
Wassan, Naveed Ahmed (2016) Meta-Heuristics for the Multiple Trip Vehicle
Routing Problem with Backhauls. Doctor of Philosophy (PhD) thesis, University
of Kent,.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/56731/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/56731/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

i

Meta-Heuristics for the Multiple Trip

Vehicle Routing Problem with

Backhauls

A THESIS SUBMITTED TO

THE UNIVERSITY OF KENT

IN THE SUBJECT OF MANAGEMENT SCIENCE

FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

By

Naveed Ahmed Wassan

May 2016

ii

© Copyright 2016

By

Naveed Ahmed Wassan

All Rights Reserved

iii

Abstract

With the growing and more accessible computational power, the demand for robust and

sophisticated computerised optimisation is increasing for logistical problems. By

making good use of computational technologies, the research in this thesis concentrates

on efficient fleet management by studying a class of vehicle routing problems and

developing efficient solution algorithms.

The literature review in this thesis looks at VRPs from various development angles. The

search reveals that from the problem modelling side clear efforts are made to bring the

classical VRP models closer to reality by developing various variants. However, apart

from the real VRP applications (termed as ‘rich’ VRPs), it is also noticeable that these

classical VRP based variants address merely one or two additional characteristics from

the real routing problem issues, concentrating on either operational (fleet management)

or tactical (fleet acquisition) aspects. This thesis certainly hopes to add to one of those

good efforts which have helped in bringing the VRPs closer to reality through

addressing both the operational as well as the tactical aspects.

On the solution methodologies development side, the proposed research noted some

considerable and impressive developments. Although, it is well established that the

VRPs belong to the NP-hard combinatorial class of problems, there are considerable

efforts on the development of exact methods. However the literature is full of a variety

of heuristic methodologies including the classical and the most modern hybrid

approaches. Among the hybrid approaches, the most recent one noted is mat-heuristics

iv

that combine heuristics and mathematical programming techniques to solve

combinatorial optimisation problems. The mat-heuristics approaches appear to be

comparatively in its infant age at this point in time. However this is an exciting area of

research which seeks more attention in the literature. Hence, a good part of this research

is devoted to the development of a hybrid approach that combines heuristics and

mathematical programming techniques.

When reviewing the specific literature on the VRP problems focused in this thesis, the

vehicle routing problem with backhauls (VRPB) and the multiple trip vehicle routing

problem (MT-VRP), there is not sufficient development on the problem modelling side

in terms of bringing these two problems closer to the reality. Hence, to fill the gap this

thesis introduces and investigates a new variant, the multiple trip vehicle routing

problem with backhauls (MT-VRPB) that combines the above two variants of the VRP.

The problem is first described thoroughly and a new ILP (Integer Linear Programming)

mathematical formulation of the MT-VRPB along with its possible variations is

presented. The MT-VRPB is then solved optimally by using CPLEX along with

providing an illustrative example showing the validation of the mathematical

formulation. As part of the contribution, a large set of MT-VRPB data instances is

created which is made available for future benchmarking.

The CPLEX implementation produced optimal solutions for a good number of small

and medium size data instances of the MT-VRPB and generated lower bounds for all

instances. The CPLEX success may be considered as modest, but the produced results

proved very important for the validation of the heuristic results produced in the thesis.

To solve the larger instances of the MT-VRPB, a two level VNS algorithm called ‘Two-

Level VNS’ is developed. It was noticed from the literature that the choice of using VNS

v

for the VRPs has increased in recent literature due to its simplicity and speed. However

our initial experiments with the classical VNS indicated that the algorithm is more

inclined towards the intensification side. Hence, the Two-Level VNS is designed to

obtain a maximum balance of the diversification and the intensification during the

search process. It is achieved by incorporating a sub-set of neighbourhood structures

and a sus-set of local search refinement routines and hence, a full set of neighbourhood

structures and a full set of local search refinement routines at two levels of the algorithm

respectively. The algorithm found very encouraging results when compared with the

solutions found by CPLEX. These findings in this thesis demonstrate the power of VNS

yet again in terms of its speed, simplicity and efficiency.

To investigate this new variant further, we developed an algorithm belonging to the new

class of the hybrid methodologies, i.e., mat-heuristics. A hybrid collaborative sequential

mat-heuristic approach called the CSMH to solve the MT-VRPB is developed. The

exact method approach produced in Chapter 4 is then hybridised with the Two-Level

VNS algorithm developed in Chapter 5. The overall performance of the CSMH

remained very encouraging in terms of the solution quality and the time taken on

average compared with the CPLEX and the Two-Level VNS meta-heuristic.

To demonstrate the power and effectiveness of our methodologies, we tested the

designed algorithms on the two special versions of the VRP (i.e., VRPB and MT-VRP)

to assess whether they are efficient and dynamic enough to solve a range of VRP

variants. Hence the Two-Level VNS and the CSMH algorithms developed to solve the

MT-VRPB are adapted accordingly and implemented to solve the two above variants

separately. The algorithms produced very competitive results for the benchmark data

sets when compared to the best known solutions from the literature. The successful

vi

implementations of these algorithms on the three VRP models with only minor

amendments prove their generalizability and their robustness.

The results in this research show that significant cost savings could be obtained by

choosing the right fleet size and better vehicle utilisations with multiple trips and

backhauling. Hence, the research proved the justification of studying this interesting

combination. Moreover, the problem modelling, efficient algorithm design and

implementation, and the research results reveal some vital information and implications

from the managerial point of view in terms of making the tactical (fleet acquisition) and

the operational (fleet management) decisions in a more informative manner.

vii

Acknowledgements

I would like to express my gratitude to my supervisors Dr Gabor Nagy and Professor

Said Salhi for their invaluable guidance and supervision throughout the PhD project. I

have benefitted greatly from their scientific knowledge.

Needless to say, the guidance and support throughout all these years from my brother

Dr Niaz Wassan has been inestimable. I would also like to thank all friends who have

helped and supported me.

Last, but not least, the support, love and prayers of my family are deeply cherished,

especially my mother whose unconditional prayers have always been with me.

viii

Table of Contents

Table of Contents ... viii

List of Tables... xii

List of Figures .. xiv

1. Introduction .. 1

1.1. Introduction and Motivation ... 1

1.2. The Multiple Trip Vehicle Routing Problem with Backhauls ... 4

1.2. Aims and Objectives of the Thesis .. 7

1.3. Outline of the Thesis ... 7

2. The Vehicle Routing Problem: Models and Solution Methods 10

2.1. The Vehicle Routing Problem and its Variants ... 10

2.1.1. The Evolution of the Vehicle Routing Problem ... 10

2.1.2. Definition of the Vehicle Routing Problem: .. 11

2.1.3. VRP Variants ... 11

2.1.3.1. The Periodic VRP .. 13

2.1.3.2. The Multiple Trip VRP .. 14

2.1.3.3. The Multiple-Depot VRP .. 14

2.1.3.4. The Mix Fleet VRP.. 15

2.1.3.5. The VRP with Time Windows .. 15

2.1.3.6. The Split Delivery VRP ... 15

2.1.3.7. The classical VRP with Backhauls .. 16

2.1.3.8. The VRP with Mixed Deliveries and Pickups ... 16

2.1.3.9. The VRP with Simultaneous Deliveries and Pickups .. 17

2.1.4. Future of the VRP .. 17

2.2. Combinatorial Optimisation: Problems and Algorithms .. 18

2.2.1. Combinatorial Optimisation Problems ... 18

2.2.2. The term Algorithm ... 19

2.3. Solution Techniques for the Vehicle Routing Problems: An Overview 21

2.3.1. Exact Methods ... 22

2.3.2. Heuristic Methods .. 22

2.4. Examples of Exact Methods .. 27

2.4.1. The Branch-and-Bound Method .. 27

2.5. Examples of Heuristic Methods .. 29

2.5.1. Construction-based Heuristics ... 30

2.5.1.1. The Sweep Algorithm .. 30

ix

2.5.1.2. Other Construction-based Heuristic for VRPs ... 31

2.5.2. Intra- and Inter-Route Improvement Heuristics ... 32

2.5.2.1. Transfer Heuristics .. 32

2.5.2.2. Swap Heuristics ... 33

2.5.2.3. Other Improvement Heuristics for VRPs ... 33

2.6. Examples of Metaheuristic Methods ... 33

2.6.1. Variable Neighbourhood Search .. 34

2.6.2. Large Neighbourhood Search .. 36

2.6.3. Other Metaheuristic Methods for VRPs ... 37

2.7. Hybrid Methods .. 38

2.8. Summary ... 39

3. Literature Review of the VRPB and the MT-VRP .. 41

3.1. An Overview of the VRPB ... 41

3.2. Solution Methods for the VRPB .. 43

3.2.1. Exact Methods ... 43

3.2.2. Heuristic Methods .. 44

3.2.3. Metaheuristic Methods ... 47

3.2.4. Studies in VRPB-related areas ... 53

3.3. An Overview of the MT-VRP .. 53

3.4. Solution methods for the MT-VRP .. 55

3.4.1. Exact Methods ... 55

3.4.2. Heuristic Methods .. 56

3.4.3. Metaheuristic Methods ... 58

3.4.4. Studies in MT-VRP related areas ... 62

3.4.5. Studies in which VRPB and MT-VRP are addressed in a combined way 63

3.5. Summary ... 63

4. The Multiple Trip Vehicle Routing Problem with Backhauls: Formulation and

Analysis .. 65

4.1. The Multiple Trip Vehicle Routing Problem with Backhauls ... 65

4.1.1. Description of the MT-VRPB .. 66

4.1.2. Graph theoretical definition of the MT-VRPB .. 68

4.2. Exact methods options for the MT-VRPB ... 69

4.3. Mathematical Formulation of the MT-VRPB ... 71

4.3.1. Formulation of the basic case ... 71

4.3.2. Model complexity .. 73

4.3.3. Model variants and restricted problems ... 74

4.4. Significance of the MT-VRPB ... 75

4.5. Utility of IBM ILOG CPLEX optimisation studio ... 76

4.6. Validation of the MT-VRPB formulation .. 77

4.7. Generation of a new data set for the MT-VRPB ... 79

x

4.8. CPLEX Results and Analysis .. 82

4.8.1. Relevance of the results .. 91

4.9. Summary ... 95

5. A Two-Level Variable Neighbourhood Search Algorithm for the Multiple-Trip

Vehicle Routing Problem with Backhauls .. 96

5.1. Two-Level VNS Algorithm: An Overview ... 96

5.1.1. An overview of the algorithm .. 97

5.2. Initial solution (Phase I) ... 102

5.2.1. Solving the Assignment Problem ... 104

5.3. Neighbourhoods used in the Two-Level VNS Algorithm (Phase II).. 107

5.4. Multi-layer local search optimiser framework (local search stage) 112

5.5. Solving the Bin Packing Problem (Phase III) ... 114

5.6. Computational Experience ... 118

5.6.1. Introduction and Computer Details .. 118

5.6.2. Results and analysis ... 120

5.6.2.1. Search diversification and intensification analysis .. 126

5.7 Summary ... 133

6. Solving the MT-VRPB using a Collaborative Sequential Mat-heuristic approach

 ... 134

6.1. The Mat-heuristic Approaches .. 134

6.1.1. Matheuristics for VRPs: Brief Literature Review .. 136

6.2. The Collaborative Sequential Approach for the MT-VRPB .. 140

6.3. Computational Experience ... 146

6.3.1. Data Set .. 146

6.3.2. The CSMH execution times ... 146

6.3.3. The CSMH algorithm performance ... 147

6.3.4. Comparison of the CSMH vs CPLEX results .. 149

6.3.5. Comparison of the CSMH and the Two-Level VNS results .. 151

6.4. Summary ... 166

7. Adaptation of the Two-Level VNS and Mat-heuristic to the VRPB and the MT-

VRP .. 167

7.1. The case of the VRPB ... 167

7.1.1. VRPB Formulation .. 168

7.1.2. The Two-Level VNS Algorithm for the VRPB ... 171

7.1.2.1. Details of the VRPB Computations and the Data sets ... 174

7.1.2.2. Two-Level VNS VRPB Results and Analysis ... 176

7.1.3. Solving the VRPB with Mat-heuristic (CSMH algorithm) .. 181

7.1.3.1. CSMH VRPB Results and Analysis .. 182

7.2. The case of the MT-VRP ... 187

xi

7.2.1. Formulation of the Basic Case ... 187

7.2.2. The Two-Level VNS methodology for the MT-VRP .. 189

7.2.2.1. Details of MT-VRP Computations and the Data sets .. 194

7.2.2.2. Two-Level VNS MT-VRP Results and Analysis .. 195

7.2.3. Solving the MT-VRP with the Mat-heuristic (CSMH algorithm) 201

7.2.3.1. CSMH MT-VRP Results and Analysis ... 201

7.3. Summary ... 205

8. Conclusions .. 208

8.1. Research Summary ... 208

8.2. Future Research ... 215

Bibliography .. 218

Appendix A: ... 242

Connecting CPLEX with Microsoft Visual Studio ... 242

Figure a.1: Concert technology libraries for different operating systems Source: User’s Manual for

CPLEX V12.5 ... 243

C++ code of the MIPstart ... 243

Contributions to the subject knowledge ... 244

xii

List of Tables

Table 2.1: Methods used in tackling the VRP and its Variants ... 24

Table 4.1: The MT-VRPB data set-1 with original conventions and z* found with free fleet ... 80

Table 4.2: The details of the MT-VRPB data set-1 ... 80

Table 4.3: CPLEX solutions for data set-1 with 𝑻𝟏 (2-hours running time) 83

Table 4.4: CPLEX solutions for data set-1 with 𝑻𝟐 (2-hours running time) 85

Table 4.5: Vehicle utilisation cost comparison of the free fleet VRPB and the MT-VRPB

solutions for 𝑻𝟏 ... 87

Table 4.6: Vehicle utilisation cost comparison of the free fleet VRPB and the MT-VRPB

solutions for 𝑻𝟐 ... 88

Table 4.7: Summary CPLEX results and average time for 𝑻𝟏 and 𝑻𝟐 .. 89

Table 4.8: Comparison of CPLEX with 2 hours vs CPLEX with 15 hours for 𝑻𝟏 91

Table: 4.9: Comparison of CPLEX with 2 hours vs CPLEX with 15 hours for 𝑻𝟐 91

Table 4.10: Comparison of the free fleet VRPB and the MT-VRPB solutions in terms of vehicle

savings (for small and medium instances 𝑻𝟏) .. 93

Table 4.11: Comparison of the free fleet VRPB and the MT-VRPB solutions in terms of vehicle

savings (for small and medium instances 𝑻𝟐) .. 94

Table 5.1: The comparison of the Two-Level VNS with CPLEX (data set-1: 𝑻𝟏 & 𝑻𝟐) 121

Table 5.2: Detailed comparison of the Two-Level VNS with CPLEX for the data set-1 (𝑻𝟏) ... 122

Table 5.3: Detailed comparison of the Two-Level VNS with CPLEX for the data set-1 (𝑻𝟐) ... 124

Table 5.4: The number of times each neighbourhood leads towards better quality solution on

average for each instance ... 127

Table 6.1: Summary of the CSMH algorithm solutions (data set-1: 𝑻𝟏 & 𝑻𝟐) 148

Table 6.2: Summary comparison of the CSMH vs CPLEX (data set-1: 𝑻𝟏 & 𝑻𝟐) 150

Table 6.3: Comparison of the CSMH vs the Two-Level VNS (data set-1: 𝑻𝟏 & 𝑻𝟐) 151

Table 6.4: Comparison of CPLEX, Two-Level VNS and CSMH (data set-1: 𝑻𝟏 & 𝑻𝟐) 152

Table 6.5: Detailed results of the CSMH algorithm for the data set-1 (𝑻𝟏) 153

xiii

Table 6.6: Detailed results of the CSMH algorithm solutions for the data set-1 (𝑻𝟐) 155

Table 6.7: Detailed comparison results of the CSMH vs CPLEX for the data set-1 (𝑻𝟏) 157

Table 6.8: Detailed comparison results of the CSMH vs CPLEX for the data set-1 (𝑻𝟐) 159

Table 6.9: Comparison of the lower bounds produced by CPLEX and CSMH for 𝑻𝟏 and 𝑻𝟐 . 161

Table 6.10: Detailed comparison results of the CSMH vs Two-Level VNS for the data set-1 (𝑻𝟏)

 ... 162

Table 6.11: Detailed comparison results of the CSMH vs Two-Level VNS for the data set-1 (𝑻𝟐)

 ... 164

Table 7.1: Processor used and the number of run for the published algorithms and the proposed

Two-Level VNS .. 177

Table 7.2: Comparison of the best VRPB algorithms with Two-Level VNS (data set-2) 178

Table 7.3: Comparison of the Two-Level VNS with the best algorithms (data set-3) 178

Table 7.4: Detailed results of the Two-Level VNS vs the Best-known (data set-2) 179

Table 7.5: Detailed results of the Two-Level VNS vs the Best-known (data set-3) 180

Table 7.6: Comparison of the CSMH with the Two-Level VNS and the best VRPB algorithms in

the literature (data set-2) .. 182

Table 7.7: Comparison of the CSMH with the Two-Level VNS and the best VRPB algorithms in

the literature (data set-3) .. 183

Table 7.8: Detailed results of the CSMH algorithm (data set-2) ... 184

Table 7.9: Detailed results of the CSMH algorithm (data set-3) ... 185

Table 7.10: Detailed results for 42 instances in G1 (data set-4) .. 198

Table 7.11: Detailed feasible results for 56 instances in G2 (data set-4) 199

Table 7.12: Detailed non-feasible results for 5 instances in G3 (data set-4) 200

Table 7.13: Average time (in seconds) for the problem classes of set-4 200

Table 7.14: Detailed results of the CSMH for 42 instances in G1 (data set-4) 203

Table 7.15: Comparison of the CSMH with some best algorithms for 42 instances in G1 (data

set-4) .. 204

xiv

List of Figures

Figure 1.1: An example of the MT-VRPB ... 6

Figure 2.1: An illustrative example of the VRP ... 12

Figure 2.3: A visual representation of the sweep procedure .. 31

Figure 3.1: An illustrative example of the VRPB .. 42

Figure 3.2: An illustrative example of the MT-VRP ... 54

Figure 4.1: An example of the MT-VRPB ... 68

Figure 4.2: The numerical test instance data .. 77

Figure 4.3: The CPLEX solution for test instance ... 78

Figure 4.4: All feasible solutions for test instance ... 78

Figure 5.1: Algorithmic steps of the Two-Level VNS for MT-VRPB .. 99

Figure 5.2: Pseudo code for the Two-Level VNS ... 101

Figure 5.3: Pseudo code for the BPP ... 102

Figure 5.4: An illustrative example of sweep procedure for the MT-VRPB 103

Figure 5.5: LH and BH open-ended routes (Problem instance eil22_50 of data set-2) 104

Figure 5.6: Distance matrix of end nodes .. 105

Figure 5.7: Optimal matching obtained by CPLEX ... 106

Figure 5.8: Combined LH+BH routes (problem instance no: eil22_50) 106

Figure 5.9: An illustrative example of the 1-insertion (intra-route) refinement routine 108

Figure 5.10: An illustrative example of the 1-insertion (inter-route) refinement routine 109

Figure 5.11: An illustrative example of the 1-1 swap refinement routine 109

Figure 5.12: An illustrative example of the 2-2 swap refinement routine 110

Figure 5.13: An illustrative example of the 2-0 shift refinement routine 110

Figure 5.14: An illustrative example of the 2-1 swap refinement routine 111

xv

Figure 5.15: The multi-layer local search optimiser framework flow chart 113

Figure 5.16: An illustrative example of data structure 𝑆𝑝 .. 115

Figure 5.17: An illustrative example of special data structure 𝑆𝑜𝑙𝑘 ... 116

Figure 5.18: BPP flow chart ... 117

Figure 5.19: An illustrative example of the Bisection Method .. 118

Figure 5.20: Neighbourhoods diversification vs Intensification solution cost for data instance

eil22_66_1_t1 .. 128

Figure 5.21: Neighbourhoods diversification vs Intensification solution cost for data instance

eil30_80_1_t1 .. 129

Figure 5.22: Neighbourhoods diversification vs Intensification solution cost for data instance

eil51_50_1_t1 .. 130

Figure 5.23: Neighbourhoods diversification vs Intensification solution cost for data instance

eilA76_50_1_t1.. 131

Figure 5.24: Neighbourhoods diversification vs Intensification solution cost for data instance

eilA76_50_1_t1.. 132

Figure 6.1: The CSMH approach phases for the MT-VRPB ... 141

Figure 6.2: MIPstart construction for the MT-VRPB test instance.. 145

Figure 7.1: Algorithmic steps of the Two-Level VNS for VRPB ... 171

Figure 7.2: Algorithmic steps of the Two-Level VNS for the MT-VRP 189

Figure 7.3: An illustrative example of the sweep procedure for the MT-VRP 192

Figure 7.4: Illustration of all the refinement routines implemented for the MT-VRP 193

Figure a.1: Concert technology libraries for different operating systems Source: User’s

Manual for CPLEX V12.5 ... 243

Figure a.2: C++ code for the MIPstart ... 243

1

Chapter 1

Introduction

1.1. Introduction and Motivation

The discipline of logistics and supply chain management has seen a continuous and

rapid development in recent years due to its importance in the economies of

organisations and countries. Typically the role of supply chain management is perceived

by most companies as an activity that adds value to their markets, hence it has become

very significant to their strategic decision making. Due to evolving customers’ demand,

the companies want efficient delivery service without compromising the customer

service quality and yet having profitable business. On the other hand, issues around the

management of the operational physical distribution and collection activities are also

being seen from the environmental perspectives, especially by big organizations as a

part of corporate social responsibility, and governments and public service institutions

(such as councils) as a part of their political agenda. Hence these institutions would like

to see less traffic on the roads, meaning less pollution. These evolving demands have

put constant pressure on logistics operations to be more efficient to satisfy these

agendas. As a result, researchers around the globe are inspired to address these

important economic and logistical issues more and more efficiently.

2

The main findings of the recent estimated figures published by the UK department of

transport (DFT) show continuous significant increase in the past two years in all types

of traffic, especially in light goods vehicles (LGV). Comparison trends of 2014 and

2015 show that “all motor vehicle traffic increased by 1.8 % to 312.4 billion vehicle

miles, car traffic increased by 1.3 %, LGV traffic increased by 5.1 %, reaching a new

peak of 45.5 billion vehicle miles, traffic volumes increased across all road

classifications, minor rural road traffic increased the most, rising 4.9 % to reach 44.1

billion vehicle miles”, (DFT, 2015).

Interestingly the DFT estimates of GDP in UK show an increase in the year ending

March 2015. In particular, the four goods traffic related industrial groupings in the

economy, i.e., production, construction, services, and agriculture, showed increases in

their output over the same period. The above information shows that there is a positive

correlation between the growth and increasing traffic volumes. The above findings

become very vital if the GDP vs traffic relationship is associated with the emerging

developing countries like China and India whose economies are growing much faster

than the UK. The above statistics pinpoint the importance of this growing global issue

and triggers a need to address the problem even more.

This thesis is yet another part towards the efforts that are being put into place to design

more advanced and efficient algorithms to tackle these issues collectively. Vehicle

routing as a physical distribution problem is considered to be one of the important

modes of logistics; hence it has been studied enormously in the literature. However

there is still a wide gap between the assumptions based theoretical studies carried out in

academia and the reality of the industry. The research carried out around vehicle routing

is concentrated mainly on the fuel costs, meaning reducing total distance travelled by a

3

fleet of vehicles while fulfilling customer demands. Other operating costs such as fleet

and driver expenses are often ignored which can be vital from the management point of

view to maintain competitive pricing advantage and retain profitability.

A number of software (e.g., CPLEX or Gurobi) exists that can solve small to medium

size instances of vehicle routing logistics; however these are not capable enough to

tackle complex and large size problems efficiently. The fact that the exact methods are

unable to solve large instances of these well-established hard problems efficiently and

the design of heuristics is being concentrated as problem-specific. Therefore, there is a

strong desire in the research community to develop more generalised algorithms. The

research in this thesis is an attempt to address some of those issues and gaps highlighted

above by studying this crucial mode of logistics even further through modelling the

backhauling aspect of the reverse logistics within existing vehicle routing problem

(VRP) variants known as the multiple trips VRP; and to design efficient algorithms that

are dynamic in terms of adaptability to be implementable to a range of VRP variants

instances. In the multi-trip VRP a vehicle may be used more than once in planned

period of time, hence the model can also be mapped with the light goods vehicle types

that are increasingly used by online delivery companies.

Hence, the focus is to be on the issues highlighted above, i.e., economic and

environmental costs gains, bridging the gap between the academia and the industry and

developing new algorithms that are capable of solving instances from a range of VRP

variants.

4

1.2. The Multiple Trip Vehicle Routing Problem with Backhauls

In this research the Multiple Trip Vehicle Routing Problem (MT-VRP) model is

extended to include the backhauling aspect which we call The Multiple Trip Vehicle

Routing Problem with Backhauls (MT-VRPB). The MT-VRPB combines the

characteristics of the classical versions of two problems studied in the literature, i.e., the

MT-VRP in which a vehicle may perform several routes (trips) within a given time

period; and the vehicle routing problem with backhauls (VRPB) in which a vehicle may

pick up goods to bring back to the depot once the deliveries are made. Therefore in the

MT-VRPB a vehicle may not only make more than one trip in a given planning period

but it can also collect goods at each trip. Since the MT-VRP and the VRPB have been

studied independently in the literature, we first provide a brief description of these

problems.

MT-VRP: The MT-VRP model is an extension of the classical VRP in which a vehicle

may perform several routes (trips) within a given time period. Along with the typical

VRP constraints an additional aspect is included in the model which involves the

assignment of the optimised set of routes to the available fleet (Taillard et al. 1996).

VRPB: The VRPB is also an extension to the classical VRP that involves two types of

customers, deliveries (linehauls) and pickups (backhauls). Typical additional constraints

include: (i) each vehicle must perform all the deliveries before making any pickups; (ii)

routes with only backhauls are disallowed, but routes with only linehauls can be

performed. The reason behind this is that, in reverse logistics the linehaul (delivery)

customers are considered more profitable (Goetschalckx and Jacobs-Blecha, 1989).

5

Both the MT-VRP and the VRPB are considered to be more valuable than the classical

VRP in terms of cost savings and placing fewer numbers of vehicles on our roads. The

MT-VRP saves a considerable number of vehicles by using the same vehicles more than

once in a given planning time (Taillard et al. 1996). Whereas, in VRPB a vehicle is used

to serve backhaul customers only once it has served the linehaul customers rather than

using a separate vehicle to serve backhauls (Toth and Vigo, 1996, 1997, 1999).These

features are very important from both the managerial and the ecological perspectives.

We believe, by combining the aspects of the above two models into the MT-VRPB adds

even further value to the practice of the vehicle routing especially when it comes to the

need to optimise a fixed or limited available fleet and utilizing fully the driver time to

achieve strategic competitive advantage. To our knowledge, this is the first time this

variant is being studied in the literature. However, there is one study that deals with

time windows MT-VRPB-TW by Ong and Suprayogi (2011) where an ant colony

optimisation algorithm is implemented. Below we present a detailed description of our

MT-VRPB model.

MT-VRPB: The MT-VRPB can be described as a VRP problem with the additional

possibilities of having vehicles involved in backhauling and multiple trips in a single

planning period. The objective is to mimimise the total cost by reducing the total

distance travelled and the number of vehicles used.

Problem characteristics:

1. A given set of customers is divided into two subsets, i.e., delivery (linehaul) and

pickup (backhaul).

2. A homogenous fleet of vehicles.

6

3. A vehicle may perform more than one trip in a single planning period.

4. All delivery customers are served before any pickup ones on a route.

5. Vehicles are not allowed to service only backhauls on any route; however linehaul

only routes are allowed.

6. Vehicle capacity constraints are imposed.

7. Note - The route length constraint is not imposed in this study, however the model

is flexible to add this constraint if needed.

The above characteristics are established in the literature for the MT-VRP and VRPB

(Taillard et al. (1996), Toth and Vigo (1996, 1997, 1999)). However, these

characteristics are application dependent. For instance, heterogeneous fleet can be

considered instead of homogeneous and a vehicle can be allowed to serve backhaul

customers only.

Figure 1 presents a graphical example of the proposed MT-VRPB with three

homogeneous types of vehicles and a planning period T; Vehicle 1 performs two trips

whereas vehicles 2 and 3 one trip each.

Figure 1.1: An example of the MT-VRPB

 E.g; T (time) = 480 minutes (8 hours) Planning period time for each vehicle
Distance = Time

 Vehicle 1
 d𝑹𝟏 = 205
 Vehicle 2
 d𝑹𝟑 = 330

 Vehicle 1
 d𝑹𝟐 = 212
 Vehicle 3
 d𝑹𝟒 = 358

Delivery (Linehaul) Customers Pickup (Backhaul) Customers

Vehicle 1

7

1.2. Aims and Objectives of the Thesis

As mentioned in the introduction, the aim is to study the vehicle routing problem (VRP)

in terms of reducing the gap between the current assumption based on theoretical VRP

models conducted by academics and the actual practices at the industry by developing

more realistic models and efficient algorithms. Hence, this research provides insights in

regard to the power and efficiency of solution methods, to address the issues (e.g.,

routing cost, maximising the fleet usage, less vehicles on roads and environmental etc.)

which are of growing importance to the industry, governments and other relevant

sectors. To achieve the aims of the thesis the following objectives are set.

 To study existing VRP models and methodologies meticulously to gain a better

understanding of the issues and the subject area.

 To develop a mathematical model for a VRP variant, i.e., vehicle routing problem

with multiple trips by incorporating backhauling (MT-VRPB) aspect of the

reverse logistics.

 To design and implement new efficient and robust meta-heuristic and mat-

heuristic algorithms that are able to solve instances of a range of VRP variants

including the new MT-VRPB model. Moreover, to generate more realistic MT-

VRPB test instances data set and conduct tests and analysis to provide in-depth

understanding of the issues and discuss limitations.

1.3. Outline of the Thesis

The rest of the thesis is organized as follows.

8

Chapter 2 presents a general review of the Vehicle Routing Problem (VRP) and some of

its main variants models along with their historical developments. It also presents

descriptions of various VRP models along with some useful references for the readers.

The chapter also reviews other methodologies including exact, classical heuristics and

metaheuristics developed around the subject and discuss their pros and cons in terms of

their implementation.

Chapter 3 presents a focussed literature review of the two VRP variants models. Since

the MT-VRPB is modelled by blending two existing VRP models, i.e., the Vehicle

Routing Problem with Backhauls (VRPB) and the Multi-trip Vehicle Routing Problem

(MT-VRP), the review of these problems will help provide better understanding of the

newly introduced problem. The VRPB and the MT-VRP are studied independently in

the literature, their reviews are presented separately.

Chapter 4 introduces a new variant of the VRP being studied in this thesis i.e., the

Multiple Trip Vehicle Routing Problem with Backhauls (MT-VRPB) and the exact

method options to solve the model. The details of the MT-VRPB including the graph

theoretical definition and mathematical formulation along with possible variations are

presented. An illustrative example showing validation of the formulation is provided

before the details of our CPLEX solution implementation. The chapter also provides

details of a newly created large set of MT-VRPB data instances along with the results

and analysis.

Chapter 5 presents a Two-Level VNS algorithm developed to solve the MT-VRPB. An

overview of the algorithm is first provided followed by the details of various

components including a multi-layer local search approach that is embedded within the

9

Two-Level VNS methodology. Details of an adapted sweep-first-assignment-second

approach to produce an initial solution for the MT-VRPB are also provided. Finally

detail of the Bin Packing Problem (BPP) that resolves the multiple trip aspect of the

MT-VRPB is presented followed by the results and analysis.

Chapter 6 presents a hybrid collaborative sequential mat-heuristic (CSMH) approach

developed to solve the MT-VRPB. Combining mathematical programming techniques

with heuristic methods to solve CO problems is a recent development in the literature.

These approaches are recognised as a new class of the hybrid methodologies and are

termed as ‘mat-heuristics’. The mathematical model developed in Chapter 4 is

hybridised with the Two-Level VNS algorithm developed in Chapter 5. The Two-Level

VNS uses three phases, i.e., initial solution by a modified sweep-first-assignment-second

approach, improved solution by VNS, and packed solution by the BPP. Here in fourth

phase, a mathematical formulation is incorporated with the Two-Level VNS algorithm to

find optimal/better solution for the MT-VRPB.

Chapter 7 presents our study for two classical versions of the VRP, i.e., the Vehicle

Routing Problem with Backhauls (VRPB) and the Multi-trip Vehicle Routing Problem

(MT-VRP). The Two-Level VNS and the CSMH algorithms developed for MT-VRPB in

Chapter 5 and 6 are further investigated and implemented to solve the VRPB and the

MT-VRP. The results are produced using the benchmark instances of these problems

from the literature. The Two-Level VNS and CSMH algorithms results are analysed and

compared with the best published solutions.

Finally, Chapter 8 provides the conclusions and some future research directions.

10

Chapter 2

The Vehicle Routing Problem: Models

and Solution Methods

This chapter presents a brief review of the historical development of the Vehicle

Routing Problem (VRP) and some of its main variants. Short descriptions of various

VRP models are presented along with some useful references for the readers. The

chapter also reviews the methodologies developed around the subject and discuss their

strengths and weaknesses in terms of their implementation.

2.1. The Vehicle Routing Problem and its Variants

2.1.1. The Evolution of the Vehicle Routing Problem

The evolution story of the VRP starts with the generalization of the classical Travelling

Salesman Problem (TSP) by Dantzig and Ramser (1959). The TSP is typically

described as a salesman who has to start a tour from his/her home city and visits all

customers at different locations before returning back to his/her home city. The problem

is to find the order in which the salesman is to visit all customers to minimise the total

distance travelled. (Lawler et al. (1985), Hahsler and Hornick (2006), Bai et al. (2005),

Gendreau et al. (1992), and Gamboa et al. (2006)). Special cases of the TSP arise in

11

terms of its applications [e.g., Chinese Postman Problem where it is not necessary for

salesman to returns home (Eiselt et al., 1995)]. For instance, the problem may have

special properties where the distance between the pairs of nodes is assumed to be

asymmetric (not the same in both directions). The story then moves to the extension of

the TSP, i.e., the Multiple Travelling Salesman Problem (mTSP), which involves the

use of exactly m salesmen (Lawler et al., 1985, Bodin et al., 1983, Bektas, 2006). The

extension of the mTSP model then took the shape of the classical vehicle routing

problem (VRP) in the work of Dantzig and Ramser in 1959 with the incorporation of

some additional aspects such as vehicle capacity restrictions.

2.1.2. Definition of the Vehicle Routing Problem:

The VRP is a general name devoted to a whole set of problems. In its simplest form, the

VRP involves a set of customers with deterministic demands, a fleet of vehicles

(normally homogeneous in physicality and unlimited in number) and a depot. The

problem is to design such a set of routes (starting and ending at the depot) to serve all

the customers at minimum cost while satisfying the vehicle capacity and (in some cases)

route-length constraints. Figure 2.1 shows an illustrative example of the classical VRP.

For detailed information on the subject of VRP see Toth and Vigo (2002), Mester and

Braysy (2007), Bin et al. (2009), Fleszar et al. (2009).

2.1.3. VRP Variants

In the field of transportation and distribution logistics, the vehicle routing problem has

evolved as a pivotal problem since Dantzig and Ramser (1959) first introduced it as the

Truck Dispatching Problem. Since then and especially in the past three decades the VRP

has emerged to be one of the most studied problem in the area of combinatorial

12

optimisation. Numerous variants of the VRP have been introduced and hundreds of

papers have been written on this subject with new efficient solution methodologies in

the literature.

Figure 2.1: An illustrative example of the VRP

The primary objective behind the development of various variants of the VRP and

proposed methodologies is to bring the problem closer to the real world applications

requirements. Consequently, by taking advantage of the studies around the VRP and its

different versions, public or private transportation companies in the real-world can save

substantial transportation costs (for example, combining delivery and pickup operations,

using a mix of smaller and bigger vehicles, serving from more than one depot, etc.).

Ganesh et al. (2007) presented a broad review of the Vehicle Routing Problem, its

variants, solution approaches and the applications. It has been reported that on average

the transportation of goods or material takes the highest proportion of logistics costs.

60

100

120

 Customers

with demands Arcs with

costs

Depot

13

The authors argue that the VRP has been assumed to be a deterministic and static

problem traditionally, however, in present day context, VRP takes account of collecting

and processing information and take decisions accordingly within certain time span.

However it should be noted that around the time when the study of Ganesh et al. (2007)

was published another class of the VRP emerged and referred to as “rich” VRPs

inspired by real applications (Gribkovskaia et al., 2006). A large number of such studies

exist in the literature, the reader is referred to Goel and Gruhn, 2008; Vidal et al. 2014,

and for a recent review Lahyani, et al., (2015). On the other hand the counter argument

to the study of Ganesh et al. (2007) and the fact behind the evolution of VRP variants is

that these are inspired by real-life operations. The literature on the VRP shows a clear

trend towards bringing it closer to the reality. We believe the research work in this

thesis is yet another step to bring the VRP closer to the reality by addressing multiple

use of fleet with backhauling in a time span which is very much in practice.

In the following subsections some of the main variants of the VRP and those which are

relevant to this study are briefly described and useful references are provided.

2.1.3.1. The Periodic VRP

The Periodic Vehicle Routing Problem (PVRP) is a generalization of the classical VRP

that addresses the planning period aspect of the problem. Hence in this problem, the

planning period is extended to M days as opposed to the classical VRP where a single-

day planning period is considered. The objective is to find the minimum cost set of

routes over M days (Christofides and Beasley, 1984). The PVRP is found in many real-

world applications, e.g., waste collection, elevator repair and maintenance and recycling

collections. For further details and applications of PVRP, see Russell and Igo (1979),

14

Beasley (1983), Baptista et al. (2002), Blakely et al. (2003) and Hemmelmayr et al.

(2009).

2.1.3.2. The Multiple Trip VRP

The Multiple Trip Vehicle Routing Problem (MT-VRP) is an extension of the classical

VRP in which a vehicle may perform several routes (trips) within a given planning

period (Taillard et al., 1996). As mentioned in Chapter 1, the MT-VRP is one of the

variants of the VRP that are intended to be investigated in this thesis; hence further

discussion is provided in subsequent chapters.

2.1.3.3. The Multiple-Depot VRP

In the Multiple-Depot Vehicle Routing Problem (MDVRP), customers are served from

more than one depot as opposed to the classical VRP where customers are served from a

single depot. The objective of this problem is to minimise the number of vehicles used

and the total distance travelled while serving all customers. This variant is related to

some real-world applications where a company might want to serve its customers from

several depots, as their customers may be clustered around the depots, and it would be

less costly to serve a respective customer from its nearest depot. In this type of scenario,

the problem is either tackled as a set of individual vehicle routing problems or in the

case where customers and depots are somehow intermingled then the problem is tackled

as a multiple-depot vehicle routing problem. For more details on this problem and its

extensions readers are referred to Bodin et al. (1983), Renaud et al. (1996) and Salhi et

al. (2014).

15

2.1.3.4. The Mix Fleet VRP

The Mix Fleet Vehicle Routing Problem (MFVRP) is an extension of the VRP. The

MFVRP considers a heterogeneous fleet as opposed to the VRP where a homogeneous

fleet is used. Hence in the MFVRP, each vehicle’s characteristics differ in terms of

capacity, fixed cost and variable travel cost. The objective is to find a set of mix fleet

routes with a minimum total cost while serving all customers. For the details of the

MFVRP and its further versions readers are referred to Golden et al. (1984), Taillard

(1999), Salhi and Sari (1997), Wassan and Osman, (2002), Tarantilis et al. (2004),

Yaman (2006) and Imran et al. (2009).

2.1.3.5. The VRP with Time Windows

The Vehicle Routing Problem with Time Windows (VRPTW) addresses time window

aspect where each customer specifies his/her service time periods. There are two

variations of time windows considered in the literature, (1) hard time windows, in which

the customer must be served in the stated time window and (2) soft time windows,

where the time window can be violated at an additional cost added to the objective

function in order to compensate the customer for the inconvenience. The VRPTW is

studied intensively in the literature. For further details on the VRPTW, see Desrochers

et al. (1992), Halse (1992), Potvin and Bengo (1996), Taillard et al. (1997) Toth and

Vigo (2002), Yeun et al. (2008) and the survey of Bräysy and Gendreau (2005a, 2005b).

2.1.3.6. The Split Delivery VRP

The Split Delivery Vehicle Routing Problem (SDVRP) variant allows a customer to be

serviced by two different vehicles if it reduces the overall cost. This relaxation can be

16

very important if the sizes of the customers’ orders are bigger than the capacity of a

vehicle and it becomes compulsory to visit a customer more than once. However the

objective of the problem stays the same as the VRP. The literature on the SDVRP has

seen a big gap since it was first introduced by Dror and Trudeau (1989, 1990). However

considerable attention has been paid towards the SDVRP more recently. See the

following references for more information on the SDVRP, Belenguer et al. (2000), Ho

and Haugland (2004), Archetti et al., (2008), Jin et al. (2007) Jin et al. (2008), Aleman

(2009), Bolduc et al. (2010), Derigs et al. (2010), Mohamed (2012) and Nagy et al.

(2015).

2.1.3.7. The classical VRP with Backhauls

The Vehicle Routing Problem with Backhauls (VRPB) as described in Section 1.2

involves two types of customers, i.e., linehaul (delivery) and backhaul (collection). In

this problem a vehicle can deliver goods to the customers and make collections to bring

back to depot (Goetschalckx and Jacobs-Blecha (1989), Toth and Vigo (1996, 1997,

1999, 2002), Osman and Wassan (2002). There are some versions of the VRPB that are

modelled and studied in the literature. Since the VRPB will be studied in this thesis, a

literature review and our investigations will be provided respectively in Chapter 3 and

Chapter 7. In this chapter we present brief descriptions of those relevant VRPB variants,

along with some useful references, which are not investigated in this thesis.

2.1.3.8. The VRP with Mixed Deliveries and Pickups

The Vehicle Routing Problem with Mixed Deliveries and Pickups (VRPMDP) is

another backhauling version in which the order of the pickup and delivery customers is

not important when it comes to serve their demand. That is linehaul and backhaul

17

customers can be mixed freely within a route in a way that customers are either delivery

or pickup locations. The VRPMDP is studied further with the extensions such as “multi-

depot” and “time windows”, see Zhong and Cole (2005), Jarpa et al. (2010). The

following studies can be a useful start for understanding this version of backhauling

VRPs; Halse (1992), Nagy and Salhi (1999, 2005), Salhi and Wade (2001), Wade and

Salhi (2002), Ropke and Pisinger (2006), Tutuncu et al. (2009), Lin and Tao (2011).

Moreover, a recent paper of Wassan and Nagy (2014) provides a comprehensive

discussion on the modelling issues and the meta-heuristics developments around this

problem.

2.1.3.9. The VRP with Simultaneous Deliveries and Pickups

The Vehicle Routing Problem with simultaneous Deliveries and Pickups (VRPSDP)

was introduced by Min (1989). In VRPSDP, a vehicle can serve a linehaul customer

only, a backhaul customer only or it can serve a customer both with linehaul and

backhaul demands simultaneously. Taking into account the fact that serving customers

simultaneously can lead to a problem of rearranging the load on a vehicle, it is assumed

that the physical design of a vehicle is designed in such way that it can be accessed from

several sides in order to accommodate the load. For more information on the VRPSDP,

see Salhi and Nagy (1999), Nagy and Salhi (2005), Chen and Wu (2006), Ganesh and

Narendran (2007), Wassan et al. (2008a and 2008b), Gajpal and Abad (2009),

Zachariadis et al. (2010), Wassan and Nagy (2014) and Nagy et al. (2015).

2.1.4. Future of the VRP

The above descriptions of the VRP models show that the distance/cost minimization has

been the key factor in those models, besides the maximization of fleet utility and

18

service. Nonetheless, it is noticeable that researches have been continuously trying to

develop models that are closer to the real applications of the vehicle routing. It can also

be seen that there are still gaps between the existing models and the reality that need to

be bridged by developing more integrated models that fulfil the contemporary demands

of the industry. More recently, a good development and increasing interest in the real

VRP modelling and applications has been noted in the literature. These models are

being termed as “Rich” VRP models (Battara et al., 2009). However, so far these

models seem to be specific to individual applications. The main difficulty to design the

VRP models and to solve them in an integrated way by considering various real life

routing requirements is the complex nature of those instances of the problem, and the

fact that these models belong to the category of hard combinatorial optimisation (CO)

problems. We shall discuss the solution methods separately in the remainder of this

chapter by first providing a description of CO problems and introducing the term

algorithm.

2.2. Combinatorial Optimisation: Problems and Algorithms

2.2.1. Combinatorial Optimisation Problems

Combinatorial Optimisation (CO) problems arise in many areas, including management,

e.g. vehicle routing and scheduling, production, finance, technology, facility location,

etc., (Hoffman, 2000). The term “Combinatorial Optimisation” deals with those areas of

mathematical programming that find the solution of optimisation problems, normally

being termed as combinatorial or discrete (Christofides et al., 1979). In simple words,

combinatorial optimisation can be defined as a process of finding one or more best

(optimal) solutions in a well-defined discrete problem space. One of the primary issues

19

that arise for most combinatorial problems is the computational burden associated with

various solution approaches when formulating and seeking a solution to these problems.

In 1970s computational complexity results were discovered by Cook (1971). It was

discovered that many CO problems belong to NP-hard category of problems (for more

information for this area we refer to the reader to an excellent study of Garey and

Johnson (1979)). Hence the attention was turned to develop more efficient heuristics.

2.2.2. The term Algorithm

The word algorithm is derived from the Latin word Algoritmi; Latinized from a Persian

mathematician’s family name who is named Abu Abdullah Muhammad ibn Musa al-

Khwarizmi (in Arabic: محمد بن موسى الخوارزمي). He was born in either Khwarizmi or

Baghdad and lived approximately between the years A.D.780 to A.D.850. He wrote his

first book on systematic solutions to linear and quadratic equations named “al-Kitāb al-

mukhtaṣar fī ḥisāb al-jabr wa-l-muqābala”. The word algebra is derived from the word

al-jabr. As a result, he is considered to be the father of algebra and algorithms. The

word algorithm originally meant the rules that govern arithmetic; it was not until the

18
th

 Century, when it evolved to include all procedures and formulae for problem

solving.

The origins of algorithm root back to the works of a Hellenistic mathematician known

as Diophantus of Alexandria (Greek: Διόφαντος ὁ Ἀλεξανδρεύς), who lived around the

time between A.D.200 and A.D.298 in Alexandria, Egypt. According to historic

findings, he wrote thirteen Greek books named Arithmetica, of which six survived till

today. Evidence from Arabic sources show that some of their problems may have

originated from these manuscripts, known as Diophantine problems. Moreover, an

20

Arabic manuscript discovered in 1968 apparently shows a translation of four of the

seven lost Arithmetica books (Sesiano, 1982). His original Greek manuscripts show an

unusually syncopated notation that matches the way al-Khwarizmi’s algebras were

developed at a much later date. Hence he also shares the title of the father of algebra.

Some quotes from Kowalski (1979) (Kleene 1991, first published in 1952) and

Markov (1954) (Knuth 1973, first published in 1968), show how others have defined the

word “algorithm” and in the light of those quotes, our understanding of the general

definition of an algorithm is a specific finite set of procedures, methods, techniques or

formulae that accomplishes a set of tasks within a reasonable and finite amount of time,

with the requirement of a given initial state and a user-defined end state, to solve a

problem and conclude with a definite logical answer.

We note that although many algorithms are designed to find an exact or optimal

solution, with hard combinatorial problems such as the VRPs, often the bigger the

problem size, the harder it is to find an optimal solution due to its non-deterministic

polynomial nature. In order to find a solution within a reasonable amount of time,

approximation algorithms are implemented where the solution is an approximation that

is close to the optimal solution. Hence we recognize that the word solution possesses

different meanings in different situations, where the best solution to a problem could

either be an optimal solution or a feasible solution. A feasible solution is an improved

better quality solution as compared to the initial solution and may not necessarily

represent an optimal solution. Therefore, depending on the end state criteria and time

restrictions, this may be taken as the best feasible solution and thus the desired solution

rather than the exact or optimal solution.

21

2.3. Solution Techniques for the Vehicle Routing Problems: An Overview

Over the past few decades various solutions approaches have been developed to solve

the VRPs. Among these are the exact and the heuristic/meta-heuristic approaches. The

literature reveals that not many authors have proposed exact methods to tackle the VRP

and its variants due to their non-deterministic polynomial hard (NP-hard) nature, which

leads to an exponential amount of time needed to solve the problem to optimality.

Therefore, most solutions are achieved by using non-mathematical programming

methods to find a near-optimal solution – a good problem solution that may be achieved

within a reasonable amount of time – these methods are termed as heuristic methods.

Unfortunately, these suffer from inflexibility to changes in the formulation of problems.

Moreover, as the problem size increases, it becomes more and more problematic to find

high-quality solutions; in many cases, heuristics tend to get trapped within local optima,

i.e. they tend to find an optimal solution within its neighbouring space, which in most

cases do not represent the global optima; the optimal solution of the whole solution

space. Researchers identified these defects of heuristic methods and produced high-level

procedures based on generic principles of heuristics, these types of advanced heuristic

algorithms are named as meta-heuristic, or metaheuristic, methods. Metaheuristic

methods are also known as artificial intelligence (A.I.) algorithms and are capable of

solving a large range of problems more efficiently and effectively than simple heuristics

do. They are designed to be flexible, hence easily adapted to different problems and

criteria with just a few minor modifications, and do not get hindered from being trapped

within local optima.

Exact and heuristic methods both have their pros and cons. There is a compromise

between using one or the other; hence users must justify which one is more suitable for

22

tackling their problem given the constraints that restrains them to find a solution within

a set amount of time. Although recent trend shows that the possibility of combining

both methods to produce highly competitive solutions is feasible, we shall leave this to

the latter part of this chapter. We attempt to give a brief introduction of each method

and allow the reader to distinguish between the two methodologies.

2.3.1. Exact Methods

Normally, the exact approaches are developed on the mathematical formulation of the

problem. These methods provide guaranteed optimal solutions, but at a very high

computational effort (Halse, 1992). These approaches work through the problem

intelligently and efficiently and obtain optimal solution for the combinatorial

optimisation problems.

Although, the exact approaches have proved their efficiency by solving combinatorial

problems of moderate size. However, when the problem is complex and large in size, it

may not be a good choice to use exact approaches. Because when engaging with

complex and large-size problems, these approaches may lead to some implementation

issues and may require too much computational effort. On the other hand, recent

advancements and the power in the computer technology has made possible to solve

moderate-size problems and in some cases problems of large-size in an acceptable

amount of time using exact methods.

2.3.2. Heuristic Methods

The term heuristic is originally derived from the Greek word “heurisko” (Greek:

ευρίσκω), meaning “I find” or “I discover”. The term was introduced approximately

23

around A.D.340 by a Hellenized mathematician named Pappus of Alexandria (Greek:

Πάππος ὁ Ἀλεξανδρεύς), who was born in Alexandria, Egypt. The original definition of

heuristic is a technique to learn, discover, or problem-solve using a simple set of

procedures. Heuristics were popularized by a Hungarian mathematician named George

Pólya (Pólya, 1945). He wrote a book titled “How to Solve It” (Pólya, 1945) that

consolidates ideas about heuristics, ways of understanding a problem, planning how to

tackle it and revising the solution method to seek for improvements.

In the context of operational research, heuristic methods use a set of procedures to

search approximated solutions for a problem in hand without any guarantee of

optimality (Reeves, 1993). These procedures are aimed at finding solutions as near to

optimality as possible in a reasonable amount of computational time by searching

through the most promising regions of solution choices, rather than performing a time-

consuming complete enumeration in the search of the optimal solutions. The down-side

of heuristics is the fact that they lack precision and accuracy. This led researchers

around the world to investigate what are the most effective ways to deal with problems

and how they may be improved by combining different forms of algorithms or

algorithmic principles.

In real-life problems, it is better to be able to find an approximate solution to the real

problem rather than finding the optimal solution to an approximation model of the

problem. As we have mentioned, in real-life applications problem sizes are usually

enormous. Hence, generally, it is impractical to attempt finding the optimal solution,

which leads to the preference of heuristic methods. Table 2.1 shows a list of methods

used to tackle the VRP and its variants. The table includes a categorized list of exact,

heuristic, metaheuristic and hybrid methods that researchers have chosen to utilise. Each

24

method is referenced to author, or authors, that are identified as the accredited founder,

where applicable. Note that due to the amount of papers that have been published in the

context of the VRP and its variants, it is not possible to include and categorize every

method that has been used and therefore we have only included some of the most

acknowledged and discussed methods. However, methods for tackling the VRP and its

variants are not limited to the ones mentioned.

Table 2.1: Methods used in tackling the VRP and its Variants

Exact Methods:

B&B – Branch-and-Bound (Land and Doig, 1960)

 Carpaneto-Toth B&B for Non-Integer Linear Programming (NILP)

(Carpaneto and Toth, 1980)

 k-Shortest Spanning Tree, q-Paths (Christofides, Mingozzi and Toth,

1981b)

 Branch-and-Cut (Laporte, Nobert and Desrochers, 1985)

 Branch-and-Cut-and-Price (Fukasawa et al., 2003)

 Dynamic Programming with State Space Relaxation (Christofides,

Mingozzi and Toth, 1981a)

 Two-Commodity Network Flow Formulation (Baldacci,

Hadjiconstantinou and Mingozzi, 2004)

Heuristic Methods:

Construction-based Heuristics

 Clarke-Wright savings (Clarke and Wright, 1964)

 NNH – Nearest Neighbour

 Sweep (Gillett and Miller 1974)

 Cluster-First, Route-Second (Fisher and Jaikumar, 1981)

 Route-First, Cluster-Second (Beasley, 1983)

 Petal (Ryan et al., 1983)

 Insertion Heuristics (Flood, 1956)

25

o Christofides-Mingozzi-Toth Sequential Insertion Heuristic

(Christofides, Mingozzi, Toth, 1979)

o Parallel Insertion Heuristic

o Christofides-Mingozzi-Toth Parallel Insertion Heuristic

(Christofides, Mingozzi, Toth, 1979)

 GENI (Gendreau et al., 1992)

Intra- and Inter-Route Improvement Heuristics

 Transfer Heuristics

o Or-Opt (Or, 1976) (Inter-/Intra-Route Improvement)

o 1-0 Exchange (Salhi and Rand, 1987; Water, 1987)

 Swap Heuristics

o r-Opt approx 5% from optimum (Croes, 1958)

o 2-Opt (Croes, 1958)

o 3-Opt

o 4-Opt

o 1-1 Exchange (Salhi and Rand, 1987; Waters, 1987)

o λ-Interchange (Osman, 1993)

o Edge Exchange Scheme (Kindervater and Savelsbergh, 1997)

 Composite Move Heuristics

o Ejection Chain Process (Thompson and Baraftis, 1989; Rego and

Roucard, 1996)

Metaheuristic Methods:

Local Search (LS) Methods

 TS – Tabu Search (Glover, 1989,1989,1990)

o Taburoute (Gendreau, Hertz and Laporte, 1994)

o UTSH – Unified TS Heuristic (Cordeau, Laporte and Mercier,

2001; 2004)

o RTS – Reactive TS (Osman and Wassan, 2002)

o Granularity Principle – Granular TS (Toth and Vigo, 2003)

 SA – Simulated Annealing (Kirkpatrick, Gelatt and Vecchi, 1983;

Černý,1985)

26

 DA – Deterministic Annealing (Dueck 1993)

o Threshold-Accepting (Dueck, 1990)

o Record-to-Record Travel (Dueck, 1993)

 LNS – Large Neighbourhood Search (Shaw, 1997) [Inter-route

Improvement]

o VLNS – Very LNS (Ergun et al., 2002)

o ALNS – Adaptive LNS (Røpke and Pisinger, 2004)

 VNS – Variable Neighbourhood Search (Mladenović and Hansen, 1997)

Population Search / Solution Recombination Methods

 EA – Evolutionary Algorithm

o EP – Evolutionary Programming (Fogel, Owens and Walsh, 1966)

o ES – Evolutionary Strategies (Rechenberg, 1973)

 GA – Genetic Algorithm (Holland, 1975)

o GP – Genetic Programming (Koza, 1992)

o AMP – Adaptive Memory Programming (Rochat and Taillard,

1995)

o Population Mechanism (Prins, 2004)

Learning Methods

 ACO – Ant Colony Optimisation (Moyson and Manderick, 1988)

o D-Ants Savings Algorithm (Reinmann, Doerner and Hartl, 2004)

 NN – Neural Networks (Hopfield and Tank, 1985)

 Swarm Intelligence

o PSO – Particle Swarm Optimisation (Kennedy and Eberhart,

1995)

 CE – Cross-Entropy

Hybrid / Composite Methods:

 Parallel TS/Ejection Chain Algorithm (Glover, 1991; 1992; Rego and

Roucard, 1996)

 BoneRoute: hybrid of AMP and LS (Tarantilis and Kiranoudis, 2002)

 Memetic Search: hybrid of GA and LS (Moscatto and Cotta, 2003)

 AGES – Active Guided Evolution Strategy: hybrid of ES and LS (Mester

and Bräysy, 2007)

27

 Hierarchical/Algorithm Hybrid MILP – Mixed Integer Linear

Programming (Dondo and Cerdá, 2006)

 RTAMP – Reactive Tabu Adaptive Memory Programming Search

(Wassan, 2007)

2.4. Examples of Exact Methods

In this section, we attempt to give a few examples of exact methods. Some of these

methods may require the problem to be formulated as an integer linear programming

(ILP) problem. The exact methods discussed below are ones that have already been used

in solving the VRP and its variants.

2.4.1. The Branch-and-Bound Method

The branch-and-bound (B&B) algorithm belongs to the class of implicit enumeration

methods and was first proposed by Land and Doig (1960) to solve pure integer linear

programming (ILP) problems. The general idea may be graphically described in terms

of finding the minimal value of a function f(x) over a set of solution values within the

feasible region of the argument x. The name of the B&B algorithm itself automatically

suggests that it consists of two parts to form the whole algorithm; branching and

bounding. Branching is a method to finding candidate solutions by covering all the

feasible regions and splitting into sub-regions yielding sub-problems. Branching on

each sub-region only terminates when it cannot find a feasible and promising candidate

solution, or else it is repeated recursively. This branching procedure inevitably forms a

tree structure and is termed as a search tree, also known as a branch-and-bound-tree.

When further branching of the sub-problem cannot yield any useful information, we say

28

that the sub-problem is fathomed. Bounding is the part where upper and lower bounds

for the optimal solution are found within a feasible sub-region. When performing the

B&B, constructed sub-regions are referred to as nodes. During branching and bounding,

a process called pruning is performed to search for a better candidate solution. The

pruning process observes the lower bound of a currently searched sub-region A and

compares it to the upper bound for any other examined sub-region B, if A’s lower

bound is greater than the upper bound of B, A is discarded from the search. If the upper

bound of A matches the lower bound of B, this value becomes the minimum of the

function within the subsequent sub-region; in this case, we say that the sub-region is

solved, but maybe further pruned as the search proceeds.

Two general approaches are used during the search process, namely the backtracking

and the jumptracking. Backtracking (known as depth-first search) leads the search tree

by branching down one side of the search tree and quickly finds a candidate solution. It

then backtracks up to the top of the other side of the tree. Jumptracking (also known as

breadth-first search) solves all the sub-problems created by the branching. It then

branches again on the z-value found from each sub-region to create further sub-

problems. Jumptracking often jumps from one side of the search tree to the other; hence

it creates more sub-problems than backtracking and thus requires comparatively more

computer storage.

The procedure terminates when all the nodes on the search tree are pruned or solved,

where the non-pruned sub-regions have their upper and lower bounds equaling the

global minimum of the function. In practice, the procedure is usually terminated after a

given time or number of iterations with a range of values that contain the global

minimum amongst the non-pruned sub-regions.

29

The main concern is the efficiency and effectiveness of the B&B algorithm used, as the

efficiency is directly affected by the effectiveness of the branching and bounding

algorithm used; a bad algorithm could result in non-pruned repeated branching until the

sub-regions become very small. In such a case, we refer to this as an exhaustive

enumeration, which becomes impractical even with relatively small problems.

Carpaneto and Toth (1980) devised a B&B algorithm specifically to tackle asymmetric

travelling salesman problem up to n = 5000. The problem solution starts off by setting

all cii = ∞. The assignment problem is solved to find a lower bound. If there are no sub-

tours, then the TSP is solved. Whereas, if there are sub-tours, an upper bound feasible

solution is found by using Karp’s (1978) patching algorithm by eliminating specific

edges on sub-tours and reconnecting the sub-tours to form a TSP. These sub-tours are

then eliminated using branching by “forcing the sub-tours” one-by-one into the main

tour to form TSP solutions. Each corresponding sub-tour is used to solve the assignment

problem and any branches whose value is greater than the upper bound is deemed

infeasible. The Branch and Bound methods have been used to tackle VRP and some of

its variants with a reasonable success, e.g., Christofides and Eilon (1969), Yano et al.

(1987), Laporte et al. (1987), Laporte (1992), Fisher (1994), Mingozzi et al. (1996),

Toth and Vigo (1997, 2002) and Ralphs (2003).

2.5. Examples of Heuristic Methods

This section briefly introduces some of the most common heuristic methods used for

finding optimal or near optimal solutions for small size problems, or for improving

(local search methods) on initial solutions found via initial solution construction

methods. We note that classical improvement heuristics have two properties; these are

30

that the solution never deteriorates and always remains feasible. The quality of a

heuristic method is assessed on four criteria namely speed, flexibility, accuracy and

simplicity (Cordeau et al., 2001). Note that in the following sub-sections we are going

to describe only those construction and improvement heuristic methods that are directly

used in this study. For others, relevant references are provided in sub-section 2.5.1.2.

2.5.1. Construction-based Heuristics

Construction-based heuristics are heuristic methods that create an initial solution from

raw data. With small problems, it is possible to find the optimal solution and hence not

necessarily have to go through an improvement stage. However, as the problem size

becomes larger, these construction-based heuristics could only provide a reasonable

initial solution, thus requiring other improvement heuristics to improve the quality of

solution.

In the following parts, a brief description of the most well-known construction-based

heuristics is introduced with a brief assessment of the quality of the heuristic.

2.5.1.1. The Sweep Algorithm

The sweep algorithm was first introduced by Gillett and Miller (1974). It first selects a

starting customer, shoots a “beam” from the depot to the starting customer and rotates

clockwise or counterclockwise adding customers one-by-one to form a tour. If the

capacity constraint is violated, a new route is initiated until all customers have been

assigned. Figure 2.3 shows the visual representation in a clock-wise format.

Like the Clarke-Wright savings and the NNH, the sweep algorithm has a relatively high

speed and simplicity. The accuracy is only mediocre and it is relatively inflexible. For

31

more information and the various ways it has been used to the VRP and its variants,

readers are referred to Gillet and Miller (1974), Laporte et al. (2000), Renaud and

Boctor (2002), Salhi, Wassan and Hajarat (2013). We shall elaborate more on the sweep

methodology in the later chapters of this thesis since it is adopted in our algorithm

implementations.

Figure 2.3: A visual representation of the sweep procedure

2.5.1.2. Other Construction-based Heuristic for VRPs

There are several other construction-based heuristics methods that are successfully used

for VRPs. Among these some popular methods are; the savings algorithm proposed by

Clark-Wright(1964), for more information on the savings algorithm and its

enhancements, readers are referred to Laporte et al. (2000), Toth and Vigo (2002),

Altinel and Oncan, (2005). The nearest neighbour heuristic (NNH) method, for more

 Depot

32

details of Nearest-Neighbour heuristic and its applications on VRPs, readers are referred

to Rosenkrantz et al. (1977), Golden et al. (1980), Solomon (1987), Fisher (1994),

Ganesh et al., (2007). The two-phase methods (e.g., cluster-first, route-second method

introduced by Fisher and Jaikumar (1981), and the route-first, cluster-second method

introduced by Beasley (1983)). For more details about these methods and their different

types/extensions, see Christofides et al. (1979), Renaud et al. (1996) and Toth and Vigo

(2002). The insertion method introduced by Flood (1956); for details, see Salhi and Sari

(1999). The GENI (Genius) heuristic proposed by Gendreau et al. (1992), for more

details on this method, see Gendreau et al. (1994).

2.5.2. Intra- and Inter-Route Improvement Heuristics

Intra- and/or inter-route improvement heuristics are used for improving initial solutions

generated from construction heuristics. There are various common improvement

heuristics that have been investigated and we shall briefly introduce those which are

directly used in this study in the following sub-sections and references are provided for

other types of improvement heuristics in sub-section 2.5.2.3.

2.5.2.1. Transfer Heuristics

Transfer heuristics work by removing customer i from its initial position of route I and

reinserting it into a different position in the same route I for intra-route optimisation.

Whereas, for inter-route optimisation, customer i is removed from its initial position of

route I and reinserting it into a new position in route J. Provided, the transfer of

customer i results in an overall cost minimization without violating vehicle capacity

constraints, the solution routes are updated. Two of the more commonly used transfer

heuristics are briefly introduced in the following sections.

33

2.5.2.2. Swap Heuristics

Swap heuristics swap customers i and j in route I for the intra-route optimisation case,

and; customer i from route I with customer j from route J for the inter-route

optimisation case. The new solution resulted from the swap is kept if the new solution

reduces the overall cost without violating vehicle capacities constraints (Waters, 1987).

This can be extended for swapping several customers, as seen in the following sections.

2.5.2.3. Other Improvement Heuristics for VRPs

In the VRP literature there exist several other improvements/local search heuristics that

have been used to improve the solution of VRP and its various extensions. Some of

these local search heuristics are: Or-Optimisation introduced by Ilhan Or (1976), r-

Optimisation proposed by Croes (1958), see Bock (1958) and Renaud et al. (1996) for

different extension of r-optimisation. The λ-interchange (lambda-interchange)

introduced by Osman (1991, 1993). Composite Move Heuristics also known as the

cyclic transfers algorithms introduced by Thompson and Orlin (1989). One of the most

promising cyclic transfers algorithms, the Ejection Chain Process was proposed by

Glover (1991, 1992), see Thompson and Psaraftis (1993), and Rego and Roucairol

(1996) for its VRP implementations.

2.6. Examples of Metaheuristic Methods

The following sections introduce well-known metaheuristic methods that have been

used in this study and some of its extensions used for VRPs are also reviewed. For other

metaheuristic methods which are widely used for the VRPs, relevant references are

provided. Each metaheuristic technique has a characteristic that allows it to be

34

categorized into either a local search method, a solution recombination method, or a

learning method. A good survey on metaheuristics is provided in Boussïd et al. (2013).

The metaheuristic method that has been used in this study belongs to the category of the

local search methods. A local search method, also known as a neighbourhood search

method, searches for an optimal/near optimal solution within its neighbourhood using

inter-route and intra-route improvements, yet unlike classical heuristics, it allows the

solution to deteriorate including temporary infeasible solutions, so to allow the solution-

finding procedure to move out of local optima into unexplored search regions in the

attempt of finding a global optima.

2.6.1. Variable Neighbourhood Search

The variable neighbourhood search (VNS) was first proposed by Mladenović (1995)

and Mladenović and Hansen (Mladenović and Hansen, 1997) and has been quickly

adopted and widely implemented. There exist many papers that make use of the VNS or

its variations, mainly to enable it to find solutions for larger instances, and hence have

proven its recognition as a promising metaheuristics tool.

The VNS may be seen as an extension of the TS algorithm, where it systematically

changes between neighbourhoods to find global optima. The VNS searches for solutions

for each neighbourhood that has been pre-selected from one type of neighbourhood in

varying depth and three simple facts:

1. A local optimum with respect to one neighbourhood does not necessarily mean

locally optimal with respect to another neighbourhood structure;

2. A global optima is locally optimal with respect to all neighbourhood structures;

35

3. In many cases a local optima with respect to one or several neighbourhood

structures are relatively close to each other.

According to a survey done by Mladenović and Hansen (1997), the last observation

empirically implies that information for finding the global optimum can usually be

found within the local optima from the neighbourhood structures. Furthermore, these

three facts could be used in three different ways – deterministic, stochastic, or both –

which shall be briefly explained below respectively.

The variable neighbourhood descent (VND) is a deterministic VNS, where the change

of neighbourhoods within the pre-selected neighbourhood set is carried out in a

deterministic fashion. Many local search techniques also use a systematic search

through the solution space, though these methods only use one or two neighbourhoods

in their search. Having mentioned facts (1) and (2) from above, the VNS has an

advantage in performing local optimisations on all neighbourhood structures of varying

depth, which ultimately covers the whole solution space, while keeping the algorithm

simple, effective and flexible. The final solution would eventually be locally optimal

with respect to all its neighbourhoods and hence giving it a higher chance to be globally

optimal in comparison to just using one or two neighbourhoods within the search.

The reduced variable neighbourhood search (RVNS) is the stochastic model of the

VNS, where, instead of following a descent, it chooses its points randomly from the

neighbourhood set. This random generation of points from the neighbourhood of x is

also known as shaking. If the point generated through shaking is better than the current

point, it becomes the incumbent for the next iteration and the search continues from this

new point; otherwise the search continues from the current point. The most common

36

stopping criterion used is the maximum number of iterations needed between two

improvements. The RVNS is good for very large instances, where performing a

deterministic local search would be costly. It has also empirically been proven to be at

least as good as or better than other methods, showing its efficiency and effectiveness.

The basic variable neighbourhood search (i.e. VNS) uses a combination of

deterministic and stochastic features to find its final solution. The iterative procedure

used for the VNS first performs a shaking, afterwards a local search method is applied

and the comparison of the two solutions would give a so-obtained local optima. If this

local optimum is better than the incumbent, it becomes the incumbent and the search

continues by repeating the procedure; otherwise it continues its search from the

incumbent. The iterative procedure is repeated until no further improvement is found or

the stopping criterion is met. Stopping conditions may include the maximum number of

iterations used in between two improvements, or the maximum computational time is

reached, or the maximum number of iterations has been reached. The advantage of the

basic VNS is that it avoids cycling by using a shaking procedure, which enables the

algorithm to perform a search throughout the neighbourhood set.

Further reading on the survey of VNS variations and applications can be found in

Mladenović and Hansen (1997). The details of our implementation of VNS are provided

in Chapter 5.

2.6.2. Large Neighbourhood Search

The large neighbourhood search (LNS) was first proposed by Shaw (1997). It could be

seen as a special case or a variant of the VNS, as the only difference between the LNS

and the VNS is that the latter operates on only one type of neighbourhood structure with

37

varying depth as mentioned in the previous section, whereas the LNS operates on

structurally different neighbourhoods by destroying and repairing solutions; i.e., one can

imagine that VNS operates on a set of neighbourhoods, where all the neighbourhood

starts from the same point and expanding its capsule in all directions within the solution

space, hence one neighbourhood is nested within the next; on the other hand, each

neighbourhood of the VNS centers around different points of the solution space forming

a capsules of neighbourhood within different region of the solution space; hence one

neighbourhood and another may or may not overlap with each other, yet it is also

possible for one neighbourhood to be nested within another. Otherwise, the basic LNS

follows the same procedure as the basic VNS, where the iterative procedures would start

off with a shaking, then a search, followed by a comparison for “keep or discard” and

then repeating these procedures until the stopping criterion is met. For more on LNS see

a survey by Ahuja et al. (2002).

2.6.3. Other Metaheuristic Methods for VRPs

Several metaheuristic methods have been proposed and successfully used for the

solution of VRP and its various extensions in the literature.

Some metaheuristic methods falling under the category of local search methods are:

- Tabu Search (TS) first proposed by Glover (1986), for detailed information, see

Glover (1989, 1990), Hertz and de Werra (1990), Cvijovic and Klinowski

(1995), Glover and Laguna (1993, 1997), and Piniganti (2014).

- Simulated Annealing (SA) founded by Kirkpatrick et al. (1983) and Černý

(1985), for more details see Reeves (1993).

- Deterministic Annealing (DA), see Dueck and Scheuer (1990), Dueck (1993).

38

One of the metaheuristic methods that belong to the category of Population Search /

Solution Recombination Methods is the genetic algorithm (GA), first introduced by

Holland (1975). For more details on GA, the readers may find Reeves (1993) and

Rayward-Smith et al. (1996) useful as initial readings.

Some metaheuristic methods falling under the category of learning methods are:

- Ant Colony Optimisation (ACO), also known as the ant systems (AS),

introduced by Moyson and Manderick (1988), Colorni et al. (1991) and Dorigo

(1992), for more details, see Dorigo and Stützle (2004).

- Neural Networks (NN), first used in the TSP by Hopfield and Tank (1985), for

more information, see Durbin and Willshaw (1987), Kohonen (1988), Ghaziri,

(1991, 1996), Matsuyama (1991), Potvin (1993), and Schumann and Retzko

(1995).

2.7. Hybrid Methods

More recently there has been some good progress towards developing hybrid

algorithms. The hybridisation of algorithms signifies those designs of the algorithms

where either different meta-heuristics are used in conjunction or meta-heuristic features

are used in an interconnected manner with mathematical programming techniques or

vice versa to approach a problem (Caserta and Voß, 2010). The reasoning behind the

hybridisation of diverse algorithmic concepts is to build systems that combine strengths

of individual methods in order to approach the problems in a systematic and better way

(Raidl, 2006). Blum et al. (2011) explains that by combining right elementary

39

algorithmic concepts, one can achieve top performance in solving various optimisation

problems. However, developing such hybrid solution approaches is relatively hard and

demands expertise from various fields of optimisation. The hybridisation among the

metaheuristics, e.g., TS/SA, TS/SA/GA, Population-based iterated local search,

Multilevel techniques etc., has been investigated since 1990s. More recently this idea is

being investigated with combining heuristics and exact methods e.g., CP-based large

neighbourhood search, ant colony optimisation and constraint programming, dual ascent

heuristic and column-and-cut generation etc. The advances in technology and in exact

methods have encouraged researchers to design such algorithms where heuristics are

combined with mathematical programming models to tackle the problems. While for

more information on hybridisation of metaheuristics-to-metaheuristics we refer the

reader to the survey of Blum et al. (2011). For matheuristics, see Jourdan et al. (2009)

for taxonomy of hybridising exact and metaheuristic methods and a recent survey on

matheuristics by Ball (2011). Furthermore, we shall provide details and a review on

heuristic-exact hybrids in Chapter 6 where we have developed such a method for the

MT-VRPB.

2.8. Summary

This chapter consists of two parts. In the first part, the evolution of the vehicle routing

problem along with its complexity issues is reviewed. The literature around the VRPs

modelling appears to be concentrated on developing the variant models that are closer to

the reality. Although a lot of progress appears to be made on different types of models,

nonetheless, most of the proposed variants of the VRP merely address one or two

characteristics from the real life vehicle routing. A slow progress on the development of

more complex modelling is noticeable, meaning the modelling gaps needs to be

40

addressed in terms of bringing the VRP closer to the reality. One of the objectives the

this thesis is to add its share in bringing the problem even closer to the reality by

extending one the existing models which will be discussed in Chapter 3 onwards.

In the second part of the chapter, some of the well-known exact and heuristics

approaches developed for the VRPs are reviewed. We have also compared and

contrasted between exact, heuristic and metaheuristic solution methods. Given a

description of each of the mentioned solution methods in varying depth, depending on

the importance of the solution described that may or may not impact on how we

formulate our methodology proposal in solving our research problem. We note that

although all the solutions methodologies that have been introduced in this chapter are

the most “trendy” techniques, there are still many other less-used solution methods that

have been left out from being mentioned, which does not mean they will not be

considered for investigation in the future. Furthermore, there are a lot of experimental

researches by using hybrid techniques that have empirically proven to be promising.

Hence the solution methods described here in this chapter maybe seen as the most basic

forms of possible solution methods with a brief idea of how they operate.

41

Chapter 3

Literature Review of the VRPB and the

MT-VRP

The MT-VRPB being introduced in this thesis is a new addition to the version of the

VRP models, hence there is no directly related published study in the literature. Since

the MT-VRPB is modelled by blending two existing VRP models, i.e., the Vehicle

Routing Problem with Backhauls (VRPB) and the Multi-trip Vehicle Routing Problem

(MT-VRP), hence this chapter present a review of these problems which will help

better understand the newly introduced problem. The VRPB and the MT-VRP are

studied independently in the literature; therefore, we present their reviews separately.

3.1. An Overview of the VRPB

As described in Chapter 2, the Vehicle Routing Problem with Backhauls (VRPB) is an

extension of the VRP, often termed as the classical VRPB. It is one of the most studied

problems among the class of backhauling VRPs in the reverse logistics area. The

customers in this variant are divided into two groups known as the linehaul (delivery)

and the backhaul (pickup). Hence, in the VRPB the vehicles are also used for picking up

goods to bring back to the depot after all the deliveries are made. Figure 3.1 shows an

illustrative example of the VRPB.

42

 The objective of the VRPB is to minimise the total (cost) distance travelled while

satisfying demands of both types of customers. However, a VRPB solution must satisfy

the following main characteristics: (i) a vehicle must perform exactly one route; (ii)

each vehicle must make all the deliveries before making any pickups; (iii) the sum of

quantity of goods delivered or collected must not exceed separately the vehicle capacity

(same capacity vehicles are considered), (iv) no route is constructed with backhaul

customers only; though a route with delivery customers only is allowed; (v) all given

vehicles must be utilised; (vi) vehicles start and end their journey at the same single

depot.

The characteristic (ii) is encouraged by the fact that delivery of goods to the customers

is considered to be the most profitable activity in many practical situations, and the fact

that some vehicles are rear-loaded and it is difficult to rearrange the delivery load on

board in order to adjust the new pickup load. Various definitions and formulations of

the VRPB exist in the literature; for details we refer to Goetschalckx and Jacobs-Blecha

(1989), Toth and Vigo (1997) and Mingozzi et al. (1999).

Figure 3.1: An illustrative example of the VRPB

 Linehaul customers Backhaul customers

Depot

43

The VRPB arises in many real-life applications such as delivery and pickup of mail

to/from customers or post offices, delivery of drink bottles to shops and pickup of

empty bottles, delivery of new household appliances and removal of old ones. Another

application of the VRPB can be found in grocery distribution industry, where groceries

are distributed to stores (considered as linehaul customers) from the distribution centres;

whereas, pickups of groceries are carried from the production sites (considered as

backhaul customers) to the distribution centres (Ropke and Pisinger, 2006). Moreover,

the applications of the VRPB can be found in many other real-world scenarios where

return of commodities to the distribution centre is involved, i.e., reverse logistics

(Cuervo et al. 2014).

3.2. Solution Methods for the VRPB

The classical VRPB has been studied greatly in the literature; many exact and heuristic

methodologies have been developed to tackle the problem. We present a review of the

VRPB studies in the chronological order of their publication by separating the exact and

the heuristic methods.

3.2.1. Exact Methods

There are not many exact methods publications on the VRPB in the literature. We

provide a review of those in our knowledge as follows.

Yano et al. (1987) developed a set covering based branch and bound approach for a

real-life application of the VRP with backhauling. In this problem vehicles were

restricted to service a few customers (LH/BH); and found optimal solutions to problem

instances involving up to 40 delivery and backhaul customers.

44

Toth and Vigo (1997) developed a Lagrangean lower bound procedure and a branch and

bound (see Section 2.4) algorithm for the VRPB. They tested their methodologies on a

range of data instances generated by them and found optimal solutions for instances up

to 75 customers, which can be seen as a modest success. They also solved an

asymmetric VRPB data set generated from the real-world asymmetric VRP instances

described in Fischetti, Toth and Vigo (1994).

Mingozzi and Baldacci (1999) presented a mathematical formulation of the VRPB.

They developed two methodologies, called, ‘HDS’ based on a combination of different

heuristic methods to generate lower bounds, and ‘EHP’ algorithm to find optimal

solution for the VRPB. They used CPLEX solver in their HSD and EHP procedures.

The algorithms were tested on the instances of size up to 113 customers that were

generated in Goetschalckx and Jacobs-Blecha (1989) and in Toth and Vigo (1996). The

algorithm performed well in terms of solutions quality; however, it appears that the

algorithm could not solve instances in which the number of total customers is higher

than 113.

3.2.2. Heuristic Methods

The very first heuristic approach to solve the VRPB is called the DB of Deif and Bodin

(1984). The DB heuristic is an extension of the savings method of the Clarke and

Wright (1964) (described in Section 2.5.1.1) originally developed for the VRP. The

results acquired by the Clarke and Wright method can be greatly affected due to the

constraint for ‘visiting customers in sequential order’ since feasible merging can be

reduced due to this constraint. Hence, the DB heuristic modifies the concept of the

savings through penalizing the arcs that connect different types of nodes. The authors

45

experimentally proved that the best solutions for the VRPB can be achieved by delaying

the construction of mix routes (i.e., routes with both linehaul and backhaul customers).

However, the research published in Toth and Vigo (1999) (explained later in this

section) argue that the results found by both methods, i.e., DB of Deif and Bodin (1984)

and the Savings of the Clarke and Wright (1964) may remain infeasible in terms of the

number of routes used for the final solution. This happens as both algorithms lack

control over that aspect and in order to serve all customers in a given VRPB instance

may require more routes for the final solution than found by these algorithms, hence

resulting in an infeasible solution. Moreover, they argued that looking at DB algorithm

from a practical point of view reveals that both the obtained routing cost of the solution

and hence probability of solution being feasible are highly related to the number of

route merging performed. Therefore, these drawbacks reduce the effectiveness of DB

algorithm when it comes to finding the overall cost and obtaining feasible solutions for

the VRPB instances. For more details and extension of the Clarke and Wright

algorithm, see Golden et al. (1985), Casco et al. (1988) and Wassan (2007).

Goetschalckx and Jacobs-Blecha (1989) proposed a two-phase composite heuristic (see

Section 2.5.2.6.) methodology to solve the VRPB. In the first phase of their heuristic,

separate routes for linehaul and backhaul customers are generated based on the idea of

space-filling curves. In space-filling curves, linehaul and backhaul vertices are

separately transformed into points along a line from points in the plane. These routes are

then combined together using space-filling mapping to achieve a set of final LH/BH

routes. The initial solution is then further optimised by using the 2-Opt and 3-Opt

(described in Section 2.5.2.4.) local search refinement routines. The two-phase heuristic

produced some modest quality results.

46

Goetschalckx and Jacobs-Blecha (1993) developed a cluster-first-route-second (see

Section 2.5.1.4) algorithm for the VRPB which is based on the generalized assignment

methodology similar to the one developed in Fisher and Jaikumar (1981) for the VRP.

This approach proved better and produced good quality solutions as compared to their

approach in Goetschalckx and Jacobs-Blecha (1989).

Toth and Vigo (1996) developed a cluster-first-route-second heuristic algorithm (see

Section 2.5.1.4) and called it TV. The TV algorithm is based on the approach published

in Fisher (1994) for the VRPs where the initial solution is obtained by a relaxation

approach similar to their published work in Toth and Vigo (1997) described earlier in

this section. The TV algorithm used intra-route, i.e., 2-Opt and 3-Opt and inter-route,

i.e., insertion and swap procedures as post optimisation to improve the final solution.

(The intra-route, inter-route, insertion, swap procedures are already explained in Section

2.5.1.4). The TV algorithm was tested on two VRPB data sets, one consists of 62

instances from Goetschalckx and Jacobs-Blecha (1989) and the other one they

generated from 11 VRP data instances using the same backhauling percentage

conventions of data set one. This algorithm produced better results compared to the

published works at that time.

Toth and Vigo (1999) developed a cluster-first-route-second heuristic algorithm (see

Section 2.5.1.4.) by studying the VRPB with both symmetric and asymmetric travelling

distances. Their cluster-first-route-second algorithm used a new and general clustering

method to tackle both symmetric and asymmetric instances. This approach starts by

constructing a group of clusters which contain either linehaul or backhaul customers;

the clusters are then combined to achieve a (possibly infeasible) set of routes by solving

the Assignment Problem. Hence, clusters are combined in such manner that linehaul

47

clusters are connected with backhaul clusters in order to form mixed routes and any

linehaul clusters that are left are connected with the depot. The solution is further

improved by using intra-route and inter-route (see Section 2.5.2) neighbourhood moves

as refinement routines. This algorithm produced some good quality results compared to

the previously published works, and set new benchmark solutions for asymmetric

VRPB.

3.2.3. Metaheuristic Methods

Osman and Wassan (2002) studied the VRPB and developed a tabu search (see Section

2.6.1.1) algorithm. This was the first TS implementation to this problem. Their

algorithm used the most sophisticated version of TS called Reactive Tabu Search

(RTS). The RTS is believed to be the most efficient and effective among TS procedures

as its main objective is to establish a balance between two very important strategies

known as intensification and diversification in any TS approach. As oppose to TS, the

RTS uses two mechanisms: 1) it performs large number of random moves to get out of

local optima and 2) it dynamically increases or decreases tt value while evaluating the

search process. The RTS algorithm proposed in this study used two savings based

methods, the saving-insertion and the saving-assignment, to construct initial solutions

followed by the reactive TS methodology in which two neighbourhood schemes, i.e., 1-

interchange and 2-interchange (see Section 2.5.2.5) are used. The 2-interchange

neighbourhood scheme moves are conducted by considering consecutive nodes shifts

and swaps. In order to record the different values of neighbourhood moves, three data

management structures are used. The results obtained by the RTS algorithm were

superior quality as compared to the heuristics previously developed including Toth and

Vigo (1997, 1999). Moreover a large number of solutions produced by the RTS

48

algorithm matched the optimal solutions produced by the exact algorithms of Mingozzi

et al. (1996).

Brandao (2006) developed a tabu search (TS) algorithm for the VRPB. Two methods

called open initial solution and K-tree initial solution are used to generate initial

solution. The former involves two steps. In the first step, in order to solve the VRPB,

two separate open vehicle routing problems (OVRPs) are solved. This is done because

the OVRP is close in structure to the VRPB. Since in OVRP, the vehicles are not

required to return to depot at the end of route. The OVRP solution is based on two

phases, the initial phase and the improvement phase. In the initial phase, a nearest

neighbour (NN) heuristic is used to generate a set of open-ended (i.e., a set of routes

consisting of linehaul customers and a set of routes consisting of backhaul customers)

routes sequentially. The NN procedure continues until all the customers are routed.

Then in the improvement phase, tabu search is used. Here for the set of linehaul OVRP

routes, TS minimises the overall distance travelled by the vehicles. Whereas for the set

of backhaul OVRP routes, TS minimises the number of routes as well as distance

travelled. In the second step 2, two Hamiltonian solution paths of OVRP for each LH

and BH customers are linked together. Note that four different ways of connecting the

end points of linehaul and backhaul routes are evaluated and the link returns the least

cost is accepted to form a complete VRPB route. This process is repeated until either the

backhaul or the linehaul paths are empty. The K-tree initial solution method is based on

a lower bound. In this method, linehauls and backhauls are considered as customers

only, hence, assuming the VRPB as the VRP. Then the VRP is formulated as a

minimum cost K-tree as described in Fisher (1994a) with degree 2K on the depot.

Finally, 10 initial solutions are generated from each of 10 K-trees lower bounds. The

solution generated by either (i.e., open initial solution or K-tree initial solution)

49

methods is improved by their TS implementation. The best performance of the TS

algorithm is acquired with the K-tree initial solution method.

Ghaziri and Osman (2006) proposed a self-organizing feature maps (SOFM)

methodology for the VRP with backhauls which is based on the concept of the Neural

Networks. This algorithm is basically an extension of Ghaziri and Osman (2003)

algorithm proposed for the Travelling Salesman Problem with backhauls. This

algorithm begins by specifying the architecture of the network that comprises of one

ring on which artificial neurons are spread spatially. The ring is embedded in the

Euclidean space where each neuron is recognized by its position on the ring. Two post-

optimisation procedures based on the 2-Opt procedure are used to improve the solution

quality. The technique of type one is used at the end of the algorithm; whereas, the type

two is used periodically during the search process. Solutions found by their algorithm

are of inferior quality compared to the algorithms of Toth and Vigo (1996, 1999) and

Osman and Wassan (2002).

Røpke and Pisinger (2006) proposed a unified heuristic for a large class of vehicle

routing problems with Backhauls. The unified heuristic uses large neighbourhood

search (LNS) meta-heuristics originally developed in Shaw (1998). The LNS shares

similarities with the concept of Ruin and Recreate (R&R) which was used in a

framework proposed by Schrimpf et al. (2000). Various insertion and removal heuristics

are used in this framework, some of them as diversification and others for

intensification. Røpke and Pisinger embedded three different configurations and called

it a unified heuristic methodology. These configurations (strategies) are named as

Standard, 6R-no learning and 6R-normal learning. In the Standard configuration, three

removal heuristics are used with a learning mechanism; the 6R-normal learning uses 6

50

different types of removal heuristics without learning mechanism; and the 6R-normal

learning employs all 6 removal heuristics with learning mechanism (for full detail of the

removal heuristics we refer the reader to their paper). The unified heuristic is tested on

various data sets belonging to different backhauling variants including the classical

VRPB. The unified heuristic performed very well on all data sets in terms of the

solutions quality.

Wassan (2007) studied the VRPB and proposed a hybrid meta-heuristic algorithm that

combines the processes of the reactive tabu search and adaptive memory programming

(AMP). The RTS and AMP are considered as cutting-edge components of TS. The

AMP component is based on long term memory structures and it used a wider

framework in which strategies such as intensification and diversification are combined

together. Both RTS and AMP approaches are coupled and utilised together in this study

intelligently in order to obtain high quality solutions. The savings-insertion and the

savings-assignment construction methods developed in Osman and Wassan (2002) are

used to construct the initial solution. Solutions are reported for two benchmark VRPB

data sets available in the literature. The RTS-AMP algorithm produced better quality

solutions (45 new best/optimal) when compared with the best know solutions of two

well-known VRPB data sets.

Gajpal and Abad (2009) developed a multi-ant colony system (see Section 2.6.3.1)

algorithm called ‘MACS’ for the VRPB. In this study, the authors have used two types

of ants, vehicle-ants and route-ants. In order to construct the feasible solution; two types

of trail intensities called the vehicle trail intensity and the route trail intensity are used.

After the initial solution constructed by the ants three types of local search procedures

are used. These are 2-Opt, customer insertion/interchange multi-route scheme and sub-

51

path exchange multi-route scheme. In order to avoid being trapped in local minima

equal importance is given to the elite ants. The MACS algorithm produced competitive

results with five new best known solutions compared to the studies published by then.

Moreover it has been reported that the CPU time and solution quality of MACS

approach can be controlled by varying the number of ants.

Tutuncu, Carreto and Baker (2009) investigated the classical VRPB and two of its

extensions known as the mixed and the restricted VRP with backhauls. A decision

support system (DSS), which is based on the GRAMPS (Greedy Randomized Adaptive

Memory Programming Search, see Ahmadi and Osman (2005)) algorithm. This is

basically a visual approach that is based on the work of Fisher and Jaikumars (1981)

proposed for vehicle routing and was later extended by Baker in (1992). Their visual

approach which they named as CRUISE2 (Computerised Routing Using Interactive

Seeds Entry version 2) consists of three stages. The first stage has two phases called the

seed selection and proposition phases respectively. At the seed selection phase, using

visual representation of the seeds (customers) on the DSS, users can select customers

for each vehicle manually or automatically. Whereas at the proposition phase,

GRAMPS meta-heuristic construct routes and also performs a local search with learning

process at each iteration. Once the classical VRPB solution is obtained at the first stage,

the problem modification stage starts where users are optionally permitted to insert

backhaul customers before linehaul customers in order to convert the solution into

mixed VRPB or restricting backhaul customers’ positions in order to make it restricted

VRPB. Finally in the stage, the solver (GRAMPS) algorithm is called to obtain the final

solution for the mixed and restricted VRPB. The visual DSS framework did not find

better solutions when compared to the reactive tabu search algorithm of Osman and

52

Wassan (2002), however in terms of computational time and overall solution quality,

the proposed framework seems quite competitive.

Zachariadis and Kiranoudis (2012) developed a local search heuristic for the classical

VRPB that explores rich solution neighbourhoods (i.e., the neighbourhoods which are

composed of variable length customer sequences) and makes use of local search moves

stored in Fibonacci Heaps (Fibonacci Heaps are basically special types of priority queue

structures that allows a program with capabilities such as fast insertion, deletion and

retrieval). Moreover, they propose a parameter-free mechanism called “promises”

which is based on the aspiration criterion mechanism of tabu search to achieve

diversification and avoid cycling. The algorithm is tested on a VRPB data set proposed

by Goetschalckx and Jacobs-Blecha (1989). The algorithm outperformed other

algorithms in the literature in terms of solution quality.

Recently, Cuervo et al. (2013) developed an iterated local search algorithm for the

classical VRPB in which an oscillating local search heuristic is used. At each iteration, a

broader neighbourhood structure is explored and the information regarding

neighbouring solutions is stored in a data structure. At the second stage, a constant

transition between feasible and infeasible solution space is achieved by a heuristic while

adjusting the transitions by a penalty associated with infeasible solutions dynamically.

The iterated local search algorithm is tested on two VRPB benchmark data sets. The

algorithm produced high quality solutions when compared with other state of the art

algorithms in the literature.

53

3.2.4. Studies in VRPB-related areas

There are a lot of studies in the literature that are related to the VRPB, however we

preclude them since the results could not be compared directly because these studies are

the special cases of the VRPB and hence use different data sets. Nevertheless, we

provide some references here for the interested readers.

Notable ones are the vehicle routing problem with delivery and backhaul options by

Anily (1996); the vehicle routing problem with backhauls and inventory (VRPBI) by

Liu and Chung (2009); the mixed vehicle routing problem with backhauls (MVRPB) by

Wade and Salhi (2002), Lin and Tao (2011) and Wassan et al. (2013); the vehicle

routing problem with restricted mixing of deliveries and pickups by Nagy, Wassan and

Salhi (2013); the fleet size and mix vehicle routing problem with backhauls by Salhi,

Wassan and Hajarat (2013); the vehicle routing problem with divisible deliveries and

pickups by Nagy et al. (2015). More information on the modelling issues and meta-

heuristics solution approaches on the vehicle routing problems involving pickups and

deliveries; we refer the reader to Wassan and Nagy (2014).

3.3. An Overview of the MT-VRP

As briefly described in Section 2.1, the MT-VRP is a variant of the classical VRP. The

MT-VRP along with the characteristics of the VRP includes a schedule for a vehicle

that may serve a subset of routes within a given planning period. This means that an

optimised set of routes maybe assigned to a given fleet (Taillard et al., 1996). This

aspect of the MT-VRP makes it practically important in the context of the operational

level where managers have to make driving schedules with a given fixed fleet and with

54

shorter distance distribution networks on a daily basis. Figure 3.2 shows an illustrative

example of the MT-VRP.

A few formulations of the MT-VRP can be found in the literature. Olivera and Viera

(2007) were the first to formulate the MT-VRP. Another closely related formulation

was then introduced in Azi et al. (2010) who developed a branch-and-price model based

on a set-packing formulation for the MT-VRP with an additional aspect of the time

windows. More recently Mingozzi et al. (2013) developed two set-partitioning-like

formulations for the MT-VRP.

E.g; T (time) = 480 minutes planning period time for each vehicle
C = vehicle capacity
d(R) = total length of route R

 Vehicle 1
 C = 6000
 𝐝(𝑹𝟏) = 220 Vehicle 3
 C = 6000
 𝐝(𝑹𝟑) = 340

 Vehicle 1
 C = 6000
 𝐝(𝑹𝟐) = 212 Vehicle 2
 C = 6000
 𝐝(𝑹𝟒) = 360

 Delivery (Linehaul) Customers

Figure 3.2: An illustrative example of the MT-VRP

In many publications, the circumstances in which a multi-trip scenario may arise and its

importance is highlighted. We shall present a brief summary here. From the discussions

d(𝑹𝟏) + d(𝑹𝟐) <= T

220 + 212 = 432

432 <= T

Vehicle 1

+

55

so far it has become obvious that in many vehicle routing applications, a vehicle may

perform more than one trip in a single working day shift. Battara et al. (2009) argue that

for a vehicle to perform more than one route arises where the vehicle capacity is small

compared to the customer demands; hence fewer customers can be served in each trip.

Another possibility is when spread time constraints (the constraints that the hours of any

two visits to the same customer must differ by a given time constant) or strict time

windows are imposed in a routing application. The importance of MT-VRP arises in

many real-life situations where significant cost savings can be obtained by reducing the

number of vehicles purchased/hired and hence drivers by taking advantage of multiple

scheduling. Applications of the MT-VRP may arise in distribution of goods in urban

areas, where travel periods are likely to be small; hence, the vehicles are often reloaded

after performing short tours in order to be used again (Petch and Salhi, (2004), Olivera

and Viera, (2007), Ahlem et al. (2011)).

3.4. Solution methods for the MT-VRP

The MT-VRP has not been studied extensively in the literature as compared to the other

variants of the VRP. We present a review of the MT-VRP and its closely related studies

in the chronological order of their publication by separating the exact and the heuristic

methods as follows.

3.4.1. Exact Methods

There is only one optimal approach attempt in the literature due to Mingozzi, Roberti,

and Toth (2013) who developed an exact method based on two set-partitioning-like

formulations to tackle the MT-VRP. The first formulation demands a priori generation

of all feasible routes; hence for each route and each vehicle, it has a binary variable that

56

specifies whether a given route is assigned to the schedule of a given vehicle. The

second formulation is based on generating all feasible schedules for the vehicles; hence,

for each schedule it also has a binary variable that specifies whether a schedule is

performed or not. A subset of 52 instances, ranging in size from 50-120 customers,

based on the classical MT-VRP benchmark instances, is tested and 42 of them are

solved to optimality. For the rest, upper bounds are provided.

3.4.2. Heuristic Methods

The very first research that addresses the multiple trips aspect in the context of vehicle

fleet mix is due to Salhi (1987). The study is kept limited to double trips only and a

matching algorithm is used to assign routes to vehicles within a refinement process. The

next study in the time line appears to be of Fleischmann (1990) who addressed the MT-

VRP problem in his working paper. He proposed a modified savings algorithm and used

a bin packing heuristic to assign the routes to vehicles.

Petch and Salhi (2004) developed a multi-phase constructive heuristic for the MT-VRP.

The initial VRP solution is generated by using savings measure of Yellow (1970). The

savings calculations are parameterized in order to obtain the pool of VRP solutions

followed by the 2-Opt and the 3-Opt arc exchange heuristic procedures to improve the

initial VRP solution. In order to obtain the MT-VRP solution, a bin-packing problem

(BPP) approach is used to obtain the MT-VRP solution. In BPP, items of varying sizes

are supposed to be packed into a finite number of bins with known capacity such that all

items are packed into the minimum number of bins without violating the capacity of

each bin. In the multiple trip context, the routes are considered as the items with their

respective distances as their sizes and vehicles are represented as bins with associated

maximum driving time as their respective capacity. Moreover, several tour

57

improvement procedures and route reassignment to vehicles are used to improve the

MT-VRP solution. The bisection approach is used to prescribe the imposed bin sizes.

Hence, where solutions are not packed feasibly, overtime is allowed and the solutions

are reported with overtime cost. The proposed heuristic is tested on the MT-VRP data

set proposed by Taillard et al. (1996). When compared with solutions produced by

algorithm of Taillard et al. (1996) and algorithm of Brandao and Mercer (1997), this

approach performs better. In terms of average overtime, this heuristic approach

performed 29.59% lower than that of Taillard et al. (1996) algorithm and 25.27% higher

when compared with the algorithm of Brandao and Mercer (1997). In terms of solution

quality this approach performed better especially when compared with the algorithm of

Taillard et al. (1996).

Ahlem et al. (2011) studied and combined two variants of VRP: the profitable VRP and

multiple trips vehicle routing problem (MT-VRP). In terms of the profitable VRP, it has

been discussed that in many real-life situations it is not possible to satisfy the entire

customer’s request due to lack of means or of inadequate demand. Therefore it is

necessary to give priority to those customers who are more important potentially in the

long term or have effective impact on recorded sales turnover. Moreover, this problem

is very important practically in those situations where the companies have to face daily

distribution schedules with a short course transportation network and have limited

vehicle fleet. A mixed integer programming formulation is proposed to solve this

problem and the problem primary objective is to maximize the sum of collected profit

minus the transportation costs. Two greedy constructive heuristics are used which make

use of some local procedure in the algorithm to optimise the solution. This algorithm is

implemented in CPLEX and is tested on 20 new randomly generated instances by the

authors and on the benchmarks MT-VRP data set of Taillard et al. (1996). The

58

constructive heuristic found optimal solutions for the small size instances within the

given computational time limit. However it is reported that the optimal solution cannot

be determined where the number of customers is more than 16. Thus for large instances

upper and lower bound and their deviation is reported.

3.4.3. Metaheuristic Methods

Taillard et al. (1996) were the first researchers to study the MT-VRP. They developed a

three phase tabu search heuristic to solve the MT-VRP which is based on the tabu

search adaptive memory algorithm of Taillard (1993). In the first phase, a large set of

vehicle routes of the classical VRP is produced using the algorithm of Taillard (1993)

and routes forming the VRP solution are stored in the list (data structure). Secondly, an

enumerative algorithm is used to select a subset of routes generated in the first phase.

Finally, a Bin Packing Problem is solved for each VRP solution stored in the list and

then the best solution is selected from all the packed solutions. The tabu search

algorithm is tested on a number of MT-VRP instances which they generated from the

VRP data instances of Christofides et al. (1979) and Fisher (1994). Their tabu search

algorithm successfully found feasible solutions for most of the instances within

reasonable times. Moreover, given the way MT-VRP instances were generated, the

authors state that the results show that the feasible solutions (i.e., solutions found

without overtime) are on average within 5% to 10% of the best known VRP solutions.

Brandao and Mercer (1997) studied a practical MT-VRP for the British company

Burton’s Biscuits Ltd. and termed it as the multi-trip vehicle routing and scheduling

problem (MTVRSP). Many time related scheduling constraints close to practical world

constraints are taken into account in their study. Moreover, as this problem deals with

solving the real distribution problems with practical constraints and actual costs, real

59

distances are used. To solve the problem they developed a tabu search algorithm which

consists of three phases. In the first phase, the tabu algorithm generates the initial

solution by using nearest neighbour and insertion heuristics. At this initial stage the

routes are created in a sequential constructive manner and all the routes are feasible in

terms of routing constraints. There may be a possibility that the routes being constructed

are infeasible in terms of scheduling constraints but this constraint is not considered at

this stage. In the second phase, two objectives, to make the solution feasible (i.e.,

solution where no overtime is used) in terms of maximum driving time and time

windows while decreasing the cost of the solution as much as possible are taken into

account simultaneously. In the third phase, a set of swap and insert moves are

performed to reduce the solution cost while maintaining feasibility. It has been reported

that this algorithm improved over the manual solutions obtained by the company by

approximately 20% on average.

In (1998) Brandao and Mercer provided a simplification of the above tabu search

algorithm for the MT-VRP. This algorithm has no additional constraints as compared to

the above real-world application algorithm. This tabu search algorithm generates the

initial solution by using a nearest neighbour insertion heuristic and utilises insertion and

swap moves in its search process. Moreover this algorithm takes into account the

variable-size tabu list and aspiration criteria. Furthermore infeasible solutions (solutions

found with overtime) are also allowed with respect to the maximum overtime permitted.

The algorithm is tested on the data set proposed by Taillard et al. (1996). The solutions

obtained through the proposed tabu search algorithm are compared with the solutions

obtained by Taillard et al. (1996).

60

Salhi and Petch (2007) developed a genetic algorithm (GA) based heuristic to solve the

MT-VRP (see Section 2.6.2.1). They claim this is the first GA based approach proposed

for MT-VRP in the literature. The power of GA lies in that of new solutions can be

generated simultaneously. Moreover, classical GAs normally involves binary based

chromosome representation. But in practice it is difficult to convert a solution into

binary representation. So in this study, the authors have developed a flexible non-binary

chromosome structure that is established upon the circle partition concept of Thangiah

and Salhi (2001) to address the above hurdle. The initial population of chromosome is

obtained by the circle partition scheme that facilitates in providing a base for clustering

and finally route generation. In order to maintain the solution quality and population

diversity two mechanisms called Injection and Cloning are used. To generate new

chromosome or offspring, the “extraction” and “mutation” operators are used. A savings

heuristic is used to solve small VRP sub-problems whereas a bin packing heuristic is

used to obtain the final set of vehicle trips. In order to further optimise the trips some

post optimisation refinement modules proposed in Petch and Salhi (2004) are used. The

algorithm is tested on MT-VRP data set proposed by Taillard et al. (1996) in the

literature. According to the solutions quality, it appears that the proposed GA approach

does not produce better results when compared with other algorithms proposed in the

literature for the MT-VRP. However GA found solutions of reasonable quality in short

time when compared to the other algorithms.

Olivera and Viera (2007) developed an adaptive memory programming (AMP)

approach based on the AMP principle of Rochat and Taillard (1995) to solve the MT-

VRP. The authors have also presented the mathematical programming formulation of

the problem which is based on the set covering formulation of the VRPTW. The sweep

algorithm is used to generate the initial solution by selecting customers randomly each

61

time. Initial solutions are then improved by using tabu search (TS) algorithm before

storing in the memory M (data structure), hence storing the top quality solutions. In

addition, the data structure in which routes are stored is sorted is ascending order only.

This is performed according to the lexicographic criteria to ensure that good routes

reside in the first positions of the memory. After that, a new solution s is selected from

the memory M and a bin packing approach is utilised to pack the routes into vehicles

while using some local search refinements based on reducing the driver overtime. The

memory M is updated with new routes while poor solutions are discarded. The AMP

algorithm is tested on the 104 benchmark instances proposed by Taillard et al. (1996).

The AMP algorithm found 98 feasible solutions out of 104 when compared with the

algorithms of Taillard et al. (1996), Brandao and Mercer (1998) and Petch and Salhi

(2004).

Alonso et al. (2008) developed a tabu search algorithm for the periodic vehicle routing

problem with multiple vehicle trips and accessibility restrictions. The authors call this

problem the site-dependent multi-trip periodic vehicle routing problem (SDMTPVRP).

This problem combines some of the characteristics of the VRP, PVRP (for periodic

VRP, see Chao et al. (1995) and Cordeau et al. (1997), SDVRP (for site-dependant

VRP, see Nag et al. (1988), Chao et al. (1999) and Cordeau and Laporte (2001)) and

MT-VRP. The tabu search approach used to solve the SDMTPVRP and its particular

cases is a modification of the tabu search algorithm developed in Cordeau et al. (1997)

for the periodic VRP; hence the authors call this algorithm TS-ABB. However this

approach differs in many ways that is; the definition of solution attributes, the

construction of the neighbourhood, the evaluation of the objective function and finally

the construction of the initial solution. According to the authors, the SDMTPVRP is the

first problem of its kind so some new data instances are created to test the TS-ABB

62

algorithm. Moreover the PVRP and the SDVRP test problems are also solved through

this approach. The algorithm is tested on the MT-VRP problems proposed by Taillard et

al. (1996). The computational results obtained show that the TS-ABB algorithm found

feasible solutions for most of the MT-VRP problems when compared to those obtained

by Taillard et al. (1996) while taking approximately the same time.

Cattaruzza et al. (2014a) proposed a hybrid genetic algorithm for the MT-VRP that uses

some adaptations from the literature. A new local search operator called the combined

local search (CLS) is introduced that combines the standard VRP moves and performs

the reassignments of trips to vehicles by using a swapping procedure to obtain a better

solution. This algorithm produced good quality results. Cattaruzza et al. (2014b)

extended the model to include time windows aspect and developed an iterated local

search methodology to solve the problem.

3.4.4. Studies in MT-VRP related areas

There are a lot of studies in the literature that are related to the MT-VRP, we shall

provide some notable references for the interested readers. Battarra et al. (2009)

developed an adaptive guidance approach to heuristically solve the minimum multiple

trip vehicle routing problem (MMTVRP). Azi et al. (2010) proposed an exact algorithm

for a vehicle routing problem with time windows and multiple use of vehicles

(VRPTW). Derigs et al. (2011) solved a real-world vehicle routing problem with

multiple use of tractors and trailers and EU-regulations for drivers arising in air cargo

road feeder service (RFS) and is given a name VRPMTT-EU. Azi et al. (2014)

proposed an adaptive large neighbourhood search (ALNS) for the vehicle routing

problem with multiple trips and time windows (VRPMTW). For more details see Sen

and Bulbul (2008).

63

3.4.5. Studies in which VRPB and MT-VRP are addressed in a combined way

There is one study which addresses the VRPB and MT-VRP with time windows in a

combined way; hence it is briefly described as follows.

Ony and Suprayogi (2011) studied the vehicle routing problem with backhaul, multiple

trips and time windows (VRPBMTTW). The authors proposed an ant colony

optimisation (ACO) algorithm to tackle this problem. The proposed ACO is modified

by adding a decoding process which generates solutions based on the VRPBMTTW

constraints. However, the sequential insertion method is used as an initial solution

generation mechanism. The algorithm is tested on a randomly generated data set; hence

it is hard to confirm the quality of the solutions since no other study exists.

3.5. Summary

In this chapter we presented reviews of two important variants of the VRP called the

VRPB and the MT-VRP. In Chapter 4 these two variants are merged to create a new

VRP variant, also further studied separately in Chapter 7. Here we have presented

problem statements and reviews of the methodologies developed to solve them. The

methodologies for both the VRPB and the MT-VRP are presented in the chronological

order of their publication by separating exact and heuristic methods for ease. We have

also provided some important references for the studies of the related problems without

going into the details as those could not be compared directly to the problem versions

focussed in this thesis.

As for the VRPB, there have been some early attempts in late 90s to solve the problem

optimally with some modest success. However, as expected for this kind of hard

problems there is an ample material available on heuristics side. While the early studies

64

of traditional heuristic methods appear to be solving the bigger instances of the problem

and producing reasonably good solutions; the more recent metaheuristic based

algorithms preformed much better in terms of solution quality but at higher

computational costs.

As for the MT-VRP, since its formal inception by Taillard et al. (1996) there are some

good studies published in the literature. However, as compared to the VRPB it has not

drawn tremendous attention. There is one good attempt on the optimal approach side to

tackle the MT-VRP; however, several efficient heuristics/meta-heuristics methodologies

are reported to solve this problem. Since the MT-VRP is more closely related to the

classical VRP which has been studied extensively in the literature, hence we find more

relevant works rather than direct comparison studies of MT-VRP. We think this thesis

can be an attempt to fill some gap in the literature by studying this problem directly and

jointly with the VRPB in the following chapters.

65

Chapter 4

The Multiple Trip Vehicle Routing

Problem with Backhauls: Formulation

and Analysis

This chapter focuses on the introduction of a new variant of the VRP being studied in

this thesis i.e., the Multiple Trip Vehicle Routing Problem with Backhauls (MT-VRPB).

A new mathematical formulation is proposed to solve the problem. The details of the

MT-VRPB including the graph theoretical definition along with possible variations are

also presented. An illustrative example showing the validation of the formulation is

provided followed by the details of our CPLEX solution implementation. The chapter

also provides details of a newly created large set of MT-VRPB data instances along

with the results and analysis.

4.1. The Multiple Trip Vehicle Routing Problem with Backhauls

The MT-VRPB is created in this thesis by blending the characteristics of two well-

studied variants of the VRP, i.e., VRP with Multiple Trips (MT-VRP) and the VRP with

Backhauls (VRPB). In the MT-VRP a vehicle may perform several routes (trips) within

66

a given time period; and in the vehicle routing problem with backhauls (VRPB) a

vehicle may pick up goods to bring back to the depot after the deliveries are made.

Therefore in the MT-VRPB a vehicle may not only make more than one trip in a given

planning period but it can also collect goods in each trip, see Sections 3.1 and 3.3 for the

descriptions of the VRPB and the MT-VRP respectively. From the real life applications

point of view both the MT-VRP and the VRPB can be even more practical than the

classical VRP. In real-life routing applications, vehicles can be used more efficiently;

for instance in VRPB, combining delivery and pickup operations can result in saving

companies substantial routing costs. Golden et al. (1985) reported that grocery stores in

USA saved $165 million by taking advantage of backhauling in 1982. On the other

hand, maximising the usage of vehicles as it is done in the MT-VRP results in saving

the number of vehicle required and hence savings in total distribution costs. Therefore,

by combining the aspects from these two routing problems, a new version of the VRPs

that we believe will help bridge the gap between theoretical academic studies and the

reality is created. The statement of the MT-VRPB is as follows.

4.1.1. Description of the MT-VRPB

The MT-VRPB can be described as a VRP problem with the additional possibilities of

having vehicles involved in backhauling and multiple trips in a single planning period.

In the MT-VRPB the fleet considered is homogenous, a vehicle (note that a vehicle

corresponds to a bin and these two terms are used interchangeably in this study) may

perform more than one route (trip) in a single planning period and may serve backhaul

(pickup) customers after serving all linehaul (delivery) customers, the fleet is operated

from a single depot and the demands of all the customers must be fulfilled; the objective

is to minimise the overall cost by reducing the total distance travelled. There are

67

implicit cost savings attached with the number of vehicles used. The details of the MT-

VRPB are as follows.

Problem characteristics and conventions:

1. A given set of customers is divided into two subsets, i.e., delivery (linehaul) and

pickup (backhaul).

2. A homogenous fleet of vehicles is located at a single depot.

3. A vehicle may perform more than one trip in a single planning period.

4. All delivery customers are served before any pickup ones.

5. Vehicles routes containing only backhauls are not permitted; however linehaul

only routes are allowed.

6. Vehicle capacity constraints are enforced.

7. Note - The route length constraint is not imposed at this stage, however the

model is flexible to add this constraint if needed.

The MT-VRPB is to design a set of minimum cost schedules in which each customer

(LH/BH) is visited exactly once by the routes (originating and terminating at the same

depot) included in the schedules.

Figure 4.1 presents a graphical illustration of the MT-VRPB. Three homogenous

vehicles are shown serving a given set of customers with known demands. The distance

of d𝑅3 or d𝑅4 (where d represents the distance of a respective route) combined with the

distance of other three routes cannot be served by the same vehicle in a single planning

period T (for example, T could correspond to eight hour working day; i.e., T = 480

minutes for each vehicle); hence two separate vehicles (Vehicle 2 and Vehicle 3) are

used to serve these routes. In this study, the terms distance and planning period (travel

68

time) are used interchangeably. However, Vehicle 1 performs two trips in a single

planning period, since the total distance of d𝑅1 and d𝑅2 is less than a given planning

period time T.

Figure 4.1: An example of the MT-VRPB

4.1.2. Graph theoretical definition of the MT-VRPB

The MT-VRPB can be defined on a graph as follows. Let 𝐺 = (𝑁, 𝐴) be an undirected

network, where 𝑁 = {0} ∪ 𝐿 ∪ 𝐵 is a set of nodes, 𝐿 = {1,… , 𝑛𝑙} correspond to the

linehaul (delivery) customers and 𝐵 = {𝑛𝑙 + 1, 𝑛𝑙 + 2,…𝑛𝑙 + 𝑛𝑏} correspond to the

backhaul (pickup) customers. 𝐴 = {(𝑖, 𝑗); 𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 ∈ 𝑁} is the set of arcs and

associated with arc (𝑖, 𝑗), there is nonnegative given cost 𝑐𝑖𝑗 (distance between node i

and node j). Node ‘0’ represents the depot where a fleet 𝐾 = {1,… , 𝑘} of identical

vehicles is located while the other nodes correspond to L and B customer sets. A non-

 E.g; T (time) = 480 minutes (8 hours) Planning period time for each vehicle
Distance = Time

 Vehicle 1
 d𝑹𝟏 = 205
 Vehicle 2
 d𝑹𝟑 = 330

 Vehicle 1
 d𝑹𝟐 = 212
 Vehicle 3
 d𝑹𝟒 = 358

Delivery (Linehaul) Customers Pickup (Backhaul) Customers

Vehicle 1

d𝑹𝟏 + d𝑹𝟐 <= T

205 + 212 = 417

417 <= T

dR = total length/distance of route R

69

negative quantity 𝑞𝑖 is associated with each (L/B) node 𝑖. Each vehicle has capacity 𝐶

and maximum driving time 𝑇.

A travel cost 𝑐𝑖𝑗 and a travel time 𝒯𝑖𝑗 are associated with each arc {𝑖, 𝑗} ∈ 𝐴. Therefore, a

route of a vehicle is a least-cost elementary cycle in 𝐺 that passes through a subset of

customers starting and ending at the depot such that the customers visited and their total

demand does not exceed the vehicle capacity 𝐶. A route cost (duration) is equal to the

sum of the travel costs (travel times) of the nodes traversed. A vehicle schedule is a

subset of routes whose combined duration is equal to or less than the maximum driving

time 𝑇. Hence, the MT-VRPB call for the determination of constructing 𝑚 schedules of

least total cost in which each customers is visited exactly once by the routes of the

schedules.

In the following section we review briefly the exact methods options for the MT-VRPB.

4.2. Exact methods options for the MT-VRPB

Several exact methods that can be used to solve the VRP and its variants are developed

in the literature. These methods can be and have been extended by several researchers to

address the additional practical constraints in the VRPs. The exact method approaches

for the VRPs can be classified in to one of the following three categories.

Direct tree search methods: This kind of methods involves building VRP routes by

means of a branch and bound tree search methodology (Christofides and Eilon (1969),

Fisher (1994)).

Dynamic programming (DP): The Dynamic programming is a method that is used to

solve a complex problem by breaking it down into a number of sub problems, hence

70

solving each one of them and storing their solutions. Therefore, these approaches start at

an initial stage and go through a number of stages to reach an end stage. The methods

can be computationally expensive if care is not taken in terms of the number of

positions (Christofides, 1981b).

Integer linear programming (ILP): This approach is noted as being extensive and

attracted a lot of attention in the literature. Based on the formulation used it is further

divided into three categories (i-iii) (Laporte et al. (1987), Laporte (1992)).

(i) Vehicle flow formulations: are the most frequently used methods for the versions of

the VRP known as two/three-index formulation associated with the decision variables.

These methods use integer variables, which are connected with each arc or edge of the

graph and hence, resulting in counting the number of times a vehicle traverses the arc or

edge (Golden et al. (1977), Laporte et al. (1985), Toth and Vigo (2002)).

(ii) Commodity flow formulations: use additional variables 𝑣𝑖𝑗 that are connected with

the arcs or edges and are responsible for representing the flow of the commodities along

the routes journeyed by the vehicles (Gavish and Graves (1982), Toth and Vigo (2002)).

(iii) Set-partitioning formulations (also known as Set-partitioning problem (SPP)):

usually use an exponential number of binary variables and each one of them is

connected with a feasible circuit (Toth and Vigo, 2002).

Our formulation for the MT-VRPB is based on (ii) namely a three-index commodity

flow formulation. This is provided in the next section.

71

4.3. Mathematical Formulation of the MT-VRPB

4.3.1. Formulation of the basic case

The MT-VRPB is modelled as an integer linear program. The following formulation is

similar to the two-indexed commodity flow formulation of Nagy, Wassan and Salhi

(2013). However, the MT-VRPB formulation is a three-index commodity flow

formulation. In three-index formulations, variables 𝑥𝑖𝑗𝑘 specify whether arc (𝑖, 𝑗) is

traversed by a particular vehicle 𝑘 or not. On the other hand, in two-indexed

formulation, it is not possible to know by variables 𝑥𝑖𝑗 which vehicle is used on arc

(𝑖, 𝑗) (Laporte, 1992).

The following notations are used throughout:

Sets

{0} the depot (single depot)

L the set of linehaul customers

B the set of backhaul customers

𝐾 the set of vehicles (K: upper bound or the # of vehicles)

Input Variables

𝑑𝑖𝑗 the distance between customers 𝑖 and 𝑗 (𝑖 ∈ {0} ∪ 𝐿 ∪ 𝐵, 𝑗 ∈ {0} ∪ 𝐿 ∪ 𝐵)

𝑞𝑖 the demand of customer 𝑖 (such that 𝑖 ∈ 𝐿 for a delivery demand and 𝑖 ∈ 𝐵 for a

pickup demand)

Other Parameters

72

𝐶 vehicle capacity

𝑇 planning period (maximum driving time)

Decision Variables

𝑥𝑖𝑗𝑘 = {
 1, if vehicle 𝑘 travels from location 𝑖 directly to location 𝑗;
0, otherwise

𝑅𝑖𝑗 = is the amount of delivery or pickup on board on arc 𝑖𝑗

Minimise Z = ∑ ∑ ∑ 𝑑𝑘∈𝐾 𝑖𝑗
𝑥𝑖𝑗𝑘𝑗∈{0}∪𝐿∪𝐵𝑖∈{0}∪𝐿∪𝐵 (4.1)

Subject to ∑ ∑ 𝑥𝑗𝑖𝑘𝑘∈𝐾 = 1𝑗∈{0}∪𝐿∪𝐵 𝑖 ∈ 𝐿 ∪ 𝐵 (4.2)

 ∑ ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 = 1𝑗∈{0}∪𝐿∪𝐵 𝑖 ∈ 𝐿 ∪ 𝐵 (4.3)

 ∑ 𝑥𝑗𝑖𝑘𝑗∈{0}∪𝐿∪𝐵 = ∑ 𝑥𝑖𝑗𝑘𝑗∈{0}∪𝐿∪𝐵 𝑖 ∈ 𝐿 ∪ 𝐵, 𝑘 ∈ 𝐾 (4.4)

 ∑ 𝑅𝑖𝑗 − 𝑞𝑗𝑖∈{0}∪𝐿 = ∑ 𝑅𝑗𝑖𝑖∈{0}∪𝐿∪𝐵 𝑗 ∈ 𝐿 (4.5)

 ∑ 𝑅𝑖𝑗 + 𝑞𝑗𝑖∈𝐿∪𝐵 = ∑ 𝑅𝑗𝑖𝑖∈{0}∪𝐵 𝑗 ∈ 𝐵 (4.6)

 𝑅𝑖𝑗 ≤ 𝐶 ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 𝑖 ∈ 𝐿 ∪ 𝐵, 𝑗 ∈ 𝐿 ∪ 𝐵; (4.7)

 ∑ ∑ 𝑑𝑖𝑗𝑗∈{0}∪𝐿∪𝐵𝑖∈{0}∪𝐿∪𝐵 𝑥𝑖𝑗𝑘 ≤ 𝑇 𝑘 ∈ 𝐾 (4.8)

 𝑅𝑖𝑗 = 0 𝑖 ∈ 𝐿, 𝑗 ∈ 𝐵 ∪ {0} (4.9)

 𝑥𝑖𝑗𝑘 = 0 𝑖 ∈ 𝐵, 𝑗 ∈ 𝐿 , 𝑘 ∈ 𝐾 (4.10)

𝑥0𝑗𝑘 = 0 𝑗 ∈ 𝐵 , 𝑘 ∈ 𝐾 (4.11)

 𝑅𝑖𝑗 ≥ 0 𝑖 ∈ {0} ∪ 𝐿 ∪ 𝐵, 𝑗 ∈ 𝐿 ∪ 𝐵 (4.12)

73

 𝑥𝑖𝑗𝑘 = 0,1
 𝑖 ∈ {0} ∪ 𝐿 ∪ 𝐵, 𝑗 ∈ {0} ∪ 𝐿 ∪ 𝐵

𝑘 ∈ 𝐾
 (4.13)

Equation (4.1) illustrates the objective function representing the total distance travelled.

Constraints (4.2) and (4.3) ensure that every customer is served exactly once (every

customer has an incoming arc and every customer has an outgoing arc). Constraint (4.4)

states that the number of times vehicle 𝑘 enters into customer 𝑖 is the same as the

number of times it leaves customer 𝑖. The vehicle load variation on a route is ensured by

Constraints (4.5) and (4.6) for linehaul and backhaul customers respectively.

Inequalities (4.7) and (4.8) impose the maximum vehicle capacity constraint and the

maximum working day period constraints in which a vehicle is allowed to serve the

routes respectively. Constraints (4.19) restricts that a load cannot be carried from a

linehaul customer to a backhaul customer or to the depot. Constraints (4.10) and (4.11)

impose a restriction that a vehicle cannot travel from a backhaul to a linehaul customer

and neither can it travel directly from the depot to a backhaul customer. Inequality

(4.12) sets 𝑅𝑖𝑗 as a non-negative variable. Finally, in (4.13) the decision variable 𝑥𝑖𝑗𝑘 is

set as zero-one variable.

4.3.2. Model complexity

The mathematical model presented above (4.1)–(4.13) has |𝐿|(|𝐵| + 1) binary

variables, (|𝐿| + |𝐵| + 1)2|𝐾| continuous variables and 3(|𝐿| + |𝐵|) + (|𝐿| + |𝐵|)2 +

 (|𝐿| + |𝐵|)(|𝐾|) + |𝐾| + |𝐿|(|𝐵| + 1) + (|𝐵|)(|𝐿|)(|𝐾|) + (|𝐵|)(|𝐾|) constraints.

An illustrative example

In order to check the complexity of our MT-VRPB mathematical model, we selected an

instance of size small with 21 customers in total, where the number of linehaul (L)

74

customers is equal to 11 and the number of backhaul (B) is equal to 10 and the number

of vehicle (K) is equal to 2. Hence, by calculating this has 121 binary variables, 968

continuous variables and 909 constraints. As it can be observed that even with an

instance of smallest size (i.e., 21 customers in total), the complexity of the model is

quite high.

4.3.3. Model variants and restricted problems

The above MT-VRPB formulation may be modified to cater for the following four

variants.

a) The MT-VRP: this can be achieved by simply setting the number of backhaul

customers equal to zero using equation (4.14).

 B = Ø (setting the number of backhaul customers equal to zero) (4.14)

b) In the above formulation, K is implicitly used as an upper bound though it was

observed that in all cases all K vehicles are used. However, the formulation can be

extended to cater for the condition where the number of vehicles to be used is exactly

as given number K. This imposes that all drivers will be used and this can be

achieved by adding the following constraints in (4.15).

∑ 𝑥𝑖𝑗𝑘 = 𝐾𝑗∈𝐿∪𝐵 𝑖 ∈ {0}; 𝑖 ∈ 𝐿 ∪ 𝐵; 𝑘 ∈ 𝐾 (4.15)

c) The VRPB: this can be achieved by adding the following constraint (4.16) in the

model.

∑ 𝑥𝑖𝑗𝑘 ≤ 1𝑗∈𝐿∪𝐵 𝑖 ∈ {0}; 𝑘 ∈ 𝐾 (4.16)

75

Constraints (4.16) impose restrictions on every vehicle to be used at most once

(equal sign may be used if every vehicle must be utilised) and therefore block the use

of multiple-trips of vehicles.

d) Finally, the objective function in the above formulation can be changed from

reducing the total distance travelled to reducing the number of vehicles. This can be

achieved by setting the objective as shown in equation (4.17).

Minimise Z = ∑ ∑ 𝑥0𝑗𝑘𝑗∈𝐿∪𝐵𝑘∈𝐾 (4.17)

Or one could set the objective function shown in equation (4.17) as a primary

objective and reducing the total distance travelled as a secondary objective.

4.4. Significance of the MT-VRPB

In the literature both the VRPB and the MT-VRP are considered very important on the

operational level since backhauling and multiple scheduling are seen in many real-life

applications, where significant cost savings (e.g., operational, fixed costs) can be

achieved by reducing the number of vehicles and hence drivers (Wassan (2007), Salhi

and Petch (2007) and Ahlem et al. (2011)). We believe studying them in a combined

way would be even more pragmatic in many real life situations to enhance the overall

distribution logistics efficiency. The MT-VRPB appears in many real-world

applications such as distribution of groceries, couriers who offer the same day collection

and delivery services. Moreover the MT-VRPB especially arises in urban areas where

travel times (distances) are rather small and the light load vehicles are reloaded after

performing the short tours and used again. The growing examples of those cases arise in

online business such as retail markets; i.e., grocery stores, cafes, supermarkets,

76

restaurants etc. The model may cater largely for those small, medium or large logistics

companies that wish to use their limited/fixed fleet or strategically want to reduce the

vehicle fleet size. To our knowledge, this is the first time the MT-VRPB is being

defined, formulated and studied in such detail.

When it comes to solving this kind of hard complex but important problem efficiently,

as indicated in Chapter 2, exact methods have shown a limited success in tackling them.

Nevertheless we have used CPLEX for the purpose of formulation validation, optimal

solutions for smaller instances and upper/lower bounds for larger ones to check the

performance of the meta-heuristic algorithm that will be proposed in the next Chapter.

In the following sections we briefly look at the utility of CPLEX software, the details of

new data set generation and our CPLEX solution approach for the MT-VRPB.

4.5. Utility of IBM ILOG CPLEX optimisation studio

Technology plays a very fundamental role in almost every sector in this modern era.

Especially in the last couple of decades, rapid advancement in the computer and

software industry has dramatically changed the way work is carried out in most

organizations. Software development organizations such as IBM, Sun, Microsoft and

many others have advanced in many fronts and played a major role in developing

software packages and tools for countless public and private sectors. By learning and

utilizing those software tools and packages we can get our jobs or tasks done in matter

of seconds which probably could not be achieved before so easily. In this study we are

using a very powerful and efficient package called IBM ILOG CPLEX optimisation

studio developed by IBM Corporation to solve the various types of optimisation and

business related problems which is briefly described here.

77

The IBM ILOG CPLEX is an optimisation tool that is implanted with very powerful

and reliable solvers (algorithms) that are based on high-performance mathematical

programming. These solvers can efficiently handle and solve a variety of problems; i.e.,

mixed integer programming (MIP), quadratically constrained programming (QCP),

linear programming (LP) and quadratic programming (QP) problems. Moreover,

CPLEX offers a specific optimiser called CP optimiser particularly for scheduling and

combinatorial problems. This optimiser utilises complimentary optimisation technology

based on constraint programming. IBM has launched various versions of CPLEX so far

but in this study we are employing the CPLEX 12.5 version (User’s Manual for CPLEX

V12.5).

4.6. Validation of the MT-VRPB formulation

In order to check the validity of our proposed formulation we created a numerical test

instance containing 5 customers where nodes 1-3 represent the linehaul customers and

nodes 4 and 5 represent the backhaul customers. The maximum driving time T was set

to 25, the 𝐶 (vehicle capacity) is set to 8 units, and the number of bins Tnb (total

number of bins, i.e., vehicles) is set to 2. The data of the numerical test instance is

illustrated in Figure 4.2.

n = 5 [Total customers]

b = 2 [no. of backhauls]

T = 25 [maximum driving time]

C = 8 [vehicle capacity]

Tnb = 2 [no. of bins (vehicles)]

 Demands = [6, 5, 7, 7, 2]

Dist. matrix =

[

0 2 4
2 0 3
4 3 0

3 5 8
6 4 7
5 3 1

3 6 5 0 7 3
5 4 3 7 0 4
8 7 1 3 4 0

]

Figure 4.2: The numerical test instance data

78

This test instance was solved using CPLEX; the optimal solution is shown in Figure 4.3.

The optimal solution contains three routes with a total distance of 30 where routes 𝑅1

and 𝑅3 are served by vehicle 2 and route 𝑅2 is served by vehicle 1.

To ensure the CPLEX solution validates our mathematical formulation, we generated all

the possible 6 feasible solutions of the test instance enumerating by hand, and found the

same solution produced by CPLEX. Figure 4.4 shows all the possible feasible solutions

for the test instance.

 Nodes Cuts/

 Node Left Objective IInf Best Integer Best Bound ItCnt Gap

* 0+ 0 40.0000 22.0000 6 45.00%

 0 0 30.0000 4 40.0000 30.0000 6 25.00%

* 0+ 0 30.0000 30.0000 6 0.00%

 0 0 cutoff 30.0000 30.0000 6 0.00%

The optimal solution routes along with distances:

𝑹𝟏 = 𝟎 → 𝟐 → 𝟒 → 𝟎 𝒍𝒆𝒏𝒈𝒕𝒉 (𝑹𝟏) = 𝟏𝟐

𝑹𝟐 = 𝟎 → 𝟑 → 𝟓 → 𝟎 𝒍𝒆𝒏𝒈𝒕𝒉 (𝑹𝟐) = 𝟏𝟒

𝑹𝟑 = 𝟎 → 𝟏 → 𝟎 𝒍𝒆𝒏𝒈𝒕𝒉 (𝑹𝟑) = 𝟒

 { 𝒕𝒐𝒕𝒂𝒍 𝒅𝒊𝒔𝒕. 𝒕𝒓𝒂𝒗𝒆𝒍𝒍𝒆𝒅 = 𝟑𝟎}

Figure 4.3: The CPLEX solution for test instance

0 → 1 → 5 → 0 = 17
0 → 2 → 4 → 0 = 12
0 → 3 → 0 = 6

 { 𝑡𝑜𝑡. 𝑑𝑖𝑠𝑡 = 35}

0 → 1 → 4 → 0 = 12
0 → 2 → 5 → 0 = 13
0 → 3 → 0 = 6

 { 𝑡𝑜𝑡. 𝑑𝑖𝑠𝑡 = 31}

0 → 3 → 4 → 0 = 15
0 → 1 → 5 → 0 = 17
0 → 2 → 0 = 8

 { 𝑡𝑜𝑡. 𝑑𝑖𝑠𝑡 = 40}

0 → 3 → 5 → 0 = 14
0 → 1 → 4 → 0 = 11
0 → 2 → 0 = 8

 { 𝑡𝑜𝑡. 𝑑𝑖𝑠𝑡 = 33}

0 → 2 → 4 → 0 = 12
0 → 3 → 5 → 0 = 14
0 → 1 → 0 = 4

 { 𝑡𝑜𝑡. 𝑑𝑖𝑠𝑡 = 30}

0 → 2 → 5 → 0 = 13
0 → 3 → 4 → 0 = 15
0 → 1 → 0 = 4

 { 𝑡𝑜𝑡. 𝑑𝑖𝑠𝑡 = 32}

Best solution with minimum total distance:

0 → 2 → 4 → 0 = 12
0 → 3 → 5 → 0 = 14
0 → 1 → 0 = 4

 { 𝑡𝑜𝑡. 𝑑𝑖𝑠𝑡 = 30}

Figure 4.4: All feasible solutions for test instance

79

4.7. Generation of a new data set for the MT-VRPB

To test our model we have generated a set of new MT-VRPB instances, set-1, from a set

of 21 VRPB instances proposed in Toth and Vigo (1996, 1997). The data set-1 uses the

original VRPB and MT-VRP conventions established in Toth and Vigo (1996, 1997)

and in Taillard et al. (1996). The data set-1 contains 168 problem instances by using

different values of 𝑣 (where 𝑣 is the number of vehicles, (i.e., 1,…,4), starting with an

integer between one and the maximum number of vehicles) and 𝑇 (where 𝑇 is a

maximum driving time). Two values of 𝑇are used, 𝑇1 and 𝑇2 for each value of 𝑣, where

𝑇1 and 𝑇2 are calculated as follows:

𝑇1 = [1.05 𝑧∗/𝑣] 𝑇2 = [1.1 𝑧∗/𝑣]

The resulting values of both 𝑇1 and 𝑇2 are rounded up to the nearest integer (for

example, if the resulting value of T is 389.60, then it is rounded up to 390), where 𝑧∗

represents the VRPB solution obtained by our Two-Level VNS algorithm (details

provided in Chapter 5) using a free vehicle fleet.

Several MT-VRPB instances are generated from each VRPB problem using 𝑇1 and 𝑇2

with the linehaul percentage of 50, 66, and 80%, respectively. Further details of the data

set-1 are provided in Table 4.1 and Table 4.2. The data sets are made available for

researchers to be downloaded from the CLHO website (CLHO, 2015).

80

Table 4.1: The MT-VRPB data set-1 with original conventions and z* found with free fleet.

Problem

number

Problem

Name
n L B C

Orig.

fleet

v

(free-fleet)
z*

1 eil22_50 21 11 10 6000 3 1,…,3 371

2 eil22_66 21 14 7 6000 3 1,…,3 366

3 eil22_80 21 17 4 6000 3 1,…,3 375

4 eil23_50 22 11 11 4500 2 1,…,3 677

5 eil23_66 22 15 7 4500 2 1,…,3 640

6 eil23_80 22 18 4 4500 2 1,…,2 623

7 eil30_50 29 15 14 4500 2 1,…,2 501

8 eil30_66 29 20 9 4500 3 1,…,3 537

9 eil30_80 29 24 5 4500 3 1,…,3 514

10 eil33_50 32 16 16 8000 3 1,…,3 738

11 eil33_66 32 22 10 8000 3 1,…,3 750

12 eil33_80 32 26 6 8000 3 1,…,3 736

13 eil51_50 50 25 25 160 3 1,…,3 559

14 eil51_66 50 34 16 160 4 1,…,4 548

15 eil51_80 50 40 10 160 4 1,…,4 565

16 eilA76_50 75 37 38 140 6 1,…,6 738

17 eilA76_66 75 50 25 140 7 1,…,7 768

18 eilA76_80 75 60 15 140 8 1,…,8 781

19 eilA101_50 100 50 50 200 4 1,…,5 827

20 eilA101_66 100 67 33 200 6 1,…,6 846

21 eilA101_80 100 80 20 200 6 1,…,7 859

n: number of customers in an instance; L: number of linehauls; B: number of backhauls;

C: vehicle capacity; Orig. fleet: actual fixed fleet used in base problem; v (free fleet):

free fleet used by the Two-Level VNS; z*: free fleet VRPB solution.

Table 4.2: The details of the MT-VRPB data set-1

Name n L B C v z* Tnb 𝑻𝟏 𝑻𝟐

eil22_50 21 11 10 6000 1,…,3 371 1 390 408

2 195 204

3 130 137

eil22_66 21 14 7 6000 1,…,3 366 1 385 403

2 193 201

3 129 134

eil22_80 21 17 4 6000 1,…,3 375 1 394 413

2 197 206

3 132 138

eil23_50 22 11 11 4500 1,…,3 677 1 711 745

2 355 372

3 237 248

eil23_66 22 15 7 4500 1,…,3 640 1 672 704

2 336 352

3 224 235

eil23_80 22 18 4 4500 1,…,2 623 1 654 685

2 327 343

eil30_50 29 15 14 4500 1,…,2 501 1 526 551

2 264 276

eil30_66 29 20 9 4500 1,…,3 537 1 564 591

2 282 296

3 188 197

eil30_80 29 24 5 4500 1,…,3 514 1 540 565

2 270 283

81

Name n L B C v z* Tnb 𝑻𝟏 𝑻𝟐

3 180 188

eil33_50 32 16 16 8000 1,…,3 738 1 775 812

2 388 406

3 258 271

eil33_66 32 22 10 8000 1,…,3 750 1 788 825

2 394 413

3 263 275

eil33_80 32 26 6 8000 1,…,3 736 1 773 810

2 387 405

3 258 270

eil51_50 50 25 25 160 1,…,3 559 1 587 615

2 294 308

3 196 205

eil51_66 50 34 16 160 1,…,4 548 1 576 603

2 288 302

3 192 201

4 144 151

eil51_80 50 40 10 160 1,…,4 565 1 594 622

2 297 311

3 198 208

4 149 156

eilA76_50 75 37 38 140 1,…,6 738 1 775 812

2 388 406

3 259 271

4 194 203

5 155 163

6 130 136

eilA76_66 75 50 25 140 1,…,7 768 1 807 845

2 404 423

3 269 282

4 202 212

5 162 169

6 135 141

7 116 121

eilA76_80 75 60 15 140 1,…,8 781 1 821 860

2 411 430

3 274 287

4 206 215

5 165 172

6 137 144

7 118 123

8 103 108

eilA101_50 100 50 50 200 1,…,5 827 1 869 910

2 435 455

3 290 304

4 218 228

5 174 182

eilA101_66 100 67 33 200 1,…,6 846 1 889 931

2 445 466

3 297 311

4 223 233

5 178 187

6 149 156

eilA101_80 100 80 20 200 1,…,7 859 1 902 945

2 451 473

3 301 315

4 226 237

5 181 189

6 151 158

7 129 135

82

Name: instance identification name; v: number of vehicles - starting with an integer

between one and the maximum number of vehicles; Tnb: total number of vehicles in

each instance; 𝑻𝟏: maximum driving time of type one for each vehicle; 𝑻𝟐: maximum

driving time of type two for each vehicle.

4.8. CPLEX Results and Analysis

The MT-VRPB model is solved using IBM ILOG CPLEX 12.5 optimiser and it was run

on a PC with Intel(R) Core(TM) i7-2600 processor, CPU speed 3.40 GHz and installed

memory (RAM) 4.00 GB (2.94 GB usable).

The optimal solutions and upper/lower bounds for the MT-VRPB are reported in Table

4.3 and Table 4.4 for 𝑇1 and 𝑇2, respectively. For each instance the CPLEX time was

fixed to 2 hours. A reasonable number of optimal solutions are found for both 𝑇1and

𝑇2 groups of instances, ranging in size between 21 and 50 customers along with an

instance of size 100 of 𝑇2. Within the allocated time, CPLEX found 60 optimal

solutions (i.e., 𝑇1= 24, 𝑇2= 36) out of all the 168 instances. The instances for which

CPLEX could not find the solutions or reported as infeasible is due to either the

vehicle(s) given time restriction and/or the instances are too large in size. We report

upper bound and lower bound for those instances. CPLEX reported infeasibility in four

cases where the number of vehicles increases and hence the given driving time

decreases for each vehicle. This is due to the fact that the driving time is very small for

each vehicle in these instances. Therefore, not even a lower bound could be obtained;

hence, CPLEX reported infeasibility.

83

Table 4.3: CPLEX solutions for data set-1 with 𝑻𝟏 (2-hours running time)

Name 𝑻𝟏 Tnb Optimal

Sol.

No.

Routes

Actual

Time (s)

UB LB

eil22_50 390 1 371 3 1.04 371.0000 367.5294

195 2 378 3 1.17 378.0000 368.0119

130 3 x x x x x

eil22_66 385 1 366 3 1.01 366.0000 364.9640

193 2 382 4 3.02 382.0000 366.0000

129 3 x x x x x

eil22_80 394 1 375 3 1.94 375.0000 362.1650

197 2 378 4 2.39 378.0000 364.9665

132 3 381 3 27.13 381.0000 369.0667

eil23_50 711 1 677 3 0.33 677.0000 677.0000

355 2 698 3 2.36 698.0000 671.8600

237 3 x x x x x

eil23_66 672 1 640 3 1.22 640.0000 633.1636

336 2 640 3 1.4 640.0000 635.5000

224 3 x x x x x

eil23_80 654 1 623 2 1.44 623.0000 618.0870

327 2 634 2 1.59 634.0000 613.3380

Eil30_50 526 1 501 2 0.44 501.0000 500.3902

264 2 x x x x x

Eil30_66 564 1 537 3 2.68 537.0000 511.3725

282 2 552 3 6116 552.0000 537.0000

188 3 - - 7200 - 533.7612

Eil30_80 540 1 514 3 11.95 514.0000 474.9762

270 2 - - 7200 - 459.3289

180 3 - - 7200 - 460.3190

eil33_50 775 1 738 3 0.51 738.0000 738.0000

388 2 - - 7200 - 738.3900

258 3 - - 7200 - 740.7581

eil33_66 788 1 750 3 2.23 750.0000 732.7999

394 2 772 3 1219.03 772.0000 757.8079

263 3 - - 7200 - 746.4629

eil33_80 773 1 736 3 121.27 736.0000 733.8901

387 2 - - 7200 - 720.3275

258 3 - - 7200 - 690.0837

eil51_50 587 1 559 3 9.84 559.0000 552.1063

294 2 - - 7200 - 550.1111

196 3 - - 7200 - 553.0000

eil51_66 576 1 548 4 22.23 548.0000 537.7475

288 2 - - 7200 - 546.1393

192 3 - - 7200 - 542.1467

144 4 - - 7200 - 522.9460

eil51_80 594 1 565 4 4552.80 565.0000 553.1885

297 2 - - 7200 - 555.5726

198 3 - - 7200 - 556.1191

149 4 - - 7200 - 556.1018

eilA76_50 775 1 - - 7200 - 708.2119

388 2 - - 7200 - 721.9806

259 3 - - 7200 - 721.8691

194 4 - - 7202 - 711.64.91

155 5 - - 7200 - 705.6147

130 6 - - 7200 - 708.1701

eilA76_66 807 1 - - 7200 - 738.1007

84

Name 𝑻𝟏 Tnb Optimal

Sol.

No.

Routes

Actual

Time (s)

UB LB

404 2 - - 7200 - 737.9937

269 3 - - 7200 - 734.0403

202 4 - - 7200 - 739.9000

162 5 - - 7200 - 733.5028

135 6 - - 7200 - 739.4740

116 7 - - 7200 - 737.0274

eilA76_80 821 1 - - 7200 - 739.7246

411 2 - - 7200 - 726.3083

274 3 - - 7200 - 733.6667

206 4 - - 7200 - 733.5946

165 5 - - 7200 - 732.5992

137 6 - - 7200 - 724.3518

118 7 - - 7200 - 723.4398

103 8 - - 7200 - 718.6787

eilA101_50 869 1 - - 7200 - 799.5710

435 2 - - 7200 - 804.1183

290 3 - - 7200 - 802.2318

218 4 - - 7200 - 807.1541

174 5 - - 7200 - 767.5958

eilA101_66 889 1 - - 7200 - 829.5004

445 2 - - 7200 - 837.3865

297 3 - - 7200 - 826.1638

223 4 - - 7200 - 815.4809

178 5 - - 7200 - 832.78.09

149 6 - - 7200 - 816.1044

eilA101_80 902 1 - - 7200 - 827.3494

451 2 - - 7200 - 797.3486

301 3 - - 7200 - 790.1850

226 4 - - 7200 - 820.9844

181 5 - - 7200 - 821.9659

151 6 - - 7200 - 799.1573

129 7 - - 7200 - 825.4779

of optimal solutions found 24

Average solution/time 554.79 5165

Average CPU time(s) where

sol. is found

 417

𝑇1 = Total planning time for a vehicle

Tnb = total number of vehicles in each instance

Optimal Sol.= Optimal solution found by ILOG CPLEX 12.5

No. routes = Total number of routes

Actual time (s) = Actual time taken by ILOG CPLEX to find the optimal solution

UB = Upper bound

LB = Lower bound

x = Infeasible

85

Table 4.4: CPLEX solutions for data set-1 with 𝑻𝟐 (2-hours running time)

Name 𝑻𝟐 Tnb Optimal

Sol.

No.

Rout

es

Actual

Time (s)

UB LB

eil22_50 408 1 371 3 0.89 371.0000 370.6087

204 2 375 3 1.67 375.0000 374.0333

137 3 378 3 1.22 378.0000 364.4367

eil22_66 403 1 366 3 1.3 366.0000 364.7095

201 2 382 4 1.67 382.0000 366.0000

134 3 366 3 0.59 366.0000 366.0000

eil22_80 413 1 375 3 2.72 375.0000 358.9261

206 2 378 4 8.5 378.0000 362.2288

138 3 381 3 24.21 381.0000 364.9274

eil23_50 745 1 677 3 0.33 677.0000 677.0000

372 2 689 3 1.98 689.0000 680.0000

248 3 716 3 2.46 716.0000 682.1268

eil23_66 704 1 640 3 0.75 640.0000 640.0000

352 2 640 3 1.23 640.0000 631.5000

235 3 - - 7200 - 662.4548

eil23_80 685 1 623 2 0.91 623.0000 617.8667

343 2 631 2 1.4 631.0000 614.5388

Eil30_50 551 1 501 2 0.44 501.0000 500.3902

276 2 501 2 0.73 501.0000 501.0000

Eil30_66 591 1 537 3 3.09 537.0000 510.3183

296 2 552 3 3451.24 552.0000 538.0355

197 3 538 3 1.56 538.0000 534.6250

Eil30_80 565 1 514 3 10.58 514.0000 482.8207

283 2 535 3 5758 535.0000 525.2368

188 3 518 3 1426.17 518.0000 500.1891

eil33_50 812 1 738 3 0.44 738.0000 738.0000

406 2 741 3 2.26 741.0000 736.2820

271 3 - - 7200 803.0000 658.5384

eil33_66 825 1 750 3 11.7 750.0000 734.5884

413 2 767 3 109.26 767.0000 764.4997

275 3 - - 7200 - 746.9500

eil33_80 810 1 736 3 136.31 736.0000 716.7393

405 2 - - 7200 - 723.4224

270 3 - - 7200 - 696.3739

eil51_50 615 1 559 3 11.23 559.0000 553.6224

308 2 560 4 67.17 560.0000 550.4380

205 3 564 4 67.49 573.0000 559.6480

eil51_66 603 1 548 4 11.87 548.0000 541.1877

302 2 548 4 55.52 548.0000 546.9363

201 3 - - 7200 - 521.0965

151 4 - - 7200 - 539.9353

eil51_80 622 1 565 4 78.13 565.0000 562.5255

311 2 - - 7200 - 554.3046

208 3 - - 7200 - 553.8339

156 4 - - 7200 - 554.7640

eilA76_50 812 1 - - 7200 - 710.0593

406 2 - - 7200 - 722.0668

271 3 - - 7201 - 720.4398

203 4 - - 7202 - 705.7348

163 5 - - 7200 - 706.7157

136 6 - - 7200 - 719.6408

eilA76_66 845 1 - - 7200 - 734.9762

86

Name 𝑻𝟐 Tnb Optimal

Sol.

No.

Rout

es

Actual

Time (s)

UB LB

423 2 - - 7200 - 741.8414

282 3 - - 7200 - 734.1823

212 4 - - 7200 - 742.2662

169 5 - - 7200 - 738.0464

141 6 - - 7200 - 736.3244

121 7 - - 7200 - 733.6417

eilA76_80 860 1 - - 7200 - 741.6530

430 2 - - 7200 - 732.6903

287 3 - - 7200 - 733.3761

215 4 - - 7200 - 733.4002

172 5 - - 7200 - 730.9763

144 6 - - 7200 - 731.1909

123 7 - - 7200 - 722.2782

108 8 - - 7200 - 733.8520

eilA101_50 910 1 - - 7200 - 801.4182

455 2 - - 7200 - 813.7763

304 3 - - 7200 - 808.5073

228 4 - - 7200 - 803.0867

182 5 - - 7200 - 781.9759

eilA101_66 931 1 846 6 268.45 846.0000 840.8321

466 2 - - 7200 - 822.6394

311 3 - - 7200 - 831.4000

233 4 - - 7200 - 825.1924

187 5 - - 7200 - 814.6440

156 6 - - 7200 - 835.2673

eilA101_80 945 1 - - 7200 - 828.6658

473 2 - - 7200 - 808.3282

315 3 - - 7200 - 819.9952

237 4 - - 7200 - 803.4907

189 5 - - 7200 - 817.7601

158 6 - - 7200 - 812.1149

135 7 - - 7200 - 816.7851

of optimal solutions found 36

Average solution/time 558.50 4251

Average CPU time(s) where

sol. is found

 313

𝑇2 = Total planning time for a vehicle

Tnb = total number of vehicles in each instance

Optimal Sol.= Optimal solution found by ILOG CPLEX 12.5

No. routes = Total number of routes

Actual time (s) = Actual time taken by ILOG CPLEX to find the optimal solution

UB = Upper bound

LB = Lower bound

x = Infeasible

87

Moreover, Tables 4.5 and 4.6 present further analysis that is performed to show very

large vehicle cost savings due to the multiple use of a given fleet for 𝑇1 and 𝑇2,

respectively. Although the comparison analysis is only done for those instances where

CPLEX found optimal solution, nevertheless this gives an idea about the importance of

the investigation being conducted which is quite significant from both the tactical

medium terms and the operational short terms points of views.

Table 4.5: Vehicle utilisation cost comparison of the free fleet VRPB and the

MT-VRPB solutions for 𝑻𝟏

Name Free Fleet VRPB

Solution

MT-VRPB CPLEX Solution

of

Vehicles

used

Sol.

Cost

Tnb Optimal

Sol.

Extra

Cost

of

Vehicles

Saved

eil22_50 3 371 1 371 0 2

2 378 7 1

eil22_66 3 366 1 366 0 2

2 382 16 1

eil22_80 3 375 1 375 0 2

2 378 3 1

3 381 6 0

eil23_50 3 677 1 677 0 2

2 698 21 1

eil23_66 3 640 1 640 0 2

2 640 0 1

eil23_80 2 623 1 623 0 1

2 634 11 0

eil30_50 2 501 1 501 0 1

eil30_66 3 537 1 537 0 2

2 552 15 1

eil30_80 3 514 1 514 0 2

eil33_50 3 738 1 738 0 2

eil33_66 3 750 1 750 0 2

2 772 22 1

eil33_80 3 736 1 736 0 2

eil51_50 3 559 1 559 0 2

eil51_66 4 548 1 548 0 3

eil51_80 4 565 1 565 0 3

Free Fleet = Number of vehicles used in the VRPB free fleet solution

Tnb = Total number of given vehicles

88

Optimal Sol.= Optimal solution found by ILOG CPLEX 12.5

Extra Cost = Extra cost due to overtime/bin packing.

of Vehicles Saved = The number of vehicle(s) saved due to multiple use of a

vehicle.

Table 4.6: Vehicle utilisation cost comparison of the free fleet VRPB and

the MT-VRPB solutions for 𝑻𝟐

Name Free Fleet VRPB

Solution

MT-VRPB CPLEX Solution

of

Vehicles

used

Sol.

Cost

Tnb Optimal

Sol.

Extra

Cost

of

Vehicles

Saved

eil22_50 3 371 1 371 0 2

2 375 4 1

3 378 7 0

eil22_66 3 366 1 366 0 2

2 382 16 1

3 366 0 0

eil22_80 3 375 1 375 0 2

2 378 3 1

3 381 6 0

eil23_50 3 677 1 677 0 2

2 689 12 1

3 716 39 0

eil23_66 3 640 1 640 0 2

2 640 0 1

eil23_80 2 623 1 623 0 1

2 631 8 0

eil30_50 2 501 1 501 0 1

2 501 0 0

eil30_66 3 537 1 537 0 2

2 552 15 1

3 538 1 0

eil30_80 3 514 1 514 0 2

2 535 21 1

3 518 4 0

eil33_50 3 738 1 738 0 2

2 741 3 1

eil33_66 3 750 1 750 0 2

2 767 17 1

eil33_80 3 736 1 736 0 2

eil51_50 3 559 1 559 0 2

2 560 1 1

3 564 5 0

eil51_66 4 548 1 548 0 3

2 548 0 2

eil51_80 4 565 1 565 0 3

eilA101_66 6 846 1 846 0 5

Free Fleet = Number of vehicles used in the VRPB free fleet solution

Tnb = Total number of given vehicles

89

Optimal Sol. = Optimal solution found by ILOG CPLEX 12.5

Extra Cost = Extra cost due to overtime/bin packing.

of Vehicles Saved = The number of vehicle(s) saved due to multiple use of a

vehicle.

For further clarity a summary of the results for the two groups of the instances is

provided in Table 4.7. For 84 instances of the group 𝑇1, CPLEX found 24 optimal

solutions (28%), while 4 instances only were reported as infeasible due to the maximum

driving time limit for each vehicle in these instances being too small. For the rest of

instances of this group CPLEX found the lower bounds (LB) only.

Table 4.7: Summary CPLEX results and average time for 𝑻𝟏 and 𝑻𝟐

 𝑻𝟏 (84) 𝑻𝟐 (𝟖𝟒)

of solutions found (out of 84) 24 37

of optimal solutions found 24 36

of incumbent solutions found 0 1

of instances reported infeasible by CPLEX 4 0

Total average CPU time (s) 5165.91 4248.66

Average CPU time (s) where sol. is found 417 313

For 84 instances of the group 𝑇2, CPLEX found a total of 36 optimal solutions and one

incumbent (i.e., feasible solutions for which no overtime is used) solution, while none

reported infeasible; and for the rest of the instances in this group CPLEX found only the

lower bounds (LB) except one instance where both upper and lower bounds were found.

It was observed in situations where the number of vehicles increases, hence the given

time decreases for each vehicle, and CPLEX either could not find a solution or reported

infeasibility in few cases.

90

As for the problem classes, CPLEX performed better on T2 compared to T1 since the

prior class uses relatively a larger relaxed planning period time for each vehicle, hence

better chances of obtaining an optimal or an incumbent feasible solution.

Moreover, to justify and check as to why CPLEX could not find optimal solutions or

upper bounds for the majority of the instances in both types (i.e., 𝑇1 and 𝑇2) within 2

hours computational time limit, we ran CPLEX for a longer time (15 hours) on some of

those instances where it did not reach either optimal or upper bound levels within 2

hours computational time. For this reason, a small subset of instances containing sizes

of 75 and 100 nodes was chosen to run for 𝑇1 and 𝑇2 groups. The comparison of

CPLEX runs with different run times (i.e., 2hrs vs 15hrs) results for the two groups of

instances is shown separately in Tables 4.8 and 4.9. As it can be seen from the tables the

increase in time did not make any difference in terms of optimal solutions or upper

bound results for both groups. We believe, the reason behind CPLEX being unable to

find the solutions even with extended computational time is due to either the bin(s)

given time restriction and/or the instances are too large in size.

In terms of lower bound results, the increase in time made little difference. However,

for some instances in both groups, the lower bound is slightly better when CPLEX was

run for 15 hours. On the basis of this experiment we decided not to run CPLEX for

longer times.

Although CPLEX produced a good number of optimal solutions and upper/lower

bounds, it is still a modest success since exact approaches struggle when it comes to

larger instances of this kind of hard complex problems. This observation is in line with

the literature reviewed in the previous chapters. Nevertheless these results (optimal,

91

upper/lower bounds) would prove very useful for comparison purposes for our heuristic

algorithm approaches in Chapter 5.

Table 4.8: Comparison of CPLEX with 2 hours vs CPLEX with 15 hours for 𝑻𝟏

Name 𝑻𝟏 Tnb CPLEX Running for 15

hours

CPLEX Running for 2

hours

Sol. Upper

bound

Lower

bound

Sol. Upper

bound

Lower

bound

eil76_50 775 1 NF NF 708.2119 NF NF 707.1327

eil76_66 404 2 NF NF 737.9937 NF NF 737.9937

eil76_80 821 1 NF NF 739.7246 NF NF 739.7246

eilA101_50 290 3 NF NF 802.2318 NF NF 802.2318

eilA101_66 223 4 NF NF 815.4809 NF NF 815.4809

eilA101_80 902 1 NF NF 827.3494 NF NF 825.0081

Table: 4.9: Comparison of CPLEX with 2 hours vs CPLEX with 15 hours for 𝑻𝟐

Name 𝑻𝟐 Tnb CPLEX Running for 15

hours

CPLEX Running for 2

hours

Sol. Upper

bound

Lower

bound

Sol. Upper

bound

Lower

bound

eil76_50 812 1 NF NF 710.0593 NF NF 708.0581

eil76_66 423 2 NF NF 741.8414 NF NF 738.7458

eil76_80 860 1 NF NF 741.6503 NF NF 741.6503

eilA101_50 304 3 NF NF 808.5073 NF NF 808.5073

eilA101_66 233 4 NF NF 825.1924 NF NF 824.9404

eilA101_80 945 1 NF NF 828.6658 NF NF 828.6938

4.8.1. Relevance of the results

A further analysing of the results provided in Table 4.5 and Table 4.6 is given in Table

4.10 and Table 4.11 for T1 and T2 classes of the data instances, respectively. The

solutions for most instances (15) of T1 class appeared consuming no extra time/cost

92

when using one vehicle for a planning period as against using 2-4 vehicles in free fleet

scenarios. For using two vehicles in a planning period there are 8 CPLEX solutions

where a small extra cost (11.88 on average) incurs; and for three vehicles instances,

CPLEX produced one solution with an extra cost of 6 units only. For the T2 class,

similar results are obtained as shown in Table 4.11

The results provided in the tables show clear advantages for logistics companies and

their management decisions. The results demonstrate that a logistics company adopting

a multi-trip routing strategy can utilize fully all working hours in a planning period. The

results also show that the multi-trip provides clear advantage in reducing fixed costs by

reducing the number of vehicles used which can be very much relevant for those

companies who depend on hiring a fleet for the distribution and/or reverse logistics

reasons. Making deliveries in a given planning period is especially relevant for those

companies which are involved in supplying fresh/perishable goods, and in urban area

distribution logistics such as online deliveries.

93

Table 4.10: Comparison of the free fleet VRPB and the MT-VRPB solutions in terms of

vehicle savings (for small and medium instances 𝑻𝟏)

T1 with 1 vehicle used

Name

Free Fleet VRPB

Solution
MT-VRPB CPLEX Solution

of

Vehicles

used

Sol.

Cost
Tnb

Optimal

Sol.

Extra

Cost

No. of

Vehicles

Saved

eil22_50 3 371 1 371 0 2

eil22_66 3 366 1 366 0 2

eil22_80 3 375 1 375 0 2

eil23_50 3 677 1 677 0 2

eil23_66 3 640 1 640 0 2

eil23_80 2 623 1 623 0 1

eil30_50 2 501 1 501 0 1

eil30_66 3 537 1 537 0 2

eil30_80 3 514 1 514 0 2

eil33_50 3 738 1 738 0 2

eil33_66 3 750 1 750 0 2

eil33_80 3 736 1 736 0 2

eil51_50 3 559 1 559 0 2

eil51_66 4 548 1 548 0 3

eil51_80 4 565 1 565 0 3

Average extra/overtime cost 0

T1 with 2 vehicle used

eil22_50 3 371 2 378 7 1

eil22_66 3 366 2 382 16 1

eil22_80 3 375 2 378 3 1

eil23_50 3 677 2 698 21 1

eil23_66 3 640 2 640 0 1

eil23_80 2 623 2 634 11 0

eil30_66 3 537 2 552 15 1

eil33_66 3 750 2 772 22 1

Average extra/overtime cost 11.88

T1 with 3 vehicle used

eil22_80 3 375 3 381 6 0

Average extra/overtime cost 6

94

Table 4.11: Comparison of the free fleet VRPB and the MT-VRPB solutions in terms of

vehicle savings (for small and medium instances 𝑻𝟐)

T2 with 1 vehicle used

Name

Free Fleet VRPB

Solution
MT-VRPB CPLEX Solution

of

Vehicles

used

Sol.

Cost
Tnb

Optimal

Sol.

Extra

Cost

No. of

Vehicles

Saved

eil22_50 3 371 1 371 0 2

eil22_66 3 366 1 366 0 2

eil22_80 3 375 1 375 0 2

eil23_50 3 677 1 677 0 2

eil23_66 3 640 1 640 0 2

eil23_80 2 623 1 623 0 1

eil30_50 2 501 1 501 0 1

eil30_66 3 537 1 537 0 2

eil30_80 3 514 1 514 0 2

eil33_50 3 738 1 738 0 2

eil33_66 3 750 1 750 0 2

eil33_80 3 736 1 736 0 2

eil51_50 3 559 1 559 0 2

eil51_66 4 548 1 548 0 3

eil51_80 4 565 1 565 0 3

eilA101_66 6 846 1 846 0 5

Average extra/overtime cost 0

T2 with 2 vehicle used

eil22_50 3 371 2 375 4 1

eil22_66 3 366 2 382 16 1

eil22_80 3 375 2 378 3 1

eil23_50 3 677 2 689 12 1

eil23_66 3 640 2 640 0 1

eil23_80 2 623 2 631 8 0

eil30_50 2 501 2 501 0 0

eil30_66 3 537 2 552 15 1

eil30_80 3 514 2 535 21 1

eil33_50 3 738 2 741 3 1

eil33_66 3 750 2 767 17 1

eil51_50 3 559 2 560 1 1

eil51_66 4 548 2 548 0 2

Average extra/overtime cost 7.69

T2 with 3 vehicle used

eil22_50 3 371 3 378 7 0

eil22_66 3 366 3 366 0 0

eil22_80 3 375 3 381 6 0

eil23_50 3 677 3 716 39 0

eil30_66 3 537 3 538 1 0

eil30_80 3 514 3 518 4 0

eil51_50 3 559 3 564 5 0

Average extra/overtime cost 8.86

95

4.9. Summary

In this chapter a new variant of the VRP called the Multiple Trip Vehicle Routing

Problem with Backhauls (MT-VRPB) is introduced. This is the main focus problem that

is being studied in the thesis. The problem is thoroughly described including a graph

theoretical definition. A brief review of the exact methodology options for the VRPs is

provided followed by an ILP formulation of the MT-VRPB along with its possible

variations. An illustrative example showing the validation of the formulation is given

along with the details of our CPLEX solution implementation. The chapter also

provides details of a newly created large set of MT-VRPB data instances along with the

results and analysis. The results show that CPLEX is able to solve small and medium

size data instances of the MT-VRPB to optimality and generate upper/lower bounds.

Although a good number of optimal solutions and upper/lower bounds are found, the

success could not be highlighted more than just modest. However, these results are very

important for validation as well as assessing the performance of heuristics results

produced in Chapter 5.

The MT-VRPB results show that a large overall cost savings could be obtained by

deciding the right fleet size and better vehicle utilizations with multiple trips and

backhauling. This can be very vital from the managerial point of view when it comes to

making the tactical (acquisition) and fleet management (operational) decisions.

96

Chapter 5

A Two-Level Variable Neighbourhood

Search Algorithm for the Multiple-Trip

Vehicle Routing Problem with Backhauls

In this chapter we present a Two-Level VNS algorithm developed to solve the MT-

VRPB. An overview of the algorithm is first provided followed by the details of various

components including a multi-layer local search approach that is embedded with the two

level VNS methodology. Details of an adapted sweep-first-assignment-second approach

to produce an initial solution for the MT-VRPB are also provided. Finally detail of the

Bin Packing Problem that resolves the multiple aspect of the MT-VRPB is presented

followed by the results and analysis.

5.1. Two-Level VNS Algorithm: An Overview

The details of Variable Neighbourhood Search (VNS) approach including its variants

and applications are provided in Section 2.3.6.1. Here we present our designed Two-

Level VNS approach for the MT-VRPB which is motivated by the enhanced features

used in the recent paper on VNS by Mladenovic, Todosijevic and Urosevic (2014). In

our approach the basic VNS concept is enriched by embedding Sequential Variable

97

Neighbourhood Descent (SeqVND) along with two shaking steps and a set of

neighbourhood schemes to achieve a vigorous diversification during the search process.

Moreover, a series of local search routines at two levels of the skeleton of the VNS are

used to intensify the search. The merit of the two-level strategy is that it ensures a

speedy and continuous balanced intensification and diversification by employing two

shaking steps. The details of our VNS algorithm are given in the following sections.

5.1.1. An overview of the algorithm

The algorithm comprises two levels, i.e., outer and inner. We have employed several

neighbourhood structures along with associated local search procedures at both levels of

the algorithm. For the outer-level we define 𝑁𝑘
𝑂 (𝑘 = 1,… , 𝑘𝑚𝑎𝑥) as a subset of

neighbourhoods (shaking at outer-level) and 𝐿𝑆𝑘
𝑂 (𝑘 = 1,… , 𝑘𝑚𝑎𝑥) as a subset of local

search refinement routines; and at the inner-level 𝑁𝑙
𝐼 (𝑙 = 1,… , 𝑙𝑚𝑎𝑥) as a full set of

neighbourhoods (shaking at inner-level) and 𝐿𝑆𝑙
𝐼 (𝑙 = 1,… , 𝑙𝑚𝑎𝑥) as a full set of local

search refinement routines. Note that, “O” and “I” refer to the neighbourhoods and local

search refinement routines used at the outer and the inner levels, respectively.

Moreover, a 3-dimentional data structure 𝑆𝑝 (detailed description of this data structure

is given in Section 5.5) is used to store the initial solution 𝑥 as well as many other

improved solutions during the search process.

At each cycle of the search process, the outer-level of the algorithm generates randomly

a transitory solution 𝑥′ from 𝑁𝑘
𝑂(𝑥). A sub-set 𝐿𝑆𝑘

𝑂 of local search refinement routines

is then utilised to improve 𝑥′. Note that 𝑘 represents a subset of neighbourhoods and a

subset of local search refinement routines used at outer-level. The resulting best solution

𝑥′𝑏𝑒𝑠𝑡 is then recorded and transferred to the inner level of the algorithm where a

98

sequential variable neighbourhood descent (SeqVND) is used. At the inner level, both

sets of the neighbourhoods and local search refinement routines are utilised and

embedded systematically within a multi-layer local search optimiser framework.

Again a transitory solution 𝑥′′ is generated randomly from 𝑁𝑙
𝐼(𝑥) at the inner-level and

transferred to 𝐿𝑆𝑙
𝐼 (the multi-layer local search optimiser framework) for improvement.

Note that 𝑙 represents a full set of neighbourhoods and a full set of local search

refinement routines used at inner-level. If the solution obtained by the multi-layer local

search approach, 𝑥′′𝑏𝑒𝑠𝑡, is better than the incumbent best solution 𝑥′𝑏𝑒𝑠𝑡, then it is

updated as 𝑥′𝑏𝑒𝑠𝑡 = 𝑥′′𝑏𝑒𝑠𝑡 and the process cycles back to the same neighbourhood 𝑁𝑙
𝐼.

Moreover, if 𝑥′′𝑏𝑒𝑠𝑡 is found to be the same or worse compared to 𝑥′𝑏𝑒𝑠𝑡, then a new 𝑥′′

is generated using the next neighbourhood 𝑁𝑙+1
𝐼 (𝑥′𝑏𝑒𝑠𝑡) and the multi-layer local search

approach is then operated in the same manner. The process continues with the inner-

level till 𝑁𝑙𝑚𝑎𝑥

𝐼 is reached. At this stage the search process restarts from the outer-level

and if 𝑥′𝑏𝑒𝑠𝑡 is found to be better than the incumbent 𝑥 then it is updated as 𝑥 = 𝑥′𝑏𝑒𝑠𝑡

and the improved solution is stored 𝑆𝑝 = 𝑥; hence, the process of generating a

transitional solution restarts from the same neighbourhood 𝑁𝑘
𝑂. But if 𝑥′𝑏𝑒𝑠𝑡 is found to

be the same or worse than the incumbent 𝑥, a new transitory 𝑥′ is generated using the

next neighbourhood in 𝑁𝑘+1
𝑂 (𝑥). Hence, the outer-level is also iterated till 𝑁𝑘𝑚𝑎𝑥

𝐼 is

reached. The process terminates when the maximum number of iterations 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is

met.

The Bin Packing Problem (BPP) is then solved for a pool of solutions obtained by the

Two-Level VNS. The BPP starts by sorting the solutions in 𝑆𝑝 in the order of lowest to

highest cost and initializing a 3-dimentional data structure 𝑆𝑜𝑙𝑘 (special data structure

99

which stores the solutions according to what routes are served by which vehicles – a

detailed description of this data structure is provided in Section 5.5). CPLEX optimiser

is then called to solve the BPP for each VNS solution in the pool and the packed

solutions are stored in the 𝑆𝑜𝑙𝑘 data structure. Note that in the cases where a solution

could not be packed due to the tight bin capacity then we use the Bisection Method

(Petch and Salhi, 2004) to increase the bin capacity (i.e., allowing overtime) and the

packed solution is reported with overtime. The allocation of overtime is common

practice in multiple trip routing and allocation of overtime occurs in a situation where

the number of vehicles increases and hence driving time decreases for each vehicle.

Therefore, it becomes hard to pack a solution due to tight vehicle’s driving time and

hence allowing overtime becomes essential. The details of the Bisection Method are

provided at the end of subsection 5.1.5 in this Chapter. The algorithmic steps of the

Two-level VNS and BPP are shown in Figure 5.1 with their respective pseudo code

presented in Figure 5.2 and Figure 5.3, respectively. The explanation of the main steps

will be given next.

Phase I: Initial solution – sweep-first-assignment-second approach

 Generate LH and BH open-ended routes using sweep

 Create a distance matrix of end nodes from open-ended routes

 Solve the assignment problem by calling CPLEX to obtain an initial feasible

VRPB free fleet solution 𝑥

Phase II: Two-Level VNS Algorithm

Initialize the solution pool data structure 𝑆𝑝 and add the initial solution 𝑥 to 𝑆𝑝,

Set: 𝑖𝑡𝑒𝑟 = 1 and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 200

Repeat the process while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥

Start outer-level

100

Let: 𝐿𝑆𝑘
𝑂 =< 𝑅3, 𝑅4, 𝑅5 > subset of local search refinement routines for the

outer-level

Set: 𝑘 = 1

Repeat the process while 𝑘 ≤ 𝑁𝑘𝑚𝑎𝑥

𝑂

a.1: Generate a neighbouring solution 𝑥′ ∈ 𝑁𝑘
𝑂(𝑥) at random;

a.2: Apply 𝐿𝑆𝑘
𝑂 on neighbouring solution 𝑥′ to improve it

a.3: Assign the resulting solution 𝑥′ to 𝑥′𝑏𝑒𝑠𝑡 [𝑥′𝑏𝑒𝑠𝑡 = 𝑥′]

a.4: Start inner-level using 𝑥′𝑏𝑒𝑠𝑡

Let:𝐿𝑆𝑙
𝐼 =< {𝑅1& 𝑅6}, {𝑅2& 𝑅6}, {𝑅3& 𝑅6}, {𝑅4& 𝑅6}, {𝑅5& 𝑅6} >

Multi-Layer local search optimiser framework

Set: 𝑙 = 1

Repeat the process while 𝑙 ≤ 𝑁𝑙𝑚𝑎𝑥

𝐼

a.4(1): Generate a neighbouring solution 𝑥′′ ∈ 𝑁𝑙
𝐼(𝑥′𝑏𝑒𝑠𝑡) at random

a.4(2): Apply 𝐿𝑆𝑙
𝐼 on the neighbouring solution 𝑥′′

a.4(3): Assign the resulting solution 𝑥′′ to 𝑥′′𝑏𝑒𝑠𝑡 [𝑥′′𝑏𝑒𝑠𝑡 = 𝑥′′]

a.4(4): If 𝑥′′𝑏𝑒𝑠𝑡 < 𝑥′𝑏𝑒𝑠𝑡 then 𝑥′𝑏𝑒𝑠𝑡 = 𝑥′′𝑏𝑒𝑠𝑡; set 𝑙 = 1 and got to

a.4(1)

Else set 𝑙 = 𝑙 + 1 and got to a.4(1)

a.5: If 𝑥′𝑏𝑒𝑠𝑡 < 𝑥 then 𝑥 = 𝑥′𝑏𝑒𝑠𝑡; 𝑆𝑝 = 𝑥; set 𝑘 = 1 and go to a.1

Else set 𝑘 = 𝑘 + 1 and go to a.1

Phase III: Solving the Multiple Trips aspect using the BPP

Initialize special 3-dimentional data structure 𝑆𝑜𝑙𝑘 and let 𝑆𝑜𝑙𝑚𝑎𝑥 number of

solutions stored in 𝑆𝑝.

Let 𝑖𝑡𝑒𝑟𝐵𝑀𝑚𝑎𝑥 = 5.

Set: 𝑖𝑡𝑒𝑟𝑆𝑜𝑙 = 1

Repeat the process while 𝑖𝑡𝑒𝑟𝑆𝑜𝑙 ≤ 𝑆𝑜𝑙𝑚𝑎𝑥

Step1. Solve the BPP for solution p using CPLEX optimiser (𝑝 =

1, … , 𝑆𝑜𝑙𝑚𝑎𝑥)

Step2. If solution p is feasibly packed then go to Step4

Else, go to Step3

Step3. Apply the Bisection Method to optimise the bin capacity

101

 Set: 𝑖𝑡𝑒𝑟𝐵𝑀 = 1

 Repeat the process while 𝑖𝑡𝑒𝑟𝐵𝑀 ≤ 𝑖𝑡𝑒𝑟𝐵𝑀𝑚𝑎𝑥

 Step3.(1): Use the Bisection Method

 Step3.(2): Solve the BPP for solution p using CPLEX optimiser

Step4. Store the solution in the special data structure 𝑆𝑜𝑙𝑘 according to

what routes are served by which bins (vehicles)

Figure 5.1: Algorithmic steps of the Two-Level VNS for MT-VRPB

Function Two-Level VNS (𝑥, 𝑁𝑘𝑚𝑎𝑥

𝑂 , 𝑁𝑙𝑚𝑎𝑥

𝐼 , 𝑖𝑡𝑒𝑟𝑚𝑎𝑥)

 Let: 𝑆𝑝 = be a solution pool data structure

 𝑆𝑝 ← 𝑥

 𝑖𝑡𝑒𝑟 ← 1

 while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 do

 Let: 𝐿𝑆𝑘
𝑂 =< 𝑅3, 𝑅4, 𝑅5 >

 𝑘 ← 1

 while 𝑘 ≤ 𝑘𝑚𝑎𝑥 do

 Select 𝑥′ ∈ 𝑁𝑘
𝑂(𝑥) at random; [shake_outer]

 𝑥′𝑏𝑒𝑠𝑡 ← 𝐿𝑆𝑘
𝑂(𝑥′);

 Let: 𝐿𝑆𝑙
𝐼 =< {𝑅1& 𝑅6}, {𝑅2& 𝑅6}, {𝑅3& 𝑅6}, {𝑅4& 𝑅6}, {𝑅5& 𝑅6} >

 𝑙 ← 1

 while 𝑙 ≤ 𝑙𝑚𝑎𝑥 do

 Select 𝑥′′ ∈ 𝑁𝑙
𝐼(𝑥′𝑏𝑒𝑠𝑡) at random; [shake_inner]

 𝑥′′𝑏𝑒𝑠𝑡 ← 𝐿𝑆𝑙
𝐼 (𝑥′′); [Multi-Layer local search framework]

 If 𝑓(𝑥′′𝑏𝑒𝑠𝑡) < 𝑓(𝑥′𝑏𝑒𝑠𝑡) then

 𝑥′𝑏𝑒𝑠𝑡 ← 𝑥′′𝑏𝑒𝑠𝑡; 𝑙 ← 1;
 Else 𝑙 ← 𝑙 + 1;

 end while

 return 𝑥′𝑏𝑒𝑠𝑡;

 If 𝑓(𝑥′𝑏𝑒𝑠𝑡) < 𝑓(𝑥) then

 𝑥 ← 𝑥′𝑏𝑒𝑠𝑡; 𝑆𝑝 ← 𝑥; 𝑘 ← 1;

 Else 𝑘 ← 𝑘 + 1;

 end while

 return 𝑥;

 end while

Figure 5.2: Pseudo code for the Two-Level VNS

102

Function Bin-Packing (𝑆𝑝 , 𝑖𝑡𝑒𝑟𝑆𝑜𝑙 , 𝑆𝑜𝑙𝑚𝑎𝑥)

 Let: 𝑆𝑜𝑙𝑘 = be a 3-D data structure to store the packed solutions

 Set: 𝑆𝑝 = be a pool of all sorted solution in descending order of cost (𝑝 = 1,… , 𝑆𝑜𝑙𝑚𝑎𝑥)

 𝑖𝑡𝑒𝑟𝑆𝑜𝑙 ← 1

 while 𝑖𝑡𝑒𝑟𝑆𝑜𝑙 ≤ 𝑆𝑜𝑙𝑚𝑎𝑥 do

a. Select 𝑝 ∈ 𝑆𝑝 (where 𝑝 = 1,… , 𝑆𝑜𝑙𝑚𝑎𝑥)

b. 𝐶𝑃𝐿𝐸𝑋 (𝑝) If feasibly packed, go to d, Else go to c

c. 𝑖𝑡𝑒𝑟𝐵𝑀 ← 1

 while 𝑖𝑡𝑒𝑟𝐵𝑀 ≤ 𝑖𝑡𝑒𝑟𝐵𝑀𝑚𝑎𝑥 do

 c1. Use the Bisection Method (see Section 5.5)

 c2. 𝐶𝑃𝐿𝐸𝑋 (𝑝)

 end while

d. 𝑆𝑜𝑙𝑘 ← 𝐶𝑃𝐿𝐸𝑋 (𝑝)

 end while

Figure 5.3: Pseudo code for the BPP

5.2. Initial solution (Phase I)

The Sweep procedure of Gillett and Miller (1974) is considered to be a simple and an

efficient construction method for the VRPs. A sweep-first-assignment-second approach

is developed to generate the initial solution for the MT-VRPB. The way the sweep

method works is that it starts with clustering customers into feasible groups in such a

way that those customers who belong to the same group are close to each other

geographically and centred to the depot to be served by the same vehicle. We have used

the Sweep method in such a way that two sets of open-ended routes are constructed by

sweeping through linehaul (LH) and backhaul (BH) nodes separately. To the best of our

knowledge, no one has used sweep method in this format before this study for any

backhauling version of the VRP. Figure 5.4 shows an illustrative example of the way we

have used the Sweep procedure to generate open-ended LH and BH routes.

103

 Linehaul customers Backhaul customers

Figure 5.4: An illustrative example of sweep procedure for the MT-VRPB

In Figure 5.5 an illustrative example of the problem instance eil21_50 is shown,

demonstrating the visual features of the open-ended routes. In the cases where the

number of open-ended BH routes is less than the number of open-ended LH routes,

dummy BH open ended route(s) containing the depot only is created and added to the

matrix. This is done to obtain the same number of routes for the purpose of optimal

matching. Note that if the solution is not feasible in terms of the precedence

backhauling constraints (i.e., all delivery customers are served before any pickup

customers; vehicle routes containing only backhaul customers are not allowed) then it

can be amended by moving customers among routes before passing it on to the VNS

stage of the algorithm. However this situation did not arise in solving the data sets in

this thesis.

Depot

104

 LH open-ended routes BH open-ended routes

 7 10 11 9 19 18 21 20
 L1 B1

 8 5 4 3 1 17 12 16 14 15 13

 L2 B2

 2 6
 L3 dummy B3

 Depot Linehaul Customers Backhaul Customers

Figure 5.5: LH and BH open-ended routes (Problem instance eil22_50 of data set-2)

Once linehaul and backhaul open-ended routes are constructed, the assignment problem

is solved. But before we discuss how it has been solved, it would be useful to

understand how CPLEX optimiser can be embedded in different programming

languages on different platforms. Since, we have solved an assignment problem and Bin

Packing Problem (BPP) described in section 5.1.5 of this Chapter by calling the CPLEX

optimiser within C++ programming language in Microsoft Visual Studio environment, a

brief description of the procedure is presented in Appendix A.

5.2.1. Solving the Assignment Problem

The following assignment formulation is modelled and implemented in C++

programming language within Microsoft Visual Studio Environment. The designed

model calls CPLEX optimiser within Visual Studio Environment to find the optimal

matching of both types of routes in order to create a set of routes (i.e., routes with both

linehaul and backhaul customers).

105

In the following assignment formulation 𝑛𝑟 denotes the number of open LH and BH

routes. 𝑋𝑖𝑗 is a binary decision variable defining whether the 𝑖𝑡ℎ open linehaul route is

connected with the 𝑗𝑡ℎ open backhaul route.

Minimise Z ∑ ∑ 𝐷𝑖𝑗𝑗∈𝑛𝑟 𝑋𝑖𝑗𝑖∈𝑛𝑟 (5.1)

Subject to ∑ 𝑋𝑖𝑗
𝑛𝑟
𝑖=1 = 1 ∀ (𝑗 = 1,… , 𝑛𝑟) (5.2)

 ∑ 𝑋𝑖𝑗
𝑛𝑟
𝑗=1 = 1 ∀ (𝑖 = 1,… , 𝑛𝑟) (5.3)

 𝑋𝑖𝑗 ∈ {0,1} ∀ (𝑖, 𝑗 = 1,… , 𝑛𝑟) (5.4)

Where

 𝑋𝑖𝑗 = {
 1, if 𝑖𝑡ℎ open linehual route is connected to 𝑗𝑡ℎ open backhaul route;
 0, otherwise

A distance/cost matrix 𝐷𝑖𝑗 that consists of distances between the end points of 𝑖𝑡ℎ open

linehaul routes to the end point of the 𝑗𝑡ℎ open backhaul routes is then created in order

to solve the assignment problem. A dummy route containing the depot is added to the

matrix where a number of LH and BH routes are not equal.

An illustrative example:

A matrix containing the actual distances is shown in Figure 5.6.

Figure 5.6: Distance matrix of end nodes

 B1 B2 B3

 L1 17 69 22

 𝐷𝑖𝑗 = L2 72 9 49

 L3 70 30 42

106

To produce combined LH-BH routes, the optimal matching is then obtained by solving

an assignment problem using ILOG CPLEX 12.5 optimiser coded with C++ within

Microsoft Visual Studio Environment. The optimal assignment matching result for the

example problem is illustrated in Figures 5.7 and 5.8.

Optimal assignment with an objective value = 68

 B1 B2 B3

 L1 1 0 0

 𝑋𝑖𝑗 = L2 0 1 0

 L3 0 0 1

 Linehaul Route 1 : matches with backhaul route 1 (𝑋00 = 1)

 Linehaul Route 2 : matches with backhaul route 2 (𝑋11 = 1)

 Linehaul Route 3 : matches with backhaul route 3 (𝑋22 = 1)

Figure 5.7: Optimal matching obtained by CPLEX

 LH open-ended routes BH open-ended routes

 7 10 11 9 19 18 21 20
 L1 B1

 8 5 4 3 1 17 1 2 16 14 15 13

 L2 B2

 2 6
 L3 B3

 Depot Linehaul Customers Backhaul Customers

Figure 5.8: Combined LH+BH routes (problem instance no: eil22_50)

107

5.3. Neighbourhoods used in the Two-Level VNS Algorithm (Phase II)

The neighbourhood generation is a fundamental part in heuristic search design in

general and in the VRPs in particular. In this study six neighbourhoods are used. We

first briefly describe these neighbourhoods along with their illustrations provided in

corresponding figures, and then provide an explanation as to how we used them in our

algorithm.

1-insertion (intra-route): relocates the position of a customer at a non-adjacent arc

within the same route as shown in Figure 5.9. The upper part of the figure shows all the

positions for linehaul node 1 and backhaul node 4 can possibly be re-located within the

same route. The lower parts of the figure demonstrate a 1-insertion move where a

linehaul customer (node 2) is removed from its position in route r1 and inserted at a non-

adjacent position in the same route, resulting in a savings in travelling cost. Note that 1-

insertion routine moves both linehaul and backhaul customers and it has been

implemented in such a way that; if a linehaul customer is selected then it can only be

inserted in any non-adjacent linehaul arc and the same is the case with backhaul

customers. This is done due to the backhaul precedence constraints (see Subsection

4.1.1) that all delivery customers must be served before any pickups.

1-insertion (inter-route): relocates a customer from one route to another. As shown in

Figure 5.10, a linehaul node is removed from route r2 and inserted in route r1 to achieve

a travelling cost reduction.

1-1 swap: swaps two customers each taken from two separate routes. As shown in

Figure 5.11, two linehaul nodes are swapped between route r1 and r2 to obtain a savings

in travelling cost.

108

2-2 Swap: swaps two pairs of consecutive customers taken from two separate routes.

Figure 5.12 shows two pairs (consecutive) of linehaul/backhaul nodes are swapped

between routes r1 and r2 to obtain a savings in travelling cost.

2-0 shift: re-locates two consecutive customers from one route to another. Figure 5.13

shows a consecutive pair of backhaul nodes is shifted from route r1 to route r2 to gain a

reduction in travelling cost.

2-1 swap: swaps a consecutive pair from one route with a single customer from another

route. As shown in Figure 5.14, a pair (consecutive) of linehaul nodes from route r1 is

swapped with a linehaul node from route r2 to obtain a reduction in travelling cost

 Depot linehaul customer backhaul customer

𝑅1
 1 2 3 4 5 6

Initial route

 4 5

 3
 2
 6
 1 𝑟1 7

Route after 1-insertion

 4 5

 3
 2
 6
 1 𝑟1 7

Figure 5.9: An illustrative example of the 1-insertion (intra-route) refinement routine

.

Total cost: 98 Total cost: 73

109

 𝑟1 𝑟2

Initial routes

 𝑟1 𝑟2

Routes after 1-insertion

 depot Linehaul customer Backhaul customer

Figure 5.10: An illustrative example of the 1-insertion (inter-route) refinement routine

 𝑟1 𝑟2

Initial routes

 𝑟1 𝑟2

Routes after 1-1 swap

 Depot Linehaul customer Backhaul customer
Figure 5.11: An illustrative example of the 1-1 swap refinement routine

Customers to swap

Total cost: 135 Total cost: 115

Customer to shift

Total cost: 155 Total cost: 135

110

 𝑟1 𝑟2

Initial routes

 𝑟1 𝑟2

Routes after 2-2 swap

 Depot Linehaul customer Backhaul customer

Figure 5.12: An illustrative example of the 2-2 swap refinement routine

 𝑟1 𝑟2

Initial routes

 𝑟1 𝑟2

Routes after 2-0 shift

 Depot Linehaul customer Backhaul customer

Figure 5.13: An illustrative example of the 2-0 shift refinement routine

Customers to swap

Total cost: 116 Total cost: 98

Customers to shift

Total cost: 126 Total cost: 107

111

 𝑟1 𝑟2

Initial routes

 𝑟1 𝑟2

Routes after 2-1 swap

 Depot Linehaul customer Backhaul customer

Figure 5.14: An illustrative example of the 2-1 swap refinement routine

Use of neighbourhoods in the Two-Level VNS algorithm:

The moves in all the above neighbourhoods are conducted according to the backhauling

constraint conventions described in Section 3.1 of Chapter 3. These neighbourhood

schemes are used at the shaking and local search stages of the Two-Level VNS

algorithm.

Shaking Stage:

All six neighbourhoods are used in the shaking stage of the algorithm in the following

order that was found empirically. 1-insertion intra-route 𝑁1, inter-route 𝑁2, 1-1 swap 𝑁3,

2-2 swap 𝑁4, 2-0 shift 𝑁5, 2-1 swap 𝑁6. In the VNS literature, the neighbourhood

moves are used in various ways, i.e. systematically, partial systematic manner, complete

random manner, etc. In our case, all the neighbourhood moves, i.e., customers re-locate

positions and routes are selected randomly. Hence, only feasible moves (in terms of

Customers to swap

Total cost: 143 Total cost: 124

112

problem constraints, i.e., vehicle capacity, backhauling precedence conventions set

explained in Section 3.1) are accepted in the search process.

5.4. Multi-layer local search optimiser framework (local search stage)

The details of how this group of six neighbourhoods are used as local search refinement

routines in the Two-Level VNS algorithm are provided here.

Our multi-layer local search optimiser framework can be categorised as a composite

heuristic. The multi-layer local search framework uses all six neighbourhood schemes,

presented in Subsection 5.1.3, in the form of local search refinement routines. The

notion of manipulating the power of several neighbourhood structures as local searches

within a local search framework was originally developed by Salhi and Sari (1997)

known as multi-level composite heuristic and successfully implemented in Imran, Salhi

and Wassan (2009). We have adapted this idea into our Two-Level VNS algorithm. The

order in which these refinement routines (denoted with 𝑅𝑖, i=1,…,6) are executed is

important. The following order is chosen empirically: 1-insertion (inter-route) 𝑅1, 1-1

swap 𝑅2, 2-2 swap 𝑅3, 2-0 shift 𝑅4, 2-1 swap 𝑅5; and 1-insertion (intra-route) 𝑅6 . The

last routine R6 is used as a post-optimiser after each local search refinement routine is

executed in the framework.

The multi-layer framework search process starts with a transitory feasible solution 𝑥′as

explained in Subsection 5.1.1. Each local search routine is then executed in order till a

local optimum is reached followed by the post-optimiser routine R6, i.e., 1-insertion

(intra-route). Note that the post-optimiser is used only if the preceding routine in the list

improves the solution. The framework of our multi-layer local search optimiser is

provided in a flow chart shown in Figure 5.15. Note that this multi-layer local search

113

framework is similar to VND except here there are several local search refinement

routines used instead of 2 or 3 local searches.

Acceptance criteria:

In the literature, these refinement routines are implemented in two solution acceptance

criterion strategies, i.e., the first-improvement and the best-improvement. In the first-

improvement strategy, the change in the solution is accepted and updated any time

during the search process if it improves the current best incumbent solution. In the best-

improvement strategy, the best of all possible improvements is accepted at the end of the

search cycle. We conducted experiments with both strategies in our initial trials and

found the first-improvement producing better results for the MT-VRPB while being

relatively faster. Note that in the original implementation of the multi-level heuristic

(Salhi and Sari, 1997), the best-improvement strategy is used instead.

Figure 5.15: The multi-layer local search optimiser framework flow chart

1-0 insertion inter-route

1-0 insertion intra-route

2-1 swap

2-2 swap

1-0 insertion intra-route

1-1 swap

2-0 swap

1-0 insertion intra-route

Improvement

Improvement

Improvement

Improvement 1-0 insertion intra-route

Improvement 1-0 insertion intra-route

No

Yes

No

No

No

No

 ′′

 ′′

114

5.5. Solving the Bin Packing Problem (Phase III)

In the Bin Packing Problem (BPP) items of different sizes/volumes are to be packed into

a finite number of bins/containers with a known capacity c such that all items are

packed into the minimum number of bins without violating the capacity of each bin. For

early classical applications of the bin packing see study of Eilon and Christofides (1971)

for vehicle/container loading problem. For a review on a variety of knapsack problems

see Wilbaut, Hanafi and Salhi (2008). For recent studies we refer to the studies of

Lewis, Song, Dowsland and Thompson (2011) and Song, Lewis, Thompson and Wu

(2012). We have solved the following BPP model for the MT-VRPB.

Given 𝑘 bins (vehicles) (𝑣1, … , 𝑣𝑘) of the same size 𝑐 (time) and 𝑛 items (routes) with

varying weights (𝑤1, … , 𝑤𝑛).

Minimise ∑ 𝑦𝑖
𝑘
𝑖=1 (5.5)

Subject to ∑ 𝑤𝑗𝑥𝑖𝑗 ≤ 𝑐𝑦𝑖
𝑛
𝑗=1 𝑖 = 1,… , 𝑘 (5.6)

∑ 𝑥𝑖𝑗 = 1𝑘
𝑖=1 𝑗 = 1,… , 𝑛 (5.7)

𝑦𝑖 = 0 𝑜𝑟 1, 𝑖 = 1,… , 𝑘 (5.8)

𝑥𝑖𝑗 = 0 𝑜𝑟 1, 𝑖 = 1,… , 𝑘, 𝑗 = 1,… , 𝑛 (5.9)

Where

 𝑦𝑖 = {
 1, if bin 𝑖 is used;
 0, otherwise

 𝑥𝑖𝑗 = {
 1, if item 𝑗 is assigned to bin 𝑖;
 0, otherwise

115

Constraint 5.6 ensures the capacity c is not violated for each of the bins; whereas,

Constraint 5.7 guaranties that each item (route) is assigned to at most one bin.

To solve the above BPP, a pool is created containing different solutions produced by the

Two-Level VNS algorithm having completed its given number of iterations for each

instance. The solutions (candidate list of the new improved solutions appeared during

the search process at Phase II for an instance) in the pool are stored in a 3-dimensional

data structure 𝑆𝑝 before solving the BPP. An illustrative example of this data structure is

shown in Figure 5.16.

1

2

3

.

.

.

𝑆𝑜𝑙𝑚𝑎𝑥

1

2

3

0 3 5 2 12 0

Sol. Cost =

250 0 4 6 1 9 0

0 8 7 10 11 0

1

2

3

0 3 5 2 12 0

Sol. Cost =

258 0 7 6 9 10 0

0 4 8 1 11 0

1

2

3

4

0 3 5 2 0

Sol. Cost =

265

0 7 6 12 0

0 1 4 0

0 8 9 10 11 0

Figure 5.16: An illustrative example of data structure 𝑺𝒑

The BPP model is designed and coded in C++ programming language in Microsoft

Visual Studio Environment that calls for the CPLEX optimiser. The BPP model starts

with sorting the solutions stored in the 3D data structure 𝑆𝑝 in the order of lowest to

of routes in each solution 𝒑 # of customers in each route of solution 𝒑

Solutions in 𝑆𝑝, where

𝑝 = 1,… , 𝑆𝑜𝑙𝑚𝑎𝑥

𝑺𝒑

116

highest cost. The process of the packing starts by choosing the lowest cost solution from

the ordered solutions pool and solving the BPP by calling CPLEX optimiser. If the

chosen solution is feasibly packed (without allowing overtime to any of the bins) into a

given number of the bins then it is stored in a separate special 3-dimentional data

structure 𝑆𝑜𝑙𝑘 (note that data structure 𝑆𝑜𝑙𝑘 stores solution according to what routes are

packed in what bin/s) as one of the possible solution results for an instance. An

illustrative example of special 3-dimentional data structure 𝑆𝑜𝑙𝑘 is shown in Figure

5.17. The process is repeated for all the solutions in the pool. In the case where the

feasible packing could not be achieved for a solution, we use a repair mechanism known

as the Bisection Method (Petch and Salhi, 2004) which allows overtime progressively to

the given bin(s) of those instances to pack the routes. Figure 5.18 presents a flow chart

showing the BPP solution procedure.

1

2

3

.

.

.
𝑆𝑜𝑙𝑚𝑎𝑥

 1

2

0 3 5 2 12 0

Sol. Cost =

250 0 4 6 1 9 0

0 8 7 10 11 0

1

2

0 3 5 2 12 0

Sol. Cost =

258 0 7 6 9 10 0

0 4 8 1 11 0

1

2

0 3 5 2 0

Sol. Cost =

265

0 7 6 12 0

0 1 4 0

0 8 9 10 11 0

Figure 5.17: An illustrative example of special data structure 𝑺𝒐𝒍𝒌

of bins (vehicles) # of routes packed in each bin

Packed solutions in 𝑆𝑜𝑙𝑘,

where 𝑘 = 1,… , 𝑆𝑜𝑙𝑚𝑎𝑥

𝑆𝑜𝑙𝒌

117

Figure 5.18: BPP flow chart

Bisection Method (Repair Mechanism): the Bisection method works in such a way that

it starts increasing the bin(s) capacity by a certain percentage iteratively until routes are

packed into bin(s). For instance, as it is shown in Figure 5.19, the bin(s) capacity is

increased by 5% at every iteration; and suppose the required capacity of bins is achieved

at 25% level increase; it then tries to optimise the bin capacity by using a

decreasing/increasing percentage mechanism, say starting from a decreasing percentage

of -2.5% which is then decreased/increased by half iteratively (i.e., 1.25, 0.625,…, and

so on) till the bin(s) overtime is optimised. In our case the bin capacity increasing

percentage is fixed at 5% and the decreasing percentage starts from 2.5%. This is done

Sort the solution pool Sp in the

order of lowest cost

 Pool of elite solutions obtained

by Two-Level VNS

If Feasible

Stop

Use Bisection

Method

Start

 Any sol.

Left ?

No

Yes

Yes

No

Store Solution in p = p + 1

Choose Solution Sp from ordered

list

Solve BPP using CPLEX optimizer

118

because the optimal packing achieved by the BPP say with +25% bin overtime increase

might be a bit higher than required. Note that in this study, the Bisection Method is used

with a fixed number of iterations, 𝑖𝑡𝑒𝑟𝐵𝑀𝑚𝑎𝑥 = 5 which was found appropriate for all the

instances. Figure 5.19 presents an illustrative example of the Bisection Method.

 - 2.5%
 22.5%

Figure 5.19: An illustrative example of the Bisection Method

5.6. Computational Experience

5.6.1. Introduction and Computer Details

The Two-Level VNS algorithm including the initial solution design and the BPP model

is implemented in C++ programming within the Microsoft Visual Studio Environment.

The experiments were executed on a PC with Intel(R) Core(TM) i7-2600 processor,

CPU speed 3.40 GHz. The IBM ILOG CPLEX 12.5 optimisers are used to solve the

Assignment and BPP problems for the MT-VRPB.

+5% Infeasible

+10%

+15%

+20% Infeasible

Infeasible

Infeasible

+25% Feasible

119

Initial Solution: The sweep-first-assignment-second approach is implemented by calling

CPLEX optimiser within the Visual Studio Environment to find the optimal matching of

LH-BH routes.

Packing route into Bins: The Bin Packing Problem approach is also implemented that

calls the CPLEX optimiser within the Visual Studio Environment in order to obtain the

optimal packing of routes within Bin(s).

Glossary for tables:

𝑇1 = Total driving time (type one) for a bin/ vehicle.

𝑇2 = Total driving time (type two) for a bin/ vehicle.

Tnb = Total number of vehicles (bins) in each instance.

No.R = Number of total routes in solution.

No. of Routes in each Bin = Number of routes served by each bin/vehicle.

X = Infeasible.

- = Not found.

^ = Incumbent solution.

Opt. Sol. = optimal solution found by CPLEX.

Overtime = Overtime (equivalent to per unit distance travelled by a vehicle) allocated to

bin(s) where needed to feasibly pack routes within bin(s).

Cost with overtime = Total solution cost including Overtime units.

120

Time(s) = CPU time in seconds taken to solve each instance.

n = Total number of customers.

RPD = Relative Percentage Deviation = [(VNS Sol. - best known)/ best known * 100].

5.6.2. Results and analysis

Our sweep-first-assignment-second approach is very fast in producing initial feasible

VRPB solutions, spending less than a second on average.

It is to be noted that the MT-VRPB is being introduced in this thesis hence there are no

previously developed benchmarks instances results to compare with. Therefore the

performance of the algorithm is compared against the optimal solutions and lower/upper

bounds produced by CPLEX. Table 5.1 provides a summary of the Two-Level VNS as

compared to CPLEX results found in Chapter 4.

The Two-Level VNS solved all 168 instances of T1 and T2 groups as compared to 61 of

CPLEX. It also matched 51 optimal/incumbent solutions out of 61 of CPLEX. The Two-

Level VNS also proved very efficient in using bin overtime of only 5 to 10 units on

average. In terms of speed it used less than 20 seconds on average per instance.

The Two-Level VNS found 46 feasible (without overtime) solutions and 38 infeasible

(with overtime) for the instances in 𝑇1. The algorithm performed better for 𝑇2 type

instances, where 59 feasible solutions are found leaving 25 infeasible solutions in this

group.

Table 5.2 and Table 5.3 report the detailed solutions of the Two-Level VNS algorithm

along with the CPLEX results for the data set-1 (𝑇1and 𝑇2). The algorithm is run for 200

iterations and, due to the random element, best solution is reported out of 5 runs. For

121

𝑇1 the algorithm found a number of good quality (no overtime used) solutions (46 out of

84) and for the remaining 38 it took less than 30 units of overtime in most cases. For 𝑇2,

59 solutions are found without overtime and the rest (apart from a few) the algorithm

did not exceed 30 units of overtime.

It can be observed (see Table 5.2 and Table 5.3) that good quality solutions are found

when the bin capacity is relatively large and the number of bins is smaller. It can also be

seen that the increase in the number of bins increases the likelihood of overtime being

used. In summary, the algorithm is able to solve all the instances including 51 optimal

solutions at a very low computational cost requiring on average 18 seconds per instance.

Table 5.1: The comparison of the Two-Level VNS with CPLEX (data set-1: 𝑻𝟏 & 𝑻𝟐)

 𝑻𝟏 𝑻𝟐

CPLEX

Two-Level

VNS CPLEX

Two-Level

VNS

of solutions found (out of 84) 24 84 37 84

of feasible solutions found (out of 84) 24 46 37 59

of optimal solutions found 24 21 36 30

Max overtime (units) - 58 - 52

Min overtime (units) - 2 - 1

Average overtime (units) - 10.24 - 5.33

Average CPU time (s) 5165 18 4248 17

122

Table 5.2: Detailed comparison of the Two-Level VNS with CPLEX for the data set-1 (𝑻𝟏)

Name

𝑻𝟏

Tnb

CPLEX Two-Level VNS

Opt.

Sol.

No.

R.

Time

(s)

Actual

Cost

Over

Time

Cost

with

overtime

No.

R.

Time

(s)

eil22_50 390 1 371 3 1 371 0 371 3 2

195 2 378 3 1 378 0 378 3 3

130 3 x x x 380 10 390 4 3

eil22_66 385 1 366 3 1 366 0 366 3 5

193 2 382 4 3 386 10 396 4 4

129 3 x x x 366 4 370 3 3

eil22_80 394 1 375 3 2 375 0 375 3 4

197 2 378 4 2 378 0 378 4 5

132 3 381 3 27 381 0 381 3 3

eil23_50 711 1 677 3 1 677 0 677 3 3

355 2 698 3 2 677 34 711 3 2

237 3 x x x 712 13 725 3 5

eil23_66 672 1 640 3 1 640 0 640 3 4

336 2 640 3 1 640 0 640 3 4

224 3 x x x 655 47 702 3 3

eil23_80 654 1 623 2 1 623 0 623 2 4

327 2 634 2 2 634 0 634 2 4

eil30_50 526 1 501 2 1 501 0 501 2 4

264 2 x x x 501 6 507 2 3

eil30_66 564 1 537 3 3 537 0 537 3 6

282 2 552 3 6116 544 21 565 3 6

188 3 - - 7200 539 2 541 3 5

eil30_80 540 1 514 3 12 514 0 514 3 6

270 2 - - 7200 517 23 540 3 7

180 3 - - 7200 518 0 518 3 6

eil33_50 775 1 738 3 1 738 0 738 3 5

388 2 - - 7200 738 28 766 3 6

258 3 - - 7200 764 58 822 3 4

eil33_66 788 1 750 3 2 750 0 750 3 9

394 2 772 3 1219 772 0 772 3 8

263 3 - - 7200 752 40 792 3 5

eil33_80 773 1 736 3 121 736 0 736 3 6

387 2 - - 7200 756 0 756 3 9

258 3 - - 7200 736 30 766 3 5

eil51_50 587 1 559 3 10 559 0 559 3 9

294 2 - - 7200 568 0 568 3 11

196 3 - - 7200 568 6 574 3 10

eil51_66 576 1 548 4 22 548 0 548 4 10

288 2 - - 7200 552 0 552 4 11

192 3 - - 7200 552 25 577 4 11

144 4 - - 7200 563 20 583 4 10

eil51_80 594 1 565 4 4553 565 0 565 4 13

297 2 - - 7200 565 0 565 4 12

198 3 - - 7200 582 0 582 5 11

149 4 - - 7200 581 11 592 5 11

eilA76_50 775 1 - - 7200 738 0 738 6 21

388 2 - - 7200 738 0 738 6 23

259 3 - - 7200 741 0 741 6 22

194 4 - - 7202 738 49 787 6 23

155 5 - - 7200 747 36 783 6 22

123

Name

𝑻𝟏

Tnb

CPLEX Two-Level VNS

Opt.

Sol.

No.

R.

Time

(s)

Actual

Cost

Over

Time

Cost

with

overtime

No.

R.

Time

(s)

130 6 - - 7200 748 31 779 6 22

eilA76_66 807 1 - - 7200 768 0 768 7 23

404 2 - - 7200 768 0 768 7 21

269 3 - - 7200 772 0 772 7 23

202 4 - - 7200 784 0 784 8 21

162 5 - - 7200 781 36 817 8 23

135 6 - - 7200 783 5 788 8 23

116 7 - - 7200 771 22 793 8 22

eilA76_80 821 1 - - 7200 781 0 781 8 23

411 2 - - 7200 781 0 781 8 23

274 3 - - 7200 784 0 784 8 22

206 4 - - 7200 787 0 787 8 23

165 5 - - 7200 785 3 788 8 23

137 6 - - 7200 800 7 807 9 24

118 7 - - 7200 792 24 816 8 23

103 8 - - 7200 796 38 834 8 23

eilA101_50 869 1 - - 7200 827 0 827 5 39

435 2 - - 7200 835 0 835 5 42

290 3 - - 7200 847 2 849 5 42

218 4 - - 7200 849 6 855 5 42

174 5 - - 7200 833 30 863 5 41

eilA101_66 889 1 - - 7200 846 0 846 6 43

445 2 - - 7200 846 0 846 6 41

297 3 - - 7200 846 0 846 6 42

223 4 - - 7200 866 9 875 6 43

178 5 - - 7200 846 28 874 6 43

149 6 - - 7200 874 32 906 7 42

eilA101_80 902 1 - - 7200 859 0 859 7 42

451 2 - - 7200 859 0 859 7 45

301 3 - - 7200 859 0 859 7 45

226 4 - - 7200 770 5 775 7 42

181 5 - - 7200 869 17 886 7 43

151 6 - - 7200 863 23 886 7 42

129 7 - - 7200 859 46 905 7 44

124

Table 5.3: Detailed comparison of the Two-Level VNS with CPLEX for the data set-1 (𝑻𝟐)

Name

𝑻𝟐

Tnb

CPLEX Two-Level VNS

Opt.

Sol.

No.

R.

Time

(s)

Actual

Cost

Over

Time

Cost

with

overtime

No.

R.

Time

(s)

eil22_50 408 1 371 3 1 371 0 371 3 3

204 2 375 3 2 375 0 375 3 4

137 3 378 3 1 380 2 382 3 3

eil22_66 403 1 366 3 1 366 0 366 3 2

201 2 382 4 2 382 3 385 4 3

134 3 366 3 1 366 1 367 3 2

eil22_80 413 1 375 3 3 375 0 375 3 3

206 2 378 4 9 378 0 378 4 3

138 3 381 3 24 381 0 381 3 4

eil23_50 745 1 677 3 1 677 0 677 3 4

372 2 689 3 2 691 2 693 3 5

248 3 716 3 2 716 0 716 3 4

eil23_66 704 1 640 3 1 640 0 640 3 4

352 2 640 3 1 640 0 640 3 4

235 3 - - 7200 696 0 696 3 5

eil23_80 685 1 623 2 1 623 0 623 2 4

343 2 631 2 1 631 0 631 2 4

eil30_50 551 1 501 2 1 501 0 501 2 4

276 2 501 2 1 501 0 501 2 3

eil30_66 591 1 537 3 3 537 0 537 3 6

296 2 552 3 3451 544 8 552 3 7

197 3 538 3 2 538 0 538 3 5

eil30_80 565 1 514 3 11 514 0 514 3 6

283 2 535 3 5519 535 0 535 3 7

188 3 518 3 1426 518 0 518 3 5

eil33_50 812 1 738 3 1 738 0 738 3 4

406 2 741 3 2 769 0 769 3 8

271 3 803 ^ - 7200 764 35 799 3 4

eil33_66 825 1 750 3 12 750 0 750 3 5

413 2 767 3 109 767 0 767 3 9

275 3 - - 7200 754 21 775 3 5

eil33_80 810 1 736 3 136 736 0 736 3 8

405 2 - - 7200 756 0 756 3 6

270 3 - - 7200 736 18 754 3 6

eil51_50 615 1 559 3 11 559 0 559 3 10

308 2 560 4 67 560 0 560 4 9

205 3 564 4 67 568 0 568 3 11

eil51_66 603 1 548 4 12 548 0 548 4 10

302 2 548 4 56 548 0 548 4 11

201 3 - - 7200 774 0 774 4 10

151 4 - - 7200 563 7 570 4 11

eil51_80 622 1 565 4 78 565 0 565 4 11

311 2 - - 7200 565 0 565 4 10

208 3 - - 7200 587 0 587 4 10

156 4 - - 7200 579 0 579 5 10

eilA76_50 812 1 - - 7200 738 0 738 6 21

406 2 - - 7200 738 0 738 6 22

271 3 - - 7201 738 0 738 6 22

203 4 - - 7202 738 29 767 6 22

163 5 - - 7200 747 28 775 6 24

136 6 - - 7200 747 15 762 6 21

125

Name

𝑻𝟐

Tnb

CPLEX Two-Level VNS

Opt.

Sol.

No.

R.

Time

(s)

Actual

Cost

Over

Time

Cost

with

overtime

No.

R.

Time

(s)

eilA76_66 845 1 - - 7200 768 0 768 7 22

423 2 - - 7200 768 0 768 7 21

282 3 - - 7200 772 0 772 7 22

212 4 - - 7200 769 0 769 7 22

169 5 - - 7200 777 13 790 8 23

141 6 - - 7200 778 5 783 8 22

121 7 - - 7200 771 6 777 8 22

eilA76_80 860 1 - - 7200 781 0 781 8 23

430 2 - - 7200 781 0 781 8 22

287 3 - - 7200 783 0 783 8 23

215 4 - - 7200 783 0 783 8 22

172 5 - - 7200 783 0 783 8 22

144 6 - - 7200 786 10 796 8 23

123 7 - - 7200 792 13 805 8 23

108 8 - - 7200 795 46 841 8 22

eilA101_50 910 1 - - 7200 827 0 827 5 41

455 2 - - 7200 827 0 827 5 41

304 3 - - 7200 855 0 855 5 43

228 4 - - 7200 838 9 847 5 42

182 5 - - 7200 838 13 851 5 42

eilA101_66 931 1 846 6 268 846 0 846 6 43

466 2 - - 7200 846 0 846 6 42

311 3 - - 7200 846 0 846 6 43

233 4 - - 7200 868 0 868 6 42

187 5 - - 7200 848 14 862 6 43

156 6 - - 7200 852 52 904 6 44

eilA101_80 945 1 - - 7200 859 0 859 7 42

473 2 - - 7200 859 0 859 7 43

315 3 - - 7200 859 0 859 7 46

237 4 - - 7200 859 0 859 7 43

189 5 - - 7200 863 15 878 7 44

158 6 - - 7200 870 13 883 7 45

135 7 - - 7200 859 24 883 7 42

126

5.6.2.1. Search diversification and intensification analysis

A further analysis regarding the search diversification and intensification is carried out.

The idea is to check which neighbourhoods are important when compared with others in

terms of diversification and to know which neighbourhoods are leading towards better

quality solution and to what extent the search is intensifying. To achieve this, a small

subset of five instances was selected ranging in size between 21-100 customers from

data set-1. The algorithm is executed on each instance for 5 iterations and the

neighbourhood moves leading towards better quality solution were recorded for each

iteration and the average was calculated. However, in terms of intensification, the

iteration yielding the best solution was also recorded.

Table 5.4 report the number of times each neighbourhood move leads towards a better

quality solution on average including the grand average for each instance. It can be

observed from the individual averages that each neighbourhood varies in terms of times

they lead towards better solution and they all appear to be important. However, when

looking at the grand average it can be noticed that N1 (1-0 Intra Route) neighbourhood

appears to be the most important among all leading 8 times toward better quality

solution on the grand average. The second most important move is N6 (2-1 Swap)

leading 6 times towards better quality solution. Although, the number of times other

neighbourhoods lead towards better quality solution is slightly lower than these two but

their importance cannot be ignored as they are also playing a vital role in terms of

search diversification and hence leading towards better quality solutions.

127

Moreover, we have also provided a graphical representation showing the extent to

which the search diversification and intensification is achieved for each instance in

Figure 5.20, Figure 5.21, Figure 5.22, Figure 5.23 and Figure 5.24 respectively.

It can be observed from these figures that N1 (1-0 Intra Route) and N6 (2-1 Swap)

neighbourhoods appear to provide maximum diversification. In terms of intensification,

the algorithm is doing really well as it can be seen in the graphs how quickly it

improves solution quality. The Two-Level VSN algorithm also accepts low quality

solutions at inner-level in order to get out of local optima and hence improving the

solution quality.

Table 5.4: The number of times each neighbourhood leads towards better quality solution

on average for each instance

eil22_66

Average

eil30_80

Average

eil51_50

Average

eilA76_50

Average

eilA101_80

Average

Grand

Average

N1 : 1-0 Intra Route 2 8 7 8 16 8

N2 : 1-0 Inter Route 1 5 5 5 6 4

N3 : 1-1 Swap 1 5 4 6 6 4

N4 : 2-2 Swap 1 6 5 4 6 4

N5 : 2-0 Swap 1 5 6 6 8 5

N6 : 2-1 Swap 1 5 6 6 10 6

128

Figure 5.20: Neighbourhoods diversification vs Intensification solution cost for data instance eil22_66_1_t1

300

400

500

600

700

800

900

1000

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193 201 209 217

S
o

lu
ti

o
n

 C
o

st

Number of times each neighbourhood used within 100 iterations

Neighbourhoods Diversification vs Intensification Solution Cost

1-0 Intra Route

1-0 Inter Route

1-1 Swap

2-2 Swap

2-0 Swap

2-1 Swap

Intensification

129

Figure 5.21: Neighbourhoods diversification vs Intensification solution cost for data instance eil30_80_1_t1

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

1
8

6

1
9

1

1
9

6

2
0

1

2
0

6

2
1

1

2
1

6

2
2

1

2
2

6

S
o

lu
ti

o
n

 C
o

st

Number of times each neighbourhood used within 100 iterations

Neighbourhood Diversification vs Intensification Solution Cost

1-0 Intra Route

1-0 Inter Route

1-1 Swap

2-2 Swap

2-0 Swap

2-1 Swap

Intensification

130

Figure 5.22: Neighbourhoods diversification vs Intensification solution cost for data instance eil51_50_1_t1

300

500

700

900

1100

1300

1500

1700

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

1
8

6

1
9

1

1
9

6

2
0

1

2
0

6

2
1

1

2
1

6

2
2

1

2
2

6

2
3

1

2
3

6

2
4

1

2
4

6

2
5

1

2
5

6

2
6

1

S
o

lu
ti

o
n

 C
o

st

Number of times each neighbourhood used within 100 iterations

Neighbourhoods Diversification vs Intensification Solution Cost

1-0 Intra Route

1-0 Inter Route

1-1 Swap

2-2 Swap

2-0 Swap

2-1 Swap

Intensification

131

Figure 5.23: Neighbourhoods diversification vs Intensification solution cost for data instance eilA76_50_1_t1

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

1
8

6

1
9

1

1
9

6

2
0

1

2
0

6

2
1

1

2
1

6

2
2

1

2
2

6

2
3

1

2
3

6

2
4

1

2
4

6

2
5

1

2
5

6

2
6

1

S
o

lu
ti

o
n

 C
o

st

Number of times each neighbourhood used within 100 iterations

Neighbourhoods Diversification vs Intensification Solution Cost

1-0 Intra Route

1-0 Inter Route

1-1 Swap

2-2 Swap

2-0 Swap

2-1 Swap

Intensification

132

Figure 5.24: Neighbourhoods diversification vs Intensification solution cost for data instance eilA76_50_1_t1

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

2700

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

1
8

6

1
9

1

1
9

6

2
0

1

2
0

6

2
1

1

2
1

6

2
2

1

2
2

6

2
3

1

S
o

lu
ti

o
n

 C
o

st

Number of times each neighbourhood used within 100 iterations

Neighbourhoods Diversification vs Intensification Solution Cost

1-0 Intra Route

1-0 Inter Route

1-1 Swap

2-2 Swap

2-0 Swap

2-1 Swap

Intensification

133

5.7 Summary

In this chapter we designed a new VNS algorithm that uses two levels to solve the MT-

VRPB. The Two-Level VNS algorithm uses skeletons of the classical VNS and VND

methodologies. A number of neighbourhoods and local searches are employed in such a

way to achieve diversification at the outer level (basic VNS) of the algorithm and

intensification at the inner-level (VND with a multi-layer local search framework). The

algorithm found promising solutions when compared with the solutions found by

CPLEX. It matched 85% of the optimal solutions obtained by CPLEX ranging in size

between 21-50 customers including one instance with 100 customers. The Two-Level

VNS obviously solved all the 168 instances (105 with no overtime used); and the rest

with only 5 and 10 units average overtime for T2 and T1, respectively. The speed of the

algorithm remained remarkably fast as it requires less than 20 seconds on average per

problem instance. It can therefore be said that this study demonstrates the power of

VNS yet again in terms of its simplicity, flexibility, efficacy and speed. Moreover, a

brief analysis of the algorithm in terms of search diversification and intensification

show the importance of neighbourhood moves used during the search process.

Although, the Two-Level VNS found a very high number of good feasible solutions,

optimality or closeness to optimality could not unfortunately be measured as CPLEX

could not find optimal solutions for all instances. In the next Chapter, we explore the

use of a Collaborative Sequential Mat-heuristic (CSMH) algorithm for the MT-VRPB to

see whether or not the solutions of the Two-Level VNS can be either improved or shown

to be optimal if possible.

134

Chapter 6

Solving the MT-VRPB using a

Collaborative Sequential Mat-heuristic

approach

Combining mathematical programming techniques with heuristic methods to solve

Combinatorial Optimisation problems is one of the recent developments in the OR

literature. These approaches are recognised as a new class of hybrid methodologies and

being termed as ‘mat-heuristics’. In this chapter, a hybrid collaborative sequential mat-

heuristic approach is developed to solve the MT-VRPB. The mathematical model

developed in Chapter 4 is hybridised with the Two-Level VNS algorithm developed in

Chapter 5 in a sequential manner. The MT-VRPB data set used in the previous Chapters

is tested to assess the benefit of combining these two methodologies.

6.1. The Mat-heuristic Approaches

The term mat-heuristics refers to designing of those optimisation algorithms in which

heuristics and mathematical programming techniques are used in conjunction. For more

information on the general classification of combining exact and heuristics method for

135

combinatorial optimisation problems, we refer to Caserta and Voß (2010), Puchinger

and Raidl (2005), and Raidl (2006). Two categories of combinations called

‘Collaborative Combinations’ and ‘Integrative Combinations’ are presented. In the

collaborative combinations, the algorithms (exact-heuristic) are combined in such a way

that they are not part of each other; hence they can only exchange information.

However, the collaborative combined algorithms (exact-heuristic) may be performed

either in parallel, interconnected or in a sequential manner. On the other hand,

integrative combinations category joins the algorithms (exact-heuristic) in such a way

that one method works as an assistant embedded component of another. Therefore one

algorithm (either exact or heuristic) works as a master method and the other performs as

a slave (subordinate) method. The Collaborative and Integrative combinations are

further categorized into subcategories.

The collaborative combination is divided into ‘Sequential execution’ and ‘Parallel or

Intertwined execution’. In the former either the heuristic technique is executed first

followed by the exact technique or vice-versa; whereas in the latter exact and heuristic

methods work in parallel or in interconnected style. Both the Sequential and the Parallel

versions have their pros and cons.

The Integrative combination is also subcategorized into ‘incorporating exact algorithms

in heuristics’ (where heuristic works as a master method and the exact algorithm works

as a slave method) and ‘incorporating heuristics in exact algorithms’ (where the exact

algorithm performs as a master component and the heuristic technique performs as an

embedded slave component). More information of these components can be found in

136

Puchinger and Raidl, (2005); whereas, the taxonomy of exact-heuristics hybridisation is

provided in Jourdan et al. (2009).

We have developed a collaborative sequential mat-heuristic that chains our

mathematical programming in Chapter 4 and the VNS meta-heuristic in Chapter 5 to

solve the MT-VRPB. The details of our approach are provided in the following sections.

6.1.1. Matheuristics for VRPs: Brief Literature Review

One of the early studies is by Foster and Ryan (1976) in which an improvement

heuristic that incorporates the solution of a mixed-integer linear programming (MILP)

model is proposed for the VRP. In this study, a set partitioning formulation for the VRP

is presented first and then a matheuristic algorithm is proposed. At first phase, a set of

petal routes is generated using a heuristic construction method known farthest away

cheapest insertion method. The reason behind calling them petal routes is because of

their resemblance to petals as they are rooted at the depot. In the second phase, set

partitioning formulation is solved on the set of routes obtained at first phase. The

algorithm was tested on data set containing fifteen instances ranging in size from 21 to

100 customers. The computational results show improvements when compared with

previously published results.

Fisher and Jaikumar (1981) proposed a cluster-first-route-second method. In this

algorithm, heuristic is used to select so-called seed customers and then in order to assign

the remaining customers to the seed customers, an assignment problem is solved to

optimality at first phase. Where each seed customer pinpoints a cluster of customers

associated with it. At second phase, a Travelling Salesman Problem (TSP) is solved on

137

each cluster to obtain the final set of routes. The algorithm was tested on 12 VRP

standard problem instances and outperformed previously published studies.

In 1995, Bramel and Simchi-Levi proposed a method similar to that of Fisher and

Jaikumar (1981) for the VRP. This methodology is based on the routing problem type

formulation as a Capacitated Concentrator Location Problem (CCLP). The basic idea in

this algorithm is to identify seed customers in order to estimate the cost of assigning

each customer to each seed customer and then solve a CCLP to determine the customer

clusters. Hence, after determining the clusters, a TSP is solved on each cluster to obtain

the solution. The computational results show that this algorithm outperforms all

published heuristics when tested on a set of standard test problems.

Rochat and Taillard (1995) proposed a matheuristic algorithm for the VRP. In the first

phase, a heuristic based on local search algorithm is used to solve the VRP. Hence all

routes obtained at this phase are stored in a set P. At second phase, in order to choose

best routes from set P, a set partitioning model is solved to optimality. The algorithm

was tested on various problem instances from the literature and solutions of 40 instances

are improved compared to previous published work.

Kelly and Xu (1999) proposed a set partitioning based heuristic for the VRP. This

algorithm is similar to that of Foster and Ryan (1976). In the first phase, different

solutions are obtained using a simple and fast construction heuristics. In the second

phase, a set partitioning model is solved in order to select the best routes from the set of

all routes. The algorithm is tested on VRP benchmark instances. The computational

results show that this algorithm found same solutions in most cases when compared

with the best known published results.

138

De Franceschi et al. (2006) proposed a new ILP-based refinement heuristic for vehicle

routing problems. In this algorithm, the initial solution is constructed by taking the best

known solution in the literature. Then chains of customers are removed from the

solution; hence, a large number of chains is organized from the removed chains of

customers and various insertion points are pinpointed in the partial solution. Then

chains of removed customers are inserted in the insertion points by solving the MILP

model to optimality. The algorithm is tested on two data sets from the literature. The

results presented show that the algorithm found better solutions in some cases when

compared with the best known in the literature.

Archetti and Speranza (2008) proposed an optimization-based heuristic for the split

delivery vehicle routing problem (SDVRP). An integer program based on the extension

of the classical set-covering model is used as master program and the tabu search works

as a subordinate (slave) method. That is, tabu search is used once and frequency

counters are used to analyse the obtained set of solutions by tabu search. This is done in

order to specify the number of times a particular edge was part of a solution and to point

out whether particular customers’ demand was split. Furthermore, the solutions came

across by the tabu search in which a customer that is never or rarely split has been

served by a single vehicle in high-quality solution. Likewise the edges which are

encountered frequently during tabu search are likely indicated as a part of near-optimal

solution. A set of promising routes R has been generated by the frequency counters and

desirability measures are used in order to sort out this set. Finally, a subset of routes r

has been taken from the set of promising routes R and based on that subset of routes, a

set-covering problem is solved iteratively. The computational results show that the

139

initial solutions obtained by the tabu search are improved by the proposed method in all

test instances except one.

Schmid at el. (2009) proposed a hybrid solution approach based on the integer

multicommodity network flow (MCNF) component and variable neighbourhood search

(VNS) for the ready-mixed concrete delivery problem. The proposed hybrid approach

belongs to the collaborative category of matheuristics. Therefore the information

between an integer MCNF component and VNS is exchanged in a bi-directional way in

order to obtain the high quality solutions. First the MCNF component is solved, that is

initialized with a randomly generated set of patterns. Then VNS is used to further

improve the best solution iteratively in order to enrich the pool of patterns used by the

MCNF. Finally the MCNF component is used again to obtain even better solutions.

Computational experiments are done using a real-life data taken from a concrete

company. The obtained computational results show that the proposed hybrid approach

performed better when compared with the solution obtained by a commercial approach

(based on simulated annealing meta-heuristic) developed specially for this type of

problems.

Rei et al. (2010) presented a hybrid algorithm the single VRP with stochastic demands.

This methodology employs both local branching heuristic and Monte Caro sampling in

order to divide the solution space in sub-regions; hence obtaining sub-problems. A

MILP model is then used to solve the sub-problems. A sub-set of instances ranging in

size from 60 to 90 customers are tested using this methodology. The algorithm proved

quite effective in terms of solution quality.

140

6.2. The Collaborative Sequential Approach for the MT-VRPB

Our collaborative sequential mat-heuristic (CSMH) approach for the MT-VRPB

belongs to the ‘Collaborative Combinations’ category of the mat-heuristic approaches

in general and more specifically fits to the ‘Sequential execution’. Hence the CSMH

approach executes the Two-Level VNS heuristic first followed by the exact technique

formulation using CPLEX optimiser. The generic phases of the CSMH approach are

shown in Figure 6.1.

The ingredients of the first three phases in the CSMH algorithm are already provided

and explained in Chapter 5 but we briefly summarise them here as follows for ease of

understanding.

Phase I:

In Phase I of the CSMH algorithm approach an initial feasible VRPB solution is

obtained by using the sweep-first-assignment-second methodology. Firstly two sets of

open ended routes (one for each LH and BH customers) are generated by using the

sweep procedure separately on LH and BH customers. The LH and BH routes are then

connected by solving the assignment problem; and if needed the backhauling conditions

are satisfied by performing some local changes in the combined LH/BH solution before

moving to the next phase. The initial solution generation steps are already provided in

detail in Section 5.2.

141

Phase I: Initial solution –sweep-first-assignment-second approach (see Section 5.2)

Phase II: Two-Level VNS Algorithm (see Sections 5.3 & 5.4)

Phase III: Solving the Multiple Trips aspect using the BPP (see Section 5.5)

Phase IV: Solve the mathematical model using CPLEX

a. Choose the best solution k (in terms of feasibility, i.e., solution without

overtime) from the data structure 𝑆𝑜𝑙𝑘

b. If overtime is used in the solution k, then go to d

Else, go to c

c. Prepare MIPstart for CPLEX

 MIPstart = k [MIPstrat represents a feasible solution]

 Call CPLEX_model and run until total allocated time of 2

hours is reached

 Report optimal/incumbent solution

d. Set: 𝑍𝐶 ≤ 𝑍𝐻 [where 𝑍𝐶 represents CPLEX_model objective value

and 𝑍𝐻 best heuristic solution cost with overtime]

 Call CPLEX_model and run until total allocated time of 2

hours is reached

 Report optimal/incumbent solution

Figure 6.1: The CSMH approach phases for the MT-VRPB

Phase II:

In Phase II, the Two-level VNS mechanism is used to improve the initial solution and

obtain a pool of solutions. The Two-Level VNS is a composite mechanism that

comprises two levels, called outer and inner levels. Several neighbourhood structures

and local search refinement routines (developed in Section 5.3) are used to achieve a

balanced diversification and intensification within the levels during the search process.

142

For both levels, a subset of neighbourhoods and a subset of local search refinement

routines are proposed. These local search refinement routines are embedded within a

multi-layer local search framework. For further details, see Section 5.4.

Phase III:

Phase III determines the multiple trip packing of the routes in the solutions by solving

the Bin Packing Problem which is based on the pool of solutions obtained in Phase II.

For each solution in the pool, the BPP is solved by calling CPLEX optimiser within the

Microsoft Visual Studio Environment followed by a repair mechanism if necessary

known as the Bisection Method. Here, bin capacity is gradually increased by a certain

percentage iteratively until routes are feasibly packed into bins; see Section 5.5 for more

details.

Phase IV:

Phase IV chooses the best MT-VRPB solution from the data structure 𝑆𝑜𝑙𝑘 and passes it

on to the CPLEX optimiser using a mechanism called mixed integer programming start

‘MIPstart’. For this stage the mathematical formulation model of the MT-VRPB is

coded in C++ programming language within the Microsoft Visual Studio Environment

that calls the CPLEX optimiser that uses the best packed solution from the Phase III as

an incumbent solution. The MIPstart is explained in the next section.

Use of the MIPstart mechanism

The MIPstart is a mechanism provided by the IBM ILOG CPLEX Optimisation Studio

through which one can provide the CPLEX optimiser with an initial solution. For

instance, a first or second integer solution could be from a MIP problem which was

143

found previously or a feasible solution from a heuristic. The MIPstart may include

various types of variables such as integer variables, semi-continuous variables and

binary variables etc. An MIP starting variable/s can be established using some methods.

For Concert Technology application users, the method ‘addMIPStart ‘is used; whereas

for the Callable Library applications method is called ‘CPXaddmipstarts’. Since we are

using Concert Technology in our application, the former method is used. For more

information on the types of variables see User’s Manual for CPLEX V12.5.1.

Preparing the MIP start for CPLEX optimiser:

If the chosen solution from the data structure 𝑆𝑜𝑙𝑘 is feasible with respect to the given

planning period T, then the MIPstart variables have no problem in working with the

formulation of the MT-VRPB. However if the chosen solution is not feasible in terms of

T then the MIPstart will not take it as an input solution. This is because our basic

formulation in Chapter 4 does not allow overtime to be used.

Basic Modification:

To overcome this hurdle, we have added constraint (6.1) in our MT-VRPB model

formulation which enables the infeasible solutions as workable input bound for the

MIPstart.

 𝑍𝐶 ≤ 𝑍𝐻 (6.1)

Where, 𝑍𝐶 represents the objective value in our CPLEX model and 𝑍𝐻 the best heuristic

solution cost (i.e., best solution with overtime chosen from data structure 𝑆𝑜𝑙𝑘). Note

that this constraint is employed automatically for the False MIPstart condition (i.e.,

144

when none of the packed solutions is feasible in terms of maximum driving time and an

infeasible (i.e., solution with overtime) solution is chosen).

The C++ programming language code that we have used to add the MIPstart in our

model is provided in Appendix A. As it can be seen that we have two decision variables

in our formulation where R[i][j] represents the amount delivered/picked up on arc (𝑖, 𝑗)

and X[i][j][k] is a (0, 1) decision variable that represents X[i][j][k] = 1 if vehicle 𝑘

travels arc (𝑖, 𝑗), 0 otherwise. At this stage the solution found by the Two-Level VNS

approach is prepared in a format that is understandable by CPLEX interactive optimiser.

Therefore, two multidimensional arrays represented as R_VNS[i][j] (integer in type) and

X_VNS[i][j][k] (0, 1 in type) are created that contain the heuristic solution. Then these

(i.e., R_VNS[i][j] and X_VNS[i][j][k]) multidimensional arrays are first flattened into

one-dimensional arrays (since CPLEX converts all multidimensional arrays into one-

dimensional arrays and then starts working on them) and then added to the respective

decision variable arrays (i.e., R[i][j] and X[i][j][k]) using ‘startVal.add’ method.

Transformation to CPLEX and an illustrative example:

Since our MT-VRPB formulation model is coded in C++ programming language, and

therefore adding a MIPstart to a model that is implemented in the C++ API

(Application Programming Interface) needs ‘IloCplex::addMIPStart’ method provided

by ILOG IBM CPLEX 12.5. Moreover, we need to write and pass the heuristic solution

in such format that is understandable by the CPLEX optimiser. The idea is to provide a

copy of each decision variable with its corresponding values while the decision

variables need to be the same type and same dimension. For example if CPLEX uses 𝑋𝑖𝑗

we need to provide another variable say 𝑋𝑋𝑖𝑗 with its values.

145

Test instance characteristics

n=6 (number of customers] (1,…,4, 5, 6) where 1 to 4 are deliveries and last 2 are backhauls

b=2 [number of backhaul customer]

T=195 [planning period (maximum driving time)]

C=2000 [vehicle capacity]

v=2 [number of total Bins/vehicles]

q = [1000,800,500,1200,1500,300] [demand/supply]

Dist= [0,49,42,37,31,28,23]

 [49,0,23,21,24,30,40]

 [42,23,0,34,33,38,23]

 [37,21,34,0,5,11,38] [distance matrix]

 [31,24,33,5,0,6,35]

 [28,30,38,11,6,0,35]

 [23,40,23,38,35,35,0]

Solution routes obtained for test instance above where 𝑹𝟐 and 𝑹𝟑 are served by bin (vehicle) 1 and

𝑹𝟏 is served by bin 2.

Route 1:

 dist demand/supply

 Dep: 0

Cust: 1 49.00 1500
Cust: 3 21.00 500

Cust: 5 11.00 0

 Dep: 0 28.00 1500

 C L_load B_load EmptSpace

1500 1500 0 0

1500 1500 0

Cost/Distance = 109.00

𝑹𝟏 = 𝟎 → 𝟏 → 𝟑 → 𝟓 → 𝟎

Route 2:

 dist demand/supply

 Dep: 0

Cust: 2 42.00 800
Cust: 6 23.00 0

 Dep: 0 23.00 300

 C L_load B_load EmptSpace

1500 800 700

1500 300 1200

Cost/Distance = 88.00

𝑹𝟐 = 𝟎 → 𝟐 → 𝟔 → 𝟎

Route 3:

 dist demand/supply

 Dep: 0

Cust: 4 31 1200
 Dep: 0 31 0

 C L_load B_load EmptSpace

1500 1200 300
1500 0 1500

Cost/Distance = 62.00

𝑹𝟑 = 𝟎 → 𝟒 → 𝟎

Transforming the solution routes to CPLEX understandable format

R_VNS[i][j] =

 0 1 2 3 4 5 6

 0 0 1500 800 0 1200 0 0

 1 0 0 0 500 0 0 0

 2 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0

 5 1500 0 0 0 0 0 0

 6 300 0 0 0 0 0 0

X_VNS[i][j][k] =

 0 1 2 3 4 5 6

 0 0 1 1 0 1 0 0

 1 0 0 0 1 0 0 0

 2 0 0 0 0 0 0 1

 3 0 0 0 0 0 1 0

 4 1 0 0 0 0 0 0

 5 1 0 0 0 0 0 0

 6 1 0 0 0 0 0 0

Figure 6.2: MIPstart construction for the MT-VRPB test instance

Depot

Depot

146

As an example, in our case, we construct a MIPstart as shown in Figure 6.2 which

shows the characteristics of the test instance and how R_VNS and X_VNS

multidimensional arrays are constructed.

6.3. Computational Experience

The CSMH algorithm is coded in C++ programming language and implemented within

the Microsoft Visual Studio Environment (version: 2010). The experiments were

executed on a PC with Intel(R) Core(TM) i7-2600 processor, CPU speed 3.40 GHz. The

CSMH calls the IBM ILOG CPLEX 12.5 interactive optimiser within the Visual Studio

Environment to solve the assignment problem (Phase I), the BPP (Phase III) and the

exact method formulation (Phase IV).

6.3.1. Data Set

The computational experiments are reported for the MT-VRPB data set-1 generated in

this thesis with the details provided in Section 4.7. For convenience, all the data sets

used in this thesis can also be downloaded from CLHO website (CLHO, 2015).

6.3.2. The CSMH execution times

The CSMH algorithm is run for a maximum CPU time of 2 hours (7200 seconds) for all

the four phases. In addition we allow 100 iterations for Phase II and 5 iterations for

Phase III if the Bisection method is required.

Glossary for tables:

𝑇1 = Total driving time (type one) for a bin/ vehicle,

𝑇2 = Total driving time (type two) for a bin/ vehicle,

147

Tnb = Total number of vehicles (bins) in each instance,

VNS Sol. = Solution obtained by Two-Level VNS,

No.R = Number of total routes in solution,

Optimal Sol. = Optimal solution,

Incum. Sol. = Incumbent solution (feasible solution found without using overtime),

UB = Upper bound,

LB = Lower bound,

%gap = % gap between optimal/incumbent solution and lower bound,

X = Infeasible instance (not even lower bound exist for these instances),

- = Not found,

^ = Incumbent solution (feasible solution, i.e., solution without overtime),

* = Optimal solution,

+ = Solution with overtime,

Time(s) = CPU time in seconds taken to solve each instance.

6.3.3. The CSMH algorithm performance

The performance comparison of the CSMH algorithm is summarised in Tables 6.1 –

6.4, and the detailed results are provided in Tables 6.5 - 6.10. The CSMH performed

very well in terms of the solutions quality and the CPU time consumption. Table 6.1

presents the overall summary of the CSMH algorithm. For 𝑇1 the CSMH algorithm

found a large number of optimal solutions (38 out of 84) and a good number of

incumbent solutions (12 out of 84). Here, the upper bound/integer solutions are

reported, however optimality was not achieved in 2 hour time limit. For the remaining

34 instances, no change happened at the end of Phase IV highlighting that the heuristic

148

solution achieved at Phase III is very good. Hence, the lower bounds are also reported

for those instances. Moreover, for 6 instances Phase VI (CPLEX optimiser) found better

packed solutions reducing the number of vehicle routes by one for each case. On the

other hand, Phase VI (CPLEX optimiser) did not increase the number of vehicle routes

for any of the tested instances in order to obtain a better solution.

For the 𝑇2 set of instances the CSMH algorithm found a great number (more than half of

the instances) of optimal solutions (46 out of 84) and a good number of new best

incumbent (feasible) solutions (18 out of 38 non-optimal). For the rest (20 out of 84) no

optimal/incumbent solution is obtained, hence the input heuristic solution is retained,

and the lower bounds are reported for those instances. Furthermore, for 3 instances

Phase VI found better packed solutions reducing the number of vehicle routes by one

for each instance. However, Phase VI (CPLEX optimiser) increased one vehicle route

for an instance in order to a obtain better solution. Detailed results are provided in Table

6.5 and Table 6.6 for 𝑇1 and 𝑇2 data instances classes, respectively.

Table 6.1: Summary of the CSMH algorithm solutions (data set-1: 𝑻𝟏 & 𝑻𝟐)

𝑻𝟏 𝑻𝟐

of solutions found (out of 84) 84 84

of optimal solutions found 38 46

of new best solutions found 12 18

of instances where no. of routes decreased at the end of Phase IV 6 3

of instances where no. of routes increased at the end of Phase IV 0 1

of instances reported infeasible by the CSMH algorithm 4 0

Average CPU time (s) 3993 3694

149

6.3.4. Comparison of the CSMH vs CPLEX results

In this section, the results found by the CSMH algorithm are compared with the results

found by CPLEX in Chapter 4. Note that the solutions found by the CSMH algorithm

with overtime are not considered in this comparison since the MT-VRPB mathematical

model CPLEX solutions do not include overtime. Therefore, here only those instances

are compared for which either CPLEX or CSMH algorithm found optimal/incumbent

solutions. The run time for both CPLEX and the CSMH algorithm is set to 2-hours.

Table 6.2 presents a summary of comparisons, whereas the detailed solutions

comparison is provided in Table 6.7 and 6.8 respectively. For the 𝑇1 group of 84

instances, compared to 24 solutions (all optimal) of CPLEX, the CSMH found 50

solutions, i.e., 38 optimal and 12 incumbent (solutions where both upper and lower

bounds are obtained – i.e., a feasible solution however optimality was not proved in

given computational time). Hence, in terms of optimal/incumbent solutions, the CSMH

found more than 50% additional solutions as compared to CPLEX in this group.

For 𝑇2, the CSMH found 64 (46 optimal, 18 incumbent) solutions as compared to 37 (36

optimal, 1 incumbent) of CPLEX.

Furthermore, the CSMH algorithm produced optimal solutions for the instances ranging

in size between 21-100 customers for both groups (𝑇1 and 𝑇2) compared to CPLEX

where the solutions are found ranging in size between 21-50 customers except one

instance in 𝑇2 with 100 customers.

150

Lower bound effects:

Moreover, we did some analysis about the quality of the lower bounds generated by

CPLEX and the CSMH by calculating the percentage gaps from the optimal solution

found in this study. The details of the comparison and average gaps (%) [(Opt –

LB)/Opt * 100] are shown in Table 6.9. The CSMH also proved superior on this front

by producing lower gaps of 1.90% and 1.99% as compared to the original formulation

with 2.89% and 2.30% for 𝑇1 and 𝑇2 classes respectively, see Table 6.9.

It should be noted that the average time actually used by the CSMH is much lower

(𝑇2 = 3993 and 𝑇2 = 3694) than the allocated average time of 7200 seconds. On

average the CSMH used relatively lower time compared to the time spent by CPLEX in

Chapter 4. Moreover, comparing the computational time for only optimal solutions of

CPLEX and the CSMH, the latter performed better by spending 117 seconds/instance

on average as comparted to 504 seconds/instance of CPLEX for 𝑇1, and respectively 221

seconds/instance and 314 seconds/instance for 𝑇2, see Table 6.2.

Hence, looking at the overall assessment, the CSMH proved superior in terms of the

solution quality and speed.

Table 6.2: Summary comparison of the CSMH vs CPLEX (data set-1: 𝑻𝟏 & 𝑻𝟐)

𝑻𝟏 𝑻𝟐

CPLEX

CSMH

Algorithm CPLEX

CSMH

Algorithm

of solutions found without overtime (out of 84) 24 50 37 64

of optimal solutions found 24 38 36 46

of incumbent solutions found 0 12 1 18

Grand average gap (%) 2.89 1.90 2.30 1.99

Average CPU time (s) 5165 3993 4248 3694

Average CPU time (s) for optimal solutions. 504 117 314 221

151

6.3.5. Comparison of the CSMH and the Two-Level VNS results

Table 6.3 presents a summary performance comparison of the CSMH algorithm and the

Two-Level VNS. The detailed comparison is provided in Table 6.10 and Table 6.11 for

𝑇1 and 𝑇2, respectively.

For 𝑇1 and 𝑇2, both algorithms performed very well in terms of solving all the instances

of both groups (84 out of 84). When it comes to the numbers of optimal solutions, the

CSMH performed better with 38 and 46 as compared to the Two-Level VNS of 33 and

38 for 𝑇1 and 𝑇2, respectively. The CSMH algorithm also found a higher number of

incumbent solutions (i.e., feasible solutions for which no overtime is used) than the

Two-level VNS. However, the Two-Level VNS found better solutions for the instances in

both groups (𝑇1 & 𝑇2) in which overtime (i.e., solutions with overtime) is used. This is

understandable since the best solutions are reported out of 5 run for the Two-Level VNS.

In terms of computational time, the Two-level VNS is obviously much faster due to the

fact that the CSMH algorithm uses CPLEX optimisation technique.

Table 6.3: Comparison of the CSMH vs the Two-Level VNS (data set-1: 𝑻𝟏 & 𝑻𝟐)

𝑻𝟏 𝑻𝟐

Two-Level

VNS

CSMH

Algorithm

Two-Level

VNS

CSMH

Algorithm

of solutions found (out of 84) 84 84 84 84

of solutions found without overtime (out of

84) 46 50 59 64

of optimal solutions found 33 38 38 46

of solutions found with overtime (out of 84) 38 34 25 20

Average CPU time (s) 18 3993 17 3694

152

Moreover, Table 6.4 shows a summary comparison of the results from CPLEX, Two-

Level VNS and CSMH.

Table 6.4: Comparison of CPLEX, Two-Level VNS and CSMH (data set-1: 𝑻𝟏 & 𝑻𝟐)

𝑻𝟏 𝑻𝟐

CPLEX

Two-

Level

VNS

CSMH CPLEX

Two-

Level

VNS

CSMH

of solutions found (out of 84) 24 84 84 37 84 84

of optimal solutions found (out of 84) 24 33 38 36 38 46

of incumbent solutions found (out of 84) 0 46 50 1 59 64

Average CPU time (s) 5165 18 3993 4248 17 3694

153

Table 6.5: Detailed results of the CSMH algorithm for the Data set-1 (𝑻𝟏)

Name

𝑻𝟏

Tnb

CSMH Algorithm

VNS

Sol.

No.

R.

Optimal

Sol.

Incum.

Sol.

No.

R.

UB LB %Gap Time

(s)

eil22_50 390 1 371 3 371 - 3 371.0000 354.5515 4.43% 2

195 2 396+ 3 378 - 3 378.0000 376.9945 0.27% 3

130 3 392+ 3 x - x x x x 3

eil22_66 385 1 366 3 366 - 3 366.0000 343.1949 6.23% 3

193 2 396+ 4 382 - 4 382.0000 375.5642 1.68% 7

129 3 375+ 3 x x x x x x 5

eil22_80 394 1 375 3 375 - 3 375.0000 364.8797 2.70% 4

197 2 388 4 378 - 4 378.0000 367.1494 2.87% 10

132 3 389 4 381 - 3 381.0000 374.0939 1.81% 105

eil23_50 711 1 677 3 677 - 3 677.0000 640.4404 5.40% 3

355 2 710+ 4 698 - 3 698.0000 677.2488 2.97% 11

237 3 725+ 3 x x x x x x 8

eil23_66 672 1 640 3 640 - 3 640.0000 612.5018 4.30% 3

336 2 640 3 640 - 3 640.0000 629.2119 1.69% 3

224 3 702+ 3 x x x x x x 4

eil23_80 654 1 623 2 623 - 2 623.0000 599.1210 3.83% 2

327 2 634 2 634 - 2 634.0000 620.8261 2.08% 3

eil30_50 526 1 501 2 501 - 2 501.0000 501.0000 0.00% 6

264 2 507+ 2 x x x x x x 8

eil30_66 564 1 537 3 537 - 3 537.0000 537.0000 0.00% 7

282 2 599+ 3 552 - 3 552.0000 538.0000 2.54% 2302

188 3 541+ 3 - - - - 532.6645 - 7200

eil30_80 540 1 514 3 514 - 3 514.0000 514.0000 0.00% 6

270 2 559+ 3 535 - 3 535.0000 465.5482 12.98% 6172

180 3 518 3 518 - 3 518.0000 510.8803 1.37% 8

eil33_50 775 1 738 3 738 - 3 738.0000 738.0000 0.00% 5

388 2 766+ 3 - - - - 738.1813 - 7200

258 3 822+ 3 - - - - 740.6625 - 7200

eil33_66 788 1 750 3 750 - 3 750.0000 723.3959 3.55% 4

394 2 772 3 772 - 3 772.0000 768.0827 0.51% 93

263 3 792+ 3 - - - - 760.4523 - 7200

eil33_80 773 1 736 3 736 - 3 736.0000 730.2669 0.78% 9

387 2 763 3 756 - 3 756.0000 754.4379 0.21% 1087

258 3 766+ 3 - - - - 702.4513 - 7200

eil51_50 587 1 560 4 559 - 3 559.0000 554.6452 0.78% 14

294 2 573 4 562 - 4 562.0000 558.9278 0.55% 108

196 3 605+ 4 - - - - 551.0056 - 7200

eil51_66 576 1 551 4 548 - 4 548.0000 547.0163 0.18% 41

288 2 560 4 552 - 4 552.0000 550.6893 0.24% 171

192 3 577+ 4 - - - - 544.7850 - 7200

144 4 583+ 4 - - - - 549.8806 - 7200

eil51_80 594 1 578 4 565 - 4 565.0000 563.1379 0.33% 159

154

Name

𝑻𝟏

Tnb

CSMH Algorithm

VNS

Sol.

No.

R.

Optimal

Sol.

Incum.

Sol.

No.

R.

UB LB %Gap Time

(s)

297 2 565 4 565 - 4 565.0000 563.2845 0.30% 1352

198 3 582 6 - 578 5 578.0000 560.4578 3.03% 7200

149 4 606+ 4 - - - - 550.8429 - 7200

eilA76_50 775 1 741 6 738 - 6 738.0000 734.9669 0.41% 237

388 2 738 6 738 - 6 738.0000 717.7974 2.74% 458

259 3 747 6 - 741 6 741.0000 723.2373 2.40% 7200

194 4 787+ 6 - - - - 712.4578 - 7200

155 5 784+ 6 - - - - 708.2323 - 7200

130 6 780+ 6 - - - - 710.6943 - 7200

eilA76_66 807 1 772 7 768 - 7 768.0000 761.2526 0.88% 2450

404 2 772 7 768 - 7 768.0000 754.4035 1.77% 6178

269 3 775 7 - 775 7 775.0000 748.5092 3.42% 7200

202 4 784 8 - 784 8 784.0000 744.8268 5.00% 7200

162 5 821+ 8 - - - - 738.2245 - 7200

135 6 800+ 7 - - - - 728.2736 - 7200

116 7 793+ 8 - - - - 737.2219 - 7200

eilA76_80 821 1 790 9 - 781 8 781.0000 744.4484 4.68% 7200

411 2 784 8 - 781 8 781.0000 743.2255 4.84% 7200

274 3 786 8 - 784 8 784.0000 733.2294 6.48% 7200

206 4 790 9 - 787 8 787.0000 737.2137 6.33% 7200

165 5 792+ 9 - - - - 733.5592 - 7200

137 6 811+ 9 - - - - 723.2520 - 7200

118 7 816+ 8 - - - - 725.4333 - 7200

103 8 834+ 8 - - - - 720.2287 - 7200

eilA101_50 869 1 835 5 827 - 5 827.0000 825.8372 0.14% 6143

435 2 854 5 - 842 5 842.0000 816.2896 3.05% 7200

290 3 864+ 5 - - - - 804.0097 - 7200

218 4 870+ 5 - - - - 813.1355 - 7200

174 5 863+ 5 - - - - 807.4466 - 7200

eilA101_66 889 1 858 6 846 - 6 846.0000 842.6713 0.39% 230

445 2 852 6 846 - 6 850.0000 843.7442 0.27% 6213

297 3 857 6 846 - 6 846.0000 838.9900 0.83% 6544

223 4 881+ 6 - - - - 810.2531 - 7200

178 5 874+ 6 - - - - 831.4405 - 7200

149 6 907+ 7 - - - - 818.6633 - 7200

eilA101_80 902 1 872 7 - 859 7 859.0000 834.4338 2.86% 7200

451 2 861 7 - 858 7 858.0000 833.6667 2.84% 7200

301 3 864 7 - 864 7 864.0000 832.2288 3.68% 7200

226 4 903+ 7 - - - - 831.0961 - 7200

181 5 886+ 7 - - - - 829.0228 - 7200

151 6 891+ 7 - - - - 805.3378 - 7200

129 7 905+ 7 - - - - 826.1179 - 7200

155

Table 6.6: Detailed results of the CSMH algorithm solutions for the Data set-1 (𝑻𝟐)

Name

 𝑻𝟐

Tnb

CSMH Algorithm

VNS

Sol.

No.

R.

Optimal

Sol.

Incum.

Sol.

No.

R.

UB LB %Gap Time

(s)

eil22_50 408 1 371 3 371 - 3 371.0000 354.5515 4.43% 2

204 2 375 3 375 - 3 375.0000 372.2941 0.72% 4

137 3 385+ 3 378 - 3 378.0000 367.7167 2.72% 4

eil22_66 403 1 366 3 366 - 3 366.0000 343.1949 6.23% 3

201 2 387+ 4 382 - 4 382.0000 371.0000 2.88% 7

134 3 380 3 366 - 3 366.0000 360.6417 1.46% 3

eil22_80 413 1 375 3 375 - 3 375.0000 365.3228 2.58% 4

206 2 386 4 378 - 4 378.0000 371.6156 1.69% 23

138 3 382 4 381 - 3 381.0000 372.9394 2.12% 24

eil23_50 745 1 677 3 677 - 3 677.0000 640.4404 8.12% 2

372 2 693+ 4 689 - 3 689.0000 677.0000 1.74% 3

248 3 716 3 716 - 3 716.0000 704.2018 1.65% 4

eil23_66 704 1 640 3 640 - 3 640.0000 612.5018 4.30% 2

352 2 640 3 640 - 3 640.0000 624.9952 2.34% 4

235 3 696 3 694 - 3 694.0000 637.6332 5.12% 3671

eil23_80 685 1 623 2 623 - 2 623.0000 599.1210 3.83% 2

343 2 631 2 631 - 2 631.0000 622.6453 1.32% 3

eil30_50 551 1 501 2 501 - 2 501.0000 467.5271 6.58% 3

276 2 501 2 501 - 2 501.0000 489.5667 2.28% 4

eil30_66 591 1 537 3 537 - 3 537.0000 520.5895 3.06% 6

296 2 569+ 3 552 - 3 552.0000 548.3510 0.66% 20

197 3 543 3 538 - 3 538.0000 526.5343 2.13% 25

eil30_80 565 1 514 3 514 - 3 514.0000 495.0307 3.69% 8

283 2 546+ 3 535 - 3 535.0000 514.6325 3.81% 6452

188 3 527 3 518 - 3 518.0000 514.6487 0.65% 152

eil33_50 812 1 738 3 738 - 3 738.0000 738.0000 0.00% 4

406 2 769 3 741 - 3 741.0000 737.5128 0.47% 7

271 3 799+ 3 - - - - 658.3292 - 7200

eil33_66 825 1 750 3 750 - 3 750.0000 721.9751 3.74% 4

413 2 767 3 767 - 3 767.0000 763.7783 0.42% 44

275 3 786+ 3 - - - - 762.8841 - 7200

eil33_80 810 1 736 3 736 - 3 736.0000 727.3115 1.18% 7

405 2 759 3 756 - 3 756.0000 754.7114 0.17% 1144

270 3 768+ 3 - - - - 725.7577 - 7200

eil51_50 615 1 559 3 559 - 3 559.0000 553.4257 1.00% 12

308 2 560 4 560 - 4 560.0000 557.3371 0.48% 90

205 3 572 3 564 - 4 564.0000 562.5770 0.25% 595

eil51_66 603 1 548 4 548 - 4 548.0000 542.9184 0.93% 14

302 2 548 4 548 - 4 548.0000 544.2247 0.69% 35

201 3 574 5 - 772 5 772.0000 546.3256 4.49% 7200

151 4 585+ 5 - - - - 535.1061 - 7200

156

Name

 𝑻𝟐

Tnb

CSMH Algorithm

VNS

Sol.

No.

R.

Optimal

Sol.

Incum.

Sol.

No.

R.

UB LB %Gap Time

(s)

eil51_80 622 1 565 4 565 - 4 565.0000 561.8438 0.56% 72

311 2 565 4 565 - 4 565.0000 562.5858 0.43% 208

208 3 590 5 - 578 5 578.0000 565.4189 2.18% 7200

156 4 579 5 - 579 5 579.0000 555.9473 3.98% 7200

eilA76_50 812 1 748 6 738 - 6 738.0000 735.4884 0.34% 278

406 2 741 6 738 - 6 738.0000 736.4473 0.21% 940

271 3 741 6 - 741 6 741.0000 720.5745 2.76% 7200

203 4 790+ 6 - - - - 716.3202 - 7200

163 5 778+ 6 - - - - 708.6608 - 7200

136 6 766+ 6 - - - - 719.9978 - 7200

eilA76_66 845 1 772 7 768 - 7 768.0000 761.2766 0.88% 2412

423 2 772 7 768 - 7 768.0000 754.4035 1.77% 5345

282 3 772 7 - 772 7 772.0000 740.8410 4.04% 7200

212 4 776 8 - 769 7 769.0000 739.0600 3.85% 7200

169 5 790+ 8 - - - - 738.4467 - 7200

141 6 795+ 7 - - - - 740.4613 - 7200

121 7 779+ 8 - - - - 733.8843 - 7200

eilA76_80 860 1 788 8 - 781 8 781.0000 755.6674 3.24% 7200

430 2 786 8 - 781 8 781.0000 757.3963 3.02% 7200

287 3 784 8 - 783 8 783.0000 737.4536 5.82% 7200

215 4 788 8 - 783 8 783.0000 738.0464 5.74% 7200

172 5 784 8 - 783 8 783.0000 736.3244 5.96% 7200

144 6 802+ 9 - - - - 731.1909 - 7200

123 7 817+ 9 - - - - 722.2782 - 7200

108 8 843+ 8 - - - - 733.8520 - 7200

eilA101_50 910 1 856 5 827 - 5 827.0000 825.6868 0.16% 2209

455 2 833 5 - 833 5 833.0000 812.7952 2.43% 7200

304 3 855 5 - 848 5 848.0000 802.2780 6.17% 7200

228 4 847+ 5 - - - - 803.7431 - 7200

182 5 851+ 5 - - - - 782.9959 - 7200

eilA101_66 931 1 867 6 846 - 6 846.0000 843.5580 0.29% 300

466 2 853 6 846 - 6 846.0000 843.7442 0.27% 5364

311 3 846 6 846 - 6 846.0000 840.2255 0.68% 7200

233 4 868 6 - 868 6 868.0000 833.8972 3.93% 7200

187 5 862+ 6 - - - - 815.6880 - 7200

156 6 904+ 6 - - - - 837.2273 - 7200

eilA101_80 945 1 864 7 - 858 7 858.0000 836.8852 2.46% 7200

473 2 861 7 - 858 7 858.0000 826.0394 3.73% 7200

315 3 865 7 - 865 7 865.0000 832.3404 3.78% 7200

237 4 863 7 - 863 7 863.0000 833.7552 3.39% 7200

189 5 889+ 7 - - - - 815.7701 - 7200

158 6 903+ 7 - - - - 814.2284 - 7200

135 7 903+ 7 - - - - 816.6678 - 7200

157

Table 6.7: Detailed comparison results of the CSMH vs CPLEX for the Data set-1 (𝑻𝟏)

Name

𝑻𝟏

Tnb

CPLEX CSMH Algorithm

Optimal

Sol.

No. R. Time (s) Sol. No. R. Time (s)

eil22_50 390 1 371 3 1 371 * 3 2

195 2 378 3 1 378 * 3 3

130 3 x x x x x x

eil22_66 385 1 366 3 1 366 * 3 3

193 2 382 4 3 382 * 4 7

129 3 x x x x x x

eil22_80 394 1 375 3 2 375 * 3 4

197 2 378 4 2 378 * 4 10

132 3 381 3 27 381 * 3 105

eil23_50 711 1 677 3 1 677 * 3 3

355 2 698 3 2 698 * 3 11

237 3 x x x x x x

eil23_66 672 1 640 3 1 640 * 3 3

336 2 640 3 1 640 * 3 3

224 3 x x x x x x

eil23_80 654 1 623 2 1 623 * 2 2

327 2 634 2 2 634 * 2 3

eil30_50 526 1 501 2 1 501 * 2 6

264 2 x x x x x x

eil30_66 564 1 537 3 3 537 * 3 7

282 2 552 3 6116 552 * 3 2302

188 3 - - 7200 - - 7200

eil30_80 540 1 514 3 12 514 * 3 6

270 2 - - 7200 535 * 3 6172

180 3 - - 7200 518 * 3 8

eil33_50 775 1 738 3 1 738 * 3 5

388 2 - - 7200 - - 7200

258 3 - - 7200 - - 7200

eil33_66 788 1 750 3 2 750 * 3 4

394 2 772 3 1219 772 * 3 93

263 3 - - 7200 - - 7200

eil33_80 773 1 736 3 121 736 * 3 9

387 2 - - 7200 756 * 3 1087

258 3 - - 7200 - - 7200

eil51_50 587 1 559 3 10 559 * 3 14

294 2 - - 7200 562 * 4 108

196 3 - - 7200 - - 7200

eil51_66 576 1 548 4 22 548 * 4 41

288 2 - - 7200 552 * 4 171

192 3 - - 7200 - - 7200

144 4 - - 7200 - - 7200

eil51_80 594 1 565 4 4553 565 * 4 159

297 2 - - 7200 565 * 4 1352

198 3 - - 7200 578 ^ - 7200

149 4 - - 7200 - - 7200

eilA76_50 775 1 - - 7200 738 * 6 237

388 2 - - 7200 738 * 6 458

259 3 - - 7200 741 ^ 6 7200

194 4 - - 7202 - - 7200

155 5 - - 7200 - - 7200

130 6 - - 7200 - - 7200

eilA76_66 807 1 - - 7200 768 * 7 2450

158

Name

𝑻𝟏

Tnb

CPLEX CSMH Algorithm

Optimal

Sol.

No. R. Time (s) Sol. No. R. Time (s)

404 2 - - 7200 768 * 7 6178

269 3 - - 7200 775 ^ 7 7200

202 4 - - 7200 784 ^ 8 7200

162 5 - - 7200 - - 7200

135 6 - - 7200 - - 7200

116 7 - - 7200 781 ^ - 7200

eilA76_80 821 1 - - 7200 781 ^ 8 7200

411 2 - - 7200 784 ^ 8 7200

274 3 - - 7200 787 ^ 8 7200

206 4 - - 7200 - 8 7200

165 5 - - 7200 - - 7200

137 6 - - 7200 - - 7200

118 7 - - 7200 - - 7200

103 8 - - 7200 - - 7200

eilA101_50 869 1 - - 7200 827 * 5 6143

435 2 - - 7200 842 ^ 5 7200

290 3 - - 7200 - - 7200

218 4 - - 7200 - - 7200

174 5 - - 7200 - - 7200

eilA101_66 889 1 - - 7200 846 * 6 230

445 2 - - 7200 846 * 6 6213

297 3 - - 7200 846 * 6 6544

223 4 - - 7200 - - 7200

178 5 - - 7200 - - 7200

149 6 - - 7200 - - 7200

eilA101_80 902 1 - - 7200 859 ^ 7 7200

451 2 - - 7200 858 ^ 7 7200

301 3 - - 7200 864 ^ 7 7200

226 4 - - 7200 - - 7200

181 5 - - 7200 - - 7200

151 6 - - 7200 - - 7200

129 7 - - 7200 - - 7200

159

Table 6.8: Detailed comparison results of the CSMH vs CPLEX for the Data set-1 (𝑻𝟐)

Name

𝑻𝟐

Tnb

CPLEX CSMH Algorithm

Optimal

Sol.

No. R. Time (s) Sol. No. R. Time

(s)

eil22_50 408 1 371 3 1 371 * 3 2

204 2 375 3 2 375 * 3 4

137 3 378 3 1 378 * 3 4

eil22_66 403 1 366 3 1 366 * 3 3

201 2 382 4 2 382 * 4 7

134 3 366 3 1 366 * 3 3

eil22_80 413 1 375 3 3 375 * 3 4

206 2 378 4 9 378 * 4 23

138 3 381 3 24 381 * 3 24

eil23_50 745 1 677 3 1 677 * 3 2

372 2 689 3 2 689 * 3 3

248 3 716 3 2 716 * 3 4

eil23_66 704 1 640 3 1 640 * 3 2

352 2 640 3 1 640 * 3 4

235 3 - - 7200 694 ^ 3 3671

eil23_80 685 1 623 2 1 623 * 2 2

343 2 631 2 1 631 * 2 3

eil30_50 551 1 501 2 1 501 * 2 3

276 2 501 2 1 501 * 2 4

eil30_66 591 1 537 3 3 537 * 3 6

296 2 552 3 3451 552 * 3 20

197 3 538 3 2 538 * 3 25

eil30_80 565 1 514 3 11 514 * 3 8

283 2 535 3 5519 535 * 3 6452

188 3 518 3 1426 518 * 3 152

eil33_50 812 1 738 3 1 738 * 3 4

406 2 741 3 2 741 * 3 7

271 3 803 ^ - 7200 - - 7200

eil33_66 825 1 750 3 12 750 * 3 4

413 2 767 3 109 767 * 3 44

275 3 - - 7200 - - 7200

eil33_80 810 1 736 3 136 736 * 3 7

405 2 - - 7200 756 * 3 1144

270 3 - - 7200 - - 7200

eil51_50 615 1 559 3 11 559 * 3 12

308 2 560 4 67 560 * 4 90

205 3 564 4 67 564 * 4 595

eil51_66 603 1 548 4 12 548 * 4 14

302 2 548 4 56 548 * 4 35

201 3 - - 7200 772 * 5 7200

151 4 - - 7200 - - 7200

eil51_80 622 1 565 4 78 565 * 4 72

311 2 - - 7200 565 * 4 208

208 3 - - 7200 578 ^ 5 7200

156 4 - - 7200 579 ^ 5 7200

eilA76_50 812 1 - - 7200 738 * 6 278

406 2 - - 7200 738 * 6 940

160

Name

𝑻𝟐

Tnb

CPLEX CSMH Algorithm

Optimal

Sol.

No. R. Time (s) Sol. No. R. Time

(s)

271 3 - - 7201 741 ^ 6 7200

203 4 - - 7202 - - 7200

163 5 - - 7200 - - 7200

136 6 - - 7200 - - 7200

eilA76_66 845 1 - - 7200 768 * 7 2412

423 2 - - 7200 768 * 7 5345

282 3 - - 7200 772 ^ 7 7200

212 4 - - 7200 769 ^ 7 7200

169 5 - - 7200 - - 7200

141 6 - - 7200 - - 7200

121 7 - - 7200 - - 7200

eilA76_80 860 1 - - 7200 781 ^ 8 7200

430 2 - - 7200 781 ^ 8 7200

287 3 - - 7200 783 ^ 8 7200

215 4 - - 7200 783 ^ 8 7200

172 5 - - 7200 783 ^ 8 7200

144 6 - - 7200 - - 7200

123 7 - - 7200 - - 7200

108 8 - - 7200 - - 7200

eilA101_50 910 1 - - 7200 827 * 5 2209

455 2 - - 7200 833 ^ 5 7200

304 3 - - 7200 848 ^ 5 7200

228 4 - - 7200 - - 7200

182 5 - - 7200 - - 7200

eilA101_66 931 1 846 6 268 846 * 6 300

466 2 - - 7200 846 * 6 5364

311 3 - - 7200 846 * 6 7200

233 4 - - 7200 868 ^ 6 7200

187 5 - - 7200 - - 7200

156 6 - - 7200 - - 7200

eilA101_80 945 1 - - 7200 858 ^ 7 7200

473 2 - - 7200 858 ^ 7 7200

315 3 - - 7200 865 ^ 7 7200

237 4 - - 7200 863 ^ 7 7200

189 5 - - 7200 - - 7200

158 6 - - 7200 - - 7200

135 7 - - 7200 - - 7200

161

Table 6.9: Comparison of the lower bounds produced by CPLEX and CSMH for 𝑻𝟏 and

𝑻𝟐

𝑻𝟏 𝑻𝟐

Optimal

Sol.

CPLEX CSMS Optimal

Sol.

CPLEX CSMH

LB %Gap LB %Gap LB %Gap LB %Gap

371 367.5294 0.94% 354.5515 4.43% 371 370.6087 0.11% 354.5515 4.43%

378 368.0119 2.64% 376.9945 0.27% 375 374.0333 0.26% 372.2941 0.72%

366 364.9640 0.28% 343.1949 6.23% 378 364.4367 3.59% 367.7167 2.72%

382 366.0000 4.19% 375.5642 1.68% 366 364.7095 0.35% 343.1949 6.23%

375 362.1650 3.42% 364.8797 2.70% 382 366.0000 4.19% 371.0000 2.88%

378 364.9665 3.45% 367.1494 2.87% 366 366.0000 0.00% 360.6417 1.46%

381 369.0667 3.13% 374.0939 1.81% 375 358.9261 4.29% 365.3228 2.58%

677 677.0000 0.00% 640.4404 5.40% 378 362.2288 4.17% 371.6156 1.69%

698 671.8600 3.74% 677.2488 2.97% 381 364.9274 4.22% 372.9394 2.12%

640 633.1636 1.07% 612.5018 4.30% 677 677.0000 0.00% 640.4404 5.40%

640 635.5000 0.70% 629.2119 1.69% 689 680.0000 1.31% 677.0000 1.74%

623 618.0870 0.79% 599.1210 3.83% 716 682.1268 4.73% 704.2018 1.65%

634 613.3380 3.26% 620.8261 2.08% 640 640.0000 0.00% 612.5018 4.30%

501 500.3902 0.12% 501.0000 0.00% 640 631.5000 1.33% 624.9952 2.34%

537 511.3725 4.77% 537.0000 0.00% 694 662.4548 4.55% 637.6332 8.12%

552 537.0000 2.72% 538.0000 2.54% 623 617.8667 0.82% 599.1210 3.83%

514 474.9762 7.59% 514.0000 0.00% 631 614.5388 2.61% 622.6453 1.32%

535 459.3289 14.14% 465.5482 12.98% 501 500.3902 0.12% 467.5271 6.58%

518 460.3190 11.14% 510.8803 1.37% 501 501.0000 0.00% 489.5667 2.28%

738 738.0000 0.00% 738.0000 0.00% 537 510.3183 4.97% 520.5895 3.06%

750 732.7999 2.29% 723.3959 3.55% 552 538.0355 2.53% 548.3510 0.66%

772 757.8079 1.84% 768.0827 0.51% 538 534.6250 0.63% 526.5343 2.13%

736 733.8901 0.29% 730.2669 0.78% 514 482.8207 6.07% 495.0307 3.69%

756 720.3275 4.72% 754.4379 0.21% 535 468.6333 12.40% 514.6325 3.81%

559 552.1063 1.23% 554.6452 0.78% 518 500.1891 3.44% 514.6487 0.65%

562 550.1111 2.12% 558.9278 0.55% 738 738.0000 0.00% 738.0000 0.00%

548 537.7475 1.87% 547.0163 0.18% 741 736.2820 0.64% 737.5128 0.47%

552 546.1393 1.06% 550.6893 0.24% 750 734.5884 2.05% 721.9751 3.74%

565 553.1885 2.09% 563.1379 0.33% 767 764.4997 0.33% 763.7783 0.42%

565 555.5726 1.67% 563.2845 0.30% 736 716.7393 2.62% 727.3115 1.18%

738 708.2119 4.04% 734.9669 0.41% 756 723.4224 4.31% 754.7114 0.17%

738 721.9806 2.17% 717.7974 2.74% 559 553.6224 0.96% 553.4257 1.00%

768 738.1007 3.89% 761.2526 0.88% 560 550.4380 1.71% 557.3371 0.48%

768 737.9937 3.91% 754.4035 1.77% 564 559.6480 0.77% 562.5770 0.25%

827 799.5710 3.32% 825.8372 0.14% 548 541.1877 1.24% 542.9184 0.93%

846 829.5004 1.95% 842.6713 0.39% 548 546.9363 0.19% 544.2247 0.69%

846 837.3865 1.02% 843.7442 0.27% 565 562.5255 0.44% 561.8438 0.56%

846 826.1638 2.34% 838.9900 0.83% 565 554.3046 1.89% 562.5858 0.43%

- - - - - 738 710.0593 3.79% 735.4884 0.34%

- - - - - 738 722.0668 2.16% 736.4473 0.21%

- - - - - 768 734.9762 4.30% 761.2766 0.88%

- - - - - 768 741.8414 3.41% 754.4035 1.77%

- - - - - 827 801.4182 3.09% 825.6868 0.16%

- - - - - 846 840.8321 0.61% 843.5580 0.29%

- - - - - 846 822.6394 2.76% 843.7442 0.27%

- - - - - 846 831.4000 1.73% 840.2255 0.68%

Grand average %

gap

2.89% 1.90% 2.30% 1.99%

162

Table 6.10: Detailed comparison results of the CSMH vs Two-Level VNS for the Data set-1

(𝑻𝟏)

 Name

𝑻𝟏

Tnb

Two-Level VNS CSMH Algorithm

Sol. No.

R.

Time

(s)

Sol. No.

R.

Time (s)

eil22_50 390 1 371 3 2 371 * 3 2

195 2 378 3 3 378 * 3 3

130 3 390 + 4 3 392 + 3 3

eil22_66 385 1 366 3 5 366 * 3 3

193 2 396 + 4 4 382 * 4 7

129 3 370 + 3 3 375 + 3 5

eil22_80 394 1 375 3 4 375 * 3 4

197 2 378 4 5 378 * 4 10

132 3 381 3 3 381 * 3 105

eil23_50 711 1 677 3 3 677 * 3 3

355 2 711 + 3 2 698 * 3 11

237 3 725 + 3 5 725 + 3 8

eil23_66 672 1 640 3 4 640 * 3 3

336 2 640 3 4 640 * 3 3

224 3 702 + 3 3 702 + 3 4

eil23_80 654 1 623 2 4 623 * 2 2

327 2 634 2 4 634 * 2 3

eil30_50 526 1 501 2 4 501 * 2 6

264 2 507 + 2 3 507 + 2 8

eil30_66 564 1 537 3 6 537 * 3 7

282 2 565 + 3 6 552 * 3 2302

188 3 541 + 3 5 541 + 3 7200

eil30_80 540 1 514 3 6 514 * 3 6

270 2 540 + 3 7 535 * 3 6172

180 3 518 3 6 518 * 3 8

eil33_50 775 1 738 3 5 738 * 3 5

388 2 766 + 3 6 766 + 3 7200

258 3 822 + 3 4 822 + 3 7200

eil33_66 788 1 750 3 9 750 * 3 4

394 2 772 3 8 772 * 3 93

263 3 792 + 3 5 792 + 3 7200

eil33_80 773 1 736 3 6 736 * 3 9

387 2 756 3 9 756 * 3 1087

258 3 766 + 3 5 766 + 3 7200

eil51_50 587 1 559 3 9 559 * 3 14

294 2 568 3 11 562 * 4 108

196 3 574 + 3 10 605 + 4 7200

eil51_66 576 1 548 4 10 548 * 4 41

288 2 552 4 11 552 * 4 171

192 3 577 + 4 11 577 + 4 7200

144 4 583 + 4 10 583 + 4 7200

eil51_80 594 1 565 4 13 565 * 4 159

297 2 565 4 12 565 * 4 1352

198 3 582 5 11 578 ^ 5 7200

163

 Name

𝑻𝟏

Tnb

Two-Level VNS CSMH Algorithm

Sol. No.

R.

Time

(s)

Sol. No.

R.

Time (s)

149 4 592 + 5 11 606 + 4 7200

eilA76_50 775 1 738 6 21 738 * 6 237

388 2 738 6 23 738 * 6 458

259 3 741 6 22 741 ^ 6 7200

194 4 787 + 6 23 787 + 6 7200

155 5 783 + 6 22 784 + 6 7200

130 6 779 + 6 22 780 + 6 7200

eilA76_66 807 1 768 7 23 768 * 7 2450

404 2 768 7 21 768 * 7 6178

269 3 772 7 23 775 ^ 7 7200

202 4 784 8 21 784 ^ 8 7200

162 5 817 + 8 23 821 + 8 7200

135 6 788 + 8 23 800 + 7 7200

116 7 793 + 8 22 793 + 8 7200

eilA76_80 821 1 781 8 23 781 ^ 8 7200

411 2 781 8 23 781 ^ 8 7200

274 3 784 8 22 784 ^ 8 7200

206 4 787 8 23 787 ^ 8 7200

165 5 788 + 8 23 792 + 9 7200

137 6 807 + 9 24 811 + 9 7200

118 7 816 + 8 23 816 + 8 7200

103 8 834 + 8 23 834 + 8 7200

eilA101_50 869 1 827 5 39 827 * 5 6143

435 2 835 5 42 842 ^ 5 7200

290 3 849 + 5 42 864 + 5 7200

218 4 855 + 5 42 870 + 5 7200

174 5 863 + 5 41 863 + 5 7200

eilA101_66 889 1 846 6 43 846 * 6 230

445 2 846 6 41 846 * 6 6213

297 3 846 6 42 846 * 6 6544

223 4 875 + 6 43 881 + 6 7200

178 5 874 + 6 43 874 + 6 7200

149 6 906 + 7 42 907 + 7 7200

eilA101_80 902 1 859 7 42 859 ^ 7 7200

451 2 859 7 45 858 ^ 7 7200

301 3 859 7 45 864 ^ 7 7200

226 4 775 + 7 42 903 + 7 7200

181 5 886 + 7 43 886 + 7 7200

151 6 886 + 7 42 891 + 7 7200

129 7 905 + 7 44 905 + 7 7200

164

Table 6.11: Detailed comparison results of the CSMH vs Two-Level VNS for the Data set-1

(𝑻𝟐)

 Name

𝑻𝟐

Tnb

Two-Level VNS CSMH Algorithm

Sol. No.

R.

Time

(s)

Sol. No.

R.

Time

(s)

eil22_50 408 1 371 3 3 371 * 3 2

204 2 375 3 4 375 * 3 4

137 3 382 + 3 3 378 * 3 4

eil22_66 403 1 366 3 2 366 * 3 3

201 2 385 + 4 3 382 * 4 7

134 3 367 + 3 2 366 * 3 3

eil22_80 413 1 375 3 3 375 * 3 4

206 2 378 4 3 378 * 4 23

138 3 381 3 4 381 * 3 24

eil23_50 745 1 677 3 4 677 * 3 2

372 2 693 + 3 5 689 * 3 3

248 3 716 3 4 716 * 3 4

eil23_66 704 1 640 3 4 640 * 3 2

352 2 640 3 4 640 * 3 4

235 3 696 3 5 694 * 3 3671

eil23_80 685 1 623 2 4 623 * 2 2

343 2 631 2 4 631 * 2 3

eil30_50 551 1 501 2 4 501 * 2 3

276 2 501 2 3 501 * 2 4

eil30_66 591 1 537 3 6 537 * 3 6

296 2 552 + 3 7 552 * 3 20

197 3 538 3 5 538 * 3 25

eil30_80 565 1 514 3 6 514 * 3 8

283 2 535 3 7 535 * 3 6452

188 3 518 3 5 518 * 3 152

eil33_50 812 1 738 3 4 738 * 3 4

406 2 769 3 8 741 * 3 7

271 3 799 + 3 4 799 + 3 7200

eil33_66 825 1 750 3 5 750 * 3 4

413 2 767 3 9 767 * 3 44

275 3 775 + 3 5 786 + 3 7200

eil33_80 810 1 736 3 8 736 * 3 7

405 2 756 3 6 756 * 3 1144

270 3 754 + 3 6 768 + 3 7200

eil51_50 615 1 559 3 10 559 * 3 12

308 2 560 4 9 560 * 4 90

205 3 568 3 11 564 * 4 595

eil51_66 603 1 548 4 10 548 * 4 14

302 2 548 4 11 548 * 4 35

201 3 774 4 10 772 ^ 5 7200

151 4 570 + 4 11 585 + 5 7200

eil51_80 622 1 565 4 11 565 * 4 72

311 2 565 4 10 565 * 4 208

208 3 587 4 10 578 ^ 5 7200

156 4 579 5 10 579 ^ 5 7200

165

 Name

𝑻𝟐

Tnb

Two-Level VNS CSMH Algorithm

Sol. No.

R.

Time

(s)

Sol. No.

R.

Time

(s)

eilA76_50 812 1 738 6 21 738 * 6 278

406 2 738 6 22 738 * 6 940

271 3 738 6 22 741 ^ 6 7200

203 4 767 + 6 22 790 + 6 7200

163 5 775 + 6 24 778 + 6 7200

136 6 762 + 6 21 766 + 6 7200

eilA76_66 845 1 768 7 22 768 * 7 2412

423 2 768 7 21 768 * 7 5345

282 3 772 7 22 772 ^ 7 7200

212 4 769 7 22 769 ^ 7 7200

169 5 790 + 8 23 790 + 8 7200

141 6 783 + 8 22 795 + 7 7200

121 7 777 + 8 22 779 + 8 7200

eilA76_80 860 1 781 8 23 781 ^ 8 7200

430 2 781 8 22 781 ^ 8 7200

287 3 783 8 23 783 ^ 8 7200

215 4 783 8 22 783 ^ 8 7200

172 5 783 8 22 783 ^ 8 7200

144 6 796 + 8 23 802 + 9 7200

123 7 805 + 8 23 817 + 9 7200

108 8 841 + 8 22 843 + 8 7200

eilA101_50 910 1 827 5 41 827 * 5 2209

455 2 827 5 41 833 ^ 5 7200

304 3 855 5 43 848 ^ 5 7200

228 4 847 + 5 42 847 + 5 7200

182 5 851 + 5 42 851 + 5 7200

eilA101_66 931 1 846 6 43 846 * 6 300

466 2 846 6 42 846 * 6 5364

311 3 846 6 43 846 * 6 7200

233 4 868 6 42 868 ^ 6 7200

187 5 862 + 6 43 862 + 6 7200

156 6 904 + 6 44 904 + 6 7200

eilA101_80 945 1 859 7 42 858 ^ 7 7200

473 2 859 7 43 858 ^ 7 7200

315 3 859 7 46 865 ^ 7 7200

237 4 859 7 43 863 ^ 7 7200

189 5 878 + 7 44 889 + 7 7200

158 6 883 + 7 45 903 + 7 7200

135 7 883 + 7 42 903 + 7 7200

166

6.4. Summary

In this chapter we have studied a new class of hybrid methodologies called mat-

heuristics that combines mathematical programming techniques with heuristic methods

to solve CO problems. We have developed a hybrid collaborative sequential mat-

heuristic approach called the CSMH to solve the MT-VRPB. The exact method

approach presented in Chapter 4 is hybridised with the Two-Level VNS algorithm of

Chapter 5. The Two-Level VNS used three phases, i.e., initial solution by a modified

sweep-first-assignment-second approach, improved solution by VNS, and packed

solution by the BPP. Here a fourth phase, i.e., a mathematical model is incorporated in

the Two-Level VNS algorithm to find optimal/better solution for the MT-VRPB. The

overall performance of the CSMH remained very encouraging in terms of the solution

quality and the average time taken. Comparing with the methodologies developed in the

previous chapters (i.e., CPLEX and the Two-Level VNS meta-heuristic), the CSMH

produced much better results on almost all fronts. As compared to CPLEX, it produced

a higher number of optimal solutions and tighter lower bounds while spending a

relatively much lower computation time. Comparing with the Two-Level VNS it also

produced better quality solutions with a higher number of optimal/incumbent solutions,

at the expense of requiring a larger computing time as one may expect.

167

Chapter 7

Adaptation of the Two-Level VNS and

Mat-heuristic to the VRPB and the MT-

VRP

In this chapter we investigate two special cases of the MT-VRPB namely, the Vehicle

Routing Problem with Backhauls (VRPB) and the Multiple Trip Vehicle Routing

Problem (MT-VRP). The Two-Level VNS and the CSMH algorithms developed for the

MT-VRPB in Chapter 5 and Chapter 6 are adapted to solve the VRPB and the MT-VRP

separately. The results produced by the Two-Level VNS and the CSMH algorithms are

compared with the best published solutions of the benchmark instances of these

problems from the literature. Our implementations show that the Two-Level VNS

algorithm is easy to adapt to other variants of the VRP and the mat-heuristic is a

powerful algorithm for solving a variety of VRPs.

7.1. The case of the VRPB

The VRPB is already explained along with the literature review in Chapters 2 and 3. In

this section we adapt our approaches to solve the VRPB efficiently and to test the

methodologies developed in Chapters 4, 5 and 6.

168

7.1.1. VRPB Formulation

The VRPB formulation is adapted from our MT-VRPB formulation presented in

Chapter 4. This is a three-indexed commodity flow formulation. Before this Toth and

Vigo (1997) and Mingozzi at el. (1999) provided two-indexed ILP formulations for

their proposed exact methodologies for the VRPB.

Notations:

Sets

{0} the depot (single depot)

L the set of linehaul customers

B the set of backhaul customers

𝐾 the set of vehicles

Input Variables

𝑑𝑖𝑗 the distance between customers 𝑖 and 𝑗 (𝑖 ∈ {0} ∪ 𝐿 ∪ 𝐵, 𝑗 ∈ {0} ∪ 𝐿 ∪ 𝐵)

𝑞𝑖 the demand of customer 𝑖 (such that 𝑖 ∈ 𝐿 for a delivery demand and 𝑖 ∈ 𝐵 for a

pickup demand)

Other Parameters

𝐶 vehicle capacity

Decision Variables

𝑥𝑖𝑗𝑘 = {
 1, if vehicle 𝑘 travels from locaton 𝑖 directly to location 𝑗;
0, otherwise

169

𝑅𝑖𝑗 = is the amount of delivery or pickup on board on arc 𝑖𝑗

Minimise Z = ∑ ∑ ∑ 𝑑𝑘∈𝐾 𝑖𝑗
𝑥𝑖𝑗𝑘𝑗∈{0}∪𝐿∪𝐵𝑖∈{0}∪𝐿∪𝐵 (7.1)

Subject to ∑ ∑ 𝑥𝑗𝑖𝑘𝑘∈𝐾 = 1𝑗∈{0}∪𝐿∪𝐵 𝑖 ∈ 𝐿 ∪ 𝐵 (7.2)

 ∑ ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 = 1𝑗∈{0}∪𝐿∪𝐵 𝑖 ∈ 𝐿 ∪ 𝐵 (7.3)

 ∑ 𝑥𝑗𝑖𝑘𝑗∈{0}∪𝐿∪𝐵 = ∑ 𝑥𝑖𝑗𝑘𝑗∈{0}∪𝐿∪𝐵 𝑖 ∈ 𝐿 ∪ 𝐵, ∀ 𝑘 ∈ 𝐾 (7.4)

 ∑ 𝑅𝑖𝑗 − 𝑞𝑗𝑖∈{0}∪𝐿 = ∑ 𝑅𝑗𝑖𝑖∈{0}∪𝐿∪𝐵 𝑗 ∈ 𝐿 (7.5)

 ∑ 𝑅𝑖𝑗 + 𝑞𝑗𝑖∈𝐿∪𝐵 = ∑ 𝑅𝑗𝑖𝑖∈{0}∪𝐵 𝑗 ∈ 𝐵 (7.6)

 𝑅𝑖𝑗 ≤ 𝐶 ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 𝑖 ∈ 𝐿 ∪ 𝐵, 𝑗 ∈ 𝐿 ∪ 𝐵; ∀ 𝑘 ∈ 𝐾 (7.7)

∑ 𝑥0𝑗𝑘 = 1𝑗∈𝐿 ∀ (𝑘 ∈ 𝐾) (7.8)

 𝑅𝑖𝑗 = 0 𝑖 ∈ 𝐿, 𝑗 ∈ 𝐵 ∪ {0} (7.9)

 𝑥𝑖𝑗𝑘 = 0 𝑖 ∈ 𝐵, 𝑗 ∈ 𝐿 , 𝑘 ∈ 𝐾 (7.10)

 𝑥0𝑗𝑘 = 0 𝑗 ∈ 𝐵 , 𝑘 ∈ 𝐾 (7.11)

 𝑅𝑖𝑗 ≥ 0 𝑖 ∈ {0} ∪ 𝐿 ∪ 𝐵, 𝑗 ∈ 𝐿 ∪ 𝐵 (7.12)

 𝑥𝑖𝑗𝑘 = 0,1
 𝑖 ∈ {0} ∪ 𝐿 ∪ 𝐵, 𝑗 ∈ {0} ∪ 𝐿 ∪ 𝐵

𝑘 ∈ 𝐾
 (7.13)

Equation (7.1) illustrates the objective function representing the total distance travelled.

Constraints (7.2) and (7.3) ensure that every customer is served exactly once (every

customer has an incoming arc and every customer has an outgoing arc). Constraint (7.4)

170

states that the number of times vehicle 𝑘 enters into customer 𝑖 is the same as the

number of times it leaves customer 𝑖. The vehicle load variation on a route is ensured by

Constraints (7.5) and (7.6) for linehaul and backhaul customers respectively. Inequality

(7.7) imposes the maximum vehicle capacity constraint. Inequality (7.8) imposes

restrictions on every vehicle to be used once. Constraints (7.9) restricts that a load

cannot be carried from a linehaul customer to a backhaul customer or to the depot.

Constraints (7.10) and (7.11) impose a restriction that a vehicle cannot travel from a

backhaul to a linehaul customer and neither can it travel directly from depot to a

backhaul customer. Inequality (7.12) sets 𝑅𝑖𝑗 as a non-negative variable. Finally, in

(7.13) the decision variable 𝑥𝑖𝑗𝑘 is set as zero-one variable.

The validity of the mathematical formulation of the VRPB is checked using the IBM

ILOG CPLEX 12.5. Hence it was implemented in CPLEX and it proved valid when

tested on some VRPB benchmark instances.

Model variants:

Moreover, the above VRPB formulation can be relaxed from fixed fleet restriction by

changing the precedence Constraint (7.8) by replacing = to ≤ instead, see (7.14).

∑ 𝑥0𝑗𝑘 ≤ 1𝑗∈𝐿 ∀ (𝑘 ∈ 𝐾) (7.14)

Furthermore, we can allow backhaul only routes by removing Constraint (7.11) and

replacing Constraint (7.8) to Constraint (7.15).

∑ 𝑥0𝑗𝑘 ≤ 1𝑗∈𝐿∪𝐵 ∀ (𝑘 ∈ 𝐾) (7.15)

171

7.1.2. The Two-Level VNS Algorithm for the VRPB

In Chapter 5, the VRPB was solved with free fleet (without imposing fixed fleet

constraint) for the MT-VRPB. As explained in Chapter 3 the classical VRPB is studied

in the literature mainly with the fixed fleet constraint. Since the MT-VRPB required

multi-trip aspect this constraint was relaxed. However, here we would like to test if the

Two-Level VNS algorithm is viable for the VRPB with fixed fleet utilization. Details of

the implementation are provided in the following subsections.

The Two-Level VNS algorithm is already elaborated in Section 5.2 in detail; for ease,

here we present the algorithm and its components with any implementation differences

as shown in Figure 7.1.

Phase I: Initial solution - sweep-first-assignment-second approach

1. Generate LH and BH open-ended routes using the sweep

2. Create a distance matrix of end nodes from open-ended routes

3. Solve the assignment problem by calling CPLEX (see Section 5.2 for 1, 2 &

3)

4. Impose fixed fleet utilization steps if required to obtain an initial feasible

solution 𝑥.

Phase II: Two-Level VNS Algorithm

 Set: 𝑖𝑡𝑒𝑟 = 1 and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 400

 Repeat the process while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥

Start outer-level

Let: 𝐿𝑆𝑘
𝑂 =< 𝑅3, 𝑅4, 𝑅5 > set of refinement routines for the outer-level

Set: 𝑘 = 1

Repeat the process while 𝑘 ≤ 𝑁𝑘𝑚𝑎𝑥

𝐼

a.1: Generate a neighbouring solution 𝑥′ ∈ 𝑁𝑘
𝑂(𝑥) at random;

172

a.2: Apply 𝐿𝑆𝑘
𝑂 on neighbouring solution 𝑥′ to improve it

a.3: Assign the resulting solution 𝑥′ to 𝑥′𝑏𝑒𝑠𝑡 [𝑥′𝑏𝑒𝑠𝑡 = 𝑥′]

a.4: Start inner-level uses 𝑥′𝑏𝑒𝑠𝑡

Let: 𝐿𝑆𝑙
𝐼 =< {𝑅1& 𝑅6}, {𝑅2& 𝑅6}, {𝑅3& 𝑅6}, {𝑅4& 𝑅6}, {𝑅5& 𝑅6} >

Set: 𝑙 = 1

Repeat the process while 𝑙 ≤ 𝑁𝑙𝑚𝑎𝑥

𝐼

a.4(1): Generate a neighbouring solution 𝑥′′ ∈ 𝑁𝑙
𝐼(𝑥′𝑏𝑒𝑠𝑡) at random

a.4(2): Apply 𝐿𝑆𝑙
𝐼 [Multi-Layer local search optimiser framework] on

the neighbouring solution 𝑥′′

a.4(3): Assign the resulting solution 𝑥′′ to 𝑥′′𝑏𝑒𝑠𝑡 [𝑥′′𝑏𝑒𝑠𝑡 = 𝑥′′]

a.4(4): If 𝑥′′𝑏𝑒𝑠𝑡 < 𝑥′𝑏𝑒𝑠𝑡 then 𝑥′𝑏𝑒𝑠𝑡 = 𝑥′′𝑏𝑒𝑠𝑡, set 𝑙 = 1 and got to

a.4(1)

Else set 𝑙 = 𝑙 + 1 and got to a.4(1)

a.5: If 𝑥′𝑏𝑒𝑠𝑡 < 𝑥 then 𝑥 = 𝑥′𝑏𝑒𝑠𝑡; set 𝑘 = 1 and go to a.1

Else set 𝑘 = 𝑘 + 1 and go to a.1

Figure 7.1: Algorithmic steps of the Two-Level VNS for VRPB

Initial solution: (Phase I)

The initial solution for the VRPB is obtained by using the sweep-first-assignment-

second developed for the MT-VRPB in Section 5.2. The sweep phase of the sweep-first-

assignment-second procedure builds sets of open ended LH and BH routes. The LH/BH

route matrix is then balanced by adding dummy LH/BH routes, if needed, containing

the depot only, before solving the assignment problem to obtain the optimal matching of

the combined LH/BH routes. Note that if the solution is not feasible in terms of the

precedence backhauling constraints (explained in Section 3.1) then it can be amended

by moving customers among routes before passing it on to the VNS stage of the

algorithm. However this situation did not arise in solving the instances of the VRPB

173

data sets in this thesis. The initial solution obtained at this stage is feasible for the ‘free

fleet VRPB’ but not necessarily feasible for the ‘constrained VRPB’ with the condition

of using a given fixed fleet that must be utilised. Hence, the ‘free fleet VRPB’ initial

solution is scrutinized for the ‘constrained VRPB’ condition; if the solution is found not

to be complying with the fixed fleet condition, then a procedure is used to overcome this

difficulty as follows.

Fixed Fleet utilization procedure:

In the cases where, in a problem instance, the number of routes in the matched sweep-

first-assignment-second solution is less than the given number of vehicles then empty

dummy vehicle routes equivalent to the unassigned vehicles are added to the solution

with no extra cost at this stage. And in cases where the number of routes in a problem

instance solution is greater than the given fleet size then the additional routes (with least

number of customers) are eliminated by moving customers from those routes and

feasibly best inserted to other routes of the solution. Note that the process of re-locating

customers may not be smooth in some cases due to large demands of some customers

and the vehicle capacity constraints. In the case where such large customers could not

be feasibly inserted into any of the other routes, then a route with the largest unused

capacity is selected and some of its customers are moved to other routes before inserting

the large customer to this route.

174

Neighbourhoods: (Phase II)

The Two-Level VNS algorithm for the VRPB also uses all the six neighbourhoods,

described in Section 5.3, in the same order.

Multi-Layer local search optimiser framework:

The multi-layer local search optimiser framework including the local search

refinements, described in Section 5.4, are also unchanged for the VRPB in the Two-

Level VNS algorithm.

BPP: The Bin Packing aspect is not needed here and therefore that phase is made void.

7.1.2.1. Details of the VRPB Computations and the Data sets

The Two-Level VNS algorithm and the initial solution design are implemented in C++

programming within the Microsoft Visual Studio Environment and the experiments

were executed on a PC with Intel(R) Core(TM) i7-2600 processor, CPU speed 3.40

GHz.

VRPB Data sets:

The computational results are reported for the two commonly used VRPB benchmark

data sets. The first data set (referred to as data set-2 in this study) was initiated in Toth

and Vigo (1996, 1997). The second data set (referred to as the data set-3 in this study)

was introduced in Goetschalckx and Jacobs-Blecha (1989) and Toth and Vigo (1996,

1997).

175

The date set-2 consisting of 33 instances was generated from 11 classical VRP test

problems from the literature. These instances range in size between 21 and 100

customers. Each VRP problem instance was used to generate three VRPB instances,

each with a linehaul percentage of 50%, 66% and 80%. For further details about the

instances in data set-2, see Toth and Vigo (1996, 1997 and 1999) and Wassan (2007).

The data set-3 consists of total 62 instances ranging in size between 25 and 150

customers with different backhauls percentages of 20%, 33% and 50%. In this data set,

a uniform distribution of the vertex coordinates is done; where for the 𝑥 values [0,

24000] interval is used and interval [0, 32000] is used for the 𝑦 values. The coordinates

[12000, 16000] are used for the depot which is located centrally. For further details

about the instances in data set-3, see Goetschalckx and Jacobs-Blecha (1989), Toth and

Vigo (1996, 1997 and 1999) and Wassan (2007). Note that all these data sets can be

downloaded from CLHO.

The Two-Level VNS algorithm is run for a fixed number of iterations (i.e., 400

iterations) to test each VRPB problem instance of the data set-2 and the set-3, which

was empirically deemed acceptable in terms of solution quality and computational time.

The algorithm was tested with different number of iterations on data sets and 400

iterations proved best in terms of solutions quality and computational time.

Glossary for tables:

n= Number of total customers in an instances,

L = Number of linehaul customers,

B = Number of backhaul customers,

176

v = Fixed fleet,

C = Vehicle capacity.

The RPD (Relative Percentage Deviation) is obtained as follows. RPD = (Heuristic

solution – Best known/Best known)*100.

7.1.2.2. Two-Level VNS VRPB Results and Analysis

The Two-Level VNS algorithm produced very competitive results for both data sets

when compared to the best known solutions from the literature, with an overall average

relative percentage deviation ARPD (Average Relative Percentage Deviation) of 0.00

and 0.06 from the best known solution for the set-2 and the set-3, respectively.

Comparison of the Two-Level VNS with some recent algorithms:

The performance of our Two-level VNS algorithm is compared with the best algorithms

from the literature which include RTS-AMP (reactive tabu adaptive memory

programming search of Wassan, 2007), MACS (multi-ant colony system of Gajpal and

Abad, 2009), RPA (route promise methodology of Zachariadis and Kiranoudis, 2012)

and ILS (iterated local search algorithm of Cuervo et al., 2014). Table 7.1 shows the

information about some of the recent algorithms including the Two-Level VNS and their

corresponding number of runs used in our comparisons.

It may not be possible to conduct a fair comparison of the algorithms with different

number of runs, as the execution times for each run, different machines, etc. may differ.

Nevertheless, we shall present results with basic explanation of the variations.

177

Table 7.1: Processor used and the number of runs for the published algorithms and the

proposed Two-Level VNS

Algorithm Processor Runs

RTS-AMP: Wassan (2007) 50 MHz. Sun Sprac1000 5

MACS: Gajpal and Abad (2009) 2.40 GHz. Intel Xeon 8

RPA: Zachariadis and Kiranoudis (2012) 1.66 GHz. Intel Core 2 duo 10

ILS: Cuervo et al. (2014) 2.93 GHz. Intel Core i7 10

Two-Level VNS/CSMH 3.40 GHz. Intel Core i7 5/1

The performance analysis summaries of these algorithms for the data set-2 and the data

set-3 are provided in Table 7.2 and Table 7.3 respectively. The columns in both tables

show the number of best known matched solutions, the average solution cost, the

overall average of the relative percentage deviations (RPD) from the best known

solutions and the average execution time taken by each algorithm. It can be observed

from the average results that the Two-Level VNS algorithm is very competitive when

compared to the best existing algorithms. For data set-2, the Two-Level VNS

outperformed two of the algorithms in terms of the number of best known solutions

found and matched with the ILS (2014). For data set-3, it finds very good solutions as

compared to RTS-AMP (2007) and MACS (2009); however RPA (2012) and ILS

(2014) find the maximum number of best known solutions. The detailed results of the

Two-Level VNS vs the best known solutions are provided in Table 7.4 and Table 7.5 for

the set-2 and the set-3, respectively. We can fairly claim that the proposed Two-Level

VNS is an efficient and flexible enough performer that competes favourably against the

powerful meta-heuristics that were specifically proposed for such particular problem.

178

Table 7.2: Comparison of the best VRPB algorithms with Two-Level VNS (data set-2)

Algorithm Runs
Best sol.

(out of 33)

Avg. best sol.

Cost
Avg. RPD

Avg. time

(s)

RTS-AMP (2007) 5 21 706.49 0.80 608.11

MACS (2009) 8 28 701.49 0.09 25.65

RPA (2012) - - - - -

ILS (2014) 10 33 700.63 0.00 7.35

Two-Level VNS 5 33 700.63 0.00 29.29

Table 7.3: Comparison of the Two-Level VNS with the best algorithms (data set-3)

Algorithm Runs
Best sol.

(out of 62)

Avg. best sol.

Cost
Avg. RPD

Avg. time

(s)

RTS-AMP (2007) 5 40 290981.84 0.11 1835.98

MACS (2009) 8 46 290838.73 0.07 67.57

RPA (2012) 10 62 290576.06 0.00 246.89

ILS (2014) 10 62 290576.22 0.00 22.89

Two-Level VNS 5 51 290796.24 0.06 43.24

179

Table 7.4: Detailed results of the Two-Level VNS vs the Best-known (data set-2)

Name n L B v C Best

Known

Two-Level

VNS

RPD

 eil22_50 21 11 10 3 6000 371 371 0.00

eil22_66 21 14 7 3 6000 366 366 0.00

eil22_80 21 17 4 3 6000 375 375 0.00

 eil23_50 22 11 11 2 4500 682 682 0.00

eil23_66 22 15 7 2 4500 649 649 0.00

eil23_80 22 18 4 2 4500 623 623 0.00

 eil30_50 29 15 14 2 4500 501 501 0.00

eil30_66 29 20 9 3 4500 537 537 0.00

eil30_80 29 24 5 3 4500 514 514 0.00

 eil33_50 32 16 16 3 8000 738 738 0.00

eil33_66 32 22 10 3 8000 750 750 0.00

eil33_80 32 26 6 3 8000 736 736 0.00

 eil51_50 50 25 25 3 160 559 559 0.00

eil51_66 50 34 16 4 160 548 548 0.00

eil51_80 50 40 10 4 160 565 565 0.00

 eilA76_50 75 37 38 6 140 739 739 0.00

eilA76_60 75 50 25 7 140 768 768 0.00

eilA76_80 75 60 15 8 140 781 781 0.00

 eilB76_50 75 37 38 8 100 801 801 0.00

eilB76_66 75 50 25 10 100 873 873 0.00

eilB76_80 75 60 15 12 100 919 919 0.00

 eilC76_50 75 37 38 5 180 713 713 0.00

eilC76_66 75 50 25 6 180 734 734 0.00

eilC76_80 75 60 15 7 180 733 733 0.00

 eilD76_50 75 37 38 4 220 690 690 0.00

eilD76_66 75 50 25 5 220 715 715 0.00

eilD76_80 75 60 15 6 220 694 694 0.00

 eilA101_50 100 50 50 4 200 831 831 0.00

eilA101_66 100 67 33 6 200 846 846 0.00

eilA101_80 100 80 20 6 200 856 856 0.00

 eilB101_50 100 50 50 7 112 923 923 0.00

eilB101_66 100 67 33 9 112 983 983 0.00

eilB101_80 100 80 20 11 112 1008 1008 0.00

180

Table 7.5: Detailed results of the Two-Level VNS vs the Best-known (data set-3)

Name n L B C v Best known

Solution

Two-level VNS

Solution

RPD

A1 25 20 5 1550 8 229885.65 229885.65 0.00

A2 25 20 5 2550 5 180119.21 180119.21 0.00

A3 25 20 5 4050 4 163405.38 163405.38 0.00

A4 25 20 5 4050 3 155796.41 155796.41 0.00

B1 30 20 10 1600 7 239080.16 239080.16 0.00

B2 30 20 10 2600 5 198047.77 198047.77 0.00

B3 30 20 10 4000 3 169372.29 169372.29 0.00

C1 40 20 20 1800 7 250556.77 250556.77 0.00

C2 40 20 20 2600 5 215020.23 215020.23 0.00

C3 40 20 20 4150 5 199345.96 199345.96 0.00

C4 40 20 20 4150 4 195366.63 195366.63 0.00

D1 38 30 8 1700 12 322530.13 322530.13 0.00

D2 38 30 8 1700 11 316708.86 316708.86 0.00

D3 38 30 8 2750 7 239478.63 239478.63 0.00

D4 38 30 8 4075 5 205831.94 205831.94 0.00

E1 45 30 15 2650 7 238879.58 238879.58 0.00

E2 45 30 15 4300 4 212263.11 212263.11 0.00

E3 45 30 15 5225 4 206659.17 206659.17 0.00

F1 60 30 30 3000 6 263173.96 263173.96 0.00

F2 60 30 30 3000 7 265214.16 265214.16 0.00

F3 60 30 30 4400 5 241120.78 241120.78 0.00

F4 60 30 30 5500 4 233861.85 233861.85 0.00

G1 57 45 12 2700 10 306305.40 306305.40 0.00

G2 57 45 12 4300 6 245440.99 245440.99 0.00

G3 57 45 12 5300 5 229507.48 229507.48 0.00

G4 57 45 12 5300 6 232521.25 232521.25 0.00

G5 57 45 12 6400 5 221730.35 221730.35 0.00

G6 57 45 12 8000 4 213457.45 213457.45 0.00

H1 68 45 23 4000 6 268933.06 268933.06 0.00

H2 68 45 23 5100 5 253365.50 253365.50 0.00

H3 68 45 23 6100 4 247449.04 247449.04 0.00

H4 68 45 23 6100 5 250220.77 250220.77 0.00

H5 68 45 23 7100 4 246121.31 246121.31 0.00

H6 68 45 23 7100 5 249135.32 249135.32 0.00

I1 90 45 45 3000 10 350245.28 350245.28 0.00

I2 90 45 45 4000 7 309943.84 309943.84 0.00

I3 90 45 45 5700 5 294507.38 294507.38 0.00

I4 90 45 45 5700 6 295988.45 295988.45 0.00

I5 90 45 45 5700 7 301236.01 301236.01 0.00

J1 94 75 19 4400 10 335006.68 335006.68 0.00

J2 94 75 19 5600 8 310417.21 310417.21 0.00

J3 94 75 19 8200 6 279219.21 279219.21 0.00

J4 94 75 19 6600 7 296533.16 296533.16 0.00

K1 113 75 38 4100 10 394071.17 394375.63 0.08

K2 113 75 38 5200 8 362130.00 362130.00 0.00

K3 113 75 38 5200 9 365694.08 365694.08 0.00

K4 113 75 38 6200 7 348949.39 348949.39 0.00

L1 150 75 75 4400 10 417896.72 417943.82 0.01

L2 150 75 75 5000 8 401228.80 401228.80 0.00

L3 150 75 75 5000 9 402677.72 403639.75 0.24

L4 150 75 75 6000 7 384636.33 384636.33 0.00

L5 150 75 75 6000 8 387564.55 387564.55 0.00

M1 125 100 25 5200 11 398593.19 398869.79 0.07

M2 125 100 25 5200 10 396916.97 397786.41 0.22

M3 125 100 25 6200 9 375695.42 377315.94 0.43

M4 125 100 25 8000 7 348140.16 348140.16 0.00

N1 150 100 50 5700 11 408100.62 408100.62 0.00

N2 150 100 50 5700 10 408065.44 408111.91 0.01

N3 150 100 50 6600 9 394337.86 397621.99 0.83

N4 150 100 50 6600 10 394788.36 398330.35 0.90

N5 150 100 50 8500 7 373476.30 373723.37 0.07

N6 150 100 50 8500 8 373758.65 376200.31 0.65

181

7.1.3. Solving the VRPB with Mat-heuristic (CSMH algorithm)

The CSMH algorithm methodology proposed in Chapter 6 is adapted for the VRPB.

Here, as explained in Section 7.1.2, the initial solution is generated and the fixed fleet

constraint is imposed in Phase I of the algorithm. In Phase II, the Two-Level VNS is

used first to obtain the best solution (note that Phase II is run single time) followed by

Phase III where VRPB mathematical formulation model that uses CPLEX optimiser is

used (replacing the MT-VRPB formulation implemented in Chapter 6) to obtain the

optimal or improved incumbent solution.

Computational experience

The CSMH methodology is implemented with the same programming language and the

computer specifications as in Chapter 6.

The computational experiments are reported for two VRPB data sets (i.e., see set-2 and

the set-3, see Section 7.1.2.1). For each instance the CSMH algorithm is run for a

maximum CPU time of 2 hours (7200 seconds) for all the three phases. Since the Two-

Level VNS is fairly quick, within this time, the Phase II is run for 200 iterations. Note

that the Two-Level VNS is run one time before the CPLEX optimiser is called.

Glossary for tables:

VNS Sol. = Solution obtained by Two-Level VNS,

Opt. Sol. = Optimal solution,

Incum. Sol. = Incumbent solution,

UB = Upper Bound,

LB = Lower Bound,

182

%Gap = % gap between optimal/incumbent solution and lower bound,

Time (s) = CPU time in seconds taken to reach the solution.

7.1.3.1. CSMH VRPB Results and Analysis

The CSMH algorithm performed well and produced very competitive results for both

data sets. When compared with the best known solutions from the literature, it produced

results with overall ARPB of 0.06 and 0.09 for the set-2 and the set-3, respectively.

Comparison of the CSMH with the Two-Level VNS and some recent algorithms:

The performance of the CSMH algorithm is compared with the Two-Level VNS

algorithm as well as some best published algorithms described earlier. Please see Table

7.1 for the Processor information for the algorithms compared below; for CSMH

algorithm same machine is used as of Two-Level VNS. The performance analysis

summaries of these algorithms for the data set-2 and the data set-3 are provided in Table

7.6 and Table 7.7 respectively. The columns in both tables show the number of runs the

respective algorithms were executed, the number of best known matched solutions, the

average solution cost, the overall average of the relative percentage deviations (RPD)

from the best known solutions and the average execution time taken by each algorithm.

Table 7.6: Comparison of the CSMH with the Two-Level VNS and the best VRPB

algorithms in the literature (data set-2)

Algorithm Runs
Best sol.

(out of 33)

Avg. best sol.

Cost
Avg. RPD

Avg. time

(s)

RTS-AMP (2007) 5 21 706.49 0.80 608.11

MACS (2009) 8 28 701.49 0.09 25.65

RPA (2012) - - - - -

ILS (2014) 10 33 700.63 0.00 7.35

Two-Level VNS 5 33 700.63 0.00 29.29

CSMH 1 29 701.18 0.06 3728.52

183

Table 7.7: Comparison of the CSMH with the Two-Level VNS and the best VRPB

algorithms in the literature (data set-3)

Algorithm Runs # Best sol. (out

of 62)

Avg. best sol.

Cost

Avg. RPD Avg. time

(s)

RTS-AMP (2007) 5 40 290981.84 0.11 1835.98

MACS (2009) 8 46 290838.73 0.07 67.57

RPA (2012) 10 62 290576.06 0.00 246.89

ILS (2014) 10 62 290576.22 0.00 22.89

Two-Level VNS 5 51 290796.24 0.06 43.24

CSMH 1 48 290908.31 0.09 5735.73

Despite the fact that the CSMH algorithm was designed for MT-VRPB, it has produced

encouraging results in terms of solution quality when implemented on the VRPB. Since

the results of the best published algorithms are reported from several different runs, it is

not straight forward to compare the solution quality results. The CSMH however spends

comparatively more time which is due to the fact that the algorithm incorporates both

heuristic and MP aspects. For data set-2, the CSMH algorithm outperformed two of the

algorithms in terms of the number of best known solutions found; however it did not

perform better than Two-Level VNS and ILS (2014). For data set-3, it finds better

solutions when compared with the RTS-AMP (2007) and MACS (2009); however RPA

(2012), ILS (2014) and Two-Level VNS produced the maximum number of best known

solutions. In our opinion relatively inferior performance of the CSMH is due to the

fixed fleet imposition constraint of the classical VRPB. The detailed results of the

CSMH algorithm are provided in Table 7.8 and Table 7.9 for the set-2 and the set-3,

respectively.

184

Table 7.8: Detailed results of the CSMH algorithm (data set-2)

 Name CSMH Algorithm

VNS

Sol.

Opt.

Sol.

Incum.

Sol.

UB LB %Gap Time (s)

eil22_50 371 371 - 371.0000 371.0000 0.00% 1

eil22_66 366 366 - 366.0000 356.3833 2.63% 1

eil22_80 375 375 - 375.0000 356.0640 5.05% 12

eil23_50 682 682 - 682.0000 665.3576 2.44% 2

eil23_66 649 649 - 649.0000 622.8153 4.03% 2

eil23_80 623 623 - 623.0000 590.8078 5.17% 4

eil30_50 501 501 - 501.0000 501.0000 0.00% 4

eil30_66 537 537 - 537.0000 511.3064 4.78% 122

eil30_80 514 514 - 514.0000 492.2562 4.23% 43

eil33_50 738 738 - 738.0000 732.4866 0.75% 5

eil33_66 750 750 - 750.0000 734.0343 2.13% 8

eil33_80 736 736 - 736.0000 719.3315 2.26% 95

eil51_50 560 559 - 559.0000 548.4229 1.89% 119

eil51_66 551 548 - 548.0000 540.4508 1.38% 531

eil51_80 574 565 - 565.0000 553.9328 1.96% 5820

eilA76_50 741 739 - 739.0000 725.4580 1.83% 6733

eilA76_60 773 768 - 768.0000 755.4523 1.63% 5643

eilA76_80 781 - 781 781.0000 738.9720 5.38% 7200

eilB76_50 811 - 801 801.0000 764.4242 4.57% 7200

eilB76_66 873 - 873 873.0000 808.7466 7.36% 7200

eilB76_80 919 - 919 919.0000 869.3950 5.40% 7200

eilC76_50 713 - 713 713.0000 684.8103 3.95% 7200

eilC76_66 734 - 734 734.0000 708.3127 3.50% 7200

eilC76_80 733 - 733 733.0000 703.4388 4.03% 7200

eilD76_50 690 690 - 690.0000 687.1383 0.41% 210

eilD76_66 717 715 - 715.0000 713.8488 0.16% 7200

eilD76_80 696 - 696 696.0000 684.4152 1.66% 7200

eilA101_50 832 - 832 832.0000 808.6934 2.80% 7200

eilA101_66 846 846 - 846.0000 843.7409 0.27% 2886

eilA101_80 868 - 868 868.0000 828.4039 4.56% 7200

eilB101_50 923 - 923 923.0000 870.2547 5.71% 7200

eilB101_66 983 - 983 983.0000 920.6677 6.34% 7200

eilB101_80 1011 - 1011 1011.0000 959.1865 5.12% 7200

185

Table 7.9: Detailed results of the CSMH algorithm (data set-3)

Name

CSMH Algorithm

VNS Sol. Opt. Sol. Incum.

Sol.

UB LB %Gap Time

(s)

A1 229885.65 229885.65 - 229885.65 228283.70 70% 102

A2 180119.21 180119.21 - 180119.21 176777.94 1.86% 14

A3 163405.38 163405.38 - 163405.38 158778.00 2.83% 6

A4 155796.41 155796.41 - 155796.41 151444.26 2.79% 4

B1 239080.16 - 239080.16 239080.16 231751.67 3.07% 7200

B2 198048.77 198048.77 - 198048.77 193238.26 2.43% 14

B3 169372.29 169372.29 - 169372.29 163685.22 3.36% 4

C1 350556.77 - 350556.77 350556.77 228042.37 8.99% 7200

C2 215020.23 - 215020.23 215020.23 209339.42 2.64% 7200

C3 199345.96 199345.96 - 199345.96 192.398.7666 3.48% 38

C4 195366.63 195366.63 - 195366.63 188064.16 3.74% 36

D1 322530.13 - 322530.13 322530.13 303851.93 5.79% 7200

D2 316708.86 - 316708.86 316708.86 290715.54 8.21% 7200

D3 239478.63 - 239478.63 239478.63 223393.60 6.72% 7200

D4 205831.94 - 205831.94 205831.94 192434.94 6.51% 7200

E1 238879.58 - 238879.58 238879.58 134351.75 1.88% 7200

E2 212263.11 - 212263.11 212263.11 206621.09 2.66% 7200

E3 206659.17 206659.17 - 206659.17 206054.83 0.29% 1105

F1 263173.96 - 263173.96 263173.96 245312.54 6.79% 7200

F2 265214.16 - 265214.16 265214.16 254872.20 3.90% 7200

F3 241120.78 241120.78 - 241120.78 240850.28 0.11% 541

F4 233861.85 233861.85 - 233861.85 233425.32 0.19% 466

G1 306305.40 306305.40 306305.40 282699.98 7.71% 7200

G2 245440.99 - 245440.99 245440.99 235855.88 3.90% 7200

G3 229507.48 - 229507.48 229507.48 218424.98 4.83% 7200

G4 232521.25 - 232521.25 232521.25 220434.50 5.20% 7200

G5 221730.35 - 221730.35 221730.35 213122.77 3.88% 7200

G6 213457.45 - 213457.45 213457.45 208343.07 2.40% 7200

H1 268933.06 - 268933.06 268933.06 260229.68 3.24% 7200

H2 253365.50 253365.50 - 253365.50 252543.17 0.32% 318

H3 247449.04 - 247449.04 247449.04 241010.73 2.60% 7200

H4 250220.77 - 250220.77 250220.77 239860.25 4.14% 7200

H5 264121.31 264121.31 - 264121.31 264121.31 0.00% 167

186

Name

CSMH Algorithm

VNS Sol. Opt. Sol. Incum.

Sol.

UB LB %Gap Time

(s)

H6 249135.32 - 249135.32 249135.32 241378.92 3.11% 7200

I1 350567.90 - 350567.90 350567.90 333096.41 4.98% 7200

I2 309943.84 - 309943.84 309943.84 295645.55 4.61% 7200

I3 294833.96 - 294833.96 294833.96 285108.39 3.30% 7200

I4 295988.45 - 295988.45 295988.45 292129.46 1.30% 7200

I5 301236.01 301236.01 - 301236.01 300857.61 0.13% 7200

J1 335006.68 - 335006.68 335006.68 315165.06 5.93% 7200

J2 310417.21 - 310417.21 310417.21 288343.42 7.11% 7200

J3 279219.21 - 279219.21 279219.21 271760.64 2.67% 7200

J4 296533.16 - 296533.16 296533.16 277765.14 6.33% 7200

K1 294071.17 - 294071.17 294071.17 376498.69 4.46% 7200

K2 362360.27 - 362360.27 362360.27 329756.80 9.00% 7200

K3 365694.08 - 365694.08 365694.08 328565.66 10.15% 7200

K4 348949.39 - 348949.39 348949.39 323025.60 7.43% 7200

L1 417896.71 - 417896.71 417896.71 375739.91 10.09% 7200

L2 401228.80 - 401228.80 401228.80 360280.26 10.21% 7200

L3 406873.02 - 406873.02 406873.02 358571.33 11.87% 7200

L4 385615.90 385615.90 385615.90 347057.31 10.00% 7200

L5 387564.55 387564.55 387564.55 345160.55 10.94% 7200

M1 399070.20 - 399070.20 399070.20 372952.55 6.54% 7200

M2 400293.41 400293.41 400293.41 373797.02 6.62% 7200

M3 378921.05 - 378921.05 378921.05 337888.52 10.83% 7200

M4 348437.62 - 348437.62 348437.62 315738.45 9.38% 7200

N1 408100.62 408100.62 408100.62 369544.69 9.45% 7200

N2 409255.06 - 409255.06 409255.06 391009.37 4.46% 7200

N3 394337.86 394337.86 394337.86 353570.42 10.34% 7200

N4 394788.36 394788.36 394788.36 357078.74 9.55% 7200

N5 375100.10 375100.10 375100.10 329286.79 12.21% 7200

N6 378103.04 378103.04 378103.04 335022.98 11.39% 7200

187

7.2. The case of the MT-VRP

The MT-VRP is already explained along with the literature review in Chapters 2 and 3.

In this section we adapt our approaches developed in Chapters 4, 5 & 6 to solve the MT-

VRP.

7.2.1. Formulation of the Basic Case

The MT-VRP formulation is adapted from our MT-VRPB formulation presented in

Chapter 4. This is a three-indexed commodity flow formulation. Before this Mingozzi at

el. (2013) provided two set partitioning based formulations for their proposed exact

methodologies for the MT-VRP.

Notations:

Sets

{0} the depot (single depot)

L the set of customers

𝐾 the set of vehicles

Input Variables

𝑑𝑖𝑗 the distance between customers 𝑖 and 𝑗 (𝑖 ∈ {0} ∪ 𝐿, 𝑗 ∈ {0} ∪ 𝐿)

𝑞𝑖 the demand of customer 𝑖

Other Parameters

𝐶 vehicle capacity

𝑇 planning period (maximum driving time)

188

Decision Variables

𝑥𝑖𝑗𝑘 = {
 1, if vehicle 𝑘 travels from location 𝑖 directly to location 𝑗;
0, otherwise

𝑅𝑖𝑗 = is the amount of goods on board on arc 𝑖𝑗

Minimise Z = ∑ ∑ ∑ 𝑑𝑘∈𝐾 𝑖𝑗
𝑥𝑖𝑗𝑘𝑗∈{0}∪𝐿𝑖∈{0}∪𝐿 (7.16)

Subject to ∑ ∑ 𝑥𝑗𝑖𝑘𝑘∈𝐾 = 1𝑗∈{0}∪𝐿 𝑖 ∈ 𝐿 (7.17)

 ∑ ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 = 1𝑗∈{0}∪𝐿 𝑖 ∈ 𝐿 (7.18)

 ∑ 𝑥𝑗𝑖𝑘𝑗∈{0}∪𝐿 = ∑ 𝑥𝑖𝑗𝑘𝑗∈{0}∪𝐿 𝑖 ∈ 𝐿, ∀ 𝑘 ∈ 𝐾 (7.19)

 ∑ 𝑅𝑖𝑗 − 𝑞𝑗𝑖∈{0}∪𝐿 = ∑ 𝑅𝑗𝑖𝑖∈{0}∪𝐿 𝑗 ∈ 𝐿 (7.20)

 𝑅𝑖𝑗 ≤ 𝐶 ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 𝑖 ∈ 𝐿, 𝑗 ∈ 𝐿; ∀ 𝑘 ∈ 𝐾 (7.21)

 ∑ ∑ 𝑑𝑖𝑗𝑗∈{0}∪𝐿𝑖∈{0}∪𝐿 𝑥𝑖𝑗𝑘 ≤ 𝑇 ∀ 𝑘 ∈ 𝐾 (7.22)

 𝑅𝑖𝑗 ≥ 0 𝑖 ∈ {0} ∪ 𝐿, 𝑗 ∈ 𝐿 (7.23)

 𝑥𝑖𝑗𝑘 = 0,1
 𝑖 ∈ {0} ∪ 𝐿, 𝑗 ∈ {0} ∪ 𝐿

𝑘 ∈ 𝐾
 (7.24)

Equation (7.16) illustrates the objective function representing the total distance

travelled. Constraints (7.17) and (7.18) ensure that every customer is served exactly

once (every customer has an incoming arc and every customer has an outgoing arc).

Constraint (7.19) states that the number of times vehicle 𝑘 enters into customer 𝑖 is the

same as the number of times it leaves customer 𝑖. The vehicle load variation on a route

is ensured by Constraints (7.20). Inequalities (7.21) and (7.22) impose the maximum

189

vehicle capacity constraint and the maximum working day period constraints in which a

vehicle is allowed to serve the routes respectively. Inequality (7.23) sets 𝑅𝑖𝑗 as a non-

negative variable. Finally, in (7.24) the decision variable 𝑥𝑖𝑗𝑘 is set as zero-one variable.

The validity of the mathematical formulation of the MT-VRP is checked using the IBM

ILOG CPLEX 12.5. Hence it was implemented in CPLEX and it proved valid when

tested on some MT-VRP benchmark instances from the literature.

7.2.2. The Two-Level VNS methodology for the MT-VRP

In Chapter 5, the MT-VRP was extended and solved with backhauling aspect. However,

as explained in the review of Chapter 4 the classical MT-VRP is studied independently

in the literature. Here, we would like to test if the Two-Level VNS algorithm is viable for

the MT-VRP. Details of the implementation are provided in the following subsections.

The Two-Level VNS algorithm is already elaborated in Section 5.1.1 in detail but for

completeness here we present its steps while emphasising on any implementation

differences.

Phase I: Initial solution – sweep approach

 Generate an initial solution 𝑥 using the sweep method (see Section 5.2)

 Apply the following refinement routines in a sequential order to improve the

initial solution 𝑥 and then go to Phase II

 1-Insertion_intra_route (𝑥)

 1-Insertion_inter_route (𝑥)

 Swap_1_1 (𝑥)

 Swap_2_2 (𝑥)

 Shift_2_0 (𝑥)

190

 Swap_2_1 (𝑥)

 (see Section 5.3 for all refinement routines in Phase I)

Phase II: Two-Level VNS Algorithm

Initialize the solution pool data structure 𝑆𝑝 and add the initial solution 𝑥 to 𝑆𝑝,

Set: 𝑖𝑡𝑒𝑟 = 1 and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 200

Repeat the process while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥

Start outer-level

Let: 𝐿𝑆𝑘
𝑂 =< 𝑅3, 𝑅4, 𝑅5 > set of refinement routines for the outer-level

Set: 𝑘 = 1

Repeat the process while 𝑘 ≤ 𝑁𝑘𝑚𝑎𝑥

𝐼

a.1: Generate a neighbouring solution 𝑥′ ∈ 𝑁𝑘
𝑂(𝑥) at random;

a.2: Apply 𝐿𝑆𝑘
𝑂 on the neighbouring solution 𝑥′

a.3: Assign the resulting solution 𝑥′ to 𝑥′𝑏𝑒𝑠𝑡 [𝑥′𝑏𝑒𝑠𝑡 = 𝑥′]

a.4: Start inner-level using 𝑥′𝑏𝑒𝑠𝑡

Let: 𝐿𝑆𝑙
𝐼 =< {𝑅1& 𝑅6}, {𝑅2& 𝑅6}, {𝑅3& 𝑅6}, {𝑅4& 𝑅6}, {𝑅5& 𝑅6} >

Set: 𝑙 = 1

Repeat the process while 𝑙 ≤ 𝑁𝑙𝑚𝑎𝑥

𝐼

a.4(1): Generate a neighbouring solution 𝑥′′ ∈ 𝑁𝑙
𝐼(𝑥′𝑏𝑒𝑠𝑡) at random

a.4(2): Apply 𝐿𝑆𝑙
𝐼 [Multi-Layer local search optimiser framework]

on the neighbouring solution 𝑥′′

a.4(3): Assign the resulting solution 𝑥′′ to 𝑥′′𝑏𝑒𝑠𝑡 [𝑥′′𝑏𝑒𝑠𝑡 = 𝑥′′]

a.4(4): If 𝑥′′𝑏𝑒𝑠𝑡 < 𝑥′𝑏𝑒𝑠𝑡 then 𝑥′𝑏𝑒𝑠𝑡 = 𝑥′′𝑏𝑒𝑠𝑡, set 𝑙 = 1 got to a.4(1)

Else set 𝑙 = 𝑙 + 1 and got to a.4(1)

a.5: If 𝑥′𝑏𝑒𝑠𝑡 < 𝑥 then 𝑥 = 𝑥′𝑏𝑒𝑠𝑡; 𝑆𝑝 = 𝑥, set 𝑘 = 1 and go to a.1

Else set 𝑘 = 𝑘 + 1 and go to a.1

Phase III: Solving the Multiple Trips aspect using the BPP

Initialize an special 3-dimentional data structure 𝑆𝑜𝑙𝑘 and let 𝑆𝑜𝑙𝑚𝑎𝑥

number of solutions stored in 𝑆𝑝 and Let 𝑖𝑡𝑒𝑟𝐵𝑀𝑚𝑎𝑥 = 5.

Set: 𝑖𝑡𝑒𝑟𝑆𝑜𝑙 = 1

191

Repeat the process while 𝑖𝑡𝑒𝑟𝑆𝑜𝑙 ≤ 𝑆𝑜𝑙𝑚𝑎𝑥

Step1. Solve the BPP for solution p using CPLEX optimiser (𝑝 =

1, … , 𝑆𝑜𝑙𝑚𝑎𝑥)

Step2. If solution p is feasibly packed then go to Step4

Else, go to Step3

Step3. Apply the Bisection Method to optimise the bin capacity

 Set: 𝑖𝑡𝑒𝑟𝐵𝑀 = 1

 Repeat the process while 𝑖𝑡𝑒𝑟𝐵𝑀 ≤ 𝑖𝑡𝑒𝑟𝐵𝑀𝑚𝑎𝑥

 Step3.(1): Use the Bisection Method

 Step3.(2): Solve the BPP for solution p using CPLEX optimiser

Step4. Store the solution in the special data structure 𝑆𝑜𝑙𝑘 according to

what routes are served by which bins (vehicles)

Figure 7.2: Algorithmic steps of the Two-Level VNS for the MT-VRP

Initial solution: (Phase I)

The initial solution for the MT-VRP is obtained by using the sweep procedure of Gillet

and Miller (1974) clockwise as explained in Section 5.2 of Chapter 5. An illustrative

example of our sweep implementation is shown in Figure 7.3. Moreover, we have used

all six local search refinement routines is sequence in order to improve the initial

solution before passing it to Phase II.

Neighbourhoods: (Phase II)

We have used in total six neighbourhoods in order to generate the neighbouring

solutions for the MT-VRP. The neighbourhoods are implemented in the same manner

and are kept in the same order without any significant changes as explained in Chapter

192

5. To show how the MT-VRP neighbourhood moves are conducted without backhauls,

we provide their respective graphs in Figure 7.4 as illustrations. When using these

neighbourhoods for the MT-VRP, they are allowed to move customer/customers from

one route to another route and end-up emptying the route. This is allowed if it leads to a

feasible solution since there is no fixed fleet constraint or feasibility issues in terms of

the types of customers as in the VRPB.

 Customers

Figure 7.3: An illustrative example of the sweep procedure for the MT-VRP

Depot

193

1-Insertion (intra-route)refinement routine

1-Insertion (intra-route)refinement routine

1-1 Swap refinement routine

2-2 Swap refinement routine

2-0 Shift refinement routine

2-1 Swap refinement routine

Figure 7.4: Illustration of all the refinement routines implemented for the MT-VRP

 Depot customer

𝑹𝟏
 1 2 3 4 5 6

Initial route

 4

 3
 2
 5
 1 6

Route after 1-insertion

 4

 3
 2
 5
 1 6

Total cost: 85 Total cost: 68

 𝑅1 𝑅2

Initial routes

 𝑅1 𝑅2

Routes after 1-insertion

 depot customer

Customer to shift

Total cost: 150 Total cost: 136

 𝑅1 𝑅2

Initial routes

 𝑅1 𝑅2

Routes after 1-1 swap

 Depot customer

Customers to swap

Total cost: 125 Total cost: 113

 𝑅1 𝑅2

Initial routes

 𝑅1 𝑅2

Routes after 2-2 swap

 Depot customer

Customers to swap

Total cost: 122 Total cost: 97

 𝑅1 𝑅2

Initial routes

 𝑅1 𝑅2

Routes after 2-0 shift

 Depot customer

Customers to shift

Total cost: 126 Total cost: 107

 𝑅1 𝑅2

Initial routes

 𝑅1 𝑅2

Routes after 2-0 shift

 Depot customer

Customers to shift

Total cost: 137 Total cost: 128

194

The Multi-Layer local search optimiser framework:

The framework structure used in the MT-VRPB in Chapter 5 and in the VRPB in this

chapter remained unchanged for the MT-VRP. However, the neighbourhood moves are

more freely conducted here due to the fact that the MT-VRP is much less constrained

than the MT-VRPB and the VRPB. Since the MT-VRP has no backhauling and/or fixed

fleet utilization constraints, for example, while conducting these neighbourhood moves

during the search process a vehicle can be emptied due to result of shifting all customers

from one route to other routes given that the resulting solution is better.

BPP implementation: (Phase III)

The Bin Packing process is implemented exactly as in the MT-VRPB (see Section 5.5)

and the BPP is solved first followed by the Bisection Method to optimise the bin

(vehicle) capacity.

7.2.2.1. Details of MT-VRP Computations and the Data sets

The Two-Level VNS algorithm for the MT-VRP is implemented in the same

programming language and the computer specifications as in Chapter 5.

The Two-Level VNS algorithm is tested on data set-4 using a fixed number of 200

iterations, which was experimentally found to be acceptable in terms of solution quality

and the computational time affordability.

MT-VRP Data set:

The computational experiments are reported for the most studied MT-VRP benchmark

data set proposed in Taillard et al. (1996). This data set is referred to as data set-4 in this

195

study. The data set-4 was generated from nine VRP problems 1-5 and 11-12 of

Christofides, Mingozzi and Toth (1979) and 11-12 VRP problems of Fisher (1994). For

the data set-4 Taillard et al. (1996) used the same graphs, demands and vehicle

capacities given in the VRP nine base problems. The authors have generated 104 sub-

problems in total by applying different values of 𝑚 (where 𝑚 is the number of vehicles,

(i.e. 1,…,4), starting with an integer between one and the maximum number of vehicles)

and 𝑇 (where 𝑇 is a maximum driving time). Moreover two values of 𝑇 are used as, 𝑇1

and 𝑇2 for each value of 𝑚 (vehicles). The values of 𝑇1 and 𝑇2 are calculated as follows.

𝑇1 = [1.05 𝑧∗/𝑚] and 𝑇2 = [1.1 𝑧∗/𝑚] rounded to nearest integer, where 𝑧∗ represents

the VRP solution with unlimited number of vehicles used in Rochat and Taillard (1995).

Moreover, a penalty factor 𝜃 = 2 is associated with all routes whose length violates the

maximum driver time 𝑇. This specifies that the driver overtime is penalized in this data

set.

Moreover, the set-4 is divided in three groups (G1, G2 and G3) in the literature. The G1

consists of 42 instances for which optimal solutions are known, whereas G2 consists of

56 instances for which feasible (solutions where no overtime is used) solutions are

reported and finally G3 consist of 5 non-feasible (instances for which overtime is used)

solutions are reported.

7.2.2.2. Two-Level VNS MT-VRP Results and Analysis

The Two-Level VNS algorithm produced very competitive results for the MT-VRP (in

terms of the solution quality and the computational speed) for data set 4 when compared

with the best known solutions from the literature despite the fact that the proposed

algorithm was originally designed for the MT-VRPB. The detailed results are provided

196

in Table 7.10, Table 7.11 and Table 7.12 for G1, G2 and G3, respectively; and the time

comparison as shown in Table 7.13.

Comparison of the Two-Level VNS with some best metaheuristic algorithms:

The performance of the Two-Level VNS algorithm is compared with some well-known

algorithms published in literature which provide detailed solutions for all the groups.

The studies that are included in our comparisons are MRT (exact algorithm of Mingozzi

et al., 2013); GA (genetic algorithm based heuristic of Salhi and Petch, 2007) and MA

and MA+CLS (memetic algorithms of Cattaruzza et al., 2014a).

For G1 group of instances (Table 7.10), the MRT produced all 42 optimal solutions.

The Two-Level VNS algorithm remained very competitive, in terms of the solution

quality (i.e., optimality and feasibility with no use of overtime), producing 26 optimal

(12 feasible) solutions comparing with none optimal (33 feasible) of the GA, 33 optimal

(9 feasible) of the MA and 37 optimal (5 feasible) of MA+CLS. Regarding the number

of optimal/feasible solutions on this group of instances, although the Two-Level VNS

appears to be the third best heuristic algorithm in the literature, it has produced 1 new

best solution (CMT2-75 (4)) in G1. In terms of ARPD (average relative percentage

deviation), the Two-Level VNS solutions are less than 1% away from the best known.

For the G2 group of 56 instances (Table 7.11), the Two-Level VNS again performed

quite well, in terms of the solution quality (i.e., no overtime used), producing 45

compared to all 56 of the MA and MA+CLS and 29 of the GA solutions. Moreover, the

Two-Level VNS also performed competitively on the basis of the ARPD of instances

where the solutions were obtained.

197

For the G3 group of 5 instances (Table 7.12), the Two-Level VNS algorithm overall

remained competitive and produced better quality results than the GA but inferior as

compared to MA and MA+CLS.

As for the computation time a fair comparison may not be possible since the algorithms

compared here used different machines with different configurations. While PC

machine specifications are provided in the beginning of this section, the other

algorithms GA, MA and MA+CLS were run on Ultra Enterprise 450 dual processor 300

megahertz and Intel Xeon 2.80 GHz processor, respectively. Table 7.13 shows the

average computational times (in seconds) for the individual classes in the data set 4 as

well as the overall average times in the last row of the table. The Two- Level VNS

algorithm proved faster in all the classes of the data set-4 with the exception of one

where with a marginal difference was recorded.

198

Table 7.10: Detailed results for 42 instances in G1 (Data set-4)

Name

(size)

m

T

MRT SP MA MA + CLS Two-Level

VNS

Optimal Best Best Best Best

CMT1

(50)

1 551 524.61 546.28 524.61 524.61 524.61

2 275 533.00 x 533.00 533.00 533.00

1 577 524.61 547.14 524.61 524.61 524.61

2 289 529.85 549.42 529.85 529.85 529.85

4 144 546.29 566.86 546.29 546.29 x

CMT2

(75)

1 877 835.26 869.06 835.26 835.26 835.26

2 439 835.26 865.48 835.77 835.26 835.26

3 292 835.26 x 835.26 835.26 835.26

4 219 835.26 856.77 835.77 835.77 835.32

5 175 835.80 x 836.18 836.18 837.40

1 919 835.26 869.73 835.26 835.26 835.26

2 459 835.26 881.50 835.26 835.26 835.26

3 306 835.26 869.11 835.77 835.26 835.26

4 230 835.26 880.90 838.17 835.26 835.26

5 184 835.26 883.29 835.77 835.77 835.77

6 153 839.22 x 843.09 839.22 x

CMT3

(100)

1 867 826.14 845.33 826.14 826.14 826.14

2 434 826.14 850.65 826.14 826.14 826.14

3 289 826.14 x 828.08 826.14 826.14

1 909 826.14 845.33 829.45 829.45 828.26

2 454 826.14 872.10 826.14 826.14 826.14

3 303 826.14 869.48 826.14 827.39 826.14

4 227 826.14 878.00 826.14 826.14 826.14

CMT11

(120)

1 1094 1042.11 1088.26 1042.11 1042.11 1072.95

2 547 1042.11 x 1042.11 1042.11 1073.96

3 365 1042.11 x 1042.11 1042.11 x

5 219 1042.11 x 1042.11 1042.11 x

1 1146 1042.11 1088.26 1042.11 1042.11 1075.83

2 573 1042.11 1110.10 1042.11 1042.11 1073.44

3 382 1042.11 1088.56 1042.11 1042.11 1085.28

4 287 1042.11 x 1042.11 1042.11 1062.30

5 229 1042.11 1092.95 1042.11 1042.11 1088.46

CMT12

(100)

1 861 819.56 819.97 819.56 819.56 819.56

2 430 819.56 821.33 819.56 819.56 819.56

3 287 819.56 826.98 819.56 819.56 819.56

4 215 819.56 824.57 819.56 819.56 819.56

1 902 819.56 819.97 819.56 819.56 819.56

2 451 819.56 829.54 819.56 819.56 819.56

3 301 819.56 851.16 819.56 819.56 819.56

4 225 819.56 821.53 819.56 819.56 819.56

5 180 824.78 833.85 824.78 824.78 826.90

6 150 823.14 855.36 823.14 823.14 827.14

of solutions found (out of 42) 42 33 42 42 38

of optimal solutions found 42 0 33 37 26

ARPD 3.41 0.04 0.02 0.63

199

Table 7.11: Detailed feasible results for 56 instances in G2 (Data set-4)

Name (size)

m

T

Best

known

SP MA MA +

CLS

Two-Level

VNS

Best Best Best Best

CMT1 (50) 3 192 552.68 560.26 552.68 552.68 558.16

CMT2 (75) 6 146 858.58 x 858.58 859.16 x

7 131 844.70 x 853.88 844.70 x

CMT3 (100) 4 217 829.45 x 829.45 829.45 829.63

5 173 832.89 x 832.89 832.89 x

6 145 836.22 x 836.22 836.22 x

5 182 832.34 901.30 833.02 832.34 x

6 151 834.35 861.76 834.35 834.35 x

CMT4 (150) 1 1080 1031.00 1064.06 1031.00 1031.00 1032.96

2 540 1031.07 1065.86 1032.65 1031.07 1032.55

3 360 1028.42 x 1029.56 1028.42 1037.29

4 270 1031.10 x 1036.25 1031.10 1039.13

5 216 1031.07 x 1032.69 1031.07 1039.33

6 180 1034.61 x 1043.42 1034.61 1061.32

8 135 1056.54 x 1056.93 1056.54 x

1 1131 1031.07 1088.93 1031.07 1031.07 1031.51

2 566 1030.45 1070.50 1030.45 1034.08 1032.55

3 377 1031.59 1077.24 1031.63 1031.59 1032.13

4 283 1031.07 1119.05 1031.07 1031.96 1032.83

5 226 1030.86 1085.38 1033.05 1030.86 1036.34

6 189 1030.45 1112.03 1032.16 1030.45 1037.26

7 162 1036.08 x 1043.92 1036.08 1043.94

8 141 1044.32 x 1044.71 1044.32 x

CMT5 (199) 1 1356 1302.43 1347.34 1302.43 1302.43 1319.54

2 678 1302.15 1346.63 1302.15 1306.26 1325.92

3 452 1301.29 x 1301.41 1301.29 1325.18

4 339 1304.78 x 1308.93 1304.78 1324.96

5 271 1300.02 x 1307.78 1300.02 1319.86

6 226 1303.37 x 1303.37 1308.40 1324.01

7 194 1309.40 x 1315.41 1309.40 1329.24

8 170 1303.91 x 1310.48 1303.91 1321.41

9 151 1307.93 x 1329.86 1307.93 1325.66

10 136 1323.01 x 1326.54 1323.01 1332.68

1 1421 1299.86 1340.44 1299.86 1299.86 1317.01

2 710 1305.35 1399.65 1305.35 1307.70 1324.34

3 474 1301.03 1409.37 1301.03 1308.76 1323.57

4 355 1303.65 1397.60 1303.65 1310.97 1324.72

5 284 1300.62 1411.19 1308.04 1300.62 1326.44

6 237 1306.17 1377.07 1306.17 1306.25 1328.94

7 203 1301.54 1394.73 1311.35 1301.54 1324.64

8 178 1308.78 x 1311.93 1308.78 1322.14

9 158 1307.25 x 1312.28 1307.25 1330.12

200

10 142 1308.81 x 1312.04 1308.81 1320.9

CMT11

(120)

4 274 1078.64 x 1080.12 1078.64 x

CMT12

(100)

5 172 845.56 x 849.89 845.56 x

F11 (71) 1 254 241.97 x 241.97 241.97 241.97

2 127 250.85 x 250.85 250.85 x

1 266 241.97 254.07 241.97 241.97 241.97

2 133 241.97 254.07 241.97 241.97 241.97

3 89 254.07 256.53 254.07 254.07 254.07

F12 (134) 1 1221 1162.96 1190.21 1162.96 1162.96 1174.98

2 611 1162.96 1194.24 1162.96 1162.96 1176.17

3 407 1162.96 1199.86 1162.96 1162.96 1175.36

1 1279 1162.96 1183.00 1162.96 1162.96 1166.86

2 640 1162.96 1199.64 1162.96 1162.96 1174.71

3 426 1162.96 1215.43 1162.96 1162.96 1187.57

of feasible solutions found (out

of 56)

 29 56 56 45

ARPD 4.86 0.19 0.05 1.01

Table 7.12: Detailed non-feasible results for 5 instances in G3 (Data set-4)

Name

m

T

Best

known

SP MA MA+CLS Two-Level

VNS

Best Best Best Best

CMT1 3 184 569.54 586.32 569.54 569.54 588.51

CMT1 4 138 564.07 632.54 564.07 564.07 603.34

CMT2 7 125 866.58 1056.34 876.77 866.58 916.36

CMT12 6 143 845.48 898.88 845.48 845.48 845.48

F11 3 85 256.93 266.85 256.93 256.93 261.57

ARPD 9.43 0.24 0.00 3.57

Table 7.13: Average time (in seconds) for the problem classes of set-4

Instance

Name

GA MA MA+CLS Two-Level

VNS

CMT1 8 16 10 30 8

CMT2 14 30 25 118 18

CMT3 12 70 52 173 46

CMT4 16 206 169 493 155

CMT5 20 484 354 1284 312

CMT11 10 1132 99 302 74

CMT12 12 45 37 138 45

F11 6 93 21 40 17

F12 6 584 87 87 81

Average 295.56 94.89 296.11 84.00

201

7.2.3. Solving the MT-VRP with the Mat-heuristic (CSMH algorithm)

The CSMH algorithm methodology proposed in Chapter 6 is adapted to solve the MT-

VRP. Hence, at Phase I the initial solution is generated as explained in Section 7.2.2. In

Phase II, the Two-Level VNS is used to obtain a pool of solutions and in Phase III, the

bin packing problem is solved for the solutions in the pool, and finally in Phase IV, the

MT-VRP mathematical formulation model that uses CPLEX optimiser is used to obtain

the optimal or improved incumbent solution.

Computational experience

The CSMH methodology is implemented with the same programming language and the

computer specifications as in Chapter 6.

Glossary for tables:

+ : Solution obtained with overtime

Rest is same as in Section 7.1.3

7.2.3.1. CSMH MT-VRP Results and Analysis

The CSMH algorithm is run for a maximum CPU time of 2 hours (7200 seconds) for all

the four phases (in which the Phase II is set to 300 iterations).

The CSMH algorithm is tested on G1 group of instances from data set-4. The algorithm

performed very well and produced very high quality results. The detailed results are

provided in Table 7.14. Note that even though most of results in this table are put under

the “Incum. Sol.” (Incumbent solution) column, most of them are optimal. The reason

202

behind it is that within 2-hours computational time, the desired gap between upper and

lower bounds was not achieved.

Comparison of the CSMH with the Two-Level VNS and some recent algorithms:

The performance of the CSMH algorithm is compared with the Two-Level VNS

implementation and some best published algorithms (see Section 7.2.2.2). The detailed

performance analysis of these algorithms for G1 (data set-4) are provided in Table 7.15.

As it can be observed that the MRT exact algorithm produced optimal solutions for all

42 instances in this group. Compared to the MRT, the CSMH algorithm remained

extremely competitive in terms of solution quality, producing 39 optimal (3

incumbent/feasible) solutions. Whereas comparing to the heuristic algorithms, it clearly

performed better when comparing to none optimal (33 feasible) of GA, 33 optimal (9

feasible) of the MA, 37 optimal (5 feasible) of the MA+CLS and 26 optimal (12

feasible) of the Two-Level VNS.

203

Table 7.14: Detailed results of the CSMH for 42 instances in G1 (Data set-4)

Name

(size)

m

T

CSMH Algorithm

VNS Sol. Opt.

Sol.

Incum.

Sol.

UB LB %Gap Time

(s)

CMT1

(50)

1 551 524.61 524.61 - 524.61 520.62 0.76% 6215

2 275 533.00 - 533.00 533.00 511.71 3.99% 7200

1 577 524.61 524.61 - 524.61 515.03 1.83% 6123

2 289 529.85 - 529.85 529.85 510.73 3.61% 7200

4 144 574.84+ - 546.29 546.29 511.77 6.32% 7200

CMT2

(75)

1 877 835.26 - 835.26 835.26 775.49 7.16% 7200

2 439 835.77 - 835.26 835.26 763.67 8.57% 7200

3 292 835.77 - 835.26 835.26 746.94 10.63% 7200

4 219 735.28 - 835.26 835.26 745.33 10.77% 7200

5 175 848.44 - 835.80 835.80 742.46 11.17% 7200

1 919 836.18 - 835.26 835.26 782.20 6.35% 7200

2 459 835.26 - 835.26 835.26 788.46 5.60% 7200

3 306 835.77 - 835.26 835.26 783.77 6.16% 7200

4 230 835.77 - 835.26 835.26 778.74 6.77% 7200

5 184 838.60 - 835.26 835.26 778.20 6.83% 7200

6 153 853.17+ - 839.22 839.22 773.55 7.82% 7200

CMT3

(100)

1 867 828.42 - 826.14 826.14 778.86 5.72% 7200

2 434 828.42 - 826.14 826.14 799.63 3.21% 7200

3 289 829.63 - 826.14 826.14 791.23 4.23% 7200

1 909 828.56 - 826.14 826.14 778.70 5.74% 7200

2 454 829.63 - 826.14 826.14 790.45 4.32% 7200

3 303 829.51 - 826.14 826.14 766.53 7.22% 7200

4 227 829.65 - 826.14 826.14 779.58 5.64% 7200

CMT11

(120)

1 1094 1077.14 - 1042.11 1075.03 967.02 10.36% 7200

2 547 1072.90 - 1044.09 1072.90 943.18 12.42% 7200

3 365 1042.11 - 1042.11 1042.12 935.47 10.23% 7200

5 219 1045.32 - 1042.11 1042.12 933.35 10.44% 7200

1 1146 1071.96 - 1042.11 1048.74 965.71 7.97% 7200

2 573 1063.47 - 1042.11 1063.47 936.81 12.15% 7200

3 382 1048.26 - 1048.26 1048.26 922.27 12.02% 7200

4 287 1062.30 - 1044.09 1044.09 935.79 10.37% 7200

5 229 1088.46 - 1042.11 1042.12 933.47 10.43% 7200

CMT12

(100)

1 861 819.56 - 819.56 819.56 767.53 6.35% 7200

2 430 819.56 - 819.56 819.56 778.36 5.03% 7200

3 287 819.56 - 819.56 819.56 782.91 4.47% 7200

4 215 819.56 - 819.56 819.56 774.95 5.44% 7200

1 902 819.56 - 819.56 819.56 766.25 6.50% 7200

2 451 819.56 - 819.56 819.56 780.96 4.71% 7200

3 301 819.56 - 819.56 819.56 785.94 4.10% 7200

4 225 819.56 - 819.56 819.56 789.83 3.63% 7200

5 180 825.38 - 824.78 824.78 776.24 4.24% 7200

6 150 824.46+ - 823.14 823.14 785.56 4.57% 7200

204

Table 7.15: Comparison of the CSMH with some best algorithms for 42 instances in G1

(Data set-4)

Name

(size)

m

T

MRT SP MA MA +

CLS

Two-Level

VNS

CSMH

Optimal Best Best Best Best Best

CMT1

(50)

1 551 524.61 546.28 524.61 524.61 524.61 524.61

2 275 533.00 x 533.00 533.00 533.00 533.00

1 577 524.61 547.14 524.61 524.61 524.61 524.61

2 289 529.85 549.42 529.85 529.85 529.85 529.85

4 144 546.29 566.86 546.29 546.29 x 546.29

CMT2

(75)

1 877 835.26 869.06 835.26 835.26 835.26 835.26

2 439 835.26 865.48 835.77 835.26 835.26 835.26

3 292 835.26 x 835.26 835.26 835.26 835.26

4 219 835.26 856.77 835.77 835.77 835.32 835.26

5 175 835.80 x 836.18 836.18 837.40 835.80

1 919 835.26 869.73 835.26 835.26 835.26 835.26

2 459 835.26 881.50 835.26 835.26 835.26 835.26

3 306 835.26 869.11 835.77 835.26 835.26 835.26

4 230 835.26 880.90 838.17 835.26 835.26 835.26

5 184 835.26 883.29 835.77 835.77 835.77 835.26

6 153 839.22 x 843.09 839.22 x 839.22

CMT3

(100)

1 867 826.14 845.33 826.14 826.14 826.14 826.14

2 434 826.14 850.65 826.14 826.14 826.14 826.14

3 289 826.14 x 828.08 826.14 826.14 826.14

1 909 826.14 845.33 829.45 829.45 828.26 826.14

2 454 826.14 872.10 826.14 826.14 826.14 826.14

3 303 826.14 869.48 826.14 827.39 826.14 826.14

4 227 826.14 878.00 826.14 826.14 826.14 826.14

CMT11

(120)

1 1094 1042.11 1088.26 1042.11 1042.11 1072.95 1042.11

2 547 1042.11 x 1042.11 1042.11 1073.96 1044.09

3 365 1042.11 x 1042.11 1042.11 x 1042.11

5 219 1042.11 x 1042.11 1042.11 x 1042.11

1 1146 1042.11 1088.26 1042.11 1042.11 1075.83 1042.11

2 573 1042.11 1110.10 1042.11 1042.11 1073.44 1042.11

3 382 1042.11 1088.56 1042.11 1042.11 1085.28 1048.26

4 287 1042.11 x 1042.11 1042.11 1062.30 1044.09

5 229 1042.11 1092.95 1042.11 1042.11 1088.46 1042.11

CMT12

(100)

1 861 819.56 819.97 819.56 819.56 819.56 819.56

2 430 819.56 821.33 819.56 819.56 819.56 819.56

3 287 819.56 826.98 819.56 819.56 819.56 819.56

4 215 819.56 824.57 819.56 819.56 819.56 819.56

1 902 819.56 819.97 819.56 819.56 819.56 819.56

2 451 819.56 829.54 819.56 819.56 819.56 819.56

3 301 819.56 851.16 819.56 819.56 819.56 819.56

4 225 819.56 821.53 819.56 819.56 819.56 819.56

5 180 824.78 833.85 824.78 824.78 826.90 824.78

6 150 823.14 855.36 823.14 823.14 827.14 823.14

of solutions found (out of 42)

33 42 42 38 42

of optimal solutions found

0 33 37 26 39

ARPD

3.41 0.04 0.02 0.63 0.02

MRT = Mingozzi et al. (2013); SP = Salhi and Petch (2007); MA and MA+CLS = Cattaruzza et al. (2014a)

205

7.3. Summary

This chapter presents the details of the implementations of our developed approaches in

Chapters 4, 5 and 6 to solve two very important variants of the VRP, known as the

vehicle routing problem with backhauls (VRPB) and the multiple trip vehicle routing

problem (MT-VRP). One of the main objectives of this thesis is to design and

implement an efficient and flexible algorithm that is able to solve the instances of a

range of VRP variants. The Two-Level VNS methodology and its combination with

mathematical programming the CSMH algorithms proved very successful

implementation. We summarise here our findings and the analysis for both the VRPB

and the MT-VRP, respectively as follows.

The VRPB:

In this chapter firstly the VRPB is formulated and its validity is checked using CPLEX.

The Two-Level VNS methodology developed for the MT-VRPB is then adapted to solve

the VRPB. The VNS algorithm proved robust in its implementation since it was

designed in such way that could be implemented on the instances of a range of VRP

variants. The neighbourhood moves are conducted in the same conventions and the

refinement schemes used in the same order remain unchanged. However the algorithm

needed some minor changes at its initial solution stage due to different typical VRPB

constraints of utilizing given number of vehicles; and the BPP implementation was not

required for the VRPB.

The algorithm produced highly competitive results for both benchmark data sets when

compared to the best known solutions from the literature, with an overall average

206

relative percentage deviation ARPD of 0.00 and 0.06 for the set-2 and the set-3,

respectively, while spending relatively lower computer times.

We then adapted the CSMH algorithm to solve the VRPB. The algorithm proved quite

flexible in its implementation. The neighbourhood moved are implemented in the same

conventions and the refinement routines used in the same order remain unchanged.

However, the algorithm was slightly changed to accommodate the typical VRPB

constraints of using the given fixed fleet and the MT-VRPB mathematical model used at

Phase IV was replaced with the VRPB mathematical model. Hence, BPP is also

removed from the algorithm as it is not needed for the VRPB. The algorithm produced

very competitive results for the benchmark data sets when compared with the best

algorithms in the literature.

The MT-VRP:

The MT-VRP is also formulated and the validity is checked using CPLEX.

The Two-Level VNS methodology is also adapted to solve the MT-VRP without any

significant changes to the original algorithm developed to solve the MT-VRPB in

Chapter 5. The conventions of the neighbourhood moves and the order of the refinement

schemes remain unchanged. However the algorithm needed some changes at its initial

solution stage due to no backhauling aspect in the MT-VRP. The initial solution is

generated with sweeping for complete routes instead of open routes. The BPP and

Bisection models are used in the same manner.

The algorithm produced quite competitive results (especially in terms of the

computational speed) for the benchmark data set 4 when compared with the best known

207

solutions from the literature. Also the Two-Level VNS algorithm produced one new best

heuristic solution.

Moreover, the CSMH algorithm is also adapted and tested on a group of MT-VRP

instances for which the optimal solutions are known. Minor changes are done such as

sweep is used to generate complete routes instead of open routes at initial solution stage

and a series of refinement routes are used to improve the initial solution before passing

it to the second stage. All neighbourhood moves and refinement routines are used in the

same order. The BPP and Bisection models are used in the same manner. Finally, MT-

VRPB mathematical model used at stage four is replaced with the MT-VRP

mathematical model.

The solutions produced by the CSMH algorithm are of a high quality. It outperformed

all the heuristic/meta-heuristic algorithms and proved extremely competitive when

compared with the exact algorithm of Mingozzi et al. (2013).

The successful implementation of the Two-Level VNS and its combined version with

mat-heuristic the CSMH algorithm on the three VRP models proves the generalizability

and robustness of this methodology.

208

Chapter 8

Conclusions

In this chapter we summarize the main findings and the contributions of the research

along with some future research directions

8.1. Research Summary

With the growing and more accessible computational power, the demand for robust and

sophisticated computerised optimisation has increased for logistical problems. By

making a good use of computational technologies, the research in this thesis has mainly

concentrated on efficient fleet management by studying a class of vehicle routing

problems and developing software embedded efficient solution algorithms.

The research in this thesis starts by looking at the existing literature of the VRPs from

various development angles. From the problem modelling side, clear efforts can be seen

to bring the classical VRP models closer to the reality by developing their variants.

However, apart from the real VRP applications (termed as ‘rich’ VRPs), it is also

noticeable that the most of these classical VRP based variants address one or two

additional characteristics from the real routing problem issues, concentrating on either

operational or tactical aspects. Although the research in this thesis may not be

209

considered as comprehensive either but it is certainly one of those good efforts that

bring the VRPs closer to the reality by addressing both the operational as well as tactical

aspects.

On the solution methodologies development side, there are enormous and impressive

developments. Having established that the VRPs are NP hard combinatorial class of

problems, there is an ample effort on the development of exact methods. The literature

covers a variety of heuristics methodologies including the classical and the most modern

ones. The literature also points out towards some works being developed in

hybridisation of heuristics approaches including the most recent mat-heuristics that

combine heuristics and exact methods. The mat-heuristics appears to be comparatively

in its infant age at this point in time. Hence, a part of the research in this thesis is

devoted in the development of a hybrid approach that combines heuristics and

mathematical programming techniques.

When reviewing the specific literature on the VRP problems focused in this thesis, the

VRPB and the MT-VRP, there is not sufficient development on the problem modelling

side in terms of bringing these problems closer to the reality. As for the methodological

development to solve the VRPB and the MT-VRP there are some very successful

efforts. For the VRPB, the literature records some early attempts in late 90s to solve the

problem optimally though with a modest success. However, there are quite a few

promising methodologies developed to solve this problem, divided in early traditional

heuristic studies able to solve bigger instances of the problem with good enough

solutions at the cost of reasonable computational efforts; and the more recent modern

heuristics based algorithms able to perform much better in terms of solution quality but

at noticeably higher computational costs. For the MT-VRP, there are some good studies

210

published in the literature, however as compared to the VRPB it has not drawn

sufficient attention. The literature reports only one attempt on exact approach side; and

several but comparatively less efficient heuristics works. One reason for this that could

be deduced is that the MT-VRP is more closely related to the classical VRP which has

been studied extensively in the literature. Hence there are more relevant works rather

direct comparison studies of the MT-VRP. To fill the gap, the research in this thesis

adds to the literature by investigating this problem directly and jointly with the VRPB.

To investigate these versions of the VRP jointly we introduced a new variant called the

Multiple Trip Vehicle Routing Problem with Backhauls (MT-VRPB) which remain the

main focus of the thesis. The problem is thoroughly described and an ILP mathematical

formulation of the MT-VRPB along with its possible variations presented. The MT-

VRPB is then solved optimally by using CPLEX along with providing an illustrative

example showing validation of the formulation. A large set of MT-VRPB data instances

is created which can be used for future benchmarking.

The CPLEX implementation produced optimal solutions for small and medium size data

instances of the MT-VRPB and generated lower bounds for all instances. Although

CPLEX found a good number of optimal solutions and lower bounds for all the

instances, this success may be considered merely as modest. However, the results

produced by CPLEX proved very important for validation of the results produced by the

heuristic methodologies later in the thesis.

The MT-VRPB results show some big overall cost savings could be obtained by

deciding the right fleet size and better vehicle utilisations with multiple trips and

211

backhauling. Hence, even at this point in thesis the results already prove the justification

of studying the multiple trips and the backhauling aspects combined.

Hence the research results reveal some vital information and implications from the

managerial point of view in terms of making the tactical (acquisition) and fleet

management (operational) decisions.

As observed earlier the optimisation techniques could not cope with the larger instances

of such hard complex problem, and relying on heuristics is an obvious choice. Hence we

developed a two level VNS algorithm, called ‘Two-Level VNS’ to solve the MT-VRPB.

The choice of using VNS for the VRPs has increased in recent literature due its

simplicity and speed. The Two-Level VNS algorithm uses skeletons of the classical VNS

and VND methodologies. A number of neighbourhoods and local searches are

employed in an innovative way to achieve diversification at the outer level (basic VNS)

of the algorithm and intensification at the inner-level (VND with multi-layer local

search framework). The Two-Level VNS algorithm found very encouraging solutions

when compared with the solutions found by CPLEX. It matched the majority (87%) of

the optimal solutions ranging in size 21-50. The Two-Level VNS solved all the 168

instances (105 feasibly with no overtime used); and the rest with a very small average

overtime of only 5 and 10 units each for T2 and T1 data classes, respectively. Moreover,

the speed of the algorithm remained outstanding spending less than 20 seconds on

average per problem instance. These findings demonstrate the power of VNS yet again

in terms of its speed, simplicity and efficiency.

The Two-Level VNS algorithm found a very high number of feasible solutions costing

low computational time proving itself for what it is known in the literature. Nonetheless

212

we wanted to investigate it further with the new class of the hybrid methodologies

called mat-heuristics that combines mathematical programming techniques with

heuristic methods to solve CO problems. Hence, in Chapter 6, a hybrid collaborative

sequential mat-heuristic approach called the CSMH to solve the MT-VRPB is

developed. The exact method approach developed in Chapter 4 is hybridised with the

Two-Level VNS algorithm developed in Chapter 5. The Two-Level VNS used three

phases, i.e., initial solution by a modified sweep-first-assignment-second approach,

improved solution by VNS, and packed solution by the BPP. Here the fourth phase, i.e.,

mathematical model is incorporated in the Two-Level VNS algorithm to find

optimal/better solution for the MT-VRPB. The overall performance of the CSMH

remained very inspiring in terms of the solution quality and the time taken on average.

Comparing with the methodologies developed in the previous chapters (i.e., CPLEX and

the Two-Level VNS meta-heuristic), the CSMH produced much better results on almost

all fronts. As compared to CPLEX it produced a higher number of optimal solutions

with bigger size instances and tighter lower bounds while spending lower computation

time on average. Comparing with the Two-Level VNS it also produced better quality

solutions with a higher number of optimal/incumbent on the expense of spending

understandably larger average computing time.

Towards the end of the thesis, we tested our developed methodologies on the two

versions of the VRP (VRPB and MT-VRP) mentioned in the beginning of this section.

The reason of conducting these experiments was to see how far we have been successful

in achieving one of the main objectives of the thesis which is to design and implement

new efficient hybrid meta-heuristic/mat-heuristics algorithms that is able to solve a

range of VRP variants.

213

In Chapter 7 a three-indexed mathematical formulation of the VRPB adapted from our

MT-VRPB formulation is presented; and its validity is checked using CPLEX. Note that

the complexity of the two-indexed VRPB formulations presented in the literature is not

provided, however it is considered to be less complex as compared to our three-indexed

ILP formulation. Moreover, the two-indexed ILP formulations were not directly tested

with CPLEX, hence we did not compare the efficiency of these two types of

formulations. We implemented the Two-Level VNS algorithm, developed in Chapter 5,

to solve the VRPB. The VNS algorithm proved robust in its implementation since it was

designed in such way that could be implemented on the instances of a range of VRP

variants. The neighbourhood moves are conducted with the same conventions and the

order of the refinements remain unchanged. However the algorithm needed some minor

changes at its initial solution stage due to some different typical VRPB constraints such

as ‘must utilisation’ of the given number of vehicles and disabling the use of the BPP

implementation that is not required for the VRPB. The algorithm produced very

competitive results for both benchmark data sets when compared to the best known

solutions from the literature, with an overall average relative percentage deviation

ARPD of 0.00 and 0.06 for the set-2 and the set-3, respectively.

The CSMH algorithm of Chapter 6 is also tested for the VRPB. The implementation

remained fairly straight forward by replacing the formulation and VNS parts of the MT-

VRPB with the VRPB ones. The algorithm produced competitive results for the

benchmark data sets when compared with the Two-Level VNS and the best algorithms in

the literature. However, it was noted that the performance of the CSMH remain

relatively inferior due the reason that this version of the VRPB uses a typical constraint

214

of fixed number of vehicles that must utilised which did not go well with the exact

method part of the algorithm.

Moreover, in Chapter 7 we solved the classical MT-VRP. First, a three-indexed

mathematical formulation of the MT-VRP adapted from our MT-VRPB formulation is

presented; and its validity is checked using CPLEX. The Two-level VNS methodology is

then implemented to solve the MT-VRP again without any significant changes to the

original algorithm developed to solve the MT-VRPB in Chapter 5. Apart from the

backhauling conventions that needed changes at the initial stage, the neighbourhood

moves and the order of the refinement schemes remain unchanged. Here the initial

solution is generated by sweeping for complete routes instead of open routes. The BPP

and Bisection models are used in the same manner. The algorithm produced very

competitive results (in terms of the solution quality and the computational speed) for the

benchmark data set 4 when compared with the best known solutions from the literature.

Lastly, the CSMH algorithm is tested for the MT-VRP. The implementation remained

once again fairly straight forward by replacing the formulation and VNS parts of the

MT-VRPB with the VRPB ones. The CSMH algorithm is tested on a group of MT-VRP

instances for which the optimal solutions are known. The solutions produced by the

CSMH algorithm are of very high quality. It outperformed all the previously published

heuristic/meta-heuristic algorithms and proved extremely competitive matching most

solutions when compared with the exact algorithm of Mingozzi et al. (2012). Matching

most solutions with the only existing exact algorithm for this problem in the literature

can be considered as significant development.

215

It can be observed that the successful implementation of the Two-Level VNS and the

CSMH algorithms on the three VRP models with some trivial amendments prove their

generalizability and the robustness.

8.2. Future Research

There are a number of ways in which the research in this thesis could be taken further.

Model extensions:

We hope to bring the MT-VRPB model even closer to reality by incorporating further

"rich" aspects, such as time windows, multiple depots or heterogeneous fleet. We

believe that the most promising aspect is to extend the backhauling part to other

delivery and pickup models, as the "deliveries first, backhauls second" constraint is in

our opinion very restrictive. The VRPB is a specific case of VRP with Deliveries and

Pickups (VRPDP) models. If we remove the "deliveries first, backhauls second"

restriction, we arrive at another model known as VRP with Mixed Deliveries and

Pickups (VRPMDP). It is relatively easy to adapt the methods in this thesis for the

VRPMDP, as in the main part of the algorithm we merely need to skip the steps of

checking that no backhauls precede any deliveries. (The "fixed fleet utilisation"

constraint is also removed in all VRPDP models apart from the VRPB.) However, we

instead need to check the feasibility of routes for every arc on the route. This is due to

the issue of fluctuating arc loads; see Wassan et al., (2008a, 2008b). Moreover, the

initial solution is based on matching linehauls and backhauls, so we need to experiment

whether this is still a sufficiently good initial solution. Another relevant model is the

VRP with Simultaneous Deliveries and Pickups (VRPSDP). In this model each

216

customer may send and receive goods, so they are linehauls and backhauls in

one. Conceptually, the VRPSDP and the VRPMDP differ little.

The above models, and the VRPB itself, have been criticised for the assumptions they

require. It is considered excessively restrictive not to allow any backhauls before

linehauls. Yet, the VRPMDP where this assumption is removed lead to the "load

shuffling problem" (backhaul goods block access to linehaul goods on board in the

vehicles), see Wassan and Nagy (2014) for a more detailed explanation. This led to a

new model known as VRP with Restricted Mixing of Deliveries and Pickups, see Nagy

et al., (2013). In this model some free space is required to maintain access to goods,

unless the vehicle has only linehaul or only backhaul goods. Likewise, the VRPSDP

makes the assumption that the linehaul and backhaul needs of a customer must be

served in a single visit. Relaxing this leads to the model of VRP with Divisible

Deliveries and Pickups (VRPDDP), see Nagy et al., (2015). Perhaps the most realistic

version would be the VRP with Restricted Mixing of Divisible Deliveries and Pickups,

as suggested in Wassan and Nagy (2014). All these models could be enhanced to

include the multi-trip aspect. For further information on the various VRPDP models

mentioned here, please refer to the overview provided by Wassan and Nagy (2014).

Methodological extensions:

We believe that the performance of our developed methods can be enhanced by

hybridisation of tabu search or some other learning based meta-heuristics such as

adaptive memory programming, reactive search mechanisms with VNS can enhance the

quality of results though possibly at some extra computational cost.

217

In the near future we hope to continue the existing research work to investigate the

further power of mat-heuristics. For instance, currently our CSMH algorithm uses only

single pass between the Two-Level VNS and the mathematical programming technique.

Nonetheless, it produced very interesting results for variety of VRP problems. However,

we believe the efficiency of our CSMH algorithm can be increased by incorporating

tabu search/learning aspects in the heuristics side of the algorithm. The performance of

the developed mat-heuristic can be enhanced by designing a cyclic algorithm that

exchanges information and interplays between the heuristic and the exact techniques.

We believe that further investigation of some of the key aspects highlighted above on

both the modelling and the solutions methodologies side would achieve even better

overall fleet management efficiency that is required in modern day business and

environmental needs.

218

Bibliography

Ahlem, C., Racem, M. and Habib, C. (2011). Profitable vehicle routing problem with

multiple trips: modelling and constructive heuristics. IEEE, 500-507.

Ahmadi, S. and Osman, I. (2005). Greedy random adaptive memory programming

search for the capacitated clustering problem. European Journal of Operational

Research, 162(1), 30-44.

Ahuja, R.K., Ergun, Ö., Orlin J.B. and Punnen, A.P. (2002). A survey of very large

scale neighbourhood search techniques. Discrete Applied Mathematics, 123, 75-102.

Aleman, R. E. (2009). A guided Neighbourhood Search Applied to the Split Delivery

Vehicle Routing Problem. Wright State University. PhD Thesis.

Alonso, F., Alvarez, M.J. and Beasley, J.E. (2008). A tabu search algorithm for the

periodic vehicle routing problem with multiple vehicle trips and accessibility

restrictions. Journal of the Operational Research Society, 59(7), 963-976.

Altınel I K and Öncan T (2005). A new enhancement of the Clarke and Wright savings

heuristic for the capacitated vehicle routing problem. Journal of the Operational

Research Society, 56, 954-961.

Anily, S. (1996). The vehicle routing problems with delivery and back-haul options.

Naval Research Logistics, 43, 415-434.

Archetti, C., Speranza, M.G. and Savelsbergh, M.W.P. (2008). An optimisation-based

heuristic for the split delivery vehicle routing problem. Transportation Science, 42,

22-31.

Azi, N., Gendreau, M. and Potvin, J. (2010a). An exact algorithm for a vehicle routing

problem with time windows and multiple use of vehicles. European Journal of

Operational Research, 202, 756-763.

219

Azi, N., Gendreau, M. and Potvin, J. (2010b) An adaptive large neighbourhood search

for a vehicle routing problem with multiple trips. Computers and Operations

Research, 41, 167-173.

Bai, Y., Zhang, W. and Jin, Z. (2005) A new self-organizing maps strategy for the

solving the travelling salesman problem. Chaos, Solution and Fractals, 28 (1), 1082-

1089.

Baker, B. M. (1992). Further improvements to vehicle routing heuristics. Journal of the

Operational Research Society, 43, 1009–1012.

Baldacci, R., Hadjiconstantinou, E. and Mingozzi, A. (2004). An exact algorithm for the

capacitated vehicle routing problem based on a two-commodity network flow

formulation. Operations Research, 52(5), 723-738.

Baptista, S., Oliveira, R. and Zuquete, E. (2002). A period vehicle routing case study.

European Journal of Operational Research, 139, 220-229.

Battara, M., Monaci, M. and Vigo, D. (2009). An adaptive guidance approach for the

heuristic solution of a minimum multiple trip vehicle routing problem. Computers

and Operations Research, 36, 3041-3050.

Bramel, J. and Simchi-Levi, D. (1995). A location based heuristic for general routing

problems. Operations Research, 43:649-660.

Beasley, J. (1983). Route-first cluster-second methods for vehicle routing. OMEGA,

11(4) 403-408.

Bektas, T. (2006). The multiple traveling salesman problem: an overview of

formulations and solution procedures. Omega, 34, 209-219.

Belenguer, J., Martinez, M. and Mota E. (2002). A lower bound for the split delivery

vehicle routing problem. Operational Research, 48, 801-810.

Bin, Y., Zhen, Y.Z. and Baozhen, Y. (2009). An improved ant colony optimisation for

vehicle routing problem. European Journal of Operational Research, 196, 171-176.

220

Blakely, F., Bozkaya, B., Cao, B., Hall, W. and Knolmajer, J. (2003). Optimizing

periodic maintenance operations for Schindler Elevator Corporation. Interfaces, 33

(1), 67-79.

Blum, C., Puchinger, J., Raidl, G.R. and Roli, A. (2011): Hybrid metaheuristics in

combinatorial optimisation: A survey. Soft Computing, 11(6), 4135-4151.

Bock, F. (1958). An Algorithm for Solving “Traveling-Salesman” and Related Network

Optimisation Problems. 14th ORSA National Meeting, St. Louis, MO.

Bodin, L., Golden, B., Assad, A. and Ball, M. (1983). Routing and scheduling of

vehicles and crews: The state of the art. Computers and Operations Research, 10 (2),

63-211.

Bolduc, M. C., Laporte, G., Renaud, J. and Boctor, F. F. (2010). A tabu search heuristic

for the split delivery vehicle routing problem with production and demand calendars.

European Journal of Operational Research, 202 (1), 122-130.

Boussïd I, Lepagnot, J, and Siarry P. (2013). A survey on Optimisation metaheuristics.

Information Sciences, 237, 82-117.

Brandao, J. (2006). A new tabu search algorithm for the vehicle routing problem with

backhauls. European Journal of Operational Research, 173(2), 540-555.

Brandao, J. and Mercer, A. (1997). A tabu search algorithm for the multi-trip vehicle

routing and scheduling problem. European Journal of Operational Research, 100,

180-191.

Brandao, J. and Mercer, A. (1998). The multi-trip vehicle routing problem. Journal of

the Operational Research Society, 49, 799-805.

Braysy, O. and Gendreau, M. (2005). Vehicle Routing Problem with Time Windows,

Part I: Route Construction and Local Search Algorithms. Transportation Science,

39(1), 104-118.

Braysy, O. and Gendreau, M. (2005). Vehicle Routing Problem with Time Windows,

Part II: Metaheuristics. Transportation Science, 39(1), 119-139.

221

Ball, M. (2011). Heuristics based on mathematical programming. Survey in Operations

Research and Management Science, 16, 21-38.

Carpaneto, G. and Toth, P. (1980). Some New Branching and Bounding Criteria for the

Asymmetric Travelling Salesman Problem. Management Science, 26(7), 736-743.

Casco, D., Golden, B.L., and Wasil, E. (1988). Vehicle routing with backhauls: Models,

algorithms and case studies. In: Golden, B.L. and Assad, A.A. eds. Vehicle Routing:

Methods and Studies, Elsevier: Amsterdam, pp. 127-147.

Caserta, M. and Voß, S. (2010). Metaheuristics: Intelligent problem solving. In:

Maniezzo, V., et al., eds. Matheuristics: Hybridizing Metaheuristics and

Mathematical Programming. Volume 10 of Annals of Information Systems,

Springer: pp. 1-38.

Cattaruzza, D., Absi, N., Feillet, D. and Vidal, T. (2014a). A memetic algorithm for the

multi trip vehicle routing problem. European Journal of Operational Research,

236(3), 833-848.

Cattaruzza, D., Absi, N., Feillet, D. and Vigo, D. (2014b). An iterated local search for

the multi-commodity multi-trip vehicle routing problem with time windows.

Computers and Operations Research, 51, 257-267.

Černý, V. (1985). A Thermodynamical Approach to the Travelling Salesman Problem:

And Efficient Simulation Algorithm. Journal of Optimisation Theory and

Applications, 45, 41-51.

Chao, I, Golden, B. and Wasil, E. (1995). An improved heuristic for the period vehicle

routing problem. Networks, 26, 25-44.

Chao, I-M., Golden, B. and Wasil, E. (1995). A computational study of a new heuristic

for the site-dependant vehicle routing problem. INFOR, 37, 319-336.

Chen, J.F and Wu, T.H. (2006). Vehicle routing problem with simultaneous delivery

and pickups. Journal of the Operational Research Society, 57, 579-587.

222

CLHO: Centre for Logistics and heuristic optimisation, (2015) Available from:

http://www.kent.ac.uk/kbs/research/research-centres/clho/ [Accessed 23 March

2015].

Christofides, N. and Beasley, J. (1984) The period routing problem. Network, 14, 237-

256.

Christofides, N. and Eilon, S. (1969). An algorithm for the vehicle dispatching

problems. Operations Research Quarterly, 20 (3), 309-318.

Christofides, N., Mingozzi, A. and Toth, P. (1979) The vehicle routing problem. In:

Christofides et al., eds. Combinatorial Optimisation. Chichester: Wiley, pp. 315-338.

Christofides, N., Mingozzi, A. and Toth, P. (1981a). Exact algorithms for the vehicle

routing problem based on spanning tree and shortest path relaxations. Mathematical

Programming, 20, 255-282.

Christofides, N., Mingozzi, A. and Toth, P. (1981b). Space state relaxation procedures

for the computation of bounds to routing problems. Networks, 11, 145-164.

Clarke, G. and Wright, J. (1964). Scheduling of vehicles from a central depot to a

number of delivery points. Operations Research, 12, 568-581.

Colorni, A., Dorigo, M. And Maniezzo, V. (1991). Distributed Optimisation by Ant

Colonies. Appeared in Proceedings of ECAL91: European Conference in Artificial

Life, Paris, France, pp. 134-142.

Cook, S.A (1971). On the complexity of theorem-proving procedures. In: Third Annual

ACM Symposium on Theory of Computing, New York, pp. 151-158.

Cordeau, J.-F., Laporte, G., and Mercier, A. (2001). A unified tabu search heuristic for

vehicle routing problems with time windows. Journal of the Operational Research

Society, 52, 928-936.

Cordeau, J.-F., Laporte, G., and Mercier, A. (2004). Improved tabu search algorithm for

the handling of route duration constraints in vehicle routing problems with time

windows. Journal of the Operational Research Society, 55, 542–546.

223

Cordeau, J.-F. and Laporte, G. (2001). A tabu search algorithm for the site dependent

vehicle routing problem with time windows. INFOR, 39, 292-298.

Cordeau, J.-F., Gendreau, M. and Laporte, G. (1997). A tabu search heuristic for

periodic and multi-depot vehicle routing problem. Networks, 30, 105-119.

Croes, G. (1958). A Method for Solving Traveling Salesman Problems. Operations

Research, 6, 791-812.

Cuervo, D.P., Goos, P., Sorensen, K. and Arraiz, E. (2014). An iterated local search

algorithm for the vehicle routing problem with backhauls. European Journal of

Operational Research, 237(2), 454-464.

Cvijovic, D. and Klinowski, J. (1995). Taboo Search - An Approach to the Multiple

Minima Problem. Science, 267, 664-666.

Dantzig, G.B. and Ramser, J.H. (1959). The truck dispatching problem. Management

Science, 6, 80-91.

Deif, I. and Bodin, L. (1984). Extension of the Clarke and Wright algorithm for solving

the vehicle routing problem with backhauling. In: Kidder, A. ed. Proceedings of the

Babson conference on Software uses in Transportation and Logistics Management.

Babson Park, pp. 75-96.

Derigs, U., Kurowsky, R. and Vogel, U. (2011) Solving a real-world vehicle routing

problem with multiple use of tractors and trailers and EU-regulations for drivers

arising in air cargo road feeder services. European Journal of Operational Research,

213, 309-319.

Derigs, U., Li, B. and Vogel, U. (2010). Local search-based metaheuristics for the split

delivery vehicle routing problem. Journal of the Operational Research Society, 61,

1356-1364.

Desrochers, M., Desrosiers, J. and Solomon, M. (1992). A New Optimisation Algorithm

for the Vehicle Routing Problem with Time Windows. Operations Research, 40(2),

342-354.

224

De Franceschi, R., Fischetti, M., and Toth, P. (2006). A new ILP-based refinement

heuristic for vehicle routing problems. Mathematical Programming, 105:471-499.

DFT: Department of Transport, UK, Quarterly Road Traffic Estimates (n.d.). [Online].

Available from: https://www.gov.uk/government/statistics/road-traffic-estimates-for-

great-britain-january-to-march-2015) [Accessed on 28/05/2015].

Dondo R, and Cerdá, J. (2006). A cluster-based optimisation approach for the multi-

depot heterogeneous fleet vehicle routing problem with time windows. European

Journal of Operational Research, 176, 1478-1505.

Dorigo, M. (1992). Optimisation, Learning and Natural Algorithms. Milano:

Politecnico di Milano.

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimisation. MIT Press.

Dror, M. and Trudeau, P. (1989). Savings by split delivery routing. Transportation

Science, 23, 141-145.

Dror, M. and Trudeau, P. (1990) Split delivery routing. Naval Research Logistics, 37,

383-402.

Dueck, G. (1993). New Optimisation Heuristics: The Great Deluge Algorithm and the

Record-to-Record Travel. Journal of Computational Physics, 104(1), 86-92.

Dueck, G. and Scheuer, T. (1990). Threshold Accepting: A General Purpose

Optimisation Algorithm Appearing Superior to Simulated Annealing. Journal of

Computational Physics, 90(1), 161-175.

Durbin, R. and Willshaw, D. (1987). An Analogue Approach to the Travelling

Salesman Problem Using an Elastic Net Method. Nature, 326, 689-691.

Eilon S and Christofides N (1971). The Loading Problem. Management Science, 17(5),

259-268.

Eiselt, H. A., Gendreau, M. and Laporte, G. (1995). Arc Routing Problems, Part I: The

Chinese Postman Problem. Operations Research, 43(2), 231-242.

225

Ergun, Ö., Orlin, J.B. and Steele-Feldman, A. (2006) Creating very large scale

Neighbourhoods out of smaller ones by compounding moves. Journal of Heuristics,

12, 115-140.

Fischetti, M., Toth, P. and Vigo, D. (1994). A branch-and-bound algorithm for the

capacitated vehicle routing problem on directed graphs. Operations Research, 42,

846-859.

Foster, B. and Ryan, D. (1976). An integer programming approach to the vehicle

scheduling problem. Operational Research Quarterly, 27:367-384.

Fisher, M.L. (1994). Optimal solutions of vehicle routing problems using minimum k-

trees. Operations Research, 42, 626-642.

Fisher, M.L. and Jaikumar, R. (1981). A generalized assignment heuristic for vehicle

routing. Networks, 11, 109-124.

Fleischmann, B. (1990). The vehicle routing problem with multiple use of vehicles.

Working paper, Fachbereich Wirtschaftswissenschafte, Universidad Hamburg,

Hamburg, Germany.

Fleszar, K., Osman, I. H. and Hindi, K. S. (2009). A variable neighbourhood search

algorithm for the open vehicle routing problem. European Journal of Operational

Research, 195, 803-809.

Flood, M. M. (1956). The Traveling-Salesman Problem. Operations Research, 4(1), 61-

75.

Fogel, L.J., Owens, A.J. and Walsh, M.J. (1966) Artificial Intelligence Through

Simulated Evolution. Wiley, New York.

Fukasawa, R. et al. (2003). Robust branch-and-cut-and-price for the capacitated vehicle

routing problem. Technical Report RPEP Vol.3. no.8, Uiversidade Federal

Fluminense, Engenharia de Producao, Niteroi, Brazil.

226

Gajpal, Y. and Abad, P.L. (2009). Multi-ant colony system (MACS) for a vehicle

routing problem with backhauls. European Journal of Operational Research, 196,

102-117.

Gamboa, D., Rego, C. and Glover, F. (2006). Implementation analysis of efficient

heuristic algorithms for the traveling salesman problem. Computers and Operations

Research, 33, 1154-1172.

Gribkovskaia I., Gullberg B.O., Hovden K.J., Wallace S.W. (2006) Optimization model

for a livestock collection problem, International Journal of Physical Distribution &

Logistics Management, 36, 136-52.

Goel A., Gruhn V. (2008) A General Vehicle Routing Problem, European Journal of

Operational Research, 191, 650-660.

Ganesh, K. and Nallathambi, A.S. (2007). Variants, solution approaches and

applications for vehicle routing problems in supply chain: agile framework and

comprehensive review. International Journal of Agile Systems and Management, 2

(1), 50-72.

Ganesh, K. and Narendran, T. T. (2007) ClOVES: A cluster-and-search heuristic to

solve the vehicle routing problem with delivery and pick-up. European Journal of

Operational Research, 178, 699-717.

Gavish, B. and Graves, S.C. (1982). Scheduling and routing in transportation and

distribution systems: formulations and new relaxations. Grad. Sch. Management,

Univ. Rochester, Rochester, NY, Working Paper.

Gendreau, M., Hertz, A. and Laporte, G. (1992). New insertion and post-optimisation

procedures for travelling salesman problem. Operations Research, 40 (6), 1086-

1094.

Gendreau, M., Hertz, A. and Laporte, G. (1994). A tabu search heuristic for the vehicle

routing problem, Management Science, 40 (10), 1276-1290.

227

Ghaziri, H. (1991). Solving Routing Problems by a Self-Organizing Map. In: Kohonen,

T., Makisara, K., Simula, O. and Kangas, J. eds. Artificial Neural Networks. North-

Holland, Amsterdam, pp. 829-834.

Ghaziri, H. (1996). Supervision in the Self-Organizing Feature Map: Application to the

Vehicle Routing Problem. In: Osman, I. H. and Kelly, J. P. eds. Meta-Heuristics:

Theory and Applications. Boston: Kluwer, pp. 651-660.

Ghaziri, H. and Osman, I.H. (2003). A neural network algorithm for travelling salesman

problem with backhauls. Computers and Industrial Engineering, 44, 267-281.

Ghaziri, H. and Osman, I.H. (2006). Self-organizing feature maps for the vehicle

routing problem with backhauls. Journal of Scheduling, 9, 97-114.

Gillet, B.E. and Miller, L.R. (1974). A heuristics algorithm for the vehicle dispatch

problem. Operations Research, 22, 340-349.

Glover, F. (1986). Future Paths for Integer Programming and Links to Artificial

Intelligence. Computers and Operations Research, 13(5), 533-549.

Glover, F. (1989). Tabu search-Part I. Journal of Computing (ORSA), 1, 190-206.

Glover, F. (1989). Tabu search-Part II. Journal of Computing (ORSA), 2, 4-32.

Glover, F. (1990). Tabu search: A tutorial. Interfaces, 20, 74-94.

Glover, F. (1991). Multilevel Tabu Search and Embedded Search Neighbourhoods for

the Traveling Salesman Problem. Graduate School of Business and Administration,

University of Colorado at Boulder, pp. 1-80.

Glover, F. (1992). New ejection chain and alternating path methods for travelling

salesman problems. Computer Science and Operations Research, 449-509.

Glover, F. and Laguna, M. (1993). Tabu Search. In: Reeves, C. R. ed. Modern

Heuristic Techniques for Combinatorial Problems. Oxford: Blackwell, pp. 70-150.

Glover, F. and Laguna, M. (1997). Tabu Search. Norwell, MA: Springer.

228

Goetschalckx, M. and Jacobs-Blecha, C. (1989). The vehicle routing problem with

backhauls. European Journal of Operational Research, 42, 39-51.

Golden, B. L., Bodin, L., Doyle, T. and Stewart Jr., W. (1980). Approximation

Traveling Salesman Algorithms. Operations Research, 28(3, Part II), 694-711.

Golden, B., Assad, A., Levy, L. and Gheysens, F. (1984). The fleet size and mix vehicle

routing problem. Computers and Operations Research, 11, 49-66.

Golden, B., Magnanti, T.L. and Nguyen, H.Q. (1977). Implementing vehicle routing

algorithms. Networks, 7, 113-148.

Golden, B.L., Baker, E.K., Alfaro, J.L., and Schaffer, J.R. (1985). The Vehicle Routing

Problem with Backhauling: Two Approaches, working paper MS/S 85-017,

University of Maryland, College Park.

Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability, A guide to the

Theory of NP-completeness. Freeman, W.H., San Francisco, CA.

Hahsler, M. and Hornik, K. (2006). TSP - Infrastructure for the Traveling Salesperson

Problem, Research Report Series, 45. Department of statistics and mathematics, WU

Vienna University of Economics and Business, Vienna.

Halse, K. (1992) Modelling and Solving complex Vehicle Routing Problems. Published

thesis (PhD), Technical University of Denmark.

Hemmelmayr, V.C., Doerner, K.F. and Hartl, R.F. (2009). A variable neighbourhood

search heuristic for periodic routing problem. European Journal of Operational

Research, 195 (3), 791-802.

Hertz, A. and de Werra, D. (1990). The Tabu Search Metaheuristic: How We Used It.

Annals of Mathematics and Artificial Intelligence, 1(1-4), 111-121.

Ho, S. and Haugland, D. (2004). A Tabu Search Heuristic for the Vehicle Routing

Problem with Time Windows and Split Deliveries. Computers and Operations

Research, 31, 1947-1964.

229

Hoffman, K. L. (2000). Combinatorial optimisation: Current successes and direction for

future. Journal of Computational and Applied Mathematics, 124 (1-2), 341-360.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of

Michigan Press.

Hopfield, J. J. and Tank, D. W. (1985). Neural Computation of Decisions in

Optimisation Problems. Biological Cybernetics, 52, 141-152.

IBM Knowledge Center (2015). Concert Technology tutorial for C++ users [Online].

Available from: http://www-

01.ibm.com/support/knowledgecenter/#!/SSSA5P_12.5.1/

ilog.odms.cplex.help/CPLEX/GettingStarted/topics/tutorials/Cplusplus/cpp_synopsis

.html [Accessed 3 March 2015].

Imran, A., Salhi, S. and Wassan, N.A (2009). A variable neighbourhood-based heuristic

for the heterogeneous fleet vehicle routing problem. European Journal of

Operational Research, 197(2), 509-518.

Jarpa, G.G., Desaulniers, G., Laporte, G. and Marianov,V. (2010). A branch-and-cut

algorithm for the vehicle routing problem with deliveries, selective pickups and time

windows. European Journal of Operational Research, 206, 341-349.

Jin, M., Liu, K. and Bowden, R. (2007). A two-stage algorithm with valid inequalities

for the split delivery vehicle routing problem. International Journal of Production

Economics, 105, 228-242.

Jin, M., Liu, K. and Eksioglua, B. (2008). A column generation approach for the split

delivery vehicle routing problem. Operations Research Letters, 36 (2), 265-270.

Jourdan. L, Basseur. M, and Talbi E-G. (2009). Hybridizing exact methods and

metaheuristics: A survey. European Journal of Operational Research, 199, 620-629.

Karp, R.M. (1978). A Patching Algorithm for the Nonsymmetric Traveling-Salesman

Problem. Electronics Research Laboratory, College of Engineering. Berkeley:

University of California Berkeley.

230

Kinderwater, G.A.P., and Savelsbergh, M.W.P. (1997). Vehicle routing: Handling edge

exchanges. In: Aarts, E.H.L., and Lenstra, J.K. eds. Local Search in Combinatorial

Optimisation, Wiley, Chichester, pp. 337-360.

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983). Optimisation by simulated

annealing. Science, 220, 671-680.

Kleene, S.C. (1991). Introduction to Metamathematics. 10th ed.: North-Holland

Publishing Company.

Kelly, J. and Xu, J. (1999). A set-partitioning-based heuristic for the vehicle routing

problem. INFORMS Journal on Computing, 11:161-172.

Knuth, D.E. (1973). The Art of Computer Programming. Addison-Wesley.

Kohonen, T. (1988). Self-Organization and Associative Memory. Berlin: Springer.

Kowalski, R. (1979). Algorithm = Logic + Control. Communications of the ACM, 22(7),

424-436.

Koza, J. (1992). Genetic Programming: On Programming Computers by Means of

Natural Selection and Genetics. MIT Press, Cambridge, MA.

Kennedy, J. Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of IEEE

International Conference on Neural Networks. pp. 1942–1948.

Land, A.H. and Doig, A.G. (1960). An Automatic Method for Solving Discrete

Programming Problems. Econometrica, 28, 497-520.

Laporte, G. (1992). The Vehicle Routing Problem: an overview of exact and

approximate algorithms. European Journal of Operational Research, 59, 345-358.

Laporte, G., Gendreau, M., Potvin, J.Y. and Semet, F. (2000). Classical and modern

heuristic for the vehicle routing problem. International Transactions in Operational

Research, 7, 285-300.

Laporte, G., Nobert, Y. and Desrochers M. (1985). Optimal routing under capacity and

distance restrictions. Operations Research, 33, 1050-1073.

231

Laporte, G., Nobert, Y. and Taillefer, S. (1987). A branch-and-bound algorithm for the

asymmetrical distance-constrained vehicle routing problem. Mathematical

Modelling, 9(12), 857-868.

Lawler, E.L., Lenstra, J.K. and Rinnooy Kan, A.H.G. (1985). The Travelling Salesman

Problem: a guided tour of combinatorial optimisation. New York: Wiley.

Lewis, R., Song, X., Dowsland, K. and Thompson, J. (2011). An investigation into two

bin packing problems with ordering and orientation implications. European Journal

of Operational Research, 213(1), 52-65.

Lin, L. and Tao, L. (2011). Solving mixed vehicle routing problem with backhauls by

adaptive memory programming methodology. In: Third International Conference on

Measuring Technology and Mechatronics Automation, 2011, 310-313.

Liu, S-C. and Chung, C-H. (2009). A heuristic method for the vehicle routing problem

with backhauls and inventory. Journal of Intelligent Manufacturing, 20(1), 29-42.

Lahyani R., Khemakhem M., Semet F. (2015) Rich vehicle routing problems: From a

taxonomy to a definition. European Journal of Operational Research, 241, 1–14.

Markov, A.A. (1954). Teoriya Algerifmov. Moscow, Russia: [Translated by Jacques J.

Schorr-Kon and PST staff], Imprint Moscow, Academy of Sciences of the USSR.

Matsuyama, Y. (1991). Self-Organization via Competition, Cooperation and

Categorization Applied to Extended Vehicle Routing Problems. Proceedings of the

International Joint Conference on Neural Networks, Seattle, WA, pp. 385-390.

Mester, D. and Braysy, O. (2007). Active-guided evolution strategies for large-scale

capacitated vehicle routing problem. Computers and Operations Research, 34, 2964-

2975.

Min, H. (1989). The multiple vehicle routing problem with simultaneous delivery and

pickup. Transportation Research, 23, 377-386.

Mingozzi, A., and Baldacci, R. (1999). An exact method for the vehicle routing with

backhauls. Transportation Science, 33(3), 315-329.

232

Mingozzi, A., Baldacci, R. and Giorgi, S. (1996). An exact method for the vehicle

routing problem with backhauls. Department of Mathematics, University of Bologna,

Bologna, Italy.

Mingozzi, A., Roberti, R. and Toth, P. (2013). An Exact algorithm for the multi-trip

vehicle routing problem. INFORMS Journal on Computing, 25(2), 193-207.

Mladenović, N. (1995). A Variable Neighbourhood Algorithm - A New Metaheuristic

for Combinatorial Optimisation. Presented at Optimisation Days, Montréal.

Mladenović, N. and Hansen, P. (1997). Variable neighbourhood search. Computers and

Operations Research, 24, 1097-1100.

Mladenović, N., Todosijević, R. and Urosević, D. (2014). Two level general variable

neighbourhood search for attractive travelling salesman problem. Computers and

Operations Research, 52, 341-348.

Mohamed, N.H.B. (2012) Hybridisation of Heuristics and Exact Methods for the Split

Delivery Vehicle Routing Problem. Published thesis (PhD), University of Kent.

Moscato, P.A., and Cotta, C. (2003). A gentle introduction to memetic algorithms. In:

Glover, F. and Kochenberger, G. eds. Handbook of metaheuristics Dordrecht, The

Netherlands: Kluwer Academic Publishers, pp. 105-144.

Moyson, F., and Manderick, B. (1988). The collective behaviour of ants: An example of

selforganization in massive parallelization. Proceedings of the AAAI Spring

Symposium on Parallel Models of Intelligence, Stanford, CA.

Nag, B., Golden, B. and Assad, A. (1988). Vehicle routing with site dependencies. In:

Golden, B. and Assad, A. eds. Vehicle Routing: Methods and Studies, Studies in

Management Science and Systems, Volume 16. North-Holland: Amsterdam, The

Netherlands, pp. 149-159.

Nagy, G. and Salhi, S. (1996). Nested heuristic methods for the location-routing

problem. Journal of the Operational Research Society, 1166-1174.

233

Nagy, G. and Salhi, S. (2005). Heuristic algorithms for single and multiple depot

vehicle routing problems with pickups and deliveries. European Journal of

Operational Research, 162(1), 126-141.

Nagy, G. and Wassan, N.A. and Salhi, S. (2013). The Vehicle Routing Problem with

Restricted Mixing of Deliveries and Pickups. Journal of Scheduling, 16(2), 199-213.

ISSN 1094-6136.

Nagy, G., Wassan, N.A., Speranza, M.G. and Archetti, C. (2015). The Vehicle Routing

Problem with Divisible Deliveries and Pickups. Transportation Science, 49(2), 271-

294.

Olivera, A. and Viera, O. (2007). Adaptive memory programming for the vehicle

routing problem with multiple trips. Computers and Operations Research, 34, 28-47.

Ong, J.O. and Suprayogi (2011). Vehicle Routing Problem with Backhauls, Multiple

Trips and Time Windows. Journal Teknik Industri, 13(1), 1-10.

Or, I. (1976) Travelling salesman-type combinatorial problems and their relation to the

logistics of regional blood banking. Northwestern University. Ph.D. Thesis.

Osman, I.H. (1991). Metastrategy Simulated Annealing and tabu Search Algorithms for

Combinatorial Optimisation Problems. The Management School. London: Imperial

College. Ph.D. Thesis.

Osman, I.H. (1993). Metastrategy simulated annealing and tabu search algorithms for

the vehicle routing problem. Annals of Operations Research, 41, 421-451.

Osman, I.H. and Wassan, N.A. (2002). A reactive tabu meta-heuristic for the vehicle

routing problem with back-hauls. Journal of Scheduling, 5, 263-285.

Petch, R.J. and Salhi, S. (2004). A multi-phase constructive heuristic for the vehicle

routing problem with multiple trips. Discrete Applied Mathematics, 133, 69-92.

Piniganti, L. (2014). A Survey of Tabu Search in Combinatorial Optimisation [online].

Available from:

234

http://digitalscholarship.unlv.edu/cgi/viewcontent.cgi?article=3133&

context=thesesdissertations [Access date 09/06/2015].

Pólya, G. (1945). How to Solve It. Princeton University Press. ISBN 0-691-08097-6.

Potvin, J., Kervahut, T., Garcia, B. and Rouseau, J. (1996). The vehicle routing problem

with time windows - Part II: Genetic search. INFORMS Journal on Computing, 8,

165-172.

Potvin, J. (1993). The Traveling Salesman Problem: A Neural Network Perspective.

ORSA Journal of Computing, 5, 328-348.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing

problem. Computers and Operations Research, 31, 1985-2002.

Puchinger, J. and Raidl, G.R. (2005). Combining metaheuristics and exact algorithms in

combinatorial optimisation: A survey and classification. In: Proceedings of the First

International Work-Conference on the Interplay between Natural and Artificial

Computation, Part II. Volume 3536 of LNCS, Springer (2005), pp. 32-41.

Raidl, G.R. (2006). A unified view on hybrid metaheuristics. In: Almeida, F., Blesa,

M.J., Blum, C., Moreno-Vega, J.M., Perez, M.M., Roli, A. and Sampels, M., eds.

Hybrid Metaheuristics. Volume 4030 of Lecture Notes in Computer Science.

Springer (2006), pp. 1-12.

Ralphs, T.K. (2003). Parallel Branch and Cut for Capacitated Vehicle Routing. Parallel

Computing, 29, 607-629.

Rayward-Smith, V., Osman, I., Reeves, I. and Smith, G. (1996). Modern Heuristic

Search Methods. Wiley, England.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart

Reeves, C.R. eds. (1993). Modern Heuristic Techniques for Combinatorial Problems.

Oxford: Blackwell Publications Ltd.

235

Rego, C. and Roucairol, C. (1996). Tabu search algorithm using ejection chains for the

vehicle routing problem. In: Metaheuristics: Theory & Applications, pp. 661-675.

Reimann, M. (2004). D-Ants: Savings Based Ants Divide and Conquer the Vehicle

Routing Problem. Computers and Operations Research, 31(4), 563-591.

Rei,W., Gendreau, M., and Soriano, P. (2010). A hybrid monte carlo local branching

algorithm for the single vehicle routing problem with stochastic demands.

Transportation Science, 44:136-146.

Renaud, J. and Boctor, F.F. (2002). A sweep-based algorithm for the fleet size and mix

vehicle routing problem. European Journal of Operational Research, 140, 618-628.

Renaud, J., Boctor, F.F. and Laporte, G. (1996). An Improved Petal Heuristic for the

Vehicle Routeing Problem. Journal of the Operational Research Society, 47(2), 329-

336.

Renaud, J., Laporte, G. and Boctor, F.F. (1996). A tabu search heuristic for the multi-

depot vehicle routing problem. Computers and Operations Research, 23(3), 229-235.

Rochat, Y. and Taillard, E. (1995). Probabilistic diversification and intensification in

local search for vehicle routing. Journal of Heuristics, 1, 147-167.

Ropke, S and Pisinger, D. (2006). A unified heuristic for a large class of Vehicle

Routing Problems with Backhauls. European Journal of Operational Research,

171(3), 750-775.

Ropke, S and Pisinger, D. (2006). An adaptive large neighbourhood search heuristic for

the pickup and delivery problem with time windows. University of Copenhagen.

Technical Report 04/14, DIKU.

Rosenkrantz, D., Stearns, R. and Lewis, P. (1974). (1977). An Analysis of Several

Heuristics for the Traveling Salesman Problem. SIAM Journal on Computing, 6(5),

563–581.

Russell, R. and Igo, W. (1979). An assignment routing problem. Networks, 9, 1-17

236

Ryan, D.M., Hjorring, C. and Glover, F. (1993). Extensions of the Petal Method for

Vehicle Routeing. Journal of Operational Research Society, 44(3), 289-296.

Salhi, S. (1987). The integration of routing into the location-allocation and vehicle

composition problem. University of Lancaster. Ph.D. Thesis.

Salhi, S. and Nagy, G. (1999). A cluster insertion heuristic for the single and multiple

depot vehicle routing problems with backhauling. Journal of Operational Research

Society, 50, 1034-1042.

Salhi, S. and Petch, R.J. (2007). A GA based heuristic for the vehicle routing problem

with multiple trips. Journal of Mathematical Modelling and Algorithms, 6-4, 591-

316.

Salhi, S. and Rand, G.K. (1987). Improvements to vehicle routing heuristics. Journal of

Operational Research Society, 38(3), 293-295.

Salhi, S. and Sari, M. (1997). A Multi-Level Composite Heuristic for the Multi Depot

Vehicle Fleet Mix Problem. European Journal of Operational Research, 103, 95-

112.

Salhi, S. and Wade, A. (2001). An ant system algorithm for the vehicle routing problem

with backhauls. In: 4
th

 International Conference on Metaheuristics, 16-20 July, 2001.

Porto: Portugal.

Salhi, S. and Wassan, N.A. and Hajarat, M., (2013). The Fleet Size and Mix vehicle

Routing Problem with backhauls: Formulation and Set partitioning-based heuristics.

Transportation Research Part E, 56, 22-35. ISSN 1366-5545.

Schmid, V., Doerner, K., Hartl, R., and Salazar-González, J. (2010). Hybridization of

very large neighbourhood search for ready-mixed concrete delivery problems.

Computers and Operations Research, 37:559-574.

Schmid, V., Doerner, K., Hartl, R., Savelsbergh, M., and Stoecher, W. (2009). A hybrid

solution approach for ready-mixed concrete delivery. Transportation Science,

43:70–85.

237

Schrijver, A. (2003) Combinatorial Optimisation: Polyhedra and Efficiency. Berlin:

Springer.

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H. and Dueck, G. (2000). Record

breaking optimisation results-using the ruin and recreate principle. Journal of

Computational Physics, 159, 139-171.

Schumann, M. and Retzko, R. (1995). Self-Organizing Maps for Vehicle Routing

Problems - Minimizing an Explicit Cost Function. Fogelman-Soulie, F. ed. Paris,

Proceedings of the International Conference on Artificial Neural Networks, pp. 401-

406.

Sen, A. and Bulbul, K. (2008). A survey on multi trip vehicle routing problem. In: VI.

International Logistic and Supply Chain Congress, 6-7 November, 2008. Istanbul,

Turkey.

Sesiano, J. (1982). Books IV to VII of Diophantus' Arithmetica: In the Arabic

Translation Attributed to Qusta Ibn Luqa (Sources and Studies in the History of

Mathematics and Physical Sciences) Sept 1982. Springer .

Shaw, P. (1997). A New Local Search Algorithm providing High Quality Solutions to

Vehicle Routing Problems. Department of Computer Science, University of

Strathclyde, Scotland.

Shaw, P. (1998). Using constraint programming and local search methods to solve

vehicle routing problems. In: Proceedings CP-98. Fourth International Conference

on Principles and Practice of Constraint Programming.

Solomon, M.M. (1987). Algorithms for the vehicle routing and scheduling problems

with time window constraints. Operations Research, 47, 254-265.

Song, X., Lewis, R., Thompson, J. and Wu, Y. (2012). An incomplete m-exchange

algorithm for solving the large-scale multi-scenario knapsack problem. Computers

and Operations Research, 39(9), 1988-2000.

Taillard, E. (1993). Parallel iterative search method for vehicle routing problem.

Networks, 23, 661-676.

238

Taillard, E. (1999). A heuristic column generation method for the heterogeneous fleet

VRP. Operations Research, 33, 1-14.

Taillard, E., Badeau, P., Gendreau, M., Guertin, F. and Potvin, J.Y. (1997). A tabu

search heuristic for the vehicle routing problem with soft time windows.

Transportation Science, 31 (2), 170-186.

Taillard, E., Laporte, G. and Gendreau, M. (1996). Vehicle routing with multiple use of

vehicles. Journal of the Operational Research Society, 47(8), 1065-1070.

Tarantilis, C., Kiranoudis, C. and Vassiliadis (2004). A threshold accepting

metaheuristics for heterogeneous fixed fleet vehicle routing problem. European

Journal of Operational Research, 152, 148-158.

Tarantilis, C.D, Kiranoudis, C.T. (2002). BoneRoute: an adaptive memory-based

method for effective fleet management. Annals of Operations Research, 115(1), 227-

41.

Thompson, P.M. and Orlin, J.B. (1989). The Theory of Cyclic Transfers. Vol. OR 200-

89. Sloan School of Management, MIT.

Thompson, P.M. and Psaraftis, H.N. (1993). Cyclic Transfer Algorithms for Multi-

Vehicle Routing and Scheduling Problems. Operations Research, 41(5), 935-946.

Toth, P and Vigo, D. eds. (2002). The Vehicle Routing Problem. USA: Siam.

Toth, P. and Vigo, D. (1996). A heuristic algorithm for the vehicle routing problem with

backhauls. In: Bianco, L. and Toth, P. eds. Advanced Models in Transportation

Analysis. Springer: Berlin, 585-608.

Toth, P. and Vigo, D. (1997). An Exact Algorithm for the vehicle routing problem with

backhauls. Transportation Science, 31, 372-385.

Toth, P. and Vigo, D. (1999). A heuristic algorithm for the symmetric and asymmetric

vehicle routing problems with backhauls. European Journal of Operational

Research, 113, 528-543.

239

Toth, P., Vigo, D. (2003). The granular tabu search and its application to the vehicle

routing problems. INFORMS Journal of Computing, 15(4), 333-346.

Tutuncu, G.Y., Carreto, C.A.C. and Baker, B.M. (2009). A visual interactive approach

to classical and mixed vehicle routing problems with backhauls. Omega, 37, 138-

154.

Wade, A.C. and Salhi, S. (2002). An investigation into a new class of vehicle routing

problem with backhauls. The International Journal of Management Science, 30, 479-

487.

Wassan, N. (2007). Reactive tabu adaptive memory programming search for the vehicle

routing problem with backhauls. Journal of Operational Research Society, 58, 1630-

1641.

Wassan, N.A., Wassan, A.H. and Nagy, G. (2008a). A reactive tabu search algorithm

for the vehicle routing problem with simultaneous pickups and deliveries. Journal of

Combinatorial Optimization, 15, 368-386.

Wassan, N.A., Nagy, G. and Ahmadi, S. (2008b). A heuristic method for the vehicle

routing problem with mixed deliveries and pickups. Journal of Scheduling, 11, 149-

161.

Wassan, N.A. and Nagy, G. (2014). Vehicle routing problem with deliveries and

pickups: Modelling issues and meta-heuristics solution approaches. International

Journal of Transportation, 2(1), 95-110.

Wassan, N.A. and Osman, I.H. (2002). Tabu Search variants for the mix fleet vehicle

routing problem. Journal of the Operational Research Society, 53, 768-782.

Wassan, N.A., Salhi, S., Nagy, G., Wassan, N. and Wade, A. (2013). Solving the Mixed

Backhauling Vehicle Routing: Problem with Ants. International Journal of Energy

Optimisation and Engineering, 2(2), 62-77.

Wassan, N.A., Nagy, G. and Ahmadi, S. (2008b). A heuristic method for the vehicle

routing problem with mixed deliveries and pickups. Journal of Scheduling, 11, 149-

161.

240

Wassan, N.A., Salhi, S., Nagy, G., Naveed-Wassan and Wade, A.C. (2013). Solving the

mixed backhauling vehicle routing: Problem with Ants. International Journal of

Energy Optimisation and Engineering, 2(2), 62-77.

Wassan, N.A., Wassan, A.H. and Nagy, G. (2008a). A reactive tabu search algorithm

for the vehicle routing problem with simultaneous pickups and deliveries. Journal of

Combinatorial Optimisation, 15, 368-386.

Waters, C.D.J. (1987). A solution procedure for the vehicle scheduling problem based

on iterative route improvement. Journal of the Operational Research Society, 38(9),

833-839.

Wilbaut, C., Salhi, S. and Hanafi, S. (2009). An iterative variable-based fixation

heuristic for the 0-1 multidimensional knapsack problem. European Journal of

Operational Research, 199, 339-348.

Yaman, H. (2006). Formulations and Valid Inequalities for the Heterogeneous Vehicle

routing Problem. Mathematical Programming, 106(2), 365-390.

Yano, C.A., Chan, T.J., Richter, L., Cutler, T., Murty, K.J. and McGettigan, D. (1987).

Vehicle routing at Quality Stores. Interfaces, 17(2), 52-63.

Yellow, P.C. (1970). A computational modification to the savings method of vehicle

scheduling. Operational Research Quarterly, 21(2), 281-283.

Yeun, L.C., Ismail, W.R., Omar, K. and Zirour, M. (2008). Vehicle Routing Problems:

Models and Solutions. Journal of Quality Measurement and Analysis, 4 (1), 205-218.

Zachariadis, E. and Kiranoudis, C. (2012). An effective local search approach for the

vehicle routing problem with backhauls. Expert Systems with Applications, 39(3),

3174-3184.

Zachariadis, E., Tarantilis, C.D. and Kiranoudis, C.T. (2010). An Adaptive memory

methodology for the vehicle routing problem with simultaneous pick-ups and

deliveries. European Journal of Operational Research, 202(2), 401-411.

241

Zhong, Y. and Cole, M.H. (2005). A vehicle routing problem with backhauls and time

windows: a guided local search solution. Transportation Research part E: Logistics

and Transportation Review, 41(2), 131-144.

242

Appendix A:

Connecting CPLEX with Microsoft Visual Studio

One of the efficient features of CPLEX is that it comes with a set of different libraries

through which its optimisers can be embedded in different programming languages on

different operating platforms. CPLEX provides two ways known as Concert Technology

and Callable Library through which it facilitates the programs coded in different

programming languages to successfully use CPLEX optimisers. Brief descriptions of

these two features are given below.

Concert Technology: The Concert Technology comes with set of Java, C++ and .Net

class libraries. The primary job of these libraries is to facilitate the Application

Programming Interface (API) that also consists of modelling facilities. Hence, this

interface permits programmers to embed CPLEX optimisers in Java, C++ or .Net

applications. Figure a.1 shows the set of libraries Concert Technology consists of

different programming languages used on different operating system platforms.

The CPLEX Callable Library: The Callable Library is also a set of C libraries through

which programmers can embed CPLEX optimisers in many applications developed in

various programming languages such as C, C++, Visual Basic, FORTRAN or any other

language that is capable of calling C functions. Therefore, Callable Library consists of

cplexXXX.lib and cplexXXX.dll libraries for Windows platforms and libcplex.a,

libcplex.so, and libcplex.sl for UNIX platforms.

243

Java cplex.jar

C++ ilocplex.lib

concert.lib

.NET ILOG.CPLEX.dll
ILOG.Concert.dll

Java cplex.jar

C++ libilocplex.a

libconcert.a

.NET --------------------

Figure a.1: Concert technology libraries for different operating systems Source:

User’s Manual for CPLEX V12.5

C++ code of the MIPstart

 IloNumVarArray startVar(env);
 IloNumArray startVal(env);

 for(i=0; i<nbTotCust; i++){
 for(j=0; j<nbTotCust; j++){
 startVar.add(R[i][j]);
 startVal.add(R_VNS[i][j]);

 for(k=0; k<nbTotBins; k++){
 startVar.add(X[i][j][k]);
 startVal.add(X_VNS[i][j][k]);
 }
 }
 }
 cplex.addMIPStart(startVar, startVal);
 startVar.end();
 startVal.end();

Figure a.2: C++ code for the MIPstart

Concert Technology libraries

Microsoft Windows UNIX

244

Contributions to the subject knowledge

A list of the contributions made by the research in this thesis to the subject knowledge

and understanding is as follows.

- The research in thesis reviews the VRP literature extensively, both the modelling

and methodological developments, and reproduces it in a different format for

better understanding of the readers.

- A new variant of the VRP, multiple trip vehicle routing with backhauls (MT-

VRPB) is introduced with a graph theoretical description.

- A mathematical formulation of the MT-VRPB is presented and a large set data

instances generated which could serve as future benchmarks in the subject area

research.

- Optimal solution is obtained for small and medium size instances by

implementing CPLEX.

- For instances of large size, a VNS algorithm based on two levels (Two-Level

VNS) is designed to obtain a continuous balance between intensification and

diversification which produced very competitive results for a range of VRP

variants.

- A new hybrid collaborative sequential mat-heuristic algorithm (CSMH) is

developed which combines our two level VNS meta-heuristic and the exact

methodology used in CPLEX through the MIPstart mechanism provided by the

IBM ILOG CPLEX Optimisation Studio. The CSMH proved very high quality

results on all three variants of the VRP tested in this thesis.

245

- Two further variants the VRPB and the MT-VRP are studied, mathematical

formulations presented, and the Two-Level VNS and the CSHM algorithm are

successfully implemented and tested on those problems with some trivial

changes which demonstrate the generalizability and the robustness of the

developed approaches.

- The better fleet management modelling and the results of this thesis may not

only be utilised for commercial advantage to the relevant businesses but also

have a positive impact on environment issues such as reduction in CO2

emissions due to less vehicle working hours, fuel savings, etc.

Conference papers:

1. Wassan Naveed, Nagy G, Salhi S. ‘Solving the Vehicle Routing Problem with

Backhauls using Variable Neighbourhood Search’, OR55 Annual Conference,

University of Exeter, Sep 2013.

2. Wassan Naveed, Nagy G, Salhi S. ‘A Two-Level Variable Neighbourhood

Search Algorithm for the Vehicle Routing Problem with Backhauls and

Multiple-Trips’, IFORS, Barcelona, June 2014.

Journal papers:

1. Wassan, N., Wassan, N., Nagy, G. and Salhi, S. (2016). The Multiple Trip

Vehicle Routing Problem with Backhauls: Formulation and a Two-Level

Variable Neighbourhood Search. Computers and Operations Research, (In

Press).

246

2. Another paper based on the research work in Chapters 6 and 7, titled “A

Collaborative Sequential Mat-heuristic approach for a range of VRP variants”

will be submitted to a suitable ¾* journal.

