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Abstract

Many of the unresolved debates in palaeoanthropology regarding evolution of particular locomotor or

manipulative behaviours are founded in differing opinions about the functional significance of the preserved

external fossil morphology. However, the plasticity of internal bone morphology, and particularly trabecular

bone, allowing it to respond to mechanical loading during life means that it can reveal greater insight into

how a bone or joint was used during an individual’s lifetime. Analyses of trabecular bone have been

commonplace for several decades in a human clinical context. In contrast, the study of trabecular bone as a

method for reconstructing joint position, joint loading and ultimately behaviour in extant and fossil non-

human primates is comparatively new. Since the initial 2D studies in the late 1970s and 3D analyses in the

1990s, the utility of trabecular bone to reconstruct behaviour in primates has grown to incorporate

experimental studies, expanded taxonomic samples and skeletal elements, and improved methodologies.

However, this work, in conjunction with research on humans and non-primate mammals, has also revealed the

substantial complexity inherent in making functional inferences from variation in trabecular architecture. This

review addresses the current understanding of trabecular bone functional adaptation, how it has been applied

to hominoids, as well as other primates and, ultimately, how this can be used to better interpret fossil

hominoid and hominin morphology. Because the fossil record constrains us to interpreting function largely

from bony morphology alone, and typically from isolated bones, analyses of trabecular structure, ideally in

conjunction with that of cortical structure and external morphology, can offer the best resource for

reconstructing behaviour in the past.

Key words: cancellous bone; cortical bone; functional morphology; hominin; locomotion; Wolff’s law.

Introduction

The goal of palaeoanthropologists, and palaeontologists in

general, is to reconstruct behaviour in the past. The accu-

racy with which behaviour can be reconstructed has obvi-

ous implications for understanding the evolutionary history,

environment, diet or phylogenetic relationships of past and

present species. However, a primary problem when investi-

gating fossil morphology is that one is limited by the func-

tional inferences one can make from the preserved external

morphology alone. The external shape of a bone largely

reflects a genetic blueprint in the sense that, for example, a

gorilla femur or metacarpal is distinct from those of a chim-

panzee or a human. Furthermore, the similarities in external

morphology shared among gorillas, chimpanzees and

humans compared with other primates also reflect their

shared phylogenetic history.

The external shape of a bone is also obviously functional.

For example, the length and degree of curvature of long

bones correlate well with habitual locomotor behaviours

(e.g. quadrupedalism vs. suspension vs. bipedalism; Jungers

et al. 1997; Fleagle, 2013). Furthermore, the shape and size

of articular facets are strongly correlated with joint mobility

(Ruff, 1988; Ruff & Runestad, 1992; Ruff et al. 1994; Currey,

2002). However, articular facets are also functionally and

physiologically constrained by the need for congruence
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with articulating bones and the interdependence of all the

components of a particular joint that allow it to function

effectively (Ruff & Runestad, 1992; Lieberman et al. 2001;

Currey, 2002). As such, the external size and shape of articu-

lar facets remain relatively constant throughout life (apart

from pathological conditions; Ruff & Runestad, 1992;

Lieberman et al. 2001). Other aspects of external bone

shape are more malleable and can reflect differences in

function during one’s lifetime, such as variation in the

position or robusticity of muscle attachments (Churchill &

Morris, 1998; Hawkey, 1998; Eshed et al. 2004; Zumwalt,

2006), but the utility of such skeletal markers for inferring

behaviour has been questioned (Eliot & Jungers, 2000; Dju-

kic et al. 2015; Miszkiewicz et al. 2015; Rabey et al. 2015).

In short, although external morphology provides a wealth

of functional information, it encompasses both primitive

and derived features influenced by both genetic and non-

genetic factors that can make it challenging to determine

which aspects of external shape and size are functionally

important for reconstructing the finer details of behaviour,

particularly in fossils (Lieberman, 1997).

This confounding nature of external bony morphology

has caused much debate among palaeoanthropologists

regarding the behavioural reconstructions of many fossil

hominoid (Madar et al. 20023 ; Susman, 2004; Moy�a-Sol�a

et al. 2005; Begun & Kivell, 2011) and hominin taxa (Stern,

1975; Rose, 1991; Richmond & Strait, 2000; Dainton, 2001;

Lovejoy, 2009;4 Wood & Harrison, 2011; Alm�ecija et al.

2013). The clearest example of this debate is the over 40-

year-long discussion about the degree of arboreality in Aus-

tralopithecus afarensis (for review, see Ward, 2002, 2013;

Niemitz, 20105 ). Some view the primitive features of exter-

nal morphology as retentions from a more arboreal ances-

tor that were either in the process of being lost or were

selectively neutral and, as such, were considered largely

non-functional and adaptively insignificant (Lovejoy et al.

1973; Latimer & Lovejoy, 1989). Other researchers aim to

reconstruct behaviour as a whole and thus consider the

primitive features as functionally useful with adaptive value

retained under stabilizing selection (Stern, 1975; Rose, 1991;

Stern & Susman, 1991). Palaeoanthropologists run into simi-

lar problems when interpreting the unusual morphology of

Miocene apes like Oreopithecus (Moy�a-Sol�a et al. 2005; Sus-

man, 2005)6 and Sivapithecus (Madar et al. 2002; Begun &

Kivell, 2011), or the mosaic morphology of Australopithecus

sediba (Berger et al. 2010; Kivell et al. 2011a,b;7 DeSilva

et al. 2013) and Homo naledi (Berger et al. 2015; Kivell

et al. 2015). Thus, fossilized morphology often leaves us

questioning which features are functionally important for

reconstructing behaviour and exactly how extinct taxa

interacted with their environments.

Resolution of this debate requires a better understanding

of aspects of bony morphology that are more sensitive to

loading (i.e. force or stress) during life than external bone

shape and size and, as such, can better reflect how a bone

was used during an individual’s lifetime (Ruff & Runestad,

1992; Lieberman, 1997). Analyses of internal bone structure

– both the compact cortical shell and the spongy trabecular

(also called cancellous) bone found underneath joints – can

offer this functional insight. There is a general consensus

that all bone is initially formed via a genetic blueprint but,

because bone remodels throughout life, it can adapt to the

magnitude and direction of mechanical loading during

one’s lifetime (Martin et al. 1998; Carter & Beaupr�e, 2001;

Currey, 2002). This is true for both external and internal

bony morphology. However, variation in the internal corti-

cal and trabecular structure reflects more directly how a

joint or bone was used during life because it is more

responsive to the predominant directions of mechanical

stress (which cause strain in the bone; Lieberman, 1997; Ruff

et al. 2006). Furthermore, it is argued here that trabecular

structure in particular is especially informative for inferring

function and behaviour in the past for several reasons.

Trabecular bone is more porous than cortical bone. As

such, trabecular bone has greater surface area and an

increased number of bone cells that make it more metaboli-

cally active than densely-packed cortical bone (Huiskes et al.

2000; Jacobs, 2000; Currey, 2002). Trabecular bone typically

remodels at a faster rate than cortical bone; the annual

turnover rate of trabecular bone is approximately 25%

compared with only about 2–3% of cortical bone in adult

humans (Eriksen, 1986, 2010). Therefore, it is generally

accepted that trabecular bone is more responsive and mal-

leable to variations in magnitude and direction of load

throughout life than cortical bone and, as such, may more

clearly reflect function (Jacobs, 2000; Carter & Beaupr�e,

2001; Rubin et al. 2001, 2002; but see Lovejoy et al. 2003

and below). In vivo experimental studies of trabecular

remodelling show that the basic genetic blueprint of tra-

becular structure can be subsequently changed by variation

in load and/or habitual activities of an individual (Biewener

et al. 1996; Guldberg et al. 1997; Mittra et al. 2005; Pontzer

et al. 2006; Chang et al. 2008; Polk et al. 2008; Barak et al.

2011; Harrison et al. 2011). These experimental studies are

further supported by computational analyses modelling tra-

becular bone response to variation in load (Huiskes et al.

2000; Jacobs, 2000; Fox & Keaveny, 2001) 8. Thus, quantifying

how trabecular structure varies (e.g. trabecular bone vol-

ume or BV/TV, mean thickness or spacing of trabecular

struts, degree of anisotropy) across individuals or species

could reveal differences in how a particular joint or bone

was used during an individual’s lifetime. As such, variation

in trabecular structure can hold more detailed functional

information than can be gleaned from external morphol-

ogy alone and, when trabeculae are preserved, can be par-

ticularly informative for reconstructing behaviour in extinct

taxa.

The dynamic adaptability of trabecular bone can help

shed new light on several challenges that inherently come

with analyses of (often unusual and fragmentary) fossilized

© 2016 Anatomical Society
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morphology and, in particular, the longstanding palaeoan-

thropological debates founded on differing functional

interpretations of external morphology. For example,

recent studies, reviewed in more detail below, using com-

parative and/or experimental analyses, have demonstrated

the functional insight that can be gained from analyses of

trabecular structure when applied to fossil hominin

morphology

9
(Barak et al. 2013a,b;10 Su et al. 2013; Skinner

et al. 2015). A more precise insight into how bones and

joints were loaded in extinct taxa can, in turn, provide a

greater understanding of the functional significance (or

lack thereof) of variation in their external morphology

(Ryan & Ketcham, 2002b). The behavioural and mechanical

flexibility (Wainwright et al. 2008) that characterizes extant

primates means that external morphology does not always

predict or reflect behaviour. This is particularly important

for the numerous extinct Miocene and Pliocene taxa that

are characterized by combinations of morphologies for

which we have no good modern analogues (e.g. Sivapithe-

cus, Ardipithecus ramidus, Australopithecus sediba). Fur-

thermore, in fragmentary fossil specimens in which an

epiphysis (and its underlying trabeculae) are preserved (e.g.

a femoral head or distal ulna), more functional information

can be gleaned about joint loading and potential beha-

viour than might be possible from just the external mor-

phology alone. Trabecular analyses are non-invasive and

can provide additional functional insight that, in combina-

tion with cortical and external morphology, can allow one

to make the most out of such rare finds11 (Fig. 1).

This paper will review what is known about trabecular

bone’s functional response to load, how this has been

applied to primate taxa, with a focus on extant hominoids

and, finally, how this information can be (and has been)

used to infer behaviour in fossil hominoids and hominins.

Ideally, reconstructions of behaviour from bone should

incorporate both trabecular and cortical bone structure, in

combination with functional analyses of external morphol-

ogy. Although the underlying physiological processes

responsible for modelling and remodelling of trabecular

and cortical bone are generally the same (Eriksen, 2010),

there are several insightful reviews on the complexity of

cortical bone functional adaption (Lieberman, 1997; Pear-

son & Lieberman, 2004; Ruff et al. 2006; Judex & Carlson,

2009; Robling, 2009)12 and thus this will only be discussed

briefly here.

The history of trabecular bone functional
adaptation

The concept that the structure of bone (be that cortical or

trabecular bone) can adapt over time to mechanical loading

throughout life is commonly referred to as ‘Wolff’s law’

(Wolff, 1892; Cowin, 2001; Pearson & Lieberman, 2004).

However, Julius Wolff was not the first to recognize the cor-

relation between bone structure and mechanical use.

Nearly 50 years before Wolff, Julius Ward (1838) compared

the distinct trabecular pattern of the human femoral neck

to the support bracket of a street lamp, which is the origin

of ‘Ward’s triangle’ for the sparse triangular area of trabec-

ulae within the ‘bracket’ (Fig. 2; Koch, 1917; Martin et al.

1998). In 1867, Georg Hermann von Meyer, a Swiss anato-

mist, was the first to recognize variation in trabecular orien-

tation within different bones. When German engineer Karl

Culmann saw von Meyer’s trabecular illustrations, he

noticed that the orientation of the trabecular struts within

the human femoral neck was remarkably similar to the

internal compressive and tensile stress lines of a crane (simi-

lar to a cantilevered beam) he was designing at the time

(Fig. 2; Martin et al. 1998; Hammers, 2015). The collabora-

tion between von Meyer and Culmann has been called the

‘first cooperation in the field of bone biomechanics’ (Roes-

ler, 1987: 1029). However, it was Wolff that made the con-

cept popular (Wolff, 1870, 1892), and his ‘trajectorial

theory’ of how forces are distributed throughout bone was

well accepted by many in the scientific community at the

time (Jacobs, 2000; but see Roux, 1881).

Wolff, however, considered there to be a static mathe-

matical relationship between trabecular structure and stress

trajectories, i.e. that they must be perpendicular to each

other (Wolff, 1986; Jacobs, 2000; Hammers, 2015). Wolff

also focused solely on adult structure, and made no refer-

ence to growth and development or processes that may

have formed the ‘final’ adult structure, as he had no under-

standing of bone modelling and remodelling as we know

them today (Townsley, 1948; Wolff, 1986; Martin et al.

1998; Pearson & Lieberman, 2004). Thus, Wolff’s idea of

how trabecular bone reflected mechanical loading was

actually quite different from our current understanding that

we still regularly subsume under the title ‘Wolff’s law’. In

fact, it was Roux (1881) that recognized that bone cells were

capable of responding to local mechanical stresses and that

organisms had the ability to adapt their bony structure to

new environments. These two important principles are

much more similar to the general understanding and use of

Wolff’s law today, so much so that many researchers have

suggested that the more general version of Wolff’s law be

called ‘Roux’s law’ instead (Cowin, 2001; for further histori-

cal review, see Roesler, 1987; Martin et al. 1998).

Although many have found fault in Wolff’s specific math-

ematical explanation for how bone adapts to mechanical

loads (Pauwels, 1980; Carter et al. 1989; Frost, 1990; Bertram

& Swartz, 1991; Cowin, 2001; Lovejoy et al. 2003), the cur-

rent, more general version of ‘Wolff’s law’ is well accepted

(Cowin, 2001; Currey, 2002; Ruff et al. 2006). Thus, given

that Wolff himself did not fully recognize the potential

dynamic adaptability of bone, more appropriate terms are

the ‘mechanical adaptability hypothesis’ (Martin et al. 1998)

or ‘bone functional adaptation’ (Roux, 1881; Cowin et al.

1985; Lanyon & Rubin, 1985; Ruff et al. 2006), the latter of

which will be used from here on in.
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Evidence of trabecular bone functional
adaptation

The general functional role of trabecular bone is to provide

strength and transfer external load away from the joint and

toward the cortical bone (Currey, 2002; Barak et al. 2008).

The relative amount of trabecular bone (BV/TV, sometimes

also referred to as ‘density’) and its degree of alignment

(i.e. anisotropy) are the most biomechanically informative

aspects of trabecular architecture (Goldstein et al. 1993;

Odgaard et al. 1997; van Rietbergen et al. 1998)14 ; 88% of

trabecular stiffness (Young’s modulus of elasticity) can be

explained by BV/TV (Stauber et al. 2006), while an addi-

tional 10% can be explained by degree of anisotropy

(Maquer et al. 2015). Indeed, Odgaard et al. (1997)15 demon-

strated that the fabric (i.e. a characterization of the aniso-

tropy) and mechanical (or elastic) principal directions are

closely aligned. Thus, BV/TV and degree of anisotropy are

among the most commonly quantified parameters in tra-

becular studies, often in concert with other variables that

can provide more detailed information about variation in

shape and size of the trabecular struts (Table 1; Odgaard,

1997, 2009). These descriptive variables, such as trabecular

thickness or number, are quantified in an effort to better

understand heterogeneity in trabecular strength and/or the

optimization of its structure. However, little is known about

the effect these descriptive parameters have on the

mechanical properties of the trabecular structure as a

whole. For example, the number of trabeculae is thought

to have no importance (Gibson, 1985; Gibson & Ashby,

1997), while the interconnectedness (i.e. connectivity;

Hodgskinson & Currey, 1990) or shape of the individual

struts (plate- vs. rod-shape; Liu et al. 2008) seem to play a

more substantial mechanical role. In short, some descriptive

parameters may be unimportant (Maquer et al. 2015), while

others may be highly correlated with BV/TV and anisotropy,

making their specific mechanical role challenging to iden-

tify (Hodgskinson & Currey, 1990; Goldstein et al. 1993).

Regardless of the potential limitations of describing and

quantifying trabecular structure, the concept that trabecu-

lar bone structure can adapt to its mechanical environment

has been demonstrated by numerous empirical studies.

Firstly, several comparative studies of primate trabecular

bone across individuals or species have revealed variation in

trabecular structure that fits well with predictions of differ-

ences in habitual mechanical loading during locomotion

Fig. 1 Trabecular and cortical bone structure in a chimpanzee hand. A 3D rendering from a micro-CT scan of an extant chimpanzee hand (Pan

troglodytes; left), a sagittal cross-section through the third ray, revealing the internal bone structure (middle) with the area outlined in the dashed

box blown up (right) to show the dense cortical shell and the trabecular meshy network inside. Note that trabeculae fill just the epiphyses of long

bones, like the third metacarpal (Mc3), while short bones, like the capitate and lunate, are filled completely with trabeculae.
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(Fajardo & M€uller, 2001; Ryan & Ketcham, 2002a, 2005;

Ryan & Shaw, 2012, 2015; Scherf et al. 2013; Tsegai et al.

2013; Matarazzo, 2015; but see below). Within humans, for

example, more mobile, foraging populations show signifi-

cantly greater BV/TV and thicker trabeculae in their proxi-

mal femur than that of less mobile, agricultural populations

(Ryan & Shaw, 2015). The distinctive trabecular pattern of

the adult proximal femur (Fig. 2) appears between the ages

of 1 and 2 years, when human infants develop independent

bipedal walking and the femur becomes weight-bearing in

a human-like way (Townsley, 1948; Ryan & Krovitz, 2006;

but

16

see Cunningham & Black, 2009a,b)17 . Raichlen et al.

(2015)18 have recently followed on this study, suggesting that

subtle changes in trabecular structure of the human distal

tibia reflect the increased biomechanical stability during

bipedalism that is gained between the ages of 1 and 8

years.

Secondly, several computational studies can explain the

maintenance of a particular trabecular structure as optimal

for the mechanical load it experiences (Levenstone et al.

1994; 19Huiskes et al. 2000; Fox & Keaveny, 2001; Keaveny

et al. 2001; Gupta et al. 2007). For example, in one of the

first computer simulations of trabecular bone remodelling,

Huiskes et al. (2000) 20showed that there is a balance in the

metabolic process of bone resorption (osteoclasts) and bone

formation (osteoblasts) that is governed by mechanical

A

D E

B C

Fig. 2 Historical description of trabecular bone functional adaptation. (A) Coronal cross-section and (B) radiograph of a human proximal femur

showing the distinct trabecular pattern related to bipedal loading. (C) Ward’s (1838) drawing of the trabecular structure that he related structurally

to the bracket street lamp post. The sparse area of trabeculae in the femoral next is equivalent to the empty space within the bracket (‘g’), which

is known as ‘Ward’s triangle’ (W). (D) von Meyer’s (1867) stylized illustrations of trabecular patterns in human bones. (E) Wolff’s (1970) 13composite

diagram including the compressive and tensile strain patterns in Culmann’s cantilevered beam and ‘crane’ (left), and the similarity to the trabecular

patter in the human proximal femur (right). Images (A–C) adapted from Garden (1961), and images (D and E) adapted from Skedros & Baucom

(2007).
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load. When mechanical load remained stable (i.e. home-

ostasis), remodelling continued without affecting the over-

all bone mass or structure. However, when the external

load was rotated by 30 �, the main orientation of the tra-

beculae gradually reoriented as well to align with the exter-

nal load and optimize mechanical strength. A 20% decrease

or increase in the external loading reduced or increased tra-

becular bone mass by a comparable degree (15.8% and

17.5%, respectively). When the original homeostatic load-

ing conditions were applied again, the trabecular structure

and bone mass gradually returned to its original form

(Huiskes et al. 2000).

Since the 1990s, finite element (FE) modelling has been

used successfully in various ways to quantify and validate

the mechanical properties and functional significance of

trabecular bone (Hollister et al. 1994; van Rietbergen et al.

1995, 1999; Kabel et al. 1999; Ulrich et al. 1999; Homminga

et al. 2004; Ryan & van Rietbergen, 2005; Nguyen et al.

2013, 2014). For example, Homminga et al. (2004)21 used

micro-FE modelling to show that osteoporotic human verte-

brae were just as resistant to normal daily loading as

healthy vertebrae. The osteoporotic trabeculae were more

longitudinally oriented, compensating for the effects of

bone loss and ensuring adequate stiffness for normal daily

loading (although they were less resistant to non-normal

loads; Homminga et al. 2004).

Thirdly, and most convincingly, are in vivo experimental

analyses that test directly trabecular bone functional adap-

tation (Lanyon, 1974; Skerry & Lanyon, 1995; Biewener

et al. 1996; Mittra et al. 2005; Pontzer et al. 2006; Chang

et al. 2008; Polk et al. 2008; Barak et al. 2011; Harrison

et al. 2011). Many of the initial experimental studies

focused on the mammalian calcaneus due to its predictable

loading environment (Lanyon, 1973, 1974; Skerry & Lanyon,

1995; Biewener et al. 1996; Skedros et al. 2004, 2012; Sin-

clair et al. 2013). In mammals in which the calcaneus does

not touch the ground during locomotion, it experiences a

regular cantilever-like loading (i.e. bending) from the

Achilles tendon during ankle extension. These studies found

that the trabeculae underlying the Achilles tendon attach-

ment were aligned with the compressive (and tensile) prin-

cipal direction of stress (Lanyon, 1974; Biewener et al.

1996). Furthermore, after 8 weeks of disuse (in individuals

in which the Achilles tendon was detached from the calca-

neus), there was a reduction in BV/TV, trabecular thickness

and number (although the orientation did not change) that

reflected the absence of an external load (Biewener et al.

1996).

Table 1 Commonly used trabecular parameters.

Parameter Symbol (unit) Description

Bone volume fraction BV/TV The proportion of trabecular bone voxels relative to the total number of voxels in a given

region or VOI

Degree of anisotropy DA DA describes the trabecular orientation in 3D space. Anisotropic structure has a preferred

orientation to the trabecular struts, while isotropic structures show symmetry of the

orientation in all directions. DA is usually calculated using the mean intercept length (MIL)

algorithm (see Harrigan & Mann, 1984), where the eigenvectors give the main directions.

DA is reported as a dimensionless value, with fully isotropic structure represented by 0 or 1,

and higher values representing relatively more anisotropic structures

Trabecular thickness Tb.Th (mm) The mean thickness of the trabecular struts in a given region or VOI. This is typically

measured via ‘sphere-fitting’, i.e. by the diameter of spheres that can be fully contained

within the structure

Trabecular separation Tb. Sp (mm) The mean width of the spaces between adjacent trabeculae in a given region or VOI

Trabecular number Tb.N (mm�1) The number of trabecular struts per mm. It is calculated as the inverse of the mean distance

between the mid-axes of the trabecular struts

Structure model index SMI SMI is a dimensionless measure of the relative proportion of plate-like vs. rod-like structures

in a given region or VOI. Values typically range from 0 (idealised plates) to 3 (idealised rods),

and can be positive or negative values. Negative values indicate a more concave or closed

structure, like a honeycomb; positive values indicate a more convex and open structure

Connectivity density Conn.D The number of interconnected trabeculae per unit volume (Odgaard & Gundersen, 1993)

Trabecular bone

pattern factor

Tb.Pf (mm�1) A proxy measure of trabecular connectivity within a given region or VOI. Lower values

indicate greater connectivity and structural integrity within the trabecular structure;

higher values indicate greater fragmentation and the presence of isolated trabecular

struts. It can also have positive (connected structures are more convex) or negative

(connected structures are more concave) values and the basis of its calculation is similar

to SMI (Hahn et al. 1992). Thus, changes in SMI and Tb.PF values are closely correlated.

Importantly, Odgaard (1997) demonstrates that quantification of Tb.Pf in 2D is not

representative of connnectivity in 3D

Bone surface density BS/BV The ratio of trabecular bone surface area relative to total trabecular bone volume in a given

region or VOI
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More recent in vivo studies have expanded on this work

to test how variation in the direction and magnitude of the

external load affect trabecular structure (Pontzer et al.

2006; Chang et al. 2008; Barak et al. 2011; Harrison et al.

2011). For example, Barak et al. (2011)22 showed that trabec-

ular orientation varied predictably in the hindlimb joints of

sheep that were loaded differently through daily exercise

on level and inclined treadmills. The inclined sheep had a

more extended ankle joint by 3.6 ° at midstance (i.e. at peak

ground reaction force). After roughly 1 month, these sheep

showed a change in trabecular orientation 2.7–4.3 ° in the

distal tibia, corresponding closely with the change in the

orientation of the external load at the ankle. In contrast,

the carpal joint remained at a stable orientation in both

groups and there were no significant differences in the tra-

becular orientation in the distal radius. Thus, even small

changes in joint angle can be reflected in the trabecular

structure. Pontzer et al. (2006) also found a strong corre-

spondence between changes in the orientation of external

joint loading of the knee and trabecular orientation of the

distal femur in guinea fowl.

Similar results have also been found in in vivo studies

of humans. Elite athletes whom engage in sports that

cause irregular-impact loading of the femur (i.e. forces

from high acceleration/deceleration and from varied direc-

tions, such as during soccer or squash), showed approxi-

mately 10% higher trabecular bone density (i.e. bone

mineral density quantified in vivo via magnetic resonance

imaging), compared with elite athletes who engaged in

sports of high-magnitude but primarily vertical loading

(e.g. power-lifting), and 20% higher than non-athletes

(Harrison et al. 2011). Trabecular bone mass (i.e. increased

BV/TV and trabecular number, decreased trabecular spac-

ing) was also higher in the knee in both gymnasts (Mod-

lesky et al. 2008a) and Olympic fencers (Chang et al.

2008) compared with the respective control groups. Con-

versely, trabecular bone structure has been shown to be

severely underdeveloped in children with cerebral palsy

(Modlesky et al. 2008b), and to decrease in non-gravita-

tional environments (Jee et al. 1983; Bikle & Halloran,

1999).

Altogether, there is a large body of empirical evidence

across a variety of different animals from the last several

decades supporting trabecular bone functional adaptation.

Trabecular bone structure is clearly capable of responding

during life, often within a relatively short period of time, to

the magnitude and direction of load (or unloading). How-

ever, there is still much that we do not understand about

trabecular bone, including the genetic and developmental

role in shaping trabecular architecture, if and how trabecu-

lar bone might respond differently to variation in the dura-

tion, frequency or magnitude of the external load, or how

all of these factors might vary depending on the species,

age, anatomical region or differences in body mass. All of

these factors can confound our interpretations of joint

loading and bone function from trabecular structure in

extant and, particularly, fossil taxa.

The complexity of trabecular bone functional
adaptation

Despite the evidence described above, there are also several

empirical studies that have found that trabecular bone does

not respond to mechanical stimuli in ways that one might

predict. For example, Carlson et al. (2008) 23conducted an

experimental analysis on mice to see how trabecular struc-

ture varied in the distal femur with differences in locomo-

tion during growth. They had three groups of mice: (i) a

free-ranging control group; (ii) a ‘linear’ group, which were

encouraged to travel through a straight tube; and (iii) a

‘turning’ group, in which the mice moved through a twist-

ing tube. Despite their predictions that there should be vari-

ation in external load on the femur in the ‘linear’ vs.

‘turning’ mice, the trabecular structure did not significantly

differ between the two groups. Furthermore, the ‘free-ran-

ging’ control mice had significantly higher BV/TV than the

exercised linear/turning mouse groups, which was also

counterintuitive (Carlson et al. 2008). These results highlight

some of the complexity of trabecular bone functional adap-

tation and the challenges of testing hypotheses in living

animals. For example, the Carlson et al. (2008) results may

suggest that the free-ranging mice were actually more

active than the ‘linear/turning’ mice, or that the trabecular

structure of such small animals scales differently (Barak

et al. 2013a,b; Christen et al. 2015) or experiences less strain

(and thus there is less response) than that of larger animals

(Biewener, 1990), especially when the cortical bone has

responded to the changes in midshaft loading (Carlson &

Judex, 2007), or reflect differences in bone modelling and

remodelling based on anatomical location (Bass et al. 1999;

Morgan & Keaveny, 2001; Morgan et al. 2003; Yeni et al.

2011; R€ath et al. 2013) or species (Chow et al. 1993; Erben,

1996; Turner, 2001; Barak et al. 2013a). Below, some of the

complicating factors that suggest trabecular bone func-

tional adaptation is not as straightforward as functional

morphologists might wish it to be are discussed.

When, how and to what kind of load does

trabecular bone respond?

There is ongoing debate regarding what kind of external

load trabecular bone is most responsive to. Is it primarily

loading from muscles (i.e. contractile forces) or gravitational

loading (i.e. substrate reaction forces; for review, see

Robling, 2009; Judex & Carlson, 2009, respectively)? Is there

a minimum magnitude of loading that is required to stimu-

late bone growth and remodelling (Frost, 1987)? Is trabecu-

lar structure reflecting more frequent but low-magnitude

loading, or rare but high-magnitude loading? How much

does adult trabecular structure reflect loading that occurred
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during earlier development when bone was still growing?

There are several studies that have tried to address these

issues and have yielded conflicting results (for review, see

Bertram & Swartz, 1991).

Many of the in vivo experiments described above (Pont-

zer et al. 2006;24 Carlson et al. 2008; Barak et al. 2011) are

conducted on juvenile animals because bone is both actively

modelling and remodelling during this time, and is consid-

ered to be more responsive to mechanical stimuli than adult

bone (Pearson & Lieberman, 2004). Indeed, Pettersson et al.

(2010)25 found that variation in physical activity during

growth (i.e. childhood and adolescence) was the strongest

predictor for differences in adult trabecular bone density

(i.e. bone mineral density) in the calcaneus of a large sam-

ple of men. Thus, this work highlights how activity during

growth can have a lasting effect on trabecular structure

later in life, even in inactive adults (Pettersson et al. 2010;26
but see Karlsson et al. 2000).

However, trabecular bone modelling and remodelling

throughout ontogeny are influenced by a number of fac-

tors, such as the underlying genetic patterning (Cunning-

ham & Black, 2009a,b), vascular patterning and the

positioning of growth plates (Cunningham & Black, 2010),

changes in hormone levels (Simkin et al. 1987; Karlsson

et al. 2001; Yeni et al. 2011), and variation in cellular pro-

cesses and constraints on bone design, that go beyond the

scope of this paper (for review, see Lieberman, 1997). In

early ontogeny, several studies have demonstrated that tra-

becular bone (and bone in general) follows particular pat-

terns of growth during the modelling and remodelling

process. For example, in a sample of healthy human chil-

dren and adults, Parfitt et al. (2000) found that trabecular

bone in the ilium (analysed via biopsy) formed with a

roughly uniform trabecular number that was retained

throughout life in healthy individuals (e.g. without

osteopenia). In other words, between the ages of 1.5 and

23 years, there was an increase in BV/TV and trabecular

thickness, but trabecular number did not change (Parfitt

et al. 2000). In addition, during early ontogeny BV/TV and

trabecular thickness tend to increase first, during periods of

more dramatic increases in body mass, while trabecular ori-

entation (i.e. anisotropy) is adapted later in development

(Parfitt et al. 2000; Tanck et al. 2001). For example, in

humans, trabecular structure of the femur and tibia reaches

an adult-like pattern (BV/TV, anisotropy) at approximately

8 years old (Ryan & Krovitz, 2006; Gosman & Ketcham,

2009; Raichlen et al. 2015). The same ontogenetic pattern is

found in the trabecular structure of human vertebrae

(Roschger et al. 2001). Thus, overall trabecular architecture

appears to be optimized later in life (Huiskes et al. 2000;

Nafei et al. 2000; Tanck et al. 2001; Ryan & Krovitz, 2006;

Cunningham & Black, 2009a).

However, this does not imply that adult trabecular bone

is not also capable of responding and adapting to changes

in external load. To the contrary, several in vivo experimen-

tal studies have been conducted on adult animals demon-

strating changes in trabecular structure in response to

variation in mechanical stress (Smith et al. 1989; Biewener

et al. 1996; Rubin et al. 2001, 2002). Trabecular structure

can respond to increased load even late in life, such as in

postmenopausal women (Simkin et al. 1987; Smith et al.

1989) or, conversely, resorbing with removal of load, such

as in quadriplegics (Frey-Rindova et al. 2000). However,

adult trabecular structure seems to respond to external

mechanical stimuli in different ways than during earlier

ontogeny. Saparin et al. (2011) 27noted that in areas of

higher loading in the adult primate femoral neck, BV/TV

was higher due to increased trabecular thickness, while tra-

becular number did not change. In contrast, in areas of

lower loading, BV/TV was lower due to a reduction in tra-

becular number, but trabecular thickness remained con-

stant (Saparin et al. 2011; see also Rubin et al. 2001, 2002;

Shaw & Ryan, 2012). The latter result is contrary to the find-

ing that trabecular number remains uniform throughout

life (Parfitt et al. 2000). However, Saparin et al. (2011) 28sug-

gest that in areas of lower loading, reducing trabecular

number is ‘safer’ than reducing trabecular thickness because

of risk that resorption during remodelling will weaken or

sever a trabecula, thus making it non-functional (Skedros

et al. 2012). Instead, the reduction in trabecular number is

not random, but is associated with increased anisotropy,

thus preferentially removing specific and mechanically

unnecessary trabeculae (Saparin et al. 2011; Skedros et al.

2012). This hypothesis is also consistent with the in vivo

experimental results of Biewener et al. (1996) 29.

There also appears to be a minimum load (either in mag-

nitude, frequency and/or duration) that is required to stim-

ulate trabecular bone remodelling. Frost’s (1987)

‘mechanostat’ hypothesis puts forth strain thresholds for

bony response: strains below 100–300 microstrain (le) elicit

remodelling of trabecular (and cortical) bone, while much

higher strains (1500–3000 le) stimulate bone modelling to

increase cortical bone mass (Burr, 1985; Rubin & Lanyon,

1985). However, the duration of the strain (or external

stress) is also important. For example, Skerry & Lanyon

(1995) immobilized the calcaneus in several sheep, reducing

the external load significantly. In a subset of these sheep,

the immobilization device was removed and they were

allowed to walk on the treadmill for 20 min/day. Even

though the strain experienced by the calcaneus during this

short time was ‘normal’ (Lanyon, 1973, 1974) and suppos-

edly enough to stimulate trabecular remodelling (147 le),

after 12 weeks both groups of sheep showed the same

degree of trabecular bone loss in the calcaneus. This result

suggests that the magnitude and/or duration of load expe-

rienced during the short periods of walking were not suffi-

cient to reduce the degree of trabecular bone loss due to

immobilization. Barak et al. (2011) found a similar result;

loading during ‘normal’ activity in non-exercised sheep

wearing shoes that altered their ankle joint angle was not
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enough to stimulate the reorientation of the trabecular

alignment that was found in exercised sheep. In an experi-

mental study on mice, Lambers et al. (2013)30 found that it

required 10 weeks for trabecular bone (quantified as BV/TV

and bone stiffness) within the vertebrae to ‘fully adapt’ to a

new increased external load (applied at a high frequency

for 5 min, three times/week). The BV/TV and stiffness values

remained the same after 10 weeks, and the remodelling

rates returned to those of the control group by this time as

well (Lambers et al. 2013). Such studies suggest that bone

functional adaptation requires both a minimum magnitude

and duration of loading to affect trabecular growth and

remodelling (Rubin & Lanyon, 1985; Skerry & Lanyon, 1995;

Biewener et al. 1996; Barak et al. 2011), but determining

what these minimum thresholds are, in particular skeletal

elements or particular species, especially in primates, is chal-

lenging.

That being said, many experimental studies (Simkin et al.

1989; Smith et al. 1989; Bassey & Ramsdale, 1994), including

several discussed above (Pontzer et al. 2006; Barak et al.

2011; Lambers et al. 2013), have shown that relatively short

periods of external loading can, sometimes dramatically,

affect changes in trabecular structure if the orientation or

magnitude is ‘unusual’ compared with that of normal daily

activity. Thus, bone adaptation may be driven by an ani-

mal’s most infrequent but dynamic behaviours, rather than

habitual loading (Burr, 1990). If so, this has important impli-

cations for interpreting function and behaviour from tra-

becular structure in fossils. If only 10 or 15 min/day [as was

the case in Pontzer et al. (2006) and Barak et al. (2011),

respectively] of loading from a particular ‘unusual’ beha-

viour is enough to significantly alter trabecular structure,

what can we infer about the overall locomotor behaviour

of a fossil hominoid or hominin? Might the trabecular struc-

ture primarily retain a functional signal for those beha-

viours that loaded the skeleton in relatively rare and

unusual ways, overriding the functional signal of the most

common daily behaviours?

Rubin et al. (2001, 2002) tested this hypothesis specifi-

cally; is bone functional adaptation dependent on peak

skeletal stress or can very low-level stress during less vigor-

ous but much more frequent activities (e.g. standing) influ-

ence trabecular bone structure? In an experiment with

adult sheep, they constrained some individuals and exposed

their hindlimbs to extremely low-level (0.3 g) external loads

at a high frequency (30 Hz) using an oscillation plate for 20

min/day for 1 year. These sheep showed a 34.2% increase in

the trabecular bone density (decreasing trabecular spacing

by 36.1% and increasing trabecular number by 45.6%) com-

pared with the control group. Furthermore, there was no

significant difference in cortical structure in any of the hind-

or forelimb bones, demonstrating that trabecular bone is

more responsive to low-magnitude but high-frequency

loading than the cortex [Rubin et al. 2001, 2002; but see

Carlson & Judex, 2007; Carlson et al. 2008 for the opposite

results]. These results suggest that very low-level external

loading during habitual activities can be a determining fac-

tor of the overall trabecular pattern.

Trabecular bone and body mass

The relationship between variation in trabecular structure

and body mass has been recently well studied in primates

(Scherf, 2008; Cotter et al. 2009; Hernandez et al. 2009;

Fajardo et al. 2013; Ryan & Shaw, 2013), and across a wider

variety of mammals and birds (Swartz et al. 1998; Doube

et al. 2011; Barak et al. 2013a; Christen et al. 2015). Gener-

ally, larger primates (and mammals) have absolutely thicker

and more widely-spaced trabeculae but, relative to body

mass, their trabecular struts are thinner and more tightly

packed (Swartz et al. 1998; Doube et al. 2011; Barak et al.

2013a; Ryan & Shaw, 2013; Fig. 3). In other words, these

aspects of trabecular structure scale with negative allometry

across primates and mammals (but not within a particular

taxon). In fact, the trabeculae of a whale are not much

wider or more widely spaced than that of a human

(Odgaard et al. 1997). In contrast, BV/TV scales with weak

positive allometry while the degree of trabecular anisotropy

shows no significant relationship with body mass (Doube

et al. 2011; Barak et al. 2013a; Ryan & Shaw, 2013; but see

Fajardo et al. 2013). However, scaling of specific trabecular

parameters with body mass does seem to vary depending

on bone (e.g. femur vs. vertebra) and taxonomic group

(e.g. hominoids vs. strepsirrhines; Cotter et al. 2009; Fajardo

et al. 2013; Ryan & Shaw, 2013).

The relationship between trabecular structure and body

mass suggests that there are a number of constraining

metabolic and biomechanical factors that govern trabecular

architecture in general. Swartz et al. (1998) proposed that

relative differences in trabecular structure between small

and large animals may be driven by requirements to main-

tain an adequate surface area for the release and deposi-

tion of calcium (Kerschnitzki et al. 2013) 31. Furthermore,

trabecular thickness is constrained by the size of the regions

that can be effectively regulated by osteocytes (Mullender

& Huiskes, 1995; Mullender et al. 1996; Cowin, 2001; Chris-

ten et al. 2015). For example, there appears to be a mini-

mum trabecular thickness, regardless of how small the

animal, because the lacunae created by osteoclasts are

about 30–60 lm in depth (Eriksen et al. 1985; Cowin, 2001;

McNamara et al. 2006; 32Mulvihill et al. 2008; Eriksen, 2010).

Trabeculae any thinner than this would simply be cut in

two with remodelling, and thus would not be functional

(Barak et al. 2013a). Conversely, there also appears to be a

maximum trabecular thickness (i.e. approximately 460 lm;

Lozupone, 1985; Lozupone & Favia, 1990) that allows for

optimal positioning of the osteocytes relative to bone sur-

face while also maintaining the necessary biomechanical

strength (i.e. stiffness; Ryan & Shaw, 2013). Indeed, Christen

et al. (2015) 33recently demonstrated via computer modelling
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that the underlying mechanism for negative allometric tra-

becular bone scaling in terrestrial mammals may be varia-

tion in osteocyte density and the distance an osteocyte

signal can travel towards osteoblasts at the bone surface

(i.e. influence distance).

Larger animals experience relatively higher skeletal load-

ing than smaller animals (Biewener, 1989, 1990). Given the

metabolic constraints on trabecular size outlined above, the

trabecular structure of larger animals must mitigate these

increased loads in other ways. For example, they can alter

other aspects of trabecular structure, such as increasing the

BV/TV or trabecular anisotropy, or changing the shape of

trabecular struts (i.e. plates vs. rods; Ryan & Shaw, 2013). It

is also important to remember that trabeculae do not exist

independently but within bones, such that larger animals

may adapt the cortical distribution instead, highlighting the

importance of studying both trabecular and cortical struc-

ture together (see below). Finally, it is also well docu-

mented that larger animals alter their locomotor kinematics

[e.g. more extended limb postures (Biewener, 1983, 1989)

or complaint gaits (Schmitt, 1999; Polk, 2002)], which would

reduce joint loading and, ultimately, strain on the trabecu-

lar structure. Such metabolic and biomechanical constraints

should be considered when interpreting function from tra-

becular bone, especially in comparative analyses of extant

and fossil primates that vary greatly in body size.

Systemic skeletal patterns of trabecular bone

A well-known experimental study by Lieberman (1996)

investigated the potential reasons for variation in cranial

vault thickness across hominins. Although this study investi-

gated cortical bone only, the results raise an important and

potentially confounding issue with regards to making func-

tional inferences from internal bony morphology: a sys-

temic response of bone throughout the skeleton.

Lieberman (1996) had young pigs run on a treadmill for 60

min/day for 3 months and compared their cortical structure

with that of controls (confined to walking in a small pen all

day). Predictably, the exercised pigs had significantly higher

Fig. 3 Trabecular bone in the primate humerus. Coronal cross-section of the proximal humerus showing variation in trabecular structure, particu-

larly in relation to body size. All humeri are scaled to approximately the same size. Note that the trabeculae in larger-bodied primates (e.g. chim-

panzee, gorilla and orangutan) tends to be thinner and more densely-packed compared with smaller-bodied primates (siamang and spider

monkey), which have relatively thicker trabeculae that are more spaced out. Humans are unique in having thin and somewhat densely-packed tra-

beculae, but have a comparatively low trabecular bone volume (BV/TV) compared with other great apes.
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cortical thickness in their limb bones compared with that of

the controls. However, they also had significantly thicker

(28%) cranial vault bones, as well as thicker cortex in the

caudal vertebrae and the last and penultimate ribs, neither

of which are weight-bearing during locomotion or would

indirectly incur higher external loading from running

(Lieberman, 1996). Similar systemic patterns have been

found in non-weight-bearing skeletal elements (e.g. mand-

ible) in rats when external loads are reduced (e.g. absence

of gravity; Simmons et al. 1983). Thus, these results make a

strong argument for systemic adaptations of bone that are

unrelated to load.

However, trabecular bone functional adaption appears to

be more localized than that of cortical bone (Rubin et al.

2001, 2002; Judex et al. 2004; Barak et al. 2011). For exam-

ple, in the sheep experiment by Rubin et al. (2001, 2002)34
described above, the externally loaded hindlimb bones

showed increased trabecular bone mass, but the radius

(which did not experience the low-magnitude, high-fre-

quency oscillations) did not. Judex et al. (2004) have shown

in different genetic strains of inbred mice that changes in

trabecular bone due to disuse varied not only across the

mouse groups, but also varied depending on anatomical

location (more so than changes in cortical bone).

That being said, this does not mean that there are not

underlying systemic and genetic factors that must be con-

sidered in functional analyses of trabecular structure. All

bone growth is mediated by hormones at both localized

and systemic levels (Lieberman, 1996). Several studies have

found that certain aspects of trabecular structure, primarily

BV/TV and its mechanical properties (i.e. Young’s modulus),

are strongly influenced by genetics in baboons (Havill et al.

2010) and rodents (Alam et al. 2005). Furthermore, there

appear to be systemic patterns in trabecular bone density

or BV/TV that are consistent throughout several skeletal ele-

ments within a particular taxon and that are distinctive

across different primate taxa (Chirchir et al. 2015). For

example, compared with other extant primates and fossil

hominins, modern humans may have recently evolved a

remarkably low trabecular bone density throughout the

epiphyses of both the upper limbs and, counterintuitively,

the weight-bearing lower limbs as well (Chirchir et al. 2015;

but see Ryan & Shaw, 2015). Independent analyses of tra-

becular structure across extant hominoids have revealed

that there are consistent differences in BV/TV in several ele-

ments of the skeleton, with Pan, and particularly bonobos,

having especially high BV/TV in the metacarpals (Tsegai

et al. 2013), humerus (Davenport, 2013), manual phalanges

and talus (unpublished data35 ) compared with Gorilla and

Pongo, and much higher than humans (Maga et al. 2006;

Cotter et al. 2009; Hernandez et al. 2009; Griffin et al.

2011;36 Ryan & Shaw, 2012; Scherf et al. 2013). Thus, there

appears to be an underlying blueprint of trabecular struc-

ture that is systemic throughout the skeleton, at least in

some taxa, which is not fully understood. Such systemic

patterns could bias functional inferences when only one

anatomical element is being investigated, which is often

the case in trabecular studies (Maga et al. 2006; DeSilva &

Devlin, 2012; Su et al. 2013; Ryan & Shaw, 2015).

Lovejoy et al. (2003) take a more extreme view. They cri-

tique the concept of ‘Wolff’s law’ [referring to the strict ver-

sion of this concept (i.e. that the bones’ response is based

on mathematical laws), rather than the more generalized

version accepted by most researchers today] from a genetic

and developmental perspective, suggesting that the struc-

ture and distribution of bone (both trabecular and cortical)

reflects primarily the expression of positional information

from mesenchymal cells during early growth. While the

material properties and maintenance of bone structure can

also be influenced by localized strain, this process is rela-

tively minor compared with the genetic and development

underpinnings of bone morphology, particularly in adults

(Lovejoy et al. 2003). In other words, ‘bones of the . . . skele-

ton are almost entirely determined by the PI (positional

information) of their original cartilage anlagen’ (Lovejoy

et al. 2003: 96). Their view has some empirical support; Ske-

dros et al. (2004) 37found that the characteristic arched tra-

becular pattern of the adult deer calcaneus, which is ideal

for resisting bending stress, is already present in the cal-

canei of foetal deer. Cunningham & Black (2009a,b) also

found correspondence between the trabecular pattern of

the human newborn ilium (i.e. prior to weight-bearing

bipedalism) and the distinctive pattern found in adults.

However, the position of Lovejoy et al. (2003) 38generally

runs counter to the vast experimental literature showing

bone’s response to variation in load, even in adults. The

value of their critique is the recognition of the significant

genetic role in establishing and constraining (at least to

some degree) bony morphology and that we still have

much to learn about the mechanosensory mechanisms of

bone in general.

Bone functional adaptation is not sufficient
(but is all we have)

The numerous influences on how bone may (or may not)

respond and adapt to mechanical stimuli discussed above

demonstrate the complexity of drawing functional infer-

ences from bone structure. In addition, Hall (1985) cau-

tioned: ‘Theoretical approaches which treat bones as

idealized, isolated units . . . simply fall short of reality. A par-

ticular bone’s response to altered mechanical stress might

be compromised by the simultaneous response of the

attached muscles or connective tissue . . . by altered blood

flow, by associated mineral requirements, etc. ’ (Hall, 1985:

xxvi–xxvii). Thus, in analyses of trabecular bone structure,

one should ideally consider the broader context of cortical

bone (both its external and internal morphology), the mus-

cles and connective tissues acting on the bone, and the

articulating bones and joints that together provide the
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environment in which bone may respond to mechanical

stimuli.

The human femoral neck is a particularly good example

of the increased biomechanical understanding one can gain

when trabecular bone is not investigated in isolation.

Trabecular bone density in the femoral neck has an upper

threshold due to weight constraints and limitations on

energy absorption and haematopoietic function (Gibson &

Ashby, 1997; Currey, 2002). However, there is also a lower

threshold of trabecular bone density, clearly demonstrated

by increased risk of fracture when trabecular stiffness is

reduced (Lotz et al. 1995; Fox & Keaveny, 2001). There are

kinematic limitations on the cortical thickness and maxi-

mum neck diameter that ensure the necessary range of

motion at the hip joint (Fox & Keaveny, 2001). Therefore,

trabecular bone in the human femoral neck is among the

stiffest in the human skeleton, capable of coping with the

significantly higher compressive strain compared with the

proximal tibia, vertebrae and femoral trochanter (Morgan

& Keaveny, 2001;39 Morgan et al. 2003; also see Amling et al.

1996) and carry approximately 50% of the compressive load

at midneck (Lotz et al. 1995).

However, in the world of palaeontology, we are limited

to the information that is preserved in the fossil record.

Associated or articulated skeletal remains are rare within

palaeoanthropology (Napier & Davis, 1959; Moy�a-Sol�a &

K€ohler, 1996; White et al. 2009; Berger et al. 2010, 2015),

and information regarding soft tissues, metabolism or

genetics is at best ambiguous and usually absent. Thus, con-

trary to Hall’s valid caveat, palaeontologists are generally

forced to treat bones as isolated units. To move forward

with any inferences about behaviour in the past, we must

assume that there is at least some correlation between

bone form and function, that bone responds to external

load by minimizing bone mass and risk of fracture, while

simultaneously optimizing stiffness, even if we are not

exactly sure if this is true or how it works (Martin et al.

1998). Because trabecular bone appears to be particularly

sensitive to mechanical stimuli during life, it can provide

greater insight into bone and joint function, and ultimately

behaviour, than analyses of external morphology alone.

What we already know about primate
trabecular bone

The overwhelming majority of studies on trabecular bone

morphology are on humans, usually within the context of

better understanding osteopenia and osteoporosis (Eriksen,

1986; Simkin et al. 1987; Smith et al. 1989; Dempster, 2000).

Living or cadaveric/osteological human samples are abun-

dant, come with ethical consent and can be studied via

radiography, such as dual-energy X-ray absorptiometry

(DEXA) or peripheral quantitative computed tomography

(pQCT) that can measure bone mineral density with rela-

tively minimal effort. However, non-human primate osteo-

logical samples are much more rare, and the use of

radiography on living individuals is usually ethically and

logistically unfeasible. Thus, much less is known about tra-

becular bone in non-human primates. Pauwels (1948), Kum-

mer (1966, 1972) and Oxnard (1972, 1982, 1993) pioneered

new 2D methods for assessing stress trajectories in relation

to trabecular structure, focusing primarily on human verte-

brae or ilia but often within a broader, comparative and/or

evolutionary context. Some of the first 2D studies of trabec-

ular morphology in non-human primates were on the

femur and vertebrae of a rhesus macaque (Beddoe, 1978),

and talus and calcaneus of two sympatric species of lemur

(Ward & Sussman, 1979). It was not until much later that

Rafferty (1996; Rafferty & Ruff, 1994) conducted the first

extensive comparative 2D trabecular analysis, looking at the

humerus and femur in a large sample of prosimian and

anthropoid primates.

However, 2D analyses provide only a single image of tra-

becular structure within an entire epiphysis or bone, and

thus are limited in what can be inferred with regards to tra-

becular architecture and ultimately function. If one wishes

to investigate trabecular structure in 3D in any extant or

fossil primate, access to high-resolution (e.g. voxel size of

~30 lm) micro-CT is required. The resolution limits of medi-

cal CT (e.g. ~200 lm) are usually greater than the thickness

of individual trabeculae and thus cannot reliably reproduce

trabecular architecture (for a review of technological limita-

tions, see Scherf, 2008). Limited access to micro-CT and the

time-consuming and costly nature of dealing with large 3D

data sets were the main limitations on 3D analyses of tra-

becular bone in non-human primates. Furthermore, when it

comes to fossils, one can only study trabecular structure if

the trabeculae themselves are sufficiently preserved.

Fajardo & M€uller (2001) conducted one of the first 3D

analyses of non-human hominoid trabecular bone using

micro-CT. They investigated how differences in trabecular

morphology of the proximal humerus and femur varied

with arboreal and terrestrial locomotor behaviour in one

gibbon, spider monkey, rhesus macaque and baboon.

Fajardo & M€uller (2001) found that variation in the degree

of anisotropy correlated with locomotor differences in a

predictable way: the more arboreal gibbon and spider mon-

key, which presumably have more variable loading of their

humerus and femur, had more isotropic (i.e. less aligned)

trabecular structure than the macaque and baboon with

more stereotypical loading at the shoulder and hip. This

research also laid important groundwork for investigating

trabecular bone across different species that can vary

greatly in morphology and body size; in particular, the chal-

lenges associated with making sure one is comparing

homologous trabecular morphology with regards to

anatomical location and amount of trabeculae being quan-

tified [i.e. size and location of a volume of interest (VOI);

Fajardo & M€uller, 2001; Kivell et al. 2011a,b; Lazenby et al.

2011].
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However, Fajardo et al. (2007)40 conducted a more exten-

sive analysis of trabecular structure in the proximal femur

(superior and inferior femoral neck) on a larger primate

sample that contradicted the results of their previous study

(Fajardo & M€uller, 2001). They did not find a clear correla-

tion between variation in trabecular structure and differ-

ences in locomotor behaviour. Instead, they found a high

degree of overlap in trabecular parameters (including,

among others, BV/TV and degree of anisotropy) across

quadrupedal (Colobus, Macaca, Papio) and climbing/suspen-

sory (Ateles, Symphalangus, Alouatta) taxa. Despite the

addition of potential inherent differences in body size and

phylogeny across the sample, ‘taxa in this study share more

similarities in femoral neck trabecular structure than differ-

ences and these similarities belie any correlation of struc-

ture with locomotor mode’ (Fajardo et al. 2007: 431). They

suggested that there may be greater similarity in hip joint

loading across quadrupedal and climbing/suspensory pri-

mates than previously considered and/or that current mod-

els of anthropoid hip joint mechanics are overly simplistic.

The absence of a clear correlation between trabecular

structure and predicted loading differences based on loco-

motor behaviour found by Fajardo et al. (2007) is just one

of many studies on extant primates, or hominoids specifi-

cally, that have yielded equivocal results (Viola, 2002; Maga

et al. 2006; Scherf, 2007, 2008; Cotter et al. 2009; Ryan et al.

2010; Ryan & Walker, 2010; DeSilva & Devlin, 2012; Shaw &

Ryan, 2012; Schilling et al. 2014). For example, Ryan &

Walker (2010) investigated variation in proximal humeral

and femoral trabecular structure in relation to relative dif-

ferences in forelimb and hindlimb use across five anthro-

poid primates. Despite predictions of higher loading of the

humerus in brachiators (Symphalangus), higher loading of

the femur in climbing arboreal quadrupeds (Pan and

Alouatta) and equal loading of both limbs in terrestrial

quadrupeds (Papio and Presbytis), all taxa had significantly

higher BV/TV in the femur and greater isotropy in the

humerus (see also Shaw & Ryan, 2012). Thus, similar to the

findings of Fajardo et al. (2007), these results also suggest

broad similarities in trabecular bone structure of the

humerus and femur across anthropoid primates.

Although most trabecular studies to date have focused

on the proximal humerus and femur (Rafferty & Ruff, 1994;

Rafferty, 1996; MacLatchy & M€uller, 2002; Ryan & Ketcham,

2002a,b, 2005; Viola, 2002; Ryan & van Rietbergen, 2005;41
Ryan & Krovitz, 2006; Fajardo et al. 2007; Scherf, 2007,

2008; Saparin et al. 2011; Ryan & Shaw, 2013; Scherf et al.

2013), equivocal results are not limited to just these bones.

For example, Ryan et al. (2010)42 also found no significant

differences in the trabecular structure of the mandible in

platyrrhines that habitually engage in gouging feeding

behaviour (Callithrix) vs. non-gouging species (Sanguinus

and Saimiri). Schilling et al. (2014)43 found that variation in

wrist bone (scaphoid, lunate and capitate) trabecular struc-

ture did not correlate with predicted loading differences

from locomotor behaviour. Similar equivocal results have

been found in the hominoid calcaneus (Maga et al. 2006),

talus (DeSilva & Devlin, 2012) and thoracic vertebrae (Cotter

et al. 2007 44; but see Oxnard & Yang, 1981; Oxnard, 1997).

In contrast to hominoids and studies of anthropoid pri-

mates more generally, more clear functional signals have

been found in the trabecular structure of extant strepsirrhi-

nes (MacLatchy & M€uller, 2002; Ryan & Ketcham, 2002a,

2005). Leaping galagines (Galago), indriids (Avahi) and tar-

siers (Tarsius), predicted to have more stereotypical hip joint

loading than quadrupedal or slow climbing taxa, have more

anisotropic trabeculae than non-leaping taxa (Cheirogaleus,

Loris, Perodicticus and Otolemur; Ryan & Ketcham, 2002a,

2005). An earlier study by MacLatchy & M€uller (2002) on a

smaller sample (Perodicticus and Galago) found similar

results. Furthermore, a comparative analysis of two fossil

omomyid (Omomys and Shoshonius) femora showed varia-

tion in the trabecular structure suggesting important differ-

ences in joint loading and locomotor behaviour not

revealed by the external morphology (Ryan & Ketcham,

2002b). Although Ryan & Ketcham (2002a) also noted a

large degree of intraspecific variation in all taxa, suggesting

that the trabecular structure was potentially also respond-

ing to subtle differences in individual behaviour, these

results suggest that the locomotor behaviours of strepsirrhi-

nes may engender more divergent and/or stereotypical

loading of the joints than is typical of a comparable sample

of anthropoid primates (Demes et al. 1994; Hirasaki et al.

2000; Schmitt & Hanna, 2004).

Why so many equivocal results in analyses of
hominoid trabecular bone?

Within primates, most trabecular studies have focused on

hominoids, in part because of their close relationship to

humans and their potential to help infer behaviour in fossil

hominoids and hominins (Macchiarelli et al. 1999; Rook

et al. 1999; Griffin, 2008; DeSilva & Devlin, 2012; Shaw &

Ryan, 2012; Barak et al. 2013b; Scherf et al. 2013; Su et al.

2013; Tsegai et al. 2013; Schilling et al. 2014; Raichlen et al.

2015). Despite substantial variation in locomotion across

extant hominoids, including highly specialized brachiation

and suspension in Asian apes, and distinct knuckle-walking

locomotion in African apes, many of these studies have

yielded results that neither fit specific predictions of differ-

ences in external joint loading, nor broader ‘suspensory’ or

‘quadrupedal’ signals when compared with other non-

hominoid primates that engage in similar behaviours (e.g.

Ateles or Alouatta; DeSilva & Devlin, 2012; Shaw & Ryan,

2012; Schilling et al. 2014). There may be several reasons for

these ambiguous results.

First, locomotion and body size are highly variable within

hominoids. This includes variation in frequency of certain

behaviours, even between species (e.g. Gorilla vs. Pan or

P. troglodytes vs. P. paniscus), that are generally catego-
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rized in the same broad locomotor categories (e.g.

‘knuckle-walkers’; Hunt, 1991; Doran, 1993; Remis, 1995).

Reasons for variation in certain locomotor behaviours can

relate to ecology (Doran & Hunt, 1994), body size (Cant,

1992; Hunt, 1994) or even social rank (Hunt, 1992; Remis,

1995), which is often information not associated with osteo-

logical specimens. If, for example, trabecular bone is

responding to more infrequent but dynamic loads (Burr,

1990) rather than habitual daily activity, then slight differ-

ences in the frequency of certain behaviours (e.g. suspen-

sion, climbing) may have significant effects on the overall

trabecular structure, creating greater intraspecific variation

and greater overlap among different locomotor groups.

Indeed, several recent trabecular studies demonstrate a

high degree of intraspecific variation in trabecular structure

in many taxa, such as Pongo (Tsegai et al. 2013) and

humans (Ryan & Shaw, 2012, 2015). Furthermore, there can

be substantial intraspecific variation in body mass between

sexes (Plavcan & van Schaik, 1997), which can be challeng-

ing to accommodate and investigate in the typically small

samples available for micro-CT scanning. Although most tra-

becular parameters have recently been shown to be nega-

tively allometric across different primate or mammalian

taxa (Doube et al. 2011; Ryan & Shaw, 2013), potential vari-

ation in scaling within a taxon [i.e. between sexes and in

the absence of broad-scale differences in body mass, such as

when comparing dwarf shrews and elephants (Doube et al.

2011) or galagos and gorillas (Ryan & Shaw, 2013)] is not

well understood.

Second, the majority of trabecular studies to date have

focused on the proximal humerus and/or femur. Although

their globular epiphyses makes them relatively easy

anatomical structures in which to analyse trabeculae, the

shoulder and hip are complex joints, loaded in multiple

directions from both soft tissues and substrate reaction

forces. The kinematics of these joints during different types

of locomotion, particularly arboreal behaviours, is not well

understood (Bergmann et al. 1984; Larson, 1995; Chan,

2007, 2008). Our predictions of joint loading across differ-

ent species may be either too simplistic (Fajardo et al. 2007)

or, alternatively, loading at these joints may actually be

more similar than we would instinctively45 expect. For exam-

ple, there are broad similarities in hip joint loading

between bipeds and quadrupeds (Bergmann et al. 1984,

1993, 1999). Finally, the proximal humerus and femur are

relatively removed from the external loading of substrate

reaction forces compared with more distal skeletal elements

(e.g. metacarpals or distal tibia), which may obscure the

adaptive response of trabecular bone. In short, it may be

that the trabecular structure of the hip and shoulder are

limited in their value for containing a strong locomotor-spe-

cific functional signal (Rafferty, 1996; Fajardo et al. 2007;

Shaw & Ryan, 2012).

Third, such problems understanding joint loading at the

shoulder and hip highlight a more general problem in

trabecular studies: that most trabecular analyses are based

on relatively simplistic and coarse biomechanical models

(Fajardo et al. 2007; Ryan & Walker, 2010; Ryan & Shaw,

2012; Tsegai et al. 2013). Collection of the necessary biome-

chanical data, such as the kinematics of joint movement,

ground reaction forces or electromyography of muscles, are

all inherently challenging in extant primates for a number

of logistical and ethical reasons (Vereecke et al. 2011). Thus,

in the absence of specific biomechanical data, researchers

are often forced to make predictions about how trabecular

structure might vary based on relatively crude assumptions

about habitual joint postures. The coarseness of the biome-

chanical models is in direct contrast to the incredibly precise

information on trabecular structure that one can gain from

micro-CT.

Fourth, phylogeny may also confound potential func-

tional signals in trabecular bone, particularly in studies that

have focused mainly on closely related taxa like hominoids.

Only recently have trabecular studies addressed the influ-

ence of phylogeny on individual parameters (that also

account for variation in body size) using, for example, inde-

pendent contrasts (Doube et al. 2011), the K statistic (Ryan

& Shaw, 2012), phylogenetic generalized least squares (Ryan

& Shaw, 2013) or independent evolution and phylogenetic

general least squares (Smaers & Vinicius, 2009; Tsegai et al.

2013) 46. Some studies found only a minor phylogenetic influ-

ence (Doube et al. 2011), while others found a more com-

plex pattern of influence that varied across elements and

taxonomic groups (Ryan & Shaw, 2013). Thus, the potential

influence of phylogeny and how this might confound func-

tional interpretations should not be ignored in comparative

primate studies.

Finally, some of the equivocal results from trabecular

studies may be, in part, a consequence of methodology.

Over the last decade, the traditional method of analysing

trabecular structure in 3D is to quantify trabecular bone in

a VOI, such as a sphere or cube within an epiphysis

(Fig. 4A). The main advantage of the VOI method is that it

is computationally feasible; it allows one to extract and

quantify a portion of a complex structure from a much lar-

ger and cumbersome micro-CT data set. There have been

varied methods of determining VOI size and positon (Ryan

& Ketcham, 2002a; Griffin et al. 2011; Schilling et al. 2014),

and further discussion about the potential bias resulting

from variation in VOI size and position (Fajardo & M€uller,

2001; Maga et al. 2006; Kivell et al. 2011a,b; Lazenby et al.

2011). Studies using VOIs aim to quantify a functionally

informative trabecular subsection that is considered repre-

sentative of the region or epiphysis being analysed.

However, there are several inherent limitations to the

VOI method that are difficult to avoid. VOI size and posi-

tion are constrained by the trabecular morphology itself,

such that a VOI must be large enough to quantify a mean-

ingful amount of trabecular structure (e.g. at least four tra-

becular struts; Gross et al. 2014), but small enough that it
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A

B

Fig. 4 Different methodological approaches to investigating trabecular bone. (A) The traditional volume of interest (VOI) method that analyses tra-

becular structure in a subsection of the epiphysis or bone. Here, an example is shown in the human proximal humerus in which the VOI is 30% of

the geometric mean of the articular dimensions. (B) A new, holistic method [Medtool (Pahr & Zysset, 2009a; Gross et al. 2014)] that quantifies

and visualizes variation in trabecular bone distribution (BV/TV) and stiffness throughout the entire epiphysis or bone. Here, variation in BV/TV is

shown in a coronal cross-section throughout the proximal humerus in the same taxa and specimens shown in Fig. 3. Red indicates high BV/TV;

blue indicates low BV/TV.
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quantifies only trabeculae (i.e. avoiding cortical bone or

anatomical features such as foramena). Therefore, it is often

challenging to position VOIs near the subarticular surface

where external joint loading is initially incurred, and the

trabecular structure can be different from that deeper

within the epiphysis (Singh, 1978; Currey, 2002). Positioning

of VOIs is particularly difficult in small, irregular-shaped

bones, such as tarsals and carpals (Schilling et al. 2014). Fur-

thermore, there are several challenges associated with

determining anatomically and/or biomechanically ‘homolo-

gous’ VOIs across a sample, especially when morphology is

complex or there is a large degree of morphological and

size variation (Maga et al. 2006; Kivell et al. 2011a,b;

Lazenby et al. 2011). Although such methodological issues

have been recognized by many researchers (Fajardo &

M€uller, 2001; Ryan & Ketcham, 2002a,b; Maga et al. 2006),

these traditional methods have remained the standard in

non-human primate studies due to computational limita-

tions and the lack of alternative methods (see below).

A way forward

Recently, methods of analysing trabecular structure have

evolved and improved. Several studies have taken an

approach of placing multiple VOIs within an anatomical

region with the aim of quantifying more detailed informa-

tion about joint loading, albeit with varied success (DeSilva

& Devlin, 2012; Su et al. 2013). Analysis of multiple trabecu-

lar parameters (derived from a single VOI) together using,

for example, principal components analysis, has revealed

combined patterns of trabecular structure that more clearly

differentiate primate locomotor behaviour than specific

parameters in isolation (Kivell et al. 2012; Ryan & Shaw,

2012; Scherf et al. 2013; Matarazzo, 2015). For example,

Scherf et al. (2013)47 found a clear separation in the humeral

trabecular structure across humans, orangutans and chim-

panzees when BV/TV, rod- vs. plate-like trabeculae, trabecu-

lar number and spacing were considered together. Ryan &

Shaw (2012), in a much larger anthropoid sample, also

found that distinct combinations of variation in similar tra-

becular parameters could reasonably differentiate (via dis-

criminant functional analysis) between different primate

locomotor groups in the femur and, to a lesser degree, in

the humerus. However, Ryan & Shaw (2012) also found that

there was still a large degree of overlap in trabecular mor-

phology, even across locomotor groups that would presum-

ably have quite distinct loading of their shoulder and hip

joints [e.g. bipeds (humans), quadrumanus climbers (oran-

gutans) and arboreal quadrupeds (crab-eating macaques)].

The recent use of both comparative and experimental

data in trabecular analyses by Barak et al. (2013b)48 is an

ideal approach for better understanding the potential func-

tional significance of variation (both inter- and intraspecific)

in trabecular structure in extant and fossil taxa. They used

kinematic and ground reaction force data collected on

chimpanzees during terrestrial knuckle-walking and

humans during bipedalism (with both extended- and bent-

hip-bent-knee gaits) to interpret variation in the trabecular

structure of the distal tibia. They found that the principal

trabecular orientation in chimpanzees was more obliquely

angled than in humans, reflecting a more dorsiflexed tibio-

talar joint at midstance than the more extended ankle joint

in normal (i.e. extended hip and knee) human bipedal

walking. Furthermore, they used these results to interpret

the trabecular structure of fossil hominin distal tibae; the

principal trabecular orientation of the fossil hominin speci-

mens was most similar to that of normal human bipedalism

than the more dorsiflexed ankle joint loading of the bent-

hip-bent-knee gait, suggesting that Australopithecus africa-

nus (and a tibia putatively assigned to early Homo) likely

used an extended-hip-extended-knee bipedal gait (Barak

et al. 2013a,b).

More recently, a method originally developed for in vivo

clinical studies of osteoporosis (Pahr & Zysset, 2009a,b) has

been adapted for analyses of high-resolution trabecular

bone across primates (Gross et al. 2014). This method uses

an in-house script written for medtool (http://www.dr-pah-

r.at/index_en.php) that allows one to visualize and quantify

trabecular (and cortical) morphology throughout the entire

epiphysis or bone, rather than just a small VOI subsection of

trabeculae (Fig. 4B). In particular, one can visualize via col-

our maps the distribution of trabecular bone and how BV/

TV or stiffness vary throughout the epiphysis/bone, includ-

ing just below the cortical bone where external load is first

incurred. Thus, this method provides the ability to better

reconstruct joint position of peak loading during habitual

behaviours than is possible from, for example, a VOI posi-

tioned within the centre of an epiphysis (Shaw & Ryan,

2012; Scherf et al. 2013) or bone (Schilling et al. 2014). The

downside of medtool, however, is that it does not yet pro-

vide the ability to statistically compare differences in trabec-

ular structure across individuals or taxa, which is possible

with traditional VOI methods.

The holistic medtool approach has been applied success-

fully to hominoid metacarpals (Stephens, 2012; Tsegai et al.

2013; Skinner et al. 2015), humeri (Davenport, 2013) and

carpal bones (Bird, 2014; Fig. 4B). For example, the region

of greatest BV/TV and trabecular stiffness throughout the

third metacarpal head (Mc3) fits predictions of peak load-

ing during habitual locomotor and manipulative behaviours

across hominoids; a more dorsal concentration of trabecular

bone on the Mc3 head in Pan and Gorilla is consistent with

the extended metacarpophalangeal joint position during

knuckle-walking (Jenkins & Fleagle, 1975), while a more pal-

mar concentration is found in Pongo, hylobatids and

humans, consistent with a flexed metacarpophalangeal

joint during arboreal grasping (Asian apes) and manipula-

tion (humans; Tsegai et al. 2013). A similar correlation

between trabecular bone distribution and inferred joint

position was also found in the Mc1 and Mc5 epiphyses; in
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particular, highlighting a distinct pattern in humans consis-

tent with forceful opposition between the thumb and the

fingers (Stephens, 2012; Foote, 2013; Skinner et al. 2015). A

human-like distribution of trabecular bone in some fossil

hominins was used to suggest the ability for forceful preci-

sion or power squeeze gripping in Australopithecus africa-

nus (Skinner et al. 2015). Although the average BV/TV or

trabecular thickness values derived from the entire epiphy-

ses revealed some overlap across extant (and fossil) homi-

noids (Tsegai et al. 2013; Skinner et al. 2015), similar to the

results of previous VOI studies (Shaw & Ryan, 2012), the

ability to visualize how trabecular structure varies through-

out the bone can be more informative for reconstructing

joint position, and ultimately behaviour, in fossil taxa. Cur-

rently, medtool is limited to quantifying BV/TV and trabecu-

lar stiffness (Gross et al. 2014), but can be used in

conjunction with traditional VOI methods to quantify addi-

tional trabecular parameters (e.g. trabecular thickness or

number) in regions of interest (Davenport, 2013) and calcu-

late mean values for the entire trabecular structure using

freeware, such as BoneJ (Doube et al. 2010; Tsegai et al.

2013).

Trabecular bone functional adaptation in
fossils

The decades-long debates regarding fossil hominoid or fos-

sil hominin behaviour can only be resolved, at least to some

degree, with analyses of bony morphology that is more

responsive to load during life than the external bone shape

and size. Trabecular bone can provide this insight. However,

to move forward, palaeoanthropologists must make some

assumptions about trabecular bone functional adaptation,

despite the caveats and ambiguity from analyses of extant

taxa discussed above. For example, we generally assume

that the patterns and variation we see in trabecular bone

structure in fossil taxa reflect loading from habitual beha-

viours, rather than more rare, but dynamic loading. Several

comparative and experimental studies support this assump-

tion (Rubin et al. 2001, 2002; Barak et al. 2013b; Tsegai

et al. 2013), but others do not (Barak et al. 2011). We must

also assume that the general genetic, developmental or

metabolic factors that influence trabecular bone structure,

growth and remodelling in extant taxa are the same in fos-

sil taxa as well. The general similarity in some of these pro-

cesses across different mammals provides support for this

assumption (Turner, 2001), but important exceptions have

been noted (Chow et al. 1993; Erben, 1996; Aerssens et al.

1998; Barak et al. 2013a). Furthermore, for ethical reasons,

those interested in primates are forced to rely on other ani-

mal models (e.g. rodents, sheep) for in vivo testing of tra-

becular bone functional adaptation, or computer

simulation methods. Thus, there will always be some degree

of the ‘unknown’ in analyses of extant and fossil primates

that cannot be avoided.

However, the disconnect between trabecular bone func-

tional adaptation and variation in hominoid trabecular

bone that has been prevalent in the last decade of research

can be improved upon. Access to micro-CT is now easier

and more affordable. Thus, larger extant samples that

accommodate intraspecific variation in sex, body size or

locomotor behaviour may help tease out functional signals

in trabecular bone that have been previously obscured (Kiv-

ell et al. 2012). We continue to increase our understanding

of variation in ecology and behaviour across different

extant hominoid (and primate) taxa, particularly subspecies

(Thorpe & Crompton, 2006; Pruetz & Bertolani, 2009; Wich

et al. 2009) that were once lumped together into a sample

of, for example, ‘Pan’ or ‘Pongo’. Although rare, the use of

behavioural and ecological data that has been collected on

specific individuals (e.g. Ta€ı chimpanzees; Carlson et al.

2006) may further help to elucidate how particular frequen-

cies of behaviours might be reflected in trabecular struc-

ture.

Methodological advancements in the analyses of bone

structure are now more accessible and can provide more

informed functional interpretations of fossil morphology.

Holistic approaches such as medtool (Pahr & Zysset, 2009a;

Gross et al. 2014) provide clear and specific information

about individual and species differences in joint loading,

and when used in combination with traditional VOI meth-

ods that allow for statistical comparisons we are much bet-

ter equipped to quantify and interpret variation in

trabecular structure. In vivo validation testing of trabecular

strength (i.e. Young’s modulus) is not possible in fossil speci-

mens, but micro-FE modelling of fossil morphology within

the context of a comparative, validated extant sample can

be used to test the effectiveness of fossilized morphology

(both internal and external) in different loading regimes

(Richmond et al. 2005; Nguyen et al. 2014) that can ulti-

mately shed light on behaviour (Fig. 5).

Kinematic data on joint posture and loading (e.g. force

and pressure) during primate locomotor and manipulative

behaviours are essential for accurately interpreting the

functional significance of variation of trabecular structure

across extant and fossil primates. There have been numer-

ous studies over the last few decades, particularly on quad-

rupedal or bipedal gaits on horizontal substrates (Schmitt,

1999, 2003; Vereecke et al. 2003; D’Août et al. 2004; Han-

nah et al. 2006; 50Wunderlich & Jungers, 2009). However,

there have been far fewer studies on arboreal primate

behaviours, such as climbing and suspension (Isler, 2002a,b,

2004; Schoonaert et al. 2006; 51Channon et al. 2010). To bet-

ter reconstruct behaviour in fossil hominoids and hominins,

more detailed analyses on joint kinematics and loading in

primates engaged in more naturalistic locomotor beha-

viours, particularly arboreal locomotion (Vereecke et al.

2011), and manipulative behaviours (Shaw et al. 2012; Wil-

liams et al. 2012) are needed. Such data will improve on the

simplistic biomechanical models that are used, by necessity,
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in most trabecular studies to date. Together, incorporating

biomechanical data and new trabecular methods into anal-

yses of extant taxa, as well as knowing the potential limita-

tions of trabecular bone structure and remodelling

discussed above, will provide a better comparative context

in which to make more informed functional interpretations

of fossil specimens.

Although this review argues that trabecular bone is par-

ticularly informative for reconstructing behaviour in the

past, it is, of course, not an isolated structure. Trabecular

bone exists within a bone and its cortical shell that together,

with soft tissues, serve to optimize biomechanical function

within the skeleton as a whole. Thus, there are trade-offs

between trabecular and cortical bone that, if analysed

together, will provide a more informed reconstruction of

behaviour in the past. Several studies of extant taxa have

shown that cortical cross-sectional shape largely reflects bio-

physical loads rather than genetic factors (Jones et al. 1977;

van der Meulen et al. 1993; Ruff et al. 1994, 2006; van der

Meulen & Carter, 1995;52 van der Meulen et al. 1996). The

cortical cross-sectional shape of long bones has been shown

to differentiate locomotor behaviours across primates

(Marchi, 2005;53 Ruff, 2009), or variation in behaviour and

mobility across different human populations (Stock & Pfeif-

fer, 2001; Shaw & Stock, 2013). However, because of the

denser structure and slower remodelling rate of cortical

bone (Eriksen, 1986), functional signals can be more

ambiguous than that of trabecular bone. For example,

in vivo studies in a variety of animals have shown that limb

bone shaft cross-sections are not always reinforced in the

planes in which they are habitually loaded (Lanyon & Rubin,

1985; Judex et al. 1997; Demes et al. 1998; Lieberman et al.

2004; Wallace et al. 2014; but see Brassey et al. 2013). Thus,

many have suggested caution when inferring functional

loading patterns from cross-sectional shape, especially when

one does not know the habitual loading behaviour or how

bone may respond, such as in fossil taxa (Demes et al. 1998;

Pearson & Lieberman, 2004; Wallace et al. 2014; but see Ruff

et al. 2006; Brassey et al. 2013).

Regardless of the inherent complexity of cortical bone

functional adaptation, the few primate studies that have

analysed trabecular and cortical bone together have

revealed interesting compensatory effects between the two

structures (Skedros et al. 2004, 2012; Carlson & Judex, 2007;

Carlson et al. 2008; Lazenby et al. 2008; Shaw & Ryan,

2012). For example, Shaw & Ryan (2012) showed in a sample

of anthropoid primates that as trabecular bone increases in

the humeral head, cortical diaphyseal strength also

increases. Thus, even though loading at the shoulder joint

and humeral midshaft is biomechanically distinct, when the

humerus as a whole is loaded there is a morphological

response in both trabecular and cortical bone. However, in

other anatomical regions, the relationship between cortical

and trabecular bone is more complex. In contrast to their

humeral results, Shaw & Ryan (2012) found no correlation

between trabecular structure in the femoral head and mid-

Fig. 5 Micro-finite element (lFE) modelling of the primate phalanx. Using micro-CT, the true trabecular and cortical structure of the third proximal

phalanx is modelled using lFE in a static, suspensory posture (left inset image). The biomechanical model was validated by Richmond (2009) 49and

tested via lFE (Nguyen et al. 2014) on siamang phalanges. Here, this model is used to look at the displacement (how much the bone deforms

under loading) across different extant hominoid taxa. Here, the displacement is 30 9 greater than actual so the deformation can be visualized.

Due to variation in trabecular structure, cortical thickness and phalangeal curvature, one can see substantial variation in how well each phalanx

copes with the external loading during a suspensory posture. Orangutans and bonobos show the least displacement, while gorilla and humans

show the most. Adding fossil phalanges to this comparative context will provide greater insight into how well their external and internal morphol-

ogy could cope with the compression and bending stress of suspensory grasping.
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shaft cross-sectional geometry of the femur across their

sample. In the femoral neck, variation in cortical bone may

reflect more clearly differences in external load than trabec-

ular bone across anthropoid primates (Fajardo et al. 2007),

while in the specialized bipedal loading of human femoral

neck, trabecular bone seems to play a more specific biome-

chanical role. The external loads elicit a pattern of ‘trabecu-

lar eccentricity’; the asymmetrical (i.e. non-central)

distribution of trabecular bone within the human femoral

neck helps to reduce stress on the inferior aspect of the

neck where strain and fracture risk is typically highest (Fox

& Keaveny, 2001). Thus, analyses of both trabecular and cor-

tical structure in extant taxa will provide a more holistic

biomechanical interpretation and allow for more informed

behavioural reconstructions in fossil taxa.

Concluding remarks

Like external bone morphology, trabecular bone architec-

ture is the product of both genetic and non-genetic influ-

ences (Judex et al. 2004; Havill et al. 2010; Barak et al.

2011; Raichlen et al. 2015). However, it can be argued that

the ability for trabecular bone to respond and adapt to

mechanical stimuli throughout life, more so than external

bone shape and size, makes it a particularly important

source of functional information for reconstructing beha-

viour in the past. Teasing out the relevant functional signals

(from the genetic, developmental or metabolic influences)

in trabecular structure is not straightforward, as many of

the comparative, experimental and computational mod-

elling studies have demonstrated. However, variation in tra-

becular structure is our best source of morphological

information that is preserved in the fossil record, particu-

larly when analysed in conjunction with cortical bone, for

reconstructing actual, rather than potential, behaviours in

fossil hominoids and hominins.
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