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Abstract 

Alternative cell fates represent a form of non-genetic diversity, which can promote 

adaptation and functional specialization. It is difficult to predict the rate of the transition 

between two cell fates due to the strong effect of noise on feedback loops and missing 

parameters. We opened synthetic positive feedback loops experimentally to obtain open-

loop functions. These functions allowed us to identify a deterministic model of bistability by 

bypassing noise and the requirement to resolve individual processes in the loop. Combining 

the open-loop function with kinetic measurements and re-introducing the measured noise, 

we were able to predict the transition rates for the feedback systems without parameter 

tuning. Noise in gene expression was the key determinant of the transition rates inside the 

bistable range. Transitions between two cell fates were also observed outside of the bistable 

range, evidenced by bimodality and hysteresis. In this case, a slow transient process was the 

rate limiting step in the transitions. Thus, feedback opening is an effective approach to 

identify the determinants of cell fate transitions and to predict their rates. 

Introduction 

 Genetically identical cells with two distinct phenotypes can co-exist and persist in an 

identical environment provided they were exposed to different conditions in the past and can 

display bistability. Typically, bistability arises in uni- and multicellular organisms due to positive 

feedback loops, which promotes adaptation and cell differentiation [1-3].  

 In a bistable feedback, a feedback component can have either low or high concentration in 

the steady-state. Which state is reached depends only on the initial condition. If initially an 
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external factor induces a cell to express sufficiently high concentration of a component, the high 

expression will persist even after the factor is removed. Such a purely deterministic view of 

steady-state bistability needs to be modified in biological systems, because transitions occur 

between two states. Transitions rates can span a broad range; it is a rare event, for example, in the 

lysis-lysogeny cycle of the lambda phage. On the other hand, bacteria can switch to the 

competent form at high frequency [4, 5].  The prediction of these rates is crucial because they 

determine the proportion of the two cell types in a cell population and the efficiency of cellular 

reprogramming [6, 7]. 

 Typically, noise is considered a driving force of such transitions in genetic systems [8]. 

The interaction between a bistable system and noise is often conceptualized by depicting the 

deterministic bistable system by a potential landscape; the two stable states correspond to the two 

lowest points in the potential wells, which are separated by a barrier (Fig.1a) [9]. When the 

system is exposed to noise, small fluctuations may not be sufficient to switch the cells to the 

other state but larger fluctuations would do this (Fig. 1a, lower left panel). On the other hand, if 

the barrier is lower, even weak noise can switch the cells (Fig. 1a, lower right panel). 

 Thus, bistability amplifies the effect of noise: a sufficiently strong noise can induce most 

of the cells to switch to the higher state even though the deterministic description predicts the 

system to be at the low state. Consequently, the deterministic and stochastic descriptions of 

bistable systems are completely different [10], which makes the prediction of the rates difficult. 

A possible way to predict the transitions is to measure individual reactions in vitro or in vivo, and 

to combine all the reaction parameters into a model. However, many parameters in a circuit are 

experimentally inaccessible; their reported values can also scatter broadly, which hampers the 

prediction [11, 12]. 
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  Here we opted for a different approach comprising two stages. First, we employed a 

method termed feedback opening [13]. We opened synthetic feedback loops in the yeast 

Saccharomyces cerevisiae. Synthetic circuits have been playing an important role to characterize 

the fundamental properties of feedback behavior [14-18]. In the open loop, bistability is 

eliminated and noise-induced transitions are bypassed. Therefore, we can obtain an open-loop 

function, which is the total response of all the reaction steps in the loop, without the need to 

resolve any of them individually. Since the open-loop function contains all the information on the 

deterministic steady-state expression, it can be used to determine if the parent closed (feedback) 

loop is bistable or monostable (Fig. 1b, deterministic model). In the second stage, we measured 

noise and the time-scale of reactions, and by re-introducing noise into the model, we successfully 

predicted the transition rates (Fig. 1b, stochastic model). 

Results   

Design of the input and output constructs for the loop opening 

 To open a feedback loop, one of its components has to be split into an input and an output 

[13]. The resulting open loop is thus a reaction chain starting with the independently controllable 

input that triggers the biochemical reactions; the chain ends with the output, which has no effect 

on the reaction chain (Fig. 2a).  

 We opened transcriptional feedback loops at the RNA level in yeast (gray box, Fig. 2a), 

and thus both the input and output are RNA molecules. The expressed input RNA is translated, 

which triggers the subsequent reactions, such as the TF dimerization, the binding of the TF to the 

promoter, and lastly the synthesis of the output RNA. The reactions between the input and output 

RNA are illustrated as a black box in Figure 2a. 
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 The input RNA is identical to the original RNA in the feedback loop. On the other hand, 

the output RNA has to be designed by mutating the original RNA. The mutation has to meet two 

requirements. First, the protein translated from the output mRNA must not interfere with the 

reactions in the loop (Fig. S1a). Second, the output RNA must preserve the original properties of 

the RNA, such as the decay rate and dynamic range of expression. We found that retaining only 

45 bp long sequences at each end of a gene was sufficient to preserve much of the original 

expression range (Fig. S1b, Design of the output construct in the Materials and Methods). 

Therefore, we used this strategy to build the output construct (Fig. 2b). Since we used the 

transcription factor rtTA in the feedback loops, we built an output construct for rtTA and tested 

for interference. The protein translated from such an output RNA contains only short peptide 

sequences from rtTA (15 amino acids at each end), and is unlikely to interfere with the reactions 

in the loop, which we confirmed experimentally (Fig. S1c-e). 

 By creating the input and the output constructs with the aforementioned method, the 

feedback is opened. The cells containing the open-loop input and output constructs were named 

Input/Output cells (Fig. 2b). 

Validation of the loop opening with a monostable feedback loop 

 We opened three synthetic transcriptional feedback loops, in which a monomeric or 

dimeric version of the synthetic transcription factor rtTA regulates its own expression. rtTA binds 

to the DNA when it is complexed with the ligand, doxycycline [19]. These feedback loops 

contained no, one (cooperative binding) or two (homodimerization and cooperative binding) 

reactions that can support bistability [20].  First, we opened the monomeric – non-cooperative 

loop, in which a monomeric transcription factor binds to a single binding site in its own 

promoter. The monomeric protein is a single-chain fusion of the dimeric rtTA [20].  
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 Upon opening this loop, the input and output RNAs were quantified by qPCR (Materials 

and Methods, Figs. 2, S2, S3a). Thus, RNA values represent averages of a cell population. The 

expression of the input was varied by tuning the PGAL promoter activity with the transcription 

factor GEV (Fig. 2d). We applied different concentrations of doxycycline (dox) to adjust the TF-

DNA binding affinity. Subsequently, we fitted an open-loop function η = fOLM(ω, dox) to these 

data. η, ω and fOLM denote the output, the input, and the open-loop function fitted to the measured 

data, respectively.  

 Initially, we analyzed the logarithmic sensitivity (S) of the open-loop function (fOLM) with 

respect to the input (ω), S(ω) = ∂ln(fOLM) / ∂ln(ω). If S > 1, the feedback loop can display 

bistability [21]. It is monostable, if S ≤1. S(ω) of the fitted fOLM(ω, dox) did not exceed 1 at any 

value of ω and dox (Supplementary Information, Fitted open-loop functions). Thus, the 

monomeric – non-cooperative feedback is classified as monostable upon the opening. This is in 

agreement with the expectations since the feedback does not contain any known reaction that can 

support bistability.  

The intersection points of the open-loop function (fOLM) and the equivalence function (fEQ) 

define the steady-state expression for the feedback loop [13, 22]. The ideal fEQ is an identity 

function, i.e. it is the line at which the output and input have equal values, η = ω (Fig. 2d). The 

ideal equivalence assumes that the output and input RNAs have identical properties (expression 

range, synthesis and decay rate). However, the heterologous sequence in the output RNA may 

cause a departure from the ideal equivalence. To assess this departure, we expressed the input and 

output mRNAs under the control of identical promoter, PGAL. The expression of the output RNA 

in this construct is not controlled by the input; therefore, we termed it ghost output (Fig. 2b). 

Although their decay rates mRNA were similar (Fig. S2a,b), their expression levels differed (Fig. 
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S2c-e) possibly because of the different RNA synthesis rates. There was a linear relationship 

between their expression levels with a non-unity slope (Fig. 2d). This slope defines the scaling 

factor (s) for the measured (non-ideal) equivalence line, which runs in parallel to the ideal 

equivalence line (Fig. 2d):  fEQ(ω) = s ω. 

The intersection of the measured fEQ and fOLM is a function of one variable (dox), which 

we termed open-to-closed loop mapping since it determines the steady-state expression in the 

closed feedback loop based on open-loop measurements (Fig. 2e, f, red full line). Importantly, 

there was a good agreement between the open-to-closed loop mapping and the steady-state 

expression measured in the feedback loop. If we had relied on the ideal equivalence plane, with a 

unity slope, the open-to-closed loop mapping would have deviated markedly from the values 

measured in the feedback loop (Fig. 2f, red dashed line). This underscores the importance of the 

equivalence assessment cells. 

In summary, we validated the feedback opening in two main steps. First, we analyzed the 

open-loop constructs. The expression of a fluorescent reporter in open-loop like constructs 

displays a unimodal distribution (Fig. 2c). The logarithmic sensitivity of the open—loop function 

is less than one, which implies that the parent feedback loop is monostable. Since in a monostable 

feedback loop there are no noise induced transitions between two stable states, the deterministic 

and stochastic descriptions of the steady-state expression levels are expected to be similar. 

Consequently, the steady-state expression measured in the feedback loop can be directly 

compared to the value determined by feedback opening (Fig. 1b), provided some general 

conditions are met (see Discussion). In the second step, we compared these two values. We found 

that the open-to-closed loop mapping matched up with the steady-state expression level measured 

in the feedback loop (Fig. 2f). The expression increased continuously and steeply when the TF-
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DNA affinity (i.e. doxycycline concentration) passes a certain value, which is a typical behavior 

of monostable positive feedback loops. 

Identification of bistability by loop opening  

 Next, we opened the loops with cooperative promoters, controlled by either the dimeric 

(Fig. 3a) or monomeric TF (Fig. 3b). The sensitivity of fOLM(ω, dox) with respect to the input (ω) 

was higher than 1 for both open loops, which indicates that the feedback loop is bistable. Indeed, 

there was a range of doxycycline concentration, at which the intersection of the open-loop 

function with the equivalence plane resulted in three, two stable and one unstable, steady states.   

Thus, both parent feedback loops are classified bistable.   

 The maximal sensitivity of the open-loop function, Smax(ω), has a major impact on the 

bistable range of a parameter. For the monomeric – cooperative circuit Smax(ω) is 1.6. This value 

increased to 2.4 for the dimeric – cooperative circuit (Fig. 3b) and the bistable range of the 

doxycycline concentration (i.e. TF-DNA affinity) became broader, reflecting the joint effect of 

dimerization and cooperativity (Fig. 3).  

Measurement of the time scale of reactions and identification of the slow transient kinetics   

 To predict the transition rates for a bistable system, the open-loop function, which is 

defined in the steady-state, has to be combined with information on noise and the time-scale of 

reactions (Fig. 1b). To specify the time scale of reactions, the RNA and protein decay rates and 

the transcription and translation rates were determined (Table S2). With these parameters we 

extended the open-loop function into a kinetic model.We tested whether this model predicts 

correctly the kinetics of expression in open-loop like constructs. For this purpose, we analyzed 

the time course of expression of GFP under the control of the monomeric form of rtTA. 
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Interestingly, the induction of expression was slower than expected from the time scales of 

protein and RNA turnover (Fig. 4a, b, see Modelling transient kinetics in the Supplementary 

Information). By varying the order of induction of the rtTA expression and doxycycline addition 

it became clear that the slower-than-expected increase of GFP expression persisted even if rtTA 

was pre-expressed (Fig. 4a, b). This indicates that the long transient phase arises due to the slow 

transport of the externally added ligand, doxycycline, into the cell or due to its slow association 

to the protein inside the cell. The model was extended and fitted to the slow transient kinetics in 

the open-loop like construct. Subsequently, we tested the prediction of the new model on the 

monostable feedback loop, which can be done deterministically. The prediction was in good 

agreement with the observed time series upon addition of doxycycline (Fig. 3c, d).  

Measurement of noise   

 We made a preliminary prediction of noise intensity based on the time-scale of these 

constitutive processes. A simple model involving only synthesis and decay, also known as birth-

death process, results in a Poisson distribution, characterized by a Fano-factor (variance / mean) 

= 1 [23]. Interestingly, the housekeeping gene PRE2, which was used as a control for the 

smFISH, had a Fano factor close to 1 (Fig. 5a, b). On the other hand, the distribution of the rtTA 

RNA had a much larger variance, with a Fano factor of around five, which cannot be explained 

by such a simple noise model (Fig. 5a, b). This stronger noise is not fully surprising because 

noise in gene expression can be significantly augmented by operator fluctuations and by other 

cellular processes [24, 25]. Therefore, the model was extended to include operator fluctuations 

and noise in RNA degradation (Fig. 5c). The parameters were fitted to the smFISH measurements 

(Supplementary Information, Parameter values for RNA distribution by linear noise 
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approximation), and the new extended and fitted model was in good agreement with the 

measured RNA distribution (Fig. 5a, b). 

Comparison of deterministic and stochastic descriptions of the open-loop function 

 The open-loop function is deterministic concept, and can be considered to be a steady-

state solution of ordinary differential equations. To predict the transition rates, the deterministic 

model has to be converted to a stochastic one (Fig. 1b). This conversion is accurate provided the 

stochastic model of the open-loop function yields a mean value that is identical or similar to the 

deterministic value. The two values are identical for example for the mRNA birth-death process 

(Fig. 5a,b, see PRE2). However, this correspondence between the deterministic and stochastic 

models may be lost when the system is strongly nonlinear and noise is large [26, 27]. Such an 

effect was observed for a TF that displays stochastic nucleocytoplasmic shuttling [28]. 

 We examined the effect of noise on the dimeric – cooperative open loop as it displays the 

response with the largest logarithmic sensitivity in this study and therefore it is highly nonlinear. 

To explore how much noise shifts the value of the output mRNA, we performed stochastic 

simulation with the extended and fitted noise model. It yielded mean output RNA similar to the 

value of the deterministic function, fOLM (Fig. 5d). This demonstrates that the effect of noise on 

this nonlinear open-loop function is negligible and the function can be used for accurate 

predictions. Thus, the loop opening bypasses the effect of noise. We also confirmed that gene 

expression in the open-loop reaches a steady-state after 24h independently of the initial condition, 

i.e. it does not display hysteresis (Fig. S4). Furthermore, the distribution of gene expression in the 

corresponding open-loop like constructs was unimodal (Fig. S3c). 

 Interestingly, there was also a good match between the (deterministic) open-to-closed 

loop mapping and the stochastic model of the monostable feedback loop (Fig. 2e, orange circles), 
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which reveals that even the closed loop response can have very similar stochastic and 

deterministic descriptions provided it is monostable. 

The predicted transition rates agree with the measurements 

 Upon extending the open-loop function using the reaction time scales and fitted noise, we 

reclosed the loop to predict the transition rates, both from the low to the high state and also in the 

opposite direction (high to low) for the two bistable circuits (Fig. 6). We also calculated the 

transition rates with the model not fitted to noise and transient kinetics for comparison. The 

simple noise model, characterized by smaller noise intensity, yielded slower transitions in the 

bistable range than the fitted, extended noise model (Fig. 6a, b, f, g). On the other hand, the 

transient kinetics reduced the transition rates only outside but not inside of the bistable range 

(Fig. 6b), exactly opposite to the effect of noise. 

 To test the predictions experimentally, we prepared pre-cultures with either low or high 

TF expression states, which define the initial condition, to measure how quickly they switch to 

the other state. In the bistable range, the observed transition rates were in good agreement with 

the predictions using the fitted noise (Fig. 6b, g). Outside of the bistable range, the model with 

the fitted transient kinetics predicted well the observations (Fig. 6b). These results and the model 

predictions reveal that noise is the main determinant of transitions inside the bistable range, while 

transient kinetics is the main determinant of the transitions outside of the bistable range. It is 

important to reiterate that the transition rates were predicted without choosing or fitting parameter 

values to the observed transition rates.  

 For the dimeric – cooperative circuit, transitions from the low to the high state were 

observed only close to the bistability boundary at the higher doxycycline concentration (Fig. 6g). 
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Opposite transitions were observed close to the lower bistability boundary. Thus, there is a broad 

range of doxycycline concentrations at which essentially no transitions are expected to occur 

between the two states. This range is positioned in the middle of the bistable range, determined 

by the open-to-closed loop mapping. Indeed, we have not observed any transition in this range of 

doxycycline concentration even after 10 days (Fig. 6h). 

 For the monomeric - cooperative circuit, transitions were detected in both directions in the 

bistable range (Fig. 6b). Thus, equilibrium is expected to ensue in an experimentally realistic time 

scale. This can be visualized by plotting the experimental data in terms of hysteresis profiles, 

which is typically used to assess bistability directly in feedback loops. For both initial conditions, 

we plotted the percentage of ON cells, i.e. the proportion of cells in the high state (Fig. 6d, e). 

The range of doxycycline concentrations at which the ON cell percentage in each culture remains 

close to the respective initial condition defines the hysteresis range. These two distinct expression 

states (OFF and ON cells) represent two ―synthetic‖ cell fates. Interestingly, the hysteresis range 

changed with time for the monomeric – cooperative feedback loop (Fig. 6e). At early time points 

(5 h), the hysteresis range was broader than the bistability range (Fig. 6e). At a later time point 

(72 h), the hysteresis nearly collapsed. This also implies that in noisy systems, hysteresis 

experiments may fail to distinguish bistable feedback loops from monostable ones after long 

periods of time.  

Appearance of bimodality far away from the bistable range 

When noise induces transitions between two stable states both states become populated, resulting 

in a bimodal distribution. That’s why bimodality is considered as a hallmark of bistability in 

noisy systems. However, it was surprising to observe transitions accompanied with bimodal 

distribution of GFP expression well beyond the bistable range for the monomeric – cooperative 
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circuit (Fig. 6b, c). The range of this bimodality was around three times broader than the bistable 

range. We expected that the transient kinetics may be responsible for the extension of the 

bimodality range because it prolongs the phase during which the TF-DNA affinity is approaching 

the final value upon addition of doxycycline to the cells (Fig. 6b, cyan dashed line), and it is this 

affinity that determines the bistability boundary. To visualize this, we superimposed single cell 

trajectories of stochastic simulations onto a steady-state manifold perturbed by the transient 

kinetics. This manifold reflects the temporal changes in the bistability (Fig. 7, green surface). 

Initially, only few cells cross the unstable part of the manifold because it is far above the low 

expression state. As time progresses, the transient effect peters and the manifold recedes; the 

majority of cells transit as soon as the lower fold in the manifold crosses the doxycycline 

concentration to which the cells are exposed. This explains how transient kinetics can slow down 

the transition rates and why bimodality, a sign of bistability, appears far away from the bistable 

range.  

Discussion 

Relation between bistability, bimodality and hysteresis 

Bimodality has been viewed as a sign of bistability and hysteresis as the proof of bistability [29]. 

Our results reveal that neither hysteresis experiments nor bimodality can delimit the bistable 

range in noisy gene circuits. The hysteresis range shrinks with time (Fig. 6e) due to the noise-

induced transitions and can even collapse in feedback loops that have a narrow bistable range. 

While hysteresis range may coincide with the bistable range at a particular time point, the length 

of this period is likely to vary from system to system. Bimodality, a potential sign of bistability, 

appeared far away of the bistable range due to the slow transient kinetics (Fig. 6b, c). Indeed, an 
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increasing number of models has been identified where bimodality appears without bistability or 

even in the absence of feedback regulation [30-33].  

 Since feedback opening bypasses noise, the open-to-closed loop mapping can determine 

whether a system is monostable or bistable and can delimit the bistable range.  

Prediction of transition rates by feedback opening 

Traditional modelling requires parameters for all reactions that comprise the feedback loop. 

However, models retain unidentified components, mechanisms and parameters even after detailed 

measurements. In particular, binding constants are often missing or are inconsistent. For example, 

reported values for the dissociation equilibrium constants of the tetR - tet operator scatter over 

three orders of magnitude [11], which is relevant for rtTA, being a fusion protein of tetR. 

Furthermore, parameter values measured in vitro may significantly deviate from their values in 

vivo [12, 34]. Therefore, several parameters are left free and then directly fitted to the transition 

rates, which makes true prediction impossible.  

 To predict the transition rates, we employed an inverse approach. By opening the 

feedback loop, we obtained an open-loop function, which lumps the steady-state response of all 

reactions in the feedback loop but does not resolve the time scale of any of them. To extend this 

function into a model, we performed kinetic and noise measurements. This extension has to be 

performed in a way that the model re-creates the original steady-state open-loop function (Fig. 

5d, diagram). Not all reactions in the loop have to be identified. After measuring the core 

constitutive processes, including mRNA and protein turnover, we extended the model with a few 

additional parameters to fit noise in gene expression and the transient kinetics (Fig. 1b). This was 

sufficient to successfully predict the transition rates.  We expect that in general it will be 
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important to characterize the slow reactions (e.g. protein decay rate) since fast reactions (e.g. 

phosphorlyation - dephosphorylation) are expected to be in equilibrium relative to the slow 

reactions.  

 The success of this approach may lie also in the fact that the initial steps of modelling 

were performed deterministically, which is typically more robust than the direct stochastic 

modelling of the whole feedback system [35, 36].   

Noise and bistability jointly determine transition rates  

 Inside the bistable range the sensitivity of the open-loop function and noise are the key 

determinants of the transition rates. In the monomeric – cooperative loop the maximal sensitivity 

of the open loops Smax(ω) is 1.6. This value was 2.4 for the dimeric – cooperative loop, due to the 

dimerization. The system with higher sensitivity can be visualized by potential wells separated by 

higher barriers. This explains why the dimeric – cooperative loop is more stable than the 

monomeric – cooperative one: transitions were too slow to be detected even after 10 days of 

incubation, i.e. after more than 100 cell generations (Fig. 6h).   

 The open-to-closed loop mapping determines the steady-state expression levels and the 

bistable range of a parameter. Is this deterministic description relevant for bistable systems, 

knowing that it cannot be directly verified in noisy feedback loops? Our results indicate that the 

determination of the bistability boundaries permits targeted system identification (Fig. 8). Noise 

was the key determinant of the transitions inside the bistable range but not outside of it (Fig. 8, 

left). In this monostable range, we had to characterize transient kinetics to explain the transitions. 

The slow transient kinetics can be viewed as a temporal change in the potential barrier (Fig. 8, 

right).  
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The role of transient kinetics in cell fate transitions 

 When a parameter is in the monostable range in the vicinity of the bistable range, the slow 

transient kinetics is likely to be the rate limiting step in the transitions. In such cases, the activity 

of the feedback loop is controlled by an extracellular factor that evokes slow changes in transport, 

metabolism or signal transduction. The two distinct cell fates can be maintained only transiently. 

However such a transient phenomenon may of considerable utility since an increasing number of 

studies revealed that alternative fates exist transiently in many cells and organisms [5, 37-40]. It 

is possible that differentiation should be considered as series of transient events and the steady-

state is reached only in the terminal stage [7]. Upon the completion of differentiation only a true 

bistable state can warrant long-term stability. In this case, transitions will be induced by noise, 

exemplified by noise in gene expression. Such transitions can destabilize cell fates, which can 

hamper cellular reprogramming [6], but can also help adaptation by diversifying the phenotypes 

of immune cells to combat pathogens.  

Validity of prediction by feedback opening 

In this study, we opened simple positive feedback loops. Can we expect that the opening is a 

valid approach for more complex networks? Two aspects of the loop opening are particularly 

relevant to more complex networks: (1) the theorem that deduces the existence of bistability form 

open-loop properties and (2) the stochasticity in the open loop.  

 With respect to the first aspect, a general theorem states that if the open-loop function is 

sigmoidal (i.e. the open-loop function has a logarithmic sensitivity higher than one) and satisfies 

some general conditions, the parent feedback loop is bistable independently of the time-scale of 

the reactions [13]. Positive feedback loops with cooperative binding and dimerization, which 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

17 
 

were used in our work, satisfy the general conditions. However, if a network contains also a 

negative feedback loop, bistability is not guaranteed. In such dual positive-negative feedback 

loops, the concentrations of the components may oscillate over time rather than converge to one 

of the stable states. In the experimental practice, however, such restrictions may be less severe as 

the feedback system can be directly measured whether it displays oscillations. If it does not 

oscillate but displays signs of bistability, bimodality and hysteresis, it is likely that the open-loop 

function will correctly predict the existence of bistability, even if a more complex network 

contains a negative feedback loop.  

 The above theorem is defined in a deterministic framework. We are not aware of 

theoretical studies that formulate the open-loop approach in a stochastic framework, which is 

relevant to noisy gene networks. Therefore, we performed the following tests to show that the 

deterministic and stochastic descriptions of the open loop are similar. First, we showed that that 

there is no hysteresis after 24 h in the open loop. Second, the distribution of gene expression is 

unimodal. Third, we compared the open-loop function, which is defined deterministically, to the 

mean value of the output calculated using the expanded model upon identification of the time 

scale of the main reactions. The two values were similar, i.e. there is no marked stochastic 

deviant effect [27]. Further studies, will be needed to explore how the open-loop function is 

affected by noise in more complex networks.   

 Feedback opening and the subsequent model extension is expected to be useful to predict 

transition rates and to identify the main determinants of cell fate transitions: bistability in the 

deterministic sense, noise and transient kinetics. This distinction may also help engineering cell 

fate transitions. 
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Materials and Methods 

Design of synthetic circuits and yeast strains 

Three major strain types were used in this study, the feedback, Input / Output and Equivalence 

Assessment cells (Table S1). The feedback cells contained a feedback circuit, a fluorescent 

reporter construct (P[tetO]2- yEGFP) and a construct to adjust the high condition (PGAL- (sc-)rtTA), 

which is identical to the open-loop input construct.  

 The Input / Output cells contained the open-loop output, open-loop input constructs and a 

constitutively expressed GEV. The Equivalence Assessment cells contained the ghost output PGAL 

–(sc-)rtTA∆(45/45)::YFP, as well as open-loop input construct and a constitutively expressed 

GEV.  The expression of the open-loop input and ghost-output constructs was controlled by 

GEV. GEV is a transcription activator consisting of a Gal4p DNA binding domain, an estradiol 

receptor and a VP16 activation domain. RNA expression was tuned over a broad range by adding  

estradiol at a concentration between 0 and 200 nM [41].  

Design of the output construct 

The two requirements, lack of interference and preservation of expression properties, make 

opposing demands on the optimal scale of the mutation to construct the output. For example, if 

the output gene contains a minor (e.g. point) mutation in the DNA binding domain of the TF, the 

properties of the encoding mRNAs are likely to be preserved, and the loop is successfully broken 

because the TF will not bind to the DNA. However, a TF with a minor mutation may still cross-

dimerize with the wild-type TF translated from the input RNA, interfering with the signaling in 

the open loop.  A large scale mutation, whereby the entire coding region is replaced by a 

heterologous sequence, eliminates the interference but the dynamic range of the expression may 
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be reduced. To find the maximal length of the replacement with a minimal effect on mRNA 

expression, we built a series of genetic replacements constructs by varying the length of the 

sequence retained from the original gene (Fig. S 1a,b). 

Construction of yeast strains 

All yeast strains are derivatives of S. cerevisiae W303, except for the strains to test the expression 

range of GAL2 gene as function of the length of the replaced open reading frame (ORF). All 

genetic constructs were integrated into the chromosome with a single copy with exception of the 

GEV construct, which has around 5 copies, and P[tetO]2-GFP construct, which has 3 copies.  

The feedback, open-loop input, the open-loop output and ghost output constructs share a common 

core promoter and transcriptional terminator of CYC1. The input and ghost output were 

controlled by the PGAL  whereas the feedback and output constructs were controlled by P[tetO]1 or 

P[tetO]7 for non-cooperative and cooperative binding, respectively. Into each feedback construct, 

an optimized stem-loop was inserted to avoid growth alterations [20]. The same stem-loop was 

also inserted in the corresponding open-loop input, open-loop output and ghost output constructs. 

To construct the open-loop output and ghost output constructs, the yellow fluorescent protein 

(YFP) sequence was flanked with 45 bp sequences from both ends of the rtTA ORF. The flanking 

sequences of sc-rtTA and rtTA ORFs are identical because sc-rtTA was constructed by inserting 

humanized tetR sequence into the rtTA sequence [20]. 

To minimize the position effect, genes with promoters containing tet operators were integrated to 

the ura3 locus, and those with PGAL to the ade2 locus. Using diploid cells for the optimized 

constructs made it possible to have two constructs with the same promoter at the same locus, 

which is essential for constructing the Equivalence Assessment strains. In addition, the 
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transformations followed the order of (1) GEV, (2) open-loop input and then (3) open-loop 

output, ghost output or feedback construct, in order to have identical sequence and copy number 

of GEV and open-loop input constructs between the different strains. 

Growth conditions 

Cultures were grown at 30C and the OD600 was kept below 1.0 were refreshed by diluting the 

cultures twice a day. When a sample was collected for measurement, and the cell density was 

between 0.6 and 1.0. For the steady-state RNA measurements, cultures were grown for 24 h. To 

set the initial condition in the feedback loops, 0.5% galactose was added to the medium to drive 

expression under the control of the PGAL promoter through the endogenous Gal4p, as previously 

described [20]. 

To determine RNA decay rate constants shut-off assays were performed. The cells were cultured 

overnight with 0.5 % galactose and transferred to a refreshment medium containing 0.04%  

galactose for further growth for 4 hours. To shut off transcription, the cells were pelleted and 

cultured further in medium without galactose. 5 ml culture was collected with dry ice cooled 

methanol as described [41]. Decay rates were obtained by linear regression. 

Flow cytometry [20] and beta-galactosidase assay [14] were performed as described previously. 

RNA quantification 

RNA was quantified with qPCR and smFISH as previously described [20]. The overall efficiency 

for the input primer pair, which was identical for both the rtTA / sc-rtTA primer pairs, was 1.931; 

the efficiency for the output primer pair (F: 5’-CGGGGGATCCATGCCTAGATTA-3’, R: 5’-

ACTGACAGAAAATTTGTGCCCAT-3’), was 1.934. The forward primer sequence is identical 

for the input and the output.    



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

21 
 

Absolute quantification of cellular RNA molecules was performed by single-molecule RNA 

fluorescent in situ hybridization (smFISH). The results from smFISH were utilized for assessing 

noise in gene expression in the feedback strains and converting the RNA quantified in qPCR to 

the absolute mRNA number in the cell. We obtained the constant ratio α (Supplementary 

Information, Scaling of output signal for fitted equivalence) by quantifying the RNA at high 

expression state with the dimeric – cooperative and monomeric – cooperative feedback strains 

with both qPCR and smFISH. In the indicated experimental conditions, all cells were PRE2 

positive with 10.51±0.75 (mean±sd) RNA molecule per cell. The background level of rtTA RNA 

(false positive) count was ~0.03 spots per cell, in cells without the rtTA construct (Table S1, 

Ych294). The spot intensity distribution was unimodal, indicating that a single molecule was 

detected at each spot (Fig. S5) [42]. 

Fitting of transition rates   

To fit transition rates with the low initial condition, samples were collected at 2.5, 5, 7.5, 24, 48 

and 72 h. With the high initial condition, samples were collected at 24, 48 and 72 h; earlier time 

points were omitted because of the slow dilution of the GFP signal during cell division. 

The ON and OFF cell population was separated by a threshold value. The threshold was set equal 

to the geometric mean of the maximally induced (at 19.5 µM doxycycline) fluorescence intensity 

and the uninduced fluorescence intensity, measured at 72 hours. 

At most doxycycline concentrations, detectable transitions of sufficient rates occur only in one 

direction. In these cases, we obtained best fits for the transition rates with data expressing OFF 

cell proportion (r), and with inverse-square (Y
-2

) weighting. The low to high state transition were 
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fitted with the low initial condition,     upk t
r t e


  and the high to low state transition were fitted 

with the high initial condition,    
1  downtk

r t e


  .  

When the bistable range is narrow, transitions occur in both directions. Consequently, the 

percentage of OFF cells stays between 4% and 96% at 72 h. In these cases, we performed fitting 

with equations describing bi-directional transitions without weighting. 

For the low initial condition: 

 

 
 

  up downk k t

up

up down

downk k e
r t

k k

 





 

For the high initial condition: 

 

 
 

 
 

up downk

d

k t

down

up do

own

wn

k k e
r t

k k

 





 

The values with the lower standard error were taken from the fitting.  

Due to the fluctuations in conditions, we did not consider data which were close to the detection 

limit of a change, less than 4% difference between r(2.5h) and r(72h). This imposes the upper 

and lower detection limit of transition rates. For the low initial condition experiments, the limits 

are kup = 1.3 h
-1

, when r(2.5h) = 0.04 and kup = 5.6 10
-4 

h
-1

 , when r(72h) = 0.96. A similar 

detection limit can be established for the reverse transition: kdown = 0.13 h
-1

 when r(24h) = 0.96 

and kdown = 5.6 10
-4

 h
-1

 when r(72h) = 0.04.  
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Figure legends 

Fig. 1.  Prediction of transition rates in bistable feedback loops. (a)  A positive feedback loop 

displays bistability in a certain range of TF-DNA affinities. The two stable states correspond to 

potential wells. At higher TF-DNA affinity the lower potential well becomes shallower (right 

panel) and cells can more easily switch to the high state. The frequency of the transition is also 

influenced by noise intensity: weak noise (orange) and strong noise (green). (b) Prediction of 

transition rates and steady-state expression by feedback opening. The feedback loop is opened 

experimentally. The resulting open-loop function and the equivalence plane constitute a simple 

deterministic model. If they have a single intersection, the parent feedback is monostable. In this 

case, the intersection, which we term open-to-closed loop mapping, can be directly compared to 

the measured steady-state expression in the feedback loop. If the parent feedback is classified as 

bistable, the open-loop function must be extended to a model by fitting parameters to kinetic and 

noise measurements. The resulting stochastic model predicts the transition rates. The predictions 

are verified by measuring the feedback loop.  

 

Fig.  2. Opening of the monomeric – non-cooperative feedback loop (P[tetO]1-sc-rtTA) classifies 

the parent loop as monostable. (a) To open a feedback loop, a component is chosen to be broken 

into an input and output. (b) The green segment in the output represents a heterologous sequence 

inserted for the feedback opening. (c) GFP fluorescence distribution in an open-loop like 

construct, which contains a GFP reporter gene downstream of a [tetO]1 promoter controlled by 

sc-rtTA. Cells were exposed to gradient of doxycycline concentrations (0.07, 0.12, 0.20, 0.33, 

0.55, 0.91, 1.52 and 2.53 μM). (d) Open-loop measurements. The input and output RNA is 
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measured as the activity of the GAL promoter was varied by estradiol (see Materials and 

Methods), at three different fixed values of doxycycline. (e) The measured equivalence (gray) 

and open-loop (blue) functions fitted to data in (d). The traces of the function denoted by blue 

thick lines correspond to the doxycycline and estradiol concentrations used in the experiments 

(see also Fig. S3a). (f) Comparison of the open-to-closed loop mapping (red lines) with the 

steady-state expression measured for the feedback loop. The predicted steady states by the 

stochastic simulation using the extended and fitted noise model are shown by orange circles.  

 

Fig.  3. Intersection of equivalence plane and open-loop function classifies two parent feedback 

loops as bistable.  The blue and gray surfaces stand for the fitted open-loop function, fOLM and the 

measured equivalence plane, respectively, fitted to experimental data (dots). The red curve is 

their intersection, the open-to-closed loop mapping. The maximal values of the logarithmic 

sensitivities, S are shown for the open-loop function with b = 0.01Vmax by fixing either dox or ω 

at the indicated values. (a) Open-loop measurements of the P[tetO]7 -sc-rtTA circuit; Smax (ω, 

dox=1.37) =1.6; Smax (ω =2.11,dox) =1.6. (b) Open-loop measurements of the P[tetO]7 - rtTA 

circuit; Smax(ω, dox=0.91)= 2.4;  Smax(ω =1.93, dox) = 1.1.  

 

Fig. 4. Long transient phase upon addition of doxycycline to the cells. The curves represent 

solution of the model without (dashed) and with (full) the extension to fit the transient kinetics. 

Doxycycline was added at the indicated concentration at t = 0 h. (a, b) Induction kinetics in open-

loop like constructs, in which sc-rtTA activates the expression of P[tetO]2-GFP (see transient 

kinetics strain in Table S1). The expression of sc-rtTA was either pre-induced by estradiol (red) 

or induced at t = 0 h together with addition of doxycycline (green). Expression of GFP was 

measured with flow cytometry. To reach intermediate expression levels of sc-rtTA, we applied 
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0.8 (a) and 7.28 (b) nM estradiol. (c,d) Induction kinetics of the monomeric – non-cooperative 

feedback loop (P[tetO]1-sc-rtTA). To report the feedback activity, the mRNA of the sc-rtTA (c) or 

the GFP expression driven by sc-rtTA was measured (d). 

 

Fig. 5. Extension of the model to fit the measured noise (a,b) FISH images and distributions of 

rtTA and PRE2 RNA molecules in cells containing the P[tetO]7-rtTA feedback loop either 

uninduced (a) or induced with 19.5 µM dox for 24h in cultures with the high initial condition (b). 

We calculated the mean (molecules / cell), coefficient of variation (CV) and the Fano-factor (FF) 

for the measured distribution (subscript M) and the distribution simulated (n=1000) with the 

simple (subscript S) or with the extended and fitted noise model (subscript E) (see Mathematical 

modeling, simple and extended noise model). For PRE2 in the un-induced cells (a), mean = 9.2, 

CVM = 0.32, FFM =0.94 and CVS = 0.33. For PRE2 in the induced cells (b), mean = 10.0, CVM = 

0.31, FFM = 0.98 and CVS = 0.32. For rtTA in the un-induced cells (a), mean = 0.49, CVM = 2.31, 

FFM = 2.41 (green, n=280), CVS=1.46 and CVE=2.22. For rtTA in the induced cells (b), mean = 

82.6, CVM = 0.24, FFM = 4.80 (green, n=171), CVS = 0.11 and CVE =0.26. The images were 

obtained by z-projection of decomposed image stack of smFISH with the following coloring: 

blue, DAPI; green, rtTA; red, PRE2; bar, 5 µm. (c) To obtain a model that fits the experimental 

RNA distribution, the simple model is extended by operator fluctuation (forward and backward 

arrows) and enzymatic RNA degradation (Pac-Man). The thick dashed arrows indicate the step 

that is broken to open the feedback loop. (d) Comparison of the output RNA calculated by 

deterministic and stochastic models. To convert fOLM(ω) into a model, reactions (r), were 

specified, which introduce time-dependent variables and parameters (denoted: •). The steady-

state solution of the deterministic model recreates the original fOLM(ω). The mean RNA values 

were calculated by simulation of the corresponding stochastic model (see Mathematical 
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modeling, Conversion of the open-loop function fOLM(ω) to a reaction model). fOLM(ω) 

corresponds to the thick curves at dox = 0.12 and 7 μM in Fig. 3b.  

 

Fig.  6. Predicted and measured transition rates for the bistable, the monomeric-cooperative 

(P[tetO]7-sc-rtTA) (a-e) and the dimeric-cooperative feedback loop (P[tetO]7-rtTA) (f-h) feedback 

loops. (a) Scheme of the feedback loop. (b) The orange arrows indicate the doxycycline 

concentrations for which the time evolution of the fluorescence histograms are shown (in c). The 

gray symbols denote transition rates at the detection limit (see Materials and Methods, Fitting of 

transition rates). (c) Fluorescence histograms of cells with the low initial condition. (d) 

Measurement of hysteresis experiments. Cells with low (gray dots) or high (orange dots) initial 

condition (I.C.) were grown for 72h; 5h measurements are shown only for the low I. C. (blue). (e) 

Measurement of hysteresis expressed in terms of ON cell percentages. Data are shown for 

cultures 5, 24 and 72 h after setting the initial condition. 5 and 72 h data are identical to those 

shown in (d), the 24 h data in [20]. (f) Scheme of the feedback loop. (g) Comparison of the 

measured and predicted transition rate for the dimeric-cooperative feedback loop. (h) Long-term 

hysteresis experiment with cells exposed to 0.92 μM doxycycline. 

 

Fig.  7. Visualization of the effect of transient kinetics on the transitions. The parameter values 

for the monomeric – cooperative feedback loop were used for the simulation. The steady-state 

manifold (green surface) is perturbed by the transient kinetics to represent the temporal evolution 

of the TF-DNA affinity due to the slow effect of the externally added doxycycline. Individual 

trajectories of stochastic simulations (with the model extended to fit noise and transient kinetics) 

are shown in orange and red. The horizontal black curve represents the evolution of the perturbed 
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fold bifurcation point. The vertical black curve indicates the manifold at the time when the fold 

point passes the dox concentration that was used for the stochastic simulation (dox = 1.8 μM).  

  

Fig. 8. The role of bistability, noise and transient kinetics in the cell fate transitions.  If a network 

displays steady-state bistability, as determined by feedback opening, the depth of the potential 

wells and noise are the main determinants of the transition rate (left).  If the parameters of the 

network are outside, but in the vicinity of the bistable range, the transitions are determined by the 

long transient phase, which can arise due to slow transport, metabolism or other deterministically 

described transient cellular process (right). 
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Graphical abstract  
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Highlights 

1. The rates of transition between two cell fates or states are difficult to predict because of missing 

parameters and the strong effect of noise.  

2. We predict the rates with a method termed feedback opening in good agreement with the 

observed rates.  

3. When feedback loops are opened experimentally, the resulting open-loop function determines 

whether the parent feedback loop has one or two stable states. 

4. Hysteresis may be absent in bistable feedback loops. 


