate the hypotheses. 

 

6.2 Limitations of this study 

Much of this thesis focusses on analysing Ebolavirus genetic variation. Chapter three 

identified a set of 189 SDPs, a subset of which are likely to explain the difference in 

human-pathogenicity between Reston viruses and the other four Ebolavirus species. 

Structural analysis was only able to map 47 of these SDPs onto protein structures. 

This initially limits the ability to analyse approximately three quarters of the SDPs 

identified. So while our structural analysis has identified a number of candidate SDPs 

for association with pathogenicity, it possible that others that it was not possible to 

analyse also have a role. Further determination of Ebolavirus protein structures or 

the availability of homologues to use as templates will reduce this problem. However, 

it is predicted that approximately 20% of the Ebolvirus proteins are disordered 

(Cong et al., 2015), so for some SDPs it may never be possible to model their effect 

on protein structure. 

 

Additionally the analysis in Chapters three to five is limited by our knowledge of the 

biology of Ebolaviruses. Our understanding of their function is still limited, although 

there has been a surge in Ebola related publications since the 2014 outbreak 

(Michaelis et al., 2016). Again as our understanding of Ebolavirus biology and 

protein function advances, the number of potential molecular determinants of 

Ebolavirus pathogenicity will be reduced. 
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This thesis presents purely computational research and as such demonstrates the 

strengths of such analyses to provide insight into large scale genomic data. However, 

this also means that the analysis leaves many findings that require experimental 

validation.  

 

 

6.3 Future Work 

 

The research in this thesis presents a number of hypotheses that need to be tested. 

These are detailed below: 

1 There are now many more Ebola virus sequences available (Pickett et al., 2012). 

These datasets provide approximately a further 506 sequences. The analysis 

performed in Chapter three could be repeated using this much larger dataset. This 

would provide much greater detail on variation present within the Ebola virus 

genome and could reduce the number of SDPs identified, thus enabling us to 

exclude some of the potential explanations for altered pathogenicity identified in 

chapter three. 

2 Extensive molecular dynamics simulations were performed on the VP24 

interaction with KPNA5. However, these could be expanded to investigate the 

affinity of the Ebola and Reston VP24 with KPNA5 using “pulling apart” 

experiments, where the two molecules are pulled apart to measure the affinity 

between them. Such experiments are computationally expensive and could not be 

performed in this current analysis. 

3 Although much of the research has pointed to VP24, chapter three identified 

SDPs in other proteins, including VP40, VP35 and GP that could have an effect 

on protein function and therefore pathogenicity. These could also be 

experimentally investigated. 

4 Considering the role of protein VP24 in interfering with IFN signaling inhibition 

it will be interesting to look at sequence changes also in the partner protein 

KPNA5 in rat, hamster and pigs. This will advance our knowledge and could 

shed light on the mechanism of pathogenicity among Ebolaviruses.   
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5 We have proposed that VP24 has an important role in determining pathogenicity 

and these findings could be experimentally investigated. While Ebola is a 

category four pathogen, it is possible to perform in vitro experiments with 

individual Ebolavirus proteins, making such studies feasible. Ultimately such 

experimental work is required to test the hypotheses made in this thesis. For 

example testing the ability of Reston VP24 to bind human karyopherin proteins, 

would test the proposal that mutations in Reston VP24 alter binding to 

karyopherins. Similar experiments could be performed to test the effects of 

mutations in VP24 that occur during Ebola virus adaption experiments in 

rodents. Does the wild type Ebola VP24 bind rodent karyopherins and is there 

greater affinity with the mutated forms of VP24? This research has now started 

in Jeremy Rossman’s laboratory at the University of Kent. 
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Supplementary methods and Tables 

 

The text and tables below explain the groupings used for the different amino acid 

properties and how they were converted to features for input into the support vector 

machine (SVM). Supplementary table 1 displays the full list of features input into the 

SVM. The weight of each of the features used in the SVM was calculated using the 

script provided with SVMlight, which calculates the weighted sum of the support 

vectors. It shows that the Jensen Shannon conservation score has the highest 

weighted followed by the binding site and interface site features and solvent 

accessibility features. Conservation (Jensen Shannon divergence) has been used 

previously by other methods including SIFT and PolyPhen and it is not surprising 

that it is weighted highly. The weighting of the interface and binding site features 

demonstrates that they used by VarMod to make predictions and are more 

informative than other features such as those relating to secondary structure. 
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Feature Value range SVM weight 
js convergence score 
(conservation) 0-1 

1.83 

Amino ac id  proper t i e s    

amino acid charge change see supplementary table 2 0.08 

amino acid mass change See supplementary table 3 0.08 

amino acid functional group 
change 

1 where functional change, 0 
otherwise (see Supplementary 
table 4) 

0.08 

3DLigandSit e  f ea tures    

distance to binding site  

0-1 (actual distance divided by 
25, values greater than 1 are 
rounded down to 1) 

1.31 

3DLigandSite average distance to 
ligands  0-1 (value/ 2) 

1.51 

3DLigandSite number of ligands 
that bind to this residue num/50 

0.80 

Inter fa ce  s i t e  f ea tures    

distance to  interface site 
0-1 (distance/25, values greater 
than 1 round down to 1) 

1.23 

Secondary  Struc ture  f ea tures    

DSSP -secondary structure- B 0/1 (1 if ss is B, 0 otherwise) 0.47 

DSSP -secondary structure- G 0/1 (1 if ss is G, 0 otherwise) 0.09 

DSSP -secondary structure- I 0/1 (1 if ss is I, 0 otherwise) 0.26 
DSSP -secondary structure- T 0/1 (1 if ss is T, 0 otherwise) 0.13 
DSSP -secondary structure- S 0/1 (1 if ss is S, 0 otherwise) 0.11 
DSSP -secondary structure- BL 0/1 (1 if ss is BL, 0 otherwise) 0.20 
DSSP -secondary structure- H 0/1 (1 if ss is H, 0 otherwise) 0.13 
DSSP -secondary structure-E 0/1 (1 if ss is E, 0 otherwise) 0.02 
  0.48 
DSSP -secondary structure Type - 
Heilx 

0/1 (1 if ss type is is H, 0 
otherwise) 0.49 

DSSP -secondary structure Type 
– Strand 0/1 (1 if ss is B, 0 otherwise) 0.45 
DSSP -secondary structure Type - 
Coil 0/1 (1 if ss is B, 0 otherwise) 0.08 

distance from end of secondary 
structure 

0 - 0.5 (0.5 in the middle, 0 at 
end of secondary structure 
element) 0.26 

DSSP - solvent accessibility 0-1 (solvent accessibility / 300) -1.05 
Supplementary Table 1. The SVM features used in VarMod are listed with the value ranged used for 

each feature and the weighting of the features in the SVM. 
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Supplementary Tables 2-4 relate to the change in amino acid properties of the 

variants. Supplementary Table 2 shows the amino acid charge groups and 

Supplementary table 3 shows the value for the amino acid charge feature for changes 

between these groups. Supplementary table 4 shows the groups of amino acids based 

on functional groups present in the side chain. The feature associated with functional 

groups is either 0 (no change in functional group), 1 (change in functional group). 

 

Charge group Amino acids 
Positive charge  R, H, K 
Negative charge  D, E 
Negative polar  N, Q 
Positive polar  S, T 
Hydrophobic  G, A, V, I, L, M, F, Y, W, C, P 

Supplementary Table 2. Amino acid charge groups. 

 

 

 Positive 
charge 

Negative 
charge 

Negative polar  Positive polar Hydropho
bic 

Positive charge 0     
Negative charge 1 0    
Negative polar 0.5 0.25 0   
Positive polar 0.25 0.5 0.75 0  
Hydrophobic 1 1 0.75 0.75 0 

 

Supplementary Table 3. SVM feature value for change in amino acid charge. 

 

 

 

Functional group Amino acids 
Positive  R, H, K 
Carboxylate D, E 
Phenyl  F, Y, W 
hydroxyl S, T, Y 
Amido N, Q 
Other/none G, A, V, I, L, M, C, P 

Supplementary Table 4. Amino acid functional groups used as defined in Innis et al., (28). 
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Supplementary Material 

 

Supplementary Methods - Subsampling of sequence data 

 

The sensitivity of the SDP analysis to the number of sequences available was considered by 

subsampling the sequences. Sampling was performed for; only the human pathogenic group; only the 

Reston group; and for both groups simultaneously. Subsampling was performed using between 10%-

90% of sequences in the group, increasing in 10% increments. For each percentage setting the group 

was sampled 50 times. Where both groups were sampled simultaneously they were done so with the 

same percentage of sequences i.e. at 20% sampling the SDPs were predicted each time using 20% of 

the human pathogenic sequences in one group and 20% of the Reston sequences in the other. For 
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each sample s3det was run to predict SDPs using the same settings as for the full dataset. Completely 

conserved SDPs are also compared to those that are not completely conserved. the The total number 

of SDPs predicted when sampled is shown in supplementary Figure 6. When the sequences of human 

pathogenic Ebolaviruses were sampled, while the number of Reston sequences remained constant, we 

observed that the number of SDPs predicted decreased as the proportion of sequences sampled 

increased. We further observed that even when a very high proportion of sequences was sampled 

(70%-90%), that there was still some variation in the number of SDPs, indicating that there was still 

further information present in the excluded sequences. When the Reston virus sequences were 

sampled, the pattern observed varied between the proteins (Supplementary Figure 6B). For GP, L and 

VP30, sampling resulted in more SDPs being predicted than in the full dataset, with the number 

reducing as the proportion of sequences sampled increased. For NP, sampling the Reston sequences 

generated some samples where fewer SDPs than the total present in the full dataset were predicted 

and other samples where a larger number of SDPs were predicted. This is possible for SDPs that are 

not completely conserved in the two groups, as sampling may generate some sets of sequences where 

these positions appear variable and others where they are conserved. For VP35, sampling led to fewer 

SDPs being predicted until 90% of sequences were used. The number of SDPs in VP24 and VP40 

was invariant across all samples. When sampling both groups (Supplementary Figure 6C) we found 

that the number of SDPs predicted very quickly converged to the number of SDPs present in the full 

dataset. 

 

We then considered the number of SDPs predicted that are present in the full dataset and those that 

are present only in sampling (Supplementary Figure 7). When the human pathogenic sequences were 

sampled (Supplementary Figure 7A), we found that the vast majority of SDPs in the full data set were 

predicted at all sampling levels. We also found that when a small proportion of sequences were 

sampled, that many new SDPs were predicted, which for some proteins (e.g. GP, NP and VP40) may 

be greater than the total number of SDPs present in the full dataset. This may not be too surprising 

given that positions that are variable in the full dataset may appear to be conserved when a small 

sample of sequences was taken. As the proportion of sequences sampled increased, very few new 

SDPs were predicted. Sampling the Reston sequences (Supplementary Figure 7B) we again found that 

the vast majority of SDPs present in the full dataset was present in all samples. The number of new 

SDPs present in samples was much smaller than for sampling of the human pathogenic sequences, 

which is likely to be due to the smaller number of Reston sequences, resulting in fewer samples where 

positions are conserved that are not conserved in the full data set. When both groups were sampled, 

results were very similar to that observed when the human pathogenic group was sampled 

(Supplementary Figure 7C). 

Finally, we considered the number of SDPs in the sampling sets that are completely conserved and 

those that are not (Supplementary Figure 8). In conjunction with the data from Supplementary Figure 
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7, this shows that sampling generates new SDPs that are completely conserved (i.e. only one amino 

acid in each group) and also some where there is variation within one or both groups. As the 

proportion of sequences sampled increased these numbers quickly converged to the numbers 

observed in the full dataset. Some of these included SDPs which in some samples were completely 

conserved but as further sequences were added, variation was introduced and they were no longer 

completely conserved. In such cases there was a change ranking for the SDP, as when completely 

conserved it was ranked 1, and this ranking was reduced once the position was not completely 

conserved.   

 

 

Supplementary Figures 

 

Supplementary Figure 1. Phylogenetic tree of the Ebolavirus genomes and individual proteins. 

Bayesian and Maximum Likelihood phylogenetic trees are shown for the Ebolavirus genomes and 

each of the Ebolavirus proteins. A) genome Bayesian tree. B) Genome maximum likelihood tree, C) 

Bayesian tree for protein L, D)Maximum likelihood tree for protein L, E)Bayesian tree for protein 

GP, F)Maximum likelihood tree for protein GP, G)Bayesian tree for protein NP, H)Maximum 

likelihood tree for protein NP, I)Bayesian tree for protein VP24, J)Maximum likelihood tree for 

protein VP24, K)Bayesian tree for protein VP30, L)Maximum likelihood tree for protein VP30, 

M)Bayesian tree for protein VP35, N)Maximum likelihood tree for protein VP35, O)Bayesian tree for 

protein VP40. P)Maximum likelihood tree for protein VP40. All trees use Ebola virus as root (EBOV, 

Ebola virus; BDBV, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taϊ Forest virus; RESTV, Reston 

virus). 

 

 

Fig S1A 
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Fig S1B.  
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Fig S1C.  
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Fig S1D.  
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Fig S1E .  



Appendix 2: Chapter 3 Supplementary Materials  

 163 

 

Fig S1F.  



Appendix 2: Chapter 3 Supplementary Materials  

 164 

 

Fig S1G.  



Appendix 2: Chapter 3 Supplementary Materials  

 165 

 

 
 

Fig S1H  
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Fig S1I. 
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Fig S1J.  
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Fig S1K.  
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Fig S1L 
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Fig S1M.  
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Fig S1N.  
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Fig S1O.  
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Fig S1P.  
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Supplementary Figure 2. Ebolavirus protein consensus sequences and SDPs. The consensus 

sequence for each Ebolavirus species is shown for each Ebolavirus protein. The row above the 

alignment indicates positions that are 100% conserved across all Ebolavirus sequences (black) or 

specificity determining positions (SDPs) that discriminate Reston viruses from the four human 

pathogenic Ebolavirus species (red); R, Reston virus; E, Ebola virus; S, Sudan virus; B, Bundibugyo 

virus; T, Taϊ Forest virus. A) for VP24, B) for GP, C) for VP40, D) VP35, E)VP30, F) sGP, G) NP, 

H)L. 

 

A – VP24 
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B - GP 
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C – VP40 
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D – VP35 
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E – VP30 
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F – sGP 
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G – NP 



Appendix 2: Chapter 3 Supplementary Materials  

 182 

 
 

 

 

 



Appendix 2: Chapter 3 Supplementary Materials  

 183 

 

H – L 
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Supplementary Figure 3. Solvent Accessible surface area for Ebolavirus SDPs. Histograms 

showing the Solvent Accessible surface area in square ångstroms of SDPs. Values are calculated for 

the Ebola virus structure and residues. 
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Supplementary Figure 4. GP SDPs. A) Heatmap of intra- and inter-species GP sequence identity 

(EBOV, Ebola virus; BDBV, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taϊ Forest virus; 

RESTV, Reston virus). B) Monomeric representation of GP with GP1 (grey) and GP2 (blue). D) 

EBOV GP trimer (PDB code: 3CSY) with SDPs colored red. The three GP1 chains are colored grey. 

The three GP2 chains are colored blue, green and yellow. C) Electrostatics surfaces for the EBOV 

structure (3CSY) and a model of a RESTV GP trimer based on 3CSY.  
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Supplementary Figure 5. GP SDPs are located outside the putative NPC1 binding site. GP 

SDPS are shown in red. The putative NPC1 binding site is shown in cyan. 
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Supplementary Figure 6. SDP prediction with subsampling of Ebolavirus sequences. The two 

groups of sequences ‘human pathogenic’ and Reston (‘non human pathogenic’) were sampled and 

SDP predictions made (see materials and methods). The boxplots show the distributions of the 

number of SDPs predicted in the simulations where A) only human pathogenic sequences were 

sampled, B) only Reston sequences were sampled and C) both sets were sampled. Sampling was 

performed for samples consisting of between 10%-90% of sequences (x axis). Red lines indicate the 

number of SDPs predicted in the full dataset without sampling. Note the scale of the Y-axis varies 

between each plot. 

 

A. Human pathogenic sequence sampled. 
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B. Reston Sequences Sampled 
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C. Both groups sampled 
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Supplementary Figure 7. Change in SDP prediction with subsampling of Ebolavirus 

sequences. The two groups of sequences ‘human pathogenic’ and and Reston (‘non human 

pathogenic’) were sampled and SDP predictions made (see materials and methods). The boxplots 

show the number of SDPs predicted in each sampling that are also in the full dataset (red) and 

new SDPs that are predicted only in subsamples (blue). The black horizontal line indicates the 

number of SDPs predicted using the full dataset. Subsampling performed for  A) only human 

pathogenic sequences were sampled, B) only Reston sequences were sampled and c) both sets 

were sampled. 

 

A. Human pathogenic sequence sampled. 

 



Appendix 2: Chapter 3 Supplementary Materials  

 196 

B. Reston Sequences Sampled 
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C. Both groups sampled 
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Supplementary Figure 8. Analysis of completely conserved SDP with subsampling of 

Ebolavirus sequences. The two groups of sequences ‘human pathogenic’ and and Reston (‘non 

human pathogenic’) were sampled and SDP predictions made (see materials and methods). The 

boxplots show the number of SDPs predicted in each sampling that are are completely conserved 

(red) and not completely conserved (blue). The red horizontal line indicates the number of 

completely conserved SDPs present in the full dataset and the blue line represents the equivalent 

for SDPs that are not completely conserved. Subsampling performed for A) only human 

pathogenic sequences were sampled, B) only Reston sequences were sampled and c) both sets 

were sampled. 

 

A. Human pathogenic sequence sampled. 
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B. Reston Sequences Sampled 
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C. Both groups sampled 
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Supplementary Tables 

 

 completely 
conserved 
positions 

Number of 
Positions with 
variation 

% of positions 
with variation 

All species 2597 4555 
 

64% 

Ebola virus 4287 
 

2865 40% 
 

Sudan virus 4363 
 

2789 38% 
 

Bundibugyo  
virus 

4426 2726 38% 

Tai forest virus 4480 2672 37% 
Reston virus 4466 2686 38% 

 

Supplementary Table 1. Variation within the Ebolavirus genomes. The number of positions in the 

Ebolavirus protein multiple sequence alignments that are completely conserved and those that have 

variation are shown. 
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Alignm
ent 
positio
n 

REST
V 

EBO
V BDBV 

SUD
V TAFV 

BLOS
UM 
62 
score 

SASA 
(Å2) 

mCSM (Δ Δ 
G, Kcal/mol) 

S3det 
Rank 

17 M17 L17 L17 L17 L17 2 70 
-0.444 

(destabilising) 1 

22 I22 V22 V22 V22 V22 3 0 
-0.916 

(destabilising) 1 

31 I31 V31 V31 V31 V31 3 17 
-0.193 

(destabilising) 1 

131 S131 T131 T131 T131 T131 1 36 
-1.394 

(destabilising) 1 

132 T132 N132 N132 N132 N132 1 9 
-1.121 

(destabilising) 1 

136 L136 M136 M136 M136 M136 2 2 
-1.7 

(destabilising) 1 

139 R139 Q139 Q139 Q139 Q139 1 132 
0.05 

(stabilising) 1 

226 A226 T226 T226 T226 T226 0 2 
-0.935 

(destabilising) 1 
248 L248 S248 S248 S248 S248 -2 -  1 

 

Supplementary Table 2. VP24 SDPs. The position in the multiple sequence alignment, the amino 

acid position, and amino acid present in each of the species is shown. The BLOSUM62 score 

represents how frequently such amino acid changes are observed in nature. SASA is the solvent 

accessible surface area, which is only available for SDPs that could be mapped to protein structure. 

SASA was calculated using the protein structure with PDB code 4M0Q. RESTV, Reston virus; 

EBOV, Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taϊ Forest virus. The s3det 

column shows the ranking of the SDPs by s3det. 
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Alignm
ent 
positio
n 

REST
V EBOV BDBV SUDV TAFV 

BLOS
UM 
62 
score 

SASA 
(Å2) 

mCSM (Δ Δ 
G, Kcal/mol) 

S3det 
rank 

53 N53 T52 T52 T52 T52 0 -  1 
54 L54 V53 V53 V53 V53 1 -  1 
64 I64 T63 T63 T63 T63 -1 -  1 
94 D94 E93 E93 E93 E93 2 -  1 
97 N97 T96 T96 T96 T96 0 -  1 
99 H99 R98 R98 R98 R98 0 -  1 

108 R108 K107 K107 K107 K107 2 -  1 
112 I112 S111 S111 S111 S111 -2 -  1 
117 S117 K116 K116 K116 K116 0 -  1 
121 S121 A120 A120 A120 A120 1 -  1 

151 I151 T150 T150 T150 T150 -1 7 
0.455 

(stabilising) 1 

158 R158 Q157 Q157 Q157 Q157 1 70 
-0.493 

(destabilising) 1 

160 L160 I159 I159 I159 I159 2 6 
-0.859 

(destabilising) 1 

197 H197 R196 R196 R196 R196 0 83 
-1.291 

(destabilising) 1 

206 D206 E205 E205 E205 E205 -2 148 
-0.373 

(destabilising) 1 

263 A263 R262 R262 R262 R262 -1 106 
-0.969 

(destabilising) 1 
269 Q269 S268 S268 S268 S268 0 -  1 

 

 

Supplementary Table 3. VP30 SDPs. The position in the multiple sequence alignment, the amino 

acid position, and amino acid present in each of the species is shown. The BLOSUM62 score 

represents how frequently such amino acid changes are observed in nature. SASA is the solvent 

accessible surface area, which is only available for SDPs that could be mapped to protein structure. 

SASA was calculated using the protein structure with PDB code 2I8B. RESTV, Reston virus; EBOV, 

Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taϊ Forest virus. The s3det column 

shows the ranking of the SDPs by s3det. 
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Alignm
ent 
positio
n 

RESTV EBOV BDBV SUDV TAFV 

BL
OS
UM 
62 
SCO
RE 

SAS
A 
(Å2) 

mCSM (Δ 
Δ G, 
Kcal/mol) 

S3det 
rank 

27 T15 S26 S26 S26 S26 1 -  1 
49 D37 E48 E48 E48 E48 2 -  1 
77 E65 D76 D76 D76 D76 2 -  2 
86 K74 E85 E85 E85 D86 1 -  3 
93 M81 S92 S92 S92 S92 -1 -  1 
98 T86 V97 V97 V97 I98 0 -  3 

102 N90 T101 T101 T101 A102 0 -  3 
107 A95 S106 S106 S106 S106 1 -  1 
122 I110 V121 V121 V121 M122 3 -  3 
155 S143 A154 A154 A154 A154 1 -  1 
160 V148 T159 T159 T159 T159 0 -  1 
161 D149 E160 E160 E160 E160 2 -  1 
168 K156 G167 G167 G167 G167 -2 -  1 
175 A163 S174 S174 S174 S174 1 -  1 
182 L170 I181 I181 I181 I181 2 -  2 

270 D258 E269 E269 E269 E269 2 144 
-0.039 

(destabilisi
ng) 

1 

291 V279 A290 A290 A290 A290 0 23 
-0.756  

(destabilisi
ng) 

1 

315 A303 V314 V314 V314 V314 0 49 
-1.47 

(destabilisi
ng) 

1 

330 K318 Q329 Q329 Q329 Q329 1 32 
-0.513 

(destabilisi
ng) 

1 

 

Supplementary Table 4. VP35 SDPs. The position in the multiple sequence alignment, the amino 

acid position, and amino acid present in each of the species is shown. The BLOSUM62 score 

represents how frequently such amino acid changes are observed in nature. SASA is the solvent 

accessible surface area, which is only available for SDPs that could be mapped to protein structure. 

SASA was calculated using the protein structure with PDB code 4IBB. RESTV, Reston virus; EBOV, 

Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taϊ Forest virus. The s3det rank 

column shows the ranking of the SDPs by s3det. The s3det column shows the ranking of the SDPs by 

s3det. 
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Alignm
ent 
positio
n 

REST
V EBOV BDBV SUDV TAFV 

BLOS
UM 62 
SCOR
E 

SASA 
(Å2) 

mCSM (Δ 
Δ G, 
Kcal/mol
) 

S3det 
rank 

46 V46 T46 T46 T46 T46 0 83 

-0.31 
(destabilis

ing) 1 

85 T85 P85 P85 P85 P85 -1 142 

-0.626 
(destabilis

ing) 1 
122 V122 I122 I122 I122 I122 3 -  1 

201 N201 G201 G201 G201 G201 0 53 

-0.482 
(destabilis

ing) 1 

209 L209 F209 F209 F209 F209 0 15 

-1.219 
(destabilis

ing) 1 

245 P245 Q245 Q245 Q245 Q245 -1 160 

0.059 
(stabilisin

g) 1 
269 Q269 H269 H269 H269 H269 0 -  1 

293 V293 I293 I293 I293 I293 3 14 

-1.411 
(destabilis

ing) 1 
325 D325 E325 E325 E325 E325 2 -  1 

 

Supplementary Table 5. VP40 SDPs. The position in the multiple sequence alignment, the amino 

acid position, and amino acid present in each of the species is shown. The BLOSUM62 score 

represents how frequently such amino acid changes are observed in nature. SASA is the solvent 

accessible surface area, which is only available for SDPs that could be mapped to protein structure. 

SASA was calculated using the protein structure with PDB code 1ES6. RESTV, Reston virus; EBOV, 

Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taϊ Forest virus. The s3det column 

shows the ranking of the SDPs by s3det. 
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Alignm
ent 
positio
n RESTV EBOV BDBV SUDV TAFV 

BLOS
UM 
62 
SCO
RE 

SAS
A 
(Å2) 

mCSM (Δ Δ 
G, 
Kcal/mol) 

S3de
t 
rank  

4 G4 R4 R4 R4 R4 -2   1 
16 D16 E16 E16 E16 G16 2   2 
30 T30 S30 S30 S30 S30 1   1 

39 K39 R39 R39 R39 R39 2 188 

-0.161 
(destabilising
) 1 

42 S42 
P42/ 
Q42 P42 P42 Q42 -1 103 

-2.173 
(destabilising
) 3 

56 V56 I56 I56 I56 I56 3 0 

-0.8 
(destabilising
) 1 

64 I64 V64 V64 V64 V64 3 7 

-0.135 
(destabilising
) 1 

105 K105 R105 R105 R105 R105 2 112 

-0.63 
(destabilising
) 1 

137 L137 M137 M137 M137 M137 2 37 

-0.649 
(destabilising
) 1 

212 Y212 F212 F212 F212 F212 3 0 

-0.692 
(destabilising
) 1 

274 R274 K274 K274 K274 K274 2 92 

-0.548 
(destabilising
) 1 

279 A279 S279 S279 S279 S279 1 60 

-0.822 
(destabilising
) 1 

374 R374 K374 K374 K374 K374 2 103 

-0.836 
(destabilising
) 1 

416 N416 K416 K416 K416 K416 0   1 
421 Q421 Y421 Y421 Y421 Y421 -1   1 
426 E426 D426 D426 D426 D426 2   1 
435 N435 D435 D435 D435 D435 1   1 
443 E443 D443 D443 D443 D443 2   1 
453 I453 T453 T453 T453 T453 -1   1 
492 E492 D492 D492 D492 D492 2   1 
497 A497 P497 P497 P497 P497 -1   2 
535 (-) P526 P526 P526 P526    1 
572 S563 T563 T563 T563 T563 1   1 
574 V565 I565 I565 I565 I565 3   1 
611 T602 P602 P602 P602 N602 -1   4 
651 Q641 N641 N641 N641 K641 0   2 

715 R705 A705 A705 A705 A705 -1 24 

-1.037 
(destabilising
) 1 
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726 N716 D716 D716 D716 D716 1 123 
0.141 
(stabilising) 1 

727 N717 G717 G717 G717 G717 0 75 

-0.461 
(destabilising
) 2 

 

Supplementary Table 6. NP SDPs. The position in the multiple sequence alignment, the amino acid 

position, and amino acid present in each of the species is shown. The BLOSUM62 score represents 

how frequently such amino acid changes are observed in nature. SASA is the solvent accessible 

surface area, which is only available for SDPs that could be mapped to protein structure. SASA was 

calculated using the protein structure with PDB code 4QB0 for the C terminal and 4YPI for the N 

terminal regions. RESTV, Reston virus; EBOV, Ebola virus; B, Bundibugyo virus; SUDV, Sudan 

virus; TAFV, Taϊ Forest virus. The s3det rank column shows the ranking of the SDPs by s3det. The 

s3det column shows the ranking of the SDPs by s3det. 
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Alignmen
t position 

RES
TV 

EBO
V 

BDB
V SUDV TAFV 

BLOSU
M 62 
Score 

SAS
A 
(Å2) 

mCSM (Δ Δ 
G, 
Kcal/mol) 

S3det 
rank 

2 G2 M1 M1 M1 M1 -3   1 
3 S3 G2 V2 E2/G2 G2 0   8 

32 I32 F31 F31 F31 F31 0   1 

38 I38 V37 V37 V37 V37 3 0 

-0.828 
(destabilisin

g) 1 

46 A46 V45 V45 V45 V45 0 30 

-1.276 
(destabilisin

g) 1 

76 I76 V75 V75 V75 V75 3 44 

-0.295 
(destabilisin

g) 1 
197 A197 S196 S196 S196 S196 1   1 
208 D208 E207 T207 E207 T207 2   9 
211 T211 S210 S210 S210 S210 1   1 

261 L261 I260 I260 I260 I260 2 25 

-0.95 
(destabilisin

g) 1 

270 S270 T269 T269 T269 T269 1 99 

-0.432 
(destabilisin

g) 1 

308 H308 
S308/ 
L307 S308 S308 S308 -1   2 

326 G326 R325 V325 R325 V325 -2   9 
355 L355 H354 R354 H354 Q354 -3   9 
404 P401 Q403 N401 Q397 S401 -1   9 
419 E412 S418 A409 S412 T409 0   9 
461 P449 T448 S442 T448 T448 -1   7 

497 

Y517
/ 
H517 H516 H516 H516 H516 2   6 

519 K499 R498 R498 R498 R498 2   1 
521 K501 R500 R500 R500 R500 2   1 

535 D515 N514 N514 N514 N514 1 59 

-1.142 
(destabilisin

g) 1 

542 V522 Q521 Q521 Q521 L521 2 19 
0.037 

(stabilising) 6 

568 V548 L547 I547 L547 I547 1 74 

-1.258 
(destabilisin

g) 9 
605 L585 I584 I584 I584 I584 2   1 
628 S608 D607 D607 D607 D607 0   1 
643 E623 K622 K622 K622 K622 1   1 
659 H639 Q638 Q638 Q638 Q638 0   1 
663 L643 D642 D642 D642 S642 -4   6 
665 L645 W644 W644 W644 W644 -2   1 
680 I660 T569 T569 T569 T569 -1   1 

 

Supplementary Table 7. GP SDPs. The position in the multiple sequence alignment, the amino acid 
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position, and amino acid present in each of the species is shown. The BLOSUM62 score represents 

how frequently such amino acid changes are observed in nature. SASA is the solvent accessible 

surface area, which is only available for SDPs that could be mapped to protein structure. SASA was 

calculated using the protein structure with PDB code 3CSY. RESTV, Reston virus; EBOV, Ebola 

virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taϊ Forest virus. The s3det rank column 

shows the ranking of the SDPs by s3det. The s3det column shows the ranking of the SDPs by s3det. 
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Alignme
nt 
position RESTV EBOV BDBV SUDV TAFV 

BLOSUM 
62 SCORE 

SASA 
(Å2) 

S3det 
rank 

47 G2 M1 M1 M1 M1 -3  1 
77 I32 F31 F31 F31 F31 0  1 
83 I38 V37 V37 V37 V37 3 21 1 
91 A46 V45 V45 V45 V45 0 84 1 

121 I76 V75 V75 V75 V75 3 61 1 
242 A197 S196 S196 S196 S196 1  1 
256 T211 S210 S210 S210 S210 1  1 
306 L261 I260 I260 I260 I260 2 20 1 
315 S270 T269 T269 T269 T269 1 48 1 

 

Supplementary Table 8. sGP SDPs. The position in the multiple sequence alignment, the amino 

acid position, and amino acid present in each of the species is shown. The BLOSUM62 score 

represents how frequently such amino acid changes are observed in nature. SASA is the solvent 

accessible surface area, which is only available for SDPs that could be mapped to protein structure. 

SASA was calculated using the Phyre2 structural model that used template structure 3s88I. RESTV, 

Reston virus; EBOV, Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taϊ Forest virus. 

The s3det rank column shows the ranking of the SDPs by s3det. The s3det column shows the ranking 

of the SDPs by s3det. 
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Alignme
nt 
position 

REST
V EBOV BDBV SUDV TAFV 

BLO
SUM
62 
SCO
RE 

SASA 
(Å2) 

mCS
M (Δ 
Δ G, 
Kcal/
mol) 

S3det 
rank 

67 T66 V66 V66 V66 V66 0   1 
110 H109 Q109 Q109 Q109 Q109 0   1 
137 L136 I136 I136 I136 I136 2   1 
147 V146 L146 L146 L146 L146 1   1 
222 S221 A221 A221 A221 A221 1   1 
224 L223 Q223 Q223 Q223 Q223 -2   1 
228 Q227 H227 H227 H227 H227 0   1 

277 I276 L276 L276 L276 L276 2 42 

-1.049 
(desta
bilisin

g) 1 
284 V283 L283 L283 L283 L283 1   1 
313 F312 Y312 Y312 Y312 Y312 3   1 
327 S326 A326 A326 A326 A326 1   1 
331 D330 T330 T330 T330 T330 -1   1 
351 D350 E350 E350 E350 E350 2   1 
362 S361 T361 T361 T361 T361 1   1 
366 F365 L365 L365 L365 L365 0   1 
380 I379 V379 V379 V379 V379 3   1 
448 H447 Q447 Q447 Q447 Q447 0   1 
451 S450 P450 P450 P450 P450 -1   1 
466 N465 D465 D465 D465 D465 1   1 
690 S689 E689 E689 E689 E689 0   1 
848 A847 S847 S847 S847 S847 1   1 
869 A868 S868 S868 S868 S868 1   1 
897 Y896 F896 F896 F896 F896 3   1 
926 F925 L925 L925 L925 L925 0   1 
955 S954 A954 A954 A954 A954 1   1 
996 T995 S995 S995 S995 S995 1   1 

1025 N1024 T1024 T1024 T1024 T1024 0   1 
1074 K1073 R1073 R1073 R1073 R1073 2   1 
1120 S1119 A1119 A1119 A1119 A1119 1   1 
1164 A1161 F1163 F1163 F1163 F1163 -2   1 
1190 S1187 D1189 D1189 D1189 D1189 0   1 
1215 S1212 A1214 A1214 A1214 A1214 1   1 
1218 K1215 R1217 R1217 R1217 R1217 2   1 
1238 E1235 D1237 D1237 D1237 D1237 2   1 
1256 V1253 I1255 I1255 I1255 I1255 3   1 
1355 K1532 R1534 R1534 R1534 R1534 2   1 
1367 A1354 T1366 T1366 T1366 T1366 0   1 
1396 T1393 S1395 S1395 S1395 S1395 1   1 
1409 M1406 I1408 I1408 I1408 I1408 1   1 
1415 L1412 I1414 I1414 I1414 I1414 2   1 
1437 N1434 S1436 S1436 S1436 S1436 1   1 



Appendix 2: Chapter 3 Supplementary Materials  

 213 

1462 Q1459 K1461 K1461 K1461 K1461 1   1 
1474 C1471 S1473 S1473 S1473 S1473 -1   1 
1489 Y1486 L1488 L1488 L1488 L1488 -1   1 
1500 L1497 I1499 I1499 I1499 I1499 2   1 
1507 A1504 S1506 S1506 S1506 S1506 1   1 
1510 V1507 I1509 I1509 I1509 I1509 3   1 
1539 S1536 A1535 A1535 A1535 A1535 1   1 
1627 Y1624 L1624 L1624 L1624 L1624 -1   1 
1631 S1628 C1628 C1628 C1628 C1628 -1   1 
1786 I1760 V1762 V1762 V1762 V1762 3   1 
1874 T1848 V1850 V1850 V1850 V1850 0   1 
1897 S1871 T1873 T1873 T1873 T1873 1   1 
1941 N1914 R1916 R1916 R1916 R1916 1   1 
1966 R1939 E1941 E1941 E1941 E1941 0   1 
2033 I2006 L2008 L2008 L2008 L2008 2   1 
2069 I2042 L2044 L2044 L2044 L2044 2   1 
2102 T2075 S2077 S2077 S2077 S2077 1   1 
2123 D2096 E2098 E2098 E2098 E2098 2   1 
2130 L2130 Q2105 Q2105 Q2105 Q2105 -2   1 
2133 E2106 Q2108 Q2108 Q2108 Q2108 2   1 
2156 F2129 Y2131 Y2131 Y2131 Y2131 3   1 
2182 V2155 L2157 L2157 L2157 L2157 1   1 
2193 N2171 R2168 R2168 R2168 R2168 0   1 
2200 K2173 R2175 R2175 R2175 R2175 2   1 
2202 F2175 L2177 L2177 L2177 L2177 0   1 
2211 L2184 M2186 M2186 M2186 M2186 2   1 

 

Supplementary Table 9. L SDPs. The position in the multiple sequence alignment, the amino acid 

position, and amino acid present in each of the species is shown. The BLOSUM62 score represents 

how frequently such amino acid changes are observed in nature. SASA is the solvent accessible 

surface area, which is only available for SDPs that could be mapped to protein structure. SASA was 

calculated using the Phyre2 structural model which used template 4n48A (“cap-specific mrna (“cap-

specific mrna (nucleoside-2'-o-)-methyltransferase 1 protein in2 complex with capped rna fragment”). 

RESTV, Reston virus; EBOV, Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taϊ 

Forest virus. The s3det rank column shows the ranking of the SDPs by s3det. The s3det column 

shows the ranking of the SDPs by s3det. 
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Protein  
EBOV 
Res RESTV Res 

Mutation 
position Mutation Effect 

GP Q638 H 638 Q → V 
No effect on release of 
soluble GP1,2delta. 

GP R498 K 498-501   
RTRR → 
ATAA 

No effect on cleavage 
between GP1 and GP2. 

GP D642 L 642 D → V 
No effect on release of 
soluble GP1,2delta. 

VP24 M136 L 134/136 F-A/M-A 
Near complete loss of 
KPNA5 binding * 

VP24 Q139 R 137-139 
RTQ → 
AAA 

Near complete loss of 
KPNA5 binding * 

 

Supplementary Table 10. SDPs that coincide with known mutagenesis data.  Functional data 

extracted from UniProt unless stated. Res, residue; EBOV, Ebola virus; RESTV, Reston virus 

*Data from Bornholdt et al.,35 
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PROTEIN SPECIES OLIGOMERIC 
STATE 

PDB/TEMPLATE REGION IN 
SEQUENCE 

GP EBOV Trimer of 
Heterodimers 

3CSY (structure) 31-310 
502-599 

sGP EBOV Dimer 3s88I (model) 32-287 

sGP RESTV Dimer 3s88I (model) 33-288 

L EBOV Monomer 4n48A (model) 223-328 

NP (C-
terminal) 

EBOV Monomer 4QB0 (structure) 645-739 

NP (N-
terminal) 

EBOV Monomer 4YPI (structure) 39-384 

VP24 EBOV Heterodimer 4M0Q (structure) 10-231 

VP24 EBOV Heterodimer 4U2X (structure) 16-231 

VP24 RESTV Dimer 4D9O (structure) 10-231 

VP30 EBOV Dimer 2I8B (structure) 140-266 

VP30 RESTV Dimer 3V70 (structure) 142-272 

VP35 EBOV Heterodimer 4IBB (structure) 218-340 

VP35 EBOV Dimer of 
heterodimers 

3L25 (structure) 209-340 

VP35 RESTV Dimer of 
heterodimers 

3KS8 (structure) 208-329 

VP40 EBOV Monomer 1ES6 (structure) 44-321 

VP40 EBOV Dimer 4LDB (structure) 44-319 

VP40 EBOV Hexamer 4LDD (structure) 45-188 

VP40 EBOV Octamer 4LDM (structure) 69-188 

VP40 RESTV Monomer 1es6A (model) 44-321 
 

 

Supplementary Table 11. Protein structures available for Ebolavirus Proteins. EBOV, Ebola 

virus; RESTV, Reston virus 
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Reston virus 
residue 

Pathogenic 
consensus Comments 

Functional 
effect 

I32 F31 

Note- Ebola virus GP structure has R31 rather 
than F31. Surface residue close to interface with 
GP2 in the trimer.  
Unclear what functional effect may be if any. Unclear 

I38 V37 
Surface residue, appears to be a conservative 
change of amino acid that could be well tolerated Unlikely 

A46 V45 

Also a surface residue. Conservative change of 
hydrophobic amino acid that could be well 
accommodated. Unlikely 

I76 V75 

 

Surface residue, conservative change of amino 
acid . Change should be well accommodated Unlikely 

L261 I260 

One of three SDPs located in the glycan cap 
region of GP1. The glycan cap binds the host cell 
receptor(s) but is highly glycosylated so it is not 
clear if the amino acids directly contact the host 
cell. Surface residue in a cavity. It is part packed 
quite tightly with residue F234, V236, T240 but 
should be possible to accommodate change to 
Leu in Reston virus. Could there be a role with 
the three SDPs combined in this region.  possible* 

S270 T269 

Located at the top of the structure, is a surface 
residue (with side chain pointing to the solvent) 
representing a conservative amino acid change. 
Again could it have a role in conjunction with the 
2 other SDPs in this region? possible* 

H308 
S308/ 
L307 

Also located in the glycan cap and also a surface 
residue. Present in loop so unlikely to alter 
structure but could have a functional role, and 
alters charge on the protein surface. possible* 

D515 N514 

Surface residue, results in loss of negative charge 
in Reston virus GP. Located at the end of a beta 
sheet. Seems unlikely to have a structural effect. 
Possible combined effect with adjacent L547V? Unlikely 

V522 Q521 

Close to trimer interface (GP2-GP2) but directly 
within the interface. Not clear what effect this 
change would have on protein structure Unclear 

V548 L547 

Surface residue at end of a beta sheet. Appears to 
be minor change in amino acid. Possible 
combined effect with adjacent N514D? Unlikely 

L585 I584 

Largely buried amino acid. At the interface with 
GP1 (in the same GP monomer). EBOV I584 
interacts with F572,  not clear if this interaction 
would change in with Leu in Reston virus. Unlikely 

 

Supplementary Table 12. Structural analysis of GP SDPs. Details of the structural analysis are 

included with an assessment of whether the amino acid change is likely to have an effect on the 

protein. Four categories are used for the effect column unlikely (the change seems unlikely to alter the 

structure/function), unclear (the change could be functional but there is limited evidence), possible 
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(more confident that there is an effect than the unclear group) and probably (highly confident that the 

change will have a structural/functional effect). 
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Reston 
virus 
residue 

Pathogenic 
consensus Comments 

Functional 
effect 

K39 R39 
R39 forms a H bond with D71. Change to K is likely to 
maintain this H bond.  Unlikely 

S42 
P42/ 
Q42 

Unusual to see Pro in a sheet. The amino acid is on the 
protein surface and it there is nothing to suggest that a 
change to Ser would alter the protein Unclear 

V56 I56 

I56 is largely buried and packed against other sidechains. 
While change to Val would reduce the size of the side 
chain, it seems likely that it would be accommodated 
within the structure. Also V64I is adjacent to this SDP. Unlikely 

I64 V64 

In a surface loop facing the helix containing I56V. 
Possible co-evolution with I56 – reduce size in one, 
matched with increased size in the other.  Unlikely 

K105 R105 

The side chain guanidino group of R105 provides a 
hydrogen bond with the side chain of Q38 as well as with 
the local backbone NH of G103 to provide a stabilized 
region of the protein. Although the mutation R105K 
appears conservative and maintains the side chain 
positive charge, the ability to form multiple hydrogen 
bonds is reduced due to resonance stabilization in the 
guanidino group being lost in the transfer to the lysine 
side chain amino group. This has the potential to weaken 
interactions in this region. Possible 

L137 M137 

M137 is located at the end of helix and packs against an 
adjacent helix. The conservative change to L137 in 
Reston virus seems unlikely to have a significant effect 
on structure/function Unlikely 

Y212 F212 

A minor change in side chains. P212 is located in an 
alpha helix and the sidechain is largely buried. The 
change to Y212 in Reston virus is unlikely to have a 
significant effect on protein structure/function Unlikely 

R274 K274 

K274 is located in the VP35 binding site. K274 forms a 
hydrogen bond with VP35 D46 and a change to Arg 
should be able to maintain this interaction. Unlikely 

A279 S279 

S279 is located in an alpha helix on the protein surface. 
The change to A279 in Reston virus would introduce a 
hydrophobic amino acid on the protein surface that 
could have an effect on protein structure.  Unclear 

R374 K374 

K374 is located in an alpha helix on the protein surface. 
It is not unlikely that the change to R374 in Reston virus 
will alter protein structure. It is a conservative change of 
side chain. Unlikely 

R705 A705 

A695 is located on the protein surface so the charge 
introduce by the change to R695 in Reston virus should 
be tolerated. Proximity of Reston virus R705 to E694 
may result in a salt bridge that would reduce flexibility in 
Reston virus NP. There could different hydrodynamic 
volumes between the Reston virus and pathogenic NP 
proteins as well as in the pathogenic ebolaviruses 
exposing residues that remain buried in the Reston virus 
NP. The salt bridge could make RESTV more 
thermostable (and possibly more resistant to proteolysis 
and denaturants). Possible 
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N716 D716 

Present in a surface loop this change will change the 
charge properties. Should be considered with adjacent 
amino acid, which is also an SDP. Overall we see the 
removal of a negatively charged amino acid with two 
polar side chains. Unclear 

N717 G717 

Adjacent to D716N pSDP. The loss of Gly would 
change the turn from type1 to a type 2 turn. Also See 
comment above. Unclear 

 

Supplementary Table 13. Structural analysis of NP SDPs. Details of the structural analysis are 

included with an assessment of whether the amino acid change is likely to have an effect on the 

protein. Four categories are used for the effect column unlikely (the change seems unlikely to alter the 

structure/function), unclear (the change could be functional but there is limited evidence), possible 

(more confident that there is an effect than the unclear group) and probably (highly confident that the 

change will have a structural/functional effect). 
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Reston virus 
Residue 

Pathogenic 
consensus 

Comments Functional 
effect 

D258 E269 

Present in dimer interface (only for one of the 
subunits as the dimer is asymmetric). Forms 
hydrogen bonds with R301, R311 and W313 
(RESTV numbering). Distances between atoms 
are slightly different between the 2 species. 
W324 3.1A (2.8 in Ebola virus), R301 3.2A (2.9 
in Ebola virus) R322 2.8 and 3.0 (both 2.8A in 
Ebola virus). Also close to A303 across 
interface, they could compensate or presence 
of both changes could have greater effect on 
interface in this area. (6.1A in RESTV, 7.5 in 
Ebola virus) 

 Probable 

V279 A290 

Present in a surface loop packs against adjacent 
helix, conservative change of hydrophobic 
amino acid. Could be some local 
conformational changes and is located adjacent 
to the linker between the two subdomains, 
which is in RESTV has a short alpha helix that 
is not present in EBOV. 

Unclear 

A303 V314 

Present in a surface loop near the VP35 dimer 
interface. Close in space to D258 in the other 
subunit. 

Unclear 

K318 Q329 

Located at the end of a beta sheet. Adjacent to 
His285 in next strand. His285 is completely 
conserved in all Ebolavirus species. So Reston 
virus VP35 has increased positive charge in this 
position 

Unclear 

 

 

Supplementary Table 14. Structural analysis of VP35 SDPs. Details of the structural analysis are 

included with an assessment of whether the amino acid change is likely to have an effect on the 

protein. Four categories are used for the effect column unlikely (the change seems unlikely to alter the 

structure/function), unclear (the change could be functional but there is limited evidence), possible 

(more confident that there is an effect than the unclear group) and probably (highly confident that the 

change will have a structural/functional effect). 
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RESTV 
residue 

Pathogenic 
consensus Comments functional effect 

I151 T150 

The side chain is largely buried and it 
appears that Reston virus I151 would be 
tolerated although a hydrogen bond with 
the backbone of the previous turn of the 
helix will be lost. Unlikely 

R158 Q157 

Located in a surface loop, will increase 
surface charge. It is possible that Reston 
virus forms a salt bridge with D159, which 
would increase stability and reduce 
flexibility in this area of the protein. This 
SDP is in a region of SDPs and very close 
to another SDP (I159L). So possible effects 
may be compensated by other changes. Unlikely 

L160 I159 

Located in a surface close to another SDP 
(see above). Appears to be a conservative 
change that given the other species specific 
changes in this area it seems unlikely that it 
will have a functional effect on the protein. unlikely  

H197 R196 

Surface residue so change in size/shape 
should well accommodated, positive charge 
maintained in side chain. Unlikely 

D206 E205 

Exposed surface residue, conservative 
change of amino acid. Unlikely to alter 
protein structure. Unlikely 

A263 R262 

This residue is present in the dimer 
interface. In Ebola virus VP30 R262 
hydrogen bonds with the backbone of 
A141 and G140. Reston virus A263 will be 
unable to hydrogen bond. This is likely to 
reduce the affinity of the dimer (given that 
it is symmetrical and so the Ebola virus 
R262 in each subunit forms hydrogen 
bonds with  the other subunit. The Reston 
virus dimer has been observed to be 
rotated relative to the Ebola virus. The loss 
of the hydrogen bonds may explain this. Probable 

 

Supplementary Table 15. Structural analysis of VP30 SDPs. Details of the structural analysis are 

included with an assessment of whether the amino acid change is likely to have an effect on the 

protein. Four categories are used for the effect column unlikely (the change seems unlikely to alter the 

structure/function), unclear (the change could be functional but there is limited evidence), possible 

(more confident that there is an effect than the unclear group) and probably (highly confident that the 

change will have a structural/functional effect). 
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Reston 
virus 
residue 

Pathogenic 
consensus Comments 

Possible 
Functional 
effect 

V46 T46 

Present in a surface loop (although only third amino 
acid in structure). Reston virus V46 introduces a 
hydrophobic amino acid on surface, could affect 
stability but no evidence for this. Unclear 

T85 P85 

Ebola virus P85 is in a S-G-P-K beta-turn, proline 
confers backbone rigidity and change to Thr in 
Reston virus would introduce backbone flexibility 
and provide a side chain with H-bond donor. 
Located in the Ebola virus octamer interface, will 
result in changes to this interface and likely alter the 
octamer structure. In an octamer structure (if it 
were to remain similar to the Ebola virus octamer), 
T85 could hydrogen bond with the backbone of 
L117 or the sidechain of R137. probably  

V122 I122 

This change appears to be conservative substitution 
of two hydrophobic amino acids. Ebola virus I122 
is packed with other hydrophobic residues and it 
appears that the region would be able to 
accommodate the change to Reston virus V122 
with a slightly smaller side chain.  Unlikely 

 
 
N201 

 
 
G201 

Located in a surface loop. Based on the Ebola virus 
structure, the Reston virus N201 side chain would 
be likely to point into the protein structure. But not 
clear what effect this would have on the protein 
structure, if any given that the structure has gaps in 
this region so cannot be confident. Unclear 

L209 F209 

Packed in a largely hydrophobic region the SDP 
results in a reduction in side chain size in Reston 
virus. The smaller Leucine may adopt different side 
chain conformations to aid stability. Ebola virus 
F209 does not interact with other aromatic side 
chains so the structure is unlikely to be adversely 
affected by the swap to Leucine. Surrounding 
hydrophobic residues are aliphatic (I261, I285, 
V298, A318, P317) so the change to Leucine could 
be well accommodated. Unlikely 

P245 Q245 

Located at the end of an alpha helix, the Reston 
virus P245 would break the helix and shorten it to 
either L244 or more likely M241, which is a better 
C-capping residue.  This could have a destabilizing 
effect on the two helices in this region and the base 
of the hydrophobic core because secondary 
structure will most likely change to accommodate 
the inflexible Proline. Probably 

Q269 H269 

A surface residue, loss of charge to polar side chain. 
This is a highly charged region with E265, R270, 
K274, K275. So the positive charge would be 
reduced in Reston virus VP40.  Unclear 

V293 I293 
Packs with other hydrophobic residues. Appears to 
be a conservative change Unlikely 

 

Supplementary Table 16. Structural analysis of VP40 SDPs. Details of the structural analysis are 
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included with an assessment of whether the amino acid change is likely to have an effect on the 

protein. Four categories are used for the effect column unlikely (the change seems unlikely to alter the 

structure/function), unclear (the change could be functional but there is limited evidence), possible 

(more confident that there is an effect than the unclear group) and probably (highly confident that the 

change will have a structural/functional effect). Analysis is based on the VP40 dimer structure unless 

otherwise stated. 

 

 

 

 

 

Reston 
virus 
residue 

Pathogeni
c 
consensus Comments 

Possible 
functional 
effect 

M17 L17 

Located in a helix. Appears to be a conservative change in 
amino acid. No suggestion from structure that it would alter 
structure/function. Unlikely 

I22 V22 

Located in a helix and is fairly tightly packed against the 
adjacent helix but would expect the pocket to accommodate the 
change.  Unlikely 

I31 V31 

Located in a sheet facing a loop. Side chain is relatively exposed 
so structure should be able to accommodate. Adjacent in space 
to another SDP (132)  Unlikely 

S131 T131 

Ebola virus T131 forms hydrogen bonds with the side chains of 
T129, W125 and with the backbone of H133. Model of Reston 
virus VP24 suggests S131 would continue to interact with the 
same residues. This residue is on the edge of the KPNA5 
binding site. Appears to be a conservative change of amino 
acid. Probable 

T132 N132 

Exposed polar residue exchanges for another polar residue. 
Unlikely to affect structure. Adjacent in space to an SDP 
(V31S) and in sequence to 131. Unlikely 

L136 M136 

Part of the interface site with KPNA5. Mutagenesis of M136 in 
combination with other residues resulted in loss of KPNA5 
binding34. Although it appears to be a conservative substitution. Probable 

R139 Q139 

Interface residue. In Ebola virus Q139 forms an H bond with 
the backbone of R137. This is likely to be lost in Reston virus 
VP24 with the longer R139 side chain. Change will also 
introduce positive charge at interface site. Probable 

A226 T226 

Located in a helix facing a sheet. Ebola virus T226 forms a 
hydrogen bond with the backbone of D48. Reston virus A226 
will not be able to form this hydrogen bond. This is likely to 
reduce the stability of the protein and increase flexibility. Probable 

 

Supplementary Table 17. Structural analysis of VP24 SDPs. Details of the structural analysis are 

included with an assessment of whether the amino acid change is likely to have an effect on the 

protein. Four categories are used for the effect column unlikely (the change seems unlikely to alter the 

structure/function), unclear (the change could be functional but there is limited evidence), possible 
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(more confident that there is an effect than the unclear group) and probably (highly confident that the 

change will have a structural/functional effect). 
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Region Residue Conservation  
1 L136 SDP 
1 R139 SDP 
1 S140 Not an SDP but conserved S in Reston viruses and 

mainly R in Ebola viruses, not conserved enough to be 
SDP 

   
2 L107 Vary in species specific manner 
2 H109 Vary in species specific manner 
2 T116 Vary in species specific manner 
2 G120 Not an SDP – G in Reston viruses and Ebola viruses 

(mainly), differs in others 
   
3 S184  
3 T185 Not an SDP. T in Reston viruses, mainly N in other 

species 
3 H186 Vary in species specific manner 
3 T187 Not an SDP, primarily T in most species (A in Sudan 

viruses) 
3 F197 Vary in species specific manner 
   
4 V201 Vary in species specific manner 
   
5 S50 Not an SDP 

 

Supplementary Table 18. Residues in VP24 previously identified to differ between Reston viruses 

and Ebola viruses and/or Sudan viruses. Zhang et al., identified five regions that differed between 

Reston viruses and Ebola viruses and/or Sudan viruses7 .The five regions are listed along with 

conservation information i.e. whether the position is an SDP, varies in a species specific manner (i.e. 

not an SDP, but a different residue is conserved in each of the different species) or otherwise 

conserved. Region one is part of the KPNA5 (karyopherin α5) binding site and region two is thought 

to be part of the STAT1 binding site7.  
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Mutation Location/Comments Relationship 
to SDPs 

From Volchhkov et al.,43 – experiment 1 
M71I Surface residue. Not clear what functional effect would be. Not close 
L147P Part of an alpha helix, the proline would be expected to break 

the helix and could lead to conformational changes that would 
alter function. 

Close to SDPs 
L17M, V22I 

T187I Adjacent to interface site. T187 forms Hydrogen bonds with the 
backbone of H186 and E203. Mutation to I would remove these 
hydrogen bonds and reduce stability/increase flexibility in this 
area. (Also close to L26F mutation from a separate study) 

Not close 

 
From Volchhkov et al., 43 – experiment 2 
H186Y Present in interface with KPNA5. Forms a hydrogen bond with 

the backbone of T434 in KPNA5. Mutation to Tyr would still 
enable Hydrogen bonding with KPNA as the functional group is 
maintained. 

Not close 

 
From Ebihara et al., 44 
T50I The side chain of Ebola virus T50 can hydrogen bond with the 

backbones of Q36 and K52. Removal of these interactions with 
mutation Ile will reduce stability/increase flexibility. 

Close to SDP 
T226A 

 
From Dowall et al., 45 
L26F Largely buried side chain. Increase in size to phenylalanine could 

require some conformational change. Interesting that is located 
close to T187I (see above). 

Close to V22I 

F29V* Largely buried side chain. Reduction in size would create space 
and therefore likely to result in some conformational change?  

Close in space 
to SDPs 
T131S, 
N132T,  
V31I. 

A43P* Close in space to L26F (see above). Present in a turn.  
K218R* Appears to be a conservative change. K218 is present in the 

KPNA5 interface. Is close to M436 and D489. Possible 
electrostatic interaction. Possible the mutation to R enables this 
interaction to continue in the different species. 

 

 

Supplementary Table 19. VP24 Mutations occurring in adaption of Ebola virus to rodent 

species. The location of the mutation and how it may alter structure and function is listed with details 

of proximity to SDPs. *indicates that after passage one the predominant amino acid at that position 

was the wild type 44. In the Dowall et al.45, study L26F is the only mutation where the mutation is 

predominantly maintained in in all passages. Separate experimental evidence suggests that the L26F 

mutation along results in pathogenicity in guinea pigs37. 
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Supplementary Table 20. Information on the 196 complete Ebolav irus  genomes. Genomes were 

downloaded from Virus Pathogen Resource, VIPR 

(http://www.viprbrc.org/brc/home.spg?decorator=vipr) . 

 

 

 

 

 

 

Protein Effective number of 
sequences 

Effective number of 
human pathogenic 

sequence 

Effective number of 
Reston virus sequences 

GP 95.15 86 4 
L 99.2 78 7 
NP 148.96 133 7 
VP24 88.2 79 7 
VP30 96.04 84 7 
VP35 99.96 87 7 
VP40 90.16 80 7 

 

 

Supplementary Table 21. Effective number of independent sequences in the dataset. The 

effective number of independent sequences present in the multiple sequence alignments for each of 

the Ebolavirus proteins is shown. Values were calculated using hmmer (see material and methods). 
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Appendix 3 

 

Invest igat ing Ebola v irus pathogenc i ty  

us ing Molecular Dynamics 

 
 

Morena Pappalardo, Francesca Collu, James Macpherson, Martin Michaelis, Franca Fraternali, 

Mark N Wass, in preparation. 
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 Figure S1 Comparison of the Hbonds at the interface in the EBOV complex (A) and in the RESTV 

(B) respectively t zero and 600 ns.  
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Figure S2: RMSD over time plot on the left; on the right the histogram of RMSD, showing the 

distances of the conformations from the starting one, during the simulation. 
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Figure S3 : DSSP graph of EBOV-VP24-KPNA5 and RESTV-KPNA5. We split proteins VP24 

from the KPNA5. Residues at the interface were mapped using a yellow circle.   
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Figure S4 a) EBOV complex and B) RESTV complex. Changes in secondary structure, coming from 

DSSP analysis were mapped onto the 3D structures. Differences found in regions around residue 134 

in VP24 (loop coloured in blue for EBOV and in red for the RESTV) and around region 385-395 in 

the KPNA5, where a loss of Alpha Helix is shown in the RESTV complex; this last difference is 

coloured in blue (EBOV) and their correspondent RESTV in red. 
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Figure S5: A) number of H-bond over time plot. In black circles the EBOV and in 

red circles the RESTV complex are shown. The number of H-bonds is constant 

during the 600 ns simulation. B) The probability to find H-bonds during the 

simulations suggestes that EBOV shows a greater H-bonds number (black Gaussian) 

than the RESTV (red Gaussian) 
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Figure S6: Radius of Gyration showed a constant compactness in both complexes 

during the simulation. 

 

 
 
 
 
 

 
 
 
 
 
 
 
Figure S7: RMSD over time and RMSD histogram showed higher values for R137A 
and F134A-M136A. Again the RMSD in the left graph does not match that on the 
right. 
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Figure S8: 200 ns trajectories RMSD and RMSF for EBOV WT (black lines), 
R137A-VP24-KPNA5 (red lines) and F134A-M136A-VP24-KPNA5 (purple lines). 
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Figure S9: Principal Component Analysis A) in F134A-M136A-VP24-KPNA5 and B) Cross 

correlation analysis. Correlated movements are shown in red lines and anti-correlated ones in blue. 

Protein VP24 (blue cartoon) and the mutations F134A-M136A (yellow spheres) at the interface with 

KPNA5 (gray cartoon) are likely be in a more correlated region. C) Porcupine plot shows large 

movements during the simulation, occurring both in the VP24 and in the KPNA5.   

 

 

 
 
 


