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Abstract 25 

Multiple-use protected areas, in which sustainable levels of extractive livelihood activities are 26 

permitted, play an increasingly important role in the global protected area estate, and are 27 

expected to rise in prevalence. However, we know little about their effectiveness at 28 

conserving biodiversity. We surveyed bird and reptile communities in three areas across a 29 

forest disturbance gradient resulting from charcoal production and shifting cultivation within 30 

a multiple-use protected area in Madagascar’s sub-arid spiny forest. We scored individual 31 

species using a Conservation Value Index (CVI; a simple metric based on rarity, threat and 32 

distinctiveness), and estimated the total conservation value of each treatment by calculating 33 

the sum of frequency-weighted CVI scores across all present species. Bird and reptile 34 

community responses to forest disturbance were idiosyncratic. Bird richness was greatest in 35 

the moderate-disturbance treatment, but the low-disturbance treatment had the superior 36 

conservation value due to higher frequencies of locally-endemic species. Reptile richness was 37 

the same in low- and moderate-disturbance treatments, but the conservation value of the latter 38 

was greater. The high-disturbance areas had lowest richness and conservation value for both 39 

groups. For birds, increasing disturbance levels were accompanied by community turnover 40 

from high-value to low-value species, a pattern highlighted by CVI that is masked by 41 

assessing species richness alone. Although some endemic species appear to be resilient to 42 

degradation, multiple-use protected areas in Madagascar may lose biodiversity since most 43 

endemic species are forest-dependent. Stricter protected area models may be more 44 

appropriate in areas where much of the high-value biodiversity is sensitive to habitat 45 

degradation.    46 

 47 

Keywords: Conservation value; Degradation; Dry forest; Faunal communities; Sustainable 48 

Use 49 

50 
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  51 

1 Introduction 52 

The impacts of human activity now threaten most of the Earth’s species and ecosystems 53 

(Ehrlich and Pringle 2008) and have precipitated the planet’s sixth mass extinction (Barnosky 54 

et al. 2011). Our primary strategy to stem this biodiversity loss is the creation and 55 

management of protected areas, which cover over 15 % of the world’s land area and 56 

constitute the largest planned land use in history (Juffe-Bignoli et al. 2014). All protected 57 

areas are spaces “recognised, dedicated and managed... to achieve the long-term conservation 58 

of nature with associated ecosystem services and cultural values” (Dudley 2008), but they 59 

vary greatly in management objective and approach. These differences form the basis for the 60 

World Conservation Union’s (IUCN) protected area categorisation system (Dudley 2008; 61 

Dudley et al. 2010). For simplicity’s sake the categories are often divided into ‘strict’ 62 

protected areas (generally categories I-IV), which seek to isolate nature from human 63 

processes that threaten it, and ‘multiple-use’ sites, which promote conservation through the 64 

sustainable extractive use of natural resources (category VI) or traditional land uses that 65 

sustain biodiversity (category V).  66 

 67 

Recent decades have seen the number of multiple-use protected areas grow significantly in 68 

many parts of the world (Juffe-Bignoli et al. 2014). Although some strict sites have been 69 

downgraded (Mascia et al. 2014), this has been driven primarily by the predominance of 70 

multiple-use categories amongst new protected areas (Zimmerer et al. 2004). The trend can 71 

largely be attributed to: i) the lack of remaining ‘wilderness’ areas, with a low human 72 

footprint, suitable for the creation of strict categories (Leroux et al. 2010); and, ii) a paradigm 73 

shift in conservation, reflecting concern for the effects of exclusionary approaches on human 74 

wellbeing (Adams and Hutton 2007; Miller 2014), and the suggestion that sustainable use 75 
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may be a more effective long-term conservation strategy than strict protection (Rosser and 76 

Leader-Williams 2010). As a result, only 45 % of the world’s protected areas are assigned to 77 

categories I-IV (Jenkins and Joppa 2009), and category VI sites expanded from 14 to 32 % of 78 

the world’s protected area estate (by area) between 1990 and 2010 (Bertzky et al. 2012). This 79 

trend is expected to become even more pronounced in the future (McDonald and Boucher 80 

2011).  81 

 82 

Signatories to the Convention of Biological Diversity are expected to increase the coverage 83 

of terrestrial protected areas to 17 % of their national territory by 2020 and ensure that they 84 

are “effectively managed” (CBD 2010, Aichi Target 11), a target that will require the most 85 

rapid expansion of protected areas in history (Venter et al. 2014). Thus, if new protected 86 

areas are expected to largely comprise multiple-use categories, it is important to know 87 

whether they are likely to be successful at achieving their objective – the long-term 88 

conservation of nature – in the face of authorised human impacts (Dudley et al. 2014; Watson 89 

et al. 2016). This is particularly apposite given longstanding debates over the contribution of 90 

multiple-use protected areas to conservation goals (Locke and Dearden 2005; Gaston et al. 91 

2008; Shafer 2015).  92 

 93 

The effectiveness of protected areas depends on both their coverage (i.e. ensuring that 94 

maximum biodiversity is represented within them) and their success in buffering the 95 

biodiversity from the processes that threaten its viability (Gaston et al. 2008; Watson et al. 96 

2014). However, research tends to concentrate on the former (e.g. Montesino Pouzols et al. 97 

2014; Venter et al. 2014; Butchart et al. 2015; Polak et al. 2015; Visconti et al. 2015), with 98 

the result that we know little about the success of protected areas in maintaining their 99 

condition over time (Cabeza 2013; Geldmann et al. 2013; Beaudrot et al. 2016; Watson et al. 100 
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2016). This knowledge gap is particularly acute with regards to multiple-use categories. 101 

Global studies comparing across categories have found stricter protected areas to be more 102 

effective at slowing deforestation in some regions (Joppa and Pfaff 2011; Scharlemann et al. 103 

2010), whereas multiple-use sites demonstrate greater success in other countries (Ferraro et 104 

al. 2013; Nelson and Chomitz 2011). However, the use of remote sensed data within such 105 

analyses only allows us to quantify vegetation cover, therefore providing little insight into the 106 

ecological integrity of remaining natural vegetation and faunal communities beneath the 107 

canopy (Peres et al. 2006; Beaudrot et al. 2016). Less conspicuous changes to forest structure 108 

and composition (i.e. forest degradation) can stem from activities such as non-industrial 109 

selective logging, fuelwood collection, livestock grazing and the harvesting of non-timber 110 

forest products (NTFPs). Typically, these are precisely the types of activity that may be 111 

sanctioned within category V and VI protected areas (Dudley 2008). Indeed, conservationists 112 

still have a very limited understanding of species and community responses to habitat change, 113 

and our knowledge is largely derived from a small number of sites (Barlow et al. 2007; T. 114 

Gardner et al. 2009, 2010). Furthermore, few researchers have investigated the impacts of 115 

subsistence activities on biodiversity (Borghesio 2008; Brown et al. 2013). 116 

 117 

Madagascar is an example of a biodiversity-rich tropical developing country that is 118 

expanding its protected area system through the creation of new multiple-use sites. The island 119 

is a global conservation priority, boasting an unparalleled combination of species diversity 120 

and endemism (Brooks et al. 2006), with the majority of its endemic biota being forest 121 

dependent (Goodman and Benstead 2005). However, less than 16 % of the country retained 122 

forest cover by 2000 (Harper et al. 2007; McConnell and Kull 2014). Since 2003, 123 

Madagascar has been in the process of tripling the coverage of its protected area system, from 124 

1.7 to over 6 million ha, in response to lobbying from international conservation 125 
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organisations and funders (Corson 2014). Known as the ‘Durban Vision’ after the location of 126 

the fifth World Parks Congress at which it was launched, this ambitious programme has 127 

necessitated modifications to the country’s conception of protected areas and their 128 

governance. Previously, all protected areas were governed by the State, managed by the para-129 

statal Madagascar National Parks, and comprised only strict categories (I, II and IV; 130 

Randrianandianina et al. 2003). Most of the new protected areas established as part of the 131 

Durban Vision are co-managed by non-governmental organisations (NGOs) and local 132 

communities, and are proposed or designated as categories V and VI (AGRECO 2012; 133 

Gardner 2011; Virah-Sawmy et al. 2014), with zoned areas where subsistence and low-level 134 

commercial natural resource use activities are permitted (e.g. Gardner et al. 2008; Virah-135 

Sawmy et al. 2014; WWF 2010).  136 

 137 

The goals of the expanded Madagascar Protected Area System (SAPM) are to conserve the 138 

country’s unique biodiversity and its cultural heritage, as well as promoting the sustainable 139 

use of natural resources for poverty alleviation and development (Commission SAPM 2006). 140 

The simultaneous achievement of these goals is particularly complex because most forms of 141 

traditional land and resource use in Madagascar have negative impacts on biodiversity 142 

(Gardner 2009, 2011; Irwin et al. 2010). Planning the management of new multiple-use 143 

protected areas requires an understanding of species and community responses to habitat 144 

degradation arising from permitted resource use, yet our knowledge of the influence this has 145 

on biodiversity is patchy for the country as a whole, and particularly for the globally-146 

important spiny forest ecoregion (Irwin et al. 2010). Moreover, existing studies in 147 

Madagascar tend to mirror patterns in global research (Burivalova et al. 2014) by 148 

summarising assemblage-level change via species richness (e.g. Randriamiharisoa et al. 149 

2015; Scott et al. 2006). In other words, while studies may investigate the ecological or other 150 
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attributes of species remaining in degraded habitats, their results are usually reported in terms 151 

of species richness, but this measure has been criticised because it can mask community 152 

turnover from specialists to generalists (Barlow et al. 2007; Gardner et al. 2010). Here we 153 

investigate bird and reptile community responses to habitat change in a new protected area in 154 

the spiny forest ecoregion to ascertain the impacts of permitted and illegal livelihood 155 

activities (charcoal production and shifting cultivation respectively) on the conservation value 156 

of the vertebrate fauna. To overcome the issues associated with species richness as a metric, 157 

we use a novel Conservation Value Index (CVI) to examine the influence of habitat 158 

degradation on the two taxonomic assemblages.   159 

 160 

2 Methods 161 

2.1 Study site 162 

Madagascar’s spiny desert (or spiny forest), is a global priority ecoregion (Olson and 163 

Dinerstein 1998) and Endemic Bird Area (Stattersfield et al. 1998) with extremely high rates 164 

of local floral endemism (Phillipson 1996). Between 1990 and 2010 it suffered the fastest 165 

rates of deforestation of any ecoregion in the country (Harper et al. 2007; ONE et al. 2013) 166 

and, prior to 2003, it was the least represented ecoregion within the country’s protected area 167 

network (Fenn 2003).   168 

 169 

Ranobe PK32 is a new protected area that received temporary protected status within the 170 

Durban Vision framework in 2008, and is co-managed by local community associations, the 171 

regional Forest Service and the international NGO WWF (Virah-Sawmy et al. 2014). Lying 172 

north of the regional capital Toliara between the Fiherenana and Manombo rivers (Fig. 1), it 173 

is the richest landscape in the ecoregion in terms of its bird, reptile and lemur fauna (Gardner 174 

et al. 2009a,b; 2015a). However, the area is inhabited by approximately 90,000 people (WWF 175 
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2010), many of whom depend on natural resources from within and around the protected area 176 

for their subsistence and household income (Gardner and Davies 2014; Gardner et al. 2015b). 177 

Ranobe PK32 is thus proposed as a category VI protected area in which subsistence and low-178 

level commercial livelihood activities (such as timber cutting, fuelwood collection and 179 

charcoal production, grazing and the harvesting of NTFPs) are permitted in sustainable use 180 

zones which cover 86.5 % of the protected area’s 148,554 ha (Virah-Sawmy et al. 2014; 181 

WWF 2010).  182 

 183 

Charcoal is primarily produced in the western part of the protected area, due to the presence 184 

of the Route Nationale 9 (RN9) road that facilitates transportation. The industry is driven by 185 

the close proximity of Toliara, a city of approximately 200,000 people in which 98 % of 186 

households use wood or charcoal for cooking; demand from the city tripled between 2000 187 

and 2007, and is largely met by anarchic charcoal production along the RN9 (Gardner et al. 188 

2015b; Partage 2008). Since the region lacks fuelwood plantations, charcoal is produced 189 

entirely from natural forests (Bertrand et al. 2010). Charcoal producers select only hardwood 190 

trees (Randriamalala et al. 2016), thus causing forest degradation rather than outright 191 

deforestation (Casse et al. 2004).  192 

 193 

We conducted our study in the vicinity of Ranobe, a complex of three villages with a total 194 

population of approximately 2000 people (Gardner and Davies 2014), where the surrounding 195 

forests had been subjected to both charcoal production and shifting cultivation within recent 196 

years. We selected three areas within 3 km of the main village which, until recently, were 197 

part of a contiguous and relatively homogeneous forest block. Subsequently, the three areas 198 

have suffered varying levels of disturbance that are indicative of the habitat degradation 199 

gradient found across the whole landscape: i) a forest area showing minimal impacts of 200 
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human activity (low-disturbance, hereafter Low); ii) a forest area subject to intensive charcoal 201 

production (moderate-disturbance, Mod); and, iii) an area regenerating following shifting 202 

cultivation (high-disturbance, High). While Low and Mod retained a complex three-203 

dimensional structure and can be termed forest, High was an open area dominated by shrubs, 204 

with only scattered trees (Fig. 1, Table 1). As there were no areas of forest near Ranobe that 205 

had not been subject to any human disturbance, it was not possible to include a control site 206 

representing intact habitat. Birds and reptiles were surveyed between January and March 207 

2010 in the rainy season, when both groups are most active (Glaw and Vences 2007; Safford 208 

and Hawkins 2013). 209 

 210 

[Fig. 1] 211 

 212 

[Table 1] 213 

 214 

2.2 Bird survey protocol 215 

We established 48 census stations within each area and used the point count method (Bibby 216 

et al. 1998) to estimate bird relative abundance. Access to the forest interior was hindered by 217 

the impenetrable nature of the vegetation at Low and Mod, so census stations were placed on 218 

a stratified random grid along existing ox-cart tracks. We positioned all stations at a 219 

perpendicular distance of 75 m from a track (following Jones et al. 1995) to minimise the 220 

influence of edge effects, and at least 150 m apart to minimise the risk of double counting.  221 

 222 

We surveyed each census station for 15 minutes (following a settling period of four minutes 223 

after arrival), during which we recorded all visual and auditory contacts within 50 m of the 224 

census station. To reduce time-of-day and weather-related effects, surveys were limited to 225 
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between 06.00 and 08.00 and were not conducted on rainy or windy days. The majority of 226 

bird contacts in spiny forest (> 85 % at Low and Mod) were auditory due to the dense 227 

vegetation, thus making it difficult to generate reliable distance estimates for bird contacts 228 

and, as such, we did not employ distance sampling methods. However, the non-visual nature 229 

of most contacts reduces the likelihood of a detectability bias arising from surveying in 230 

forests of varying degradation levels (Bibby and Buckland 1987). The auditory nature of 231 

most contacts also meant that we could not accurately count the number of individuals for 232 

social species, and thus we recorded the presence of groups not individuals. We did not 233 

include contacts with juvenile birds in our data analysis to reduce seasonality effects. Point 234 

count observations yielded both relative frequency (defined as the proportion of counts in 235 

which a given species was recorded) and relative abundance (mean number of contacts of a 236 

given species per count) data.  237 

 238 

2.3 Reptile survey protocol 239 

We calculated the relative abundance of reptiles based on capture in pitfall traps and area 240 

constrained refuge searches (transects), because observation and capture-based methods 241 

permit the sampling of different components of the reptile fauna (Raselimanana 2008). For 242 

pitfall trapping we followed a standard protocol widely used in Madagascar (D’Cruze et al. 243 

2007; Raselimanana 2008). The traps consisted of plastic buckets (270 mm deep, 290 mm 244 

internal diameter at top, 220 mm internal diameter at base) placed 10 m apart and buried in 245 

the ground with the rim level with the surface. Drainage holes were drilled in the bottom of 246 

each bucket and the handles were removed. Buckets were connected by a drift fence 500 mm 247 

high, passing directly over the centre of each bucket, constructed from a sheet of plastic 248 

supported by wooden stakes. The lower 50 mm of the fence was buried in the soil and 249 

covered with leaf litter to prevent animals passing underneath. Within each treatment we 250 
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established three trap lines (each of 10 or 11 buckets), placed randomly, but at least 150 m 251 

apart. Traps were constructed in the morning and left open for 13 nights, equating to 403 trap 252 

nights in total per area, and were checked at 07.00 and 16.00 each day. All captured animals 253 

were marked on the hind leg or ventral surface with nail polish, and released at the site of 254 

capture. Recaptured individuals were excluded from the data analysis. 255 

 256 

We also established 38 transects along which we conducted active refuge searches. Each 257 

transect consisted of a 50 m rope erected adjacent to forest tracks based on a stratified 258 

random grid. Each transect was at least 150 m apart, ran perpendicular to a track and started 259 

10 m into the forest to reduce the influence of edge effects. We established each transect 24 260 

hours prior to surveying to minimise disturbance effects. During surveys, two observers 261 

moved slowly along each transect and searched for reptiles within 2 m of the central line, 262 

scanning the trunks and branches of trees, searching within tree holes, under bark, in the leaf 263 

litter and under/within dead branches. All reptiles initially observed within 2 m of the central 264 

line were recorded. Transects were walked from 08.00-10.00 (n = 22/site) and 15.00-17.00 (n 265 

= 16/site); we did not survey during periods of rain or thick cloud cover to minimise variation 266 

in weather-related detectability, which reduced the number of appropriate afternoon survey 267 

periods. Juveniles were omitted from the dataset to minimise any bias that might be 268 

associated with the effects of the breeding season. Transects and pitfalls generated density 269 

and capture rate data, respectively: we pooled the data and used total contacts for further 270 

analyses (not including rarefaction). 271 

 272 

2.4 Data analysis 273 

In order to compare species richness between treatments and estimate the completeness of 274 

our sampling, we generated individual-based observed species richness rarefaction curves 275 
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and associated 95 % confidence intervals using EstimateS v.9.0 (Colwell 2013). For reptiles, 276 

we combined the two datasets by assigning species to one or other method on the basis of 277 

substrate use, following a protocol adapted from Bicknell et al. (2015), whenever a species 278 

was recorded by both methods. Thus all arboreal species were assigned to transects and all 279 

terrestrial and fossorial lizards were assigned to pitfall traps. Remaining terrestrial species 280 

(snakes and a tortoise) were assigned to the method by which they were most frequently 281 

recorded. We used chi-squared contingency tables to test for homogeneity of observed 282 

species relative frequency (birds) or total contacts (reptiles) across treatments. 283 

  284 

Conservation Value Index 285 

All species are not equal, and may differ in their value to conservationists on the basis of 286 

endemism, extinction risk (Mace et al. 2008), evolutionary distinctiveness (Tucker et al. 287 

2012; Hidasi-Neto et al. 2015), public appeal (Smith et al. 2012) or other attributes 288 

(Humphries et al. 1995; Joseph et al. 2009). This variation forms the basis of a range of 289 

protocols designed to elucidate the conservation value of species and, in turn, support the 290 

prioritisation of conservation actions or funding allocations (e.g. Huang et al. 2016; Isaac et 291 

al. 2007; Joseph et al. 2009). However, these protocols tend to be methodologically complex 292 

and require the collection of large datasets, diminishing their applicability in situations where 293 

non-academic conservation practitioners lack the training to apply them or where the 294 

necessary data are unavailable (Gardner et al. 2015a). In this study, we therefore used the 295 

novel Conservation Value Index (CVI) (adapted from Gardner et al. 2015a) to quantify the 296 

conservation value of individual species because it uses only readily available data and does 297 

not require the use of specialist software. As such, it can be easily applied in day-to-day 298 

decision-making by conservation practitioners. We assigned CVI scores to individual species 299 
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of bird and reptile before combining them to assess the impacts of natural resource use, and 300 

subsequent habitat degradation, on the conservation value of spiny forest habitats.  301 

 302 

For the CVI we assigned scores to each individual species based on four attributes that reflect 303 

rarity, distinctiveness and threat. We use different combinations of attributes for the two 304 

taxonomic groups because the variation in conservation value within each group is driven by 305 

different factors. We scored rarity using geographical scale of endemism (G) and 306 

representation within SAPM (R), distinctiveness by taxonomic level of endemism (E), and 307 

threat on the basis of hunting and collection pressure (C) and degradation tolerance (T). We 308 

did not use E for reptiles because all species are endemic and there are no endemic families, 309 

so variation in the attribute is limited. Similarly, we did not use C for birds because most 310 

species in the Ranobe area are subject to comparable hunting pressure (Gardner and Davies 311 

2014).   312 

 313 

Introduced species were removed from the dataset and scores assigned to indigenous taxa on 314 

a scale of 1-5 for each attribute (Table 2). For G we used different scoring systems for 315 

reptiles and birds because species distributions of the two taxonomic groups are best 316 

explained by different biogeographical models (Pearson and Raxworthy 2009). For birds we 317 

used distribution maps from Safford and Hawkins (2013) and followed Stattersfield et al. 318 

(1998) to classify microendemic species, whereas for reptiles we visually estimated range 319 

criteria using maps in Glaw and Vences (2007) and adopted 10,000 km2 as the threshold for 320 

microendemic species (following Gardner et al. 2015a). E was assigned on the basis of 321 

taxonomy in Safford and Hawkins (2013), R scores were assigned on the basis of occurrence 322 

in 14 (birds) or 15 (reptiles) protected areas in the dry regions of Madagascar derived from 323 

the literature (Online resource 1), and values for C were based on occurrence in CITES 324 
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(Convention on International Trade in Endangered Species) appendices and the literature on 325 

reptile declines in Madagascar. T was attributed following the methods outlined in Gardner et 326 

al. (2015a) for reptiles, and were based on the literature (Safford and Hawkins 2013; Wilmé 327 

1996) for birds. Species for which no degradation tolerance data were available were scored 328 

as intolerant on the basis of the precautionary principle.    329 

 330 

[Table 2] 331 

 332 

The individual species CVI scores were calculated, producing a value in the range of 4-100, 333 

using the following formulae for reptiles and birds:  334 

( ) ( )CVIreptile G R x C T  
 335 

( ) ( )CVIbirds G E x R T     336 

 337 

The conservation value of a site can be considered a function of: i) the value of the species 338 

occurring there; and, ii) their abundance, because an area with a large population of a 339 

valuable species is more important than one with a small population. To understand the 340 

relative conservation value of each habitat treatment, we therefore wanted a metric that 341 

combined the CVI of each species with their relative abundance. However, simply weighting 342 

the CVI score by the relative frequency would heavily bias common species at the expense of 343 

rarer ones which are recorded only infrequently. We thus gave each species weightings 344 

standardised to the treatment where it was most frequent (e.g., a species with relative 345 

frequency of 0.36, 0.18 and 0.12 across each of the three treatments would be given 346 

weightings of 1, 0.5 and 0.33 respectively). In each treatment the CVI was then multiplied by 347 

the weighting to produce a frequency-weighted CVI score for each species, before these were 348 

summed to produce a conservation value score for each treatment.  349 
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 350 

3 Results 351 

3.1 Degradation impacts on birds 352 

We recorded 2385 bird contacts, comprising 53 species, in point counts across all treatments. 353 

Rarefaction curves approach an asymptote in all treatments, indicating that bird communities 354 

were sufficiently sampled (Fig. S1). Although observed richness was highest in the moderate-355 

degradation treatment (Low – 36 spp.; Mod – 43 spp.; High – 37 spp.), rarefaction curves 356 

show no significant differences in richness since the 95 % confidence intervals overlap 357 

(Online resource 2). Total richness is estimated at 42.0 (Low), 46.8 (Mod) and 39.7 (High) 358 

species in the three treatments. Twenty-four species (45.3 %) were recorded in all treatments, 359 

one species (1.9 %) was restricted to Low, five species (9.4 %) were restricted to Mod, and 360 

seven (13.2 %) species were restricted to High: 17 species (32.1 %) were recorded only in 361 

forest habitats (Low and Mod). 362 

 363 

Observed patterns of species relative frequency differed significantly for 22 species (41.5 %) 364 

across the three treatments. Three of these species (Cuculus rochii, Hypsipetes 365 

madagascariensis and Dicrurus forficatus) were observed more frequently in the low-366 

degradation treatment, one species (Ploceus sakalava) in the moderate-degradation treatment, 367 

and six species (Turnix nigricollis, Oena capensis, Agapornis canus, Cisticola cherina, 368 

Acridotheres tristis and Foudia madagascariensis) in the high-degradation treatment. A 369 

further 12 species were recorded less frequently in the high-degradation treatment than in 370 

forest habitat (Low or Mod) (Online resource 3). 371 

 372 

Patterns of species endemism varied across the degradation gradient (Fig. 2). While the 373 

proportion of endemic species was approximately equal in all treatments, the high-374 
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degradation treatment contained a lower proportion of regionally-endemic birds (defined as 375 

restricted to Madagascar and the islands of the western Indian Ocean) and a higher proportion 376 

of non-endemic species. The vast majority (97.9 %) of contacts with introduced species 377 

(Acridotheres tristis) occurred in the high-degradation treatment. 378 

 379 

[Fig. 2] 380 

 381 

3.2 Degradation impacts on reptiles 382 

We recorded 661 reptile contacts comprising 32 species, 27 of which were recorded at Low 383 

and Mod, and 15 species at High. Twenty-two species were observed during transects, and 27 384 

were captured in pitfall traps (Online resource 4). Twelve species (37.5 %) were recorded in 385 

all treatments, 17 species (53.1 %) were only recorded in forest habitats, and one species 386 

(Lygodactylus tuberosus) was recorded only in the high-disturbance site. Rarefaction curves 387 

indicate that Low and Mod had significantly higher species richness than High, as there is no 388 

overlap between confidence intervals (Online resource 5). Total richness is estimated at 30.5 389 

(Low), 34.2 (Mod) and 19.1 (High) species in the three treatments. 390 

 391 

Observed patterns of reptile abundance, based on total contacts, were significantly 392 

heterogeneous for 11 species (34.4 %). Three species were recorded more frequently in the 393 

low-degradation treatment (Chalarodon madagascariensis, Lygodactylus verticillatus and 394 

Oplurus cyclurus), two species in the moderate-degradation treatment (Madascincus cf. 395 

igneocaudatus and Tracheloptychus petersi), and three species in the high-degradation 396 

treatment (Lygodactylus tuberosus, Paroedura picta and Typhlops arenarius). A further three 397 

species (Geckolepis c.f. polypelis, Phelsuma mutabilis and Trachylepis elegans) were 398 

recorded more frequently in the two forest areas than in the high-degradation treatment.  399 
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 400 

Forest disturbance affected distinct components of the reptile community differently, 401 

depending on their foraging substrate (Online resource 6). Terrestrial species decreased in 402 

frequency (capture rate and/or density) with increasing disturbance, while arboreal species 403 

demonstrated reduced frequency at Mod and reduced richness at High compared to the less 404 

degraded site. Fossorial and litter dwelling species reached peak frequency under conditions 405 

of moderate-intensity disturbance.  406 

 407 

3.3 Conservation value of species and sites 408 

The CVI allowed us to weight species on the basis of their conservation value. The six 409 

highest scoring bird species were locally-endemic forest specialists (Table 3), while the 410 

highest scoring reptile was the heavily harvested (and thus Critically Endangered) tortoise 411 

Pyxis arachnoides (Table 4). The relative conservation value of each treatment varied for the 412 

two taxonomic groups. Total bird conservation value was highest in Low, while total reptile 413 

conservation value was highest in Mod, although in both cases the differences between the 414 

two forest areas were small (Table 5). The high-degradation treatment had the lowest 415 

conservation value for both taxa. 416 

 417 

[Table 3] 418 

 419 

[Table 4] 420 

 421 

[Table 5] 422 

 423 

4 Discussion 424 
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We have generated some of the first data on the impacts of permitted livelihood activities 425 

within Madagascar’s new generation of multiple-use protected areas. Our results show that 426 

charcoal production, an authorised activity within much of the Ranobe PK32 protected area, 427 

resulted in an overall reduction in the conservation value of habitats, although the responses 428 

of reptile and bird communities varied. However the impacts of charcoal production were less 429 

severe than the impacts of illegal shifting cultivation for both groups.  430 

 431 

Although the impacts of habitat degradation on Madagascar’s biodiversity have been well 432 

studied (reviewed in Gardner 2009; Irwin et al. 2010), the vast majority of research has been 433 

conducted in the country’s humid and dry forests, ecosystems which greatly differ from the 434 

spiny forest in terms of biotic communities and abiotic conditions (Moat and Smith 2007; 435 

Goodman and Raherilalao 2013). Within the spiny forest, degradation has been found to 436 

reduce species richness in both birds (Randriamiharisoa et al. 2015) and reptiles (Theisinger 437 

and Ratianarivo 2015). However, in our study, richness was maintained for reptiles and 438 

increased for birds at moderate degradation levels. Indeed the conservation value of reptiles 439 

was greatest at the moderate-disturbance site, perhaps reflecting an increase in microhabitat 440 

heterogeneity or structural complexity (MacArthur and MacArthur 1961; Tews et al. 2004). 441 

Bird communities were more responsive than reptiles to habitat degradation, undergoing 442 

extensive community turnover. This was reflected in the greater prevalence of birds adapted 443 

to open areas, and a decrease in the frequency of certain high-value, locally-endemic species 444 

such as Monias benschi, Coua cursor and Newtonia archboldi, with increasing degradation 445 

intensity.  446 

 447 

Wilmé (1996) suggests that “the tolerance of [Madagascar’s] endemic forest avifauna to 448 

forest degradation is proportional to its degree of taxonomic endemism”. However, we 449 
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recorded seven members of endemic genera (Coua cursor, Monias benschi, Neomixis 450 

striatigula, Newtonia brunneicauda, N. archboldi, Vanga curvirostris and Xenopirostris 451 

xenopirostris) previously thought to occur only in undisturbed or slightly disturbed habitats, 452 

within a largely deforested habitat in our high-disturbance treatment. These findings lend 453 

some support to the hypothesis that faunal species of Madagascar’s dry and spiny forests may 454 

be more tolerant of degradation than those same or congeneric species in the country’s humid 455 

east and north (Gardner 2009). This may arise due to the more ‘gentle’ habitat modifications 456 

occurring in dry forests compared to rainforests (Irwin et al. 2010): for example, the 457 

increased light penetration in forest gaps is thought to make little difference to the understory 458 

in the spiny forest, because the sparse, deciduous nature of the canopy already allows 459 

illumination at ground level (Seddon and Tobias 2007). However, while tropical dry forests 460 

are thought to be more resilient than humid forests in terms of regeneration capacity (Lebrija-461 

Trejos et al. 2008), little is known about the relative disturbance sensitivity of their respective 462 

faunas. Such research should be considered a priority since it has important repercussions for 463 

the implementation of multiple-use protected areas in different bioclimatic contexts.       464 

 465 

The finding that moderate levels of degradation provoked an increase in richness of birds, 466 

and maintained richness in reptiles, is consistent with Connell’s (1978) ‘intermediate 467 

disturbance hypothesis’, and reflects a pattern widely reported from other tropical 468 

environments, at least for some guilds (Burivalova et al. 2014; Child et al. 2009; Gray et al. 469 

2007; Martin and Blackburn 2010; Pons and Wendenberg 2005). However, all species are not 470 

equal, and the greater richness may often mask a turnover from range-restricted specialists to 471 

widespread generalists (Canaday 1997; Christian et al. 2009; Holbech 2005; Petit and Petit 472 

2003; Scott et al. 2006). The latter are of less importance to conservationists precisely 473 

because they adapt well to anthropogenic disturbance and thus do not require conservation 474 
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actions, such as protected areas, to maintain them (Harris and Pimm 2004; T. Gardner et al. 475 

2009). The use of species richness as a measure of conservation value has been widely 476 

criticised for this reason (Barlow et al. 2007; DeClercke et al. 2010; Fermon et al. 2005; 477 

Norris et al. 2010), but remains persistent (e.g., studies reviewed by Burivalova et al. 2014). 478 

Our use of the CVI provides further evidence of the inadequacies of richness in prioritising 479 

between sites or habitats, as the use of richness would indicate that forests degraded by 480 

charcoal production are more valuable for bird conservation in the spiny forest than less 481 

degraded habitats. Of course, the CVI does not represent a definitive quantification of 482 

conservation value, but is a useful heuristic tool to help conservationists prioritise action to 483 

where it is most needed (i.e. high-value species), and can be used without training, complex 484 

software or collecting new data. 485 

 486 

Although the use of CVI provides novel insights into the impacts of habitat change on the 487 

conservation value of spiny forest bird and reptile assemblages, our results must be 488 

interpreted with caution. We carried out surveying during the rainy season when both groups 489 

are most active, and surveyed each site sequentially for logistical reasons. However, biases 490 

may have arisen due to changes in species detectability related to the advancing breeding 491 

season. In addition, the entry of new cohorts may have increased population size as surveying 492 

progressed. We minimised the latter problem by excluding all records of juveniles from the 493 

analysis, although it would have been preferable to repeat data collection over multiple years, 494 

or to survey each site simultaneously using multiple teams. Nonetheless, the latter approach 495 

has a number of drawbacks, including the extensive training needed to minimise the biases 496 

associated with potential differences in the bird detection abilities and/or identification skills 497 

of research assistants.        498 

 499 
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Although our observations appear to suggest that the majority of bird and reptile species in 500 

Ranobe are somewhat resilient to moderate or high levels of degradation, the presence of a 501 

species does not necessarily equate to its viability. It should not be assumed that local 502 

populations in disturbed areas will persist in the long-term because there are likely to be time 503 

lags associated with the impacts arising from perturbation, meaning that the degraded habitats 504 

at Ranobe may be carrying an ‘extinction debt’ (Kuussaari et al. 2009; Tilman et al. 1994). 505 

This is particularly true given that the habitat modifications that are the focus of this study are 506 

relatively recent (range: 3-15 years across the treatments). In addition, the persistence of 507 

some species within degraded habitats may be the result of source-sink dynamics, with 508 

populations maintained only by immigration from nearby areas of higher quality habitat 509 

(Hylander and Ehrlén 2013; Pulliam 1988; Tilman et al. 1994). The degraded habitats at 510 

Ranobe may therefore experience future local extinctions, even without further modification, 511 

and we may have over-estimated the value of these areas for bird and reptile diversity 512 

(Barlow et al. 2007; Sekercioglu et al. 2007). The scale of extinction debt can be influenced 513 

by habitat quantity, quality, or connectivity (Hylander and Ehrlén 2013). As such, when 514 

destructive activities such as charcoal production cannot be prevented within the ‘sustainable 515 

use zones’ of multiple-use protected areas, both the structural and functional connectivity 516 

between high-quality habitat patches should be maximised in order to maintain biodiversity 517 

and mitigate the negative impacts associated with resource exploitation.    518 

 519 

The suggestion that Madagascar’s new generation of multiple-use protected areas may suffer 520 

the continued erosion of biodiversity as a result of the impacts of authorised livelihood 521 

activities has important ramifications for the objectives and management of multiple-use sites 522 

worldwide. In a multi-taxon assessment across a continuum of protection levels in East 523 

Africa, Gardner et al. (2007) found that multiple-use protected areas provide significant and 524 
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complementary conservation services to strictly-protected sites, maintaining species richness 525 

but conserving significantly different faunal communities to those occurring in national 526 

parks. Thus a spectrum of protected area categories may be appropriate to conserve the full 527 

complement of biodiversity in continental regions, if these possess a range of faunal 528 

assemblages adapted to a continuum of habitat types from dense forests to wooded savannahs 529 

and grasslands (Borghesio 2008; Gardner et al. 2007; Pons et al. 2003).  530 

 531 

Madagascar, however, differs from continents in that the vast majority of the endemic biota is 532 

forest-dependent (Goodman and Benstead 2005), while non-forest areas typically contain 533 

floristically- and faunistically-impoverished assemblages characterised by non-endemic 534 

species of low conservation value (Irwin et al. 2010; Koechlin et al. 1974; Lowry II et al. 535 

1997). In this context, multiple-use sites essentially conserve the same communities as strict 536 

protected areas, but may do so less successfully than the latter. Thus, while multiple-use 537 

categories may be the only politically, ethically and logistically feasible option for many of 538 

Madagascar’s new generation of protected areas, given the socioeconomic importance to 539 

rural communities of remaining forest resources (Gardner et al. 2013), it should not be 540 

assumed that they will be successful in maintaining the biodiversity they were established to 541 

conserve. Given that range-restricted habitat specialists are disproportionately likely to go 542 

extinct in modified habitats (Posa and Sodhi 2006; Scales and Marsden 2008), and are of 543 

greatest conservation interest worldwide, careful attention must be paid to the choice of 544 

protected area models in different contexts; in regions where the majority of priority species 545 

are disturbance-sensitive, strict protected areas may be a more appropriate model if they can 546 

be managed effectively.  547 

 548 
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Figure Legends 980 

 981 

Fig. 1 Map of: A) Ranobe PK32 protected area (dotted line) showing location of five strict 982 

conservation zones (grey shading), wetlands and rivers (black shading/lines) and Ranobe 983 

village; and, B) location of three vegetation treatments used to survey bird and reptile 984 

communities across a gradient of degradation (forest cover, grey shading; wetlands, double 985 

line). Inset shows location of Ranobe PK32 within Madagascar (black square) and limits of 986 

spiny forest ecoregion following Goodman and Raherilalao (2013) (grey shading) 987 

 988 

Fig. 2 Endemism status of birds at Ranobe expressed as a percentage of contacts from 48 989 

point counts at three sites across a gradient of degradation. Black, Madagascar endemic; dark 990 

grey, regional endemic; light grey, indigenous non-endemic; white, introduced. Regional 991 

endemic species are defined as restricted to Madagascar and the western Indian Ocean islands 992 

(Comoros, Mascarene and Seychelles archipelagos) 993 

994 
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 995 

Table 1 Disturbance history and vegetation description of three habitat treatments used to 996 

investigate the impacts of degradation on birds and reptiles at Ranobe, southwest 997 

Madagascar.  998 

 999 
Treatment Disturbance history Habitat description 

Low 

disturbance 

(Low) 

Low level charcoal 

production since 2007 

Relatively closed canopy dominated by Didierea 

madagascariensis and hardwood trees, with no understory 

shrub layer. Some charcoal production resulting in small 

openings, but canopy generally unbroken. Thick leaf litter 

layer.  

Moderate 

disturbance 

(Mod) 

Intensive charcoal production 

since 1995 

Broken canopy dominated by Didierea madagascariensis, 

with hardwood trees largely absent. Small openings are 

frequent and possess a dense shrub layer of regenerating 

stumps. Characterised by piles of dead branches and bark left 

over from charcoal production. Thin leaf litter layer.  

High 

disturbance 

(High) 

Forest cleared for shifting 

cultivation in 2001, 

regenerating naturally since 

2004/5 

Dense shrub layer (height of 1-2m) of regenerating stumps 

dominated by Cedrelopsis grevei and Fernandoa 

madagascariensis, with no litter layer. Relict individual trees 

and small forest patches (< 1ha) occur within a mosaic pattern.    

 1000 
 1001 
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Table 2 Scoring criteria for Conservation Value Index (CVI) attributes, used to quantify the conservation value of individual bird and reptile 1002 

species at Ranobe, southwest Madagascar. EBA = Endemic Bird Area (Stattersfield et al. 1998), PA = protected area. 1003 

  1004 
Taxonomic 

group 

Score Geographic scale of 

endemism (G) 

Taxonomic level of 

endemism (E) 

Representation in  

sample PAs (R) 

Hunting/collection 

pressure (C) 

Degradation tolerance (T) 

Birds 1 Indigenous, non-endemic 

species 

Indigenous, non-

endemic species 

Recorded in 12-14 PAs (n > 

85%) 

N/A Tolerant of modified or artificial 

habitats 

2 Endemic to western 

Indian Ocean 

Endemic species Recorded in 8-11 PAs (55 > 

n < 85%) 

N/A N/A 

3 Widespread Madagascar 

endemic 

Endemic genus Recorded in 4-7 PAs (30 > n 

< 50%) 

N/A Tolerant of edge effects, medium-

intensity degradation or 

secondary growth. 

4 Endemic to dry regions of 

Madagascar 

Endemic subfamily Recorded in 2-3 PAs (10 > n 

< 20%) 

N/A N/A 

5 EBA species  Endemic family Recorded in only 1 PA (n < 

10%) 

N/A Intolerant of low-intensity 

degradation 

Reptiles 1 Indigenous, non-endemic 

species 

N/A Recorded in 12-15 PAs (n > 

75%) 

No known threat Tolerant of modified or artificial 

habitats 

2 Widespread endemic, 

occurring in dry and 

humid regions 

N/A Recorded in 8-11 PAs (45 > 

n < 75%) 

N/A N/A 

3 Endemic to dry regions N/A Recorded in 4-7 PAs (20 > n 

< 45%) 

Known threat 

(CITES Appendix I 

and II), but not 

known to cause 

local extirpations 

Tolerant of edge effects, medium-

intensity degradation or 

secondary growth.  

4 Endemic to one 

bioclimatic regiona 

N/A Recorded in 2-3 PAs (10 > n 

< 20%)  

N/A N/A 

5 Local endemic, range size 

estimated as < 10,000 

km2 

N/A Recorded in only 1 PA (n < 

10%) 

Threat known to 

have caused local 

extirpations or 

severe population 

declines 

Intolerant of low-intensity 

degradation 

a Following Cornet 19741005 
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Table 3 Bird species recorded at Ranobe showing attributes used in Conservation Value 1006 

Index (CVI) and frequency-weighted CVI scores for three sites across a gradient of 1007 

degradation: Low, Mod and High indicate low-, moderate- and high-degradation treatments. 1008 

CVI attributes: G – geographic scale of endemism, E – taxonomic level of endemism, R – 1009 

representation in sample protected areas, T – degradation tolerance. Asterisks indicate species 1010 

endemic to the spiny forest Endemic Bird Area (Stattersfield et al. 1998).  1011 

Species CVI attribute scores CVI 

score 

Frequency-weighted CVI 

G E R T Low Mod High 

* Monias benschi 5 5 4 5 90 90 22.5 22.5 

* Xenopirostris xenopirostris 5 5 3 5 80 0 11.4 80 

* Coua cursor 5 4 3 5 72 72 20.6 30.9 

* Uratelornis chimaera 5 5 4 3 70 0 0 0 

* Thamnornis chloropetoides 5 5 2 5 70 70 60.0 0 

* Newtonia archboldi 5 5 2 5 70 70 47.6 22.4 

Coua ruficeps olivaceiceps 4 4 2 5 56 40.0 56 0 

Calicalicus madagascariensis 3 5 2 5 56 56 56 0 

Artamella viridis 3 5 2 5 56 32.0 56 0 

Vanga curvirostris 3 5 1 5 48 48 29.2 4.2 

Coua cristata 3 4 1 5 42 42 36.6 25.7 

Falco zoniventris 3 2 3 5 40 0 40 0 

Falculea palliata 4 5 1 3 36 36 36 0 

Leptosomus discolor 2 5 2 3 35 0 0 0 

* Nesillas lantzii 5 2 2 3 35 35 0 11.7 

Newtonia brunneicauda 3 5 1 3 32 32 30.7 14 

Leptopterus chabert 3 5 1 3 32 19.2 16 32 

Aviceda madagascariensis 3 2 3 3 30 0 30 0 

Neomixis striatigula 3 3 2 3 30 21.5 30 10.8 

Cuculus rochii 3 2 2 3 25 25 11.7 5 

Polyboroides radiatus 3 2 1 3 20 20 10 0 

Buteo brachypterus 3 2 1 3 20 0 20 0 

Mirafra hova 3 2 3 1 20 0 0 20 

Copsychus albospecularis 3 2 1 3 20 20 19.3 14.3 

Treron australis 2 1 2 3 15 0 0 15 

Nectarinia notata 2 1 2 3 15 0 15 3.75 

Ploceus sakalava 4 1 2 1 15 0.7 15 5.0 

Accipiter francesiae  2 1 1 3 12 0 12 0 

Turnix nigricollis 2 1 1 3 12 2.1 0 12 

Nesoenas picturata 2 1 1 3 12 9.7 12 2.9 

Coracopsis vasa 2 1 1 3 12 12 12 0 

Coracopsis nigra 2 1 1 3 12 5.0 12 0 

Phedina borbonica 2 1 3 1 12 0 12 12 

Hirundo rustica 1 1 5 1 12 0 0 0 

Hypsipetes madagascariensis 2 1 1 3 12 12 2.6 6.8 

Terpsiphone mutata 2 1 1 3 12 9.7 12 4.6 

Neomixis tenella 3 3 1 1 12 12 11.7 9.3 

Cisticola cherina 2 1 3 1 12 0 0 12 

Nectarinia souimanga 2 1 1 3 12 11.5 12 8.8 

Dicrurus forficatus 2 1 1 3 12 12 9 9.5 

Falco peregrinus 1 1 4 1 10 0 0 10 

Agapornis canus 3 2 1 1 10 3.3 3.3 10 

Tachymarptis melba 1 1 4 1 10 0 10 0 

Eurystomus glaucurus 1 1 2 3 10 0 10 0 
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Upupa marginata 3 2 1 1 10 10 6.4 8.6 

Falco newtoni 2 1 2 1 9 4.1 3.3 9 

Caprimulgus madagascariensis 2 1 2 1 9 9 0 0 

Falco concolor 1 1 3 1 8 0 0 8 

Foudia madagascariensis 3 1 1 1 8 0.2 0.8 8 

Milvus migrans 1 1 2 1 6 0 0 0 

Oena capensis 1 1 2 1 6 3.4 1.4 6 

Centropus toulou 2 1 1 1 6 4.3 4.3 6 

Apus barbatus 1 1 2 1 6 3 6 0 

Merops superciliosus 1 1 2 1 6 3.7 3.3 6 

Corvus albus 1 1 2 1 6 0 0 6 

Numida meleagris 1 1 2 1 6 0 0 6 

Total conservation value of treatment 856.4 825.7 478.6 

 1012 

1013 
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Table 4 Reptile species recorded at Ranobe showing attributes used in Conservation Value 1014 

Index (CVI) score and relative frequency-weighted CVI scores for three sites across a 1015 

gradient of degradation: Low, Mod and High indicate low-, moderate- and high-degradation 1016 

treatments. CVI attributes: G – geographic scale of endemism, R – representation in sample 1017 

protected areas, C – collection/hunting threat, T – degradation tolerance. Locally-endemic 1018 

species are indicated by an asterisk.  1019 

 1020 
 CVI attribute scores CVI 

score 

Frequency-weighted CVI 

Species G R C T Low Mod High 

Pyxis arachnoides  4 3 5 5 70 70 0 0 

* Voeltzkowia petiti 5 4 1 5 54 14.7 54 0 

* Tracheloptychus petersi 5 4 1 5 54 22.1 54 2.5 

Geckolepis polylepis 4 4 1 5 48 48 32.8 0 

Paroedura androyensis 4 3 1 5 42 14 42 0 

* Pygomeles braconnieri 5 4 1 3 36 14.4 36 0 

Voeltzkowia rubrocaudata 3 3 1 5 36 36 0 10.3 

* Zonosaurus quadrilineatus 5 4 1 3 36 36 32 8 

Ithycyphus oursi 3 3 1 5 36 0 36 0 

* Liophidium chabaudi 5 4 1 3 36 36 28.8 21.6 

Madascincus igneocaudatus 3 2 1 5 30 12 30 0 

Madagascarophis ocellatus 4 3 1 3 28 28 0 0 

Blaesodactylus sakalava 3 1 1 5 24 24 16 0 

Zonosaurus karsteni 3 3 1 3 24 24 24 0 

Madagascarophis meridionalis 3 3 1 3 24 0 24 0 

Trachylepis aureopunctata 3 2 1 3 20 6.7 20 3.3 

Heteroliodon occipitalis 3 2 1 3 20 10 20 0 

Leioheterodon geayi 3 2 1 3 20 20 0 0 

Typhlops arenarius 3 2 1 3 20 0 6.2 20 

Typhlops decorsei 3 2 1 3 20 0 20 0 

Lygodactylus verticillatus 4 4 1 1 16 16 4 0 

Phelsuma mutabilis 3 1 3 1 16 16 10.3 2.3 

Amphiglossus ornaticeps 2 2 1 3 16 9.6 16 0 

Oplurus cyclurus 2 2 1 3 16 16 6.5 0.73 

Lygodactylus tuberosus 4 3 1 1 14 0 0 14 

Paroedura picta 3 2 1 1 10 3.8 1.9 10 

Furcifer verrucosus 3 2 1 1 10 10 2.9 0 

Chalarodon madagascariensis 2 2 1 1 8 8 4 3.0 

Trachylepis elegans 2 1 1 1 6 4.9 6 2.9 

Dromicodryas bernieri 2 1 1 1 6 6 6 6 

Mimophis mahfalensis 2 1 1 1 6 4.5 6 5.3 

Hemidactylus mercatorius 1 1 1 1 4 4 3.4 2.9 

Total conservation value of 

treatment  

     514.7 542.8 112.7 

 1021 

1022 
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 1023 

Table 5 Observed and estimated species richness and Conservation Value Index (CVI) score 1024 

for birds and reptiles at three sites across a gradient of disturbance at Ranobe, southwest 1025 

Madagascar.  1026 

 1027 
 Low 

disturbance 

Moderate 

disturbance 

High 

disturbance  

Observed bird richness 36 43 37 

Estimated bird richness 42.0 46.8 39.7 

Bird CVI 856.4 825.7 478.6 

Observed reptile richness  27 27 15 

Estimated reptile richness 30.5 34.2 19.1 

Reptile CVI 514.7 542.8 112.7 

 1028 

1029 
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Fig. 1 1030 
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Fig. 2  1033 
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