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Respondent-reported measures

• We ask people to describe themselves or 

others on a set of psychological characteristics

• It may be the easiest and cheapest option out of 

imperfect alternatives 
– What perfect options are there to measure personality?

• It may be the only available option
– What other options are there to measure social 

attitudes?
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We base our scaling on….
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What is response bias?

• The “systematic tendency to respond …. on 

some basis other than the specific item 

content” (Paulhus, 1991)
• Nuisance to measurement of intended constructs

• For example, 
• tendency to use extreme response categories, 

• tendency to agree with statements as presented,

• tendency to give positive appraisal to someone who 

you quite like as a person 
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Types of response biases in self-reports

Independent of item content

• Careless responding
• Not paying attention to 

item content

• Response styles
• Systematic tendencies to 

prefer certain response 

categories over others

Depends on item content

• Socially desirable 

responding
• Tendency to provide 

responses in line with 

social norms

• Unintentional: self 

deception

• Intentional: faking; 

simulation / dissimulation



Types of response biases in reports by others

• The same biases occur as in self-ratings
• Inattentiveness, response styles

• Socially (politically) desirable representation of ratee

• In addition, rater biases
• Leniency / severity

• Halo effect 
– over-generalisation of all behaviours, cognitive bias of 

exaggerated coherence (Thorndike, 1920; Kahneman, 

2011) 
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How prevalent are response biases?

• Inattentive responding is common in basic research and 
social surveys 

• 10-12% in Meade & Craig (2012)

• Response styles are common in all applications
• Up to 20% misreport on reversed items (Swain et al., 2008)
• There are cultural differences (e.g. van Herk et al., 2004)

• Socially desirable responding is common. For the 
intentional component,

• 47% of US applicants admit to exaggerating positive attributes 
and 62% to deemphasising negative (König et al., 2011)

• “Ideal-employee” factor has been consistently found in high 
stakes assessment (Schmit & Ryan, 1993; Klehe et al., 2012)

• Having political goals is common for raters (Murphy et al, 
2004)

• Rater biases are common
• Leniency and halo effects are commonly found (Ng et al., 

2011; Barr & Raju, 2003; Murphy et al., 1993)
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Sources of variance in responses

• The basic measurement model assumes only 

two types of sources influence the response
• True scores – psychological constructs we intend to 

measure

• Random error

• A third source often exists – conscious and 

unconscious response distortions (or biases)
• Systematic error

• If not included in the model, it will mask itself as true 

score
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Why do I worry about response biases?

• Response biases are irrelevant sources of 

variance, and if left uncontrolled, they lead to 

biased test scores
• Test no longer measures what we intended to 

measure (validity is affected)

• Decisions based on test scores that are biased
in any way can lead to

• breach of equal opportunities legislation

• a sense of grievance

• wrong selection decisions

• invalid conclusions in basic research

• Fairness is the ultimate concern
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“Valid” distortions?

• Some argue that biases do not matter if 

criterion-related validity is maintained

• For example, high stakes assessments still predict 

performance (Ones et al., 2007)
– employees continue “managing impression” after hire
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“Valid” distortions?

• I argue that the key issue is construct validity
• What does our test measure that predicts a criterion? 

– Faking is “saying what you think you ought to say 

rather than what you really want to say. We have a 

word for that – “civilization.”  (Kevin Murphy, in 

Morgeson et al., 2007)

– We may as well admit that when used in high stakes, 

the test measures what people think they are ought to 

say rather than their “personality”

– We may compare who we select on the basis of this 

construct versus the “personality” basis

12



What should we do?

• I think that anyone who relies on respondent-

reported measures used in contexts where 

certain biases are prevalent, should be 

concerned

• To remedy the situation, one could
• Detect biases after they have occurred, and adjust 

(correct) the test scores statistically

• Prevent biases before they occur

• Abandon respondent-reported measures and come 

up with something better
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Detection and correction methods
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• Manifest / Observed indices
• Index quantifying the extent of certain bias is created

– Frequency indices for response styles

– Lie / Social Desirability scales

• Observed test score is corrected using the index
– E.g. the regression residual of trait score on the index 

is assumed free of bias (Webster, 1958)

• Latent variables
• Response biases are part of the measurement model 

(via latent traits, or latent classes)
– The extent to which bias affects the measurement 

model fit can be appraised

• Latent (and estimated) trait scores are controlled for 

biases



Bias as latent trait

• We may assume that individuals vary in the 

extent they engage in some biasing 

behaviour, and represent the individual 

differences as a latent factor

• Every response indicates not only its 

dedicated trait(s), but also some biasing 

factor
• The approach has many uses and modifications 

and can be used for modelling many biases (e.g. 

Podsakoff et al., 2003)

• Model identification can be a problem and often 

requires special designs
– For example, having content-independent items 

(or “anchoring vignettes”) just to identify biases
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Example 1: Acquiescence bias

• Acquiescence (or ‘yea’–saying) is the individual tendency 
to agree with items as presented

• Acquiescence bias becomes obvious when some people 
agree to both, positively and negatively worded  items. 

• What should be opposite ends of the same factor, come out 
as two separate factors in EFA

• Personal tendency to acquiesce can be modelled as 
random intercept

• Response for item i and person j
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From: Maydeu-Olivares & Coffman (2006)

• In school children data, RI accounts 
for about 10% of variance in item 
responses



Example 2: “Ideal-employee” factor

• A common factor explaining 
inflated correlations between 
all desirable characteristics 
has been found in applicant 
data (e.g. Schmit & Ryan, 
1993)

• The “ideal-employee” factor 
has varying factor loadings –
the most desirable behaviours 
affected most

• Klehe et al. (2012) showed 
that the relationship between 
ideal-employee factor and job 
performance is explained by 
ability to identify criteria 
(ATIC)
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Illustration: Klehe et al. (2012)



Example 3: Correcting biases in 360 appraisals

• Organizational appraisal data is notorious for 
response biases

• Study by Brown, Inceoglu and Yin (partly 
reported at SIOP 2014)

• Large sample (N=4,675) of self-, peer, boss and 
subordinate assessments

• Inventory of Management Competencies (IMC)
– 16 competencies; 160 items

• Method factor represented non-uniform 
distortions similar to those of “ideal-
employee” in both self- and other 
assessments

• Explained around 50% of systematic variance 
• Controlling for method factor improved validity 

of competency scores 
– meaningful second-order factor structures
– better inter-rater agreement (ave. ICC = 0.39)
– better convergent correlations with an external 

measure (ave. self = .42; others = .25). 
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• Response process as a decision tree (Böckenholt, 2012)

• 3 pseudo items are created to indicate a 3-step process

IntensityDirectionIndifference

Do I have 
an opinion?

“Unsure”

Am I in 
agreement?

Yes
Do I feel 
strongly?

“Strongly 
agree”

“Agree”

Do I feel 
strongly?

“Strongly 
disagree”

“Disagree”

Bias as response process model

19

Indifference Direction Intensity

Strongly disagree 0 0 1

Disagree 0 0 0

Unsure 1 - -

Agree 0 1 0

Strongly agree 0 1 1



Example 4: Motivated misreports

• Bockenholt (2014) proposed the “Retrieve-Edit-
Select” decision model to account for self-
enhancement 

• Assumes that editing can happen only in one direction
– For example, people over-report knowledge but do not 

under-report it

• Modelled latent traits θR, θE, θS

20

SelectEditRetrieve

Question

“Familiar” “Familiar”

“Heard” Do I edit?
“Heard”

“Familiar”

“Never 
heard”

Do I edit?

“Never 
heard”

“Heard” or 
“Familiar”



Bias as latent class

• We may assume that respondents come from 

several unobserved (latent) classes
• Observed distributions are in fact mixtures of 

unobserved subpopulation distributions

• Model parameters may differ between classes
• Differing thresholds (or intercepts) may indicate 

extreme responding

• Differing factor loadings may indicate different 

psychological constructs underlying responses
– For example, class of individuals endorsing both 

positive and negative items may show all positive factor 

loadings
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Example 5: Extreme responding

• Rasch mixture modelling has been used to 

identify classes of extreme and mid-scale 

respondents
• For instance, Austin et al. (2006) identified 2 classes 

with systematically different item thresholds 

controlling for the latent trait

– Extreme responders (29%) have narrow thresholds 

(endorsing extreme categories is easier)
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Example 6: Faking behaviour

Latent class analysis (LCA)

• 2 classes give excellent 

separation (entropy = .984)
• “Ideal” and “honest” profiles

LCA with known class

• Do the latent classes coincide with the 
2 conditions?

• Latent transition probabilities

• Unfortunately, LCA does not achieve 
such results in real operational data
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• Re-analysis of Brown (2008) study: Instructed faking / Honest conditions
• One job description was used as target; should yield the same ideal profile

• Scale scores (item means) on 16 personality traits were analysed

Class 1 Class 2

Honest .082 .918

Instructed faking .971 .029



Limitations of correction methods 

• No real-world data have only one type of bias
• Modelling several biases is problematic

• Special study designs are often required to 

separately identify biases

• Biases are complex to model properly 
• Every model is a great simplification of reality

– For example, latent class models assume that there is 

no individual difference in the extent of bias within 

classes 

• Some biases are much more difficult to deal with 

than others
– For example, faking is a challenge to model because 

the cognitions behind this process vary dramatically 

between people (Kuncel & Tellegen, 2009; Robie et al., 

2007; Brown, 2014)
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(some) Prevention methods
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• Test-taking motivation 
• Lack of motivation increases careless responding
• Motivation to meet the selection criteria increases 

socially desirable responding (Schmit & Ryan, 1993)

• Rater calibration 
• Calibrating own ratings against others reduce leniency
• Rating the same competency for different people, rather 

than different competencies for the same person  
reduce halo (Kahneman, 2011)

• Item wording
• Negatively worded items are difficult to process (“item 

verification difficulty”; e.g. Swain et al., 2008)

• Response format
• Response options must be labelled thoughtfully to avoid 

idiosyncratic interpretation (e.g. Hernandez et al., 2006)
• Forcing choice between items controls for all uniform 

biases (e.g. Cheung & Chan, 2002)



Forced choice

• Comparisons “calibrate” options against each other, 
reducing cognitive biases (Kahneman, 2012)

• Finer differentiation between similar stimuli

• Direct comparison - no rating scale and hence no 
idiosyncratic use of the rating options
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Forced-choice: Mechanism for bias prevention

• According to Thurstone’s (1927) law of 
comparative judgement, respondent chooses 
stimulus with the highest utility (t)

• If tA – tB > 0, then item A is chosen
• If tA – tB < 0, then item B is chosen

• If item utilities are biased with fixed linear 
effects c (arbitrary, c > 0) and d,

• The difference of utilities has the same sign (Brown, 
2010)

• FC format eliminates all multiplicative and 
additive effects acting uniformly within blocks

27
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Example 7: Preventing biases in 360 appraisals

• Study by Brown, Inceoglu and Yin (continued from 
Example 3)

• Large sample (N=4,675) of self-, peer, boss and 

subordinate assessments 

• Inventory of Management Competencies (IMC)
– 16 competencies; 160 items

• Forced-choice rankings modelled with Thurstonian IRT 

(Brown & Maydeu-Olivares, 2011)

• Estimated trait scores yielded as good construct and 

external validities as the bias-corrected Likert ratings, and 

slightly better rater agreement (ave. ICC = 0.41).

• This is impressive considering the lower reliability of FC scores 

• The multidimensional forced-choice response format is an 

effective bias prevention method in self- and others- ratings
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Limitations of prevention methods

• Some prevention methods have very small effects

• Prevention methods seem to be most effective 
against unmotivated biases 

• (which probably emerge due to us creating bad 

questionnaires in the first place)

• But when test developers go against human 
willpower, things get tough

• Working with forced choice taught me that it is effective 

for prevention of response styles, leniency and halo
– Recommended in cross-cultural research and 

assessments by others

• But if someone wants to misrepresent their personality, 

they can do it, whether you are forcing choice or not
– I can always swap my true choices to misrepresent myself
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Is there light at the 
end of the tunnel?

Some thoughts on the effectiveness 
of the proposed methods and 
challenges ahead
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So is there light at the end of the tunnel?

• Fighting biases can be very frustrating

• We can continue with developing detection and 
correction methods

• Fast estimation methods and advancing 
psychometrics will help

• But in my opinion, we should focus on 
prevention

• What is the point in investing all efforts in fancy 
models, and continue using poorly designed tests?

• It is not enough to manipulate factors with small 
effects on biases

• It is time to think outside the box, and be critical 
of established practices
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A question to you

• A question to those who use abstract rating 
options such as 

• Strongly disagree / disagree / neither agree nor 
disagree / agree / strongly agree

• If you do not want the responses to be affected 
by the tendency to agree, or the strength of 
agreement, why ask about agreement at all?

• Additional factor is introduced 

• Why not use response categories that 
represent intervals on the trait of interest?

In social conversation, how do you usually behave?

talkative – an easy talker – talk when necessary –

prefer listening – refrain from talking
(McDonald, 1999)
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And another question to you

• A question to those who use personality 
measures for selection, and feel faking is 
normal because it reflects the adherence to 
social norms

• Why don’t you just ask the respondents: 
• What kind of person do you think we would like to 

recruit? (the “ideal-employee” image as they see it)
AND
• How motivated are you to get this job?

• Taken together, the ability to identify criteria 
(ATIC) and motivation presumably explain a lot 
of variance in job performance 

• And there is little reason to fake the above measures
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A Plea for Process in Personality Prevarication

• “a focus on the response process that 

test takers go through will accelerate 

our understanding of faking behavior” 

(Kuncel, Goldberg & Kiger, 2011)

• This is true for all biases

• If we understand the process, we can 
• (At least) detect and correct it better

• Prevent the negative impact of faking by 

creating better assessments
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It is time for qualitative research

• I have been carrying out research of test taker 

cognitions in high stakes assessments 
• Qualitative interviews

• Free descriptions of motivations and cognitions after 

taking a personality tests for selection

• It made me realise that 
• the prevalence of faking is high (and higher than 

estimated in the literature), 

• the motivation and cognitions are complex and 

different from person to person,

• the problem is more serious than most admit, 

• the problem will only get worse with more exposure 

to psychological testing.
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No simple answers

FC reduces faking

? When facing two equally 

desirable items, the 

respondent will fall back on 

true response (Gordon, 1951). 

� “I found this [FC] questionnaire 
more friendly because all 
statements were about good 
things, so I could relax and think 
about my personality”

FC facilitates faking

? Direct comparison of items 

facilitate acute differentiation of 

their desirability levels 

(Feldman & Corah, 1960).

� “…it was hard to chose which 
option was really me and tended 
to go with the one that my 
employer would be more likely to 
want.”
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Conclusions

• Response biases matter because they can 
distort the true scores on attributes of interest

• Construct validity is affected

• Detection / correction and prevention methods 
exist that can help, but there are many 
problems

• A more critical and fresh approach is needed 
• Investing time in creating a new type of assessment 

rather than in fixing problems in the old one

• Understanding the response process is crucial 
• in detecting and correcting the response biases, 
• in preventing response biases from occurring by 

creating assessments more resistant to them (or 
even free from them)



THANK YOU FOR LISTENING!

a.a.brown@kent.ac.uk
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