

Kent Academic Repository

Tapadar, Pradip (2016) *Risk assessment of UK DB pension schemes.* In: University of Waterloo workshop, 24 June 2016, University of Kent, Canterbury, UK. (Unpublished)

Downloaded from

https://kar.kent.ac.uk/57283/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version UNSPECIFIED

DOI for this version

Licence for this version UNSPECIFIED

Additional information

Versions of research works

Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in *Title of Journal*, Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

Risk assessment of UK DB pension schemes

Aniketh Pittea Pradip Tapadar University of Kent, Canterbury, CT2 7NF, UK

University of Waterloo, June 2016

Acknowledgement: Institute and Faculty of Actuaries, UK, has provided a grant to support our attendance at this conference

- Introduction
- 2 Economic capital
- Stochastic model
- Model assumptions
- Results
- 6 PPF
- Conclusions

- Introduction
- 2 Economic capita
- 3 Stochastic model
- 4 Model assumptions
- 6 Results
- 6 PPF
- Conclusions

Background

Regulatory developments

- Basel 2/3.
- Solvency 2.
- Pensions Regulations.

Pensions: Developments in the UK

- Pensions Act (2004): PPF and the Pensions Regulator.
- Private pension membership: 46% (1997) to 32% (2012).
- DB scheme membership: 34% (1997) to 8% (2012).

Questions:

- Impact of capital requirements on individual DB pension schemes.
- 2 Role of the PPF for the risk management of the entire sector.

- Introduction
- 2 Economic capital
- 3 Stochastic mode
- 4 Model assumptions
- 6 Results
- 6 PPF
- Conclusions

Economic Capital Formulation

Economic capital is the excess of assets over liabilities in respect of accrued benefits required to ensure that assets exceed liabilities on all future valuation dates over a specified time horizon with a prescribed high probability.

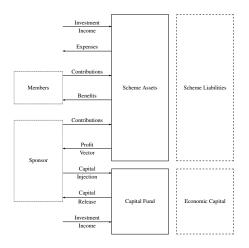
Notations:

 X_t : Net cash flow of the scheme;

 L_t : Value of s179 liability of the scheme;

 $I_{s,t}$: Accumulation factor;

 $D_{s,t}$: Discount factor.

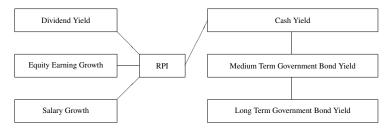

Building blocks

 $P_t = L_{t-1}I_{(t-1,t)} - X_t - L_t$: Profit vector, with $P_0 = -X_0 - L_0$.

 $R_t = \sum_{s=0}^{t} P_s I_{s,t}$: Accumulated retained profits until time t,

 $V_t = \sum_{s=t+1}^{T} P_s D_{t,s}$: Present value of future profits at time t.

Eligible Scheme Cashflow and Capital Requirement


Capital requirement:
$$C_t = \max \left[-\min_{s=t}^T V_s D_{t,s}, 0 \right].$$

Economic capital requirement: $\rho(C_t) = VaR(C_t, p = 0.995)$.

- Introduction
- 2 Economic capita
- 3 Stochastic model
- 4 Model assumptions
- 6 Results
- 6 PPF
- Conclusions

Stochastic model: Economic Variables

The individual economic random variables, Z_{it} s, are modelled as:

$$Z_{it} = \mu_i + Y_{it}$$
, where $Y_{it} = \beta_i Y_{i(t-1)} + \varepsilon_{it}$ and $\varepsilon_{it} \sim N(0, \sigma_i^2)$.

The error terms

- are assumed to be independently distributed across time t;
- which are directly connected to each other are dependent;
- which are indirectly connected are still dependent, but more weakly so.

Stochastic model: Longevity

The mortality model used is developed in three steps:

- Step 1: Set S1PM and S1PF as the baseline mortality tables for males and females respectively.
- Step 2: Project these base mortality tables from year 2006 to year 2012 using the mortality projection table published by the Institute and Faculty of Actuaries.
- Step 3: Finally, model the future stochastic mortality improvements starting from 2012 by modelling stochastic uncertainty around the central mortality projection (Sweeting (2008)).

- Introduction
- 2 Economic capital
- 3 Stochastic model
- 4 Model assumptions
- 6 Results
- 6 PPF
- Conclusions

Membership Profile

Table: Average membership profile of eligible schemes.

Membership	Number of	Average membership			
group (Members)	schemes	Active	Deferred	Pensioner	Total
A: (5-99)	2,260	6 (13%)	23 (52%)	15 (35%)	44
B: (100-999)	2,828	56 (16%)	182 (52%)	113 (32%)	351
<i>C</i> : (1,000-4,999)	824	384 (17%)	1,103 (49%)	754 (34%)	2,241
D: (5,000-9,999)	192	1,231 (17%)	3,297 (46%)	2,601 (37%)	7,129
E: (Over 10,000)	212	6,651 (19%)	14,763 (42%)	13,608 (39%)	35,022

Model Points

Table: Eligible schemes model points.

Membership types	Age	Gender	Accrued service/benefit
	30	Male/Female	7 years past service
Active	40	Male/Female	16 years past service
Active	50	Male/Female	25 years past service
	60	Male/Female	34 years past service
Deferred	50	Male	Accrued pension of £3,000 per year
Deferred	50	Female	Accrued pension of £1,500 per year
Pensioner	70	Male	Pension of £6,000 per year
FUISIONEL	70	Female	Pension of £3,000 per year

Assets, Liabilities and Investment Strategies

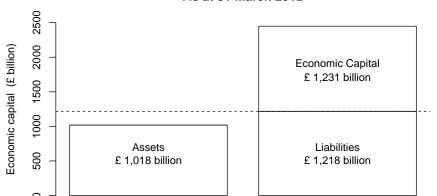
Table: Comparison of assets and liabilities.

	Estimated	Actual
Assets	£1,018b	£1,027b
Liabilities	£1,218b	£1,231b

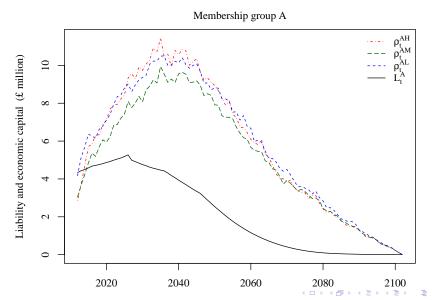
Table: Distribution of eligible scheme by investment strategies.

Investment	Asset allocation		Proportion of
strategy	Equities	Bonds	eligible schemes
L	25%	75%	25%
M	50%	50%	60%
H	75%	25%	15%

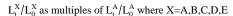
PPF broadly follows investment strategy L.

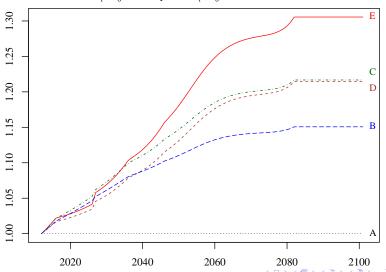


- Introduction
- 2 Economic capita
- Stochastic model
- 4 Model assumptions
- Sesults
- 6 PPF
- Conclusions

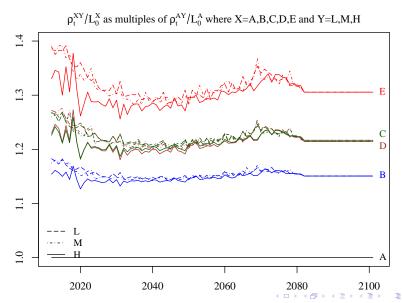


Aggregate Economic Capital for Eligible Schemes

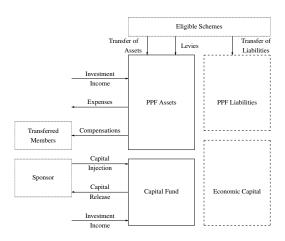




Economic Capital: Eligible Scheme in A



Eligible Schemes: Liability Comparison

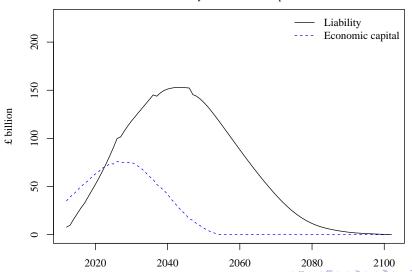

Eligible Schemes: Economic Capital Comparison

- Introduction
- 2 Economic capita
- 3 Stochastic model
- 4 Model assumptions
- Results
- 6 PPF
- Conclusions

PPF Cashflow and Capital Requirement

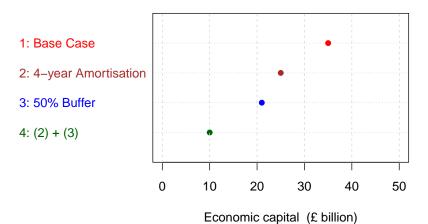
Capital requirement:
$$C_t = \max \left[-\min_{s=t}^T R_s D_{t,s}, 0 \right].$$

Economic capital requirement: $\rho(C_t) = VaR(C_t, p = 0.995)$.

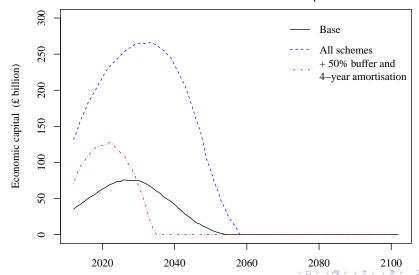

PPF: Some Additional Assumptions

- PPF levy: 0.072% of the total s179 liabilities.
- Amortisation period: 10 years.
- Funding cap: 120% of s179 liabilities.
- Insolvency rates:

Membership group	Annual insolvency rate
A	1.60%
В	0.95%
C	0.90%
D	0.53%
E	0.72%


PPF: Base Case Results

PPF schemes liability and economic captial: Base case


PPF: Sensitivity Results

As at 31 March 2012

PPF Takes Over All Schemes With Insolvent Sponsors

- Introduction
- 2 Economic capita
- 3 Stochastic model
- 4 Model assumptions
- 6 Results
- 6 PPF
- Conclusions

Conclusions

Summary

- Aggregate economic capital requirement:
 - ► On eligible scheme basis: £1,200 billion.
 - ► For PPF: £35 billion.
- Reasonable capital buffer + shorter amortisation period can bring down the economic capital requirement further.

Need a **holistic view**, taking PPF into account, while devising regulations for defined benefit pension sector.

References

YANG, W. & TAPADAR, P. (2015). Role of the Pension Protection Fund in Financial Risk Management of UK Defined Benefit Pension Sector: A Multi-period Economic Capital Study. *Annals of Actuarial Science*, **9**, 134–166.