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Summary: This article proposes a method to address the problem that can arise when covariates

in a regression setting are not Gaussian, which may give rise to approximately mixture-distributed

errors, or when a true mixture of regressions produced the data. The method begins with non-

Gaussian mixture-based marginal variable screening, followed by fitting a full but relatively smaller

mixture regression model to the selected data with help of a new penalization scheme. Under certain

regularity conditions, the new screening procedure is shown to possess a sure screening property

even when the population is heterogeneous. We further prove that there exists an elbow-point in

the associated scree plot which results in a consistent estimator of the set of active covariates in

the model. By simulations, we demonstrate that the new procedure can substantially improve the

performance of the existing procedures in the content of variable screening and data clustering. By

applying the proposed procedure to motif data analysis in molecular biology, we demonstrate that

the new method holds promise in practice.

Key words: Heterogeneity, non-Gaussian mixture regression models, component-wise regulariza-

tion, simultaneous clustering and variable screening.
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1. Introduction

The advance of high-throughput technology in science has allowed scientists to collect data

of unprecedented size and complexity. Such large-scale data are often characterized by a

certain degree of heterogeneity (a concept used in statistics relating to the non-uniformity

in the composition of a population) as they may arise from different sources. The large-scale

data hold great promise for discovering subtle population patterns that are not possible with

small-scale data (Fan et al., 2014). For example, one of the most successful computational

tools for finding transcription factor DNA-binding motifs is the linear regression of gene

expressions on motif-matching scores (Colon et al., 2003). The homogeneity assumption

that the regression coefficients are the same for all observations underpins the above tool.

However, the recent study has demonstrated that there exist heterogeneous structures in the

data (Khalili et al., 2011). Similarly, in gene microarray expression data, researchers found

that only a fraction of conditions (i.e., covariates) may exhibit an influence on the response

in a subset of observations (Zhang, 2010). Therefore, the use of homogeneous population

models in these studies can be inadequate. Heterogeneity can also arise in high-dimensional

regression after variable selection (Fan and Lv, 2008). The aim of variable selection is to

screen out variables with weak effects in the model. Although weak variables may have non-

zero effects on the response, the existing variable selection procedures such as LASSO often

assign zero values to the regression coefficients of these unselected variables in order to have

a selection effect (Tibshirani, 1996). After variable selection, many weak variables can be

filtered out from the model, resulting in heterogeneous residuals due to aggregate effects of

dropping these weak variables. Therefore, the regression model after variable selection can

be misspecified, where the use of a heterogeneous model is desirable.

Over the past two decades, much progress has been made on how to incorporate hetero-

geneous structures into a model with mixture distributions (McLachlan and Peel, 2000). In
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particular, Gupta and Ibrahim (2007), Städler et al. (2010), and Khalili et al. (2011) pre-

sented a finite Gaussian mixture model for modeling heterogeneity in the regression setting.

In these seminal works, the authors either imposed a penalty on the likelihood or introduced

a Bayesian prior on the parameters. Despite the above progress, there are still the following

practically important issues remained to address. First, Gaussian mixture regression models

may not be robust to model misspecifications: slight deviations from normality in mixture-

components can lead to spurious groupings. In particular, our simulations suggest that the

commonly used marginal models in variable screening may not be Gaussian even the full

model is Gaussian. This is a parallel development to Fan et al. (2011) where they addressed

the non-linearity of marginal regression functions in the marginal screening when covariates

are not normally distributed. Secondly, the standard method for regularizing the above

mixture models is to add a composite penalty to the log-likelihood as suggested by Khalili

et al.(2011) and Städler et al. (2010). A drawback of their method is that the resulting

GEM algorithm has no explicit updating formula for estimating the mixture proportions

and thus requires an optimization over a simplex (Städler et al., 2010). Finally, when both

the dimension and the sample size are large, the computational cost of the GEM algorithm

is prohibitive. To reduce the cost, a fast variable screening is required to search for a smaller

mixture model. The commonly used screening method is the so-called correlation screening

(Fan and Lv, 2008). However, it is largely unknown in the literature when marginal variable

screening can consistently recover the true active covariates in a mixture regression model.

Here, to address the above issues, we propose an exponential power distribution (EPD)

based mixture regression model (EPDMIX) as a flexible extension of the standard Gaussian

mixture regression model. The proposed model is then used to define a two-stage procedure

for carrying out variable selection and data clustering simultaneously. The procedure begins

with non-Gaussian mixture-based marginal variable screening, followed by fitting a full
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but relatively smaller mixture regression model to the selected data with help of a new

penalization scheme. To our knowledge, the idea of using univariate mixture regression

models to screen variables is completely new in the literature. The mechanism of the proposed

screening procedure can be explained by solving the variable selection problem for the model

yi =
∑p

j=1 xijβj + εi, 1 6 i 6 n, where εi’s are i.i.d. N(0, 1). To screen variables, for each

j, we single out the j-th covariate and rewrite the above equation as yi = xijβj + ε∗i , with

ε∗i =
∑

t 6=j xitβt + εi, 1 6 i 6 n. If the covariate observations {xit : 1 6 t 6 p} follow a

multivariate normal distribution, then ε∗i is homogeneous with a Gaussian distribution. How-

ever, if these observations have a group structure, then ε∗i ’s are heterogeneously distributed.

Therefore, a mixture model-based marginal variable screening is necessary. See the Web

Appendix A, the Web-based Supplementary Material for more details. The new penalization

scheme called component-wise regularization on the likelihood is employed to improve the

existing penalization scheme (Khalili et al., 2011; Städler et al.,2010). In the proposed

scheme, the number of components and the penalty coefficient are simultaneously selected by

optimizing the so-called Bayesian Information Criterion (BIC) over a restricted region. A new

block-wise GEM algorithm is developed to compute the corresponding maximum penalized

likelihood estimators. Unlike the existing GEM algorithms (Khalili et al., 2011; Städler et

al.,2010), under the new penalization scheme, explicit updating formulas for estimating

mixture proportions are obtained, which speed up the computation. The proposed GEM

algorithm is further shown to have the non-descent property with respect to maximizing

the penalized log-likelihood. As the main contribution of our paper, we establish the sure

screening property for the proposed procedure when the population is heterogeneous. We

further prove that there exists an elbow-point in the BIC scree plot which results in a

consistent estimator of the set of active covariates in the model.

We conduct a series of simulation studies and a real data analysis to evaluate the perfor-
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mance of the proposed procedure with a comparison to the Gaussian mixture-based approach

(GAUMIX). There are various ways to summarize the performance of a mixture regression

model. Khalili et al. (2011), and Städler et al. (2010) focused on the accuracy of variable

selection and not on the clustering. They assumed that the number of components was

known and fixed when comparing different mixture regression models. In our simulations,

we remove this assumption. We assess the performance of the proposed mixture-based

variable screening. We then evaluate the accuracy of the mixture model-based clustering

in the Web Appendix E, the Web-based Supplementary Materials. Our simulation results

show that EPDMIX can have superior performance in variable screening over GAUMIX, the

EPD regression (EPD1) and the Gaussian regression (GAU1, the correlation screening),

even when the joint distribution of response and covariates is Gaussian. In particular,

the EPD1-based screening can improve the GAU1-based screening without significantly

compromising its computational speed. The results also show that the component-wise

penalization does improve the quality of the clustering derived from non-penalized mixture

regression. Moreover, EPDMIX can accurately identify the number of components most times

even in the presence of heavy tailed errors. The proposed EPDMIX method is applied to a

motif dataset obtained from a biological study. For many covariates, their EPDMIX-based

reciprocal BIC values are much higher than the corresponding GAUMIX-based reciprocal

BIC values as shown in Figure 1. This implies that EPDMIX can significantly improve

GAUMIX in variable screening. Two clusters of genes with the selected motifs are predicted,

which show the links between genes and DNA motifs. The biological implication of clustered

genes are also given.

[Put Figure 1 about here.]

The remaining of the paper is organized as follows. The details of the proposed methodology

and algorithm are provided in Section 2. A new theory on the proposed screening procedure
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is developed in Section 3. The simulation studies and a real data application are presented in

Sections 4 and 5. The discussion and conclusion are made in Section 6. The technical details

and the proofs of the theory can be found in the Web-based Supplementary Materials.

2. Methodology

Let (yi,xi), i = 1, ..., n be independent observations on response y and p-dimensional covari-

ate x. Suppose that the conditional density of yi given xi is a K-component exponential

power mixture which can be written as

f(yi|xi,ΘK) =
K
∑

k=1

πkφ(yi|xT
i βk, σ

2
k, αk),

where ΘK denotes the set of all the parameters, φ(yi|xT
i βk, σ

2
k, αk) is the k-th component

density of the form

φ(yi|xT
i βk, σ

2
k, αk) =

αk

2σkΓ(1/αk)
exp

(

−|yi − xT
i βk|αk

σαk
k

)

with regression coefficients βk = (βk1, ..., βkp)
T ∈ R

p, scale parameter σ2
k ∈ (0,∞), shape

parameter αk ∈ (0,∞), proportion πk > 0, and
∑K

k=1 πk = 1. For simplicity, we denote the

exponential power distribution φ(y|µ, σ2, α) by epd(µ, σ, α) in the remainder of the paper.

Let θk = (βk, σ
2
k, αk, πk)

T , k = 1, ..., K. Then ΘK = (θ1, ...,θK). The family of exponential

power distributions takes the Normal and Laplace distributions as special cases when setting

α1 = · · · = αK = 2 and α1 = · · · = αK = 1 respectively. Our principal interest here is to

infer the latent components, to group the observations, and to identify the covariates with

non-zero regression coefficients for each component.

2.1 Penalized likelihood estimation and algorithms

The classical maximum likelihood estimator (MLE) is calculated by maximizing the likeli-

hood function given by

Ln(ΘK |Y,X) =
n
∏

i=1

f(yi|xi,ΘK),
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where Y = (y1, ..., yn)
T and X = (x1, ...,xn)

T . When p = pn is larger than the sample size n,

the above problem is ill-posed. To tackle the problem, we derive a penalty on the likelihood

by a prior distribution as follows.

Following Städler et al.(2010), we first introduce the scale-invariant parameter ηk = βk/σk.

Then, the k-component density can be re-parametrized as

φ(yi|xT
i ηk, σ

2
k, αk) =

αk

2σkΓ(1/αk)
exp

(

−
∣

∣

∣

∣

yi
σk

− xT
i ηk

∣

∣

∣

∣

αk
)

.

The re-parametrization and the form of a particular log-prior are used as a basis for deter-

mining a scale-invariant penalty function for the original parameters.

For K = 1, the Laplace-inverse-gamma priors are set for (η1, σ
2
1, α1):

p(η1|σ2
1) ∝ exp(−nλ|η1|1), p(σ2

1) ∝
1

σ2
1

exp(−nκ0

σ1

), p(α1) ∝ 1,

where κ0 is a pre-specified constant with default of κ0 = 0, and | · |1 denotes the L1 norm.

The penalized likelihood can be derived from the posterior

p(Θ1|Y,X) ∝
n
∏

i=1

φ(yi|xT
i β1, σ

2
1, α1) exp

(

−λ|β1|1 + κ0/n

σ1

)

1

σ
2/n
1

,

which is the product of the penalized likelihoods of individual observations.

For K > 2, a traditional penalized likelihood was developed by Khalili et al. (2011), which

is proportional to

K
∑

k=1

πkφ(yi|xT
i βk, σ

2
k, αk)× exp

(

−n
K
∑

k=1

πk

(

λ|ηk|1 +
κ0

σk

)

)

.

As pointed out before, there is no explicit formula for updating mixture proportions πk’s in

the M-step of the EM algorithm if we use the above penalization. Here, to tackle the issue,

we derive an alternative penalized likelihood by use of a non-standard log-posterior below.

The basic idea is that for each observation, we first construct the penalized likelihoods for

all components and then combine these likelihoods together by a component-wise weighting:

pLn(ΘK |(yi,xi)) =
K
∑

k=1

πkφ(yi|xT
i βk, σ

2
k, αk) exp

(

−λ|βk|1 + κ0

σk

)

1

σ
2/n
k

.

The penalized incomplete-data likelihood is then defined by multiplying the above individual
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likelihoods and priors of πk’s as follows:

pLn(ΘK |(Y,X)) =
n
∏

i=1

pLn(ΘK |(yi,xi))
K
∏

k=1

πδk
k ,

where δk, k = 1, ..., K are pre-specified constants with default δk = 1/K. Note that we are

unable to observe the group memberships of individual subjects, which are defined by the

indicator functions Z = (zik)16i6n,16k6K ,

zik =











1, if the i-th subject belongs to the k-th group,

0, otherwise.

The penalized likelihood for the complete data (Y,X,Z) is then given by

pLn(ΘK |Y,X,Z) =
K
∏

k=1

πδk
k

n
∏

i=1

K
∏

k=1

{

πkφ(yi|xT
i βk, σ

2
k, αk) exp

(

−λ|βk|1 + κ0

σk

)

1

σ
2/n
k

}zik

.

Following McLachlan and Peel (2000) and using the complete-data likelihood, we can

implement a block-wise GEM algorithm in the following two steps.

E-step: Calculate the conditional expectation of Z given (Y,X) and the current estimate

Θ
(v)
K , giving

Ψ = Ψ(ΘK |Θ(v)
K ) = E

{

log(pLn(ΘK |Y,X,Z))|Y,X,Θ
(v)
K

}

=
K
∑

k=1

(

n
∑

i=1

τ
(v)
ik + δk

)

log(πk) +
K
∑

k=1

n
∑

i=1

τ
(v)
ik log

(

αk

2σ
(1+2/n)
k Γ(1/αk)

)

−
K
∑

k=1

n
∑

i=1

τ
(v)
ik

|yi − xT
i βk|αk

σαk
k

−
K
∑

k=1

n
∑

i=1

τ
(v)
ik

λ|βk|1 + κ0

σk

,

where

τ
(v)
ik =

π
(v)
k φ(yi|xT

i β
(v)
k , σ

(v)2
k , α

(v)
k ) exp(−(λ|β(v)

k |1 + κ0)/σ
(v)
k ) 1

σ
(v)2/n
k

∑K
k=1 π

(v)
k φ(yi|xT

i β
(v)
k , σ

(v)2
k , α

(v)
k ) exp(−(λ|β(v)

k |1 + κ0)/σ
(v)
k ) 1

σ
(v)2/n
k

.

M-step: To update the estimate of Θ, we maximize Ψ(ΘK |Θ(v)
K ) with respect to ΘK block

by block. In particular, by using the Lagrange multiplier on Ψ, we update the block of πk’s

by

π̂
(v+1)
k =

∑n
i=1 τ

(v)
ik + δk

n+
∑K

k=1 δk
.

See Web Appendices B, C and D, the Web-based Supplementary Materials for technical
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details, for the way to initialize the GEM algorithm and for the BIC-based approach to

choosing the penalty coefficient and the number of components.

2.2 Marginal variable screening by mixtures

In the previous sections, we build an exponential power mixture model to utilize group

structures in the data. However, the computational cost of the GEM algorithm prevents it

from applications to data with a large size and a large number of covariates. To mitigate the

impact of high-dimension, a marginal variable screening is required to reduce the dimension

before fitting a full model to the data. We make the following sparsity assumption: although

there are many covariates with varying contributions to the response variable, only a few

of them are significantly important and majority of them have only marginal effects. The

marginal variable screening aims to filter out variables with marginal effects in the model.

In this paper, we considered the following four screening procedures: correlation learning

or simple Gaussian linear regression (GAU1), simple EPD linear regression (EPD1), simple

Gaussian mixture regression (GAUMIX), and simple EPD mixture regression (EPDMIX).

All are with the penalty coefficient λ = 0. For each j, 1 6 j 6 p, we fit the above

four models to the data (yi, xij), i = 1, ..., n respectively and calculate the corresponding

reciprocal BIC value BICKj, where K is restricted to 1 6 K 6 Kn. Then, we calculate

the reciprocal BIC values for EPD1 and GAU1, and the reciprocal minimum BIC value

rBICj = 1/min16K6Kn BICKj for EPDMIX and GAUMIX. We rank these values in decreasing

order rBIC(j) and plot them again index (j). The resulting plot is called scree plot. We choose

these covariates with the reciprocal (minimum) BIC values larger than the elbow point of

the curve in the scree plot.
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3. Theory

In this section, we investigate the sure screening property for the proposed procedure. To

do so, we need to introduce more notations. As before, we consider an independent sample

(yi,xi), i = 1, ..., n with yi|xi ∼ fK(y|xi,Θ
∗
K). Let ΘKj = ((β1j, σ

2
1, α1, π1)

T , ..., (βKj , σ
2
K , αK , πK)

T )

denote the parameters that are used to link yi to the j-th covariate xj. To facilitate our

technical derivations, we restrict ΘKj to taking values in a bounded set ΞKj with

ΞKj = {ΘKj : πb 6 πk 6 1, 1 6 αk 6 αu, σb 6 σ1 6 σu, |βkj| 6 βu, 1 6 k 6 K;
K
∑

k=1

πk = 1},

where πb, αu, σb, σu, and βu are positive constants, and πb and σb are arbitrarily small. Let

fK0(y|x,Θ
(0)
K0
) be the true density of y given x and f(x) the density of x. Note that for each

K, the true parameter Θ
(0)
K0

may not be in ΞKj. But we find a value in ΞKj which is most

close to Θ
(0)
K0
, namely

Θ∗
Kj = argmaxΘKj∈ΞKj

∫

log
(

fK(y|xj,ΘKj)/fK0(y|x,Θ
(0)
K0
)
)

fK0(y|x,Θ
(0)
K0
)f(x)dydx.

Replacing {β∗
1j , ..., β

∗
Kj} in Θ∗

Kj by zeros, we define a background model with zero signals

and parameter Θ∗0
Kj. For 0 < δ < 1/2, we consider a neighborhood of Θ∗

Kj, defined by

[δ]Kj = {ΘKj : ΘKj ∈ ΞKj, |ΘKj −Θ∗
Kj| 6 δ}, where | · | is the L1 norm. We define the norm

||h||Pn =

√

√

√

√

1

n

n
∑

i=1

h2(yi, xij)

and the subset of functions

FKj(δ) = {log(fK(y|xj,ΘKj))In(y, xj) : ΘKj ∈ [δ]Kj} .

Let H(·,FKj(δ), || · ||Pn) be the entropy of FKj(δ) equipped with the metric induced by the

norm || · ||Pn .

For any (K,K1) with 1 6 K,K1 6 Kn, we use the following average Kullback-Leibler

discrepancy to measure the distance from ΘKj to ΘK1j:

KL(ΘKj|ΘK1j) = −
∫

log

(

fK(y|xj,ΘKj)

fK1(y|xj,ΘK1j)

)

fK0(y|x,Θ
(0)
K0
)f(x)dydx.

By the definition of Θ∗
Kj, KL(ΘKj|Θ∗

Kj) > 0.
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To obtain the convergence rate of the maximum penalized likelihood estimator, we assume

the following conditions of identification used in Städler et al. (2010) and Zhang and Liang

(2010).

(C1): There exists a positive constant dK depending on K such that uniformly for 1 6

K 6 Kn, 1 6 j 6 pn, and ΘKj ∈ ΞKj,

KL(ΘKj|Θ∗
Kj) > ||ΘKj −Θ∗

Kj||2/d2K .

And for ΘKj ∈ ΞKj and ΘK1j ∈ ΞK1j, if KL(ΘKj|ΘK1j) = 0, then K = K1 and ΘKj is equal

to ΘK1j up to a permutation of K1 components.

In Web Appendix E, the Web-based Supplementary Materials, we showed that Condition

(C1) holds when Kn is bounded and the Fisher information matrix is bounded away from

zero. Similar to Fan and Song (2010), we also need to impose a sub-exponential restriction

on each covariate in the model.

(C2): There exists positive constants r0, r1 and ν0 independent of 1 6 j 6 p, such that for

all t > 0 and covariate xj, P (|xj| > t) 6 r1 exp(−r0t
ν0).

For positive constants Vn and Kn, let

Mn = O(V αu+1/2
n log(Vn)), δn = Mn log(n)

√

log(n)/n, δKn = Kn(1 + αu + σu + βu).

We call a covariate active if its regression coefficients are non-zeros at least in one of mixture

components. Let J∗
K denote the set of active covariates, {1 6 j 6 pn :

∑K
k=1 |β∗

kj| 6= 0}.

We assume the following identification condition for active covariates, which says when xj

is not active, the associated parameter Θ∗
Kj must be in the o(n−2κ)- neighborhood of the

background parameter Θ∗0
Kj. When xj is active, the Kullback-Leibler distance from Θ∗

Kj to

Θ∗0
Kj has order not less than O(n−2κ).

(C4): Uniformly for 1 6 j 6 pn, K0 6 K 6 Kn,

KL(Θ∗0
Kj|Θ∗

Kj) = o(n−2κ), if xj is not active,

KL(Θ∗0
Kj|Θ∗

Kj) > c9n
−2κ, if xj is active,
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where 0 < κ < 1/2 and c9 > 0 are constants.

Note that the BIC index BICj for the covariate xj is defined by BICj = min16K6Kn BICKj with

BICKj = − 1

n

n
∑

i=1

log
(

fK(yi|xij, Θ̂Kj)
)

+
(4K − 1) log(n)

n
,

where Θ̂Kj is the marginal maximum likelihood estimator. We rank rBIC (short for the

reciprocal BIC) values in decreasing order, say rBICj, 1 6 j 6 pn, and plot them against their

indices. For each 2 6 j 6 pn, we fit a straight line to {(t, rBICt), j 6 t 6 pn}, obtaining a

predictive value prBICj−1 for rBICj. For any constant c∗, we define a change point (elbow point)

ĵ on the rBIC curve by ĵ = max{2 6 j 6 pn : rBICj − prBICj−1 > c∗n
−2κ}. The change point

ĵ divides the covariates into estimated active and non-active groups, namely Ĵac and Ĵna.

Let fK(yi) =
∑K

k=1 πkφ(yi|0, σ2
k, αk). Then, similar to the theorem in Web Appendix E, the

Web-based Supplementary Materials, we can show that

max
K06K6Kn

n
∑

i=1

log(fK(yi))/n = max
K06K6Kn

E [log(fK(y))] + op(1).

We show in the following theorem that for any constant c∗ > 0 satisfying

P





c9
c∗

>

(

max
K06K6Kn

n
∑

i=1

log(fK(yi))/n

)2


→ 1, (3.1)

Ĵac is consistent with the true active set J∗
K0
.

Theorem 1: We assume that Kn = O(1), dKn = O(1) and that equation (3.1) holds.

Then, under Conditions (C1)∼ (C4), as n → ∞, we have that

P (Jac = J∗
K0
) → 1.

4. Numerical results on simulated data

By simulations, we aim (a) to examine the performances of various marginal variable screen-

ing methods including GAU1, EPD1,GAUMIX, and EPDMIX, and (b) to investigate whether

the EPD can accommodate non-normality. We consider various scenarios, where following
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Städler et al. (2010), the Signal-to-Noise-Ratio (SNR) in each data set is measured by

SNR = 1 +

∑K0

k=1 πkβ
T
kX

TXβk

n
∑K0

k=1 πkσ2
k

,

with the k-mixture proportion πk, the k- regression coefficient βk, and the variance of the

k-th error term σ2
k.

In marginal variable screening, we want to identify active covariates in the model. We

compare the performances of GAU1, EPD1, GAUMIX, and EPDMIX in screening in terms

of specificity and sensitivity. Specificity and sensitivity are defined as the survival rates of

true active covariates and of true non-active covariates respectively in screening. We consider

the following two settings.

Setting 4.1.1 (multiple linear regression): We generated 140 datasets with the sample size

n and the dimension p. Each dataset contained observations (yi, xij), 1 6 j 6 p, 1 6 i 6 n

satisfying yi =
∑p

j=1 xijβ0j + εi, where εi, 1 6 i 6 n were iid N(0, 1), and the regression

coefficients

β0 = (2 + η1, 1.6 + η2, 1.2 + η3, 0.8 + η4, 0.4 + η5, 0
T
p−5)

T ,

where ηj, 1 6 j 6 5, were iid N(0, 0.12), and 0p−5 was a p − 5 vector of zeros. There were

five active covariates in the above model. Each dataset was generated in the following steps.

First, for each i, following Fan and Song (2010), we simulated the covariates by

x̃ij =
tj + aj × t0√

1 + a2
,

where t0 ∼ t2 (t distribution), aj = 0.8, 1 6 j 6 15 and a = 0, 16 6 j 6 p, and tj ∼

t2, 1 6 j 6 p/3, tj ∼ ej × (2b(1/2) − 1), p/3 6 j 6 2p/3 with b(1/2) being a Bernoulli

distribution of success probability 1/2 and ej being drawn from the standard exponential

distribution, tj ∼ the mixture 0.5N(−1, 1) + 0.5N(1, 0.5), j > 2p/3. Then, we randomly

shuffled the columns of the matrix (x̃ij)n×p, followed by column standardization. Note that

randomly shuffling the columns of the design matrix is equivalent to randomly shuffling

active variables. Finally, we centralized Y = (y1, ..., yn)
T by the sample mean

∑n
i=1 yi/n. We
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considered two scenarios with (n, p) = (500, 600) and (100, 2000) and the average SNR values

of 26 and 0.85, respectively. Note that under Setting 4.1.1, the true model is a single Gaussian

regression model. By the simulation, we demonstrated that even though the underlying full

model was a single Gaussian regression model, the marginal model at each covariate could

be non-Gaussian. This is due to the so-called aggregate misspecification effects of unselected

covariates as described in the Introduction.

Setting 4.1.2 (Gaussian mixture regression): We generated 140 datasets with the sample

size n and the dimension p. Each dataset consists of observations (yi, xij), 1 6 j 6 p, 1 6

i 6 n. The covariates xij, 1 6 i 6 n, 1 6 j 6 p were adopted from Setting 4.1.1. Given

xi = (xi1, ..., xip)
T ’s, yi, 1 6 i 6 p were independently sampled from the mixture distribution

f(yi) =

K0
∑

k=1

πkφ(yi − xT
i βk),

where φ(.) is the density of the standard Gaussian distribution, βk, 1 6 k 6 K0 are regression

coefficients, and πk, 1 6 k 6 K0 are mixture proportions. We then centralizedY by its sample

mean. We considered the following two cases of K0:

(1) K0 = 2, where there are two components with

β1 = (2 + v1, 1.6 + v2, 1.2 + v3, 0.8 + v4, 0.4 + v5, 0
T
p−5)

T ,

β2 = (0, 0, 0, 4 + v21, 4 + v22, 4 + v23, 4 + v24, 4 + v25, 0
T
p−8)

T ,

where vj, 1 6 j 6 5, are iid N(0, 0.12) and 0p−5 is a p− 5 vector of zeros.

(2) K0 = 3, where there are three components with

β1 = (2 + v11, 1.6 + v12, 1.2 + v13, 0.8 + v14, 0.4 + v15, 0
T
p−5)

T ,

β2 = (0, 0, 0, 4 + v21, 4 + v22, 4 + v23, 4 + v24, 4 + v25, 0
T
p−8)

T ,

β3 = (0, 0, 0, 0, 0, 0,−4 + v31,−4 + v32, 0
T
p−8)

T ,

where vkj, 1 6 j 6 5, k = 1, 2, v31, v32 are iid N(0, 0.12), and 0p−8 is a p − 8 vector of zeros.



14 Biometrics, 0000

For each case of K0, we considered (n, p) = (300, 400) and (500, 600). The average SNR

values are around 165 and 175 for K0 = 2, and around 88 and 90 for K0 = 3.

For each case, we applied GAU1, EPD1, GAUMIX and EPDMIX to each of the 140

datasets. That is, for 1 6 j 6 p, we fitted EPD1, GAU1, EPDMIX and GAUMIX regression

models to the data (yi, xij)16i6n respectively and calculated the corresponding BIC values.

The results were summarized in Figure 3, Tables 1 and 2. The percentage increases in

specificity when the sensitivity was fixed were calculated by using the formula (s/sgau1−1),

where s is the specificity of EPD1 or EPDMIX or GAUMIX, and sgau1 is the specificity of

GAU1.

In Setting 4.1.1, note that the true active covariates were located at j = 1, 2, ..., 5, with

the BIC values BICj, 1 6 j 6 5. We put them in a decreasing order, say BIC(1) > BIC(2) > · · · >

BIC(5). If we threshold the BIC values BICj, 1 6 j 6 p at the levels of BIC(j), the corresponding

sensitivity of screening will be j/5. This enable us to calculate the values of specificity when

the sensitivity of screening is set to 1/5, 2/5, 3/5, 4/5 and 5/5 respectively. For each of the

above four screening methods, we calculated these values. The results are displayed in the

first two rows of plots in Figure 3 and Table 1. The results suggest that EPD1 and EPDMIX

outperformed their Gaussian counterparts. In the case where (n, p) = (500, 600), EPD1

improved GAU1 by 33%, 17% and 7% increases of specificity when the sensitivity level was

fixed at the levels of 5/5, 4/5 and 3/5 respectively. At these sensitivity levels, on average

EPDMIX improved GAU1 by 64%, 31%, and 9% increases in specificity. This is slightly

better than GAUMIX, which improved GAU1 by 62%, 30% and 9% increases in specificity.

In the case where (n, p) = (100, 2000), although the SNR is low, the average percentage

increases in specificity by use of EPD1, EPDMIX and GAUMIX compared to use of GAU1

were still visible.

In Settings 4.1.2, we calculated the values of specificity when the sensitivity level was fixed
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at j/8, j = 1, 2, ..., 8. This can be achieved by taking the BIC values at these true active

covariates as the thresholds for the BIC’s. The results were summarized in the bottom 4

rows of Figure 3 and in Tables 2. The results indicate that the largest percentage increases

in specificity were obtained when we used EPDMIX instead of GAU1. For example, in the

case where K0 = 2 and (n, p) = (300, 400), on average EPDMIX had 128%, 97%, 51%, 25%,

and 10% increases in specificity over GAU1 when the sensitivity level was fixed at 8/8, 7/8,

6/8, 5/8 and 4/8. It outperformed GAUMIX which had 110%, 85%, 44%, 23% and 10%

increases in specificity over GAU1. Close to the performance of EPDMIX, EPD1 had 119%,

90%, 46%, and 24% and 9% increases in specificity over GAU1. In the case where K0 = 3 and

(n, p) = (300, 400), EPDMIX had 84%, 66%, 44%, 32%, 27%, and 16% increases in specificity

when the sensitivity level was fixed at 8/8, 7/8, 6/8, 5/8 and 4/8. Similarly, GAUMIX had

58%, 55%, 39%, 28%, 25%, and 16% increases in specificity.

[Put Figure 3 here.]

[Put Table 1 here. Put Table 2 here.]

The performance of full mixture regression models has also been assessed in terms of

the adjusted RAND index. The results are presented in Web Appendix E, the Web-based

Supplementary Materials. The aim is to demonstrate how to determine the number of

components and specify the penalty coefficient simultaneously, and to illustrate the potential

of the proposed method.

5. Numerical results on motif data

We assess the performance of the proposed method on a motif regression dataset, which was

discussed in detail by Conlon et al.(2003) and explored further in Khalili et al. (2011) and

Bühmann and van de Geer (2010). A motif is a candidate for a binding site of a transcription

factor on the DNA, typically a 5-15 base pairs long DNA sequence. The dataset consists of the

mRNA expressions of 4443 Saccharomyces cerevisiae genes and the corresponding matching
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scores of 2155 candidate motifs to these genes. The main goal is to find motifs upstream of

genes that undergo expression changes under a given condition via an integrative analysis of

gene expressions and motif matching scores. Conlon et al.(2003) presented a motif-regression

approach by formulating the problem as variable selection for linear regression. However, the

gene population can be heterogeneous as genes may belong to differently regularized genetic

pathways. Therefore, as suggested in our simulation studies, using a mixture regression model

with more than one component might be more appropriate than using a single regression

model (Gupta and Ibrahim, 2007; Khalili et al., 2011). Here, we applied our two-stage

approach to the dataset, where we conducted marginal variable screening to filter out the

redundant covariates, followed by fitting a full mixture regression to the selected covariates.

By this dataset, we made a comparison of the approaches based on Gaussian distributions

and exponential power distributions, showing that a non-Gaussian mixture model could

substantially improve the analysis in terms of BIC values.

To begin with, let n = 4443 and p = 2155. We let y denote the logarithms of the expression

levels of n genes, and Xn×p denote an n by p covariate matrix, the corresponding matching

scores of the motifs to the genes. For motif j, 1 6 j 6 p, we fitted the simple EPD mixture

regression EPDMIX and the simple Gaussian mixture regression GAUMIX to the data

(Y,xj) respectively and calculated the reciprocals of their BIC values. We arranged these

reciprocals in decreasing order for the simple EPDMIX and GAUMIX respectively. These

ordered values were plotted against their indices in Figure 1. The elbow points on the curves

were 143 and 156 respectively. Each elbow point divided the motifs into two groups: One with

higher reciprocals and the other with lower reciprocals. The last plot in Figure 1 suggests

that the simple EPDMIX outperformed the simple GAUMIX in the sense that the former

had the smaller BIC values than did the latter most times. In light of this fact, we adopted

the simple EPDMIX as our working filter, selecting 143 variables (i.e., motifs) of higher
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reciprocal BIC values. By Theorem 1, we expected these selected motifs should contain most

of the true active motifs.

Finally, we fitted the EPD mixture regression EPDMIX and the Gaussian mixture regres-

sion GAUMIX to the data, taking the 143 selected motifs (denoted by mj, j = 1, 2, ..., 143 as

covariates. To take into the predictability into account in determining K and λ, we randomly

divided the dataset into five blocks. We deleted one block and taking the remaining as the

training dataset. We ended up with five training datasets, with the size of n = 3555 each

and the corresponding test datasets, with the size of 888 each.

After a few pilot tries, we decided to restrictK and λ in the EPDmixture regression and the

Gaussian mixture regression to 1 6 K 6 Kn = 7 and λ = (25+(t−1)10)/3555, t = 1, 2, ..., 30.

For each K and λ, we calculated BIC(K,λ) and the cross-validation (CV) function for each

training dataset. Then we averaged them over five training datasets. In Web Appendix C,

the Web-based Supplementary Materials, we showed that the cross-validation did not work

well for this dataset. In the following, we used the BIC to determine K and λ. For EPDMIX,

the CV has the value of 0.2545 when (K,λ) = (2, 0.03516), whereas for GAUMIX, when

(K,λ) = (2, 0.04923), the CV has the value of 0.2764, slightly larger than that of EPDMIX.

This suggests that EPDMIX performed better than GAUMIX in fitting to the dataset. We

thus focused on EPDMIX below.

[Put Figure 2 about here.]

EPDMIX gave two clusters of genes and their posterior memberships τ̂ik are plotted in

Figure 2. EPDMIX selected 35 and 33 motifs for gene clusters 1 and 2 respectively. Cluster

1 contained these genes with large expressions, whereas Cluster 2 consisted of these genes

with small expressions. The estimated parameters (α̂1, α̂2)
T = (1.175, 2.534)T , (σ̂2

1, σ̂
2
2)

T =

(0.2559, 0.0907)T and (π̂1, π̂2)
T = (0.205, 0.795)T , which indicate the two-components are not

Gaussian. To biologically annotate the above gene clusters, for each of them, we selected a list
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of genes with posterior membership probabilities no less than 90%. This gave 278 and 1394

genes for clusters 1 and 2 respectively. For each GO attribute, we compared its frequency

in the gene list to its background frequency in the yeast Gene Ontology (GO) database

(http://www.yeastgenome.org) on the 10th/June/2016. A web-based tool, GO term finder,

was used to obtain lists of GO terms that are statistically over-represented among the genes

in each list after correction for multiple hypotheses testing. For cluster 1, the significantly

associated GO terms were as follows: conjugation (P-value 278×7.38×10−10), cell separation

after cytokinesis (278 × 2.79 × 10−8), reproduction (278 × 7.12 × 10−6), mitotic cell cycle

(278×7.39×10−5), siderophore transport (278×7.93×10−5), single-organism cellular process

(278×2.1×10−4), and cyclin-dependent protein serine (278×5.28×10−5). Similarly, for gene

cluster 2, the associated GO terms were: macromolecule localization (1394 × 8.68 × 10−5)

and intracellular organelle (1394 × 1.04 × 10−5). To show the significance of the selected

motifs for each gene cluster, we regressed the log-expressions of the genes in the cluster to

the matching scores of the selected motifs by use of least squares. The resulting fit had an

R-square of 0.584, implying that the 35 motifs might jointly account for 58.4% expression-

variation in cluster 1. Note that several selected motifs were highly correlated each other (of

Pearson correlation coefficients larger than 90%). So, to account for this effect, we performed

a sequential ANOVA decomposition on the above fit, obtaining the P-value of extra variation

explained after introducing each motif into the model given the previously introduced. This

gave rise to 11 significant motifs with their P-values less than 0.01 after correction for multiple

testing: m1 (P-values < 2.2× 10−16), m6 (4.18× 10−8), m8 (4.97× 10−14), m26 (2.3× 10−10),

m33 (1.58×10−5), m41 (4.18×10−8), m80 (3.78×10−13), m121 (4.1×10−3), m124 (1.49×10−4),

m127 (1.15× 10−7), and m134 (1.02× 10−4).

Analogously, for gene cluster 2, the associated GO terms were: macromolecule localization

(P-value 1394×8.68×10−5) and intracellular organelle (1394×1.04×10−5). We also regressed
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the log-expressions of the genes in the cluster to the matching scores of the selected motifs.

The resulting fit had an R-square of 0.225, implying that the 33 motifs might jointly account

for 22.5% expression-variation in cluster 2. The ANOVA decomposition gave the following

list of highly significant motifs with their P-value less than 0.01 after correction for multiple

testing: m1 (P-value < 2.2×10−16), m6 (< 2.2×10−16), m8 (< 2.2×10−16), m9 (4.96×10−3),

m26 (2.99 × 10−15), m43 (< 2.2 × 10−16), m54 (5.29 × 10−8), m55 (5.59 × 10−3), m80 (<

2.2×10−16),m89 (4.52×10−12),m99 (2.41×10−4),m124 (7.19×10−3), andm127 (< 2.2×10−16).

Interestingly, the two clusters shared 7 motifs mj, j = 1, 6, 8, 26, 80, 124, 127, implying that

the corresponding transcription factors might have multiple functions by varying strengths

of binding. The cluster-specific motifs for clusters 1 and 2 were j = 33, 41, 121 and j =

43, 54, 55, 89, 99 respectively.

6. Discussion and Conclusion

We have proposed a method to address the problem that can arise when covariates in a

regression setting are not Gaussian, which gives rise to approximately mixture-distributed

errors. Our contributions are four folds: We have extended the conventional Gaussian mixture

model by using a more general and robust exponential power mixture distribution family

for the component distributions; we have proposed a new penalty term for these models

and have proved some appealing asymptotic results; with help of pre-screening, we have

developed a GEM algorithm that makes model fitting computationally viable for large

problems; and we have shown that BIC-based model selection works well for choosing the

number of components while simultaneously performing variable selection. In particular,

we have established a sure screening property for the proposed mixture-based procedure

when the population is heterogeneous, filling-in a gap between the theory and practice of

independence variable screening in the literature.

By simulations, we have demonstrated that the proposed non-Gaussian mixture regression



20 Biometrics, 0000

model can substantially improve the accuracy of marginal variable screening in terms of

sensitivity and specificity across a range of cut-offs for screening. We have demonstrated

that this holds even when the underlying model is a single high-dimensional regression. In

particular, the accuracy of clustering can be dramatically improved by use of the proposed

non-Gaussian mixture model when many small covariates are unselected. Our simulations

have also shown that the proposed model is robust to the deviations of components from

normality. The proposed procedure has been applied to the motif data, identifying two

groups of genes with the associated sparse motifs. We have shown that the proposed model

can improve the Gaussian mixture regression fit in terms of BIC in both the screening step

and the full-model fitting step. This is not surprising as there exist model misspecification

effects in both of the steps. The proposed likelihood approach can be directly extended to

other penalties. The details can be found in Web Appendix H, the Web-based Supplementary

Materials.

7. Supplementary Materials

Supplementary Materials, referenced in Sections 2, 3, 4, and 5 are available with this paper

at the Biometrics website on Wiley Online Library.
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Städler, N., Bühlmann, P., and van de Geer, S. (2010). l1-penalization for mixture regression

models. Test, 19, 209-256.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc

B, 58, 267-288.

Zhang, J. (2010). A Bayesian model for biclustering with applications, Appl Statist, JRSS C

59, 635656.

Zhang, J. and Liang, F. (2010). Robust clustering using exponential power mixtures.

Biometrics, 66,1078-1086.



22 Biometrics, 0000

0 500 1000 1500 2000

0.
00

02
5

0.
00

03
0

0.
00

03
5

0.
00

04
0

0.
00

04
5

ordered−index

1/
bi

c_
ep

d

0 500 1000 1500 2000

0.
00

02
5

0.
00

03
0

0.
00

03
5

0.
00

04
0

0.
00

04
5

ordered−index

1/
bi

c_
no

rm

0.00025 0.00035 0.00045

0.
00

04
2

0.
00

04
3

0.
00

04
4

0.
00

04
5

1/bic_norm

1/
bi

c_
ep

d

Figure 1. Screening plots: From the left to the right, the first two panels show the ordered

reciprocal BIC values of 2155 motifs for the EPD case and the Gaussian case respectively. The

vertical line in the first panel and the left vertical line in the second panel indicate the elbow

points for the EPD and the Gaussian respectively. The right vertical line in the second panel

points out the point after which the Gaussian fits were substantially deteriorated compared

to the EPD fits. In the last panel the reciprocal BIC values of the simple EPDMIX are

plotted against those of the simple GAUMIX. This figure appears in color in the electronic

version of this article.
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Figure 2. Posterior probabilities of gene memberships: the LASSO-based. The left two

plots are the membership plots for the gene groups 1 and 2 derived from the LASSO-based

EPDMIX while the right two plots were the membership plots for gene groups 1 and 2

derived from the LASSO-based GAUMIX.
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Figure 3. The top two rows: The box-whisker plots of the specificity for Setting 4.1.1 when the sensitivity is

fixed at the levels of j/5, j = 1, 2, 3, 4, 5. The left four plots and the right four plots are respectively for the EPD1,

GAU1, EPDMIX, and GAUMIX1 when (n, p) = (500, 600) and (n, p) = (100, 2000). The middle two rows: The

box-whisker plots of the specificity for Setting 4.1.2(1) when the sensitivity is fixed at the levels of j/8, j = 1, 2, ..., 8.

The left four plots and the right four plots are for (n, p) = (300, 400) and (500, 600) respectively. The bottom two

rows are for Setting 4.1.2(2) with (n, p) = (300, 400) and (500, 600).
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Table 1

Percentage increase of average specificity compared to the GAU1 in variable screening

Setting 4.1.1: single component

Sensitivity 5/5 4/5 3/5 2/5 1/5

Percentage increase of ave. spe. (%)

(n, p) = (500, 600)

GAU1 0 0 0 0 0

EPD1 33 17 7 1 0

EPDMIX 64 31 9 1 0

GAUMIX 62 30 9 1 0

(n, p) = (100, 2000)

GAU1 0 0 0 0 0

EPD1 13 4 2 0 0

EPDMIX 29 13 4 1 0

GAUMIX 30 14 3 0 0
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Table 2

Percentage increase of average specificity compared to the GAU1 in variable screening

Setting 4.1.2: multiple components

Sensitivity 8/8 7/8 6/8 5/8 4/8 3/8 2/8 1/8

Percentage increase of ave. spe. (%)

Two components: (n, p) = (300, 400)

GAU1 0 0 0 0 0 0 0 0

EPD1 119 90 46 24 9 3 0 0

EPDMIX 128 97 51 25 10 3 0 0

GAUMIX 110 85 44 23 10 3 1 0

Two components: (n, p) = (500, 600)

GAU1 0 0 0 0 0 0 0 0

EPD1 98 93 49 25 9 2 0 0

EPDMIX 112 95 51 26 10 2 0 0

GAUMIX 88 84 49 26 10 2 1 0

Three components:(n, p) = (300, 400)

GAU1 0 0 0 0 0 0 0 0

EPD1 -4 15 19 17 17 10 6 2

EPDMIX 84 66 44 32 27 16 9 3

GAUMIX 58 55 39 28 25 16 8 3

Three components:(n, p) = (500, 600)

GAU1 0 0 0 0 0 0 0 0

EPD1 -11 7 34 33 26 19 10 4

EPDMIX 111 66 63 50 34 23 12 5

GAUMIX 100 58 58 47 32 22 12 5


