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A new systems model of psoriasis is presented and analysed from the perspective of control theory.
Cytokines are treated as actuators to the plant model that govern the cell population under the reasonable
assumption that cytokine dynamics are faster than the cell population dynamics. The analysis of various
equilibria is undertaken based on singular perturbation theory. Finite time stability and stabilisation
has been studied in various engineering applications where the principal paradigm uses non-Lipschitz
functions of the states. A comprehensive study of the finite time stability properties of the proposed
psoriasis dynamics is carried out. It is demonstrated that the dynamics are finite time convergent to
certain equilibrium points rather than asymptotically or exponentially convergent. This feature of finite
time convergence motivates the development of a modified version of the Michaelis-Menten function,
frequently used in biology. This framework is used to model cytokines as fast finite time actuators.

1. Introduction

Psoriasis is a chronic inflammatory skin disease that affects millions of people world-wide. The
most common form of this disease is chronic plaque psoriasis which occurs in almost 90 % of cases
[35]. Clinically, it is characterised by salmon colour plaques with silvery white scale that appear
on the skin, commonly on the extensor elbows, knees and scalp. The outermost layer of skin is
mainly comprised of keratinocytes; a type of cell that is considered important for psoriasis since
they have been observed to hyperproliferate and abnormally differentiate in psoriatic skin. A role
for the adaptive immune system in psoriasis is also acknowledged, with evidence coming from the
presence of immune cells such as T-lymphocytes and dendritic cells in psoriatic lesions and the
partially successful use of immunosuppressive and modulating drugs such as anti-TNF therapies
[11, 29, 31, 42] in the treatment of psoriasis. The cytokines (signalling molecules) that mediate
interactions between these cells are believed to be pro-inflammatory and linked to the occurrence
of psoriasis.

The study of psoriasis benefits from the accessibility of the human normal and psoriatic tis-
sues (i.e. skin) and several in vitro and in vivo models have been proposed [14]. Complementing
experimental studies, computational and mathematical models have been proposed that are able
to explain the hyper-proliferation of keratinocytes, the role of cytokines in psoriasis, and have
generated the morphology of the normal and psoriatic epidermis. Based on the general approaches
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employed, existing models can be divided into two groups: (i) agent based models [51, 23, 48, 24, 54]
and (ii) ordinary differential equation (ODE) based models [53, 43, 44, 47, 21]. A computational
model to study the spatio-temporal dynamics of epidermis homoeostasis under normal and patho-
logical conditions has been developed [59]. This model consists of a kinetic model of the central
transition pathway of keratinocyte proliferation, differentiation and apoptosis and an agent-based
model that propagates cell movements and generates the stratified epidermis. The model is used
to study the onset, recurrence and phototherapy-induced remission of psoriasis. However, although
the dynamics of cytokine interactions have been explored computationally [53], the ways in which
these affect populations of the aforementioned cell types, therefore leading to psoriasis phenotypes,
have not been explored.

In the present study, a mathematical model of psoriasis is developed that incorporates inter-
actions between different cell types, mediated by the cytokines they produce. Using control en-
gineering techniques, the possibility of some of the cytokines acting as fast actuators to the cell
population dynamics is investigated. More specifically, singular perturbation methods are used to
study cytokines as fast actuators. The analysis shows that the system can display two steady states
reflecting normal and psoriatic skin conditions. Finite time stability of a healthy immune system
is studied and the possibility of cytokines working as a fast finite time actuators to the cellular
level dynamics is explored in this case. For both cases, a non-Lipschitz growth function approach
is used. The study explores the inherent finite time nature of the underlying biology of psoriasis
and demonstrates an analysis approach which could be used for other biological systems.

The paper is organised as follows. In Section 2 a new model for psoriasis is motivated and
developed. Section 3 presents an analysis of the cell and cytokine dynamics where the possibility
of some cytokines working as fast actuators for the cellular dynamics is explored. In section 4, the
non-Lipschitz growth function approach to capture the finite convergence properties is discussed.
Section 4.1 combines the approaches of sections 3 and 4 to model cytokines as fast finite time
actuators. In section 5, a short conclusion is presented.

2. System components and model formulation

It is believed that the psoriatic skin is mainly populated with three cell types, namely keratinocytes,
T cells (specifically CD4+ T lymphocytes) and dendritic cells [31, 36]. Other cell types have also
been implicated in psoriasis pathogenesis, such as natural killer (NK) cells [15] and macrophages
[12]. However, the level of information that is available from biology to inform modelling studies
with regard to these cell types is sparse. In particular, there is a lack of understanding of the
signalling pathways employed by these cells. Mainly for this reason, but also to simplify the system
in order to investigate its finite-time behaviour and the effects of certain cytokines, only dendritic
cells, T cells and Keratinocytes are considered. For these cell types, an extensive literature is
available from biology to underpin the modelling effort. A single compartment model that consists of
communication between immune cells in the dermis and keratinocytes in the epidermis is considered
(see Figure 1). The keratinocyte population in the model includes a progenitor pool of keratinocyte
stem cells and transit amplifying cells, which are exposed to signals from immune cells in the dermis.
The keratinocyte desquamation in the model is neglected as cells are out of range of active immune
cells long before desquamation. The present section motivates the incorporation of the modelled
cell types and interactions among them, mediated by cytokines. These interactions are considered
to influence the proliferation or apoptosis of cells, thus affecting the dynamics of cell population
sizes. A list of cytokines incorporated in the model is shown in Table 1.
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Figure 1. The cellular compartment modelled represents epidermal basal layer keratinocytes (red) interacting with dendritic

cells (blue) and T-cells (green) via cytokine networks in the dermis.
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Figure 2. A schematic diagram of the cell types predominantly implicated in psoriasis and the interactions among them
mediated via cytokines.

2.1 Keratinocytes

Keratinocytes are an obvious choice for inclusion in any model since this population of cells is known
to form psoriatic plaques. They make up the bulk of the tissue of the epidermis, and keratinocyte
hyperplasia is considered a distinguishing feature of psoriasis. These cells undergo differentiation
as they travel up through the layers of the epidermis. In the stratum basale, keratinocytes start
as stem cells (SC) or transit amplifying cells (TA) before differentiating to growth arrested cells
(GA) and migrating to the stratum spinosum, where they differentiate into spinous cells (SP), then
onto the stratum granulosum where they become granular cells (GC). Finally, when they reach the
stratum corneum, they differentiate into corneocytes and are shed in the process of desquamation
[59]. Only SC and TA cells are capable of proliferation, and back conversion is only possible between
TA and SC or GA and TA [59]. For simplicity this study does not distinguish between these SC,
TA, GA, SP and GC, lumping them instead into a single keratinocyte population. However, K
does not include the terminally differentiated keratinocytes (corneocytes). The keratinocyte cell
population is considered to be modulated largely by the opposing actions of proliferation and
apoptosis, each of which can be up or down regulated to maintain homoeostasis. Keratinocyte
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apoptosis is reported to be inhibited by IL-15 [45, 15] which is itself produced by keratinocytes
and dendritic cells [5]. In addition, IL-22 which is produced by subsets of T-cells (Th17 and Th1)
inhibits keratinocytes terminal differentiation [55]. IFNγ, which is produced by T-cells (by Th1
and Th17 [15, 49]) and dendritic cells [15] inhibits keratinocyte proliferation [50]. TNFα, which is
produced by keratinocytes, T-cells and dendritic cells, drives keratinocyte apoptosis [35, 1, 60].

2.2 T cells

T cells or T lymphocytes are so named as their progenitors originate in the thymus and circulate
around the body through the lymphatic system. There are many sub categories of T cell classified
by the receptors and cytokines expressed by them as well as by their role in the immune system.
However, it is widely acknowledged that the CD4+ super group of T cells is most critically asso-
ciated with psoriasis [9]. Here, for simplicity, all mature CD4+ T lymphocytes are lumped into a
single population. They are included in the model as they have long been implicated in the patho-
genesis of psoriasis [2, 16, 20, 30, 58, 19]. As for keratinocytes, T cell populations are considered to
be affected by proliferation and apoptosis, but also by migration from external sources or differenti-
ation from other sub-populations. These behaviours are unsurprisingly governed by cytokines. For
instance, IL-12 produced by dendritic cells has been shown to induce differentiation of naive CD4+
cells to Th1 [33]. Sub-populations of the CD4+ respond to other signals for instance Th-17 activity
and proliferation is thought to be up regulated by IL-23 which is produced by macrophages, den-
dritic cells [4] and keratinocytes [39, 15]. The proliferation of CD4+ cells is reported to be inhibited
by IL-10 [13], where T cells (subsets of CD4+ and CD8+ lymphocytes[13]) and dendritic cells are
thought to be the major contributors of IL-10 [26, 46]. Furthermore, IL-15 causes T cell population
increase via inhibition of apoptosis [8].

Table 1. List of cytokines considered in the model with their source and effect on different cell types.

Cytokines
Cell types

Keratinocytes T Dendritic

IL-10
- (inhibition of prolif-
eration), s

s

IL-12
+ (differentiation in
mature form)

s

IL-15
+ (inhibition of apop-
tosis), s

+ (inhibition of apop-
tosis)

s

IL-17 s + (indirect effect)

IL-22
+ (inhibition of differ-
ention)

s

IL-23 s
+ (activation of prolif-
eretaion)

s

IFNγ
- (inhibition of prolif-
eration)

s s

TNFα
- (activation of apopto-
sis), s

s + (maturation), s

where s denotes source of the cytokine, and + or - represent the net activation or inhibition of the cell population,

respectively.
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2.3 Dendritic cells

Dendritic cells are thought to straddle the gap between the innate and adaptive immune systems.
Their primary role is as professional antigen presenting cells, however they are also capable of
phagocytosis and are known to be prolific producers of cytokines. They are believed to be derived
from monocytes and therefore the population dynamics is considered to be driven by migration and
differentiation, as well as proliferation and apoptosis. In this study, only matured dendritic cells are
incorporated. The population of dendritic cells increases due to the production of IL-17 by Th-17
cells via the stimulation of chemokine production in keratinocytes. TNFα stimulates maturation
of dendritic cells [30].

2.4 The model

A schematic diagram of the cell-cell interactions among three types of cells: (i) keratinocytes, (ii)
T- cells and (ii) dendritic cells via cytokines is shown in Figure 2. For simplicity, it is assumed that
only four kinds of activity are accountable for the epidermis homeostasis. These are cell migration,
proliferation, differentiation/maturation and apoptosis. It is also assumed that the rate of migration
is independent of the local concentration for each cell type whereas the rate of proliferation and
differentiation is dependent on the existing population. In addition, it is assumed that cell death
is a stochastic event at the individual cell level, therefore the population average rate of cell death
is proportional to the existing population. With these assumptions, the dynamics of each cell
population, x, can be represented by the following ordinary differential equation

dx

dt
= ax + bx− cx− µxx (1)

where ax is a parameter that denotes a basal rate of increase in cell population x (due to
unmodelled migration or differentiation factors), b is a function that represents a rate of increase
in x by cytokine-mediated differentiation/maturation and proliferation. Function c accounts for a
net rate of decrease in x due to cytokine mediated apoptosis and parameter µx represents effects of
additional apoptosis due to non-modelled processes. Based upon the interaction diagram (Figure 2)
each of these additive terms can be modulated due to influences from other cells. These modulations
can cause increases or decreases to the additive terms depending on the type of interaction (Figure
2). In order to model these effects, an approach previously employed to study up- and down-
regulating interactions between biological components is used [34, 22]. In these previous studies,
interactions are modelled by combinations of non-linear functions that are increasing or decreasing
with respect to their arguments. Where different cytokines contribute to the same process (for
example, proliferation) in the same cell, but with different direction of effect, this is modelled as
a multiplication of terms. For example, IL-23 activates the proliferation of T cells, whereas IL-
10 inhibits the proliferation of T cells. The proliferation term for T cells therefore contains an
increasing function multiplied by a decreasing function. Taking into account the specific discussion
above, within this framework the dynamics of a system of keratinocytes (K), T cells (L) and
dendritic cells (D) can be written as

dL

dt
= aL + (fIL12(D) + fIL23(D,K)gIL10(D,L))L− (gIL15(D,K) + µL)L

dD

dt
= aD + (fTNF(D,K,L) + fIL17(L))D − µDD

dK

dt
= aK + (fIL22(L) + gIFN(L,D))K − (fTNF(D,K,L)gIL15(D,K) + µK)K

(2)
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IL-23

IL- 17

Figure 3. Simplified network with IL-23 as an actuator.

As described above, the functions fi and gi represent generic activation and inhibition functions,
respectively.

3. A singular perturbation based analysis of the model

From a systems viewpoint, cytokines can be assumed to be actuators for the plant dynamics that
govern the cell populations. The model described in Figure 2 and equation (2) is complex and
one of the objectives of this study is to focus upon key phenomena that are pertinent to the
pathogenesis and treatment of psoriasis. To achieve this objective, model simplification is required.
In the following, the focus is on two cytokines, IL-23 and IFNγ . In this study, these are considered as
actuators and appear in the cell dynamics as control affine terms. The resulting models are analysed
for stability. The selection of these specific cytokines as actuators is motivated by the consideration
of cytokines within drug treatments for psoriasis which is well reported in the literature [4, 10, 27].
Initially the case where IL-23 is an actuator is considered.

IL-23 as an actuator

In order to study IL-23 as an actuator the model in equation (2) is simplified as shown in Figure 3.
The mutually activating D to L loop is considered, which is reliant upon the cytokines IL-23 and
IL-17 and produces the subsequent indirect activation of K (via L). The levels of K emerge from
all the interactions of the network. Therefore to study the role of IL-23 in the general model (Eq.2)
would require specification of all the functions and their parameters, and a sensitivity analysis
of parameters relating to IL-23. Instead a simplified approach is adopted, lumping all the effects
of IL-23 onK into a single parameter, up. Specifically, the following relationships are assumed:
gIL15(D,K) = fIL12(D) = fIL22(L) = 0, fIL23(D,K,L) = δD where δ denotes the rate at which
IL-23 is secreted from the dendritic cells, gIL10(D,L) = 1, fTNF(D,K,L) = 0, fIL17(L) = βL,
aK = 0, gIFN(L,D) = 0. Note that the unity in place of fi and gi represents a constant presence of
that pathway.

These considerations produce the following reduced form:
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Figure 4. Fast-Slow Dynamics for singular perturbation analysis when IL-23 acts as an actuator.

L̇ = aL + δLD − µLL
Ḋ = aD + βLD − µDD (3)

K̇ = up − µKK,

where, up is a control parameter representing the indirect effects of IL-23 on keratinocytes. A
singular perturbation based approach is used to parameterise up as a function of the state (in
particular as a function of the states D,K). Note that the control up is neither “synthesised” nor
“proposed”, but rather is derived naturally from the assumption of fast-slow dynamics. A block
diagram of the control system is shown in Figure 4 where the output is defined as y = xp =
[ L D K ]T and the feedback gain matrix K̄ is given by K̄ = [ 0 k2 k1 ]. The subscript ‘p’
denotes plant (e.g. plant state xp, control input up etc).

The function f(xp) is given by the right hand side of (3). The fast dynamics of the cytokine are
proposed as follows:

u̇p = k1K + k2D − up (4)

The motivation to choose this dynamic stems from the fact that up is thought to be the cause
of inflammatory hyper-proliferation of keratinocytes. Such behaviour coincides with the pro-
inflammatory nature of certain cytokines. More cytokines and higher order dynamics can be con-
sidered in a more detailed analysis. However, the above scalar dynamics of up are considered for
ease of exposition.

It is assumed that the source of inflammation within up comes from D, the dendritic cells, and
K the keratinocytes. Such a formulation of up is motivated by known biological information as
described in the Introduction. The natural death rate of up is assumed to be unity for simplicity.
In this way, a cytokine actuator is seen to have the role of a pseudo-control which inhibits the
keratinocyte proliferation when it is prohibited using therapies.

Following the standard singular perturbation analysis method [28, Chapter 9], the following is
considered:

εu̇p = ψ(xp) = k1K + k2D − up (5)
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with ε being a small positive scalar. When ε = 0, a closed-form solution for up results as follows:

up(xp) = k1K + k2D (6)

It should be noted that the analysis must consider that with singular perturbation methods, the
right hand side of (4) is taken to zero since εu̇p = 0. However, u̇p = 1

εψ(·) can be very large when
ε is very small but not zero. Large values of u̇p may be attributed to the constant k2 and not
k1 since it is reasonable to assume that it is the dendritic cells D that drive the proliferation of
IL-23 more than the keratinocytes K. Hence, restricting k1 < µK , where µK is a positive scalar,
in the following mathematical analysis is biochemically plausible. This requirement emerges as a
condition for a meaningful biological equilibrium as motivated below.

Analysis of equilibria

Substituting (6) into (3) produces the following feedback system:

L̇ = aL + δLD − µLL
Ḋ = aD + βLD − µDD (7)

K̇ = k1K + k2D − µKK,

The equilibria are given below where throughout the paper the notation ∗ will be used to denote
an equilibrium point.

L∗ =
aL

µL − δD∗

D∗ =
(δaD − βaL + µLµD)±

√
(δaD − βaL + µLµD)2 − 4µLµDδaD

2µDδ
(8)

K∗ =
k2

µK − k1
D∗,

where k1 < µK and δaD > βaL. If µLµD > (δaD − βaL) then D has two roots and therefore
the system will have two equilibria. This dynamic behaviour has previously been suggested in the
study of immunity [41].

IFNγ as an actuator

A simplified version of model (2) is analysed in the following as represented schematically in Figure
5. The activation and inhibition functions can be defined as follows:

fi(x) =
1

2
(1 + sign(x− ηi))

gi(x) =
1

2
(1− sign(x− ηi))

(9)

where the ηi are positive scalars representing the threshold values for activation or inhibition of a
given cell population x and the signum function is defined as

sign(y) =

{
−1, y < 0;
1, y ≥ 0.

(10)
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Figure 5. Simplified network with IFNγ as an actuator.

The functions fi and gi in (9) cannot be defined by a general multi-valued sign function. In the
absence of a multi-valued definition [18] for the ‘sign’ functions at the point of discontinuity, the
definition of the signum function in (9) is adequate to represent the biological switch in the functions
fi, gi. Consider the particular case of the general model (2) under the following assumptions:

• fIL23(D,K) = fTNF(D,K,L) = fIL12(D) = 1
• gIL15(D,K) = 1, fIL22(L) = 0, aK = 0
• fIL17(L) = 1

2(1 + sign(L− ηL))

• gIL10(D,L) = 1
2(1− sign(D − ηD))

The unity in place of fi and gi represents a constant presence of that pathway. In fact, a special
case of psoriasis is considered whereby, of all the activation and inhibition functions, only fIL17(L)
and gIL10(D,L) are defined and they are based on thresholds ηL, ηD.

Furthermore, it is assumed that the term gIFN(D,L)K = ε̄up, where up denotes the control vari-
able. This is motivated by an attempt to use IFNγ as a therapy for an inflammation related disease
[17] . The inhibition of the keratinocyte K via the function gIFN is the same as the self-apoptosis
of the IFNγ dynamics (caused by an external signal). Biochemically, this means that control-
ling IFNγ controls the proliferation of keratinocytes. The scalar ε̄ is introduced as a saturation
parameter which gives direct control over the proliferation of K.

Within this framework, the system dynamics in equation (2) becomes

L̇ = aL + (1 +
1

2
(1− sign(D − ηD)))L− (1 + µL)L

Ḋ = aD + (1 +
1

2
(1 + sign(L− ηL)))D − µDD

K̇ = ε̄up − (1 + µK)K

(11)

Next, scalar cytokine dynamics are considered as discussed previously. From the discussion in
the preceding sections, it is plausible to choose a cytokine that is a good candidate for control. As
mentioned previously, the choice should be commensurate with the biochemical degrees of freedom,
i.e., the choice of cytokine should be such that it becomes reasonable to think about the particular

9
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Figure 6. Fast-Slow Dynamics for singular perturbation analysis when IFNγ acts as an actuator.

cytokine as a fast acting control variable.
Assuming cytokine IFNγ as the actuator, the following equation for the cytokine dynamics is

chosen:

u̇p = D − up (12)

where, up = IFNγ . It can be seen that this simple choice of scalar dynamics accommodates the
up-regulation of IFNγ by the dendritic cells D as discussed in Subsection 2.1 above and in [15],
also assuming that L makes a negligible contribution.

The structure of the dynamics from the control view-point is depicted in Figure 6 where the
cytokine behaves as a fast actuator producing the control action up for the slow plant dynamics
corresponding to the cell populations. These cell populations are effectively driven by the saturated
control ε̄up.

Following a similar analysis as carried out for cytokine IL-23 and assuming as before that the
cytokine dynamics are much faster than the cell population dynamics, the following holds true:

u̇p = 0⇒ D = up (13)

Analysis of Equilibria

As can be seen from (11), the first two equations contain linear decay and non-linear terms that
contain the signum function. A case by case study can be carried out for each of the four possible
combinations due to the two signum functions.

Case 1: 1
2(1− sign(D − ηD)) = 1

2(1 + sign(L− ηL)) = 0

10
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The following is obtained from (11):

L̇ = aL − µLL
Ḋ = aD + (1− µD)D

K̇ = ε̄up − (1 + µK)K

(14)

It is straightforward to show that the equilibrium is given by (L∗, D∗,K∗) =

( aLµL ,
aD

µD−1 ,
ε̄(aD)

(µD−1)(1+µK)). It can be seen that as ε̄ → 0, the concentration of keratinocytes

K tends to zero.
Case 2: 1

2(1− sign(D − ηD)) = 1
2(1 + sign(L− ηL)) = 1

The following is obtained from (11):

L̇ = aL + (1− µL)L

Ḋ = aD + (2− µD)D

K̇ = ε̄up − (1 + µK)K

(15)

One can easily show that equilibrium is given by (L∗, D∗,K∗) = ( aL
µL−1 ,

aD
µD−2 ,

ε̄aD
(µD−2)(1+µK)) for

µL > 1 and µD > 2 . Again, as ε̄→ 0, the concentration of keratinocytes K tends to zero.
Case 3: 1

2(1− sign(D − ηD)) = 0, 1
2(1 + sign(L− ηL)) = 1

The following is obtained from (11):

L̇ = aL − µLL
Ḋ = aD + (2− µD)D

K̇ = ε̄up − (1 + µK)K

(16)

Then the equilibrium is given by (L∗, D∗,K∗) = ( aLµL ,
aD

µD−2 ,
ε̄aD

(µD−2)(1+µK)) for µD > 2.

Case 4: 1
2(1− sign(D − ηD)) = 1, 1

2(1 + sign(L− ηL)) = 0

L̇ = aL + (1− µL))L

Ḋ = aD + (1− µD)D

K̇ = ε̄up − (1 + µK)K

(17)

The corresponding equilibrium is given by (L∗, D∗,K∗) = ( aL
µL−1 ,

aD
(µD−1) ,

ε̄aD
(µD−1)(1+µK)) for µL > 1

and µD > 1.
It can be seen that by controlling epsilon desirable keratinocyte levels (i.e. comparatively lower

levels) can be attained. Hence, the above modelling approach elucidates the role of the saturated
output corresponding to the fast cytokine dynamics as a control variable in the dynamics of pso-
riasis.

In this section the effect of two cytokines has been considered by considering saturated and non-
saturated actuators as fast acting control variables for the dynamics of psoriasis using a singular
perturbation based analysis. The next section utilises the natural fact of finite time stability of the
biological dynamics and introduces non-Lipschitz growth functions.
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4. Non-Lipschitz growth functions for modelling finite time behaviour

Non-Lipschitzian dynamics are central to producing finite time stable dynamics [25, 3, 37]. This
section establishes a connection between using non-Lipschitz growth functions for cell population
dynamics and their finite time convergence via the study of auto-immune disease dynamics. A
preliminary analysis motivating the use of finite time stability considerations within the modelling
of autoimmune disease appears in [38].

In order to study finite time behaviour, an explicit functional form for the interactions described
by our general model is sought. First, a modified version of the Michaelis-Menten function is
introduced as follows:

f(x) =
kmaxx

km + x
, (18)

where x is the concentration of the cell population, kmax is the maximum or the saturation value
attainable in the range of the function f(x) and kmax

km
defines the slope of the graph of f(x) at

x = 0. A normalized version of (18) as given in [53] is as follows:

f(x) =
x

1 + x
(19)

A non-Lipschitz modification of the above function is given by:

f̄(x) = (
x

1 + x
)α (20)

where α ∈ (0, 1). The non-Lipschitz function f̄(x) of (20) coincides with f(x) of (19) when α = 1.
The limiting values of f̄(x) as x tends to zero and infinity remain the same as those for f(x). The
main difference between these two functions is that the slope of f̄(x) at x = 0 is infinite as it is
non-Lipschitz in x whereas f(x) has a slope (1 + x)−2 everywhere. The graphs of f(x) and f̄(x)
against x are shown in Figure 7 with α = 0.5. It should be noted that f(x) takes the value 1

2 at

x = 1 whereas f̄(x) = (1
2)α at x = 1. Small values of the constant km in (18) correspond to ( i)

a higher slope closer to the origin, and (ii) to stronger attraction of the trajectories towards the
resulting equilibrium. The modified Michaelis-Menten function (20) exhibits this feature for those
values of α smaller than unity (Figure 7). The motivation behind such a modification stems from
the viewpoint of modelling a personalised immune response that is healthy with a strong attraction
towards a healthy equilibrium.

Modelling and corresponding analysis in the existing literature focusses on asymptotic stability of
healthy or unhealthy equilibria of the immune system (see [41]). Such an analysis gives good insight
into the qualitative asymptotic behaviour of the system close to the equilibrium. However, it is
evident from the observation of biological systems that the dynamics are finite time convergent to
the given equilibrium point rather than asymptotically or exponentially convergent. There is limited
work available which rigorously models the finite time behaviour which is a key characteristic
of the underpinning biology. This section is motivated by the need to analyse the decay in the
concentration or cell population to the equilibrium in a finite time as this may be a more realistic
approach than to perform modelling and analysis on an infinite time scale. The tools for stability
analysis from linear system theory can no longer be applied to the resulting non-Lipschitz dynamical
system. However, there are well defined mathematical tools available in the literature as defined
in [25, 3, 37]. Furthermore, the motivation to study a new modelling framework also lies in the
possibility of proposing new treatment regimes which, as in existing cases, need to be defined on a
finite time scale.

12
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Figure 7. A normalised modified Michaelis-Menten function and a non-Lipschitz modification of that with α = 0.5.

A systems model prescribing finite time stability: a case study

With the above viewpoint, the modified Michaelis-Menten functions as defined in (20) can be used
to model the dynamics of auto-immune disease i.e. the class of disease in which psoriasis is thought
to lie. For this case study, non-Lipschitz equations are used that build on the linearised immune
system model given by [41].

The immune system model given in [41] is as follows:

ẋ1 = l − dx1 − k x1 x3, ẋ2 = −e x2 + k x1 x3, ẋ3 = m
x2 x3

h+ x2 x3
− f x3 (21)

where, x1 represents the tissue cells, x2 represents the damaged cells and x3 represents the immune
cells. The positive scalars l, d, k, e,m, h, f are defined in [41]. Consider the following linear model
derived by linearising the non-linear dynamics around the equilibrium point (x1, x2, x3) = ( ld , 0, 0)
as derived in [41]:

ẋ1 = −dx1 −
k l

d
x3, ẋ2 = −ex2 +

k l

d
x3, ẋ3 = −fx3 (22)

The model parameters d, e, f represent respectively the death rate constants of the three states.
The proposed modification of the model using the non-Lipschitz function (20) is given as follows:

ẋ1 = −d
(

x1

1 + x1

)α
− k l

d

(
x3

1 + x3

)α
, ẋ2 = −e

(
x2

1 + x2

)α
+
k l

d

(
x3

1 + x3

)α
,

ẋ3 = −f
(

x3

1 + x3

)α (23)

where α = 0.98 is used. The model in equation (23) possesses a different set of equilibria when
compared to (22). The equilibria depend on α. The justification for introducing such variability lies
in the fact that it is unlikely that every immune system possesses a distinctly defined equilibrium
and the same model parameters. Thus, the parameter α represents various responses for a class of
immune system dynamics. There are a number of properties of this model that can be observed.

For non-negative initial conditions, the quantity xi
1+xi

, i = 1, 2, 3 always remains positive. Fur-

thermore, the time varying scalar k̄(x3) = 1
(1+x3)α remains positive. The third equation in (23) can

13
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Figure 8. Comparison of evolution of states of the dynamics (23).

be re-written as

ẋ3 = −fk̄(x3)xα3 , (24)

which is a finite time stable equation as per [3, Th. 4.2]. This can be formally verified by analysing
the Lyapunov function V (x3) = 1

2 x
2
3 and its temporal derivative along the scalar system equation

(24) V̇ = −fk̄(x3)xα+1
3 . Since xα+1

3 = (2V )
α+1

2 , the equality

V̇ ≤ −2
α+1

2 fκV
α+1

2 (25)

holds true for some scalar 1 ≥ k̄(x3) ≥ 1
2 > κ > 0. Such a scalar κ ∈ (0, 1

2) can always be found
globally for all x3. This is because (25) shows global asymptotic stability and there exists a finite
time t = t1 after which the expressions supx3≥0 k̄(x3) = 1, x3 < 1, (1 + x3)α ≤ 2 and

1

(1 + x3)α
≥ 1

2
⇒ − 1

(1 + x3)α
= −k̄(x3) ≤ −1

2
≤ −κ

hold true for all α ∈ (0, 1). Hence, the well-known result of finite time stability using Lyapunov
analysis (Theorem 4.2 of [3]) applies since α+1

2 ∈ (0, 1) ∀α ∈ (0, 1). This leads to the equality
x3 = 0 in finite time instead of asymptotically.

After a finite time instant t = T <∞ for which the identity x3 = 0 holds true for all t ≥ T , the

14
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Figure 9. Sensitivity of state time histories of the dynamics (23) with varying α.

remaining dynamics in (23) can then be given as follows:

ẋ1 = −d
(

x1

1 + x1

)α
, ẋ2 = −e

(
x2

1 + x2

)α
. (26)

These, in turn, are finite time convergent to the origin x1 = 0, x2 = 0 following a similar analysis
as carried out for the state x3. This analysis shows that the model (23) imitates the linear model
(22) in that the stability of the healthy equilibrium point is maintained. The comparative plots in
Figure 8 show the behaviour of the linear model in (22) and the proposed model which prescribes
finite time convergence in (23). The traces show good agreement. The stability of the states in
(23) is a finite time behaviour, which is a special case of asymptotic stability (see [3]). Hence, the
proposed model (23) captures a class of finite time healthy immune system responses that have
the same qualitative stability properties as the linear model for the healthy equilibrium.

A further sensitivity analysis can also be studied. Figure 9 shows the evolution of all the three
cell types against time when α is varied from 0.75 to 0.98. The initial conditions are kept constant
for all simulation runs at (1, 0, 0.05). It can be clearly seen that reduction in the parameter α is
accompanied with a reduced settling time for the finite time stable equations contained in (23).
From a systems biology viewpoint, it is reasonable to view α as a model constant that parameterizes
the convergence to the healthy equilibrium. It should be noted here that the conventional model
constants d, e, f are kept constant and it is the modified Michaelis-Menten function that affects the
behaviour of the dynamics of psoriasis via α. Hence, the proposed model captures many possible
immune responses for the same model structure, a more realistic and intuitive outcome than having
a specific model for each type of immune response. Of course, setting α = 0 captures the limiting
discontinuous case as can be seen from (24) which enforces what is known in the paradigm of control
theory as a sliding mode on x3 = 0. Studies on such discontinuous dynamics can be found in [57].
Such a general parameterization of the immune response can motivate devising future therapeutic
regimes.

Finally, sensitivity of the new model can be studied with respect to changes in the model constants
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d, e, f . Let the right hand sides of the equations (22) and (23) be re-written as follows. The linear
dynamics from (22) are given by

ẋ1 = Ψ1(d, γ, x1, x3), ẋ2 = Ψ2(e, γ, x2, x3), ẋ3 = Ψ3(f, x3), (27)

where γ = kl
d . The non-linear dynamics from (23) are given by

ẋ1 = Ψ4(α, d, γ, x1, x3), ẋ2 = Ψ5(α, e, γ, x2, x3), ẋ3 = Ψ6(α, f, x3), (28)

It can be clearly seen that computing ∂Ψ3

∂f results in −x3 whereas computing ∂Ψ6

∂f results in

−
(

x3

1+x3

)α
. Hence, the non-linear differential equation is more sensitive in a favourable way when

the parameter f changes, for example when x3 << 1, as the non-Lipschitz entity −
(

x3

1+x3

)α
repre-

sents faster convergence than −x3 for given value of f . Certainly, the sensitivity may become less
or more favourable when partial derivatives of Ψ4 and Ψ5 with respect to d and e respectively are
taken into account. However, the underlying finite time behaviour is ensured by the parameter α.

4.1 Cytokines as fast finite time actuators

The concept of non-Lipschitz growth functions introduced above can be utilised to remove the
approximation within the earlier singular perturbation based analysis [28] of the dynamics of
psoriasis. The main idea is to treat the actuator as a finite time stable actuator which is obviously
faster than the asymptotically stable cell dynamics. Consider again the case of IFNγ acting as a
control variable up having fast dynamics (see Figure 6). In place of the Lipschitz right hand side
in (12), the following choice of non-Lipschitz dynamics for the finite time actuator can be made:

u̇p =

( |u∗p − up|
1 + |u∗p − up|

)α
sign(u∗p − up) (29)

where, the scalar α ∈ (0, 1) and u∗p is the steady-state value of the cytokine concentration. It can
be seen that up = u∗p is an equilibrium of this system. A candidate Lyapunov function can then be
constructed as follows:

V (up) = |u∗p − up| (30)

It should be noted that the concentrations u∗p and up take only positive values due to their biological
definitions. Hence, the function V is always positive definite. The temporal derivative of V along
the trajectories of the dynamics (29) can be obtained as follows:

V̇ = sign(u∗p − up)
(
−
( |u∗p − up|

1 + |u∗p − up|

)α
sign(u∗p − up)

)
(31)

It is reasonable to restrict the study to finite concentrations in biology, i.e., consider only the local
case |u∗p−up| < ρ where ρ is an arbitrary and a priori known positive scalar. Hence, the expression

1 + |u∗p − up| < 1 + ρ ⇒ − 1
(1+|u∗

p−up|)α
< − 1

(1+ρ)α holds true. The expression (31) can then be
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re-written as follows:

V̇ = |u∗p − up|α
(
− 1

(1 + |u∗p − up|)α

)
< − 1

(1 + ρ)α
V α

(32)

Since 1
(1+ρ)α is a positive constant, finite time stability of (29) follows from [3, Theorem 4.2] due

to (32). Since, V = 0 in finite time, up = u∗p is also achieved in finite time. This is a very similar
expression to that obtained in (13) in that u∗p ≈ D when the concentration D is changing slowly
when compared to up. It should be noted that the above analysis follows the naturally occurring
finite time convergent cytokine dynamics rather than using the singular perturbation approach
where εu̇p is approximated as zero for some very small ε.

5. Conclusion

An ordinary differential equation based mathematical model of psoriasis pathogenesis has been
developed which incorporates the different cell types and cytokines involved in this disorder. Specif-
ically, the model considers T-cells, dendritic cells and keratinocytes. In order to keep the model
simple, the role of only a few cytokines have been incorporated. Assuming the cell population dy-
namics as a plant model, the role of two cytokines as fast actuators is explored. A stability analysis
using a singular perturbation approach is presented in which the inherent fast-slow dynamics is
utilised. The two stable steady-states of the model correspond to a normal and psoriatic epidermis.
In addition, the use of finite time stability analysis is motivated for biological systems as this seems
very natural. An analysis framework is proposed that has the potential to provide new insights
into how to exploit the role of cytokines in future treatments for psoriasis.

Moving forward, informative data to further validate the model could include measurements of
cytokine levels along with rates of proliferation, differentiation and apoptosis of cell populations as
functions of time. As more information becomes available regarding the interactions of other cell
populations within this system (for example natural killer cells), such cells can also be incorporated
into the model. This could include an extension to consider histological imaging that identifies
psoriasis effects on natural killer cells [6], [32].

The model that has been developed contains crucial ingredients that can be extended to study
autoimmune systems more generally and their involvement in an array of diseases. Pertinent ex-
amples would be psoriatic arthritis, which often co-occurs with psoriasis [52]. In addition, the pro-
inflammatory state in psoriasis is correlated to the presence of co-morbidities such as metabolic
syndrome [7]. In this case the model may provide insight into the complex interplay and the common
mechanisms involved [56]. Moreover, the modelling framework lends itself to the study of wider
diseases of cytokine and T-cell dysfunction including autoimmune type 1 diabetes and multiple
sclerosis [40].
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