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Abstract

Recently, the signal captured from a laser Doppler vibrome-
ter (LDV) sensor been used to improve the noise robustness of
automatic speech recognition (ASR) systems by enhancing the
acoustic signal prior to feature extraction. This study proposes
another approach in which auxiliary features extracted from the
LDV signal are used alongside conventional acoustic features
to further improve ASR performance based on the use of a deep
neural network (DNN) as the acoustic model. While this ap-
proach is promising, the best training data sets for ASR do not
include LDV data in parallel with the acoustic signal. Thus,
to leverage such existing large-scale speech databases, a regres-
sion DNN is designed to map acoustic features to LDV features.
This regression DNN is well trained from a limited size parallel
signal data set, then used to form pseudo-LDV features from a
massive speech data set for parallel training of an ASR system.
Our experiments show that both the features from the limited
scale LDV data set as well as the massive scale pseudo-LDV
features are able to train an ASR system that significantly out-
performs one using acoustic features alone, in both quiet and
noisy environments.

Index Terms: laser Doppler vibrometer, auxiliary features,
deep neural network, regression model, speech recognition

1. Introduction

Automatic speech recognition (ASR) has achieved tremen-
dous progress during last few decades, and currently performs
very well under clean conditions. However, modern recog-
nition systems suffer from severe performance degradation in
the presence of unavoidable interrupting factors like environ-
ment noise, room reverberation, disturbances from different mi-
crophones and recording non-linearities [1]. To solve these
problems, many processing techniques [2, 3, 4], including
speech enhancement algorithms [5] and new robust acoustic
features [6][7], have been developed to improve recognition
performance under low signal-to-noise ratio (SNR) conditions.
However these existing approaches, while achieving some im-
provements, are far from being a comprehensive solution.
Recently, the results of new approaches using auxiliary
information gathered from non-acoustic sensors like bone-,
throat- and air- microphones show that such sensors can sup-
ply useful information to help ASR systems make correct de-
cisions under noisy environments [8][9][10]. Photo-acoustic

techniques show promising results on robust recognition due to
their inherent immunity to acoustic noise as well as non-contact
operation [11][12]. Combining traditional acoustic features
with speech information captured by these sensors, recognition
performance is further improved [13]. According to [14][15],
the laser Doppler vibrometer (LDV) sensor is a non-contact
measurement device that is capable of measuring the vibra-
tion frequencies of moving targets. It is directed at a speaker’s
larynx, and captures useful speech information at certain fre-
quency bands. In [15][16], LDV sensors are presented as mak-
ing accurate and reliable voice activity detection (VAD) deci-
sions, as well as improving the speech recognition results.

Conventional hidden Markov model (HMM)-based speech
recognizers have been used in [16] with LDV data. Each acous-
tic state is modeled by Gaussian mixture models (GMMs), re-
ferred to as a GMM-HMM system. However, recent studies
have shown that deep neural network (DNN)-based HMM sys-
tems (denoted as DNN-HMM) perform significantly better than
GMM-HMM systems on large vocabulary speech recognition
tasks [17][18]. DNNs, currently one of the most popular deep
learning methods, are joint models combining nonlinear fea-
ture transformation and classification [19]. DNNs have demon-
strated a great capacity to extract discriminative internal repre-
sentations that are robust to the many sources of variability in
speech signals.

The novelty of this work is to derive LDV features from
LDV sensor information, combine these with the correspond-
ing traditional acoustic features to improve recognition perfor-
mance under both clean and noisy conditions. In comparison
to recent work on LDV sensors for speech recognition [16],
the main difference is we directly use LDV features for acous-
tic modeling while in [16] LDV information is adopted to im-
prove the VAD and indirectly help to boost ASR system. In
this sense, our proposed approach can be perfectly incorporated
with [16]. Furthermore, we will show that using well-trained
DNN weights for initialization leads to even greater gains in
recognition performance. Due to the limited size of existing
LDV datasets, we additionally consider obtaining more LDV
features for training by converting normal acoustical features
from a large dataset into pseudo-LDV features. To do this, we
first create and train a regression DNN to learn a mapping rela-
tionship from normal acoustic features into LDV features. The
trained feature-mapping network allows pseudo-LDV features
to be generated in parallel with acoustic features from acoustic-



only training data, allowing us to create a very well trained
DNN-based dual feature ASR system.

The rest of the paper is organized as follows. Section 2
describes the DNN acoustic system which combines acousti-
cal features with LDV features, then Section 3 demonstrates
the use of another DNN to derive pseudo-LDV features from
a large dataset. Section 4 introduces the experimental condi-
tions, datasets, system operation and discusses results. Finally
we conclude the paper in Section 5.

2. LDV Feature Combination

In this section, we exploit the availability of LDV features by
combining them with traditional acoustic speech features. Fig-
ure 1 shows a comparison of two different DNN based acoustic
systems. One uses normal acoustic features (we refer to this
as DNNy) while the other introduces LDV features to be con-
catenated with the acoustic features (we refer to this as DNN¢).
Both will be evaluated later in Section 4.

Our LDV dataset (which will be described in detail in
Section 4.1), contains parallel acoustic microphone and cor-
responding LDV data files for each sentence. The traditional
approach is to obtain the log Mel-filter-bank (LMFB) features
from normal speech and feed these into the DNN input layer
with adjacent context frames. In our system we propose com-
bining the LMFB features from normal speech with LMFB fea-
tures extracted from the LDV signal. We ensure that each fea-
ture vector has the same dimension of n. Then we merge the
two features by concatenating them together into a dimension
of 2n. Here, to avoid poor local optima, pre-training methods
have been proposed to better initialize the parameters prior to
back propagation (BP). We use the contrastive divergence (CD)
criterion to train each pair of layers in the network as restricted
Boltzmann machines (RBM) and grow the network layer-by-
layer in an unsupervised way [18].
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Figure 1: (a) DNNy is trained using traditional acoustic fea-
tures from normal speech, (b) DNN¢ is trained using a combi-
nation of traditional features and LDV features.

3. LDV Feature Generation and
Combination With a Large Dataset
While the incorporation of LDV features will be shown in Sec-
tion 4 to improve recognition performance, overall accuracy of

both DNNn and DNN is restricted by the small size of the
LDV database (i.e. the availability of data that contains paral-
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Figure 2: Structure of pre-training the acoustic-only DNNpy
with a large dataset used for initialization.

lel recordings of acoustic speech and LDV signals) such that
the DNN-based ASR systems are not trained sufficiently well.
We therefore aim to make use of much larger datasets, and will
test this with acoustic-only ASR at first. In particular, we will
use a large scale dataset of acoustic recordings of common con-
versations in moving vehicles gathered by the iFlytek company,
which we named the CZ speech corpus (from the initials of the
Mandarin phrase meaning ‘in car’), which has the same spoken
environment as the LDV dataset, although the style of conversa-
tions and content between the two datasets are totally different,
described in detail in Section 4.1.

Considering the mismatch between CZ and the LDV
datasets, instead of using RBM and CD algorithms to pre-train
the DNN acoustic model as normal, we first train an acoustic-
only DNN-based ASR system from the CZ database alone. This
provides a good initialisation start point, i.e. a well-trained
DNN. This DNN is then fine-tuned by using the acoustic-
only data from the LDV dataset (LDV-acoustic). The resulting
acoustic-only ASR system is named DNNn and is shown in
Figure 2.

We now extend this to acoustic + LDV feature ASR which
combines LDV and acoustic features together. Since the large
CZ dataset only contains acoustic speech recordings, we obtain
corresponding pseudo-LDV features by first training a mapping
network to learn the relationships between the features from
acoustic speech and the features from the LDV signal. For map-
ping, we use a regression DNN, shown in Figure 3(a), learning
the relationship between normal acoustic features and LDV fea-
tures. The training procedure of the regression DNN is similar
to that in [20].

Once the DNN mapping network is ready, we can obtain
pseudo-LDV features by mapping from the normal acoustic fea-
tures extracted from the CZ dataset, which is shown in Figure
3(b). The mapping is only required during pre-training. Then
we merge these two features together and use them to pre-train
a DNN model with RBMs and the CD algorithm in the normal
way. Once pre-trained, the initialized model is transferred to the
next stage for training. In the training stage, we use data from
the LDV dataset, which includes the LDV signal and acoustic
speech recordings in parallel, hence the mapping network is not
required. In operation, the two types of features are merged just
like in the DNNc system described in Section 2. The resulting
DNN, referred to DNNc ('L’ for large scale, *C’ for combined
features), will be evaluated with the other systems in the follow-
ing section.
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Figure 3: (a) Training a DNN mapping network, (b) Training
DNN_c with a large dataset used for initialization and LDV
dataset used for fine tuning.

4. Experiments and Results
4.1. Corpus

In this paper we make use of two independent speech corpora:
the LDV dataset gathered by VocalZoom company [21], which
includes speech recordings captured by LDV sensors along with
corresponding acoustic recordings. A second database we use
comes from the iFlytek company research group [22], which
provides a large resource of recordings of native English speak-
ers. This is used to pre-train the DNN acoustic models.

4.1.1. LDV dataset

The LDV dataset contains 13 thousand recordings in total at
a sample rate of 16 kHz with 16-bit accuracy. Speakers use
mainly United States English and Hebrew to utter a selection
of common sentences from daily life, such as “I see, that is a
problem”. Some human-to-machine style sentences are also in-

cluded, especially in cars, such as “FM ninety five point three”.
In practice, the LDV sensor is directed to a speaker’s throat re-
gion at a certain distance and measures its vibration velocity,
like vocal-fold vibrations. During recording, besides capturing
in a clean environment, recordings were made where interfer-
ing acoustic noise was present. In those recordings an unde-
sired speaker and background noises (from a moving vehicle)
are present in addition to the desired speaker. Measurements by
the LDV and acoustic sensors were recorded simultaneously.
Detailed information about the data recordings can be found
in [15]. For DNN training, the LDV corpus was partitioned
into: Training set consisting of data from 54 speakers for a total
duration of 9.9 hours; development set consisting of data from
4 speakers for a total duration of 0.62 hours; festing set also
consisting of data from 4 speakers for a total duration of 0.75
hours.

4.1.2. Large CZ dataset

The CZ corpus contains more than 66 thousand recorded sen-
tences over a total duration of 620 hours, which is much larger
than the LDV dataset. Similarly, all files were recorded at a
sample rate of 16 kHz with 16-bit accuracy. Native speakers
from USA (133 speakers), Canada (78 speakers) and England
(26 speakers) were asked to speak some conversations in three
common environments relating to; cars, including some com-
mands to machines, some names and locations recorded in ve-
hicles; tourism, including shopping-related utterances, numbers
and the names of famous tourist attractions; daily communica-
tions involving education, catering and health-care conversa-
tions. These were recorded first into high-quality audio files,
then replayed in three different vehicles, namely Toyota, Volk-
swagen and BMW cars, in 5 different scenarios, shown in Table
1. The dataset is named CZ after the initials of the phrase ‘in-
car’ in Mandarin Chinese. The ‘Outside’ column details the en-
vironment that the car is parked in or moving through, while the
‘AC’ column indicates whether the air conditioner is operating,
either on a medium setting or turned off.

Table 1: Detailed information of 5 scenes used for recording
within the CZ corpus.

No. Car Speed Window Outside AC
stationary closed downtown | middle
stationary open car park off

< 40km/h closed
41 — 60km/h closed
80 — 120km/h closed

downtown off
countryside | middle
highway middle

AW =

4.2. Experimental settings

The features we use for both DNN regression and acoustic mod-
eling are 72-dimensional LMFB features (24-dimensional static
LMFB features with A and AA) and include an input context
of 10 neighbouring frames (45) yielding a final dimensionality
of 792 (72 x 11). Furthermore, when combining the two LMFB
feature vectors of acoustic speech and LDV speech, the merged
acoustic feature vector has dimensionality of 1584 (72 x 2 x
11).

To train the regression DNN, we use the 792-dimensional
LMFB features of normal speech as input to learn the targeting
LDV features with the same dimension. There are 2 hidden
layers with 2048 hidden units in each layer and a final linear



output layer, i.e. a structure of 792-2048-2048-792.

The DNN acoustic model uses a regular structure with 6
hidden layers having 2048 hidden units in each layer and a fi-
nal soft-max output layer with 9004 units, corresponding to the
senones of the HMM system. For DNNyx and DNN¢ systems,
the networks were initialized using layer-by-layer generative
pre-training using 6,5, 5, 5, 5, 5 iterations of the BP algorithm
in each layer. As for DNNrx and DNNic, they were initial-
ized from a well trained DNN using the large scale CZ dataset
and combined LMFB features of two signals respectively. In
all experiments, the decoding is performed by using a 3-gram
language model (LM) with a dictionary consisting of more than
240 thousand words of native English.

4.3. LDV feature combination

The recognition performance is evaluated by word accuracy
(WACC in %) and the correct rate of sentences (SC in %). Ta-
ble 2 lists a performance comparison of the two systems with
or without using the combined auxiliary features from the LDV
sensors. The only difference between DNNy and DNNC is the
input feature dimension, namely 72 versus 144 for one frame.
Both the WACC and SC of the feature combination DNN¢ sys-
tem can be improved by about 6% over the DNNy system using
normal speech, which verifies the effectiveness of the auxiliary
LDV features.

Table 2: Results of LDV feature combination

System | Feature_dim SC WACC
DNNy 72 10.29%  41.12%
DNN¢ 144 15.77%  47.58%

To further explore the effectivity of using LDV information
in different environments, we test those two systems on two
subsets of utterances recorded in clean and noisy environments,
as shown in Table 3. From the results, we can make an obser-
vation that the auxiliary LDV features can improve the recogni-
tion performance for both clean and noisy environments, with
relative word error rate (WER) reductions of 11.5% and 12.5%,
respectively.

Table 3: Results of LDV feature combination in different envi-
ronment conditions

System Feature_dim SC WACC
clean 72 10.36%  43.56%

DNNx noisy 72 6.57%  28.04%
clean 144 18.93%  50.04%

DNNc noisy 144 11.11% 37.07%

All the above results indicate that the LDV signal can pro-
vide more useful discriminative information in addition to the
normal acoustic speech signal, which is able to boost ASR per-
formance in both noisy and quiet environments.

4.4. LDV feature combination with a large dataset

The results of the systems initialized by the large CZ dataset
are shown in Table 4. With more training data, the DNNpn
system using acoustic-only features significantly outperforms
the DNNy system in Table 2, with the WACC improving from
43.56% to 67.07%. The DNN systems initialized from the large
CZ dataset in the pre-training stage always perform better, ir-
respective of whether the LDV features are used. Moreover,

by the comparison of DNNin with DNNic, the use of LDV
features achieves a relative WER reduction of 20.6%, which is
even more significant than that under the smaller LDV dataset
with all real LDV features in Table 2. This implies that the LDV
features are potentially more powerful with larger training data
even with the pseudo-LDV features generated from the regres-
sion DNN with the relationship learned on a small stereo data
set of both the normal speech and LDV data.

Table 4: Results of the systems with the large CZ dataset for
DNN initialization.

System Feature_dim SC WACC
DNNiy 72 39.49%  67.07%
DNNLc 144 36.58% 73.87%
joint-DNNLc 144 37.02%  74.78%

The system in Table 4 denoted as joint-DNNc, refers to
a modified version of DNNic where the training data used
for DNN initialization in the pre-training stage includes both
the LDV and CZ datasets. A remarkable performance gain is
achieved by joint-DNNrc over DNNic, which indicates that
more diversified data in the pre-training stage is helpful. How-
ever, this gain is not significant as the proportion of LDV dataset
is too small compared with the large CZ dataset.

Finally, to give the reader a better understanding of the dif-
ferences between the LDV and CZ datasets, two more exper-
iments are conducted. First, if the test set of LDV-acoustic
data is directly evaluated by the pre-trained model using CZ
dataset as in Figure 2, the recognition performance is extremely
poor, which confirms that those two datasets are quite different
in speaker styles, speech contents, etc. Second, when the pre-
trained model of joint-DNN ¢ system is adopted for testing (i.e.
without final training), WACC is 62.96%, which is much better
than DNNc with a WACC of 47.58%. From the two experi-
ments, we can make an interesting observation that the recogni-
tion performance is not satisfactory when the model is trained
on each dataset (LDV or CZ) separately while the model trained
with two datasets merged can yield a very significant improve-
ment of recognition accuracy, which implies the two datasets
are strongly complementary in terms of the coverage of speaker
styles and speech content.

5. Conclusions

In this paper, we have investigated the use of auxiliary infor-
mation derived from an LDV sensor for improving ASR per-
formance. Due to the properties of LDV data which make it
immune to external acoustic interference, we combine LDV
features with normal acoustic speech features to train a DNN
acoustic model. Experimental results show significant improve-
ments in recognition accuracy are possible under both clean
and noisy conditions. Furthermore, after pre-training the DNN
model with pseudo-LDV features combined with acoustic fea-
tures extracted from a large data set, the ASR system achieves
much better performance than when trained with a smaller LDV
dataset alone.
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