Novice Java Programming Mistakes:
Large-Scale Data vs. Educator Beliefs

NEIL C. C. BROWN and AMJAD ALTADMRI, University of Kent, UK

Teaching is the process of conveying knowledge and skills to learners. It involves preventing misunder-
standings or correcting misconceptions that learners have acquired. Thus, effective teaching relies on solid
knowledge of the discipline, but also a good grasp of where learners are likely to trip up or misunderstand.
In programming, there is much opportunity for misunderstanding, and the penalties are harsh: failing to
produce the correct syntax for a program, for example, can completely prevent any progress in learning how
to program. Because programming is inherently computer-based, we have an opportunity to automatically
observe programming behaviour — more closely even than an educator in the room at the time. By observ-
ing students’ programming behaviour, and surveying educators, we can ask: do educators have an accurate
understanding of the mistakes that students are likely to make? In this study, we combined two years of
the Blackbox dataset (with more than 900 thousand users and almost 100 million compilation events) with
a survey of 76 educators to investigate which mistakes students make while learning to program Java, and
whether the educators could make an accurate estimate of which mistakes were most common. We find
that educators’ estimates do not agree with one another or the student data, and discuss the implications
of these results.

Categories and Subject Descriptors: K.3.2 [Computers And Education]: Computer and Information Sci-
ence Education

General Terms: Experimentation, Human Factors
Additional Key Words and Phrases: Programming Mistakes; Educators; Blackbox; Java

ACM Reference Format:

Neil C. C. Brown and Amjad Altadmri. 2016. Novice Java Programming Mistakes. ACM 2, 3, Article 1 (May
2016), 22 pages.

DOI: http:/dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Educators typically form opinions on which mistakes students are likely to make and
use this to inform their teaching. Textbooks often feature such opinions: “Failing to
use equals() to compare two strings is probably the most common single mistake made
by Java novices” [van der Linden 2004], “The most common mistake made with an
if-statement is the use of a single equal sign to compare equality” [Hoisington 2012],
“A common mistake in for-loops is to accidentally put a semicolon at the end of the
line that includes the for statement” [Cadenhead 2012]. If these opinions are used to
inform teaching design and practice, it matters whether they are correct.

Accurate knowledge of likely student mistakes allows teaching approaches to be
modified to guard against misconceptions or slips. There is some evidence in physics
education [Sadler et al. 2013] that knowledge of common student misunderstandings

This paper incorporates work from two previous papers [Brown and Altadmri 2014; Altadmri
and Brown 2015]. See section 1.1 for how this paper differs from that previous work. Authors’
address: School of Computing, University of Kent, Canterbury, Kent, CT2 7NF, UK; emails: nccb@kent.ac.uk,
aa803@kent.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

© 2016 ACM. 0000-0000/2016/05-ART1 $15.00

DOI: http:/dx.doi.org/10.1145/0000000.0000000

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

1:2 N. C. C. Brown and A. Altadmri

is related to teaching effectiveness. It is important for instructional design to be able
to predict where students will likely err, and which topics need more explanation or
practice. We believe that most educators will use their own intuition, knowledge and
experience to predict which mistakes are most frequent or most important, but to our
knowledge neither the accuracy of educators’ opinions, nor the true statistics in the
large have been assessed.

There has been much previous work to examine the mistakes made by students
within a single institution. A distinctive feature of the work reported in this paper
is the scale of the student mistake data. The Blackbox data collection project [Brown
et al. 2014] has now been running for over two years, during which time it has cap-
tured data from almost 100 million compilations across over 10 million programming
sessions from users learning Java in the beginners’ programming environment Blued.
This dataset thus provides a new opportunity to examine novice programmers in a
wide-scale, multi-institution, global dataset.

In this paper, we provide a detailed examination of mistakes that BluedJ users make,
and we compare the frequency and time-to-fix for these mistakes to educators’ esti-
mates of same. Our primary research questions (RQs) are as follows:

RQ1: What are the frequencies and times-to-fix of a specific set of eighteen Java
mistakes by students in a large-scale multi-institution dataset?

RQ2: How do the patterns of these mistakes change over time for each user?

RQ3: Do educators’ views form a consensus about the frequency and time-to-fix
of a specific set of eighteen Java mistakes by students?

RQ4: Do educators’ views of mistake frequency and time-to-fix match the ob-
served frequencies and time-to-fix by students in a large-scale multi-
institution dataset?

RQ5: Are more experienced educators’ views more likely to match the students’
data than those of novice educators?

The paper is organised as follows. We begin by reviewing related work in section 2.
We introduce the set of programming mistakes that underpin our work in section 3
before providing an overview of the Blackbox dataset in section 4. In section 5, we pro-
vide analyses of the frequencies and time-to-fix for these mistakes, analysing patterns
by time. The second part of our work begins in section 6 where we examine the results
of a survey of educators as to their estimates of the frequency and time-to-fix of our
mistakes, and finally, we finish our work with a comparison of these estimates and the
Blackbox data in section 7. Discussion and conclusions are provided in sections 8 and
9 respectively.

1.1. Contribution and Relation To Authors’ Previous Work

This paper features aspects of two previous conference papers. In our first conference
paper [Brown and Altadmri 2014], we examined educators’ estimates of frequency only
and compared them to the frequency in a four-month slice of the Blackbox data. In our
second conference paper [Altadmri and Brown 2015], we provided an examination of
error frequencies and time-to-fix for different errors over one year. In this capstone
journal paper, we recap parts of this analysis:

— We detail eighteen mistakes we will use for our analysis, and provide statistics on
mistake frequencies and time-to-fix for each mistake in the Blackbox dataset.

— We provide data from a survey of computing educators, with predictions for the
frequency of each of the mistakes, and then compare these estimates to the Blackbox
dataset.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

Novice Java Programming Mistakes 1:3

For the analysis in this paper we use a larger dataset — two years of the Blackbox
dataset — but the analysis is also expanded and improved in the following ways:

— We provide an analysis of educators’ estimates for mistake time-to-fix, as well as
for mistake frequency, including a new cross-comparison: do educators’ estimates of
frequency align with time-to-fix (i.e. do educators only see the errors the students
have most trouble with)?

— We describe a new approach to ranking mistake importance, looking not just at
frequency or time-to-fix exclusively, but combining the two into a total seconds ap-
proach.

— We change how we analyse temporal data. Our earlier attempt looked at mistake
frequencies and time-to-fix against calendar time, on the basis that student learn-
ing would generally follow the academic calendar. However, this was vulnerable to
several confounds, notably that the academic calendar varies globally. In this paper,
we use a more parsimonious approach, looking at “user lifetime”: the time since the
user first appeared in the data. Through this new lens, we re-analyse trends in mis-
take frequency and time-to-fix over user lifetime, and thus investigate the learning
that is taking place among the users.

2. RELATED WORK
2.1. Observing Student Errors

The concept of monitoring student behaviour and mistakes while programming has
a long history in computing education research. The Empirical Studies of Program-
ming [Soloway and Iyengar 1986] workshops in the 1980s had several papers making
use of this technique for Pascal and other languages. More recently, there have been
many such studies specifically focused on Java, which is also the topic of this study.

Many of these studies used compiler error messages to classify mistakes. Jadud
[2006] looked in detail at student mistakes in Java and how students went about
solving them. Tabanao et al. [2011] investigated the association between errors and
student course performance. Denny et al. [2012] looked at how long students take to
solve different errors, Dy and Rodrigo [2010] looked at improving the error messages
given to students, and Ahmadzadeh et al. [2005] looked at student error frequencies
and debugging behaviour. Jackson et al. [2005] identified the most frequent errors
among their novice programming students. All six of these studies used compiler error
messages to classify errors. However, work by McCall and Kolling [2014] suggests that
compiler error messages have an imperfect (many-to-many) mapping to student mis-
conceptions. Additionally, all six studies looked at cohorts of (up to 600) students from
a single institution.

The Blackbox dataset is novel in that it incorporates student mistakes from a much
larger number of students (more than 900,000 over two years) from a large number
of institutions!, thus providing more robust data about error frequencies. An ear-
lier paper about Blackbox gave a brief list of the most frequent compiler error mes-
sages [Brown et al. 2014], but in this work, we do not simply use compiler error mes-
sages to classify errors. Instead, we adapt error classifications from Hristova et al.
[2003], which are based on surveying educators to ask for the most common Java mis-
takes they saw among their students.

There has been other recent work on large-scale programming education datasets,
although none looking in detail at mistake types in Java. Ahadi et al. [2016] looked at
specific mistakes but in SQL. Jadud and Dorn [2015] looked at applying the general

1We have no way of measuring the number of institutions in the Blackbox data, but simply: the 900,000
students must be split over at least a thousand institutions.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

14 N. C. C. Brown and A. Altadmri

error quotient measure to the Blackbox dataset, but did not investigate specific types of
mistakes. Petersen et al. [2015] also investigated the error quotient measure on other
large-scale datasets, and Ahadi et al. [2015] compared the measure against course
performance. There have also been other studies on aspects of student behaviour (but
not specific programming mistakes) [Spacco et al. 2013, 2015; Vihavainen et al. 2014].
An extensive review of such datasets was provided by a recent ITiCSE working group
report [Thantola et al. 2015].

2.2. Educators’ Opinions on Student Mistakes

Work by Spohrer and Soloway [1986] proposed to examine the accuracy of educator
folk wisdom. However, they did not survey educators, and instead took two anecdo-
tal pieces of folk wisdom about learning to program and then compared them to actual
data from students (in Pascal). Ben-David Kolikant [2011] interviewed some educators
about students’ approaches to programming, but at a higher level, without reference
to a specific language. Hristova et al. [2003] surveyed a combination of local teaching
assistants and students, as well as educators from 58 universities, asking about com-
mon Java mistakes. This data was combined to form a list of 20 Java mistakes that
were detectable at compile-time. We base our classification of mistakes on this work,
but Hristova et al. did not test these predictions themselves against actual student
data. As far as we are aware, our body of work is the first to survey educators about
Java programming mistakes and compare their opinions to actual data.

3. PROGRAMMING MISTAKES

We use the 18 mistakes from our previous work [Brown and Altadmri 2014] as a basis
for our analysis, which were derived from Hristova et al’s [2003] twenty student mis-
takes (in turn derived from interviewing educators). The eighteen mistakes, labeled
A through R, are informally categorized into syntax, semantics, and type errors and
given shorthand for easier referencing as follows:

Misunderstanding (or forgetting) syntax:

A eqSyn tCon(fusing the assignment operator (=) with the comparison opera-
or (==).
For example: if (a = b)

C brktSyn Unbalanced parentheses, curly or square brackets and quotation
marks, or using these different symbols interchangeably.
For example: while (a == 0]

andOrSyn Confusing “short-circuit” evaluators (&& and | |) with conventional
D logical operators (& and |).
For example: if ((a == 0) & (b == 0))

) Incorrect semi-colon immediately after an if-condition or after the
E smiConSyn for- or while-condition, which unintentionally forms the if/loop body.
For example:
if (a == b);
return 6;

forSepSyn Wrong separators in for-loops (using commas instead of semi-
F colons)
For example: for (int i = 0, i < 6, i++)

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

Novice Java Programming Mistakes 1:5

curlfSyn
G y

H keySyn

J parCalSyn

K smiHdSyn

L cmpSyn

P typCalSyn

Type errors:

I calTyp

Q rtnTyp

Other semantic

B strEqSem
M statSem

N discSem

ACM Journal Name, Vol.

Inserting the condition of an if-statement within curly brackets in-
stead of parentheses.
For example: if {a == b} ...

Using keywords as methods’ or variables’ names.
For example: int new;

Forgetting parentheses after a method call.
For example: myObject.toString;

Incorrect semicolon at the end of a method header.
For example:
public void foo();

{
}

Getting greater than or equal/less than or equal wrong, i.e. using =>
or =< instead of >= and <=.
For example: if (a =< b)

Including the types of parameters when invoking a method.
For example: myObject.foo(int x, String s);

Invoking methods with wrong arguments (e.g. wrong types).
For example: 1ist.get ("abc")

Incompatible types between method return and type of variable
that the value is assigned to.
For example: int x = myObject.toString();

errors:

Use of == instead of . equals to compare strings.
For example: if (a == "start")

Trying to invoke a non-static method as if it was static.
For example: MyClass.toString() ;

A method that has a non-void return type is called and its return
value ignored/discarded.
For example: myObject.toString();

2, No. 3, Article 1, Publication date: May 2016.

1.6 N. C. C. Brown and A. Altadmri

Control flow can reach an end of a non-void method without return-
O noRtnSem ing.

For example:
public int foo(int x)
{

if (x < 0)

return O;
X += 1;

}

R impSem A class claims to implement an interface but does not implement all
the required methods.
For example: class Y implements ActionListener { }

Note that mistake N-discSem (ignoring the non-void result of a method) is not al-
ways an error (e.g. when you call a remove method that returns the item removed, you
may not need to do anything with the return value).

We refer in this paper to mistakes, and do not seek to distinguish between mis-
conceptions (longstanding confusion) and slips (occasional mistakes). This is because
trying to provide an operational distinction between the two is difficult. How many
times must one user make a mistake before it is considered a misconception rather
than a slip? We would probably require an estimation of the number of opportunities
to make a mistake, in order to normalise per-user — a task much more difficult than
spotting the mistakes themselves. For the sake of parsimony we therefore only look at
the counts of mistakes, without trying to further subcategorise.

4. BLACKBOX DATASET

Blued [Koélling et al. 2003], released in 2003, is an Integrated Development En-
vironment (IDE) designed to help beginners learn to program in Java. It is used
worldwide, typically by students in their first year of university study. The Blackbox
project [Brown et al. 2014] was begun in 2013 to allow Blued users to opt-in to a large-
scale data collection project. Each Blued user is asked on the first load if they are will-
ing to opt-in to data collection. Source code and compilation errors, among other data,
is collected from opted-in users on the central Blackbox server. (Interested researchers
can sign up and get access to the data.)

For the analysis in this paper, we used data from Blackbox for the two-year period
from 15t September 2013 to 315 August 2015, inclusive. We looked for the presence
of the mistakes listed in the previous section and calculated frequency and time-to-
fix. Frequency is simply a count of the number of mistakes in the data set, ignoring
the number of users who committed each mistake; because a Blackbox user does not
necessarily correspond one-to-one with an actual person (e.g. if multiple people share
one account), we generally shy away from using number of users or per-user statistics.

We had two methods of detecting the mistakes. For four of the student mistakes,
I-calTyp, M-statSem, O-noRtnSem, R-impSem, we were able to use the Java compiler
error message directly from Blackbox’s compilations to detect the mistake. However,
this was not possible for the other errors, as some do not consistently map to the same
compiler error, and some are logical errors that do not cause a compiler error. Thus, for
one of the other mistakes (C-brktSyn) we performed a post-lexing analysis (matching
brackets), and for the final thirteen we used a customized permissive parser to parse
the source code and look for the errors.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

Novice Java Programming Mistakes 1:7

Table I. Frequency and median time-to-fix for the eighteen mistakes in
the chosen two year subset of the Blackbox dataset, sorted by descend-
ing order of frequency.

Mistake Category Frequency Median Time-To-Fix
C-brktSyn Syntax 1861627 17
I-calTyp Type 1034788 59
O-noRtnSem Semantic 817140 38
A-eqSyn Syntax 405748 113
N-discSem Semantic 274963 1000
B-strEqSem Semantic 274387 1000
M-statSem Semantic 202017 48
R-impSem Semantic 186643 107
P-typCalSyn Syntax 117295 23
E-smiConSyn Syntax 108717 387
K-smiHdSyn Syntax 86606 50
D-andOrSyn Syntax 61965 1000
J-parCalSyn Syntax 43165 34
Q-rtnTyp Type 32435 71
L-cmpSyn Syntax 9381 13
F-forSepSyn Syntax 6424 36
H-keySyn Syntax 2568 22
G-curIfSyn Syntax 284 24

Given the scale of the data we are working with, an automatic detector is neces-
sary: manual detection of errors simply could not scale up to this size of data set. One
possible problem with automatic detection is that our detectors may encounter false
positives or false negatives. One known case when this can occur is if the code becomes
unparseable; if our detectors cannot parse the code, it is impossible to know whether
the error has been fixed or not, but parsing syntactically incorrect code is a larger topic
beyond the scope of this work. Our own testing on a small subset of data suggested the
detectors were accurate, but to allow for further corroboration, re-analysis or re-use,
we have published the source code of all the tools we created?.

We took each source file in the dataset and tracked the file over time. At each compi-
lation, we checked the source file for the eighteen mistakes. If the mistake was present,
we then looked forward in time to find the next compilation where the mistake was no
longer present (or until we had no further data for that source file). When the mistake
was no longer found — which could have been because the mistake was corrected or
because the offending code was removed or commented out — we counted this as one
instance of the mistake. Further occurrences in the same source file were treated as
distinct instances, and the number of instances was recorded as frequency. We calcu-
lated the time in seconds between the first appearance of the mistake and the possible
fix, with a ceiling of 1000 seconds (just over 15 minutes), for any mistake which takes
longer than 1000 seconds to fix, or is never fixed. This was recorded as time-to-fix.

Since our measure of time-to-fix looks forward to the next compile event, it is possible
that if some users do not compile again immediately after fixing a mistake, this could
inflate the time-to-fix. Because our detectors rely on compiler error messages and being
able to parse the code, detecting whether the mistake was fixed between compilation is
less reliable. So this is a potential weakness of our approach to measuring time-to-fix.

5. BLACKBOX ANALYSIS

Table I shows the frequency and median time-to-fix for each mistake in the dataset.
The median is selected for time-to-fix to reign in the effect of the outlier students who
are hitting the cap time of 1000 seconds. Mistake C-brktSyn [mismatched brackets]

2See: http://www.cs kent.ac.uk/~ncch/blackbox/

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

1:8 N. C. C. Brown and A. Altadmri

1D Mistake Total TTF

B C-brktSyn 253250114

N I-calTyp 229764130

600 B-strEqSem 181672793
N-discSem 174469066

w0 E A-eqSyn 149934790
g O-noRtnSem 138519997
| . R-impSem 56648808
i A E-smiConSyn 56298681
Y ol R D-andOrSyn 43154288
= M-statSem 36912324
g < K-smiHdSyn 18350106
200 M o P-typCalSyn 12781913

I_J c Q-rtnTyp 10150586

w0 I P J-parCalSyn 6685185

¢ F-forSepSyn 823934

0 : : : | L-cmpSyn 508582

. o o s ’ H-keySyn 307753
G-curlIfSyn 22773

Mistake frequency (millions)

Fig. 1. The graph on the left shows mistake frequency plotted against mean time-to-fix in seconds (after
capping at max. 1000 seconds). The total time-to-fix for each mistake is frequency multiplied by mean time-
to-fix, and thus is the area of the rectangle formed between the point and the origin. These numbers for total
time-to-fix (TTF) are given in the table on the right (measured in seconds). It can be seen that the ordering
by frequency (on the X-axis in the graph) is not the same as the ordering in the table of total time-to-fix.

is the most frequent mistake, followed by mistake I-calTyp [wrong method argument
types] and mistake O-noRtnSem [missing return statement]. Note that not all the
mistakes cause a compiler error (e.g. B-strEqSem [using == to compare strings]) and
such mistakes tend to have inflated time-to-fix.

Frequency is useful as a coarse-grain indicator, but it is not the full story. Mistake
C-brktSyn, the most frequent mistake, occurs 1.8 million times, but its median time-
to-fix is 17 seconds: students do not get stuck for long. Mistake I-calTyp occurs only
1.0 million times, but its median time-to-fix is 59 seconds: three times as long. Which
mistake should be considered more of a problem for students?

We propose that the severity of a mistake is not measured solely by frequency nor
time-to-fix, but by their combination. Namely: the total time spent by all students in
the dataset tackling the mistake. Mistake severity is literally measured by the time
spent fixing it. To measure this, we sum the time spent fixing each mistake across the
whole dataset, with each individual fix time capped at a maximum of 1000 seconds.

Figure 1 shows this calculation. The graph on the left plots the frequency of a mis-
take against its time-to-fix, where the rectangular area formed by each mistake from
(0,0) to (Frequency, Mean-TTF) equals the total of the TTF for all incidents of this
mistake: since the mean is total divided by frequency, the mean multiplied by the fre-
quency produces the total. The ordering by total time-to-fix is shown in the table on
the right-hand side of the figure. The ordering by frequency is not always the same as
by total time-to-fix. For example, mistake O-noRtnSem [missing return statement] is
the third most frequent mistake but is only sixth when ranked by total time-to-fix.

5.1. Learning

The analyses provided so far are interesting for comparing mistakes across the dataset
as a whole. But there is one important feature of the dataset: we would hope that each
student is on a learning trajectory which will improve their ability to avoid making
mistakes, and to speed up fixing each mistake. We will consider each issue in turn.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

Novice Java Programming Mistakes 1:9

045 —
C-brktSyn
0.4 —
0.35 —
3 0.3 —
i)
E
5 025 - Other
o
b=
g
%27 | calTyp
0.15 —
O-noRtnSem
0.1 —
A-eqSyn
0.05 T T T T |
0 5 10 15 20 25

User lifetime (weeks)

Fig. 2. The proportion of mistakes of selected types, over the user lifetime (weeks since the user first ap-
peared in the dataset). The thickness of the lines indicate how many users were used to form the data for
that segment of the line (regardless of whether or not the user actually made that mistake); the lines get
thinner as there is less data.

We begin with investigating learning to avoid mistakes. This is a complicated anal-
ysis which cannot look solely at frequency, due to many complicating factors. If stu-
dents do more programming at particular points in their learning (e.g. for course as-
signments) their frequencies will increase. As students become more proficient at pro-
gramming, they may actually make more mistakes as measured by raw counts: they
spend less time stuck on each mistake and so they reach the next mistake faster. Nor-
malising by time on task thus seems problematic. Instead, we choose to normalise by
looking at the proportion of each mistake: occurrences of individual mistake types, di-
vided by the total number of mistake occurrences for each user. This shows whether
the make-up of each student’s mistakes changes: for example, do students make less
syntax but more semantic mistakes over time?

The graph in Figure 2 compares the proportion of the four most frequent mistakes
(C-brktSyn, I-calTyp, O-noRtnSem, A-eqSyn) and the remaining mistakes, over user
lifetime. The X-axis is time, measured in calendar weeks since the student first ap-
peared in the dataset. The Y-axis is the proportion of mistakes, normalised to an in-
dividual student’s total mistakes in that week. The thickness of the line indicates the
number of students we have data for in a given lifetime-week; for longer timespans,
we have fewer students who remained active that long, and thus the line thins and the
data becomes noisier.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

1:10 N. C. C. Brown and A. Altadmri

160 —
140 —
120 —
g A-eqSyn
§ 100
38
&
2 80 —
[0
£
= I-calTyp
5 60 —
Q
=
O-noRtnSem
40 —
00 - C-brktSyn
0 T T T T]
0 5 10 15 20 25

User lifetime (weeks)

Fig. 3. The median time-to-fix (seconds) for mistakes of selected types, over the user lifetime (weeks since
the user first appeared in the dataset). The thickness of the lines indicate how many users were used to form
the data for that segment of the line (regardless of whether or not the user actually made that mistake); the
lines get thinner as there is less data.

It can be seen from this graph that students learn to avoid mistake C-brktSyn [mis-
matched brackets] over their first ten weeks of programming, although it is far from
eliminated. (We will shortly look at whether students get faster at fixing these mis-
takes.) Students make mistake I-calTyp [wrong method argument types] increasingly
often, but this highlights another difficulty in interpreting this data: it is not neces-
sarily the case that students get worse at avoiding mistake I-calTyp. As the students’
courses progress to more difficult subject matter, they will probably write more and
more method calls with more complex types and thus are in situations where mis-
take I-calTyp becomes more likely. We can remain confident that students do avoid the
syntactic mistake C-brktSyn more, however, as students never progress to a situation
where syntax becomes irrelevant. Note however, that since the graph is of proportions,
an increase or decrease in one error will lead to a corresponding decrease or increase
in others.

We can also investigate whether students learn to solve mistakes more quickly. The
graph in Figure 3 shows the median time-to-fix over user lifetime. It is apparent that
mistake A-eqSyn has very noisy data; it is lower frequency (one-quarter of that of C-
brktSyn, the most frequent mistake) but this is unlikely to be a complete explanation.
We do not know why A-eqSyn would be so much noisier than the other mistakes. For
several of the other mistakes, it is difficult to make out a trend on this graph, and
additionally, the median throws away information about skew in the distribution.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

Novice Java Programming Mistakes 1:11

1000 A 120 4
A C
800 A100 b
€ 700 g
5 § 801
8 600 b
KA KA
< 500 = 60
2400 L
£ 3001 g4
. 200 .
20
100
0 T T T T 1 0 T T T T 1
0 5 10 15 20 25 0 5 10 15 20 25
User lifetime (weeks) User lifetime (weeks)
300 180 1
160
250
- 7140 +
2 2
5200 - 5120 A
[(5]
2 2100 -
=150 - =
= = 80 A
e 2
Q — (0] —
§1OO 2 60
= = 404
50 A
20
O T T T T 1 0 T T T T 1
0 5 10 15 20 25 0 5 10 15 20 25
User lifetime (weeks) User lifetime (weeks)

Fig. 4. The time-to-fix (seconds) for mistakes of selected types, over the users’ lifetime (weeks since the user
first appeared in the dataset). Illustrated mistakes are A-eqSyn, C-brktSyn, I-calTyp and O-noRtnSem. The
shaded data portrays the interquartile range: the bottom of the shared area is the lower quartile, the line is
the median, and the top of the shaded range is the upper quartile. The thickness of the lines indicate how
many users were used to form the data for that line segment; lines get thinner as there is less data. Recall
that each time-to-fix data point is capped at 1000 seconds, which is thus the limit for the upper quartile.
Note that the Y-axes are scaled differently on each graph, so only trends and shapes can be compared.

For this reason, we provide split graphs in Figure 4 showing the lower-, median, and
upper-quartiles of time-to-fix for each of the four mistakes. Note that the Y-axes differ
between each graph, so their heights are not comparable, only the trends and shapes
of each. It can be seen that only mistake C-brktSyn shows any downward trend. The
students do not seem to become any better at solving mistakes I-calTyp or O-noRtnSem
as time progresses. This may be because they do not learn to cope any better, or it may
be that the mistakes they are encountering are more complex as their programs and
tasks grow in size and complexity.

6. EDUCATOR SURVEY

The previous sections detailed the data about student mistakes which we found in
the Blackbox data. The other part of our work asked educators for their opinions about
these mistakes. We prepared a questionnaire that listed our eighteen student mistakes
and asked respondents to rate each mistake on a scale of infrequent to frequent, by
making a mark along a visual analogue scale (a straight line with endpoints, like so:
F———), and similarly from quick-to-fix to slow-to-fix. These scales were measured to

the nearest 135 of their length and recorded as a number from 0 to 100.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

1:12 N. C. C. Brown and A. Altadmri

This paper questionnaire was given out to attendees of the ICER 2013 conference.
An equivalent online electronic version of the questionnaire was also later developed,
and advertised via the SIGCSE mailing list, the UK Computing At School forum and
Twitter (those who completed at ICER 2013 were instructed not to complete the online
version). The research was approved by the University of Kent ethics process.

29 participants returned a paper questionnaire and 191 started filling out the on-
line questionnaire (although many did not complete). Only 76 participants filled in all
scales for all questions (20 paper, 56 online), and this formed the sample set for all
analyses. Participants were also asked about their educational experience in different
sectors. 56 had experience only in the tertiary sector (age 18+), 3 only in secondary
(ages 11-18), 14 in secondary and tertiary, and the remaining 3 at all ages (4—18+).

6.1. Inter-Educator Agreement

To measure agreement among educators, we used Kendall’s coefficient of concordance
(aka Kendall’s W) [Kendall 1990]. This statistic can be used to assess the agreement
among ranks assigned by a group of raters to a set of items, by looking at the vari-
ance among the ranks of the different mistakes. We performed two such tests: one for
agreement between educators when ranking the frequency of mistakes, and one for
agreement between educators when ranking the time-to-fix of mistakes.

Our analysis for mistake frequency produced the result W = 0.408. For aid in in-
terpretation, we use a conversion to Spearman’s p correlation for ranked data [Howell
2002, p313], which gives p = 0.400. Informally, this means that the educators are closer
to chance agreement than they are to complete agreement. The educators we sur-
veyed form a weak consensus about which errors are most frequently made
by students. Our parallel analysis for time-to-fix of mistakes produced the result
W = 0.243, which converts to p = 0.233. Thus, the educators form an even weaker
consensus about which errors will be most quickly fixed by students.

7. EDUCATORS AND BLACKBOX

Using both the Blackbox data and the educators’ opinions about the mistakes, we per-
formed several analyses to compare the Blackbox data against the educator data.

7.1. Educator and Student Agreement

To measure agreement between educators’ ratings and the Blackbox data, we used the
average Spearman’s p (rho) for pairwise comparisons between each educator and the
Blackbox data (thus: one correlation per rater). Spearman’s p is a correlation between
the ranks of the two different variables, and thus looks only at the ordering of mistake
frequency, not the exact frequencies nor the educator’s 0—-100 ratings. We term these
pairwise correlations between educators and the Blackbox data: educator accord. This
use of the average was originally recommended by Lyerly [1952], then explained and
generalised by Taylor and Fong [Taylor and Fong 1963; Taylor 1964] to add a signif-
icance test. In our analysis, Taylor’s p; . is the average of the pairwise correlations
between the Blackbox data and each educator, corrected for continuity.

7.1.1. Educator Frequency Ranking vs Blackbox Frequency Ranking. The average p for cor-
relations between each educator and the Blackbox data for mistake frequency was
0.501 (3 s.f.). Corrected for continuity [Taylor 1964], this gives a p; . = 0.501, so z =
18.0 (3 s.f)) and thus p < 0.001. Since the standard deviation of 5 . is 0.028 (3 s.f.) [Tay-
lor and Fong 1963] and normality is assumed, the 95% confidence interval is [0.447,
0.556] (3 s.f.). Therefore, there was a statistically significant overall agreement, termed
frequency accord, between educators and the Blackbox data for mistake frequency at
the 5% level, with an average correlation of 0.501.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

Novice Java Programming Mistakes 1:13

11 A X X

Educator frequency rank
>
O
X

15 | A

18 15 13 11 9 7 5 3 1

Blackbox frequency rank

Fig. 5. Examples of different accord scores. Perfect agreement is shown by the solid diagonal line, and
accord is proportional to the square of the vertical distance of each point from the line. The filled triangles
are the ranks assigned by the educator with the highest accord (0.870). The empty squares are the ranks
assigned by one of the educators surrounding the median accord (0.520). The crosses are the ranks assigned
by the educator with the lowest accord (-0.111).

The distribution of frequency accord scores is shown later at the top of Figure 6. An
example of accord is shown in Figure 5, demonstrating that while the educator with
the highest accord (the filled triangles) was reasonably close to the correct answer, the
median educator (the empty squares) had only a moderate level of agreement, ranking
the most frequent Blackbox mistake as joint thirteenth, and getting most other errors
wrong by around three ranks. The level of agreement between educators and the
student data for mistake frequency was thus moderate.

7.1.2. Educator Time-To-Fix Ranking vs Blackbox Time-To-Fix Ranking. The average p for cor-
relations between each educator and the Blackbox data for mistake frequency was
0.358 (3 s.f.). Corrected for continuity [Taylor 1964], this gives a p, . = 0.358, so z =
12.9 (3 s.f) and thus p < 0.001. Since the standard deviation of 5, . is 0.028 (3 s.f.) [Tay-
lor and Fong 1963] and normality is assumed, the 95% confidence interval is [0.303,
0.412] (3 s.f.). Therefore, there was a statistically significant overall agreement, termed
time-to-fix accord, between educators and the Blackbox data for time-to-fix rankings at
the 5% level, with an average correlation of 0.358. The distribution of time-to-fix accord
scores is shown at the right-hand side of Figure 6. Similar to (but worse than) mistake
frequency, the level of agreement between educators and the student data for
mistake frequency was thus in general low.

7.1.3. Educator Frequency Ranking vs Blackbox Time-To-Fix Ranking. Given that the two
previous accord measures were low, we wondered if the following explanation held.
Educators may only see the mistakes with which students have serious problems. An
educator might not consider many of the syntax errors to be frequent because students
solve them quickly by themselves, and thus an educator with a class of students may
not deal with these errors often. Instead, an educator’s time might be more likely to be
taken up by subtle or difficult errors (such as string equality in Java) which students
struggle with for longer. To test this theory, we correlated the educators’ rankings for
frequency with the Blackbox rankings for time-to-fix.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

1:14 N. C. C. Brown and A. Altadmri

20
16
12

Frequency

Frequency

0 01 02 03 04 05 06 07 08 09 1 ?T‘T“f 1|6 2?
L 1

0.5 X % X

0.4 X X XXX

Educator Time-To-Fix Accord

034 o X X o ox

X
02 - X £x % X

0.1 — X X

0 I I I I XI(I I I I
0 01 02 03 04 05 06 07 08 09 1

Educator Frequency Accord

Fig. 6. A plot of educator frequency accord (X-axis) against educator time-to-fix accord. It can be seen that
there is no strong relation between the two accords, suggesting that ability to predict mistake frequency is
unrelated to ability to predict time-to-fix. Three data points are omitted from the graph where the accord
was negative. A histogram for each axis is also provided.

The average p for correlations between each educator and the Blackbox data for
mistake frequency was 0.317 (3 s.f.). Corrected for continuity [Taylor 1964], this gives
ap.=0.317,s0 z = 11.4 (3 s.f.) and thus p < 0.001. Since the standard deviation of p; .
is 0.028 (3 s.f.) [Taylor and Fong 1963] and normality is assumed, the 95% confidence
interval is [0.263, 0.372] (3 s.f.). Therefore, there was a statistically significant over-
all agreement, termed accord, between educators frequency rankings and the Black-
box data time-to-fix rankings at the 5% level, with an average correlation of 0.317.
Although it was significant, the correlation between the educators’ frequency
rankings and the Blackbox time-to-fix was worse than the correlation with
Blackbox frequency, which suggests that this theory about how educators
may estimate frequency is not supported.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

Novice Java Programming Mistakes 1:15

19 X 19 X 19 X
« X x X X x X X X X
X % X X x X X X
10 | x X 10 X % 10 | X
X X x X x
X X x X X
X X X X X X
20 o x 20 4 X X 20 - X X
x X x = X X % < x X X
£ X £ X £ X
§ X X § b4 X X § X X
© 30 o X 30 o X © 30 X X X
] %X] x X 2 X X X
s X s
8 % g % x 8 % x
4 X 4 X X 4 XX
< 4 X < 40 x < 40 ¥ X
5 Xx 5 X o x 5 x X
£ X 2 X X 5 X X
] x X x Ef X x X E] X X x
2 50 2 50 X x 2 50 X
bt X x b XXy 3 ¥ X
XK % X T 8% X X %
X % x X X X
60 X X 60 | X " 60 g X X
Y X X o X X x %X x
70 o x x X 70 - % XX X 70 - % x X X
X X x X X X X
7% T T T T T T T 7 T T T T T T o 76 T T T T T T 1
7670 60 50 40 30 20 10 1 7670 60 50 40 30 20 10 1 7670 60 50 40 30 20 10 1
Years as Educator Rank Years Teaching Intro Programming Rank Years Teaching Intro Programming in Java Rank
(a) (b) (c)

Fig. 7. Graphs showing ranks for educator frequency accord (i.e. their agreement with the Blackbox data)
against ranks for (a) the years they have been an educator, (b) the years they have taught introductory
programming and (c) the years they have taught introductory programming in Java. Ranks are plotted such
that the highest values (and thus lowest ranks) are towards the top or right of the graph. Perfect agreement
would be a diagonal line from bottom-left to top-right; a perfect disagreement would be a diagonal line from
top-left to bottom-right. Note that for (a), only 52 of the 76 educators in our sample answered this question,
whereas all answered for (b) and (c). Rank correlations were insignificant in all three cases.

7.2. Educator and Student Agreement — Frequency And Time-To-Fix Accord

We have examined educators’ frequency accord (i.e. the level of agreement between
educators’ estimates of mistake frequency, and the observed mistake frequency in the
Blackbox data), and also time-to-fix accord (the same, but for estimates/observations of
mistake time-to-fix). We can thus ask the question: are these accords correlated? That
is, does the ability of an educator to predict mistake frequency match their ability to
predict time-to-fix frequency? It seems reasonable that it might. To this end, we again
used Spearman’s p. The result was p = 0.118, p = 0.309, thus showing no significant
correlation between the two at the 5% level. This can be confirmed by inspection of
Figure 6, which plots the two accord values against each other for each educator. There
is no relation between an educator’s ability to predict mistake frequency and
their ability to predict time-to-fix.

7.3. Educator and Student Agreement — Effect of Experience

To check if educator accord was affected by educators’ experience, we used the following
procedure. As described in the previous sections, we first calculated educator accord,
using Spearman’s p as a measure of agreement between each educator’s rankings and
the Blackbox rankings (one correlation per rater). This accord was then correlated
(again with Spearman’s p) with the educators’ total years of experience®. A significant
correlation would indicate an effect of experience on educators’ agreement with the
Blackbox data.

Our data contains three measures of an educator’s experience: total years as an
educator, years spent teaching introductory programming, and years spent teaching
introductory programming in Java. The relations between each of the measures of
experience and the frequency accord are plotted in Figure 7. The correlations, using
Spearman’s p were non-significant (Years as educator: p = —0.179, p = 0.203; Years
teaching intro. prog.: p = —0.129, p = 0.268; Years teaching intro. prog. in Java: p =
0.017, p = 0.883) with False Discovery Rate (FDR) correction at the 5% level.

30ur use of p here means that we do not look for a linear effect of experience (e.g. accuracy increasing
linearly from 5 to 10 to 15 years), but rather: when educators are ordered by experience, does this match
their ordering by accuracy?

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

N. C. C. Brown and A. Altadmri

1:16

Mistake
C-brktSyn l-calTyp ~ O-noRtnSem A-eqSyn N-di B-strE: M-statS: R-imp P-typCalSyn E-smiConSyn K-smiHdSyn ~D-andOrSyn J-parCalSyn Q-rtnTyp L-cmpSyn F-forSepSyn H-keySyn G-curlfSyn
1{ oo oo e e - - e+ - o . o o o o . . L
PO c o o e e e e 0 @ @ o ° o
PN * ® o 0 o o @ + o . o - P . . o o
P . e . . BR[O o - - e . i ..
5] et i e e il B H 0 .. L
e s oo SE . . . [. o -
o o o o . e o o 0 o o - - ——— ¢ o . o . Y . .
X ® e e —0 o o TR .
[=4 e + o @ & o . . . o o . . .
@ 10« o e e . . .
4 ot . BN . o . o . . C oo o . - B o e
. « o o . . LN e + @ + + o 0 o . .
M : N . . a5 55 s ‘ltestes.. o
. . . . o . . . e 0 + + @ o o . . .
15 - o« . . o o P P o » ° L
: e . IS .. B
M . : . o o
18 - o o -
T T T T T T T T
> s sy o s
DS S T O S
e e

Years of Java Experience

Fig. 8. Graphic illustrating the effect of years spent teaching introductory programming in Java on mistake frequency rating. Each vertical band (alter-
nately shaded for presentation) is a separate mistake (sorted by mistake frequency rank) and effectively a separate graph, with years plotted along the
X-axis, grouped into 4 groups, versus ranking (Y-axis). The area of each circle is proportional to frequency (number of educators). If there was agreement
among all raters, we would expect to see a horizontal grouping of the circles around a common rating within each band. Additionally, if the amount of
experience had an effect on rating, we would expect to see a non-horizontal diagonal trend within each band. In this diagram, it can be seen that either
such pattern is generally weak. For information, the rank derived from the Blackbox data is drawn on to each band as a horizontal line, and thus frequency
accord is (informally) the vertical distance of the circles from these horizontal lines. If experience had an effect on accord, we would see that the right-most
points within each band were closer to the horizontal line than the left-most points, but this is also not the case.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

Novice Java Programming Mistakes 1:17

An additional analysis correlating these experience measures with time-to-fix accord
similarly found that the correlations were non-significant (Years as educator: p = 0.119,
p = 0.422; Years teaching introductory programming: p = 0.104, p = 0.373; Years teach-
ing introductory programming in Java: p = 0.165, p = 0.155) with False Discovery
Rate (FDR) correction at the 5% level. There was no effect of experience on an
educator’s ability to predict mistake frequency or time-to-fix.

7.4. Summary Figure

Some of the key patterns in the educator frequency rankings (compared to mistake
frequency in the Blackbox data) are visualised in Figure 8, as explained in the figure
caption.

8. DISCUSSION
8.1. Mistake Frequency and Time-To-Fix

RQ1: What are the frequencies and times-to-fix of a specific set of eighteen student Java
mistakes in a large-scale multi-institution dataset?
RQ2: How do the patterns of these mistakes change over time for each user?

Our results in Table I show that mismatched brackets are the most frequent mis-
take. However, while it is much more frequent (1.8 million) than the next most frequent
mistake (wrong types in method call: 1.0 million), this difference is much closer if we
look at the mistakes using total time-to-fix in the dataset (253 million seconds vs 230
million). We suggest that total time-to-fix (see Figure 1) is a better measure of mistake
severity for judging which mistakes cause the most problems for students.

The one drawback is that mistakes which do not cause a compiler error, and thus can
exist in code for a long time before students spot them, bias the analysis. This problem
with the analysis can either be viewed as an issue with the methodology, or with the
programming tools. If comparing strings with == is always wrong (i.e. using .equals
is always a better idea) — mistake B-strEqSem — then why should it go unhighlighted
by compilers? Similarly, mistake E-smiConSyn (semi-colon after if header) is always
incorrect but is not a compiler error. We would argue that it should be.

Looking at the proportion of mistake frequencies over user lifetime (Figure 2), we
see that students do learn to avoid the mistake of mismatching brackets, and learn to
solve this issue more quickly (Figures 3 and 4). However, we see little or no learning for
the time required to fix other mistakes. This may be because the complexity of the mis-
takes encountered increases as students attempt to write more complex programs as
they progress through their courses. Alternatively, it may be that three to six months
of a school/university course is too short a duration to expect a sizeable learning effect
for semantic errors.

8.2. Inter-Educator Agreement

RQ3: Do educators’ views form a consensus about the frequency and time-to-fix of a
specific set of eighteen Java mistakes by students?

Our implicit expectation when beginning this research was that there would be a
reasonably strong consensus among educators as to the frequency of Java mistakes.
The low level of agreement between educators (for either frequency or time-to-fix) was
a surprise — and even more so, because years of experience (generally, or within Java)
made no apparent difference to the ratings assigned by the educators (see Figure 8 for
a visualisation of these results). This result colours some of the interpretation of the
results regarding an agreement between the educators and Blackbox: if educators do
not agree with one another, it is unlikely that there would be a very strong agreement
between the educators and the Blackbox data.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

1:18 N. C. C. Brown and A. Altadmri

One explanation for this lack of agreement is that the educators are all correct, in
their own context: each educator may be correct about their own classroom, but their
opinions do not generalise to other classrooms. Further work would be needed to in-
vestigate this, by getting many educators to tag their own students in the dataset. An-
other explanation for the lack of generalisability is that looking at frequencies of Java
mistakes is the wrong level of abstraction to find common ground among educators.
If educators talked about programming features at a higher level (e.g. the conceptual
difficulties that students have with looping or variables) then we might find more of a
consensus than when looking at specific syntax and semantic mistakes.

8.3. Educator-Student Agreement

RQ4: Do educators’ views of mistake frequency and time-to-fix match the observed fre-
quencies and time-to-fix by students in a large-scale multi-institution dataset?

We looked at several different measures of whether educators’ ratings for frequency
and time-to-fix match with the data in the Blackbox dataset. Given the lack of agree-
ment among educators, it is not surprising that educators do not on average agree well
with the dataset.

A visual inspection of Figure 8 shows the big “hits and misses” from the educators.
Mistake B-strEqSem, the use of == to compare strings, was clearly overrated by most,
as were mistakes J-parCalSyn (forgetting parentheses for a method call) and Q-rtnTyp
(incompatible types when assigning a method call result). Some of these mistakes are
relative to the use of the underlying constructs: if students wrote fewer method calls
than educators expected, this would explain the lower frequency of mistakes in mak-
ing method calls. Similarly, the frequency of mistake R-impSem (not implementing
all methods from an interface) will depend heavily on the frequency with which the
sampled students implement interfaces (a relatively advanced feature for novices).

Surprised by the lack of agreement between educators and the dataset, we formed
an additional hypothesis: perhaps the educators were predicting frequency based on
the mistakes which they saw students spent a long time on. If this were the case,
we would expect to see a relationship between the frequency prediction of educators,
and the time-to-fix of the students. However, performing an additional analysis showed
that this relation was even weaker than the correlations between educators’ frequency
predictions and student mistake frequency, or the same for time-to-fix. Thus, we dis-
counted this alternative explanation.

The mistakes in this study were automatically detected using a set of tools. If the
tools were not sufficiently accurate in picking up mistakes, this could have affected our
measure of educator accord. To this end, we have made the source code available (see
section 4) in case further investigation is warranted. As well as the tool, the choice of
mistakes has an effect on educator accord. Looking at Table I, it is clear that some of
the mistakes (especially L-cmpSyn, F-forSepSyn, H-keySyn and G-curlfSyn) are par-
ticularly low frequency, in contrast to the aim of Hristova et al. [2003] to find the most
common errors. Figure 8 confirms that, especially for G-curlfSyn, educators predicted
these low-frequency items consistently — if G-curlfSyn were excluded from the analy-
sis, educator accord would reduce. A more principled search for the top mistakes, and
accurate classifiers for these, may provide a better picture of educator accord, but this
may decrease educator accord rather than increase it. Educators seem to be accurate
at identifying rare mistakes as rare but not at comparing higher frequency mistakes
to one another — although it could be said that the former is more important than the
latter.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

Novice Java Programming Mistakes 1:19

8.4. Effect of Experience

RQ5: Are more experienced educators’ views more likely to match the students’ data
than those of novice educators?

Our analysis, depicted visually in Figure 7, found that there was no effect of edu-
cator experience (as measured by years as an educator, years teaching introductory
programming in any language, or years teaching introductory programming in Java)
on educator accord. That is: no matter how many years the educator had been teaching,
it had no effect on their accuracy in predicting the frequencies or time-to-fix for mis-
takes in the Blackbox student data. This is a very surprising result. Our expectation
had been that experience would surely provide some sort of increase to accuracy.

If one assumes that educator experience must make a difference to educator efficacy,
then this would imply that ranking student mistakes is therefore unrelated to educator
efficacy. However, work from Sadler et al. [2013] in physics found that “a teacher’s
ability to identify students’ most common wrong answer on multiple-choice items...
is an additional measure of science teacher competence.” While picking answers to a
multiple choice question is not exactly the same as programming mistakes, there is a
conflict here — either the Sadler et al. result does not transfer and ranking common
student mistakes is not a measure of programming teacher competence, or experience
has no effect on teacher competence. The first option seems more likely.

9. CONCLUSIONS

We investigated educators’ opinions about the frequency and time-to-fix of eighteen
Java mistakes among programming novices. Our first finding was that educators have
only a weak consensus about these frequencies and times-to-fix. It remains possible
that these frequencies and times are contextual, and thus each educator is correct for
their own students. Regardless, this suggests that in cases where educators communi-
cate with one another (e.g. via online communities, or when writing textbooks), talking
about which mistakes students make or get stuck on will not provide much agreement.

Our further result that educators are not very accurate compared to a large dataset
of students suggests that educators are also not accurate about the frequencies of these
mistakes, so any claims that “students always make mistake X” are unlikely to be
accurate. This may just mean that a different level of discourse is required: educators
may still be accurate about the cause of mistakes and student’s conceptions of the
mistakes, but just not about the frequency and time-to-fix of such mistakes.

Our most surprising result was that an educator’s level of experience (as measured
by years as an educator, years teaching introductory programming in any language,
or years teaching introductory programming in Java) had no effect on how closely the
educator’s frequency rankings agreed with those from the Blackbox data. A strong in-
terpretation of this result would be that experience has little effect on educator efficacy.
However, it must be remembered that this task (ranking mistakes by frequency and
time-to-fix) is not necessarily aligned with educator efficacy — this result only shows
that experience has no effect on ranking mistake frequency and time-to-fix. Instead,
this result may indicate that such a task is therefore not representative of educator
efficacy (which we would expect to increase with experience).

Another surprising result is that our data shows little learning effect over the course
of the three to six months for which most users are present in the data. The time spent
to fix mismatched brackets reduces, but we see no such consistent effect for other mis-
takes. For some mistakes (e.g. incorrect types) this may be because the programs being
written are increasingly complex, which counterbalances any learning effect. How-
ever, some mistakes (e.g. getting the assignment operator wrong, comparing strings
correctly) are surely unrelated to program complexity, yet still show no learning effect.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

1:20 N. C. C. Brown and A. Altadmri

9.1. Future Work

One drawback of the Blackbox dataset is that it comes with no contextual information:
no demographic information on the individual user and no definite information on
each user’s aim. Additionally, we cannot tally individual educators against their own
students in the dataset as it stands. This is the trade-off made in achieving such large-
scale data collection. However, the Blackbox project also supports local data collection,
which can be matched against other collected information such as course grades or
prior programming experience. We believe that studies such as this one, highlighting
interesting overall global trends in the data can provide a launchpad for further, lo-
calised studies which look in more detail at some of the effects we have found, such as
the lack of learning effect in the time-to-fix, or matching educator’s opinions against
their own classes.

For the work presented here, we chose a single set of mistakes based on work by
Hristova et al. [2003]. Although that work was aiming to find the most frequent Java
mistakes, our results here suggest that several of the mistakes were quite infrequent.
Future work, such as that begun by our colleagues, McCall and Kolling [2014], could
construct error classifications using the Blackbox data, or at least validate frequency
claims using the Blackbox data.

REFERENCES

Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond Lister.
2016. Students’ Syntactic Mistakes in Writing Seven Different Types of SQL Queries
and Its Application to Predicting Students’ Success. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education (SIGCSE ’16). ACM, New
York, NY, USA, 401-406. DOI:http:/dx.doi.org/10.1145/2839509.2844640

Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. 2015. Ex-
ploring Machine Learning Methods to Automatically Identify Students in Need of
Assistance. In Proceedings of the Eleventh Annual International Conference on In-
ternational Computing Education Research (ICER ’15). ACM, New York, NY, USA,
121-130. DOI:http:/dx.doi.org/10.1145/2787622.2787717

Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. An Analysis of
Patterns of Debugging Among Novice Computer Science Students. In Proceed-
ings of the 10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education (ITiCSE °05). ACM, New York, NY, USA, 84-88.
DOI:http://dx.doi.org/10.1145/1067445.1067472

Amjad Altadmri and Neil C. C. Brown. 2015. 37 Million Compilations: In-
vestigating Novice Programming Mistakes in Large-Scale Student Data.
In Proceedings of the 46th ACM Technical Symposium on Computer Sci-
ence Education (SIGCSE ’15). ACM, New York, NY, USA, 522-527.
DOI:http://dx.doi.org/10.1145/2676723.2677258

Yifat Ben-David Kolikant. 2011. Computer science education as a cultural encounter: a
socio-cultural framework for articulating teaching difficulties. Instructional Science
39, 4 (2011), 543-559. DOI:http:/dx.doi.org/10.1007/s11251-010-9140-7

Neil C. C. Brown and Amjad Altadmri. 2014. Investigating Novice Programming Mis-
takes: Educator Beliefs vs. Student Data. In Proceedings of the Tenth Annual Confer-
ence on International Computing Education Research (ICER ’14). ACM, New York,
NY, USA, 43-50. DOI:http:/dx.doi.org/10.1145/2632320.2632343

Neil C. C. Brown, Michael Kolling, Davin McCall, and Ian Utting. 2014. Blackbox: A
Large Scale Repository of Novice Programmers’ Activity. In Proceedings of the 45th
ACM Technical Symposium on Computer Science Education (SIGCSE ’14). ACM,
New York, NY, USA, 223-228. D0OI:http:/dx.doi.org/10.1145/2538862.2538924

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

Novice Java Programming Mistakes 1:21

R. Cadenhead. 2012. Sams Teach Yourself Java in 21 Days. Pearson Education.

Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. All Syntax Errors Are
Not Equal. In Proceedings of the 17th ACM Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’12). ACM, New York, NY, USA,
75-80. DOI:http:/dx.doi.org/10.1145/2325296.2325318

Thomas Dy and Ma. Mercedes Rodrigo. 2010. A Detector for Non-literal Java Er-
rors. In Proceedings of the 10th Koli Calling International Conference on Comput-
ing Education Research (Koli Calling ’10). ACM, New York, NY, USA, 118-122.
DOI:http://dx.doi.org/10.1145/1930464.1930485

C. Hoisington. 2012. Android Boot Camp for Developers using Java. Cengage Learn-
ing.

David C. Howell. 2002. Statistical Methods for Psychology (fifth ed.). Duxbury.

Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. 2003. Iden-
tifying and Correcting Java Programming Errors for Introductory Computer Sci-
ence Students. In Proceedings of the 34th SIGCSE Technical Symposium on Com-
puter Science Education (SIGCSE °03). ACM, New York, NY, USA, 153-156.
DOI:http://dx.doi.org/10.1145/611892.611956

Petri Thantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jiirgen Borstler,
Stephen’H. Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
Miguel Angel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco, Claudia Szabo,
and Daniel Toll. 2015. Educational Data Mining and Learning Analytics in Pro-
gramming: Literature Review and Case Studies. In Proceedings of the 2015 ITiCSE
on Working Group Reports (ITICSE-WGR ’15). ACM, New York, NY, USA, 41-63.
DOI:http://dx.doi.org/10.1145/2858796.2858798

dJ. Jackson, M. Cobb, and C. Carver. 2005. Identifying Top Java Errors for Novice
Programmers. In Frontiers in Education, 2005. FIE °05. Proceedings 35th Annual
Conference. DOI:http://dx.doi.org/10.1109/FIE.2005.1611967

Matthew C. Jadud. 2006. Methods and Tools for Exploring Novice Compila-
tion Behaviour. In Proceedings of the Second International Workshop on Com-
puting Education Research (ICER °06). ACM, New York, NY, USA, 73-84.
DOI:http://dx.doi.org/10.1145/1151588.1151600

Matthew C. Jadud and Brian Dorn. 2015. Aggregate Compilation Behavior: Findings
and Implications from 27,698 Users. In Proceedings of the Eleventh Annual Interna-
tional Conference on International Computing Education Research (ICER ’15). ACM,
New York, NY, USA, 131-139. DOI:http://dx.doi.org/10.1145/2787622.2787718

Maurice Kendall. 1990. Rank Correlation Methods (fifth ed.). Edward Arnold.

Michael Kolling, Bruce Quig, Andrew Patterson, and John Rosenberg. 2003. The
Blued System and its Pedagogy. Computer Science Education 13, 4 (2003), 249-268.
DOI:http://dx.doi.org/10.1076/csed.13.4.249.17496

S. B. Lyerly. 1952. The average Spearman rank correlation coefficient. Psykometrika
17 (1952), 421-428.

Davin McCall and Michael Kolling. 2014. Meaningful Categorisation of Novice Pro-
grammer Errors. In 2014 Frontiers In Education Conference.

Andrew Petersen, Jaime Spacco, and Arto Vihavainen. 2015. An Exploration of Error
Quotient in Multiple Contexts. In Proceedings of the 15th Koli Calling Conference on
Computing Education Research (Koli Calling ’15). ACM, New York, NY, USA, 77-86.
DOI:http://dx.doi.org/10.1145/2828959.2828966

Philip M. Sadler, Gerhard Sonnert, Harold P. Coyle, Nancy Cook-Smith, and Jaimie L.
Miller. 2013. The Influence of Teachers’ Knowledge on Student Learning in Middle
School Physical Science Classrooms. American Educational Research Journal 50, 5
(2013), 1020-1049. DOI: http://dx.doi.org/10.3102/0002831213477680

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

1:22 N. C. C. Brown and A. Altadmri

Elliot Soloway and Sitharama Iyengar (Eds.). 1986. Empirical Studies of Program-
mers: Papers Presented at the First Workshop on Empirical Studies of Programmers.
Intellect Books.

Jaime Spacco, Paul Denny, Brad Richards, David Babcock, David Hovemeyer, James
Moscola, and Robert Duvall. 2015. Analyzing Student Work Patterns Using Pro-
gramming Exercise Data. In Proceedings of the 46th ACM Technical Symposium
on Computer Science Education (SIGCSE ’15). ACM, New York, NY, USA, 18-23.
DOI:http://dx.doi.org/10.1145/2676723.2677297

Jaime Spacco, Davide Fossati, John Stamper, and Kelly Rivers. 2013. Towards
Improving Programming Habits to Create Better Computer Science Course Out-
comes. In Proceedings of the 18th ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE °13). ACM, New York, NY, USA, 243-248.
DOI:http://dx.doi.org/10.1145/2462476.2465594

James C. Spohrer and Elliot Soloway. 1986. Novice Mistakes: Are the
Folk Wisdoms Correct? Commun. ACM 29, 7 (July 1986), 624-632.
DOI:http://dx.doi.org/10.1145/6138.6145

Emily S. Tabanao, Ma. Mercedes T. Rodrigo, and Matthew C. Jadud. 2011.
Predicting At-risk Novice Java Programmers Through the Analysis of On-
line Protocols. In Proceedings of the Seventh International Workshop on Com-
puting Education Research (ICER °11). ACM, New York, NY, USA, 85-92.
DOI:http://dx.doi.org/10.1145/2016911.2016930

Wilson L. Taylor. 1964. Correcting the Average Rank Correlation Coefficient for Ties
in Rankings. J. Amer. Statist. Assoc. 59, 307 (1964), 872-876. http://www.jstor.org/
stable/2283105

Wilson L. Taylor and Ching Fong. 1963. Some Contributions to Average Rank Corre-
lation Methods and to the Distribution of the Average Rank Correlation Coefficient.
J. Amer. Statist. Assoc. 58, 303 (1963), 756—769. http://www.jstor.org/stable/2282723

P. van der Linden. 2004. Just Java 2. Pearson Education.

Arto Vihavainen, Juha Helminen, and Petri Ihantola. 2014. How Novices Tackle
Their First Lines of Code in an IDE: Analysis of Programming Session Traces.
In Proceedings of the 14th Koli Calling International Conference on Comput-
ing Education Research (Koli Calling ’14). ACM, New York, NY, USA, 109-116.
DOI:http://dx.doi.org/10.1145/2674683.2674692

Received February 2009; revised July 2009; accepted October 2009

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2016.

