
Wassan, Naveed Ahmed (2016) Meta-Heuristics for the Multiple Trip Vehicle 
Routing Problem with Backhauls.  Doctor of Philosophy (PhD) thesis, University 
of Kent,. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/56731/ The University of Kent's Academic Repository KAR 

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/56731/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


i 

 

 

 

Meta-Heuristics for the Multiple Trip 

Vehicle Routing Problem with 

Backhauls 

 

 

 

 

 

A THESIS SUBMITTED TO 

THE UNIVERSITY OF KENT 

IN THE SUBJECT OF MANAGEMENT SCIENCE 

FOR THE DEGREE 

OF DOCTOR OF PHILOSOPHY 
 

 

 

 

 

By 

Naveed Ahmed Wassan 

May 2016 
 

 

 

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright 2016 

By 

Naveed Ahmed Wassan 

All Rights Reserved 



iii 

 

Abstract 

 

 

With the growing and more accessible computational power, the demand for robust and 

sophisticated computerised optimisation is increasing for logistical problems. By 

making good use of computational technologies, the research in this thesis concentrates 

on efficient fleet management by studying a class of vehicle routing problems and 

developing efficient solution algorithms.  

The literature review in this thesis looks at VRPs from various development angles. The 

search reveals that from the problem modelling side clear efforts are made to bring the 

classical VRP models closer to reality by developing various variants. However, apart 

from the real VRP applications (termed as ‘rich’ VRPs), it is also noticeable that these 

classical VRP based variants address merely one or two additional characteristics from 

the real routing problem issues, concentrating on either operational (fleet management) 

or tactical (fleet acquisition)  aspects. This thesis certainly hopes to add to one of those 

good efforts which have helped in bringing the VRPs closer to reality through 

addressing both the operational as well as the tactical aspects.  

On the solution methodologies development side, the proposed research noted some 

considerable and impressive developments. Although, it is well established that the 

VRPs belong to the NP-hard combinatorial class of problems, there are considerable 

efforts on the development of exact methods. However the literature is full of a variety 

of heuristic methodologies including the classical and the most modern hybrid 

approaches. Among the hybrid approaches, the most recent one noted is mat-heuristics 
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that combine heuristics and mathematical programming techniques to solve 

combinatorial optimisation problems. The mat-heuristics approaches appear to be 

comparatively in its infant age at this point in time. However this is an exciting area of 

research which seeks more attention in the literature. Hence, a good part of this research 

is devoted to the development of a hybrid approach that combines heuristics and 

mathematical programming techniques. 

When reviewing the specific literature on the VRP problems focused in this thesis, the 

vehicle routing problem with backhauls (VRPB) and the multiple trip vehicle routing 

problem (MT-VRP), there is not sufficient development on the problem modelling side 

in terms of bringing these two problems closer to the reality. Hence, to fill the gap this 

thesis introduces and investigates a new variant, the multiple trip vehicle routing 

problem with backhauls (MT-VRPB) that combines the above two variants of the VRP. 

The problem is first described thoroughly and a new ILP (Integer Linear Programming) 

mathematical formulation of the MT-VRPB along with its possible variations is 

presented. The MT-VRPB is then solved optimally by using CPLEX along with 

providing an illustrative example showing the validation of the mathematical 

formulation. As part of the contribution, a large set of MT-VRPB data instances is 

created which is made available for future benchmarking.  

The CPLEX implementation produced optimal solutions for a good number of small 

and medium size data instances of the MT-VRPB and generated lower bounds for all 

instances. The CPLEX success may be considered as modest, but the produced results 

proved very important for the validation of the heuristic results produced in the thesis. 

To solve the larger instances of the MT-VRPB, a two level VNS algorithm called ‘Two-

Level VNS’ is developed. It was noticed from the literature that the choice of using VNS 
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for the VRPs has increased in recent literature due to its simplicity and speed. However 

our initial experiments with the classical VNS indicated that the algorithm is more 

inclined towards the intensification side. Hence, the Two-Level VNS is designed to 

obtain a maximum balance of the diversification and the intensification during the 

search process. It is achieved by incorporating a sub-set of neighbourhood structures 

and a sus-set of local search refinement routines and hence, a full set of neighbourhood 

structures and a full set of local search refinement routines at two levels of the algorithm 

respectively. The algorithm found very encouraging results when compared with the 

solutions found by CPLEX. These findings in this thesis demonstrate the power of VNS 

yet again in terms of its speed, simplicity and efficiency.  

To investigate this new variant further, we developed an algorithm belonging to the new 

class of the hybrid methodologies, i.e., mat-heuristics. A hybrid collaborative sequential 

mat-heuristic approach called the CSMH to solve the MT-VRPB is developed. The 

exact method approach produced in Chapter 4 is then hybridised with the Two-Level 

VNS algorithm developed in Chapter 5. The overall performance of the CSMH 

remained very encouraging in terms of the solution quality and the time taken on 

average compared with the CPLEX and the Two-Level VNS meta-heuristic. 

To demonstrate the power and effectiveness of our methodologies, we tested the 

designed algorithms on the two special versions of the VRP (i.e., VRPB and MT-VRP) 

to assess whether they are efficient and dynamic enough to solve a range of VRP 

variants. Hence the Two-Level VNS and the CSMH algorithms developed to solve the 

MT-VRPB are adapted accordingly and implemented to solve the two above variants 

separately. The algorithms produced very competitive results for the benchmark data 

sets when compared to the best known solutions from the literature. The successful 
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implementations of these algorithms on the three VRP models with only minor 

amendments prove their generalizability and their robustness. 

The results in this research show that significant cost savings could be obtained by 

choosing the right fleet size and better vehicle utilisations with multiple trips and 

backhauling. Hence, the research proved the justification of studying this interesting 

combination. Moreover, the problem modelling, efficient algorithm design and 

implementation, and the research results reveal some vital information and implications 

from the managerial point of view in terms of making the tactical (fleet acquisition) and 

the operational (fleet management) decisions in a more informative manner. 
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Chapter 1 

 

Introduction 
 

 

 

1.1. Introduction and Motivation 

The discipline of logistics and supply chain management has seen a continuous and 

rapid development in recent years due to its importance in the economies of 

organisations and countries. Typically the role of supply chain management is perceived 

by most companies as an activity that adds value to their markets, hence it has become 

very significant to their strategic decision making. Due to evolving customers’ demand, 

the companies want efficient delivery service without compromising the customer 

service quality and yet having profitable business. On the other hand, issues around the 

management of the operational physical distribution and collection activities are also 

being seen from the environmental perspectives, especially by big organizations as a 

part of corporate social responsibility, and governments and public service institutions 

(such as councils) as a part of their political agenda. Hence these institutions would like 

to see less traffic on the roads, meaning less pollution. These evolving demands have 

put constant pressure on logistics operations to be more efficient to satisfy these 

agendas. As a result, researchers around the globe are inspired to address these 

important economic and logistical issues more and more efficiently.  
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The main findings of the recent estimated figures published by the UK department of 

transport (DFT) show continuous significant increase in the past two years in all types 

of traffic, especially in light goods vehicles (LGV). Comparison trends of 2014 and 

2015 show that “all motor vehicle traffic increased by 1.8 % to 312.4 billion vehicle 

miles, car traffic increased by 1.3 %, LGV traffic increased by 5.1 %, reaching a new 

peak of 45.5 billion vehicle miles, traffic volumes increased across all road 

classifications, minor rural road traffic increased the most, rising 4.9 % to reach 44.1 

billion vehicle miles”, (DFT, 2015).  

Interestingly the DFT estimates of GDP in UK show an increase in the year ending 

March 2015. In particular, the four goods traffic related industrial groupings in the 

economy, i.e., production, construction, services, and agriculture, showed increases in 

their output over the same period. The above information shows that there is a positive 

correlation between the growth and increasing traffic volumes. The above findings 

become very vital if the GDP vs traffic relationship is associated with the emerging 

developing countries like China and India whose economies are growing much faster 

than the UK. The above statistics pinpoint the importance of this growing global issue 

and triggers a need to address the problem even more. 

This thesis is yet another part towards the efforts that are being put into place to design 

more advanced and efficient algorithms to tackle these issues collectively. Vehicle 

routing as a physical distribution problem is considered to be one of the important 

modes of logistics; hence it has been studied enormously in the literature. However 

there is still a wide gap between the assumptions based theoretical studies carried out in 

academia and the reality of the industry. The research carried out around vehicle routing 

is concentrated mainly on the fuel costs, meaning reducing total distance travelled by a 
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fleet of vehicles while fulfilling customer demands. Other operating costs such as fleet 

and driver expenses are often ignored which can be vital from the management point of 

view to maintain competitive pricing advantage and retain profitability. 

A number of software (e.g., CPLEX or Gurobi) exists that can solve small to medium 

size instances of vehicle routing logistics; however these are not capable enough to 

tackle complex and large size problems efficiently. The fact that the exact methods are 

unable to solve large instances of these well-established hard problems efficiently and 

the design of heuristics is being concentrated as problem-specific. Therefore, there is a 

strong desire in the research community to develop more generalised algorithms. The 

research in this thesis is an attempt to address some of those issues and gaps highlighted 

above by studying this crucial mode of logistics even further through modelling the 

backhauling aspect of the reverse logistics within existing vehicle routing problem 

(VRP) variants known as the multiple trips VRP; and to design efficient algorithms that 

are dynamic in terms of adaptability to be implementable to a range of VRP variants 

instances. In the multi-trip VRP a vehicle may be used more than once in planned 

period of time, hence the model can also be mapped with the light goods vehicle types 

that are increasingly used by online delivery companies.  

Hence, the focus is to be on the issues highlighted above, i.e., economic and 

environmental costs gains, bridging the gap between the academia and the industry and 

developing new algorithms that are capable of solving instances from a range of VRP 

variants. 
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1.2. The Multiple Trip Vehicle Routing Problem with Backhauls 

In this research the Multiple Trip Vehicle Routing Problem (MT-VRP) model is 

extended to include the backhauling aspect which we call The Multiple Trip Vehicle 

Routing Problem with Backhauls (MT-VRPB). The MT-VRPB combines the 

characteristics of the classical versions of two problems studied in the literature, i.e., the 

MT-VRP in which a vehicle may perform several routes (trips) within a given time 

period; and the vehicle routing problem with backhauls (VRPB) in which a vehicle may 

pick up goods to bring back to the depot once the deliveries are made. Therefore in the 

MT-VRPB a vehicle may not only make more than one trip in a given planning period 

but it can also collect goods at each trip. Since the MT-VRP and the VRPB have been 

studied independently in the literature, we first provide a brief description of these 

problems. 

MT-VRP: The MT-VRP model is an extension of the classical VRP in which a vehicle 

may perform several routes (trips) within a given time period. Along with the typical 

VRP constraints an additional aspect is included in the model which involves the 

assignment of the optimised set of routes to the available fleet (Taillard et al. 1996).  

VRPB: The VRPB is also an extension to the classical VRP that involves two types of 

customers, deliveries (linehauls) and pickups (backhauls). Typical additional constraints 

include: (i) each vehicle must perform all the deliveries before making any pickups; (ii) 

routes with only backhauls are disallowed, but routes with only linehauls can be 

performed. The reason behind this is that, in reverse logistics the linehaul (delivery) 

customers are considered more profitable (Goetschalckx and Jacobs-Blecha, 1989). 
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Both the MT-VRP and the VRPB are considered to be more valuable than the classical 

VRP in terms of cost savings and placing fewer numbers of vehicles on our roads. The 

MT-VRP saves a considerable number of vehicles by using the same vehicles more than 

once in a given planning time (Taillard et al. 1996). Whereas, in VRPB a vehicle is used 

to serve backhaul customers only once it has served the linehaul customers rather than 

using a separate vehicle to serve backhauls (Toth and Vigo, 1996, 1997, 1999).These 

features are very important from both the managerial and the ecological perspectives.  

We believe, by combining the aspects of the above two models into the MT-VRPB adds 

even further value to the practice of the vehicle routing especially when it comes to the 

need to optimise a fixed or limited available fleet and utilizing fully the driver time to 

achieve strategic competitive advantage. To our knowledge, this is the first time this 

variant is being studied in the literature. However, there is one study that deals with 

time windows MT-VRPB-TW by Ong and Suprayogi (2011) where an ant colony 

optimisation algorithm is implemented. Below we present a detailed description of our 

MT-VRPB model.  

MT-VRPB: The MT-VRPB can be described as a VRP problem with the additional 

possibilities of having vehicles involved in backhauling and multiple trips in a single 

planning period. The objective is to mimimise the total cost by reducing the total 

distance travelled and the number of vehicles used. 

Problem characteristics: 

1. A given set of customers is divided into two subsets, i.e., delivery (linehaul) and 

pickup (backhaul). 

2. A homogenous fleet of vehicles. 
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3. A vehicle may perform more than one trip in a single planning period. 

4. All delivery customers are served before any pickup ones on a route. 

5. Vehicles are not allowed to service only backhauls on any route; however linehaul 

only routes are allowed.  

6. Vehicle capacity constraints are imposed. 

7. Note - The route length constraint is not imposed in this study, however the model 

is flexible to add this constraint if needed. 

 

The above characteristics are established in the literature for the MT-VRP and VRPB 

(Taillard et al. (1996), Toth and Vigo (1996, 1997, 1999)). However, these 

characteristics are application dependent. For instance, heterogeneous fleet can be 

considered instead of homogeneous and a vehicle can be allowed to serve backhaul 

customers only.  

Figure 1 presents a graphical example of the proposed MT-VRPB with three 

homogeneous types of vehicles and a planning period T; Vehicle 1 performs two trips 

whereas vehicles 2 and 3 one trip each. 

 

 

 

 

 

 

 

Figure 1.1: An example of the MT-VRPB 
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1.2. Aims and Objectives of the Thesis 

As mentioned in the introduction, the aim is to study the vehicle routing problem (VRP) 

in terms of reducing the gap between the current assumption based on theoretical VRP 

models conducted by academics and the actual practices at the industry by developing 

more realistic models and efficient algorithms. Hence, this research provides insights in 

regard to the power and efficiency of solution methods, to address the issues (e.g., 

routing cost, maximising the fleet usage, less vehicles on roads and environmental etc.) 

which are of growing importance to the industry, governments and other relevant 

sectors. To achieve the aims of the thesis the following objectives are set. 

 To study existing VRP models and methodologies meticulously to gain a better 

understanding of the issues and the subject area. 

 To develop a mathematical model for a VRP variant, i.e., vehicle routing problem 

with multiple trips by incorporating backhauling (MT-VRPB) aspect of the 

reverse logistics. 

 To design and implement new efficient and robust meta-heuristic and mat-

heuristic algorithms that are able to solve instances of a range of VRP variants 

including the new MT-VRPB model. Moreover, to generate more realistic MT-

VRPB test instances data set and conduct tests and analysis to provide in-depth 

understanding of the issues and discuss limitations. 

1.3. Outline of the Thesis 

The rest of the thesis is organized as follows.  
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Chapter 2 presents a general review of the Vehicle Routing Problem (VRP) and some of 

its main variants models along with their historical developments. It also presents 

descriptions of various VRP models along with some useful references for the readers. 

The chapter also reviews other methodologies including exact, classical heuristics and 

metaheuristics developed around the subject and discuss their pros and cons in terms of 

their implementation. 

Chapter 3 presents a focussed literature review of the two VRP variants models. Since 

the MT-VRPB is modelled by blending two existing VRP models,  i.e., the Vehicle 

Routing Problem with Backhauls (VRPB) and the Multi-trip Vehicle Routing Problem 

(MT-VRP), the review of these problems will help provide better understanding of the 

newly introduced problem. The VRPB and the MT-VRP are studied independently in 

the literature, their reviews are presented separately. 

Chapter 4 introduces a new variant of the VRP being studied in this thesis i.e., the 

Multiple Trip Vehicle Routing Problem with Backhauls (MT-VRPB) and the exact 

method options to solve the model. The details of the MT-VRPB including the graph 

theoretical definition and mathematical formulation along with possible variations are 

presented. An illustrative example showing validation of the formulation is provided 

before the details of our CPLEX solution implementation. The chapter also provides 

details of a newly created large set of MT-VRPB data instances along with the results 

and analysis.  

Chapter 5 presents a Two-Level VNS algorithm developed to solve the MT-VRPB. An 

overview of the algorithm is first provided followed by the details of various 

components including a multi-layer local search approach that is embedded within the 



9 

 

Two-Level VNS methodology. Details of an adapted sweep-first-assignment-second 

approach to produce an initial solution for the MT-VRPB are also provided. Finally 

detail of the Bin Packing Problem (BPP) that resolves the multiple trip aspect of the 

MT-VRPB is presented followed by the results and analysis. 

Chapter 6 presents a hybrid collaborative sequential mat-heuristic (CSMH) approach 

developed to solve the MT-VRPB. Combining mathematical programming techniques 

with heuristic methods to solve CO problems is a recent development in the literature. 

These approaches are recognised as a new class of the hybrid methodologies and are 

termed as ‘mat-heuristics’. The mathematical model developed in Chapter 4 is 

hybridised with the Two-Level VNS algorithm developed in Chapter 5. The Two-Level 

VNS uses three phases, i.e., initial solution by a modified sweep-first-assignment-second 

approach, improved solution by VNS, and packed solution by the BPP. Here in fourth 

phase, a mathematical formulation is incorporated with the Two-Level VNS algorithm to 

find optimal/better solution for the MT-VRPB. 

Chapter 7 presents our study for two classical versions of the VRP, i.e., the Vehicle 

Routing Problem with Backhauls (VRPB) and the Multi-trip Vehicle Routing Problem 

(MT-VRP). The Two-Level VNS and the CSMH algorithms developed for MT-VRPB in 

Chapter 5 and 6 are further investigated and implemented to solve the VRPB and the 

MT-VRP. The results are produced using the benchmark instances of these problems 

from the literature.  The Two-Level VNS and CSMH algorithms results are analysed and 

compared with the best published solutions. 

Finally, Chapter 8 provides the conclusions and some future research directions. 
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Chapter 2 

 

The Vehicle Routing Problem: Models 

and Solution Methods 

 
 

This chapter presents a brief review of the historical development of the Vehicle 

Routing Problem (VRP) and some of its main variants. Short descriptions of various 

VRP models are presented along with some useful references for the readers. The 

chapter also reviews the methodologies developed around the subject and discuss their 

strengths and weaknesses in terms of their implementation. 

2.1. The Vehicle Routing Problem and its Variants 

2.1.1. The Evolution of the Vehicle Routing Problem  

The evolution story of the VRP starts with the generalization of the classical Travelling 

Salesman Problem (TSP) by Dantzig and Ramser (1959). The TSP is typically 

described as a salesman who has to start a tour from his/her home city and visits all 

customers at different locations before returning back to his/her home city. The problem 

is to find the order in which the salesman is to visit all customers to minimise the total 

distance travelled. (Lawler et al. (1985), Hahsler and Hornick (2006), Bai et al. (2005), 

Gendreau et al. (1992), and Gamboa et al. (2006)). Special cases of the TSP arise in 
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terms of its applications [e.g., Chinese Postman Problem where it is not necessary for 

salesman to returns home (Eiselt et al., 1995)]. For instance, the problem may have 

special properties where the distance between the pairs of nodes is assumed to be 

asymmetric (not the same in both directions). The story then moves to the extension of 

the TSP, i.e., the Multiple Travelling Salesman Problem (mTSP), which involves the 

use of exactly m salesmen (Lawler et al., 1985, Bodin et al., 1983, Bektas, 2006). The 

extension of the mTSP model then took the shape of the classical vehicle routing 

problem (VRP) in the work of Dantzig and Ramser in 1959 with the incorporation of 

some additional aspects such as vehicle capacity restrictions. 

2.1.2.  Definition of the Vehicle Routing Problem: 

The VRP is a general name devoted to a whole set of problems. In its simplest form, the 

VRP involves a set of customers with deterministic demands, a fleet of vehicles 

(normally homogeneous in physicality and unlimited in number) and a depot. The 

problem is to design such a set of routes (starting and ending at the depot) to serve all 

the customers at minimum cost while satisfying the vehicle capacity and (in some cases) 

route-length constraints. Figure 2.1 shows an illustrative example of the classical VRP. 

For detailed information on the subject of VRP see Toth and Vigo (2002), Mester and 

Braysy (2007), Bin et al. (2009), Fleszar et al. (2009).  

2.1.3. VRP Variants 

In the field of transportation and distribution logistics, the vehicle routing problem has 

evolved as a pivotal problem since Dantzig and Ramser (1959) first introduced it as the 

Truck Dispatching Problem. Since then and especially in the past three decades the VRP 

has emerged to be one of the most studied problem in the area of combinatorial 
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optimisation. Numerous variants of the VRP have been introduced and hundreds of 

papers have been written on this subject with new efficient solution methodologies in 

the literature. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: An illustrative example of the VRP 

The primary objective behind the development of various variants of the VRP and 

proposed methodologies is to bring the problem closer to the real world applications 

requirements. Consequently, by taking advantage of the studies around the VRP and its 

different versions, public or private transportation companies in the real-world can save 

substantial transportation costs (for example, combining delivery and pickup operations, 

using a mix of smaller and bigger vehicles, serving from more than one depot, etc.). 

Ganesh et al. (2007) presented a broad review of the Vehicle Routing Problem, its 

variants, solution approaches and the applications. It has been reported that on average 

the transportation of goods or material takes the highest proportion of logistics costs. 
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The authors argue that the VRP has been assumed to be a deterministic and static 

problem traditionally, however, in present day context, VRP takes account of collecting 

and processing information and take decisions accordingly within certain time span. 

However it should be noted that around the time when the study of Ganesh et al. (2007) 

was published another class of the VRP emerged and referred to as “rich” VRPs 

inspired by real applications (Gribkovskaia et al., 2006). A large number of such studies 

exist in the literature, the reader is referred to Goel and Gruhn, 2008; Vidal et al. 2014, 

and for a recent review Lahyani, et al., (2015). On the other hand the counter argument 

to the study of Ganesh et al. (2007) and the fact behind the evolution of VRP variants is 

that these are inspired by real-life operations. The literature on the VRP shows a clear 

trend towards bringing it closer to the reality. We believe the research work in this 

thesis is yet another step to bring the VRP closer to the reality by addressing multiple 

use of fleet with backhauling in a time span which is very much in practice. 

In the following subsections some of the main variants of the VRP and those which are 

relevant to this study are briefly described and useful references are provided. 

2.1.3.1. The Periodic VRP 

The Periodic Vehicle Routing Problem (PVRP) is a generalization of the classical VRP 

that addresses the planning period aspect of the problem. Hence in this problem, the 

planning period is extended to M days as opposed to the classical VRP where a single-

day planning period is considered. The objective is to find the minimum cost set of 

routes over M days (Christofides and Beasley, 1984). The PVRP is found in many real-

world applications, e.g., waste collection, elevator repair and maintenance and recycling 

collections. For further details and applications of PVRP, see Russell and Igo (1979), 
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Beasley (1983), Baptista et al. (2002), Blakely et al. (2003) and Hemmelmayr et al. 

(2009). 

2.1.3.2. The Multiple Trip VRP 

The Multiple Trip Vehicle Routing Problem (MT-VRP) is an extension of the classical 

VRP in which a vehicle may perform several routes (trips) within a given planning 

period (Taillard et al., 1996). As mentioned in Chapter 1, the MT-VRP is one of the 

variants of the VRP that are intended to be investigated in this thesis; hence further 

discussion is provided in subsequent chapters.  

2.1.3.3. The Multiple-Depot VRP 

In the Multiple-Depot Vehicle Routing Problem (MDVRP), customers are served from 

more than one depot as opposed to the classical VRP where customers are served from a 

single depot. The objective of this problem is to minimise the number of vehicles used 

and the total distance travelled while serving all customers. This variant is related to 

some real-world applications where a company might want to serve its customers from 

several depots, as their customers may be clustered around the depots, and it would be 

less costly to serve a respective customer from its nearest depot. In this type of scenario, 

the problem is either tackled as a set of individual vehicle routing problems or in the 

case where customers and depots are somehow intermingled then the problem is tackled 

as a multiple-depot vehicle routing problem. For more details on this problem and its 

extensions readers are referred to Bodin et al. (1983), Renaud et al. (1996) and Salhi et 

al. (2014).  
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2.1.3.4. The Mix Fleet VRP 

The Mix Fleet Vehicle Routing Problem (MFVRP) is an extension of the VRP. The 

MFVRP considers a heterogeneous fleet as opposed to the VRP where a homogeneous 

fleet is used. Hence in the MFVRP, each vehicle’s characteristics differ in terms of 

capacity, fixed cost and variable travel cost. The objective is to find a set of mix fleet 

routes with a minimum total cost while serving all customers. For the details of the 

MFVRP and its further versions readers are referred to Golden et al. (1984), Taillard 

(1999), Salhi and Sari (1997), Wassan and Osman, (2002), Tarantilis et al. (2004), 

Yaman (2006) and Imran et al. (2009). 

2.1.3.5. The VRP with Time Windows 

The Vehicle Routing Problem with Time Windows (VRPTW) addresses time window 

aspect where each customer specifies his/her service time periods. There are two 

variations of time windows considered in the literature, (1) hard time windows, in which 

the customer must be served in the stated time window and (2) soft time windows, 

where the time window can be violated at an additional cost added to the objective 

function in order to compensate the customer for the inconvenience. The VRPTW is 

studied intensively in the literature. For further details on the VRPTW, see Desrochers 

et al. (1992), Halse (1992), Potvin and Bengo (1996), Taillard et al. (1997) Toth and 

Vigo (2002), Yeun et al. (2008) and the survey of Bräysy and Gendreau (2005a, 2005b).  

2.1.3.6. The Split Delivery VRP 

The Split Delivery Vehicle Routing Problem (SDVRP) variant allows a customer to be 

serviced by two different vehicles if it reduces the overall cost. This relaxation can be 
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very important if the sizes of the customers’ orders are bigger than the capacity of a 

vehicle and it becomes compulsory to visit a customer more than once. However the 

objective of the problem stays the same as the VRP. The literature on the SDVRP has 

seen a big gap since it was first introduced by Dror and Trudeau (1989, 1990). However 

considerable attention has been paid towards the SDVRP more recently. See the 

following references for more information on the SDVRP, Belenguer et al. (2000), Ho 

and Haugland (2004), Archetti et al., (2008), Jin et al. (2007) Jin et al. (2008), Aleman 

(2009), Bolduc et al. (2010), Derigs et al. (2010), Mohamed (2012) and Nagy et al. 

(2015). 

2.1.3.7. The classical VRP with Backhauls  

The Vehicle Routing Problem with Backhauls (VRPB) as described in Section 1.2 

involves two types of customers, i.e., linehaul (delivery) and backhaul (collection). In 

this problem a vehicle can deliver goods to the customers and make collections to bring 

back to depot (Goetschalckx and Jacobs-Blecha (1989), Toth and Vigo (1996, 1997, 

1999, 2002), Osman and Wassan (2002). There are some versions of the VRPB that are 

modelled and studied in the literature. Since the VRPB will be studied in this thesis, a 

literature review and our investigations will be provided respectively in Chapter 3 and 

Chapter 7. In this chapter we present brief descriptions of those relevant VRPB variants, 

along with some useful references, which are not investigated in this thesis.  

2.1.3.8. The VRP with Mixed Deliveries and Pickups 

The Vehicle Routing Problem with Mixed Deliveries and Pickups (VRPMDP) is 

another backhauling version in which the order of the pickup and delivery customers is 

not important when it comes to serve their demand. That is linehaul and backhaul 
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customers can be mixed freely within a route in a way that customers are either delivery 

or pickup locations. The VRPMDP is studied further with the extensions such as “multi-

depot” and “time windows”, see Zhong and Cole (2005), Jarpa et al. (2010). The 

following studies can be a useful start for understanding this version of backhauling 

VRPs; Halse (1992), Nagy and Salhi (1999, 2005), Salhi and Wade (2001), Wade and 

Salhi (2002), Ropke and Pisinger (2006), Tutuncu et al. (2009), Lin and Tao (2011). 

Moreover, a recent paper of Wassan and Nagy (2014) provides a comprehensive 

discussion on the modelling issues and the meta-heuristics developments around this 

problem. 

2.1.3.9. The VRP with Simultaneous Deliveries and Pickups 

The Vehicle Routing Problem with simultaneous Deliveries and Pickups (VRPSDP) 

was introduced by Min (1989). In VRPSDP, a vehicle can serve a linehaul customer 

only, a backhaul customer only or it can serve a customer both with linehaul and 

backhaul demands simultaneously. Taking into account the fact that serving customers 

simultaneously can lead to a problem of rearranging the load on a vehicle, it is assumed 

that the physical design of a vehicle is designed in such way that it can be accessed from 

several sides in order to accommodate the load. For more information on the VRPSDP, 

see Salhi and Nagy (1999), Nagy and Salhi (2005), Chen and Wu (2006), Ganesh and 

Narendran (2007), Wassan et al. (2008a and 2008b), Gajpal and Abad (2009), 

Zachariadis et al. (2010), Wassan and Nagy (2014) and Nagy et al. (2015). 

2.1.4. Future of the VRP 

The above descriptions of the VRP models show that the distance/cost minimization has 

been the key factor in those models, besides the maximization of fleet utility and 
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service. Nonetheless, it is noticeable that researches have been continuously trying to 

develop models that are closer to the real applications of the vehicle routing. It can also 

be seen that there are still gaps between the existing models and the reality that need to 

be bridged by developing more integrated models that fulfil the contemporary demands 

of the industry. More recently, a good development and increasing interest in the real 

VRP modelling and applications has been noted in the literature. These models are 

being termed as “Rich” VRP models (Battara et al., 2009). However, so far these 

models seem to be specific to individual applications. The main difficulty to design the 

VRP models and to solve them in an integrated way by considering various real life 

routing requirements is the complex nature of those instances of the problem, and the 

fact that these models belong to the category of hard combinatorial optimisation (CO) 

problems. We shall discuss the solution methods separately in the remainder of this 

chapter by first providing a description of CO problems and introducing the term 

algorithm. 

2.2. Combinatorial Optimisation: Problems and Algorithms  

2.2.1. Combinatorial Optimisation Problems  

Combinatorial Optimisation (CO) problems arise in many areas, including management, 

e.g. vehicle routing and scheduling, production, finance, technology, facility location, 

etc., (Hoffman, 2000). The term “Combinatorial Optimisation” deals with those areas of 

mathematical programming that find the solution of optimisation problems, normally 

being termed as combinatorial or discrete (Christofides et al., 1979). In simple words, 

combinatorial optimisation can be defined as a process of finding one or more best 

(optimal) solutions in a well-defined discrete problem space.  One of the primary issues 
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that arise for most combinatorial problems is the computational burden associated with 

various solution approaches when formulating and seeking a solution to these problems. 

In 1970s computational complexity results were discovered by Cook (1971). It was 

discovered that many CO problems belong to NP-hard category of problems (for more 

information for this area we refer to the reader to an excellent study of Garey and 

Johnson (1979)). Hence the attention was turned to develop more efficient heuristics.  

2.2.2. The term Algorithm 

The word algorithm is derived from the Latin word Algoritmi; Latinized from a Persian 

mathematician’s family name who is named Abu Abdullah Muhammad ibn Musa al-

Khwarizmi (in Arabic: محمد بن موسى الخوارزمي). He was born in either Khwarizmi or 

Baghdad and lived approximately between the years A.D.780 to A.D.850. He wrote his 

first book on systematic solutions to linear and quadratic equations named “al-Kitāb al- 

mukhtaṣar fī ḥisāb al-jabr wa-l-muqābala”. The word algebra is derived from the word 

al-jabr. As a result, he is considered to be the father of algebra and algorithms. The 

word algorithm originally meant the rules that govern arithmetic; it was not until the 

18
th

 Century, when it evolved to include all procedures and formulae for problem 

solving. 

The origins of algorithm root back to the works of a Hellenistic mathematician known 

as Diophantus of Alexandria (Greek: Διόφαντος ὁ Ἀλεξανδρεύς), who lived around the 

time between A.D.200 and A.D.298 in Alexandria, Egypt. According to historic 

findings, he wrote thirteen Greek books named Arithmetica, of which six survived till 

today. Evidence from Arabic sources show that some of their problems may have 

originated from these manuscripts, known as Diophantine problems. Moreover, an 
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Arabic manuscript discovered in 1968 apparently shows a translation of four of the 

seven lost Arithmetica books (Sesiano, 1982). His original Greek manuscripts show an 

unusually syncopated notation that matches the way al-Khwarizmi’s algebras were 

developed at a much later date. Hence he also shares the title of the father of algebra. 

Some quotes  from Kowalski (1979) (Kleene 1991, first published in 1952) and  

Markov (1954) (Knuth 1973, first published in 1968), show how others have defined the 

word “algorithm” and in the light of those quotes, our understanding of the general 

definition of an algorithm is a specific finite set of procedures, methods, techniques or 

formulae that accomplishes a set of tasks within a reasonable and finite amount of time, 

with the requirement of a given initial state and a user-defined end state, to solve a 

problem and conclude with a definite logical answer. 

We note that although many algorithms are designed to find an exact or optimal 

solution, with hard combinatorial problems such as the VRPs, often the bigger the 

problem size, the harder it is to find an optimal solution due to its non-deterministic 

polynomial nature. In order to find a solution within a reasonable amount of time, 

approximation algorithms are implemented where the solution is an approximation that 

is close to the optimal solution. Hence we recognize that the word solution possesses 

different meanings in different situations, where the best solution to a problem could 

either be an optimal solution or a feasible solution. A feasible solution is an improved 

better quality solution as compared to the initial solution and may not necessarily 

represent an optimal solution. Therefore, depending on the end state criteria and time 

restrictions, this may be taken as the best feasible solution and thus the desired solution 

rather than the exact or optimal solution. 
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2.3. Solution Techniques for the Vehicle Routing Problems: An Overview 

Over the past few decades various solutions approaches have been developed to solve 

the VRPs. Among these are the exact and the heuristic/meta-heuristic approaches. The 

literature reveals that not many authors have proposed exact methods to tackle the VRP 

and its variants due to their non-deterministic polynomial hard (NP-hard) nature, which 

leads to an exponential amount of time needed to solve the problem to optimality. 

Therefore, most solutions are achieved by using non-mathematical programming 

methods to find a near-optimal solution – a good problem solution that may be achieved 

within a reasonable amount of time – these methods are termed as heuristic methods. 

Unfortunately, these suffer from inflexibility to changes in the formulation of problems. 

Moreover, as the problem size increases, it becomes more and more problematic to find 

high-quality solutions; in many cases, heuristics tend to get trapped within local optima, 

i.e. they tend to find an optimal solution within its neighbouring space, which in most 

cases do not represent the global optima; the optimal solution of the whole solution 

space. Researchers identified these defects of heuristic methods and produced high-level 

procedures based on generic principles of heuristics, these types of advanced heuristic 

algorithms are named as meta-heuristic, or metaheuristic, methods. Metaheuristic 

methods are also known as artificial intelligence (A.I.) algorithms and are capable of 

solving a large range of problems more efficiently and effectively than simple heuristics 

do. They are designed to be flexible, hence easily adapted to different problems and 

criteria with just a few minor modifications, and do not get hindered from being trapped 

within local optima.  

Exact and heuristic methods both have their pros and cons. There is a compromise 

between using one or the other; hence users must justify which one is more suitable for 
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tackling their problem given the constraints that restrains them to find a solution within 

a set amount of time. Although recent trend shows that the possibility of combining 

both methods to produce highly competitive solutions is feasible, we shall leave this to 

the latter part of this chapter. We attempt to give a brief introduction of each method 

and allow the reader to distinguish between the two methodologies. 

2.3.1. Exact Methods 

Normally, the exact approaches are developed on the mathematical formulation of the 

problem. These methods provide guaranteed optimal solutions, but at a very high 

computational effort (Halse, 1992). These approaches work through the problem 

intelligently and efficiently and obtain optimal solution for the combinatorial 

optimisation problems. 

Although, the exact approaches have proved their efficiency by solving combinatorial 

problems of moderate size. However, when the problem is complex and large in size, it 

may not be a good choice to use exact approaches. Because when engaging with 

complex and large-size problems, these approaches may lead to some implementation 

issues and may require too much computational effort. On the other hand, recent 

advancements and the power in the computer technology has made possible to solve 

moderate-size problems and in some cases problems of large-size in an acceptable 

amount of time using exact methods. 

2.3.2. Heuristic Methods 

The term heuristic is originally derived from the Greek word “heurisko” (Greek: 

ευρίσκω), meaning “I find” or “I discover”. The term was introduced approximately 
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around A.D.340 by a Hellenized mathematician named Pappus of Alexandria (Greek: 

Πάππος ὁ Ἀλεξανδρεύς), who was born in Alexandria, Egypt. The original definition of 

heuristic is a technique to learn, discover, or problem-solve using a simple set of 

procedures. Heuristics were popularized by a Hungarian mathematician named George 

Pólya (Pólya, 1945). He wrote a book titled “How to Solve It” (Pólya, 1945) that 

consolidates ideas about heuristics, ways of understanding a problem, planning how to 

tackle it and revising the solution method to seek for improvements. 

In the context of operational research, heuristic methods use a set of procedures to 

search approximated solutions for a problem in hand without any guarantee of 

optimality (Reeves, 1993). These procedures are aimed at finding solutions as near to 

optimality as possible in a reasonable amount of computational time by searching 

through the most promising regions of solution choices, rather than performing a time-

consuming complete enumeration in the search of the optimal solutions. The down-side 

of heuristics is the fact that they lack precision and accuracy. This led researchers 

around the world to investigate what are the most effective ways to deal with problems 

and how they may be improved by combining different forms of algorithms or 

algorithmic principles. 

In real-life problems, it is better to be able to find an approximate solution to the real 

problem rather than finding the optimal solution to an approximation model of the 

problem. As we have mentioned, in real-life applications problem sizes are usually 

enormous. Hence, generally, it is impractical to attempt finding the optimal solution, 

which leads to the preference of heuristic methods. Table 2.1 shows a list of methods 

used to tackle the VRP and its variants. The table includes a categorized list of exact, 

heuristic, metaheuristic and hybrid methods that researchers have chosen to utilise. Each 
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method is referenced to author, or authors, that are identified as the accredited founder, 

where applicable.  Note that due to the amount of papers that have been published in the 

context of the VRP and its variants, it is not possible to include and categorize every 

method that has been used and therefore we have only included some of the most 

acknowledged and discussed methods. However, methods for tackling the VRP and its 

variants are not limited to the ones mentioned.  

 

Table 2.1: Methods used in tackling the VRP and its Variants 

Exact Methods: 

B&B – Branch-and-Bound (Land and Doig, 1960) 

 Carpaneto-Toth B&B for Non-Integer Linear Programming (NILP) 

(Carpaneto and Toth, 1980) 

 k-Shortest Spanning Tree, q-Paths (Christofides, Mingozzi and Toth, 

1981b) 

 Branch-and-Cut (Laporte, Nobert and Desrochers, 1985) 

 Branch-and-Cut-and-Price (Fukasawa et al., 2003) 

  Dynamic Programming with State Space Relaxation (Christofides, 

Mingozzi and Toth, 1981a) 

 Two-Commodity Network Flow Formulation (Baldacci, 

Hadjiconstantinou and Mingozzi, 2004) 

 

Heuristic Methods: 

Construction-based Heuristics 

 Clarke-Wright savings (Clarke and Wright, 1964)  

 NNH – Nearest Neighbour  

 Sweep (Gillett and Miller 1974) 

 Cluster-First, Route-Second (Fisher and Jaikumar, 1981) 

 Route-First, Cluster-Second (Beasley, 1983) 

 Petal (Ryan et al., 1983) 

 Insertion Heuristics (Flood, 1956) 
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o Christofides-Mingozzi-Toth Sequential Insertion Heuristic 

(Christofides, Mingozzi, Toth, 1979) 

o Parallel Insertion Heuristic 

o Christofides-Mingozzi-Toth Parallel Insertion Heuristic 

(Christofides, Mingozzi, Toth, 1979) 

 GENI (Gendreau et al., 1992) 

Intra- and Inter-Route Improvement Heuristics 

 Transfer Heuristics 

o Or-Opt (Or, 1976) (Inter-/Intra-Route Improvement) 

o 1-0 Exchange (Salhi and Rand, 1987; Water, 1987) 

 Swap Heuristics 

o r-Opt approx 5% from optimum (Croes, 1958) 

o 2-Opt (Croes, 1958) 

o 3-Opt 

o 4-Opt 

o 1-1 Exchange (Salhi and Rand, 1987; Waters, 1987) 

o λ-Interchange (Osman, 1993) 

o Edge Exchange Scheme (Kindervater and Savelsbergh, 1997) 

 Composite Move Heuristics 

o Ejection Chain Process (Thompson and Baraftis, 1989; Rego and 

Roucard, 1996) 

 

Metaheuristic Methods: 

Local Search (LS) Methods 

 TS – Tabu Search (Glover, 1989,1989,1990) 

o Taburoute (Gendreau, Hertz and Laporte, 1994) 

o UTSH – Unified TS Heuristic (Cordeau, Laporte and Mercier, 

2001; 2004) 

o RTS – Reactive TS (Osman and Wassan, 2002) 

o Granularity Principle – Granular TS (Toth and Vigo, 2003) 

 SA – Simulated Annealing (Kirkpatrick, Gelatt and Vecchi, 1983; 

Černý,1985) 
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 DA – Deterministic Annealing (Dueck 1993) 

o Threshold-Accepting (Dueck, 1990) 

o Record-to-Record Travel (Dueck, 1993) 

 LNS – Large Neighbourhood Search (Shaw, 1997) [Inter-route 

Improvement] 

o VLNS – Very LNS (Ergun et al., 2002) 

o ALNS – Adaptive LNS (Røpke and Pisinger, 2004) 

 VNS – Variable Neighbourhood Search (Mladenović and Hansen, 1997) 

Population Search / Solution Recombination Methods 

 EA – Evolutionary Algorithm 

o EP – Evolutionary Programming (Fogel, Owens and Walsh, 1966) 

o ES – Evolutionary Strategies (Rechenberg, 1973) 

 GA – Genetic Algorithm (Holland, 1975) 

o GP – Genetic Programming (Koza, 1992) 

o AMP – Adaptive Memory Programming (Rochat and Taillard, 

1995) 

o Population Mechanism (Prins, 2004) 

Learning Methods 

 ACO – Ant Colony Optimisation (Moyson and Manderick, 1988) 

o D-Ants Savings Algorithm (Reinmann, Doerner and Hartl, 2004) 

 NN – Neural Networks (Hopfield and Tank, 1985) 

 Swarm Intelligence 

o PSO – Particle Swarm Optimisation (Kennedy and Eberhart, 

1995) 

 CE – Cross-Entropy 

Hybrid / Composite Methods: 

 Parallel TS/Ejection Chain Algorithm (Glover, 1991; 1992; Rego and 

Roucard, 1996) 

 BoneRoute: hybrid of AMP and LS (Tarantilis and Kiranoudis, 2002)  

 Memetic Search: hybrid of GA and LS (Moscatto and Cotta, 2003) 

 AGES – Active Guided Evolution Strategy: hybrid of ES and LS (Mester 

and Bräysy, 2007) 
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 Hierarchical/Algorithm Hybrid MILP – Mixed Integer Linear 

Programming (Dondo and Cerdá, 2006) 

 RTAMP – Reactive Tabu Adaptive Memory Programming Search 

(Wassan, 2007) 

 

2.4. Examples of Exact Methods 

In this section, we attempt to give a few examples of exact methods. Some of these 

methods may require the problem to be formulated as an integer linear programming 

(ILP) problem. The exact methods discussed below are ones that have already been used 

in solving the VRP and its variants.  

2.4.1. The Branch-and-Bound Method 

The branch-and-bound (B&B) algorithm belongs to the class of implicit enumeration 

methods and was first proposed by Land and Doig (1960) to solve pure integer linear 

programming (ILP) problems. The general idea may be graphically described in terms 

of finding the minimal value of a function f(x) over a set of solution values within the 

feasible region of the argument x. The name of the B&B algorithm itself automatically 

suggests that it consists of two parts to form the whole algorithm; branching and 

bounding. Branching is a method to finding candidate solutions by covering all the 

feasible regions and splitting into sub-regions yielding sub-problems. Branching on 

each sub-region only terminates when it cannot find a feasible and promising candidate 

solution, or else it is repeated recursively. This branching procedure inevitably forms a 

tree structure and is termed as a search tree, also known as a branch-and-bound-tree. 

When further branching of the sub-problem cannot yield any useful information, we say 
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that the sub-problem is fathomed. Bounding is the part where upper and lower bounds 

for the optimal solution are found within a feasible sub-region. When performing the 

B&B, constructed sub-regions are referred to as nodes. During branching and bounding, 

a process called pruning is performed to search for a better candidate solution. The 

pruning process observes the lower bound of a currently searched sub-region A and 

compares it to the upper bound for any other examined sub-region B, if A’s lower 

bound is greater than the upper bound of B, A is discarded from the search. If the upper 

bound of A matches the lower bound of B, this value becomes the minimum of the 

function within the subsequent sub-region; in this case, we say that the sub-region is 

solved, but maybe further pruned as the search proceeds.  

Two general approaches are used during the search process, namely the backtracking 

and the jumptracking. Backtracking (known as depth-first search) leads the search tree 

by branching down one side of the search tree and quickly finds a candidate solution. It 

then backtracks up to the top of the other side of the tree. Jumptracking (also known as 

breadth-first search) solves all the sub-problems created by the branching. It then 

branches again on the z-value found from each sub-region to create further sub-

problems. Jumptracking often jumps from one side of the search tree to the other; hence 

it creates more sub-problems than backtracking and thus requires comparatively more 

computer storage. 

The procedure terminates when all the nodes on the search tree are pruned or solved, 

where the non-pruned sub-regions have their upper and lower bounds equaling the 

global minimum of the function. In practice, the procedure is usually terminated after a 

given time or number of iterations with a range of values that contain the global 

minimum amongst the non-pruned sub-regions.  
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The main concern is the efficiency and effectiveness of the B&B algorithm used, as the 

efficiency is directly affected by the effectiveness of the branching and bounding 

algorithm used; a bad algorithm could result in non-pruned repeated branching until the 

sub-regions become very small. In such a case, we refer to this as an exhaustive 

enumeration, which becomes impractical even with relatively small problems.  

Carpaneto and Toth (1980) devised a B&B algorithm specifically to tackle asymmetric 

travelling salesman problem up to n = 5000. The problem solution starts off by setting 

all cii = ∞. The assignment problem is solved to find a lower bound. If there are no sub-

tours, then the TSP is solved. Whereas, if there are sub-tours, an upper bound feasible 

solution is found by using Karp’s (1978) patching algorithm by eliminating specific 

edges on sub-tours and reconnecting the sub-tours to form a TSP. These sub-tours are 

then eliminated using branching by “forcing the sub-tours” one-by-one into the main 

tour to form TSP solutions. Each corresponding sub-tour is used to solve the assignment 

problem and any branches whose value is greater than the upper bound is deemed 

infeasible. The Branch and Bound methods have been used to tackle VRP and some of 

its variants with a reasonable success, e.g., Christofides and Eilon (1969), Yano et al. 

(1987), Laporte et al. (1987),  Laporte (1992), Fisher (1994), Mingozzi et al. (1996), 

Toth and Vigo (1997, 2002) and Ralphs (2003).  

2.5. Examples of Heuristic Methods 

This section briefly introduces some of the most common heuristic methods used for 

finding optimal or near optimal solutions for small size problems, or for improving 

(local search methods) on initial solutions found via initial solution construction 

methods. We note that classical improvement heuristics have two properties; these are 
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that the solution never deteriorates and always remains feasible. The quality of a 

heuristic method is assessed on four criteria namely speed, flexibility, accuracy and 

simplicity (Cordeau et al., 2001). Note that in the following sub-sections we are going 

to describe only those construction and improvement heuristic methods that are directly 

used in this study. For others, relevant references are provided in sub-section 2.5.1.2. 

2.5.1. Construction-based Heuristics 

Construction-based heuristics are heuristic methods that create an initial solution from 

raw data. With small problems, it is possible to find the optimal solution and hence not 

necessarily have to go through an improvement stage. However, as the problem size 

becomes larger, these construction-based heuristics could only provide a reasonable 

initial solution, thus requiring other improvement heuristics to improve the quality of 

solution.  

In the following parts, a brief description of the most well-known construction-based 

heuristics is introduced with a brief assessment of the quality of the heuristic. 

2.5.1.1. The Sweep Algorithm 

The sweep algorithm was first introduced by Gillett and Miller (1974). It first selects a 

starting customer, shoots a “beam” from the depot to the starting customer and rotates 

clockwise or counterclockwise adding customers one-by-one to form a tour. If the 

capacity constraint is violated, a new route is initiated until all customers have been 

assigned. Figure 2.3 shows the visual representation in a clock-wise format.  

Like the Clarke-Wright savings and the NNH, the sweep algorithm has a relatively high 

speed and simplicity. The accuracy is only mediocre and it is relatively inflexible. For 
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more information and the various ways it has been used to the VRP and its variants, 

readers are referred to Gillet and Miller (1974), Laporte et al. (2000), Renaud and 

Boctor (2002), Salhi, Wassan and Hajarat (2013). We shall elaborate more on the sweep 

methodology in the later chapters of this thesis since it is adopted in our algorithm 

implementations. 

 

 

Figure 2.3: A visual representation of the sweep procedure 

 

2.5.1.2. Other Construction-based Heuristic for VRPs 

There are several other construction-based heuristics methods that are successfully used 

for VRPs. Among these some popular methods are; the savings algorithm proposed by 

Clark-Wright(1964), for more information on the savings algorithm and its 

enhancements, readers are referred to Laporte et al. (2000), Toth and Vigo (2002), 

Altinel and Oncan, (2005). The nearest neighbour heuristic (NNH) method, for more 
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details of Nearest-Neighbour heuristic and its applications on VRPs, readers are referred 

to Rosenkrantz et al. (1977), Golden et al. (1980), Solomon (1987), Fisher (1994), 

Ganesh et al., (2007). The two-phase methods (e.g., cluster-first, route-second method 

introduced by Fisher and Jaikumar (1981), and the route-first, cluster-second method 

introduced by Beasley (1983)). For more details about these methods and their different 

types/extensions, see Christofides et al. (1979), Renaud et al. (1996) and Toth and Vigo 

(2002). The insertion method introduced by Flood (1956); for details, see Salhi and Sari 

(1999). The GENI (Genius) heuristic proposed by Gendreau et al. (1992), for more 

details on this method, see Gendreau et al. (1994). 

2.5.2. Intra- and Inter-Route Improvement Heuristics 

Intra- and/or inter-route improvement heuristics are used for improving initial solutions 

generated from construction heuristics. There are various common improvement 

heuristics that have been investigated and we shall briefly introduce those which are 

directly used in this study in the following sub-sections and references are provided for 

other types of improvement heuristics in sub-section 2.5.2.3. 

2.5.2.1. Transfer Heuristics 

Transfer heuristics work by removing customer i from its initial position of route I and 

reinserting it into a different position in the same route I for intra-route optimisation. 

Whereas, for inter-route optimisation, customer i is removed from its initial position of 

route I and reinserting it into a new position in route J. Provided, the transfer of 

customer i results in an overall cost minimization without violating vehicle capacity 

constraints, the solution routes are updated. Two of the more commonly used transfer 

heuristics are briefly introduced in the following sections. 
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2.5.2.2. Swap Heuristics 

Swap heuristics swap customers i and j in route I for the intra-route optimisation case, 

and; customer i from route I with customer j from route J for the inter-route 

optimisation case. The new solution resulted from the swap is kept if the new solution 

reduces the overall cost without violating vehicle capacities constraints (Waters, 1987). 

This can be extended for swapping several customers, as seen in the following sections. 

2.5.2.3. Other Improvement Heuristics for VRPs 

In the VRP literature there exist several other improvements/local search heuristics that 

have been used to improve the solution of VRP and its various extensions. Some of 

these local search heuristics are: Or-Optimisation introduced by Ilhan Or (1976), r-

Optimisation proposed by Croes (1958), see Bock (1958) and Renaud et al. (1996) for 

different extension of r-optimisation. The λ-interchange (lambda-interchange) 

introduced by Osman (1991, 1993). Composite Move Heuristics also known as the 

cyclic transfers algorithms introduced by Thompson and Orlin (1989). One of the most 

promising cyclic transfers algorithms, the Ejection Chain Process was proposed by 

Glover (1991, 1992), see Thompson and Psaraftis (1993), and Rego and Roucairol 

(1996) for its VRP implementations. 

2.6. Examples of Metaheuristic Methods 

The following sections introduce well-known metaheuristic methods that have been 

used in this study and some of its extensions used for VRPs are also reviewed. For other 

metaheuristic methods which are widely used for the VRPs, relevant references are 

provided. Each metaheuristic technique has a characteristic that allows it to be 
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categorized into either a local search method, a solution recombination method, or a 

learning method. A good survey on metaheuristics is provided in Boussïd et al. (2013). 

The metaheuristic method that has been used in this study belongs to the category of the 

local search methods. A local search method, also known as a neighbourhood search 

method, searches for an optimal/near optimal solution within its neighbourhood using 

inter-route and intra-route improvements, yet unlike classical heuristics, it allows the 

solution to deteriorate including temporary infeasible solutions, so to allow the solution-

finding procedure to move out of local optima into unexplored search regions in the 

attempt of finding a global optima.  

2.6.1. Variable Neighbourhood Search 

The variable neighbourhood search (VNS) was first proposed by Mladenović (1995) 

and Mladenović and Hansen (Mladenović and Hansen, 1997) and has been quickly 

adopted and widely implemented. There exist many papers that make use of the VNS or 

its variations, mainly to enable it to find solutions for larger instances, and hence have 

proven its recognition as a promising metaheuristics tool. 

The VNS may be seen as an extension of the TS algorithm, where it systematically 

changes between neighbourhoods to find global optima. The VNS searches for solutions 

for each neighbourhood that has been pre-selected from one type of neighbourhood in 

varying depth and three simple facts: 

1. A local optimum with respect to one neighbourhood does not necessarily mean 

locally optimal with respect to another neighbourhood structure; 

2. A global optima is locally optimal with respect to all neighbourhood structures; 
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3. In many cases a local optima with respect to one or several neighbourhood 

structures are relatively close to each other. 

According to a survey done by Mladenović and Hansen (1997), the last observation 

empirically implies that information for finding the global optimum can usually be 

found within the local optima from the neighbourhood structures. Furthermore, these 

three facts could be used in three different ways – deterministic, stochastic, or both – 

which shall be briefly explained below respectively.  

The variable neighbourhood descent (VND) is a deterministic VNS, where the change 

of neighbourhoods within the pre-selected neighbourhood set is carried out in a 

deterministic fashion. Many local search techniques also use a systematic search 

through the solution space, though these methods only use one or two neighbourhoods 

in their search. Having mentioned facts (1) and (2) from above, the VNS has an 

advantage in performing local optimisations on all neighbourhood structures of varying 

depth, which ultimately covers the whole solution space, while keeping the algorithm 

simple, effective and flexible. The final solution would eventually be locally optimal 

with respect to all its neighbourhoods and hence giving it a higher chance to be globally 

optimal in comparison to just using one or two neighbourhoods within the search.  

The reduced variable neighbourhood search (RVNS) is the stochastic model of the 

VNS, where, instead of following a descent, it chooses its points randomly from the 

neighbourhood set. This random generation of points from the neighbourhood of x is 

also known as shaking. If the point generated through shaking is better than the current 

point, it becomes the incumbent for the next iteration and the search continues from this 

new point; otherwise the search continues from the current point. The most common 
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stopping criterion used is the maximum number of iterations needed between two 

improvements. The RVNS is good for very large instances, where performing a 

deterministic local search would be costly. It has also empirically been proven to be at 

least as good as or better than other methods, showing its efficiency and effectiveness. 

The basic variable neighbourhood search (i.e. VNS) uses a combination of 

deterministic and stochastic features to find its final solution. The iterative procedure 

used for the VNS first performs a shaking, afterwards a local search method is applied 

and the comparison of the two solutions would give a so-obtained local optima. If this 

local optimum is better than the incumbent, it becomes the incumbent and the search 

continues by repeating the procedure; otherwise it continues its search from the 

incumbent. The iterative procedure is repeated until no further improvement is found or 

the stopping criterion is met. Stopping conditions may include the maximum number of 

iterations used in between two improvements, or the maximum computational time is 

reached, or the maximum number of iterations has been reached. The advantage of the 

basic VNS is that it avoids cycling by using a shaking procedure, which enables the 

algorithm to perform a search throughout the neighbourhood set. 

Further reading on the survey of VNS variations and applications can be found in 

Mladenović and Hansen (1997). The details of our implementation of VNS are provided 

in Chapter 5.  

2.6.2. Large Neighbourhood Search 

The large neighbourhood search (LNS) was first proposed by Shaw (1997). It could be 

seen as a special case or a variant of the VNS, as the only difference between the LNS 

and the VNS is that the latter operates on only one type of neighbourhood structure with 
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varying depth as mentioned in the previous section, whereas the LNS operates on 

structurally different neighbourhoods by destroying and repairing solutions; i.e., one can 

imagine that VNS operates on a set of neighbourhoods, where all the neighbourhood 

starts from the same point and expanding its capsule in all directions within the solution 

space, hence one neighbourhood is nested within the next; on the other hand, each 

neighbourhood of the VNS centers around different points of the solution space forming 

a capsules of neighbourhood within different region of the solution space; hence one 

neighbourhood and another may or may not overlap with each other, yet it is also 

possible for one neighbourhood to be nested within another. Otherwise, the basic LNS 

follows the same procedure as the basic VNS, where the iterative procedures would start 

off with a shaking, then a search, followed by a comparison for “keep or discard” and 

then repeating these procedures until the stopping criterion is met. For more on LNS see 

a survey by Ahuja et al. (2002).  

2.6.3. Other Metaheuristic Methods for VRPs 

Several metaheuristic methods have been proposed and successfully used for the 

solution of VRP and its various extensions in the literature.  

Some metaheuristic methods falling under the category of local search methods are:  

- Tabu Search (TS) first proposed by Glover (1986), for detailed information, see 

Glover (1989, 1990), Hertz and de Werra (1990), Cvijovic and Klinowski 

(1995), Glover and Laguna (1993, 1997), and Piniganti (2014).  

- Simulated Annealing (SA) founded by Kirkpatrick et al. (1983) and Černý 

(1985), for more details see Reeves (1993).  

- Deterministic Annealing (DA), see Dueck and Scheuer (1990), Dueck (1993). 
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One of the metaheuristic methods that belong to the category of Population Search / 

Solution Recombination Methods is the genetic algorithm (GA), first introduced by 

Holland (1975). For more details on GA, the readers may find Reeves (1993) and 

Rayward-Smith et al. (1996) useful as initial readings.  

Some metaheuristic methods falling under the category of learning methods are:  

- Ant Colony Optimisation (ACO), also known as the ant systems (AS), 

introduced by Moyson and Manderick (1988), Colorni et al. (1991) and Dorigo 

(1992), for more details, see Dorigo and Stützle (2004).  

- Neural Networks (NN), first used in the TSP by Hopfield and Tank (1985), for 

more information, see Durbin and Willshaw (1987), Kohonen (1988), Ghaziri, 

(1991, 1996), Matsuyama (1991), Potvin (1993), and Schumann and Retzko 

(1995).  

2.7. Hybrid Methods  

More recently there has been some good progress towards developing hybrid 

algorithms. The hybridisation of algorithms signifies those designs of the algorithms 

where either different meta-heuristics are used in conjunction or meta-heuristic features 

are used in an interconnected manner with mathematical programming techniques or 

vice versa to approach a problem (Caserta and Voß, 2010). The reasoning behind the 

hybridisation of diverse algorithmic concepts is to build systems that combine strengths 

of individual methods in order to approach the problems in a systematic and better way 

(Raidl, 2006). Blum et al. (2011) explains that by combining right elementary 
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algorithmic concepts, one can achieve top performance in solving various optimisation 

problems. However, developing such hybrid solution approaches is relatively hard and 

demands expertise from various fields of optimisation. The hybridisation among the 

metaheuristics, e.g., TS/SA, TS/SA/GA, Population-based iterated local search, 

Multilevel techniques etc., has been investigated since 1990s. More recently this idea is 

being investigated with combining heuristics and exact methods e.g., CP-based large 

neighbourhood search, ant colony optimisation and constraint programming, dual ascent 

heuristic and column-and-cut generation etc. The advances in technology and in exact 

methods have encouraged researchers to design such algorithms where heuristics are 

combined with mathematical programming models to tackle the problems. While for 

more information on hybridisation of metaheuristics-to-metaheuristics we refer the 

reader to the survey of Blum et al. (2011). For matheuristics, see Jourdan et al. (2009) 

for taxonomy of hybridising exact and metaheuristic methods and a recent survey on 

matheuristics by Ball (2011). Furthermore, we shall provide details and a review on 

heuristic-exact hybrids in Chapter 6 where we have developed such a method for the 

MT-VRPB. 

2.8.  Summary 

This chapter consists of two parts. In the first part, the evolution of the vehicle routing 

problem along with its complexity issues is reviewed. The literature around the VRPs 

modelling appears to be concentrated on developing the variant models that are closer to 

the reality. Although a lot of progress appears to be made on different types of models, 

nonetheless, most of the proposed variants of the VRP merely address one or two 

characteristics from the real life vehicle routing. A slow progress on the development of 

more complex modelling is noticeable, meaning the modelling gaps needs to be 
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addressed in terms of bringing the VRP closer to the reality. One of the objectives the 

this thesis is to add its share in bringing the problem even closer to the reality by 

extending one the existing models which will be discussed in Chapter 3 onwards. 

In the second part of the chapter, some of the well-known exact and heuristics 

approaches developed for the VRPs are reviewed. We have also compared and 

contrasted between exact, heuristic and metaheuristic solution methods. Given a 

description of each of the mentioned solution methods in varying depth, depending on 

the importance of the solution described that may or may not impact on how we 

formulate our methodology proposal in solving our research problem. We note that 

although all the solutions methodologies that have been introduced in this chapter are 

the most “trendy” techniques, there are still many other less-used solution methods that 

have been left out from being mentioned, which does not mean they will not be 

considered for investigation in the future. Furthermore, there are a lot of experimental 

researches by using hybrid techniques that have empirically proven to be promising. 

Hence the solution methods described here in this chapter maybe seen as the most basic 

forms of possible solution methods with a brief idea of how they operate. 
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Chapter 3 

 

Literature Review of the VRPB and the 

MT-VRP 

 

The MT-VRPB being introduced in this thesis is a new addition to the version of the 

VRP models, hence there is no directly related published study in the literature. Since 

the MT-VRPB is modelled by blending two existing VRP models, i.e., the Vehicle 

Routing Problem with Backhauls (VRPB) and the Multi-trip Vehicle Routing Problem 

(MT-VRP), hence this chapter present a review of these problems which will help  

better understand the newly introduced problem. The VRPB and the MT-VRP are 

studied independently in the literature; therefore, we present their reviews separately. 

3.1. An Overview of the VRPB  

As described in Chapter 2, the Vehicle Routing Problem with Backhauls (VRPB) is an 

extension of the VRP, often termed as the classical VRPB. It is one of the most studied 

problems among the class of backhauling VRPs in the reverse logistics area. The 

customers in this variant are divided into two groups known as the linehaul (delivery) 

and the backhaul (pickup). Hence, in the VRPB the vehicles are also used for picking up 

goods to bring back to the depot after all the deliveries are made. Figure 3.1 shows an 

illustrative example of the VRPB. 
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 The objective of the VRPB is to minimise the total (cost) distance travelled while 

satisfying demands of both types of customers. However, a VRPB solution must satisfy 

the following main characteristics: (i) a vehicle must perform exactly one route; (ii) 

each vehicle must make all the deliveries before making any pickups; (iii) the sum of 

quantity of goods delivered or collected must not exceed separately the vehicle capacity 

(same capacity vehicles are considered), (iv) no route is constructed with backhaul 

customers only; though a route with delivery customers only is allowed; (v) all given 

vehicles must be utilised; (vi) vehicles start and end their journey at the same single 

depot.  

The characteristic (ii) is encouraged by the fact that delivery of goods to the customers 

is considered to be the most profitable activity in many practical situations, and the fact 

that some vehicles are rear-loaded and it is difficult to rearrange the delivery load on 

board in order to adjust the new pickup load. Various definitions and formulations of 

the VRPB exist in the literature; for details we refer to Goetschalckx and Jacobs-Blecha 

(1989), Toth and Vigo (1997) and Mingozzi et al. (1999). 

 

Figure 3.1: An illustrative example of the VRPB 
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The VRPB arises in many real-life applications such as delivery and pickup of mail 

to/from customers or post offices, delivery of drink bottles to shops and pickup of 

empty bottles, delivery of new household appliances and removal of old ones. Another 

application of the VRPB can be found in grocery distribution industry, where groceries 

are distributed to stores (considered as linehaul customers) from the distribution centres; 

whereas, pickups of groceries are carried from the production sites (considered as 

backhaul customers) to the distribution centres (Ropke and Pisinger, 2006). Moreover, 

the applications of the VRPB can be found in many other real-world scenarios where 

return of commodities to the distribution centre is involved, i.e., reverse logistics 

(Cuervo et al. 2014). 

3.2. Solution Methods for the VRPB 

The classical VRPB has been studied greatly in the literature; many exact and heuristic 

methodologies have been developed to tackle the problem. We present a review of the 

VRPB studies in the chronological order of their publication by separating the exact and 

the heuristic methods. 

3.2.1. Exact Methods 

There are not many exact methods publications on the VRPB in the literature. We 

provide a review of those in our knowledge as follows. 

Yano et al. (1987) developed a set covering based branch and bound approach for a 

real-life application of the VRP with backhauling. In this problem vehicles were 

restricted to service a few customers (LH/BH); and found optimal solutions to problem 

instances involving up to 40 delivery and backhaul customers.  
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Toth and Vigo (1997) developed a Lagrangean lower bound procedure and a branch and 

bound (see Section 2.4) algorithm for the VRPB. They tested their methodologies on a 

range of data instances generated by them and found optimal solutions for instances up 

to 75 customers, which can be seen as a modest success. They also solved an 

asymmetric VRPB data set generated from the real-world asymmetric VRP instances 

described in Fischetti, Toth and Vigo (1994). 

Mingozzi and Baldacci (1999) presented a mathematical formulation of the VRPB. 

They developed two methodologies, called, ‘HDS’ based on a combination of different 

heuristic methods to generate lower bounds, and ‘EHP’ algorithm to find optimal 

solution for the VRPB. They used CPLEX solver in their HSD and EHP procedures. 

The algorithms were tested on the instances of size up to 113 customers that were 

generated in Goetschalckx and Jacobs-Blecha (1989) and in Toth and Vigo (1996). The 

algorithm performed well in terms of solutions quality; however, it appears that the 

algorithm could not solve instances in which the number of total customers is higher 

than 113. 

3.2.2. Heuristic Methods 

The very first heuristic approach to solve the VRPB is called the DB of Deif and Bodin 

(1984). The DB heuristic is an extension of the savings method of the Clarke and 

Wright (1964) (described in Section 2.5.1.1) originally developed for the VRP. The 

results acquired by the Clarke and Wright method can be greatly affected due to the 

constraint for ‘visiting customers in sequential order’ since feasible merging can be 

reduced due to this constraint. Hence, the DB heuristic modifies the concept of the 

savings through penalizing the arcs that connect different types of nodes. The authors 
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experimentally proved that the best solutions for the VRPB can be achieved by delaying 

the construction of mix routes (i.e., routes with both linehaul and backhaul customers). 

However, the research published in Toth and Vigo (1999) (explained later in this 

section) argue that the results found by both methods, i.e., DB of Deif and Bodin (1984) 

and the Savings of the Clarke and Wright (1964) may remain infeasible in terms of the 

number of routes used for the final solution. This happens as both algorithms lack 

control over that aspect and in order to serve all customers in a given VRPB instance 

may require more routes for the final solution than found by these algorithms, hence 

resulting in an infeasible solution. Moreover, they argued that looking at DB algorithm 

from a practical point of view reveals that both the obtained routing cost of the solution 

and hence probability of solution being feasible are highly related to the number of 

route merging performed. Therefore, these drawbacks reduce the effectiveness of DB 

algorithm when it comes to finding the overall cost and obtaining feasible solutions for 

the VRPB instances. For more details and extension of the Clarke and Wright 

algorithm, see Golden et al. (1985), Casco et al. (1988) and Wassan (2007). 

 

Goetschalckx and Jacobs-Blecha (1989) proposed a two-phase composite heuristic (see 

Section 2.5.2.6.) methodology to solve the VRPB. In the first phase of their heuristic, 

separate routes for linehaul and backhaul customers are generated based on the idea of 

space-filling curves. In space-filling curves, linehaul and backhaul vertices are 

separately transformed into points along a line from points in the plane. These routes are 

then combined together using space-filling mapping to achieve a set of final LH/BH 

routes. The initial solution is then further optimised by using the 2-Opt and 3-Opt 

(described in Section 2.5.2.4.) local search refinement routines. The two-phase heuristic 

produced some modest quality results.  
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Goetschalckx and Jacobs-Blecha (1993) developed a cluster-first-route-second (see 

Section 2.5.1.4) algorithm for the VRPB which is based on the generalized assignment 

methodology similar to the one developed in Fisher and Jaikumar (1981) for the VRP. 

This approach proved better and produced good quality solutions as compared to their 

approach in Goetschalckx and Jacobs-Blecha (1989).  

Toth and Vigo (1996) developed a cluster-first-route-second heuristic algorithm (see 

Section 2.5.1.4) and called it TV. The TV algorithm is based on the approach published 

in Fisher (1994) for the VRPs where the initial solution is obtained by a relaxation 

approach similar to their published work in Toth and Vigo (1997) described earlier in 

this section. The TV algorithm used intra-route, i.e., 2-Opt and 3-Opt and inter-route, 

i.e., insertion and swap procedures as post optimisation to improve the final solution. 

(The intra-route, inter-route, insertion, swap procedures are already explained in Section 

2.5.1.4). The TV algorithm was tested on two VRPB data sets, one consists of 62 

instances from Goetschalckx and Jacobs-Blecha (1989) and the other one they 

generated from 11 VRP data instances using the same backhauling percentage 

conventions of data set one. This algorithm produced better results compared to the 

published works at that time. 

Toth and Vigo (1999) developed a cluster-first-route-second heuristic algorithm (see 

Section 2.5.1.4.) by studying the VRPB with both symmetric and asymmetric travelling 

distances. Their cluster-first-route-second algorithm used a new and general clustering 

method to tackle both symmetric and asymmetric instances. This approach starts by 

constructing a group of clusters which contain either linehaul or backhaul customers; 

the clusters are then combined to achieve a (possibly infeasible) set of routes by solving 

the Assignment Problem. Hence, clusters are combined in such manner that linehaul 



47 

 

clusters are connected with backhaul clusters in order to form mixed routes and any 

linehaul clusters that are left are connected with the depot. The solution is further 

improved by using intra-route and inter-route (see Section 2.5.2) neighbourhood moves 

as refinement routines. This algorithm produced some good quality results compared to 

the previously published works, and set new benchmark solutions for asymmetric 

VRPB. 

3.2.3. Metaheuristic Methods 

Osman and Wassan (2002) studied the VRPB and developed a tabu search (see Section 

2.6.1.1) algorithm. This was the first TS implementation to this problem. Their 

algorithm used the most sophisticated version of TS called Reactive Tabu Search 

(RTS). The RTS is believed to be the most efficient and effective among TS procedures 

as its main objective is to establish a balance between two very important strategies 

known as intensification and diversification in any TS approach. As oppose to TS, the 

RTS uses two mechanisms: 1) it performs large number of random moves to get out of 

local optima and 2) it dynamically increases or decreases tt value while evaluating the 

search process. The RTS algorithm proposed in this study used two savings based 

methods, the saving-insertion and the saving-assignment, to construct initial solutions 

followed by the reactive TS methodology in which two neighbourhood schemes, i.e., 1-

interchange and 2-interchange (see Section 2.5.2.5) are used. The 2-interchange 

neighbourhood scheme moves are conducted by considering consecutive nodes shifts 

and swaps. In order to record the different values of neighbourhood moves, three data 

management structures are used. The results obtained by the RTS algorithm were 

superior quality as compared to the heuristics previously developed including Toth and 

Vigo (1997, 1999). Moreover a large number of solutions produced by the RTS 
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algorithm matched the optimal solutions produced by the exact algorithms of Mingozzi 

et al. (1996). 

Brandao (2006) developed a tabu search (TS) algorithm for the VRPB. Two methods 

called open initial solution and K-tree initial solution are used to generate initial 

solution. The former involves two steps. In the first step, in order to solve the VRPB, 

two separate open vehicle routing problems (OVRPs) are solved. This is done because 

the OVRP is close in structure to the VRPB. Since in OVRP, the vehicles are not 

required to return to depot at the end of route. The OVRP solution is based on two 

phases, the initial phase and the improvement phase. In the initial phase, a nearest 

neighbour (NN) heuristic is used to generate a set of open-ended (i.e., a set of routes 

consisting of linehaul customers and a set of routes consisting of backhaul customers) 

routes sequentially. The NN procedure continues until all the customers are routed. 

Then in the improvement phase, tabu search is used. Here for the set of linehaul OVRP 

routes, TS minimises the overall distance travelled by the vehicles. Whereas for the set 

of backhaul OVRP routes, TS minimises the number of routes as well as distance 

travelled. In the second step 2, two Hamiltonian solution paths of OVRP for each LH 

and BH customers are linked together. Note that four different ways of connecting the 

end points of linehaul and backhaul routes are evaluated and the link returns the least 

cost is accepted to form a complete VRPB route. This process is repeated until either the 

backhaul or the linehaul paths are empty. The K-tree initial solution method is based on 

a lower bound. In this method, linehauls and backhauls are considered as customers 

only, hence, assuming the VRPB as the VRP. Then the VRP is formulated as a 

minimum cost K-tree as described in Fisher (1994a) with degree 2K on the depot. 

Finally, 10 initial solutions are generated from each of 10 K-trees lower bounds. The 

solution generated by either (i.e., open initial solution or K-tree initial solution) 
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methods is improved by their TS implementation. The best performance of the TS 

algorithm is acquired with the K-tree initial solution method.  

Ghaziri and Osman (2006) proposed a self-organizing feature maps (SOFM) 

methodology for the VRP with backhauls which is based on the concept of the Neural 

Networks. This algorithm is basically an extension of Ghaziri and Osman (2003) 

algorithm proposed for the Travelling Salesman Problem with backhauls. This 

algorithm begins by specifying the architecture of the network that comprises of one 

ring on which artificial neurons are spread spatially. The ring is embedded in the 

Euclidean space where each neuron is recognized by its position on the ring. Two post-

optimisation procedures based on the 2-Opt procedure are used to improve the solution 

quality. The technique of type one is used at the end of the algorithm; whereas, the type 

two is used periodically during the search process. Solutions found by their algorithm 

are of inferior quality compared to the algorithms of Toth and Vigo (1996, 1999) and 

Osman and Wassan (2002). 

Røpke and Pisinger (2006) proposed a unified heuristic for a large class of vehicle 

routing problems with Backhauls. The unified heuristic uses large neighbourhood 

search (LNS) meta-heuristics originally developed in Shaw (1998). The LNS shares 

similarities with the concept of Ruin and Recreate (R&R) which was used in a 

framework proposed by Schrimpf et al. (2000). Various insertion and removal heuristics 

are used in this framework, some of them as diversification and others for 

intensification. Røpke and Pisinger embedded three different configurations and called 

it a unified heuristic methodology. These configurations (strategies) are named as 

Standard, 6R-no learning and 6R-normal learning. In the Standard configuration, three 

removal heuristics are used with a learning mechanism; the 6R-normal learning uses 6 
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different types of removal heuristics without learning mechanism; and the 6R-normal 

learning employs all 6 removal heuristics with learning mechanism (for full detail of the 

removal heuristics we refer the reader to their paper). The unified heuristic is tested on 

various data sets belonging to different backhauling variants including the classical 

VRPB. The unified heuristic performed very well on all data sets in terms of the 

solutions quality. 

Wassan (2007) studied the VRPB and proposed a hybrid meta-heuristic algorithm that 

combines the processes of the reactive tabu search and adaptive memory programming 

(AMP). The RTS and AMP are considered as cutting-edge components of TS. The 

AMP component is based on long term memory structures and it used a wider 

framework in which strategies such as intensification and diversification are combined 

together. Both RTS and AMP approaches are coupled and utilised together in this study 

intelligently in order to obtain high quality solutions. The savings-insertion and the 

savings-assignment construction methods developed in Osman and Wassan (2002) are 

used to construct the initial solution. Solutions are reported for two benchmark VRPB 

data sets available in the literature. The RTS-AMP algorithm produced better quality 

solutions (45 new best/optimal) when compared with the best know solutions of two 

well-known VRPB data sets.  

Gajpal and Abad (2009) developed a multi-ant colony system (see Section 2.6.3.1) 

algorithm called ‘MACS’ for the VRPB. In this study, the authors have used two types 

of ants, vehicle-ants and route-ants. In order to construct the feasible solution; two types 

of trail intensities called the vehicle trail intensity and the route trail intensity are used. 

After the initial solution constructed by the ants three types of local search procedures 

are used. These are 2-Opt, customer insertion/interchange multi-route scheme and sub-
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path exchange multi-route scheme. In order to avoid being trapped in local minima 

equal importance is given to the elite ants. The MACS algorithm produced competitive 

results with five new best known solutions compared to the studies published by then. 

Moreover it has been reported that the CPU time and solution quality of MACS 

approach can be controlled by varying the number of ants. 

Tutuncu, Carreto and Baker (2009) investigated the classical VRPB and two of its 

extensions known as the mixed and the restricted VRP with backhauls. A decision 

support system (DSS), which is based on the GRAMPS (Greedy Randomized Adaptive 

Memory Programming Search, see Ahmadi and Osman (2005)) algorithm. This is 

basically a visual approach that is based on the work of Fisher and Jaikumars (1981) 

proposed for vehicle routing and was later extended by Baker in (1992). Their visual 

approach which they named as CRUISE2 (Computerised Routing Using Interactive 

Seeds Entry version 2) consists of three stages. The first stage has two phases called the 

seed selection and proposition phases respectively. At the seed selection phase, using 

visual representation of the seeds (customers) on the DSS, users can select customers 

for each vehicle manually or automatically. Whereas at the proposition phase, 

GRAMPS meta-heuristic construct routes and also performs a local search with learning 

process at each iteration. Once the classical VRPB solution is obtained at the first stage, 

the problem modification stage starts where users are  optionally permitted to insert 

backhaul customers before linehaul customers in order to convert the solution into 

mixed VRPB or restricting backhaul customers’ positions in order to make it restricted 

VRPB. Finally in the stage, the solver (GRAMPS) algorithm is called to obtain the final 

solution for the mixed and restricted VRPB. The visual DSS framework did not find 

better solutions when compared to the reactive tabu search algorithm of Osman and 
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Wassan (2002), however in terms of computational time and overall solution quality, 

the proposed framework seems quite competitive. 

Zachariadis and Kiranoudis (2012) developed a local search heuristic for the classical 

VRPB that explores rich solution neighbourhoods (i.e., the neighbourhoods which are 

composed of variable length customer sequences) and makes use of local search moves 

stored in Fibonacci Heaps (Fibonacci Heaps are basically special types of priority queue 

structures that allows a program with capabilities such as fast insertion, deletion and 

retrieval). Moreover, they propose a parameter-free mechanism called “promises” 

which is based on the aspiration criterion mechanism of tabu search to achieve 

diversification and avoid cycling. The algorithm is tested on a VRPB data set proposed 

by Goetschalckx and Jacobs-Blecha (1989).  The algorithm outperformed other 

algorithms in the literature in terms of solution quality. 

Recently, Cuervo et al. (2013) developed an iterated local search algorithm for the 

classical VRPB in which an oscillating local search heuristic is used. At each iteration, a 

broader neighbourhood structure is explored and the information regarding 

neighbouring solutions is stored in a data structure. At the second stage, a constant 

transition between feasible and infeasible solution space is achieved by a heuristic while 

adjusting the transitions by a penalty associated with infeasible solutions dynamically. 

The iterated local search algorithm is tested on two VRPB benchmark data sets. The 

algorithm produced high quality solutions when compared with other state of the art 

algorithms in the literature. 
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3.2.4. Studies in VRPB-related areas 

There are a lot of studies in the literature that are related to the VRPB, however we 

preclude them since the results could not be compared directly because these studies are 

the special cases of the VRPB and hence use different data sets. Nevertheless, we 

provide some references here for the interested readers.  

Notable ones are the vehicle routing problem with delivery and backhaul options by 

Anily (1996); the vehicle routing problem with backhauls and inventory (VRPBI) by 

Liu and Chung (2009); the mixed vehicle routing problem with backhauls (MVRPB) by 

Wade and Salhi (2002), Lin and Tao (2011) and Wassan et al. (2013); the vehicle 

routing problem with restricted mixing of deliveries and pickups by Nagy, Wassan and 

Salhi (2013); the fleet size and mix vehicle routing problem with backhauls by Salhi, 

Wassan and Hajarat (2013); the vehicle routing problem with divisible deliveries and 

pickups by Nagy et al.  (2015). More information on the modelling issues and meta-

heuristics solution approaches on the vehicle routing problems involving pickups and 

deliveries; we refer the reader to Wassan and Nagy (2014). 

3.3. An Overview of the MT-VRP  

As briefly described in Section 2.1, the MT-VRP is a variant of the classical VRP. The 

MT-VRP along with the characteristics of the VRP includes a schedule for a vehicle 

that may serve a subset of routes within a given planning period. This means that an 

optimised set of routes maybe assigned to a given fleet (Taillard et al., 1996). This 

aspect of the MT-VRP makes it practically important in the context of the operational 

level where managers have to make driving schedules with a given fixed fleet and with 
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shorter distance distribution networks on a daily basis. Figure 3.2 shows an illustrative 

example of the MT-VRP.  

A few formulations of the MT-VRP can be found in the literature. Olivera and Viera 

(2007) were the first to formulate the MT-VRP. Another closely related formulation 

was then introduced in Azi et al. (2010) who developed a branch-and-price model based 

on a set-packing formulation for the MT-VRP with an additional aspect of the time 

windows. More recently Mingozzi et al. (2013) developed two set-partitioning-like 

formulations for the MT-VRP. 

 

E.g;  T (time) = 480 minutes planning period time for each vehicle 
C = vehicle capacity 
d(R) = total length of route R 
 
 
                                                                                                                                                      
                                                                                          
                                                                                                                                                                                    
                                                   
                                                                             Vehicle 1                                                               
                                                                            C = 6000                                                                
                                                                            𝐝(𝑹𝟏) = 220                                                                             Vehicle 3                  
                                                                                                                                                                                C = 6000                              
                                                                                                                                                                                𝐝(𝑹𝟑)  = 340  
                                                                                                                
                                                                                                                          
                                                                                                                                                                                                 
                                                                                                                                               
                                                                                                                                            
                                                                                                                                                  
                                                                         Vehicle 1                                                                                                     
                                                                          C = 6000 
                                                                          𝐝(𝑹𝟐) = 212                                                              Vehicle 2                            
                                                                                                                                                               C = 6000 
                                                                                                                                                               𝐝(𝑹𝟒)  = 360              
                                                                                                                                                                                                          
 
                                                                                                                                          
                                                                                                                                                                                 
   

                                                        Delivery (Linehaul) Customers                                    

Figure 3.2: An illustrative example of the MT-VRP 

In many publications, the circumstances in which a multi-trip scenario may arise and its 

importance is highlighted. We shall present a brief summary here. From the discussions 

d(𝑹𝟏)  + d(𝑹𝟐) <= T 

220 + 212 = 432  

432 <= T 

Vehicle 1 

+ 
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so far it has become obvious that in many vehicle routing applications, a vehicle may 

perform more than one trip in a single working day shift. Battara et al. (2009) argue that 

for a vehicle to perform more than one route arises where the vehicle capacity is small 

compared to the customer demands; hence fewer customers can be served in each trip. 

Another possibility is when spread time constraints (the constraints that the hours of any 

two visits to the same customer must differ by a given time constant) or strict time 

windows are imposed in a routing application. The importance of MT-VRP arises in 

many real-life situations where significant cost savings can be obtained by reducing the 

number of vehicles purchased/hired and hence drivers by taking advantage of multiple 

scheduling. Applications of the MT-VRP may arise in distribution of goods in urban 

areas, where travel periods are likely to be small; hence, the vehicles are often reloaded 

after performing short tours in order to be used again (Petch and Salhi, (2004), Olivera 

and Viera, (2007), Ahlem et al. (2011)). 

3.4. Solution methods for the MT-VRP 

The MT-VRP has not been studied extensively in the literature as compared to the other 

variants of the VRP. We present a review of the MT-VRP and its closely related studies 

in the chronological order of their publication by separating the exact and the heuristic 

methods as follows. 

3.4.1. Exact Methods 

There is only one optimal approach attempt in the literature due to Mingozzi, Roberti, 

and Toth (2013) who developed an exact method based on two set-partitioning-like 

formulations to tackle the MT-VRP. The first formulation demands a priori generation 

of all feasible routes; hence for each route and each vehicle, it has a binary variable that 



56 

 

specifies whether a given route is assigned to the schedule of a given vehicle. The 

second formulation is based on generating all feasible schedules for the vehicles; hence, 

for each schedule it also has a binary variable that specifies whether a schedule is 

performed or not. A subset of 52 instances, ranging in size from 50-120 customers, 

based on the classical MT-VRP benchmark instances, is tested and 42 of them are 

solved to optimality. For the rest, upper bounds are provided.  

3.4.2. Heuristic Methods 

The very first research that addresses the multiple trips aspect in the context of vehicle 

fleet mix is due to Salhi (1987). The study is kept limited to double trips only and a 

matching algorithm is used to assign routes to vehicles within a refinement process. The 

next study in the time line appears to be of Fleischmann (1990) who addressed the MT-

VRP problem in his working paper. He proposed a modified savings algorithm and used 

a bin packing heuristic to assign the routes to vehicles. 

Petch and Salhi (2004) developed a multi-phase constructive heuristic for the MT-VRP. 

The initial VRP solution is generated by using savings measure of Yellow (1970). The 

savings calculations are parameterized in order to obtain the pool of VRP solutions 

followed by the 2-Opt and the 3-Opt arc exchange heuristic procedures to improve the 

initial VRP solution. In order to obtain the MT-VRP solution, a bin-packing problem 

(BPP) approach is used to obtain the MT-VRP solution. In BPP, items of varying sizes 

are supposed to be packed into a finite number of bins with known capacity such that all 

items are packed into the minimum number of bins without violating the capacity of 

each bin. In the multiple trip context, the routes are considered as the items with their 

respective distances as their sizes and vehicles are represented as bins with associated 

maximum driving time as their respective capacity. Moreover, several tour 
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improvement procedures and route reassignment to vehicles are used to improve the 

MT-VRP solution. The bisection approach is used to prescribe the imposed bin sizes. 

Hence, where solutions are not packed feasibly, overtime is allowed and the solutions 

are reported with overtime cost. The proposed heuristic is tested on the MT-VRP data 

set proposed by Taillard et al. (1996). When compared with solutions produced by 

algorithm of Taillard et al. (1996) and algorithm of Brandao and Mercer (1997), this 

approach performs better. In terms of average overtime, this heuristic approach 

performed 29.59% lower than that of Taillard et al. (1996) algorithm and 25.27% higher 

when compared with the algorithm of Brandao and Mercer (1997). In terms of solution 

quality this approach performed better especially when compared with the algorithm of 

Taillard et al. (1996).  

Ahlem et al. (2011) studied and combined two variants of VRP: the profitable VRP and 

multiple trips vehicle routing problem (MT-VRP). In terms of the profitable VRP, it has 

been discussed that in many real-life situations it is not possible to satisfy the entire 

customer’s request due to lack of means or of inadequate demand. Therefore it is 

necessary to give priority to those customers who are more important potentially in the 

long term or have effective impact on recorded sales turnover. Moreover, this problem 

is very important practically in those situations where the companies have to face daily 

distribution schedules with a short course transportation network and have limited 

vehicle fleet. A mixed integer programming formulation is proposed to solve this 

problem and the problem primary objective is to maximize the sum of collected profit 

minus the transportation costs. Two greedy constructive heuristics are used which make 

use of some local procedure in the algorithm to optimise the solution. This algorithm is 

implemented in CPLEX and is tested on 20 new randomly generated instances by the 

authors and on the benchmarks MT-VRP data set of Taillard et al. (1996). The 
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constructive heuristic found optimal solutions for the small size instances within the 

given computational time limit. However it is reported that the optimal solution cannot 

be determined where the number of customers is more than 16. Thus for large instances 

upper and lower bound and their deviation is reported. 

3.4.3. Metaheuristic Methods 

Taillard et al. (1996) were the first researchers to study the MT-VRP. They developed a 

three phase tabu search heuristic to solve the MT-VRP which is based on the tabu 

search adaptive memory algorithm of Taillard (1993). In the first phase, a large set of 

vehicle routes of the classical VRP is produced using the algorithm of Taillard (1993) 

and routes forming the VRP solution are stored in the list (data structure). Secondly, an 

enumerative algorithm is used to select a subset of routes generated in the first phase. 

Finally, a Bin Packing Problem is solved for each VRP solution stored in the list and 

then the best solution is selected from all the packed solutions. The tabu search 

algorithm is tested on a number of MT-VRP instances which they generated from the 

VRP data instances of Christofides et al. (1979) and Fisher (1994). Their tabu search 

algorithm successfully found feasible solutions for most of the instances within 

reasonable times. Moreover, given the way MT-VRP instances were generated, the 

authors state that the results show that the feasible solutions (i.e., solutions found 

without overtime) are on average within 5% to 10% of the best known VRP solutions. 

Brandao and Mercer (1997) studied a practical MT-VRP for the British company 

Burton’s Biscuits Ltd. and termed it as the multi-trip vehicle routing and scheduling 

problem (MTVRSP). Many time related scheduling constraints close to practical world 

constraints are taken into account in their study. Moreover, as this problem deals with 

solving the real distribution problems with practical constraints and actual costs, real 
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distances are used. To solve the problem they developed a tabu search algorithm which 

consists of three phases. In the first phase, the tabu algorithm generates the initial 

solution by using nearest neighbour and insertion heuristics. At this initial stage the 

routes are created in a sequential constructive manner and all the routes are feasible in 

terms of routing constraints. There may be a possibility that the routes being constructed 

are infeasible in terms of scheduling constraints but this constraint is not considered at 

this stage. In the second phase, two objectives, to make the solution feasible (i.e., 

solution where no overtime is used) in terms of maximum driving time and time 

windows while decreasing the cost of the solution as much as possible are taken into 

account simultaneously. In the third phase, a set of swap and insert moves are 

performed to reduce the solution cost while maintaining feasibility. It has been reported 

that this algorithm improved over the manual solutions obtained by the company by 

approximately 20% on average.  

In (1998) Brandao and Mercer provided a simplification of the above tabu search 

algorithm for the MT-VRP. This algorithm has no additional constraints as compared to 

the above real-world application algorithm. This tabu search algorithm generates the 

initial solution by using a nearest neighbour insertion heuristic and utilises insertion and 

swap moves in its search process. Moreover this algorithm takes into account the 

variable-size tabu list and aspiration criteria. Furthermore infeasible solutions (solutions 

found with overtime) are also allowed with respect to the maximum overtime permitted. 

The algorithm is tested on the data set proposed by Taillard et al. (1996). The solutions 

obtained through the proposed tabu search algorithm are compared with the solutions 

obtained by Taillard et al. (1996).  
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Salhi and Petch (2007) developed a genetic algorithm (GA) based heuristic to solve the 

MT-VRP (see Section 2.6.2.1). They claim this is the first GA based approach proposed 

for MT-VRP in the literature. The power of GA lies in that of new solutions can be 

generated simultaneously. Moreover, classical GAs normally involves binary based 

chromosome representation. But in practice it is difficult to convert a solution into 

binary representation. So in this study, the authors have developed a flexible non-binary 

chromosome structure that is established upon the circle partition concept of Thangiah 

and Salhi (2001) to address the above hurdle. The initial population of chromosome is 

obtained by the circle partition scheme that facilitates in providing a base for clustering 

and finally route generation. In order to maintain the solution quality and population 

diversity two mechanisms called Injection and Cloning are used. To generate new 

chromosome or offspring, the “extraction” and “mutation” operators are used. A savings 

heuristic is used to solve small VRP sub-problems whereas a bin packing heuristic is 

used to obtain the final set of vehicle trips.  In order to further optimise the trips some 

post optimisation refinement modules proposed in Petch and Salhi (2004) are used. The 

algorithm is tested on MT-VRP data set proposed by Taillard et al. (1996) in the 

literature. According to the solutions quality, it appears that the proposed GA approach 

does not produce better results when compared with other algorithms proposed in the 

literature for the MT-VRP. However GA found solutions of reasonable quality in short 

time when compared to the other algorithms. 

Olivera and Viera (2007) developed an adaptive memory programming (AMP) 

approach based on the AMP principle of Rochat and Taillard (1995) to solve the MT-

VRP. The authors have also presented the mathematical programming formulation of 

the problem which is based on the set covering formulation of the VRPTW. The sweep 

algorithm is used to generate the initial solution by selecting customers randomly each 
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time. Initial solutions are then improved by using tabu search (TS) algorithm before 

storing in the memory M (data structure), hence storing the top quality solutions. In 

addition, the data structure in which routes are stored is sorted is ascending order only. 

This is performed according to the lexicographic criteria to ensure that good routes 

reside in the first positions of the memory. After that, a new solution s is selected from 

the memory M and a bin packing approach is utilised to pack the routes into vehicles 

while using some local search refinements based on reducing the driver overtime. The 

memory M is updated with new routes while poor solutions are discarded. The AMP 

algorithm is tested on the 104 benchmark instances proposed by Taillard et al. (1996). 

The AMP algorithm found 98 feasible solutions out of 104 when compared with the 

algorithms of Taillard et al. (1996), Brandao and Mercer (1998) and Petch and Salhi 

(2004). 

Alonso et al. (2008) developed a tabu search algorithm for the periodic vehicle routing 

problem with multiple vehicle trips and accessibility restrictions. The authors call this 

problem the site-dependent multi-trip periodic vehicle routing problem (SDMTPVRP). 

This problem combines some of the characteristics of the VRP, PVRP (for periodic 

VRP, see Chao et al. (1995) and Cordeau et al. (1997), SDVRP (for site-dependant 

VRP, see Nag et al. (1988), Chao et al. (1999) and Cordeau and Laporte (2001)) and 

MT-VRP. The tabu search approach used to solve the SDMTPVRP and its particular 

cases is a modification of the tabu search algorithm developed in Cordeau et al. (1997) 

for the periodic VRP; hence the authors call this algorithm TS-ABB. However this 

approach differs in many ways that is; the definition of solution attributes, the 

construction of the neighbourhood, the evaluation of the objective function and finally 

the construction of the initial solution. According to the authors, the SDMTPVRP is the 

first problem of its kind so some new data instances are created to test the TS-ABB 
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algorithm. Moreover the PVRP and the SDVRP test problems are also solved through 

this approach. The algorithm is tested on the MT-VRP problems proposed by Taillard et 

al. (1996). The computational results obtained show that the TS-ABB algorithm found 

feasible solutions for most of the MT-VRP problems when compared to those obtained 

by Taillard et al. (1996) while taking approximately the same time. 

Cattaruzza et al. (2014a) proposed a hybrid genetic algorithm for the MT-VRP that uses 

some adaptations from the literature. A new local search operator called the combined 

local search (CLS) is introduced that combines the standard VRP moves and performs 

the reassignments of trips to vehicles by using a swapping procedure to obtain a better 

solution. This algorithm produced good quality results. Cattaruzza et al. (2014b) 

extended the model to include time windows aspect and developed an iterated local 

search methodology to solve the problem. 

3.4.4. Studies in MT-VRP related areas 

There are a lot of studies in the literature that are related to the MT-VRP, we shall 

provide some notable references for the interested readers. Battarra et al. (2009) 

developed an adaptive guidance approach to heuristically solve the minimum multiple 

trip vehicle routing problem (MMTVRP). Azi et al. (2010) proposed an exact algorithm 

for a vehicle routing problem with time windows and multiple use of vehicles 

(VRPTW). Derigs et al. (2011) solved a real-world vehicle routing problem with 

multiple use of tractors and trailers and EU-regulations for drivers arising in air cargo 

road feeder service (RFS) and is given a name VRPMTT-EU. Azi et al. (2014) 

proposed an adaptive large neighbourhood search (ALNS) for the vehicle routing 

problem with multiple trips and time windows (VRPMTW). For more details see Sen 

and Bulbul (2008). 
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3.4.5.  Studies in which VRPB and MT-VRP are addressed in a combined way 

There is one study which addresses the VRPB and MT-VRP with time windows in a 

combined way; hence it is briefly described as follows. 

Ony and Suprayogi (2011) studied the vehicle routing problem with backhaul, multiple 

trips and time windows (VRPBMTTW). The authors proposed an ant colony 

optimisation (ACO) algorithm to tackle this problem. The proposed ACO is modified 

by adding a decoding process which generates solutions based on the VRPBMTTW 

constraints. However, the sequential insertion method is used as an initial solution 

generation mechanism. The algorithm is tested on a randomly generated data set; hence 

it is hard to confirm the quality of the solutions since no other study exists.  

3.5. Summary 

In this chapter we presented reviews of two important variants of the VRP called the 

VRPB and the MT-VRP. In Chapter 4 these two variants are merged to create a new 

VRP variant, also further studied separately in Chapter 7. Here we have presented 

problem statements and reviews of the methodologies developed to solve them. The 

methodologies for both the VRPB and the MT-VRP are presented in the chronological 

order of their publication by separating exact and heuristic methods for ease. We have 

also provided some important references for the studies of the related problems without 

going into the details as those could not be compared directly to the problem versions 

focussed in this thesis.  

As for the VRPB, there have been some early attempts in late 90s to solve the problem 

optimally with some modest success. However, as expected for this kind of hard 

problems there is an ample material available on heuristics side. While the early studies 



64 

 

of traditional heuristic methods appear to be solving the bigger instances of the problem 

and producing reasonably good solutions; the more recent metaheuristic based 

algorithms preformed much better in terms of solution quality but at higher 

computational costs.  

As for the MT-VRP, since its formal inception by Taillard et al. (1996) there are some 

good studies published in the literature. However, as compared to the VRPB it has not 

drawn tremendous attention. There is one good attempt on the optimal approach side to 

tackle the MT-VRP; however, several efficient heuristics/meta-heuristics methodologies 

are reported to solve this problem. Since the MT-VRP is more closely related to the 

classical VRP which has been studied extensively in the literature, hence we find more 

relevant works rather than direct comparison studies of MT-VRP. We think this thesis 

can be an attempt to fill some gap in the literature by studying this problem directly and 

jointly with the VRPB in the following chapters. 
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Chapter 4 

 
 

The Multiple Trip Vehicle Routing 

Problem with Backhauls: Formulation 

and Analysis 

 

 

 

This chapter focuses on the introduction of a new variant of the VRP being studied in 

this thesis i.e., the Multiple Trip Vehicle Routing Problem with Backhauls (MT-VRPB). 

A new mathematical formulation is proposed to solve the problem. The details of the 

MT-VRPB including the graph theoretical definition along with possible variations are 

also presented. An illustrative example showing the validation of the formulation is 

provided followed by the details of our CPLEX solution implementation. The chapter 

also provides details of a newly created large set of MT-VRPB data instances along 

with the results and analysis.  

4.1. The Multiple Trip Vehicle Routing Problem with Backhauls 

The MT-VRPB is created in this thesis by blending the characteristics of two well-

studied variants of the VRP, i.e., VRP with Multiple Trips (MT-VRP) and the VRP with 

Backhauls (VRPB). In the MT-VRP a vehicle may perform several routes (trips) within 
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a given time period; and in the vehicle routing problem with backhauls (VRPB) a 

vehicle may pick up goods to bring back to the depot after the deliveries are made. 

Therefore in the MT-VRPB a vehicle may not only make more than one trip in a given 

planning period but it can also collect goods in each trip, see Sections 3.1 and 3.3 for the 

descriptions of the VRPB and the MT-VRP respectively. From the real life applications 

point of view both the MT-VRP and the VRPB can be even more practical than the 

classical VRP. In real-life routing applications, vehicles can be used more efficiently; 

for instance in VRPB, combining delivery and pickup operations can result in saving 

companies substantial routing costs. Golden et al. (1985) reported that grocery stores in 

USA saved $165 million by taking advantage of backhauling in 1982. On the other 

hand, maximising the usage of vehicles as it is done in the MT-VRP results in saving 

the number of vehicle required and hence savings in total distribution costs. Therefore, 

by combining the aspects from these two routing problems, a new version of the VRPs 

that we believe will help bridge the gap between theoretical academic studies and the 

reality is created. The statement of the MT-VRPB is as follows. 

4.1.1. Description of the MT-VRPB 

The MT-VRPB can be described as a VRP problem with the additional possibilities of 

having vehicles involved in backhauling and multiple trips in a single planning period.  

In the MT-VRPB the fleet considered is homogenous, a vehicle (note that a vehicle 

corresponds to a bin and these two terms are used interchangeably in this study) may 

perform more than one route (trip) in a single planning period and may serve backhaul 

(pickup) customers after serving all linehaul (delivery) customers, the fleet is operated 

from a single depot and the demands of all the customers must be fulfilled; the objective 

is to minimise the overall cost by reducing the total distance travelled. There are 
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implicit cost savings attached with the number of vehicles used. The details of the MT-

VRPB are as follows. 

Problem characteristics and conventions: 

1. A given set of customers is divided into two subsets, i.e., delivery (linehaul) and 

pickup (backhaul). 

2. A homogenous fleet of vehicles is located at a single depot. 

3. A vehicle may perform more than one trip in a single planning period. 

4. All delivery customers are served before any pickup ones. 

5. Vehicles routes containing only backhauls are not permitted; however linehaul 

only routes are allowed. 

6. Vehicle capacity constraints are enforced. 

7. Note - The route length constraint is not imposed at this stage, however the 

model is flexible to add this constraint if needed. 

The MT-VRPB is to design a set of minimum cost schedules in which each customer 

(LH/BH) is visited exactly once by the routes (originating and terminating at the same 

depot) included in the schedules. 

Figure 4.1 presents a graphical illustration of the MT-VRPB. Three homogenous 

vehicles are shown serving a given set of customers with known demands. The distance 

of d𝑅3 or d𝑅4 (where d represents the distance of a respective route) combined with the 

distance of other three routes cannot be served by the same vehicle in a single planning 

period T (for example, T could correspond to eight hour working day; i.e., T = 480 

minutes for each vehicle); hence two separate vehicles (Vehicle 2 and Vehicle 3) are 

used to serve these routes. In this study, the terms distance and planning period (travel 
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time) are used interchangeably. However, Vehicle 1 performs two trips in a single 

planning period, since the total distance of d𝑅1 and d𝑅2 is less than a given planning 

period time T. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: An example of the MT-VRPB 

4.1.2. Graph theoretical definition of the MT-VRPB 

The MT-VRPB can be defined on a graph as follows. Let 𝐺 = (𝑁, 𝐴) be an undirected 

network, where 𝑁 = {0} ∪ 𝐿 ∪ 𝐵 is a set of nodes, 𝐿 = {1,… , 𝑛𝑙} correspond to the 

linehaul (delivery) customers and 𝐵 = {𝑛𝑙 + 1, 𝑛𝑙 + 2,…𝑛𝑙 + 𝑛𝑏} correspond to the 

backhaul (pickup) customers. 𝐴 = {(𝑖, 𝑗);   𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 ∈ 𝑁} is the set of arcs and 

associated with arc (𝑖, 𝑗), there is nonnegative given cost 𝑐𝑖𝑗 (distance between node i 

and node j). Node ‘0’ represents the depot where a fleet 𝐾 = {1,… , 𝑘} of identical 

vehicles is located while the other nodes correspond to L and B customer sets. A non-

 E.g; T (time) = 480 minutes (8 hours) Planning period time for each vehicle 
Distance = Time 
 
 
                                                                                                                                                       
                                                                                          
                                                                                                                                                                                    
                                                   
                                                                                                                                           
                                                             Vehicle 1 
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dR = total length/distance of route R 
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negative quantity 𝑞𝑖 is associated with each (L/B) node 𝑖. Each vehicle has capacity 𝐶 

and maximum driving time 𝑇.  

A travel cost 𝑐𝑖𝑗 and a travel time 𝒯𝑖𝑗 are associated with each arc {𝑖, 𝑗} ∈ 𝐴. Therefore, a 

route of a vehicle is a least-cost elementary cycle in 𝐺 that passes through a subset of 

customers starting and ending at the depot such that the customers visited and their total 

demand does not exceed the vehicle capacity 𝐶.  A route cost (duration) is equal to the 

sum of the travel costs (travel times) of the nodes traversed. A vehicle schedule is a 

subset of routes whose combined duration is equal to or less than the maximum driving 

time 𝑇. Hence, the MT-VRPB call for the determination of constructing 𝑚 schedules of 

least total cost in which each customers is visited exactly once by the routes of the 

schedules. 

In the following section we review briefly the exact methods options for the MT-VRPB.  

4.2. Exact methods options for the MT-VRPB 

Several exact methods that can be used to solve the VRP and its variants are developed 

in the literature. These methods can be and have been extended by several researchers to 

address the additional practical constraints in the VRPs. The exact method approaches 

for the VRPs can be classified in to one of the following three categories. 

Direct tree search methods: This kind of methods involves building VRP routes by 

means of a branch and bound tree search methodology (Christofides and Eilon (1969), 

Fisher (1994)).   

Dynamic programming (DP): The Dynamic programming is a method that is used to 

solve a complex problem by breaking it down into a number of sub problems, hence 
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solving each one of them and storing their solutions. Therefore, these approaches start at 

an initial stage and go through a number of stages to reach an end stage. The methods 

can be computationally expensive if care is not taken in terms of the number of 

positions (Christofides, 1981b). 

Integer linear programming (ILP): This approach is noted as being extensive and 

attracted a lot of attention in the literature. Based on the formulation used it is further 

divided into three categories (i-iii) (Laporte et al. (1987), Laporte (1992)). 

(i) Vehicle flow formulations: are the most frequently used methods for the versions of 

the VRP known as two/three-index formulation associated with the decision variables. 

These methods use integer variables, which are connected with each arc or edge of the 

graph and hence, resulting in counting the number of times a vehicle traverses the arc or 

edge (Golden et al. (1977), Laporte et al. (1985), Toth and Vigo (2002)). 

(ii) Commodity flow formulations: use additional variables 𝑣𝑖𝑗 that are connected with 

the arcs or edges and are responsible for representing the flow of the commodities along 

the routes journeyed by the vehicles (Gavish and Graves (1982), Toth and Vigo (2002)). 

(iii) Set-partitioning formulations (also known as Set-partitioning problem (SPP)): 

usually use an exponential number of binary variables and each one of them is 

connected with a feasible circuit (Toth and Vigo, 2002). 

Our formulation for the MT-VRPB is based on (ii) namely a three-index commodity 

flow formulation. This is provided in the next section. 
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4.3. Mathematical Formulation of the MT-VRPB 

4.3.1. Formulation of the basic case  

The MT-VRPB is modelled as an integer linear program. The following formulation is 

similar to the two-indexed commodity flow formulation of Nagy, Wassan and Salhi 

(2013). However, the MT-VRPB formulation is a three-index commodity flow 

formulation. In three-index formulations, variables 𝑥𝑖𝑗𝑘 specify whether arc (𝑖, 𝑗) is 

traversed by a particular vehicle 𝑘 or not. On the other hand, in two-indexed 

formulation, it is not possible to know by variables 𝑥𝑖𝑗  which vehicle is used on arc 

(𝑖, 𝑗) (Laporte, 1992). 

The following notations are used throughout: 

Sets 

{0} the depot (single depot) 

L the set of linehaul customers 

B the set of backhaul customers 

𝐾 the set of vehicles (K: upper bound or the # of vehicles) 

Input Variables 

𝑑𝑖𝑗 the distance between customers 𝑖 and 𝑗 (𝑖 ∈ {0} ∪ 𝐿 ∪ 𝐵, 𝑗 ∈ {0} ∪ 𝐿 ∪ 𝐵) 

𝑞𝑖 the demand of customer 𝑖 (such that  𝑖 ∈ 𝐿 for a delivery demand and 𝑖 ∈ 𝐵 for a 

pickup demand) 

Other Parameters 
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𝐶 vehicle capacity 

𝑇 planning period (maximum driving time) 

Decision Variables  

𝑥𝑖𝑗𝑘 = {
 1, if vehicle 𝑘  travels from location 𝑖 directly to location 𝑗;          
0, otherwise                                                                                                  

 

𝑅𝑖𝑗  =      is the amount of delivery or pickup on board on arc 𝑖𝑗 

Minimise Z = ∑    ∑    ∑    𝑑𝑘∈𝐾 𝑖𝑗
𝑥𝑖𝑗𝑘𝑗∈{0}∪𝐿∪𝐵𝑖∈{0}∪𝐿∪𝐵                  (4.1) 

Subject to ∑ ∑ 𝑥𝑗𝑖𝑘𝑘∈𝐾 = 1𝑗∈{0}∪𝐿∪𝐵                                       𝑖 ∈ 𝐿 ∪ 𝐵               (4.2) 

  ∑ ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 = 1𝑗∈{0}∪𝐿∪𝐵                                       𝑖 ∈ 𝐿 ∪ 𝐵                   (4.3) 

  ∑ 𝑥𝑗𝑖𝑘𝑗∈{0}∪𝐿∪𝐵 = ∑ 𝑥𝑖𝑗𝑘𝑗∈{0}∪𝐿∪𝐵                    𝑖 ∈ 𝐿 ∪ 𝐵,   𝑘 ∈ 𝐾          (4.4) 

  ∑ 𝑅𝑖𝑗 − 𝑞𝑗𝑖∈{0}∪𝐿 = ∑ 𝑅𝑗𝑖𝑖∈{0}∪𝐿∪𝐵                       𝑗 ∈ 𝐿               (4.5) 

  ∑ 𝑅𝑖𝑗 + 𝑞𝑗𝑖∈𝐿∪𝐵 = ∑ 𝑅𝑗𝑖𝑖∈{0}∪𝐵                             𝑗 ∈ 𝐵               (4.6) 

  𝑅𝑖𝑗  ≤ 𝐶 ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾                         𝑖 ∈ 𝐿 ∪ 𝐵, 𝑗 ∈ 𝐿 ∪ 𝐵;                       (4.7) 

  ∑ ∑ 𝑑𝑖𝑗𝑗∈{0}∪𝐿∪𝐵𝑖∈{0}∪𝐿∪𝐵 𝑥𝑖𝑗𝑘 ≤ 𝑇                            𝑘 ∈ 𝐾    (4.8) 

                        𝑅𝑖𝑗 = 0                                                                   𝑖 ∈ 𝐿,   𝑗 ∈ 𝐵 ∪ {0}   (4.9) 

  𝑥𝑖𝑗𝑘 = 0                                                              𝑖 ∈ 𝐵, 𝑗 ∈ 𝐿 , 𝑘 ∈  𝐾  (4.10) 

𝑥0𝑗𝑘 = 0                                                          𝑗 ∈ 𝐵 , 𝑘 ∈  𝐾             (4.11) 

  𝑅𝑖𝑗 ≥ 0                                                     𝑖 ∈ {0} ∪ 𝐿 ∪ 𝐵, 𝑗 ∈ 𝐿 ∪ 𝐵 (4.12) 
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  𝑥𝑖𝑗𝑘 = 0,1                             
        𝑖 ∈ {0} ∪ 𝐿 ∪ 𝐵, 𝑗 ∈ {0} ∪ 𝐿 ∪ 𝐵

𝑘 ∈  𝐾
     (4.13) 

Equation (4.1) illustrates the objective function representing the total distance travelled. 

Constraints (4.2) and (4.3) ensure that every customer is served exactly once (every 

customer has an incoming arc and every customer has an outgoing arc). Constraint (4.4) 

states that the number of times vehicle 𝑘 enters into customer 𝑖 is the same as the 

number of times it leaves customer 𝑖. The vehicle load variation on a route is ensured by 

Constraints (4.5) and (4.6) for linehaul and backhaul customers respectively. 

Inequalities (4.7) and (4.8) impose the maximum vehicle capacity constraint and the 

maximum working day period constraints in which a vehicle is allowed to serve the 

routes respectively. Constraints (4.19) restricts that a load cannot be carried from a 

linehaul customer to a backhaul customer or to the depot. Constraints (4.10) and (4.11) 

impose a restriction that a vehicle cannot travel from a backhaul to a linehaul customer 

and neither can it travel directly from the depot to a backhaul customer. Inequality 

(4.12) sets 𝑅𝑖𝑗 as a non-negative variable. Finally, in (4.13) the decision variable 𝑥𝑖𝑗𝑘 is 

set as zero-one variable. 

4.3.2. Model complexity 

The mathematical model presented above (4.1)–(4.13) has |𝐿|(|𝐵| + 1) binary 

variables, (|𝐿| + |𝐵| + 1)2|𝐾| continuous variables and 3(|𝐿| + |𝐵|) + (|𝐿| + |𝐵|)2 +

 (|𝐿| + |𝐵|)(|𝐾|) + |𝐾| + |𝐿|(|𝐵| + 1) + (|𝐵|)(|𝐿|)(|𝐾|) + (|𝐵|)(|𝐾|) constraints. 

An illustrative example  

In order to check the complexity of our MT-VRPB mathematical model, we selected an 

instance of size small with 21 customers in total, where the number of linehaul (L) 
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customers is equal to 11 and the number of backhaul (B) is equal to 10 and the number 

of vehicle (K) is equal to 2. Hence, by calculating this has 121 binary variables, 968 

continuous variables and 909 constraints. As it can be observed that even with an 

instance of smallest size (i.e., 21 customers in total), the complexity of the model is 

quite high. 

4.3.3. Model variants and restricted problems  

The above MT-VRPB formulation may be modified to cater for the following four 

variants. 

a) The MT-VRP: this can be achieved by simply setting the number of backhaul 

customers equal to zero using equation (4.14). 

      B = Ø   (setting the number of backhaul customers equal to zero)                 (4.14) 

b) In the above formulation, K is implicitly used as an upper bound though it was 

observed that in all cases all K vehicles are used. However, the formulation can be 

extended to cater for the condition where the number of vehicles to be used is exactly 

as given number K. This imposes that all drivers will be used and this can be 

achieved by adding the following constraints in (4.15). 

∑ 𝑥𝑖𝑗𝑘 = 𝐾𝑗∈𝐿∪𝐵                                    𝑖 ∈ {0};   𝑖 ∈ 𝐿 ∪ 𝐵;  𝑘 ∈ 𝐾              (4.15) 

 

c) The VRPB: this can be achieved by adding the following constraint (4.16) in the 

model.  

∑ 𝑥𝑖𝑗𝑘 ≤ 1𝑗∈𝐿∪𝐵                                    𝑖 ∈ {0};    𝑘 ∈ 𝐾               (4.16) 
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Constraints (4.16) impose restrictions on every vehicle to be used at most once 

(equal sign may be used if every vehicle must be utilised) and therefore block the use 

of multiple-trips of vehicles.  

d) Finally, the objective function in the above formulation can be changed from 

reducing the total distance travelled to reducing the number of vehicles. This can be 

achieved by setting the objective as shown in equation (4.17). 

Minimise                   Z = ∑ ∑ 𝑥0𝑗𝑘𝑗∈𝐿∪𝐵𝑘∈𝐾                 (4.17) 

Or one could set the objective function shown in equation (4.17) as a primary 

objective and reducing the total distance travelled as a secondary objective.  

4.4. Significance of the MT-VRPB 

In the literature both the VRPB and the MT-VRP are considered very important on the 

operational level since backhauling and multiple scheduling are seen in many real-life 

applications, where significant cost savings (e.g., operational, fixed costs) can be 

achieved by reducing the number of vehicles and hence drivers (Wassan (2007), Salhi 

and Petch (2007) and Ahlem et al. (2011)). We believe studying them in a combined 

way would be even more pragmatic in many real life situations to enhance the overall 

distribution logistics efficiency. The MT-VRPB appears in many real-world 

applications such as distribution of groceries, couriers who offer the same day collection 

and delivery services. Moreover the MT-VRPB especially arises in urban areas where 

travel times (distances) are rather small and the light load vehicles are reloaded after 

performing the short tours and used again. The growing examples of those cases arise in 

online business such as retail markets; i.e., grocery stores, cafes, supermarkets, 
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restaurants etc. The model may cater largely for those small, medium or large logistics 

companies that wish to use their limited/fixed fleet or strategically want to reduce the 

vehicle fleet size. To our knowledge, this is the first time the MT-VRPB is being 

defined, formulated and studied in such detail. 

When it comes to solving this kind of hard complex but important problem efficiently, 

as indicated in Chapter 2, exact methods have shown a limited success in tackling them. 

Nevertheless we have used CPLEX for the purpose of formulation validation, optimal 

solutions for smaller instances and upper/lower bounds for larger ones to check the 

performance of the meta-heuristic algorithm that will be proposed in the next Chapter. 

In the following sections we briefly look at the utility of CPLEX software, the details of 

new data set generation and our CPLEX solution approach for the MT-VRPB. 

4.5. Utility of IBM ILOG CPLEX optimisation studio 

Technology plays a very fundamental role in almost every sector in this modern era. 

Especially in the last couple of decades, rapid advancement in the computer and 

software industry has dramatically changed the way work is carried out in most 

organizations. Software development organizations such as IBM, Sun, Microsoft and 

many others have advanced in many fronts and played a major role in developing 

software packages and tools for countless public and private sectors. By learning and 

utilizing those software tools and packages we can get our jobs or tasks done in matter 

of seconds which probably could not be achieved before so easily. In this study we are 

using a very powerful and efficient package called IBM ILOG CPLEX optimisation 

studio developed by IBM Corporation to solve the various types of optimisation and 

business related problems which is briefly described here. 
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The IBM ILOG CPLEX is an optimisation tool that is implanted with very powerful 

and reliable solvers (algorithms) that are based on high-performance mathematical 

programming. These solvers can efficiently handle and solve a variety of problems; i.e., 

mixed integer programming (MIP), quadratically constrained programming (QCP), 

linear programming (LP) and quadratic programming (QP) problems. Moreover, 

CPLEX offers a specific optimiser called CP optimiser particularly for scheduling and 

combinatorial problems. This optimiser utilises complimentary optimisation technology 

based on constraint programming. IBM has launched various versions of CPLEX so far 

but in this study we are employing the CPLEX 12.5 version (User’s Manual for CPLEX 

V12.5). 

4.6. Validation of the MT-VRPB formulation 

In order to check the validity of our proposed formulation we created a numerical test 

instance containing 5 customers where nodes 1-3 represent the linehaul customers and 

nodes 4 and 5 represent the backhaul customers. The maximum driving time T was set 

to 25, the 𝐶 (vehicle capacity) is set to 8 units, and the number of bins Tnb (total 

number of bins, i.e., vehicles) is set to 2. The data of the numerical test instance is 

illustrated in Figure 4.2. 

 

n = 5             [Total customers]    

b = 2             [no. of backhauls] 

T = 25           [maximum driving time] 

C = 8            [vehicle capacity] 

Tnb = 2        [no. of bins (vehicles)] 

 

 

    Demands =  [6, 5, 7, 7, 2] 

Dist. matrix = 

[
 
 
 
 
 

 

0 2 4
2 0 3
4 3 0

     
3 5 8
6 4 7
5 3 1

3 6 5     0 7 3
5 4 3     7 0 4
8 7 1     3 4 0

 

]
 
 
 
 
 

 

Figure 4.2: The numerical test instance data 
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This test instance was solved using CPLEX; the optimal solution is shown in Figure 4.3. 

The optimal solution contains three routes with a total distance of 30 where routes 𝑅1 

and 𝑅3 are served by vehicle 2 and route 𝑅2 is served by vehicle 1. 

To ensure the CPLEX solution validates our mathematical formulation, we generated all 

the possible 6 feasible solutions of the test instance enumerating by hand, and found the 

same solution produced by CPLEX. Figure 4.4 shows all the possible feasible solutions 

for the test instance. 

      Nodes                                          Cuts/ 

   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap 

 

*     0+    0                           40.0000       22.0000        6   45.00% 

      0     0       30.0000     4       40.0000       30.0000        6   25.00% 

*     0+    0                           30.0000       30.0000        6    0.00% 

      0     0        cutoff             30.0000       30.0000        6    0.00% 

 

The optimal solution routes along with distances: 

 

𝑹𝟏 = 𝟎 → 𝟐 → 𝟒 → 𝟎     𝒍𝒆𝒏𝒈𝒕𝒉 (𝑹𝟏) = 𝟏𝟐

𝑹𝟐 = 𝟎 → 𝟑 → 𝟓 → 𝟎     𝒍𝒆𝒏𝒈𝒕𝒉 (𝑹𝟐) = 𝟏𝟒

𝑹𝟑 = 𝟎 → 𝟏 → 𝟎              𝒍𝒆𝒏𝒈𝒕𝒉 (𝑹𝟑) =    𝟒

        { 𝒕𝒐𝒕𝒂𝒍 𝒅𝒊𝒔𝒕. 𝒕𝒓𝒂𝒗𝒆𝒍𝒍𝒆𝒅 = 𝟑𝟎} 

 

Figure 4.3: The CPLEX solution for test instance 

 
0 → 1 → 5 → 0     = 17
0 → 2 → 4 → 0     = 12
0 → 3 → 0              =   6

        { 𝑡𝑜𝑡. 𝑑𝑖𝑠𝑡 = 35} 

 
0 → 1 → 4 → 0     = 12
0 → 2 → 5 → 0     = 13
0 → 3 → 0              =   6

        { 𝑡𝑜𝑡. 𝑑𝑖𝑠𝑡 = 31} 

 
0 → 3 → 4 → 0     = 15
0 → 1 → 5 → 0     = 17
0 → 2 → 0              =   8

        { 𝑡𝑜𝑡. 𝑑𝑖𝑠𝑡 = 40} 

 
0 → 3 → 5 → 0     = 14
0 → 1 → 4 → 0     = 11
0 → 2 → 0              =   8

        { 𝑡𝑜𝑡. 𝑑𝑖𝑠𝑡 = 33} 

 
0 → 2 → 4 → 0     = 12
0 → 3 → 5 → 0     = 14
0 → 1 → 0              =   4

        { 𝑡𝑜𝑡. 𝑑𝑖𝑠𝑡 = 30} 

 
0 → 2 → 5 → 0     = 13
0 → 3 → 4 → 0     = 15
0 → 1 → 0              =   4

        { 𝑡𝑜𝑡. 𝑑𝑖𝑠𝑡 = 32} 

 

 

Best solution with minimum total distance: 

 

 
0 → 2 → 4 → 0     = 12
0 → 3 → 5 → 0     = 14
0 → 1 → 0              =   4

        { 𝑡𝑜𝑡. 𝑑𝑖𝑠𝑡 = 30} 

 

 

Figure 4.4: All feasible solutions for test instance 
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4.7. Generation of a new data set for the MT-VRPB 

To test our model we have generated a set of new MT-VRPB instances, set-1, from a set 

of 21 VRPB instances proposed in Toth and Vigo (1996, 1997). The data set-1 uses the 

original VRPB and MT-VRP conventions established in Toth and Vigo (1996, 1997) 

and in Taillard et al. (1996). The data set-1 contains 168 problem instances by using 

different values of  𝑣 (where  𝑣 is the number of vehicles, (i.e., 1,…,4), starting with an 

integer between one and the maximum number of vehicles) and 𝑇 (where 𝑇 is a 

maximum driving time). Two values of 𝑇are used, 𝑇1 and 𝑇2 for each value of 𝑣, where 

𝑇1 and 𝑇2 are calculated as follows: 

𝑇1 = [1.05 𝑧∗/𝑣]                 𝑇2 = [1.1 𝑧∗/𝑣] 

The resulting values of both 𝑇1 and 𝑇2 are rounded up to the nearest integer (for 

example, if the resulting value of T is 389.60, then it is rounded up to 390), where 𝑧∗ 

represents the VRPB solution obtained by our Two-Level VNS algorithm (details 

provided in Chapter 5) using a free vehicle fleet.  

Several MT-VRPB instances are generated from each VRPB problem using 𝑇1 and 𝑇2 

with the linehaul percentage of 50, 66, and 80%, respectively. Further details of the data 

set-1 are provided in Table 4.1 and Table 4.2. The data sets are made available for 

researchers to be downloaded from the CLHO website (CLHO, 2015). 
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Table 4.1: The MT-VRPB data set-1 with original conventions and z* found with free fleet.  

Problem 

number 

Problem 

Name 
n L B C 

Orig. 

fleet  

v                  

(free-fleet) 
z* 

1 eil22_50 21 11 10 6000 3 1,…,3 371 

2 eil22_66 21 14 7 6000 3 1,…,3 366 

3 eil22_80 21 17 4 6000 3 1,…,3 375 

4 eil23_50 22 11 11 4500 2 1,…,3 677 

5 eil23_66 22 15 7 4500 2 1,…,3 640 

6 eil23_80 22 18 4 4500 2 1,…,2 623 

7 eil30_50 29 15 14 4500 2 1,…,2 501 

8 eil30_66 29 20 9 4500 3 1,…,3 537 

9 eil30_80 29 24 5 4500 3 1,…,3 514 

10 eil33_50 32 16 16 8000 3 1,…,3 738 

11 eil33_66 32 22 10 8000 3 1,…,3 750 

12 eil33_80 32 26 6 8000 3 1,…,3 736 

13 eil51_50 50 25 25 160 3 1,…,3 559 

14 eil51_66 50 34 16 160 4 1,…,4 548 

15 eil51_80 50 40 10 160 4 1,…,4 565 

16 eilA76_50 75 37 38 140 6 1,…,6 738 

17 eilA76_66 75 50 25 140 7 1,…,7 768 

18 eilA76_80 75 60 15 140 8 1,…,8 781 

19 eilA101_50 100 50 50 200 4 1,…,5 827 

20 eilA101_66 100 67 33 200 6 1,…,6 846 

21 eilA101_80 100 80 20 200 6 1,…,7 859 
 

n: number of customers in an instance; L: number of linehauls; B: number of backhauls; 

C: vehicle capacity; Orig. fleet: actual fixed fleet used in base problem; v (free fleet): 

free fleet used by the Two-Level VNS; z*: free fleet VRPB solution. 

 

Table 4.2: The details of the MT-VRPB data set-1 

Name n L B C v z* Tnb 𝑻𝟏 𝑻𝟐 

eil22_50 21 11 10 6000 1,…,3 371 1 390 408 

2 195 204 

3 130 137 

eil22_66 21 14 7 6000 1,…,3 366 1 385 403 

2 193 201 

3 129 134 

eil22_80 21 17 4 6000 1,…,3 375 1 394 413 

2 197 206 

3 132 138 

eil23_50 22 11 11 4500 1,…,3 677 1 711 745 

2 355 372 

3 237 248 

eil23_66 22 15 7 4500 1,…,3 640 1 672 704 

2 336 352 

3 224 235 

eil23_80 22 18 4 4500 1,…,2 623 1 654 685 

2 327 343 

eil30_50 29 15 14 4500 1,…,2 501 1 526 551 

2 264 276 

eil30_66 29 20 9 4500 1,…,3 537 1 564 591 

2 282 296 

3 188 197 

eil30_80 29 24 5 4500 1,…,3 514 1 540 565 

2 270 283 
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Name n L B C v z* Tnb 𝑻𝟏 𝑻𝟐 

3 180 188 

eil33_50 32 16 16 8000 1,…,3 738 1 775 812 

2 388 406 

3 258 271 

eil33_66 32 22 10 8000 1,…,3 750 1 788 825 

2 394 413 

3 263 275 

eil33_80 32 26 6 8000 1,…,3 736 1 773 810 

2 387 405 

3 258 270 

eil51_50 50 25 25 160 1,…,3 559 1 587 615 

2 294 308 

3 196 205 

eil51_66 50 34 16 160 1,…,4 548 1 576 603 

2 288 302 

3 192 201 

4 144 151 

eil51_80 50 40 10 160 1,…,4 565 1 594 622 

2 297 311 

3 198 208 

4 149 156 

eilA76_50 75 37 38 140 1,…,6 738 1 775 812 

2 388 406 

3 259 271 

4 194 203 

5 155 163 

6 130 136 

eilA76_66 75 50 25 140 1,…,7 768 1 807 845 

2 404 423 

3 269 282 

4 202 212 

5 162 169 

6 135 141 

7 116 121 

eilA76_80 75 60 15 140 1,…,8 781 1 821 860 

2 411 430 

3 274 287 

4 206 215 

5 165 172 

6 137 144 

7 118 123 

8 103 108 

eilA101_50 100 50 50 200 1,…,5 827 1 869 910 

2 435 455 

3 290 304 

4 218 228 

5 174 182 

eilA101_66 100 67 33 200 1,…,6 846 1 889 931 

2 445 466 

3 297 311 

4 223 233 

5 178 187 

6 149 156 

eilA101_80 100 80 20 200 1,…,7 859 1 902 945 

2 451 473 

3 301 315 

4 226 237 

5 181 189 

6 151 158 

7 129 135 
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Name: instance identification name; v: number of vehicles - starting with an integer 

between one and the maximum number of vehicles; Tnb: total number of vehicles in 

each instance; 𝑻𝟏: maximum driving time of type one for each vehicle; 𝑻𝟐: maximum 

driving time of type two for each vehicle. 

4.8. CPLEX Results and Analysis 

The MT-VRPB model is solved using IBM ILOG CPLEX 12.5 optimiser and it was run 

on a PC with Intel(R) Core(TM) i7-2600 processor, CPU speed 3.40 GHz and installed 

memory (RAM) 4.00 GB (2.94 GB usable).  

The optimal solutions and upper/lower bounds for the MT-VRPB are reported in Table 

4.3 and Table 4.4 for 𝑇1 and 𝑇2, respectively. For each instance the CPLEX time was 

fixed to 2 hours. A reasonable number of optimal solutions are found for both 𝑇1and 

𝑇2 groups of instances, ranging in size between 21 and 50 customers along with an 

instance of size 100 of 𝑇2. Within the allocated time, CPLEX found 60 optimal 

solutions (i.e., 𝑇1= 24, 𝑇2= 36) out of all the 168 instances. The instances for which 

CPLEX could not find the solutions or reported as infeasible is due to either the 

vehicle(s) given time restriction and/or the instances are too large in size. We report 

upper bound and lower bound for those instances. CPLEX reported infeasibility in four 

cases where the number of vehicles increases and hence the given driving time 

decreases for each vehicle. This is due to the fact that the driving time is very small for 

each vehicle in these instances. Therefore, not even a lower bound could be obtained; 

hence, CPLEX reported infeasibility. 
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Table 4.3: CPLEX solutions for data set-1 with 𝑻𝟏 (2-hours running time) 

Name 𝑻𝟏 Tnb Optimal 

Sol. 

No. 

Routes 

Actual 

Time (s) 

UB LB 

eil22_50 390 1 371 3 1.04 371.0000 367.5294 

195 2 378 3 1.17 378.0000 368.0119 

130 3 x x x x x 

eil22_66 385 1 366 3 1.01 366.0000 364.9640 

193 2 382 4 3.02 382.0000 366.0000 

129 3 x x x x x 

eil22_80 394 1 375 3 1.94 375.0000 362.1650 

197 2 378 4 2.39 378.0000 364.9665 

132 3 381 3 27.13 381.0000 369.0667 

eil23_50 711 1 677 3 0.33 677.0000 677.0000 

355 2 698 3 2.36 698.0000 671.8600 

237 3 x x x x x 

eil23_66 672 1 640 3 1.22 640.0000 633.1636 

336 2 640 3 1.4 640.0000 635.5000 

224 3 x x x x x 

eil23_80 654 1 623 2 1.44 623.0000 618.0870 

327 2 634 2 1.59 634.0000 613.3380 

Eil30_50 526 1 501 2 0.44 501.0000 500.3902 

264 2 x x x x x 

Eil30_66 564 1 537 3 2.68 537.0000 511.3725 

282 2 552 3 6116 552.0000 537.0000 

188 3 - - 7200 - 533.7612 

Eil30_80 540 1 514 3 11.95 514.0000 474.9762 

270 2 - - 7200 - 459.3289 

180 3 - - 7200 - 460.3190 

eil33_50 775 1 738 3 0.51 738.0000 738.0000 

388 2 - - 7200 - 738.3900 

258 3 - - 7200 - 740.7581 

eil33_66 788 1 750 3 2.23 750.0000 732.7999 

394 2 772 3 1219.03 772.0000 757.8079 

263 3 - - 7200 - 746.4629 

eil33_80 773 1 736 3 121.27 736.0000 733.8901 

387 2 - - 7200 - 720.3275 

258 3 - - 7200 - 690.0837 

eil51_50 587 1 559 3 9.84 559.0000 552.1063 

294 2 - - 7200 - 550.1111 

196 3 - - 7200 - 553.0000 

eil51_66 576 1 548 4 22.23 548.0000 537.7475 

288 2 - - 7200 - 546.1393 

192 3 - - 7200 - 542.1467 

144 4 - - 7200 - 522.9460 

eil51_80 594 1 565 4 4552.80 565.0000 553.1885 

297 2 - - 7200 - 555.5726 

198 3 - - 7200 - 556.1191 

149 4 - - 7200 - 556.1018 

eilA76_50 775 1 - - 7200 - 708.2119 

388 2 - - 7200 - 721.9806 

259 3 - - 7200 - 721.8691 

194 4 - - 7202 - 711.64.91 

155 5 - - 7200 - 705.6147 

130 6 - - 7200 - 708.1701 

eilA76_66 807 1 - - 7200 - 738.1007 
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Name 𝑻𝟏 Tnb Optimal 

Sol. 

No. 

Routes 

Actual 

Time (s) 

UB LB 

404 2 - - 7200 - 737.9937 

269 3 - - 7200 - 734.0403 

202 4 - - 7200 - 739.9000 

162 5 - - 7200 - 733.5028 

135 6 - - 7200 - 739.4740 

116 7 - - 7200 - 737.0274 

eilA76_80 821 1 - - 7200 - 739.7246 

411 2 - - 7200 - 726.3083 

274 3 - - 7200 - 733.6667 

206 4 - - 7200 - 733.5946 

165 5 - - 7200 - 732.5992 

137 6 - - 7200 - 724.3518 

118 7 - - 7200 - 723.4398 

103 8 - - 7200 - 718.6787 

eilA101_50 869 1 - - 7200 - 799.5710 

435 2 - - 7200 - 804.1183 

290 3 - - 7200 - 802.2318 

218 4 - - 7200 - 807.1541 

174 5 - - 7200 - 767.5958 

eilA101_66 889 1 - - 7200 - 829.5004 

445 2 - - 7200 - 837.3865 

297 3 - - 7200 - 826.1638 

223 4 - - 7200 - 815.4809 

178 5 - - 7200 - 832.78.09 

149 6 - - 7200 - 816.1044 

eilA101_80 902 1 - - 7200 - 827.3494 

451 2 - - 7200 - 797.3486 

301 3 - - 7200 - 790.1850 

226 4 - - 7200 - 820.9844 

181 5 - - 7200 - 821.9659 

151 6 - - 7200 - 799.1573 

129 7 - - 7200 - 825.4779 

# of optimal solutions found 24         

Average solution/time 554.79   5165     

Average CPU time(s) where 

sol. is found 

  417   

𝑇1 = Total planning time for a vehicle 

Tnb = total number of vehicles in each instance  

Optimal Sol.= Optimal solution found by ILOG CPLEX 12.5 

No. routes = Total number of routes 

Actual time (s) = Actual time taken by ILOG CPLEX to find the optimal solution 

UB = Upper bound 

LB = Lower bound 

x = Infeasible  
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Table 4.4: CPLEX solutions for data set-1 with 𝑻𝟐 (2-hours running time) 

Name 𝑻𝟐 Tnb Optimal 

Sol. 

No. 

Rout

es 

Actual 

Time (s) 

UB LB 

eil22_50 408 1 371 3 0.89 371.0000 370.6087 

204 2 375 3 1.67 375.0000 374.0333 

137 3 378 3 1.22 378.0000 364.4367 

eil22_66 403 1 366 3 1.3 366.0000 364.7095 

201 2 382 4 1.67 382.0000 366.0000 

134 3 366 3 0.59 366.0000 366.0000 

eil22_80 413 1 375 3 2.72 375.0000 358.9261 

206 2 378 4 8.5 378.0000 362.2288 

138 3 381 3 24.21 381.0000 364.9274 

eil23_50 745 1 677 3 0.33 677.0000 677.0000 

372 2 689 3 1.98 689.0000 680.0000 

248 3 716 3 2.46 716.0000 682.1268 

eil23_66 704 1 640 3 0.75 640.0000 640.0000 

352 2 640 3 1.23 640.0000 631.5000 

235 3 - - 7200 - 662.4548 

eil23_80 685 1 623 2 0.91 623.0000 617.8667 

343 2 631 2 1.4 631.0000 614.5388 

Eil30_50 551 1 501 2 0.44 501.0000 500.3902 

276 2 501 2 0.73 501.0000 501.0000 

Eil30_66 591 1 537 3 3.09 537.0000 510.3183 

296 2 552 3 3451.24 552.0000 538.0355 

197 3 538 3 1.56 538.0000 534.6250 

Eil30_80 565 1 514 3 10.58 514.0000 482.8207 

283 2 535 3 5758 535.0000 525.2368 

188 3 518 3 1426.17 518.0000 500.1891 

eil33_50 812 1 738 3 0.44 738.0000 738.0000 

406 2 741 3 2.26 741.0000 736.2820 

271 3 - - 7200 803.0000 658.5384 

eil33_66 825 1 750 3 11.7 750.0000 734.5884 

413 2 767 3 109.26 767.0000 764.4997 

275 3 - - 7200 - 746.9500 

eil33_80 810 1 736 3 136.31 736.0000 716.7393 

405 2 - - 7200 - 723.4224 

270 3 - - 7200 - 696.3739 

eil51_50 615 1 559 3 11.23 559.0000 553.6224 

308 2 560 4 67.17 560.0000 550.4380 

205 3 564 4 67.49 573.0000 559.6480 

eil51_66 603 1 548 4 11.87 548.0000 541.1877 

302 2 548 4 55.52 548.0000 546.9363 

201 3 - - 7200 - 521.0965 

151 4 - - 7200 - 539.9353 

eil51_80 622 1 565 4 78.13 565.0000 562.5255 

311 2 - - 7200 - 554.3046 

208 3 - - 7200 - 553.8339 

156 4 - - 7200 - 554.7640 

eilA76_50 812 1 - - 7200 - 710.0593 

406 2 - - 7200 - 722.0668 

271 3 - - 7201 - 720.4398 

203 4 - - 7202 - 705.7348 

163 5 - - 7200 - 706.7157 

136 6 - - 7200 - 719.6408 

eilA76_66 845 1 - - 7200 - 734.9762 
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Name 𝑻𝟐 Tnb Optimal 

Sol. 

No. 

Rout

es 

Actual 

Time (s) 

UB LB 

423 2 - - 7200 - 741.8414 

282 3 - - 7200 - 734.1823 

212 4 - - 7200 - 742.2662 

169 5 - - 7200 - 738.0464 

141 6 - - 7200 - 736.3244 

121 7 - - 7200 - 733.6417 

eilA76_80 860 1 - - 7200 - 741.6530 

430 2 - - 7200 - 732.6903 

287 3 - - 7200 - 733.3761 

215 4 - - 7200 - 733.4002 

172 5 - - 7200 - 730.9763 

144 6 - - 7200 - 731.1909 

123 7 - - 7200 - 722.2782 

108 8 - - 7200 - 733.8520 

eilA101_50 910 1 - - 7200 - 801.4182 

455 2 - - 7200 - 813.7763 

304 3 - - 7200 - 808.5073 

228 4 - - 7200 - 803.0867 

182 5 - - 7200 - 781.9759 

eilA101_66 931 1 846 6 268.45 846.0000 840.8321 

466 2 - - 7200 - 822.6394 

311 3 - - 7200 - 831.4000 

233 4 - - 7200 - 825.1924 

187 5 - - 7200 - 814.6440 

156 6 - - 7200 - 835.2673 

eilA101_80 945 1 - - 7200 - 828.6658 

473 2 - - 7200 - 808.3282 

315 3 - - 7200 - 819.9952 

237 4 - - 7200 - 803.4907 

189 5 - - 7200 - 817.7601 

158 6 - - 7200 - 812.1149 

135 7 - - 7200 - 816.7851 

# of optimal solutions found 36         

Average solution/time 558.50   4251     

Average CPU time(s) where 

sol. is found 

  313   

𝑇2 = Total planning time for a vehicle 

Tnb = total number of vehicles in each instance  

Optimal Sol.= Optimal solution found by ILOG CPLEX 12.5 

No. routes = Total number of routes 

Actual time (s) = Actual time taken by ILOG CPLEX to find the optimal solution 

UB = Upper bound 

LB = Lower bound 

x = Infeasible  
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Moreover, Tables 4.5 and 4.6 present further analysis that is performed to show very 

large vehicle cost savings due to the multiple use of a given fleet for  𝑇1 and 𝑇2, 

respectively. Although the comparison analysis is only done for those instances where 

CPLEX found optimal solution, nevertheless this gives an idea about the importance of 

the investigation being conducted which is quite significant from both the tactical 

medium terms and the operational short terms points of views. 

Table 4.5: Vehicle utilisation cost comparison of the free fleet VRPB and the 

MT-VRPB solutions for 𝑻𝟏 

Name Free Fleet VRPB 

Solution 

MT-VRPB CPLEX Solution 

# of 

Vehicles 

used 

Sol. 

Cost 

Tnb Optimal 

Sol. 

Extra 

Cost 

# of 

Vehicles 

Saved 

eil22_50 3 371 1 371 0 2 

2 378 7 1 

eil22_66 3 366 1 366 0 2 

2 382 16 1 

eil22_80 3 375 1 375 0 2 

2 378 3 1 

3 381 6 0 

eil23_50 3 677 1 677 0 2 

2 698 21 1 

eil23_66 3 640 1 640 0 2 

2 640 0 1 

eil23_80 2 623 1 623 0 1 

2 634 11 0 

eil30_50 2 501 1 501 0 1 

eil30_66 3 537 1 537 0 2 

2 552 15 1 

eil30_80 3 514 1 514 0 2 

eil33_50 3 738 1 738 0 2 

eil33_66 3 750 1 750 0 2 

2 772 22 1 

eil33_80 3 736 1 736 0 2 

eil51_50 3 559 1 559 0 2 

eil51_66 4 548 1 548 0 3 

eil51_80 4 565 1 565 0 3 

Free Fleet = Number of vehicles used in the VRPB free fleet solution 

Tnb = Total number of given vehicles 
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Optimal Sol.= Optimal solution found by ILOG CPLEX 12.5 

Extra Cost = Extra cost due to overtime/bin packing.  

# of Vehicles Saved = The number of vehicle(s) saved due to multiple use of a 

vehicle. 

Table 4.6: Vehicle utilisation cost comparison of the free fleet VRPB and 

the MT-VRPB solutions for 𝑻𝟐 

Name Free Fleet VRPB 

Solution 

MT-VRPB CPLEX Solution 

# of 

Vehicles 

used 

Sol. 

Cost 

Tnb Optimal 

Sol. 

Extra 

Cost 

# of 

Vehicles 

Saved 

eil22_50 3 371 1 371 0 2 

2 375 4 1 

3 378 7 0 

eil22_66 3 366 1 366 0 2 

2 382 16 1 

3 366 0 0 

eil22_80 3 375 1 375 0 2 

2 378 3 1 

3 381 6 0 

eil23_50 3 677 1 677 0 2 

2 689 12 1 

3 716 39 0 

eil23_66 3 640 1 640 0 2 

2 640 0 1 

eil23_80 2 623 1 623 0 1 

2 631 8 0 

eil30_50 2 501 1 501 0 1 

2 501 0 0 

eil30_66 3 537 1 537 0 2 

2 552 15 1 

3 538 1 0 

eil30_80 3 514 1 514 0 2 

2 535 21 1 

3 518 4 0 

eil33_50 3 738 1 738 0 2 

2 741 3 1 

eil33_66 3 750 1 750 0 2 

2 767 17 1 

eil33_80 3 736 1 736 0 2 

eil51_50 3 559 1 559 0 2 

2 560 1 1 

3 564 5 0 

eil51_66 4 548 1 548 0 3 

2 548 0 2 

eil51_80 4 565 1 565 0 3 

eilA101_66 6 846 1 846 0 5 

Free Fleet = Number of vehicles used in the VRPB free fleet solution 

Tnb = Total number of given vehicles 



89 

 

Optimal Sol. = Optimal solution found by ILOG CPLEX 12.5 

Extra Cost = Extra cost due to overtime/bin packing. 

# of Vehicles Saved = The number of vehicle(s) saved due to multiple use of a 

vehicle. 

For further clarity a summary of the results for the two groups of the instances is 

provided in Table 4.7. For 84 instances of the group 𝑇1, CPLEX found 24 optimal 

solutions (28%), while 4 instances only were reported as infeasible due to the maximum 

driving time limit for each vehicle in these instances being too small. For the rest of 

instances of this group CPLEX found the lower bounds (LB) only. 

Table 4.7: Summary CPLEX results and average time for 𝑻𝟏 and 𝑻𝟐 

 𝑻𝟏 (84) 𝑻𝟐 (𝟖𝟒) 

# of solutions found (out of 84) 24 37 

# of optimal solutions found 24 36 

# of incumbent solutions found  0 1 

# of instances reported infeasible by CPLEX  4 0 

Total average CPU time (s)  5165.91 4248.66 

Average CPU time (s) where sol. is found 417 313 

 

For 84 instances of the group 𝑇2, CPLEX found a total of 36 optimal solutions and one 

incumbent (i.e., feasible solutions for which no overtime is used) solution, while none 

reported infeasible; and for the rest of the instances in this group CPLEX found only the 

lower bounds (LB) except one instance where both upper and lower bounds were found. 

It was observed in situations where the number of vehicles increases, hence the given 

time decreases for each vehicle, and CPLEX either could not find a solution or reported 

infeasibility in few cases.  
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As for the problem classes, CPLEX performed better on T2 compared to T1 since the 

prior class uses relatively a larger relaxed planning period time for each vehicle, hence 

better chances of obtaining an optimal or an incumbent feasible solution. 

Moreover, to justify and check as to why CPLEX could not find optimal solutions or 

upper bounds for the majority of the instances in both types (i.e., 𝑇1 and 𝑇2) within 2 

hours computational time limit, we ran CPLEX for a longer time (15 hours) on some of 

those instances where it did not reach either optimal or upper bound levels within 2 

hours computational time. For this reason, a small subset of instances containing sizes 

of 75 and 100 nodes was chosen to run for 𝑇1 and 𝑇2 groups. The comparison of 

CPLEX runs with different run times (i.e., 2hrs vs 15hrs) results for the two groups of 

instances is shown separately in Tables 4.8 and 4.9. As it can be seen from the tables the 

increase in time did not make any difference in terms of optimal solutions or upper 

bound results for both groups. We believe, the reason behind CPLEX being unable to 

find the solutions even with extended computational time is due to either the bin(s) 

given time restriction and/or the instances are too large in size. 

In terms of lower bound results, the increase in time made little difference. However, 

for some instances in both groups, the lower bound is slightly better when CPLEX was 

run for 15 hours. On the basis of this experiment we decided not to run CPLEX for 

longer times. 

Although CPLEX produced a good number of optimal solutions and upper/lower 

bounds, it is still a modest success since exact approaches struggle when it comes to 

larger instances of this kind of hard complex problems. This observation is in line with 

the literature reviewed in the previous chapters. Nevertheless these results (optimal, 
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upper/lower bounds) would prove very useful for comparison purposes for our heuristic 

algorithm approaches in Chapter 5. 

Table 4.8: Comparison of CPLEX with 2 hours vs CPLEX with 15 hours for 𝑻𝟏 

Name 𝑻𝟏 Tnb CPLEX  Running for 15 

hours 

CPLEX  Running for 2 

hours 

Sol. Upper 

bound 

Lower 

bound 

Sol. Upper 

bound 

Lower 

bound 

eil76_50 775 1 NF NF 708.2119 NF NF 707.1327 

eil76_66 404 2 NF NF 737.9937 NF NF 737.9937 

eil76_80 821 1 NF NF 739.7246 NF NF 739.7246 

eilA101_50 290 3 NF NF 802.2318 NF NF 802.2318 

eilA101_66 223 4 NF NF 815.4809 NF NF 815.4809 

eilA101_80 902 1 NF NF 827.3494 NF NF 825.0081 

 

 

Table: 4.9: Comparison of CPLEX with 2 hours vs CPLEX with 15 hours for 𝑻𝟐 

Name 𝑻𝟐 Tnb CPLEX  Running for 15 

hours 

CPLEX  Running for 2 

hours 

Sol. Upper 

bound 

Lower 

bound 

Sol. Upper 

bound 

Lower 

bound 

eil76_50 812 1 NF NF 710.0593 NF NF 708.0581 

eil76_66 423 2 NF NF 741.8414 NF NF 738.7458 

eil76_80 860 1 NF NF 741.6503 NF NF 741.6503 

eilA101_50 304 3 NF NF 808.5073 NF NF 808.5073 

eilA101_66 233 4 NF NF 825.1924 NF NF 824.9404 

eilA101_80 945 1 NF NF 828.6658 NF NF 828.6938 

 

4.8.1.  Relevance of the results 

A further analysing of the results provided in Table 4.5 and Table 4.6 is given in Table 

4.10 and Table 4.11 for T1 and T2 classes of the data instances, respectively. The 

solutions for most instances (15) of T1 class appeared consuming no extra time/cost 
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when using one vehicle for a planning period as against using 2-4 vehicles in free fleet 

scenarios. For using two vehicles in a planning period there are 8 CPLEX solutions 

where a small extra cost (11.88 on average) incurs; and for three vehicles instances, 

CPLEX produced one solution with an extra cost of 6 units only. For the T2 class, 

similar results are obtained as shown in Table 4.11  

The results provided in the tables show clear advantages for logistics companies and 

their management decisions. The results demonstrate that a logistics company adopting 

a multi-trip routing strategy can utilize fully all working hours in a planning period. The 

results also show that the multi-trip provides clear advantage in reducing fixed costs by 

reducing the number of vehicles used which can be very much relevant for those 

companies who depend on hiring a fleet for the distribution and/or reverse logistics 

reasons. Making deliveries in a given planning period is especially relevant for those 

companies which are involved in supplying fresh/perishable goods, and in urban area 

distribution logistics such as online deliveries. 
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Table 4.10: Comparison of the free fleet VRPB and the MT-VRPB solutions in terms of 

vehicle savings (for small and medium instances 𝑻𝟏) 

T1 with 1 vehicle used  

Name 

Free Fleet VRPB 

Solution 
MT-VRPB CPLEX Solution 

# of 

Vehicles 

used 

Sol. 

Cost 
Tnb 

Optimal 

Sol. 

Extra 

Cost 

No. of 

Vehicles 

Saved 

eil22_50 3 371 1 371 0 2 

eil22_66 3 366 1 366 0 2 

eil22_80 3 375 1 375 0 2 

eil23_50 3 677 1 677 0 2 

eil23_66 3 640 1 640 0 2 

eil23_80 2 623 1 623 0 1 

eil30_50 2 501 1 501 0 1 

eil30_66 3 537 1 537 0 2 

eil30_80 3 514 1 514 0 2 

eil33_50 3 738 1 738 0 2 

eil33_66 3 750 1 750 0 2 

eil33_80 3 736 1 736 0 2 

eil51_50 3 559 1 559 0 2 

eil51_66 4 548 1 548 0 3 

eil51_80 4 565 1 565 0 3 

Average extra/overtime cost    0  

T1 with 2 vehicle used 

eil22_50 3 371 2 378 7 1 

eil22_66 3 366 2 382 16 1 

eil22_80 3 375 2 378 3 1 

eil23_50 3 677 2 698 21 1 

eil23_66 3 640 2 640 0 1 

eil23_80 2 623 2 634 11 0 

eil30_66 3 537 2 552 15 1 

eil33_66 3 750 2 772 22 1 

Average extra/overtime cost    11.88  

T1 with 3 vehicle used 

eil22_80 3 375 3 381 6 0 

Average extra/overtime cost    6  
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Table 4.11: Comparison of the free fleet VRPB and the MT-VRPB solutions in terms of 

vehicle savings (for small and medium instances 𝑻𝟐) 

T2 with 1 vehicle used 

Name 

Free Fleet VRPB 

Solution 
MT-VRPB CPLEX Solution 

# of 

Vehicles 

used 

Sol. 

Cost 
Tnb 

Optimal 

Sol. 

Extra 

Cost 

No. of 

Vehicles 

Saved 

eil22_50 3 371 1 371 0 2 

eil22_66 3 366 1 366 0 2 

eil22_80 3 375 1 375 0 2 

eil23_50 3 677 1 677 0 2 

eil23_66 3 640 1 640 0 2 

eil23_80 2 623 1 623 0 1 

eil30_50 2 501 1 501 0 1 

eil30_66 3 537 1 537 0 2 

eil30_80 3 514 1 514 0 2 

eil33_50 3 738 1 738 0 2 

eil33_66 3 750 1 750 0 2 

eil33_80 3 736 1 736 0 2 

eil51_50 3 559 1 559 0 2 

eil51_66 4 548 1 548 0 3 

eil51_80 4 565 1 565 0 3 

eilA101_66 6 846 1 846 0 5 

Average extra/overtime cost    0  

T2 with 2 vehicle used 

eil22_50 3 371 2 375 4 1 

eil22_66 3 366 2 382 16 1 

eil22_80 3 375 2 378 3 1 

eil23_50 3 677 2 689 12 1 

eil23_66 3 640 2 640 0 1 

eil23_80 2 623 2 631 8 0 

eil30_50 2 501 2 501 0 0 

eil30_66 3 537 2 552 15 1 

eil30_80 3 514 2 535 21 1 

eil33_50 3 738 2 741 3 1 

eil33_66 3 750 2 767 17 1 

eil51_50 3 559 2 560 1 1 

eil51_66 4 548 2 548 0 2 

Average extra/overtime cost    7.69  

T2 with 3 vehicle used 

eil22_50 3 371 3 378 7 0 

eil22_66 3 366 3 366 0 0 

eil22_80 3 375 3 381 6 0 

eil23_50 3 677 3 716 39 0 

eil30_66 3 537 3 538 1 0 

eil30_80 3 514 3 518 4 0 

eil51_50 3 559 3 564 5 0 

Average extra/overtime cost    8.86  
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4.9. Summary  

In this chapter a new variant of the VRP called the Multiple Trip Vehicle Routing 

Problem with Backhauls (MT-VRPB) is introduced. This is the main focus problem that 

is being studied in the thesis. The problem is thoroughly described including a graph 

theoretical definition. A brief review of the exact methodology options for the VRPs is 

provided followed by an ILP formulation of the MT-VRPB along with its possible 

variations. An illustrative example showing the validation of the formulation is given 

along with the details of our CPLEX solution implementation. The chapter also 

provides details of a newly created large set of MT-VRPB data instances along with the 

results and analysis. The results show that CPLEX is able to solve small and medium 

size data instances of the MT-VRPB to optimality and generate upper/lower bounds. 

Although a good number of optimal solutions and upper/lower bounds are found, the 

success could not be highlighted more than just modest. However, these results are very 

important for validation as well as assessing the performance of heuristics results 

produced in Chapter 5. 

The MT-VRPB results show that a large overall cost savings could be obtained by 

deciding the right fleet size and better vehicle utilizations with multiple trips and 

backhauling. This can be very vital from the managerial point of view when it comes to 

making the tactical (acquisition) and fleet management (operational) decisions. 
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Chapter 5 

 

A Two-Level Variable Neighbourhood 

Search Algorithm for the Multiple-Trip 

Vehicle Routing Problem with Backhauls 

 

 

In this chapter we present a Two-Level VNS algorithm developed to solve the MT-

VRPB. An overview of the algorithm is first provided followed by the details of various 

components including a multi-layer local search approach that is embedded with the two 

level VNS methodology. Details of an adapted sweep-first-assignment-second approach 

to produce an initial solution for the MT-VRPB are also provided. Finally detail of the 

Bin Packing Problem that resolves the multiple aspect of the MT-VRPB is presented 

followed by the results and analysis. 

5.1. Two-Level VNS Algorithm: An Overview  

The details of Variable Neighbourhood Search (VNS) approach including its variants 

and applications are provided in Section 2.3.6.1.  Here we present our designed Two-

Level VNS approach for the MT-VRPB which is motivated by the enhanced features 

used in the recent paper on VNS by Mladenovic, Todosijevic and Urosevic (2014). In 

our approach the basic VNS concept is enriched by embedding Sequential Variable 
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Neighbourhood Descent (SeqVND) along with two shaking steps and a set of 

neighbourhood schemes to achieve a vigorous diversification during the search process. 

Moreover, a series of local search routines at two levels of the skeleton of the VNS are 

used to intensify the search. The merit of the two-level strategy is that it ensures a 

speedy and continuous balanced intensification and diversification by employing two 

shaking steps. The details of our VNS algorithm are given in the following sections. 

5.1.1. An overview of the algorithm 

The algorithm comprises two levels, i.e., outer and inner. We have employed several 

neighbourhood structures along with associated local search procedures at both levels of 

the algorithm. For the outer-level we define 𝑁𝑘
𝑂 (𝑘 = 1,… , 𝑘𝑚𝑎𝑥) as a subset of 

neighbourhoods (shaking at outer-level) and 𝐿𝑆𝑘
𝑂 (𝑘 = 1,… , 𝑘𝑚𝑎𝑥) as a subset of local 

search refinement routines; and at the inner-level 𝑁𝑙
𝐼  (𝑙 = 1,… , 𝑙𝑚𝑎𝑥) as a full set of 

neighbourhoods (shaking at inner-level) and 𝐿𝑆𝑙
𝐼 (𝑙 = 1,… , 𝑙𝑚𝑎𝑥) as a full set of local 

search refinement routines. Note that, “O” and “I” refer to the neighbourhoods and local 

search refinement routines used at the outer and the inner levels, respectively. 

Moreover, a 3-dimentional data structure 𝑆𝑝 (detailed description of this data structure 

is given in Section 5.5) is used to store the initial solution 𝑥 as well as many other 

improved solutions during the search process. 

At each cycle of the search process, the outer-level of the algorithm generates randomly 

a transitory solution 𝑥′ from 𝑁𝑘
𝑂(𝑥). A sub-set 𝐿𝑆𝑘

𝑂 of local search refinement routines 

is then utilised to improve 𝑥′. Note that 𝑘 represents a subset of neighbourhoods and a 

subset of local search refinement routines used at outer-level. The resulting best solution 

𝑥′𝑏𝑒𝑠𝑡 is then recorded and transferred to the inner level of the algorithm where a 
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sequential variable neighbourhood descent (SeqVND) is used. At the inner level, both 

sets of the neighbourhoods and local search refinement routines are utilised and 

embedded systematically within a multi-layer local search optimiser framework.  

Again a transitory solution 𝑥′′ is generated randomly from 𝑁𝑙
𝐼(𝑥) at the inner-level and 

transferred to 𝐿𝑆𝑙
𝐼 (the multi-layer local search optimiser framework) for improvement. 

Note that 𝑙 represents a full set of neighbourhoods and a full set of local search 

refinement routines used at inner-level. If the solution obtained by the multi-layer local 

search approach, 𝑥′′𝑏𝑒𝑠𝑡, is better than the incumbent best solution 𝑥′𝑏𝑒𝑠𝑡, then it is 

updated as 𝑥′𝑏𝑒𝑠𝑡 = 𝑥′′𝑏𝑒𝑠𝑡 and the process cycles back to the same neighbourhood 𝑁𝑙
𝐼. 

Moreover, if 𝑥′′𝑏𝑒𝑠𝑡 is found to be the same or worse compared to 𝑥′𝑏𝑒𝑠𝑡, then a new  𝑥′′ 

is generated using the next neighbourhood 𝑁𝑙+1
𝐼 (𝑥′𝑏𝑒𝑠𝑡) and the multi-layer local search 

approach is then operated in the same manner. The process continues with the inner-

level till 𝑁𝑙𝑚𝑎𝑥

𝐼  is reached. At this stage the search process restarts from the outer-level 

and if 𝑥′𝑏𝑒𝑠𝑡 is found to be better than the incumbent 𝑥 then it is updated as 𝑥 =  𝑥′𝑏𝑒𝑠𝑡 

and the improved solution is stored 𝑆𝑝 = 𝑥; hence, the process of generating a 

transitional solution restarts from the same neighbourhood 𝑁𝑘
𝑂. But if 𝑥′𝑏𝑒𝑠𝑡 is found to 

be the same or worse than the incumbent 𝑥, a new transitory 𝑥′ is generated using the 

next neighbourhood in 𝑁𝑘+1
𝑂 (𝑥). Hence, the outer-level is also iterated till 𝑁𝑘𝑚𝑎𝑥

𝐼  is 

reached. The process terminates when the maximum number of iterations 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is 

met. 

The Bin Packing Problem (BPP) is then solved for a pool of solutions obtained by the 

Two-Level VNS. The BPP starts by sorting the solutions in 𝑆𝑝 in the order of lowest to 

highest cost and initializing a 3-dimentional data structure 𝑆𝑜𝑙𝑘 (special data structure 
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which stores the solutions according to what routes are served by which vehicles – a 

detailed description of this data structure is provided in Section 5.5). CPLEX optimiser 

is then called to solve the BPP for each VNS solution in the pool and the packed 

solutions are stored in the 𝑆𝑜𝑙𝑘 data structure. Note that in the cases where a solution 

could not be packed due to the tight bin capacity then we use the Bisection Method 

(Petch and Salhi, 2004) to increase the bin capacity (i.e., allowing overtime) and the 

packed solution is reported with overtime. The allocation of overtime is common 

practice in multiple trip routing and allocation of overtime occurs in a situation where 

the number of vehicles increases and hence driving time decreases for each vehicle. 

Therefore, it becomes hard to pack a solution due to tight vehicle’s driving time and 

hence allowing overtime becomes essential. The details of the Bisection Method are 

provided at the end of subsection 5.1.5 in this Chapter. The algorithmic steps of the 

Two-level VNS and BPP are shown in Figure 5.1 with their respective pseudo code 

presented in Figure 5.2 and Figure 5.3, respectively. The explanation of the main steps 

will be given next. 

Phase I: Initial solution – sweep-first-assignment-second approach 

 Generate LH and BH open-ended routes using sweep 

 Create a distance matrix of end nodes from open-ended routes  

 Solve the assignment problem by calling CPLEX to obtain an initial feasible 

VRPB free fleet solution 𝑥  

Phase II: Two-Level VNS Algorithm  

Initialize the solution pool data structure 𝑆𝑝 and add the initial solution 𝑥 to 𝑆𝑝, 

Set: 𝑖𝑡𝑒𝑟 = 1 and  𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 200  

Repeat the process while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 

Start outer-level 
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Let: 𝐿𝑆𝑘
𝑂 =< 𝑅3, 𝑅4, 𝑅5 > subset of local search refinement routines for the 

outer-level 

Set: 𝑘 = 1  

Repeat the process while 𝑘 ≤ 𝑁𝑘𝑚𝑎𝑥

𝑂  

a.1: Generate a neighbouring solution 𝑥′ ∈ 𝑁𝑘
𝑂(𝑥) at random; 

a.2: Apply 𝐿𝑆𝑘
𝑂 on neighbouring solution 𝑥′ to improve it 

a.3: Assign the resulting solution 𝑥′ to 𝑥′𝑏𝑒𝑠𝑡  [𝑥′𝑏𝑒𝑠𝑡 = 𝑥′] 

a.4: Start inner-level using 𝑥′𝑏𝑒𝑠𝑡 

Let:𝐿𝑆𝑙
𝐼 =< {𝑅1& 𝑅6}, {𝑅2& 𝑅6}, {𝑅3& 𝑅6}, {𝑅4& 𝑅6}, {𝑅5& 𝑅6} > 

Multi-Layer local search optimiser framework  

Set: 𝑙 = 1  

Repeat the process while 𝑙 ≤ 𝑁𝑙𝑚𝑎𝑥

𝐼  

a.4(1): Generate a neighbouring solution 𝑥′′ ∈ 𝑁𝑙
𝐼(𝑥′𝑏𝑒𝑠𝑡) at random 

a.4(2): Apply  𝐿𝑆𝑙
𝐼 on the neighbouring solution 𝑥′′  

a.4(3): Assign the resulting solution 𝑥′′ to 𝑥′′𝑏𝑒𝑠𝑡  [𝑥′′𝑏𝑒𝑠𝑡 =  𝑥′′]  

a.4(4): If 𝑥′′𝑏𝑒𝑠𝑡 < 𝑥′𝑏𝑒𝑠𝑡 then 𝑥′𝑏𝑒𝑠𝑡 = 𝑥′′𝑏𝑒𝑠𝑡; set 𝑙 = 1 and got to 

a.4(1) 

Else set 𝑙 = 𝑙 + 1 and got to a.4(1) 

a.5:   If 𝑥′𝑏𝑒𝑠𝑡 < 𝑥 then 𝑥 = 𝑥′𝑏𝑒𝑠𝑡; 𝑆𝑝 = 𝑥; set 𝑘 = 1 and go to a.1 

Else set 𝑘 = 𝑘 + 1 and go to a.1 

Phase III: Solving the Multiple Trips aspect using the BPP 

Initialize special 3-dimentional data structure 𝑆𝑜𝑙𝑘 and let 𝑆𝑜𝑙𝑚𝑎𝑥 number of 

solutions stored in 𝑆𝑝.  

Let 𝑖𝑡𝑒𝑟𝐵𝑀𝑚𝑎𝑥 = 5. 

Set: 𝑖𝑡𝑒𝑟𝑆𝑜𝑙 = 1  

Repeat the process while 𝑖𝑡𝑒𝑟𝑆𝑜𝑙 ≤ 𝑆𝑜𝑙𝑚𝑎𝑥  

Step1. Solve the BPP for solution p using CPLEX optimiser (𝑝 =

1, … , 𝑆𝑜𝑙𝑚𝑎𝑥) 

Step2. If solution p is feasibly packed then go to Step4 

Else, go to Step3 

Step3. Apply the Bisection Method  to optimise the bin capacity   
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   Set: 𝑖𝑡𝑒𝑟𝐵𝑀 = 1  

   Repeat the process while 𝑖𝑡𝑒𝑟𝐵𝑀 ≤ 𝑖𝑡𝑒𝑟𝐵𝑀𝑚𝑎𝑥  

   Step3.(1): Use the Bisection Method  

   Step3.(2): Solve the BPP for solution p using CPLEX optimiser 

Step4. Store the solution in the special data structure 𝑆𝑜𝑙𝑘 according to 

what routes are served by which bins (vehicles) 

Figure 5.1: Algorithmic steps of the Two-Level VNS for MT-VRPB 

 

 

Function Two-Level VNS (𝑥, 𝑁𝑘𝑚𝑎𝑥

𝑂 , 𝑁𝑙𝑚𝑎𝑥

𝐼 , 𝑖𝑡𝑒𝑟𝑚𝑎𝑥)  

    Let: 𝑆𝑝 = be a solution pool data structure 

    𝑆𝑝 ← 𝑥   

    𝑖𝑡𝑒𝑟 ← 1 

    while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  do 

            Let: 𝐿𝑆𝑘
𝑂 =< 𝑅3, 𝑅4, 𝑅5 > 

             𝑘 ← 1 

            while 𝑘 ≤ 𝑘𝑚𝑎𝑥   do 

                    Select 𝑥′ ∈ 𝑁𝑘
𝑂(𝑥) at random;                  [shake_outer]  

                    𝑥′𝑏𝑒𝑠𝑡 ← 𝐿𝑆𝑘
𝑂(𝑥′); 

 

                            Let: 𝐿𝑆𝑙
𝐼 =< {𝑅1& 𝑅6}, {𝑅2& 𝑅6}, {𝑅3& 𝑅6}, {𝑅4& 𝑅6}, {𝑅5& 𝑅6} > 

                            𝑙 ← 1 

                            while 𝑙 ≤ 𝑙𝑚𝑎𝑥  do 

                                   Select 𝑥′′ ∈ 𝑁𝑙
𝐼(𝑥′𝑏𝑒𝑠𝑡) at random;  [shake_inner] 

                                   𝑥′′𝑏𝑒𝑠𝑡 ←  𝐿𝑆𝑙
𝐼 (𝑥′′); [Multi-Layer local search framework] 

                                   If 𝑓(𝑥′′𝑏𝑒𝑠𝑡) < 𝑓(𝑥′𝑏𝑒𝑠𝑡) then 

                                   𝑥′𝑏𝑒𝑠𝑡 ← 𝑥′′𝑏𝑒𝑠𝑡; 𝑙 ← 1; 
                                   Else 𝑙 ← 𝑙 + 1;  

                           end while 

                           return 𝑥′𝑏𝑒𝑠𝑡;   

         

                    If 𝑓(𝑥′𝑏𝑒𝑠𝑡) < 𝑓(𝑥) then 

                    𝑥 ← 𝑥′𝑏𝑒𝑠𝑡;  𝑆𝑝 ← 𝑥;  𝑘 ← 1; 

                    Else 𝑘 ← 𝑘 + 1;  

             end while 

        return 𝑥; 
 

    end while 

Figure 5.2: Pseudo code for the Two-Level VNS  
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Function Bin-Packing (𝑆𝑝 , 𝑖𝑡𝑒𝑟𝑆𝑜𝑙 , 𝑆𝑜𝑙𝑚𝑎𝑥  ) 

      Let: 𝑆𝑜𝑙𝑘 = be a 3-D data structure to store the packed solutions 

      Set: 𝑆𝑝 = be a pool of all sorted solution in descending order of cost (𝑝 = 1,… , 𝑆𝑜𝑙𝑚𝑎𝑥) 

      𝑖𝑡𝑒𝑟𝑆𝑜𝑙 ← 1 

      while 𝑖𝑡𝑒𝑟𝑆𝑜𝑙 ≤ 𝑆𝑜𝑙𝑚𝑎𝑥  do 

a. Select 𝑝 ∈ 𝑆𝑝 (where 𝑝 = 1,… , 𝑆𝑜𝑙𝑚𝑎𝑥) 

b. 𝐶𝑃𝐿𝐸𝑋 (𝑝) If feasibly packed, go to d, Else go to c 

c. 𝑖𝑡𝑒𝑟𝐵𝑀 ← 1 

                                   while 𝑖𝑡𝑒𝑟𝐵𝑀 ≤ 𝑖𝑡𝑒𝑟𝐵𝑀𝑚𝑎𝑥  do   

                c1. Use the Bisection Method     (see Section 5.5) 

                                             c2. 𝐶𝑃𝐿𝐸𝑋 (𝑝) 

                                   end while 

d. 𝑆𝑜𝑙𝑘 ← 𝐶𝑃𝐿𝐸𝑋 (𝑝)  

      end while 

Figure 5.3: Pseudo code for the BPP  

5.2. Initial solution (Phase I) 

The Sweep procedure of Gillett and Miller (1974) is considered to be a simple and an 

efficient construction method for the VRPs. A sweep-first-assignment-second approach 

is developed to generate the initial solution for the MT-VRPB. The way the sweep 

method works is that it starts with clustering customers into feasible groups in such a 

way that those customers who belong to the same group are close to each other 

geographically and centred to the depot to be served by the same vehicle. We have used 

the Sweep method in such a way that two sets of open-ended routes are constructed by 

sweeping through linehaul (LH) and backhaul (BH) nodes separately. To the best of our 

knowledge, no one has used sweep method in this format before this study for any 

backhauling version of the VRP. Figure 5.4 shows an illustrative example of the way we 

have used the Sweep procedure to generate open-ended LH and BH routes. 
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               Linehaul customers                Backhaul customers 

Figure 5.4: An illustrative example of sweep procedure for the MT-VRPB 

In Figure 5.5 an illustrative example of the problem instance eil21_50 is shown, 

demonstrating the visual features of the open-ended routes. In the cases where the 

number of open-ended BH routes is less than the number of open-ended LH routes, 

dummy BH open ended route(s) containing the depot only is created and added to the 

matrix. This is done to obtain the same number of routes for the purpose of optimal 

matching. Note that if the solution is not feasible in terms of the precedence 

backhauling constraints (i.e., all delivery customers are served before any pickup 

customers; vehicle routes containing only backhaul customers are not allowed) then it 

can be amended by moving customers among routes before passing it on to the VNS 

stage of the algorithm. However this situation did not arise in solving the data sets in 

this thesis. 

Depot 
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                  LH open-ended routes                            BH open-ended routes            

 
                         7                10               11               9                   19             18           21               20    
  L1                                                                                                                                            B1   
 
                      8              5               4              3              1                   17        12          16          14        15        13 

  L2                                                                                                                                            B2     
 
                                        2                                     6                        
  L3                                                                                                    dummy                          B3                     
 
    
              Depot                 Linehaul Customers                Backhaul Customers 

 

Figure 5.5: LH and BH open-ended routes (Problem instance eil22_50 of data set-2) 

Once linehaul and backhaul open-ended routes are constructed, the assignment problem 

is solved. But before we discuss how it has been solved, it would be useful to 

understand how CPLEX optimiser can be embedded in different programming 

languages on different platforms. Since, we have solved an assignment problem and Bin 

Packing Problem (BPP) described in section 5.1.5 of this Chapter by calling the CPLEX 

optimiser within C++ programming language in Microsoft Visual Studio environment, a 

brief description of the procedure is presented in Appendix A. 

5.2.1. Solving the Assignment Problem 

The following assignment formulation is modelled and implemented in C++ 

programming language within Microsoft Visual Studio Environment. The designed 

model calls CPLEX optimiser within Visual Studio Environment to find the optimal 

matching of both types of routes in order to create a set of routes (i.e., routes with both 

linehaul and backhaul customers).  
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In the following assignment formulation 𝑛𝑟 denotes the number of open LH and BH 

routes. 𝑋𝑖𝑗 is a binary decision variable defining whether the 𝑖𝑡ℎ open linehaul route is 

connected with the 𝑗𝑡ℎ open backhaul route.  

Minimise Z ∑ ∑  𝐷𝑖𝑗𝑗∈𝑛𝑟  𝑋𝑖𝑗𝑖∈𝑛𝑟                                (5.1) 

Subject to  ∑ 𝑋𝑖𝑗
𝑛𝑟
𝑖=1 = 1                                                        ∀ (𝑗 = 1,… , 𝑛𝑟)          (5.2) 

           ∑ 𝑋𝑖𝑗
𝑛𝑟
𝑗=1 = 1                                                        ∀ (𝑖 = 1,… , 𝑛𝑟)          (5.3) 

 𝑋𝑖𝑗  ∈ {0,1}                                                         ∀ (𝑖, 𝑗 = 1,… , 𝑛𝑟)       (5.4) 

Where              

          𝑋𝑖𝑗 = {
 1, if 𝑖𝑡ℎ open linehual route is connected to 𝑗𝑡ℎ open backhaul route; 
  0, otherwise                                                                                                            

 

A distance/cost matrix 𝐷𝑖𝑗 that consists of distances between the end points of 𝑖𝑡ℎ open 

linehaul routes to the end point of the 𝑗𝑡ℎ open backhaul routes is then created in order 

to solve the assignment problem. A dummy route containing the depot is added to the 

matrix where a number of LH and BH routes are not equal.  

An illustrative example: 

A matrix containing the actual distances is shown in Figure 5.6.  

 

 

 

 

Figure 5.6: Distance matrix of end nodes 

                       B1     B2      B3      

      L1   17 69       22 

 𝐷𝑖𝑗 =     L2   72  9        49  

     L3   70 30       42     
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To produce combined LH-BH routes, the optimal matching is then obtained by solving 

an assignment problem using ILOG CPLEX 12.5 optimiser coded with C++ within 

Microsoft Visual Studio Environment. The optimal assignment matching result for the 

example problem is illustrated in Figures 5.7 and 5.8. 

Optimal assignment with an objective value = 68 

                    B1     B2    B3   

            L1     1       0       0 

 𝑋𝑖𝑗 =   L2     0       1       0 

            L3     0       0       1 

 

 Linehaul Route 1 : matches with backhaul route 1 (𝑋00 = 1) 

 Linehaul Route 2 : matches with backhaul route 2 (𝑋11 = 1) 

 Linehaul Route 3 : matches with backhaul route 3 (𝑋22 = 1) 

Figure 5.7: Optimal matching obtained by CPLEX 

 
                LH open-ended routes                           BH open-ended routes            

 
                         7               10               11                9                   19             18          21               20    
  L1                                                                                                                                             B1   
 
                      8               5               4              3              1                17         1 2         16         14         15       13 

  L2                                                                                                                                             B2     
  
                                        2                                    6                        
  L3                                                                                                                                             B3                     
 
    
              Depot                Linehaul Customers                 Backhaul Customers 

 

Figure 5.8: Combined LH+BH routes (problem instance no: eil22_50) 
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5.3.  Neighbourhoods used in the Two-Level VNS Algorithm (Phase II) 

The neighbourhood generation is a fundamental part in heuristic search design in 

general and in the VRPs in particular. In this study six neighbourhoods are used. We 

first briefly describe these neighbourhoods along with their illustrations provided in 

corresponding figures, and then provide an explanation as to how we used them in our 

algorithm. 

1-insertion (intra-route): relocates the position of a customer at a non-adjacent arc 

within the same route as shown in Figure 5.9. The upper part of the figure shows all the 

positions for linehaul node 1 and backhaul node 4 can possibly be re-located within the 

same route. The lower parts of the figure demonstrate a 1-insertion move where a 

linehaul customer (node 2) is removed from its position in route r1 and inserted at a non-

adjacent position in the same route, resulting in a savings in travelling cost. Note that 1-

insertion routine moves both linehaul and backhaul customers and it has been 

implemented in such a way that; if a linehaul customer is selected then it can only be 

inserted in any non-adjacent linehaul arc and the same is the case with backhaul 

customers. This is done due to the backhaul precedence constraints (see Subsection 

4.1.1) that all delivery customers must be served before any pickups. 

1-insertion (inter-route): relocates a customer from one route to another. As shown in 

Figure 5.10, a linehaul node is removed from route r2 and inserted in route r1 to achieve 

a travelling cost reduction. 

1-1 swap: swaps two customers each taken from two separate routes. As shown in 

Figure 5.11, two linehaul nodes are swapped between route r1 and r2 to obtain a savings 

in travelling cost. 
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2-2 Swap: swaps two pairs of consecutive customers taken from two separate routes. 

Figure 5.12 shows two pairs (consecutive) of linehaul/backhaul nodes are swapped 

between routes r1 and r2 to obtain a savings in travelling cost. 

2-0 shift: re-locates two consecutive customers from one route to another. Figure 5.13 

shows a consecutive pair of backhaul nodes is shifted from route r1 to route r2 to gain a 

reduction in travelling cost. 

2-1 swap: swaps a consecutive pair from one route with a single customer from another 

route. As shown in Figure 5.14, a pair (consecutive) of linehaul nodes from route r1 is 

swapped with a linehaul node from route r2 to obtain a reduction in travelling cost 

             Depot                         linehaul customer                 backhaul customer        

 
 
                   
𝑅1     
                               1                        2                       3                        4                       5                       6 
 

Initial route 

 
 
                       4                       5 

                     
                    3 
                                                   2 
                                                          6 
                1                         𝑟1                                 7 

 
 
 

Route after 1-insertion 
                         

 
                        4                                   5 

                     
                    3 
                                                   2 
                                                          6 
                1                    𝑟1                                      7 

 
 
                                                                                                        

Figure 5.9: An illustrative example of the 1-insertion (intra-route) refinement routine 

. 

 

Total cost:  98 Total cost:  73 
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             𝑟1                                    𝑟2 
 
 
 
 
 

Initial routes 

  
 
 
 
 
 

                𝑟1                              𝑟2 
 
 
 
 
 

Routes after 1-insertion 

 

                       depot                   Linehaul customer              Backhaul customer  

Figure 5.10: An illustrative example of the 1-insertion (inter-route) refinement routine 

 
 

 

 

 

 

 

          𝑟1                                         𝑟2                                

 

 

 

 

 

 

 

Initial routes  

  

 

 

 

 

 

            𝑟1                              𝑟2               
                                            
 

 

 

 

 

 

Routes after 1-1 swap 
 

                        Depot              Linehaul customer             Backhaul customer  
Figure 5.11: An illustrative example of the 1-1 swap refinement routine 

 

 

 

Customers to swap 

Total cost: 135 Total cost:  115 

Customer to shift 

Total cost:  155 Total cost:  135 



110 

 

 

 

 

 

 

 

 

          𝑟1                                         𝑟2                                

 

 

 

 

 

 

 

Initial routes  

  

 

 

 

 

 

             𝑟1                                𝑟2                                          
                                            
 

 

 

 

 

 

Routes after 2-2 swap 
 

                          Depot            Linehaul customer            Backhaul customer  

Figure 5.12: An illustrative example of the 2-2 swap refinement routine 

 

 

 

 

 

 

 

 

 

          𝑟1                                         𝑟2                                

 

 

 

 

 

 

 

Initial routes  

  

 

 

 

 

 

             𝑟1                                𝑟2                                          
                                            
 

 

 

 

 

 

Routes after 2-0 shift 
 

                           Depot            Linehaul customer             Backhaul customer  

Figure 5.13: An illustrative example of the 2-0 shift refinement routine 

 

 

Customers to swap 

Total cost:  116 Total cost:  98 

Customers to shift 

Total cost:  126 Total cost:  107 
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          𝑟1                                         𝑟2                                

 

 

 

 

 

 

 

 

Initial routes  

  

 

 

 

 

 

             𝑟1                                𝑟2                                          
                                            
 

 

 

 

 

 

 

Routes after 2-1 swap 
 

                           Depot            Linehaul customer            Backhaul customer  

Figure 5.14: An illustrative example of the 2-1 swap refinement routine 

Use of neighbourhoods in the Two-Level VNS algorithm: 

The moves in all the above neighbourhoods are conducted according to the backhauling 

constraint conventions described in Section 3.1 of Chapter 3. These neighbourhood 

schemes are used at the shaking and local search stages of the Two-Level VNS 

algorithm. 

Shaking Stage:  

All six neighbourhoods are used in the shaking stage of the algorithm in the following 

order that was found empirically. 1-insertion intra-route 𝑁1, inter-route 𝑁2, 1-1 swap 𝑁3, 

2-2 swap 𝑁4, 2-0 shift 𝑁5, 2-1 swap 𝑁6. In the VNS literature, the neighbourhood 

moves are used in various ways, i.e. systematically, partial systematic manner, complete 

random manner, etc. In our case, all the neighbourhood moves, i.e., customers re-locate 

positions and routes are selected randomly. Hence, only feasible moves (in terms of 

Customers to swap 

Total cost:  143 Total cost:  124 
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problem constraints, i.e., vehicle capacity, backhauling precedence conventions set 

explained in Section 3.1) are accepted in the search process. 

5.4. Multi-layer local search optimiser framework (local search stage) 

The details of how this group of six neighbourhoods are used as local search refinement 

routines in the Two-Level VNS algorithm are provided here. 

Our multi-layer local search optimiser framework can be categorised as a composite 

heuristic. The multi-layer local search framework uses all six neighbourhood schemes, 

presented in Subsection 5.1.3, in the form of local search refinement routines. The 

notion of manipulating the power of several neighbourhood structures as local searches 

within a local search framework was originally developed by Salhi and Sari (1997) 

known as multi-level composite heuristic and successfully implemented in Imran, Salhi 

and Wassan (2009). We have adapted this idea into our Two-Level VNS algorithm. The 

order in which these refinement routines (denoted with 𝑅𝑖, i=1,…,6) are executed is 

important. The following order is chosen empirically: 1-insertion (inter-route) 𝑅1, 1-1 

swap 𝑅2, 2-2 swap 𝑅3, 2-0 shift 𝑅4, 2-1 swap 𝑅5; and 1-insertion (intra-route) 𝑅6 . The 

last routine R6 is used as a post-optimiser after each local search refinement routine is 

executed in the framework.  

The multi-layer framework search process starts with a transitory feasible solution 𝑥′as 

explained in Subsection 5.1.1. Each local search routine is then executed in order till a 

local optimum is reached followed by the post-optimiser routine R6, i.e., 1-insertion 

(intra-route). Note that the post-optimiser is used only if the preceding routine in the list 

improves the solution. The framework of our multi-layer local search optimiser is 

provided in a flow chart shown in Figure 5.15. Note that this multi-layer local search 
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framework is similar to VND except here there are several local search refinement 

routines used instead of 2 or 3 local searches. 

Acceptance criteria:  

In the literature, these refinement routines are implemented in two solution acceptance 

criterion strategies, i.e., the first-improvement and the best-improvement. In the first-

improvement strategy, the change in the solution is accepted and updated any time 

during the search process if it improves the current best incumbent solution. In the best- 

improvement strategy, the best of all possible improvements is accepted at the end of the 

search cycle. We conducted experiments with both strategies in our initial trials and 

found the first-improvement producing better results for the MT-VRPB while being 

relatively faster. Note that in the original implementation of the multi-level heuristic 

(Salhi and Sari, 1997), the best-improvement strategy is used instead. 

 

Figure 5.15: The multi-layer local search optimiser framework flow chart 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1-0 insertion inter-route 

1-0 insertion intra-route 

2-1 swap 

2-2 swap 

1-0 insertion intra-route 
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Improvement 

Improvement 1-0 insertion intra-route 

Improvement 1-0 insertion intra-route 
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No 
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5.5. Solving the Bin Packing Problem (Phase III) 

In the Bin Packing Problem (BPP) items of different sizes/volumes are to be packed into 

a finite number of bins/containers with a known capacity c such that all items are 

packed into the minimum number of bins without violating the capacity of each bin. For 

early classical applications of the bin packing see study of Eilon and Christofides (1971) 

for vehicle/container loading problem. For a review on a variety of knapsack problems 

see Wilbaut, Hanafi and Salhi (2008). For recent studies we refer to the studies of 

Lewis, Song, Dowsland and Thompson (2011) and Song, Lewis, Thompson and Wu 

(2012). We have solved the following BPP model for the MT-VRPB. 

Given 𝑘  bins (vehicles) (𝑣1, … , 𝑣𝑘) of the same size 𝑐 (time) and 𝑛 items (routes) with 

varying weights (𝑤1, … , 𝑤𝑛). 

Minimise          ∑ 𝑦𝑖
𝑘
𝑖=1                               (5.5) 

Subject to        ∑ 𝑤𝑗𝑥𝑖𝑗 ≤ 𝑐𝑦𝑖
𝑛
𝑗=1                                        𝑖 = 1,… , 𝑘            (5.6) 

∑ 𝑥𝑖𝑗 = 1𝑘
𝑖=1                                                 𝑗 = 1,… , 𝑛            (5.7) 

𝑦𝑖 = 0 𝑜𝑟 1,                                                   𝑖 = 1,… , 𝑘            (5.8) 

𝑥𝑖𝑗 = 0 𝑜𝑟 1,                           𝑖 = 1,… , 𝑘, 𝑗 = 1,… , 𝑛             (5.9) 

Where                  

                𝑦𝑖 = {
 1, if bin 𝑖 is used; 
  0, otherwise          

 

                𝑥𝑖𝑗 = {
 1, if item 𝑗 is assigned to bin 𝑖; 
  0, otherwise                                   
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Constraint 5.6 ensures the capacity c is not violated for each of the bins; whereas, 

Constraint 5.7 guaranties that each item (route) is assigned to at most one bin. 

To solve the above BPP, a pool is created containing different solutions produced by the 

Two-Level VNS algorithm having completed its given number of iterations for each 

instance. The solutions (candidate list of the new improved solutions appeared during 

the search process at Phase II for an instance) in the pool are stored in a 3-dimensional 

data structure 𝑆𝑝 before solving the BPP. An illustrative example of this data structure is 

shown in Figure 5.16. 
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𝑆𝑜𝑙𝑚𝑎𝑥 

 

 

                                                                         
1 
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0 3 5 2 12 0 
 

                                                
Sol. Cost = 

250 0 4 6 1 9 0 
 

0 8 7 10 11 0 
 

   

1 

2 

3 
 

0 3 5 2 12 0 
 

                                                               
Sol. Cost = 

258 0 7 6 9 10 0 
 

0 4 8 1 11 0 
 

   

1 

2 

3 

4 
 

0 3 5 2 0 
 

                                     
Sol. Cost = 

265 

 
 

0 7 6 12 0 
 

0 1 4 0 
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Figure 5.16: An illustrative example of data structure 𝑺𝒑 

 

The BPP model is designed and coded in C++ programming language in Microsoft 

Visual Studio Environment that calls for the CPLEX optimiser. The BPP model starts 

with sorting the solutions stored in the 3D data structure 𝑆𝑝 in the order of lowest to 

# of routes in each solution 𝒑 # of customers in each route of solution  𝒑 

Solutions in 𝑆𝑝, where 

𝑝 = 1,… , 𝑆𝑜𝑙𝑚𝑎𝑥  

𝑺𝒑 
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highest cost. The process of the packing starts by choosing the lowest cost solution from 

the ordered solutions pool and solving the BPP by calling CPLEX optimiser. If the 

chosen solution is feasibly packed (without allowing overtime to any of the bins) into a 

given number of the bins then it is stored in a separate special 3-dimentional data 

structure 𝑆𝑜𝑙𝑘 (note that data structure 𝑆𝑜𝑙𝑘 stores solution according to what routes are 

packed in what bin/s) as one of the possible solution results for an instance. An 

illustrative example of special 3-dimentional data structure 𝑆𝑜𝑙𝑘 is shown in Figure 

5.17. The process is repeated for all the solutions in the pool. In the case where the 

feasible packing could not be achieved for a solution, we use a repair mechanism known 

as the Bisection Method (Petch and Salhi, 2004) which allows overtime progressively to 

the given bin(s) of those instances to pack the routes. Figure 5.18 presents a flow chart 

showing the BPP solution procedure.  
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Figure 5.17: An illustrative example of special data structure  𝑺𝒐𝒍𝒌 
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Figure 5.18: BPP flow chart 

Bisection Method (Repair Mechanism): the Bisection method works in such a way that 

it starts increasing the bin(s) capacity by a certain percentage iteratively until routes are 

packed into bin(s). For instance, as it is shown in Figure 5.19, the bin(s) capacity is 

increased by 5% at every iteration; and suppose the required capacity of bins is achieved 

at 25% level increase; it then tries to optimise the bin capacity by using a 

decreasing/increasing percentage mechanism, say starting from a decreasing percentage 

of -2.5% which is then decreased/increased by half iteratively (i.e., 1.25, 0.625,…, and 

so on) till the bin(s) overtime is optimised. In our case the bin capacity increasing 

percentage is fixed at 5% and the decreasing percentage starts from 2.5%. This is done 
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because the optimal packing achieved by the BPP say with +25% bin overtime increase 

might be a bit higher than required. Note that in this study, the Bisection Method is used 

with a fixed number of iterations, 𝑖𝑡𝑒𝑟𝐵𝑀𝑚𝑎𝑥 = 5 which was found appropriate for all the 

instances. Figure 5.19 presents an illustrative example of the Bisection Method. 
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Figure 5.19: An illustrative example of the Bisection Method 

5.6. Computational Experience 

5.6.1. Introduction and Computer Details  

The Two-Level VNS algorithm including the initial solution design and the BPP model 

is implemented in C++ programming within the Microsoft Visual Studio Environment. 

The experiments were executed on a PC with Intel(R) Core(TM) i7-2600 processor, 

CPU speed 3.40 GHz. The IBM ILOG CPLEX 12.5 optimisers are used to solve the 

Assignment and BPP problems for the MT-VRPB. 
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Initial Solution: The sweep-first-assignment-second approach is implemented by calling 

CPLEX optimiser within the Visual Studio Environment to find the optimal matching of 

LH-BH routes. 

Packing route into Bins: The Bin Packing Problem approach is also implemented that 

calls the CPLEX optimiser within the Visual Studio Environment in order to obtain the 

optimal packing of routes within Bin(s). 

Glossary for tables: 

𝑇1 = Total driving time (type one) for a bin/ vehicle. 

𝑇2 = Total driving time (type two) for a bin/ vehicle. 

Tnb = Total number of vehicles (bins) in each instance.  

No.R = Number of total routes in solution. 

No. of Routes in each Bin = Number of routes served by each bin/vehicle. 

X = Infeasible.  

- = Not found. 

^    = Incumbent solution. 

Opt. Sol. = optimal solution found by CPLEX. 

Overtime = Overtime (equivalent to per unit distance travelled by a vehicle) allocated to 

bin(s) where needed to feasibly pack routes within bin(s). 

Cost with overtime = Total solution cost including Overtime units. 
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Time(s) = CPU time in seconds taken to solve each instance. 

n = Total number of customers. 

RPD = Relative Percentage Deviation = [(VNS Sol. - best known)/ best known * 100]. 

5.6.2. Results and analysis 

Our sweep-first-assignment-second approach is very fast in producing initial feasible 

VRPB solutions, spending less than a second on average. 

It is to be noted that the MT-VRPB is being introduced in this thesis hence there are no 

previously developed benchmarks instances results to compare with. Therefore the 

performance of the algorithm is compared against the optimal solutions and lower/upper 

bounds produced by CPLEX. Table 5.1 provides a summary of the Two-Level VNS as 

compared to CPLEX results found in Chapter 4. 

The Two-Level VNS solved all 168 instances of T1 and T2 groups as compared to 61 of 

CPLEX. It also matched 51 optimal/incumbent solutions out of 61 of CPLEX. The Two-

Level VNS also proved very efficient in using bin overtime of only 5 to 10 units on 

average. In terms of speed it used less than 20 seconds on average per instance.  

The Two-Level VNS found 46 feasible (without overtime) solutions and 38 infeasible 

(with overtime) for the instances in 𝑇1. The algorithm performed better for 𝑇2 type 

instances, where 59 feasible solutions are found leaving 25 infeasible solutions in this 

group. 

Table 5.2 and Table 5.3 report the detailed solutions of the Two-Level VNS algorithm 

along with the CPLEX results for the data set-1 (𝑇1and 𝑇2). The algorithm is run for 200 

iterations and, due to the random element, best solution is reported out of 5 runs. For 
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𝑇1 the algorithm found a number of good quality (no overtime used) solutions (46 out of 

84) and for the remaining 38 it took less than 30 units of overtime in most cases. For 𝑇2, 

59 solutions are found without overtime and the rest (apart from a few) the algorithm 

did not exceed 30 units of overtime.  

It can be observed (see Table 5.2 and Table 5.3) that good quality solutions are found 

when the bin capacity is relatively large and the number of bins is smaller. It can also be 

seen that the increase in the number of bins increases the likelihood of overtime being 

used. In summary, the algorithm is able to solve all the instances including 51 optimal 

solutions at a very low computational cost requiring on average 18 seconds per instance. 

Table 5.1: The comparison of the Two-Level VNS with CPLEX (data set-1: 𝑻𝟏 & 𝑻𝟐)  

   

 𝑻𝟏  𝑻𝟐 

   
CPLEX 

Two-Level 

VNS CPLEX 

Two-Level 

VNS 

# of solutions found (out of 84) 24 84 37 84 

# of feasible solutions found (out of 84) 24 46 37 59 

# of optimal solutions found  24 21 36 30 

Max overtime (units) - 58 - 52 

Min overtime (units) - 2 - 1 

Average overtime (units) - 10.24 - 5.33 

Average CPU time (s) 5165 18 4248 17 
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Table 5.2: Detailed comparison of the Two-Level VNS with CPLEX for the data set-1 (𝑻𝟏) 

          

Name 

      

𝑻𝟏 

       

Tnb 

CPLEX Two-Level VNS 

Opt. 

Sol. 

No. 

R. 

Time 

(s) 

Actual 

Cost 

Over 

Time 

Cost 

with 

overtime 

No. 

R. 

Time 

(s) 

eil22_50 390 1 371 3 1 371 0 371 3 2 

195 2 378 3 1 378 0 378 3 3 

130 3 x x x 380 10 390 4 3 

eil22_66 385 1 366 3 1 366 0 366 3 5 

193 2 382 4 3 386 10 396 4 4 

129 3 x x x 366 4 370 3 3 

eil22_80 394 1 375 3 2 375 0 375 3 4 

197 2 378 4 2 378 0 378 4 5 

132 3 381 3 27 381 0 381 3 3 

eil23_50 711 1 677 3 1 677 0 677 3 3 

355 2 698 3 2 677 34 711 3 2 

237 3 x x x 712 13 725 3 5 

eil23_66 672 1 640 3 1 640 0 640 3 4 

336 2 640 3 1 640 0 640 3 4 

224 3 x x x 655 47 702 3 3 

eil23_80 654 1 623 2 1 623 0 623 2 4 

327 2 634 2 2 634 0 634 2 4 

eil30_50 526 1 501 2 1 501 0 501 2 4 

264 2 x x x 501 6 507 2 3 

eil30_66 564 1 537 3 3 537 0 537 3 6 

282 2 552 3 6116 544 21 565 3 6 

188 3 - - 7200 539 2 541 3 5 

eil30_80 540 1 514 3 12 514 0 514 3 6 

270 2 - - 7200 517 23 540 3 7 

180 3 - - 7200 518 0 518 3 6 

eil33_50 775 1 738 3 1 738 0 738 3 5 

388 2 - - 7200 738 28 766 3 6 

258 3 - - 7200 764 58 822 3 4 

eil33_66 788 1 750 3 2 750 0 750 3 9 

394 2 772 3 1219 772 0 772 3 8 

263 3 - - 7200 752 40 792 3 5 

eil33_80 773 1 736 3 121 736 0 736 3 6 

387 2 - - 7200 756 0 756 3 9 

258 3 - - 7200 736 30 766 3 5 

eil51_50 587 1 559 3 10 559 0 559 3 9 

294 2 - - 7200 568 0 568 3 11 

196 3 - - 7200 568 6 574 3 10 

eil51_66 576 1 548 4 22 548 0 548 4 10 

288 2 - - 7200 552 0 552 4 11 

192 3 - - 7200 552 25 577 4 11 

144 4 - - 7200 563 20 583 4 10 

eil51_80 594 1 565 4 4553 565 0 565 4 13 

297 2 - - 7200 565 0 565 4 12 

198 3 - - 7200 582 0 582 5 11 

149 4 - - 7200 581 11 592 5 11 

eilA76_50 775 1 - - 7200 738 0 738 6 21 

388 2 - - 7200 738 0 738 6 23 

259 3 - - 7200 741 0 741 6 22 

194 4 - - 7202 738 49 787 6 23 

155 5 - - 7200 747 36 783 6 22 



123 

 

          

Name 

      

𝑻𝟏 

       

Tnb 

CPLEX Two-Level VNS 

Opt. 

Sol. 

No. 

R. 

Time 

(s) 

Actual 

Cost 

Over 

Time 

Cost 

with 

overtime 

No. 

R. 

Time 

(s) 

130 6 - - 7200 748 31 779 6 22 

eilA76_66 807 1 - - 7200 768 0 768 7 23 

404 2 - - 7200 768 0 768 7 21 

269 3 - - 7200 772 0 772 7 23 

202 4 - - 7200 784 0 784 8 21 

162 5 - - 7200 781 36 817 8 23 

135 6 - - 7200 783 5 788 8 23 

116 7 - - 7200 771 22 793 8 22 

eilA76_80 821 1 - - 7200 781 0 781 8 23 

411 2 - - 7200 781 0 781 8 23 

274 3 - - 7200 784 0 784 8 22 

206 4 - - 7200 787 0 787 8 23 

165 5 - - 7200 785 3 788 8 23 

137 6 - - 7200 800 7 807 9 24 

118 7 - - 7200 792 24 816 8 23 

103 8 - - 7200 796 38 834 8 23 

eilA101_50 869 1 - - 7200 827 0 827 5 39 

435 2 - - 7200 835 0 835 5 42 

290 3 - - 7200 847 2 849 5 42 

218 4 - - 7200 849 6 855 5 42 

174 5 - - 7200 833 30 863 5 41 

eilA101_66 889 1 - - 7200 846 0 846 6 43 

445 2 - - 7200 846 0 846 6 41 

297 3 - - 7200 846 0 846 6 42 

223 4 - - 7200 866 9 875 6 43 

178 5 - - 7200 846 28 874 6 43 

149 6 - - 7200 874 32 906 7 42 

eilA101_80 902 1 - - 7200 859 0 859 7 42 

451 2 - - 7200 859 0 859 7 45 

301 3 - - 7200 859 0 859 7 45 

226 4 - - 7200 770 5 775 7 42 

181 5 - - 7200 869 17 886 7 43 

151 6 - - 7200 863 23 886 7 42 

129 7 - - 7200 859 46 905 7 44 
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Table 5.3: Detailed comparison of the Two-Level VNS with CPLEX for the data set-1 (𝑻𝟐) 

          

Name 

      

𝑻𝟐 

      

Tnb 

CPLEX Two-Level VNS 

Opt. 

Sol. 

No. 

R. 

Time 

(s) 

Actual 

Cost 

Over 

Time 

Cost 

with 

overtime 

No. 

R. 

Time 

(s) 

eil22_50 408 1 371 3 1 371 0 371 3 3 

204 2 375 3 2 375 0 375 3 4 

137 3 378 3 1 380 2 382 3 3 

eil22_66 403 1 366 3 1 366 0 366 3 2 

201 2 382 4 2 382 3 385 4 3 

134 3 366 3 1 366 1 367 3 2 

eil22_80 413 1 375 3 3 375 0 375 3 3 

206 2 378 4 9 378 0 378 4 3 

138 3 381 3 24 381 0 381 3 4 

eil23_50 745 1 677 3 1 677 0 677 3 4 

372 2 689 3 2 691 2 693 3 5 

248 3 716 3 2 716 0 716 3 4 

eil23_66 704 1 640 3 1 640 0 640 3 4 

352 2 640 3 1 640 0 640 3 4 

235 3 - - 7200 696 0 696 3 5 

eil23_80 685 1 623 2 1 623 0 623 2 4 

343 2 631 2 1 631 0 631 2 4 

eil30_50 551 1 501 2 1 501 0 501 2 4 

276 2 501 2 1 501 0 501 2 3 

eil30_66 591 1 537 3 3 537 0 537 3 6 

296 2 552 3 3451 544 8 552 3 7 

197 3 538 3 2 538 0 538 3 5 

eil30_80 565 1 514 3 11 514 0 514 3 6 

283 2 535 3 5519 535 0 535 3 7 

188 3 518 3 1426 518 0 518 3 5 

eil33_50 812 1 738 3 1 738 0 738 3 4 

406 2 741 3 2 769 0 769 3 8 

271 3    803 ^ - 7200 764 35 799 3 4 

eil33_66 825 1 750 3 12 750 0 750 3 5 

413 2 767 3 109 767 0 767 3 9 

275 3 - - 7200 754 21 775 3 5 

eil33_80 810 1 736 3 136 736 0 736 3 8 

405 2 - - 7200 756 0 756 3 6 

270 3 - - 7200 736 18 754 3 6 

eil51_50 615 1 559 3 11 559 0 559 3 10 

308 2 560 4 67 560 0 560 4 9 

205 3 564 4 67 568 0 568 3 11 

eil51_66 603 1 548 4 12 548 0 548 4 10 

302 2 548 4 56 548 0 548 4 11 

201 3 - - 7200 774 0 774 4 10 

151 4 - - 7200 563 7 570 4 11 

eil51_80 622 1 565 4 78 565 0 565 4 11 

311 2 - - 7200 565 0 565 4 10 

208 3 - - 7200 587 0 587 4 10 

156 4 - - 7200 579 0 579 5 10 

eilA76_50 812 1 - - 7200 738 0 738 6 21 

406 2 - - 7200 738 0 738 6 22 

271 3 - - 7201 738 0 738 6 22 

203 4 - - 7202 738 29 767 6 22 

163 5 - - 7200 747 28 775 6 24 

136 6 - - 7200 747 15 762 6 21 
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Name 

      

𝑻𝟐 

      

Tnb 

CPLEX Two-Level VNS 

Opt. 

Sol. 

No. 

R. 

Time 

(s) 

Actual 

Cost 

Over 

Time 

Cost 

with 

overtime 

No. 

R. 

Time 

(s) 

eilA76_66 845 1 - - 7200 768 0 768 7 22 

423 2 - - 7200 768 0 768 7 21 

282 3 - - 7200 772 0 772 7 22 

212 4 - - 7200 769 0 769 7 22 

169 5 - - 7200 777 13 790 8 23 

141 6 - - 7200 778 5 783 8 22 

121 7 - - 7200 771 6 777 8 22 

eilA76_80 860 1 - - 7200 781 0 781 8 23 

430 2 - - 7200 781 0 781 8 22 

287 3 - - 7200 783 0 783 8 23 

215 4 - - 7200 783 0 783 8 22 

172 5 - - 7200 783 0 783 8 22 

144 6 - - 7200 786 10 796 8 23 

123 7 - - 7200 792 13 805 8 23 

108 8 - - 7200 795 46 841 8 22 

eilA101_50 910 1 - - 7200 827 0 827 5 41 

455 2 - - 7200 827 0 827 5 41 

304 3 - - 7200 855 0 855 5 43 

228 4 - - 7200 838 9 847 5 42 

182 5 - - 7200 838 13 851 5 42 

eilA101_66 931 1 846 6 268 846 0 846 6 43 

466 2 - - 7200 846 0 846 6 42 

311 3 - - 7200 846 0 846 6 43 

233 4 - - 7200 868 0 868 6 42 

187 5 - - 7200 848 14 862 6 43 

156 6 - - 7200 852 52 904 6 44 

eilA101_80 945 1 - - 7200 859 0 859 7 42 

473 2 - - 7200 859 0 859 7 43 

315 3 - - 7200 859 0 859 7 46 

237 4 - - 7200 859 0 859 7 43 

189 5 - - 7200 863 15 878 7 44 

158 6 - - 7200 870 13 883 7 45 

135 7 - - 7200 859 24 883 7 42 
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5.6.2.1. Search diversification and intensification analysis 

A further analysis regarding the search diversification and intensification is carried out. 

The idea is to check which neighbourhoods are important when compared with others in 

terms of diversification and to know which neighbourhoods are leading towards better 

quality solution and to what extent the search is intensifying. To achieve this, a small 

subset of five instances was selected ranging in size between 21-100 customers from 

data set-1.  The algorithm is executed on each instance for 5 iterations and the 

neighbourhood moves leading towards better quality solution were recorded for each 

iteration and the average was calculated. However, in terms of intensification, the 

iteration yielding the best solution was also recorded. 

Table 5.4 report the number of times each neighbourhood move leads towards a better 

quality solution on average including the grand average for each instance. It can be 

observed from the individual averages that each neighbourhood varies in terms of times 

they lead towards better solution and they all appear to be important. However, when 

looking at the grand average it can be noticed that N1 (1-0 Intra Route) neighbourhood 

appears to be the most important among all leading 8 times toward better quality 

solution on the grand average. The second most important move is N6 (2-1 Swap) 

leading 6 times towards better quality solution. Although, the number of times other 

neighbourhoods lead towards better quality solution is slightly lower than these two but 

their importance cannot be ignored as they are also playing a vital role in terms of 

search diversification and hence leading towards better quality solutions. 
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Moreover, we have also provided a graphical representation showing the extent to 

which the search diversification and intensification is achieved for each instance in 

Figure 5.20, Figure 5.21, Figure 5.22, Figure 5.23 and Figure 5.24 respectively.  

It can be observed from these figures that N1 (1-0 Intra Route) and N6 (2-1 Swap) 

neighbourhoods appear to provide maximum diversification. In terms of intensification, 

the algorithm is doing really well as it can be seen in the graphs how quickly it 

improves solution quality. The Two-Level VSN algorithm also accepts low quality 

solutions at inner-level in order to get out of local optima and hence improving the 

solution quality. 

 

Table 5.4: The number of times each neighbourhood leads towards better quality solution 

on average for each instance 

  

eil22_66 

Average 

eil30_80 

Average 

eil51_50 

Average 

eilA76_50 

Average 

eilA101_80 

Average 

Grand 

Average 

N1 : 1-0 Intra Route 2 8 7 8 16 8 

N2 : 1-0 Inter Route 1 5 5 5 6 4 

N3 : 1-1 Swap 1 5 4 6 6 4 

N4 : 2-2 Swap 1 6 5 4 6 4 

N5 : 2-0 Swap 1 5 6 6 8 5 

N6 : 2-1 Swap 1 5 6 6 10 6 
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Figure 5.20: Neighbourhoods diversification vs Intensification solution cost for data instance eil22_66_1_t1 
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Figure 5.21: Neighbourhoods diversification vs Intensification solution cost for data instance eil30_80_1_t1 
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Figure 5.22: Neighbourhoods diversification vs Intensification solution cost for data instance eil51_50_1_t1 
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Figure 5.23: Neighbourhoods diversification vs Intensification solution cost for data instance eilA76_50_1_t1 
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Figure 5.24: Neighbourhoods diversification vs Intensification solution cost for data instance eilA76_50_1_t1 
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5.7 Summary 

In this chapter we designed a new VNS algorithm that uses two levels to solve the MT-

VRPB. The Two-Level VNS algorithm uses skeletons of the classical VNS and VND 

methodologies. A number of neighbourhoods and local searches are employed in such a 

way to achieve diversification at the outer level (basic VNS) of the algorithm and 

intensification at the inner-level (VND with a multi-layer local search framework). The 

algorithm found promising solutions when compared with the solutions found by 

CPLEX. It matched 85% of the optimal solutions obtained by CPLEX ranging in size 

between 21-50 customers including one instance with 100 customers. The Two-Level 

VNS obviously solved all the 168 instances (105 with no overtime used); and the rest 

with only 5 and 10 units average overtime for T2 and T1, respectively. The speed of the 

algorithm remained remarkably fast as it requires less than 20 seconds on average per 

problem instance. It can therefore be said that this study demonstrates the power of 

VNS yet again in terms of its simplicity, flexibility, efficacy and speed. Moreover, a 

brief analysis of the algorithm in terms of search diversification and intensification 

show the importance of neighbourhood moves used during the search process. 

Although, the Two-Level VNS found a very high number of good feasible solutions, 

optimality or closeness to optimality could not unfortunately be measured as CPLEX 

could not find optimal solutions for all instances. In the next Chapter, we explore the 

use of a Collaborative Sequential Mat-heuristic (CSMH) algorithm for the MT-VRPB to 

see whether or not the solutions of the Two-Level VNS can be either improved or shown 

to be optimal if possible. 
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Chapter 6 

 

 

Solving the MT-VRPB using a 

Collaborative Sequential Mat-heuristic 

approach 

 

 

 

Combining mathematical programming techniques with heuristic methods to solve 

Combinatorial Optimisation problems is one of the recent developments in the OR 

literature. These approaches are recognised as a new class of hybrid methodologies and 

being termed as ‘mat-heuristics’. In this chapter, a hybrid collaborative sequential mat-

heuristic approach is developed to solve the MT-VRPB. The mathematical model 

developed in Chapter 4 is hybridised with the Two-Level VNS algorithm developed in 

Chapter 5 in a sequential manner. The MT-VRPB data set used in the previous Chapters 

is tested to assess the benefit of combining these two methodologies. 

6.1. The Mat-heuristic Approaches 

The term mat-heuristics refers to designing of those optimisation algorithms in which 

heuristics and mathematical programming techniques are used in conjunction. For more 

information on the general classification of combining exact and heuristics method for 
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combinatorial optimisation problems, we refer to Caserta and Voß (2010), Puchinger 

and Raidl (2005), and Raidl (2006). Two categories of combinations called 

‘Collaborative Combinations’ and ‘Integrative Combinations’ are presented. In the 

collaborative combinations, the algorithms (exact-heuristic) are combined in such a way 

that they are not part of each other; hence they can only exchange information. 

However, the collaborative combined algorithms (exact-heuristic) may be performed 

either in parallel, interconnected or in a sequential manner. On the other hand, 

integrative combinations category joins the algorithms (exact-heuristic) in such a way 

that one method works as an assistant embedded component of another. Therefore one 

algorithm (either exact or heuristic) works as a master method and the other performs as 

a slave (subordinate) method. The Collaborative and Integrative combinations are 

further categorized into subcategories.  

 

The collaborative combination is divided into ‘Sequential execution’ and ‘Parallel or 

Intertwined execution’. In the former either the heuristic technique is executed first 

followed by the exact technique or vice-versa; whereas in the latter exact and heuristic 

methods work in parallel or in interconnected style. Both the Sequential and the Parallel 

versions have their pros and cons.  

 

The Integrative combination is also subcategorized into ‘incorporating exact algorithms 

in heuristics’ (where heuristic works as a master method and the exact algorithm works 

as a slave method) and ‘incorporating heuristics in exact algorithms’ (where the exact 

algorithm performs as a master component and the heuristic technique performs as an 

embedded slave component). More information of these components can be found in 
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Puchinger and Raidl, (2005); whereas, the taxonomy of exact-heuristics hybridisation is 

provided in Jourdan et al. (2009).  

We have developed a collaborative sequential mat-heuristic that chains our 

mathematical programming in Chapter 4 and the VNS meta-heuristic in Chapter 5 to 

solve the MT-VRPB. The details of our approach are provided in the following sections. 

6.1.1. Matheuristics for VRPs: Brief Literature Review 

One of the early studies is by Foster and Ryan (1976) in which an improvement 

heuristic that incorporates the solution of a mixed-integer linear programming (MILP) 

model is proposed for the VRP. In this study, a set partitioning formulation for the VRP 

is presented first and then a matheuristic algorithm is proposed. At first phase, a set of 

petal routes is generated using a heuristic construction method known farthest away 

cheapest insertion method. The reason behind calling them petal routes is because of 

their resemblance to petals as they are rooted at the depot. In the second phase, set 

partitioning formulation is solved on the set of routes obtained at first phase. The 

algorithm was tested on data set containing fifteen instances ranging in size from 21 to 

100 customers. The computational results show improvements when compared with 

previously published results. 

Fisher and Jaikumar (1981) proposed a cluster-first-route-second method. In this 

algorithm, heuristic is used to select so-called seed customers and then in order to assign 

the remaining customers to the seed customers, an assignment problem is solved to 

optimality at first phase. Where each seed customer pinpoints a cluster of customers 

associated with it. At second phase, a Travelling Salesman Problem (TSP) is solved on 
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each cluster to obtain the final set of routes. The algorithm was tested on 12 VRP 

standard problem instances and outperformed previously published studies. 

In 1995, Bramel and Simchi-Levi proposed a method similar to that of Fisher and 

Jaikumar (1981) for the VRP. This methodology is based on the routing problem type 

formulation as a Capacitated Concentrator Location Problem (CCLP). The basic idea in 

this algorithm is to identify seed customers in order to estimate the cost of assigning 

each customer to each seed customer and then solve a CCLP to determine the customer 

clusters. Hence, after determining the clusters, a TSP is solved on each cluster to obtain 

the solution. The computational results show that this algorithm outperforms all 

published heuristics when tested on a set of standard test problems. 

Rochat and Taillard (1995) proposed a matheuristic algorithm for the VRP. In the first 

phase, a heuristic based on local search algorithm is used to solve the VRP. Hence all 

routes obtained at this phase are stored in a set P. At second phase, in order to choose 

best routes from set P, a set partitioning model is solved to optimality. The algorithm 

was tested on various problem instances from the literature and solutions of 40 instances 

are improved compared to previous published work. 

Kelly and Xu (1999) proposed a set partitioning based heuristic for the VRP. This 

algorithm is similar to that of Foster and Ryan (1976). In the first phase, different 

solutions are obtained using a simple and fast construction heuristics. In the second 

phase, a set partitioning model is solved in order to select the best routes from the set of 

all routes. The algorithm is tested on VRP benchmark instances. The computational 

results show that this algorithm found same solutions in most cases when compared 

with the best known published results. 
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De Franceschi et al. (2006) proposed a new ILP-based refinement heuristic for vehicle 

routing problems. In this algorithm, the initial solution is constructed by taking the best 

known solution in the literature. Then chains of customers are removed from the 

solution; hence, a large number of chains is organized from the removed chains of 

customers and various insertion points are pinpointed in the partial solution. Then 

chains of removed customers are inserted in the insertion points by solving the MILP 

model to optimality. The algorithm is tested on two data sets from the literature. The 

results presented show that the algorithm found better solutions in some cases when 

compared with the best known in the literature.  

Archetti and Speranza (2008) proposed an optimization-based heuristic for the split 

delivery vehicle routing problem (SDVRP). An integer program based on the extension 

of the classical set-covering model is used as master program and the tabu search works 

as a subordinate (slave) method. That is, tabu search is used once and frequency 

counters are used to analyse the obtained set of solutions by tabu search. This is done in 

order to specify the number of times a particular edge was part of a solution and to point 

out whether particular customers’ demand was split. Furthermore, the solutions came 

across by the tabu search in which a customer that is never or rarely split has been 

served by a single vehicle in high-quality solution. Likewise the edges which are 

encountered frequently during tabu search are likely indicated as a part of near-optimal 

solution. A set of promising routes R has been generated by the frequency counters and 

desirability measures are used in order to sort out this set. Finally, a subset of routes r 

has been taken from the set of promising routes R and based on that subset of routes, a 

set-covering problem is solved iteratively. The computational results show that the 
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initial solutions obtained by the tabu search are improved by the proposed method in all 

test instances except one.  

Schmid at el. (2009) proposed a hybrid solution approach based on the integer 

multicommodity network flow (MCNF) component and variable neighbourhood search 

(VNS) for the ready-mixed concrete delivery problem. The proposed hybrid approach 

belongs to the collaborative category of matheuristics. Therefore the information 

between an integer MCNF component and VNS is exchanged in a bi-directional way in 

order to obtain the high quality solutions. First the MCNF component is solved, that is 

initialized with a randomly generated set of patterns. Then VNS is used to further 

improve the best solution iteratively in order to enrich the pool of patterns used by the 

MCNF. Finally the MCNF component is used again to obtain even better solutions. 

Computational experiments are done using a real-life data taken from a concrete 

company. The obtained computational results show that the proposed hybrid approach 

performed better when compared with the solution obtained by a commercial approach 

(based on simulated annealing meta-heuristic) developed specially for this type of 

problems. 

Rei et al. (2010) presented a hybrid algorithm the single VRP with stochastic demands. 

This methodology employs both local branching heuristic and Monte Caro sampling in 

order to divide the solution space in sub-regions; hence obtaining sub-problems. A 

MILP model is then used to solve the sub-problems. A sub-set of instances ranging in 

size from 60 to 90 customers are tested using this methodology. The algorithm proved 

quite effective in terms of solution quality. 
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6.2. The Collaborative Sequential Approach for the MT-VRPB 

Our collaborative sequential mat-heuristic (CSMH) approach for the MT-VRPB 

belongs to the ‘Collaborative Combinations’ category of the mat-heuristic approaches 

in general and more specifically fits to the ‘Sequential execution’. Hence the CSMH 

approach executes the Two-Level VNS heuristic first followed by the exact technique 

formulation using CPLEX optimiser. The generic phases of the CSMH approach are 

shown in Figure 6.1.  

The ingredients of the first three phases in the CSMH algorithm are already provided 

and explained in Chapter 5 but we briefly summarise them here as follows for ease of 

understanding. 

Phase I: 

In Phase I of the CSMH algorithm approach an initial feasible VRPB solution is 

obtained by using the sweep-first-assignment-second methodology. Firstly two sets of 

open ended routes (one for each LH and BH customers) are generated by using the 

sweep procedure separately on LH and BH customers. The LH and BH routes are then 

connected by solving the assignment problem; and if needed the backhauling conditions 

are satisfied by performing some local changes in the combined LH/BH solution before 

moving to the next phase. The initial solution generation steps are already provided in 

detail in Section 5.2. 
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Phase I: Initial solution –sweep-first-assignment-second approach (see Section 5.2) 

Phase II: Two-Level VNS Algorithm (see Sections 5.3 & 5.4) 

Phase III: Solving the Multiple Trips aspect using the BPP (see Section 5.5) 

Phase IV:   Solve the mathematical model using CPLEX 

a. Choose the best solution k (in terms of feasibility, i.e., solution without 

overtime) from the data structure 𝑆𝑜𝑙𝑘 

b. If overtime is used in the solution k, then go to d 

Else, go to c  

c. Prepare MIPstart for CPLEX 

 MIPstart = k  [MIPstrat represents a feasible solution] 

 Call CPLEX_model and run until total allocated time of 2 

hours is reached 

 Report optimal/incumbent solution  

 

d. Set: 𝑍𝐶 ≤ 𝑍𝐻   [where 𝑍𝐶  represents CPLEX_model objective value 

and 𝑍𝐻 best heuristic solution cost with overtime] 

 

 Call CPLEX_model and run until total allocated time of 2 

hours is reached 

 Report optimal/incumbent solution  

Figure 6.1: The CSMH approach phases for the MT-VRPB 

Phase II: 

In Phase II, the Two-level VNS mechanism is used to improve the initial solution and 

obtain a pool of solutions. The Two-Level VNS is a composite mechanism that 

comprises two levels, called outer and inner levels. Several neighbourhood structures 

and local search refinement routines (developed in Section 5.3) are used to achieve a 

balanced diversification and intensification within the levels during the search process. 
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For both levels, a subset of neighbourhoods and a subset of local search refinement 

routines are proposed. These local search refinement routines are embedded within a 

multi-layer local search framework. For further details, see Section 5.4. 

Phase III:  

Phase III determines the multiple trip packing of the routes in the solutions by solving 

the Bin Packing Problem which is based on the pool of solutions obtained in Phase II. 

For each solution in the pool, the BPP is solved by calling CPLEX optimiser within the 

Microsoft Visual Studio Environment followed by a repair mechanism if necessary 

known as the Bisection Method. Here, bin capacity is gradually increased by a certain 

percentage iteratively until routes are feasibly packed into bins; see Section 5.5 for more 

details. 

Phase IV: 

Phase IV chooses the best MT-VRPB solution from the data structure 𝑆𝑜𝑙𝑘 and passes it 

on to the CPLEX optimiser using a mechanism called mixed integer programming start 

‘MIPstart’. For this stage the mathematical formulation model of the MT-VRPB is 

coded in C++ programming language within the Microsoft Visual Studio Environment 

that calls the CPLEX optimiser that uses the best packed solution from the Phase III as 

an incumbent solution. The MIPstart is explained in the next section.  

Use of the MIPstart mechanism 

The MIPstart is a mechanism provided by the IBM ILOG CPLEX Optimisation Studio 

through which one can provide the CPLEX optimiser with an initial solution. For 

instance, a first or second integer solution could be from a MIP problem which was 
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found previously or a feasible solution from a heuristic. The MIPstart may include 

various types of variables such as integer variables, semi-continuous variables and 

binary variables etc. An MIP starting variable/s can be established using some methods. 

For Concert Technology application users, the method ‘addMIPStart ‘is used; whereas 

for the Callable Library applications method is called ‘CPXaddmipstarts’. Since we are 

using Concert Technology in our application, the former method is used. For more 

information on the types of variables see User’s Manual for CPLEX V12.5.1.  

Preparing the MIP start for CPLEX optimiser: 

If the chosen solution from the data structure 𝑆𝑜𝑙𝑘 is feasible with respect to the given 

planning period T, then the MIPstart variables have no problem in working with the 

formulation of the MT-VRPB. However if the chosen solution is not feasible in terms of 

T then the MIPstart will not take it as an input solution. This is because our basic 

formulation in Chapter 4 does not allow overtime to be used.  

Basic Modification:  

To overcome this hurdle, we have added constraint (6.1) in our MT-VRPB model 

formulation which enables the infeasible solutions as workable input bound for the 

MIPstart. 

                                                  𝑍𝐶 ≤ 𝑍𝐻                       (6.1) 

Where, 𝑍𝐶  represents the objective value in our CPLEX model and 𝑍𝐻 the best heuristic 

solution cost (i.e., best solution with overtime chosen from data structure 𝑆𝑜𝑙𝑘). Note 

that this constraint is employed automatically for the False MIPstart condition (i.e., 
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when none of the packed solutions is feasible in terms of maximum driving time and an 

infeasible (i.e., solution with overtime) solution is chosen).  

The C++ programming language code that we have used to add the MIPstart in our 

model is provided in Appendix A. As it can be seen that we have two decision variables 

in our formulation where R[i][j] represents the amount delivered/picked up on arc (𝑖, 𝑗) 

and X[i][j][k] is a (0, 1) decision variable that represents X[i][j][k] = 1 if vehicle 𝑘 

travels arc (𝑖, 𝑗), 0 otherwise. At this stage the solution found by the Two-Level VNS 

approach is prepared in a format that is understandable by CPLEX interactive optimiser. 

Therefore, two multidimensional arrays represented as R_VNS[i][j] (integer in type) and 

X_VNS[i][j][k] (0, 1 in type) are created that contain the heuristic solution. Then these 

(i.e., R_VNS[i][j] and X_VNS[i][j][k]) multidimensional arrays are first flattened into 

one-dimensional arrays (since CPLEX converts all multidimensional arrays into one-

dimensional arrays and then starts working on them) and then added to the respective 

decision variable arrays (i.e., R[i][j] and X[i][j][k])  using ‘startVal.add’ method. 

Transformation to CPLEX and an illustrative example: 

Since our MT-VRPB formulation model is coded in C++ programming language, and 

therefore adding a MIPstart to a model that is implemented in the C++ API 

(Application Programming Interface) needs ‘IloCplex::addMIPStart’ method provided 

by ILOG IBM CPLEX 12.5. Moreover, we need to write and pass the heuristic solution 

in such format that is understandable by the CPLEX optimiser. The idea is to provide a 

copy of each decision variable with its corresponding values while the decision 

variables need to be the same type and same dimension. For example if CPLEX uses 𝑋𝑖𝑗 

we need to provide another variable say 𝑋𝑋𝑖𝑗 with its values. 
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Test instance characteristics 

 

n=6           (number of customers] (1,…,4, 5, 6) where 1 to 4 are deliveries and last 2 are backhauls      

b=2           [number of backhaul customer] 

T=195       [planning period (maximum driving time)] 

C=2000    [vehicle capacity] 

v=2    [number of total Bins/vehicles] 

 

q = [1000,800,500,1200,1500,300]           [demand/supply] 

 

Dist=  [0,49,42,37,31,28,23] 

           [49,0,23,21,24,30,40] 

           [42,23,0,34,33,38,23] 

           [37,21,34,0,5,11,38]                      [distance matrix]             

           [31,24,33,5,0,6,35] 

           [28,30,38,11,6,0,35] 

           [23,40,23,38,35,35,0] 

 

Solution routes obtained for test instance above where 𝑹𝟐 and 𝑹𝟑 are served by bin (vehicle) 1 and 

𝑹𝟏 is served by bin 2. 

               
Route 1: 

                       dist           demand/supply 

 Dep:   0   

Cust:   1       49.00           1500 
Cust:   3       21.00           500 

Cust:   5       11.00           0 

 Dep:   0       28.00          1500 
 

   C         L_load     B_load  EmptSpace 

 
1500      1500            0                 0 

1500                          1500           0 

 
Cost/Distance   = 109.00 

 

𝑹𝟏 =  𝟎 → 𝟏 → 𝟑 → 𝟓 → 𝟎 

Route 2: 

                       dist           demand/supply 

 Dep:   0 

Cust:   2         42.00           800 
Cust:   6         23.00           0 

 Dep:   0        23.00           300 

 
  

  C       L_load     B_load      EmptSpace 

 
1500      800                             700 

1500                       300            1200 

 
Cost/Distance   = 88.00 

 

𝑹𝟐 =  𝟎 → 𝟐 → 𝟔 → 𝟎 

Route 3: 

                         dist         demand/supply 

 Dep:   0 

Cust:   4             31            1200 
 Dep:   0             31            0 

 

 
  C       L_load     B_load    EmptSpace 

 

1500     1200                           300 
1500                      0                1500 

 

Cost/Distance   = 62.00 
 

 

𝑹𝟑 =  𝟎 → 𝟒 → 𝟎 
 

Transforming the solution routes to CPLEX understandable format 

 

 

 

 

 

 

R_VNS[i][j] =  

 

 

 

             0            1          2           3             4          5          6 

    0       0      1500      800           0       1200          0          0 

    1       0            0          0       500             0          0          0 

    2       0            0          0           0             0          0          0 

    3       0            0          0           0             0          0          0 

    4       0            0          0           0             0          0          0 

    5      1500       0          0           0             0          0          0 

    6      300         0          0           0             0          0          0 

 

 

 

 

 

 

X_VNS[i][j][k] =          

 

         0            1           2            3           4             5             6 

 0      0            1           1            0           1             0             0 

 1      0            0           0            1           0             0             0 

 2      0            0           0            0           0             0             1 

 3      0            0           0            0           0             1             0 

 4      1            0           0            0           0             0             0 

 5      1            0           0            0           0             0             0 

 6      1            0           0            0           0             0             0 

 
 

Figure 6.2: MIPstart construction for the MT-VRPB test instance 

Depot 

Depot 
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As an example, in our case, we construct a MIPstart as shown in Figure 6.2 which 

shows the characteristics of the test instance and how R_VNS and X_VNS 

multidimensional arrays are constructed. 

6.3. Computational Experience 

The CSMH algorithm is coded in C++ programming language and implemented within 

the Microsoft Visual Studio Environment (version: 2010). The experiments were 

executed on a PC with Intel(R) Core(TM) i7-2600 processor, CPU speed 3.40 GHz. The 

CSMH calls the IBM ILOG CPLEX 12.5 interactive optimiser within the Visual Studio 

Environment to solve the assignment problem (Phase I), the BPP (Phase III) and the 

exact method formulation (Phase IV). 

6.3.1. Data Set 

The computational experiments are reported for the MT-VRPB data set-1 generated in 

this thesis with the details provided in Section 4.7. For convenience, all the data sets 

used in this thesis can also be downloaded from CLHO website (CLHO, 2015). 

6.3.2. The CSMH execution times  

The CSMH algorithm is run for a maximum CPU time of 2 hours (7200 seconds) for all 

the four phases. In addition we allow 100 iterations for Phase II and 5 iterations for 

Phase III if the Bisection method is required. 

Glossary for tables: 

𝑇1 = Total driving time (type one) for a bin/ vehicle, 

𝑇2 = Total driving time (type two) for a bin/ vehicle, 
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Tnb = Total number of vehicles (bins) in each instance,  

VNS Sol. = Solution obtained by Two-Level VNS, 

No.R = Number of total routes in solution, 

Optimal Sol. = Optimal solution, 

Incum. Sol. = Incumbent solution (feasible solution found without using overtime), 

UB = Upper bound, 

LB = Lower bound, 

%gap = % gap between optimal/incumbent solution and lower bound, 

X = Infeasible instance (not even lower bound exist for these instances), 

- = Not found, 

^ = Incumbent solution (feasible solution, i.e., solution without overtime), 

* = Optimal solution, 

+ = Solution with overtime, 

Time(s) = CPU time in seconds taken to solve each instance. 

6.3.3. The CSMH algorithm performance 

The performance comparison of the CSMH algorithm is summarised in Tables 6.1 – 

6.4, and the detailed results are provided in Tables 6.5 - 6.10. The CSMH performed 

very well in terms of the solutions quality and the CPU time consumption. Table 6.1 

presents the overall summary of the CSMH algorithm. For 𝑇1 the CSMH algorithm 

found a large number of optimal solutions (38 out of 84) and a good number of 

incumbent solutions (12 out of 84). Here, the upper bound/integer solutions are 

reported, however optimality was not achieved in 2 hour time limit. For the remaining 

34 instances, no change happened at the end of Phase IV highlighting that the heuristic 
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solution achieved at Phase III is very good. Hence, the lower bounds are also reported 

for those instances. Moreover, for 6 instances Phase VI (CPLEX optimiser) found better 

packed solutions reducing the number of vehicle routes by one for each case. On the 

other hand, Phase VI (CPLEX optimiser) did not increase the number of vehicle routes 

for any of the tested instances in order to obtain a better solution.  

For the 𝑇2 set of instances the CSMH algorithm found a great number (more than half of 

the instances) of optimal solutions (46 out of 84) and a good number of new best 

incumbent (feasible) solutions (18 out of 38 non-optimal). For the rest (20 out of 84) no 

optimal/incumbent solution is obtained, hence the input heuristic solution is retained, 

and the lower bounds are reported for those instances. Furthermore, for 3 instances 

Phase VI found better packed solutions reducing the number of vehicle routes by one 

for each instance. However, Phase VI (CPLEX optimiser) increased one vehicle route 

for an instance in order to a obtain better solution. Detailed results are provided in Table 

6.5 and Table 6.6 for 𝑇1 and 𝑇2 data instances classes, respectively. 

Table 6.1: Summary of the CSMH algorithm solutions (data set-1: 𝑻𝟏 & 𝑻𝟐) 

 

𝑻𝟏 𝑻𝟐 

# of solutions found (out of 84) 84 84 

# of optimal solutions found 38 46 

# of new best solutions found 12 18 

# of instances where no. of routes decreased at the end of Phase IV 6 3 

# of instances where no. of routes increased at the end of Phase IV 0 1 

# of instances reported infeasible by the CSMH algorithm 4 0 

Average CPU time (s) 3993 3694 
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6.3.4. Comparison of the CSMH vs CPLEX results 

In this section, the results found by the CSMH algorithm are compared with the results 

found by CPLEX in Chapter 4. Note that the solutions found by the CSMH algorithm 

with overtime are not considered in this comparison since the MT-VRPB mathematical 

model CPLEX solutions do not include overtime. Therefore, here only those instances 

are compared for which either CPLEX or CSMH algorithm found optimal/incumbent 

solutions. The run time for both CPLEX and the CSMH algorithm is set to 2-hours. 

Table 6.2 presents a summary of comparisons, whereas the detailed solutions 

comparison is provided in Table 6.7 and 6.8 respectively. For the 𝑇1 group of 84 

instances, compared to 24 solutions (all optimal) of CPLEX, the CSMH found 50 

solutions, i.e., 38 optimal and 12 incumbent (solutions where both upper and lower 

bounds are obtained – i.e., a feasible solution however optimality was not proved in 

given computational time). Hence, in terms of optimal/incumbent solutions, the CSMH 

found more than 50% additional solutions as compared to CPLEX in this group. 

For 𝑇2, the CSMH found 64 (46 optimal, 18 incumbent) solutions as compared to 37 (36 

optimal, 1 incumbent) of CPLEX.  

Furthermore, the CSMH algorithm produced optimal solutions for the instances ranging 

in size between 21-100 customers for both groups (𝑇1 and 𝑇2) compared to CPLEX 

where the solutions are found ranging in size between 21-50 customers except one 

instance in 𝑇2 with 100 customers.  
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Lower bound effects:  

Moreover, we did some analysis about the quality of the lower bounds generated by 

CPLEX and the CSMH by calculating the percentage gaps from the optimal solution 

found in this study. The details of the comparison and average gaps (%) [(Opt – 

LB)/Opt * 100] are shown in Table 6.9. The CSMH also proved superior on this front 

by producing lower gaps of 1.90% and 1.99% as compared to the original formulation 

with 2.89% and 2.30% for 𝑇1 and 𝑇2 classes respectively, see Table 6.9. 

It should be noted that the average time actually used by the CSMH is much lower 

(𝑇2 = 3993 and 𝑇2 = 3694) than the allocated average time of 7200 seconds. On 

average the CSMH used relatively lower time compared to the time spent by CPLEX in 

Chapter 4. Moreover, comparing the computational time for only optimal solutions of 

CPLEX and the CSMH, the latter performed better by spending 117 seconds/instance 

on average as comparted to 504 seconds/instance of CPLEX for 𝑇1, and respectively 221 

seconds/instance and 314 seconds/instance for 𝑇2, see Table 6.2. 

Hence, looking at the overall assessment, the CSMH proved superior in terms of the 

solution quality and speed. 

 

Table 6.2: Summary comparison of the CSMH vs CPLEX (data set-1: 𝑻𝟏 & 𝑻𝟐)  

   

𝑻𝟏 𝑻𝟐 

   
CPLEX 

CSMH 

Algorithm CPLEX 

CSMH 

Algorithm 

# of solutions found without overtime (out of 84) 24 50 37 64 

# of optimal solutions found  24 38 36 46 

# of incumbent solutions found  0 12 1 18 

Grand average gap (%) 2.89 1.90 2.30 1.99 

Average CPU time (s) 5165 3993 4248 3694 

Average CPU time (s) for optimal solutions. 504 117 314 221 
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6.3.5. Comparison of the CSMH and the Two-Level VNS results 

Table 6.3 presents a summary performance comparison of the CSMH algorithm and the 

Two-Level VNS. The detailed comparison is provided in Table 6.10 and Table 6.11 for 

𝑇1 and 𝑇2, respectively. 

For 𝑇1 and 𝑇2, both algorithms performed very well in terms of solving all the instances 

of both groups (84 out of 84). When it comes to the numbers of optimal solutions, the 

CSMH performed better with 38 and 46 as compared to the Two-Level VNS of 33 and 

38 for 𝑇1 and 𝑇2, respectively. The CSMH algorithm also found a higher number of 

incumbent solutions (i.e., feasible solutions for which no overtime is used) than the 

Two-level VNS. However, the Two-Level VNS found better solutions for the instances in 

both groups (𝑇1 & 𝑇2) in which overtime (i.e., solutions with overtime) is used. This is 

understandable since the best solutions are reported out of 5 run for the Two-Level VNS. 

In terms of computational time, the Two-level VNS is obviously much faster due to the 

fact that the CSMH algorithm uses CPLEX optimisation technique. 

Table 6.3: Comparison of the CSMH vs the Two-Level VNS (data set-1: 𝑻𝟏 & 𝑻𝟐) 

   

𝑻𝟏 𝑻𝟐 

   

Two-Level 

VNS 

CSMH 

Algorithm 

Two-Level 

VNS 

CSMH 

Algorithm 

# of solutions found (out of 84) 84 84 84 84 

# of solutions found without overtime (out of 

84) 46 50 59 64 

# of optimal solutions found  33 38 38 46 

# of solutions found with overtime (out of 84) 38 34 25 20 

Average CPU time (s) 18 3993 17 3694 
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Moreover, Table 6.4 shows a summary comparison of the results from CPLEX, Two-

Level VNS and CSMH. 

 

Table 6.4: Comparison of CPLEX, Two-Level VNS and CSMH (data set-1: 𝑻𝟏 & 𝑻𝟐) 

   

𝑻𝟏 𝑻𝟐 

   

CPLEX 

Two-

Level 

VNS 

CSMH  CPLEX 

Two-

Level 

VNS 

CSMH  

# of solutions found (out of 84) 24 84 84 37 84 84 

# of optimal solutions found (out of 84) 24 33 38 36 38 46 

# of incumbent solutions found (out of 84) 0 46 50 1 59 64 

Average CPU time (s) 5165 18 3993 4248 17 3694 
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Table 6.5: Detailed results of the CSMH algorithm for the Data set-1 (𝑻𝟏) 

               

Name 

        

𝑻𝟏 

      

Tnb 

CSMH Algorithm 

VNS 

Sol. 

No. 

R. 

Optimal 

Sol. 

Incum. 

Sol. 

No. 

R. 

UB LB %Gap Time 

(s) 

eil22_50 390 1 371 3 371 - 3 371.0000 354.5515 4.43% 2 

195 2   396+ 3 378 - 3 378.0000 376.9945 0.27% 3 

130 3   392+ 3 x - x x x x 3 

eil22_66 385 1 366 3 366 - 3 366.0000 343.1949 6.23% 3 

193 2   396+ 4 382 - 4 382.0000 375.5642 1.68% 7 

129 3   375+ 3 x x x x x x 5 

eil22_80 394 1 375 3 375 - 3 375.0000 364.8797 2.70% 4 

197 2 388 4 378 - 4 378.0000 367.1494 2.87% 10 

132 3 389 4 381 - 3 381.0000 374.0939 1.81% 105 

eil23_50 711 1 677 3 677 - 3 677.0000 640.4404 5.40% 3 

355 2   710+ 4 698 - 3 698.0000 677.2488 2.97% 11 

237 3   725+ 3 x x x x x x 8 

eil23_66 672 1 640 3 640 - 3 640.0000 612.5018 4.30% 3 

336 2 640 3 640 - 3 640.0000 629.2119 1.69% 3 

224 3   702+ 3 x x x x x x 4 

eil23_80 654 1 623 2 623 - 2 623.0000 599.1210 3.83% 2 

327 2 634 2 634 - 2 634.0000 620.8261 2.08% 3 

eil30_50 526 1 501 2 501 - 2 501.0000 501.0000 0.00% 6 

264 2   507+ 2 x x x x x x 8 

eil30_66 564 1 537 3 537 - 3 537.0000 537.0000 0.00% 7 

282 2   599+ 3 552 - 3 552.0000 538.0000 2.54% 2302 

188 3   541+ 3 - - - - 532.6645 - 7200 

eil30_80 540 1 514 3 514 - 3 514.0000 514.0000 0.00% 6 

270 2   559+ 3 535 - 3 535.0000 465.5482 12.98% 6172 

180 3 518 3 518 - 3 518.0000 510.8803 1.37% 8 

eil33_50 775 1 738 3 738 - 3 738.0000 738.0000 0.00% 5 

388 2   766+ 3 - - - - 738.1813 - 7200 

258 3   822+ 3 - - - - 740.6625 - 7200 

eil33_66 788 1 750 3 750 - 3 750.0000 723.3959 3.55% 4 

394 2 772 3 772 - 3 772.0000 768.0827 0.51% 93 

263 3   792+ 3 - - - - 760.4523 - 7200 

eil33_80 773 1 736 3 736 - 3 736.0000 730.2669 0.78% 9 

387 2 763 3 756 - 3 756.0000 754.4379 0.21% 1087 

258 3   766+ 3 - - - - 702.4513 - 7200 

eil51_50 587 1 560 4 559 - 3 559.0000 554.6452 0.78% 14 

294 2 573 4 562 - 4 562.0000 558.9278 0.55% 108 

196 3   605+ 4 - - - - 551.0056 - 7200 

eil51_66 576 1 551 4 548 - 4 548.0000 547.0163 0.18% 41 

288 2 560 4 552 - 4 552.0000 550.6893 0.24% 171 

192 3   577+ 4 - - - - 544.7850 - 7200 

144 4   583+ 4 - - - - 549.8806 - 7200 

eil51_80 594 1 578 4 565 - 4 565.0000 563.1379 0.33% 159 
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Name 

        

𝑻𝟏 

      

Tnb 

CSMH Algorithm 

VNS 

Sol. 

No. 

R. 

Optimal 

Sol. 

Incum. 

Sol. 

No. 

R. 

UB LB %Gap Time 

(s) 

297 2 565 4 565 - 4 565.0000 563.2845 0.30% 1352 

198 3 582 6 - 578 5 578.0000 560.4578 3.03% 7200 

149 4   606+ 4 - - - - 550.8429 - 7200 

eilA76_50 775 1 741 6 738 - 6 738.0000 734.9669 0.41% 237 

388 2 738 6 738 - 6 738.0000 717.7974 2.74% 458 

259 3 747 6 - 741 6 741.0000 723.2373 2.40% 7200 

194 4   787+ 6 - - - - 712.4578 - 7200 

155 5   784+ 6 - - - - 708.2323 - 7200 

130 6   780+ 6 - - - - 710.6943 - 7200 

eilA76_66 807 1 772 7 768 - 7 768.0000 761.2526 0.88% 2450 

404 2 772 7 768 - 7 768.0000 754.4035 1.77% 6178 

269 3 775 7 - 775 7 775.0000 748.5092 3.42% 7200 

202 4 784 8 - 784 8 784.0000 744.8268 5.00% 7200 

162 5   821+ 8 - - - - 738.2245 - 7200 

135 6   800+ 7 - - - - 728.2736 - 7200 

116 7   793+ 8 - - - - 737.2219 - 7200 

eilA76_80 821 1 790 9 - 781 8 781.0000 744.4484 4.68% 7200 

411 2 784 8 - 781 8 781.0000 743.2255 4.84% 7200 

274 3 786 8 - 784 8 784.0000 733.2294 6.48% 7200 

206 4 790 9 - 787 8 787.0000 737.2137 6.33% 7200 

165 5   792+ 9 - - - - 733.5592 - 7200 

137 6   811+ 9 - - - - 723.2520 - 7200 

118 7   816+ 8 - - - - 725.4333 - 7200 

103 8   834+ 8 - - - - 720.2287 - 7200 

eilA101_50 869 1 835 5 827 - 5 827.0000 825.8372 0.14% 6143 

435 2 854 5 - 842 5 842.0000 816.2896 3.05% 7200 

290 3   864+ 5 - - - - 804.0097 - 7200 

218 4   870+ 5 - - - - 813.1355 - 7200 

174 5   863+ 5 - - - - 807.4466 - 7200 

eilA101_66 889 1 858 6 846 - 6 846.0000 842.6713 0.39% 230 

445 2 852 6 846 - 6 850.0000 843.7442 0.27% 6213 

297 3 857 6 846 - 6 846.0000 838.9900 0.83% 6544 

223 4   881+ 6 - - - - 810.2531 - 7200 

178 5   874+ 6 - - - - 831.4405 - 7200 

149 6   907+ 7 - - - - 818.6633 - 7200 

eilA101_80 902 1 872 7 - 859 7 859.0000 834.4338 2.86% 7200 

451 2 861 7 - 858 7 858.0000 833.6667 2.84% 7200 

301 3 864 7 - 864 7 864.0000 832.2288 3.68% 7200 

226 4   903+ 7 - - - - 831.0961 - 7200 

181 5   886+ 7 - - - - 829.0228 - 7200 

151 6   891+ 7 - - - - 805.3378 - 7200 

129 7   905+ 7 - - - - 826.1179 - 7200 
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Table 6.6: Detailed results of the CSMH algorithm solutions for the Data set-1 (𝑻𝟐) 

          

Name 

        

 𝑻𝟐 

      

Tnb 

CSMH Algorithm 

VNS 

Sol. 

No. 

R. 

Optimal 

Sol. 

Incum. 

Sol. 

No. 

R. 

UB LB %Gap Time 

(s) 

eil22_50 408 1 371 3 371 - 3 371.0000 354.5515 4.43% 2 

204 2 375 3 375 - 3 375.0000 372.2941 0.72% 4 

137 3   385+ 3 378 - 3 378.0000 367.7167 2.72% 4 

eil22_66 403 1 366 3 366 - 3 366.0000 343.1949 6.23% 3 

201 2   387+ 4 382 - 4 382.0000 371.0000 2.88% 7 

134 3 380 3 366 - 3 366.0000 360.6417 1.46% 3 

eil22_80 413 1 375 3 375 - 3 375.0000 365.3228 2.58% 4 

206 2 386 4 378 - 4 378.0000 371.6156 1.69% 23 

138 3 382 4 381 - 3 381.0000 372.9394 2.12% 24 

eil23_50 745 1 677 3 677 - 3 677.0000 640.4404 8.12% 2 

372 2   693+ 4 689 - 3 689.0000 677.0000 1.74% 3 

248 3 716 3 716 - 3 716.0000 704.2018 1.65% 4 

eil23_66 704 1 640 3 640 - 3 640.0000 612.5018 4.30% 2 

352 2 640 3 640 - 3 640.0000 624.9952 2.34% 4 

235 3 696 3 694 - 3 694.0000 637.6332 5.12% 3671 

eil23_80 685 1 623 2 623 - 2 623.0000 599.1210 3.83% 2 

343 2 631 2 631 - 2 631.0000 622.6453 1.32% 3 

eil30_50 551 1 501 2 501 - 2 501.0000 467.5271 6.58% 3 

276 2 501 2 501 - 2 501.0000 489.5667 2.28% 4 

eil30_66 591 1 537 3 537 - 3 537.0000 520.5895 3.06% 6 

296 2   569+ 3 552 - 3 552.0000 548.3510 0.66% 20 

197 3 543 3 538 - 3 538.0000 526.5343 2.13% 25 

eil30_80 565 1 514 3 514 - 3 514.0000 495.0307 3.69% 8 

283 2   546+ 3 535 - 3 535.0000 514.6325 3.81% 6452 

188 3 527 3 518 - 3 518.0000 514.6487 0.65% 152 

eil33_50 812 1 738 3 738 - 3 738.0000 738.0000 0.00% 4 

406 2 769 3 741 - 3 741.0000 737.5128 0.47% 7 

271 3   799+ 3 - - - - 658.3292 - 7200 

eil33_66 825 1 750 3 750 - 3 750.0000 721.9751 3.74% 4 

413 2 767 3 767 - 3 767.0000 763.7783 0.42% 44 

275 3   786+ 3 - - - - 762.8841 - 7200 

eil33_80 810 1 736 3 736 - 3 736.0000 727.3115 1.18% 7 

405 2 759 3 756 - 3 756.0000 754.7114 0.17% 1144 

270 3   768+ 3 - - - - 725.7577 - 7200 

eil51_50 615 1 559 3 559 - 3 559.0000 553.4257 1.00% 12 

308 2 560 4 560 - 4 560.0000 557.3371 0.48% 90 

205 3 572 3 564 - 4 564.0000 562.5770 0.25% 595 

eil51_66 603 1 548 4 548 - 4 548.0000 542.9184 0.93% 14 

302 2 548 4 548 - 4 548.0000 544.2247 0.69% 35 

201 3 574 5 - 772 5 772.0000 546.3256 4.49% 7200 

151 4   585+ 5 - - - - 535.1061 - 7200 
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Name 

        

 𝑻𝟐 

      

Tnb 

CSMH Algorithm 

VNS 

Sol. 

No. 

R. 

Optimal 

Sol. 

Incum. 

Sol. 

No. 

R. 

UB LB %Gap Time 

(s) 

eil51_80 622 1 565 4 565 - 4 565.0000 561.8438 0.56% 72 

311 2 565 4 565 - 4 565.0000 562.5858 0.43% 208 

208 3 590 5 - 578 5 578.0000 565.4189 2.18% 7200 

156 4 579 5 - 579 5 579.0000 555.9473 3.98% 7200 

eilA76_50 812 1 748 6 738 - 6 738.0000 735.4884 0.34% 278 

406 2 741 6 738 - 6 738.0000 736.4473 0.21% 940 

271 3 741 6 - 741 6 741.0000 720.5745 2.76% 7200 

203 4   790+ 6 - - - - 716.3202 - 7200 

163 5   778+ 6 - - - - 708.6608 - 7200 

136 6   766+ 6 - - - - 719.9978 - 7200 

eilA76_66 845 1 772 7 768 - 7 768.0000 761.2766 0.88% 2412 

423 2 772 7 768 - 7 768.0000 754.4035 1.77% 5345 

282 3 772 7 - 772 7 772.0000 740.8410 4.04% 7200 

212 4 776 8 - 769 7 769.0000 739.0600 3.85% 7200 

169 5   790+ 8 - - - - 738.4467 - 7200 

141 6   795+ 7 - - - - 740.4613 - 7200 

121 7   779+ 8 - - - - 733.8843 - 7200 

eilA76_80 860 1 788 8 - 781 8 781.0000 755.6674 3.24% 7200 

430 2 786 8 - 781 8 781.0000 757.3963 3.02% 7200 

287 3 784 8 - 783 8 783.0000 737.4536 5.82% 7200 

215 4 788 8 - 783 8 783.0000 738.0464 5.74% 7200 

172 5 784 8 - 783 8 783.0000 736.3244 5.96% 7200 

144 6   802+ 9 - - - - 731.1909 - 7200 

123 7   817+ 9 - - - - 722.2782 - 7200 

108 8   843+ 8 - - - - 733.8520 - 7200 

eilA101_50 910 1 856 5 827 - 5 827.0000 825.6868 0.16% 2209 

455 2 833 5 - 833 5 833.0000 812.7952 2.43% 7200 

304 3 855 5 - 848 5 848.0000 802.2780 6.17% 7200 

228 4   847+ 5 - - - - 803.7431 - 7200 

182 5   851+ 5 - - - - 782.9959 - 7200 

eilA101_66 931 1 867 6 846 - 6 846.0000 843.5580 0.29% 300 

466 2 853 6 846 - 6 846.0000 843.7442 0.27% 5364 

311 3 846 6 846 - 6 846.0000 840.2255 0.68% 7200 

233 4 868 6 - 868 6 868.0000 833.8972 3.93% 7200 

187 5   862+ 6 - - - - 815.6880 - 7200 

156 6   904+ 6 - - - - 837.2273 - 7200 

eilA101_80 945 1 864 7 - 858 7 858.0000 836.8852 2.46% 7200 

473 2 861 7 - 858 7 858.0000 826.0394 3.73% 7200 

315 3 865 7 - 865 7 865.0000 832.3404 3.78% 7200 

237 4 863 7 - 863 7 863.0000 833.7552 3.39% 7200 

189 5   889+ 7 - - - - 815.7701 - 7200 

158 6   903+ 7 - - - - 814.2284 - 7200 

135 7   903+ 7 - - - - 816.6678 - 7200 
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Table 6.7: Detailed comparison results of the CSMH vs CPLEX for the Data set-1 (𝑻𝟏) 

          

Name 

         

𝑻𝟏 

       

Tnb 

CPLEX CSMH Algorithm 

Optimal 

Sol. 

No. R. Time (s) Sol. No. R. Time (s) 

eil22_50 390 1 371 3 1 371 * 3 2 

195 2 378 3 1 378 * 3 3 

130 3 x x x x x x 

eil22_66 385 1 366 3 1 366 * 3 3 

193 2 382 4 3 382 * 4 7 

129 3 x x x x x x 

eil22_80 394 1 375 3 2 375 * 3 4 

197 2 378 4 2 378 * 4 10 

132 3 381 3 27 381 * 3 105 

eil23_50 711 1 677 3 1 677 * 3 3 

355 2 698 3 2 698 * 3 11 

237 3 x x x x x x 

eil23_66 672 1 640 3 1 640 * 3 3 

336 2 640 3 1 640 * 3 3 

224 3 x x x x x x 

eil23_80 654 1 623 2 1 623 * 2 2 

327 2 634 2 2 634 * 2 3 

eil30_50 526 1 501 2 1 501 * 2 6 

264 2 x x x x x x 

eil30_66 564 1 537 3 3 537 * 3 7 

282 2 552 3 6116 552 * 3 2302 

188 3 - - 7200 - - 7200 

eil30_80 540 1 514 3 12 514 * 3 6 

270 2 - - 7200 535 * 3 6172 

180 3 - - 7200 518 * 3 8 

eil33_50 775 1 738 3 1 738 * 3 5 

388 2 - - 7200 - - 7200 

258 3 - - 7200 - - 7200 

eil33_66 788 1 750 3 2 750 * 3 4 

394 2 772 3 1219 772 * 3 93 

263 3 - - 7200 - - 7200 

eil33_80 773 1 736 3 121 736 * 3 9 

387 2 - - 7200 756 * 3 1087 

258 3 - - 7200 - - 7200 

eil51_50 587 1 559 3 10 559 * 3 14 

294 2 - - 7200 562 * 4 108 

196 3 - - 7200 - - 7200 

eil51_66 576 1 548 4 22 548 * 4 41 

288 2 - - 7200 552 * 4 171 

192 3 - - 7200 - - 7200 

144 4 - - 7200 - - 7200 

eil51_80 594 1 565 4 4553 565 * 4 159 

297 2 - - 7200 565 * 4 1352 

198 3 - - 7200 578 ^ - 7200 

149 4 - - 7200 - - 7200 

eilA76_50 775 1 - - 7200 738 * 6 237 

388 2 - - 7200 738 * 6 458 

259 3 - - 7200 741 ^ 6 7200 

194 4 - - 7202 - - 7200 

155 5 - - 7200 - - 7200 

130 6 - - 7200 - - 7200 

eilA76_66 807 1 - - 7200 768 * 7 2450 
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Name 

         

𝑻𝟏 

       

Tnb 

CPLEX CSMH Algorithm 

Optimal 

Sol. 

No. R. Time (s) Sol. No. R. Time (s) 

404 2 - - 7200 768 * 7 6178 

269 3 - - 7200 775 ^ 7 7200 

202 4 - - 7200 784 ^ 8 7200 

162 5 - - 7200 - - 7200 

135 6 - - 7200 - - 7200 

116 7 - - 7200 781 ^ - 7200 

eilA76_80 821 1 - - 7200 781 ^ 8 7200 

411 2 - - 7200 784 ^ 8 7200 

274 3 - - 7200 787 ^ 8 7200 

206 4 - - 7200 - 8 7200 

165 5 - - 7200 - - 7200 

137 6 - - 7200 - - 7200 

118 7 - - 7200 - - 7200 

103 8 - - 7200 - - 7200 

eilA101_50 869 1 - - 7200 827 * 5 6143 

435 2 - - 7200 842 ^ 5 7200 

290 3 - - 7200 - - 7200 

218 4 - - 7200 - - 7200 

174 5 - - 7200 - - 7200 

eilA101_66 889 1 - - 7200 846 * 6 230 

445 2 - - 7200 846 * 6 6213 

297 3 - - 7200 846 * 6 6544 

223 4 - - 7200 - - 7200 

178 5 - - 7200 - - 7200 

149 6 - - 7200 - - 7200 

eilA101_80 902 1 - - 7200 859 ^ 7 7200 

451 2 - - 7200 858 ^ 7 7200 

301 3 - - 7200 864 ^ 7 7200 

226 4 - - 7200 - - 7200 

181 5 - - 7200 - - 7200 

151 6 - - 7200 - - 7200 

129 7 - - 7200 - - 7200 
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Table 6.8: Detailed comparison results of the CSMH vs CPLEX for the Data set-1 (𝑻𝟐) 

           

Name 

         

𝑻𝟐 

        

Tnb 

CPLEX CSMH Algorithm 

Optimal 

Sol. 

No. R. Time (s) Sol. No. R.  Time 

(s) 

eil22_50 408 1 371 3 1 371 * 3 2 

204 2 375 3 2 375 * 3 4 

137 3 378 3 1 378 * 3 4 

eil22_66 403 1 366 3 1 366 * 3 3 

201 2 382 4 2 382 * 4 7 

134 3 366 3 1 366 * 3 3 

eil22_80 413 1 375 3 3 375 * 3 4 

206 2 378 4 9 378 * 4 23 

138 3 381 3 24 381 * 3 24 

eil23_50 745 1 677 3 1 677 * 3 2 

372 2 689 3 2 689 * 3 3 

248 3 716 3 2 716 * 3 4 

eil23_66 704 1 640 3 1 640 * 3 2 

352 2 640 3 1 640 * 3 4 

235 3 - - 7200 694 ^ 3 3671 

eil23_80 685 1 623 2 1 623 * 2 2 

343 2 631 2 1 631 * 2 3 

eil30_50 551 1 501 2 1 501 * 2 3 

276 2 501 2 1 501 * 2 4 

eil30_66 591 1 537 3 3 537 * 3 6 

296 2 552 3 3451 552 * 3 20 

197 3 538 3 2 538 * 3 25 

eil30_80 565 1 514 3 11 514 * 3 8 

283 2 535 3 5519 535 * 3 6452 

188 3 518 3 1426 518 * 3 152 

eil33_50 812 1 738 3 1 738 * 3 4 

406 2 741 3 2 741 * 3 7 

271 3     803 ^ - 7200 - - 7200 

eil33_66 825 1 750 3 12 750 * 3 4 

413 2 767 3 109 767 * 3 44 

275 3 - - 7200 - - 7200 

eil33_80 810 1 736 3 136 736 * 3 7 

405 2 - - 7200 756 * 3 1144 

270 3 - - 7200 - - 7200 

eil51_50 615 1 559 3 11 559 * 3 12 

308 2 560 4 67 560 * 4 90 

205 3 564 4 67 564 * 4 595 

eil51_66 603 1 548 4 12 548 * 4 14 

302 2 548 4 56 548 * 4 35 

201 3 - - 7200 772 * 5 7200 

151 4 - - 7200 - - 7200 

eil51_80 622 1 565 4 78 565 * 4 72 

311 2 - - 7200 565 * 4 208 

208 3 - - 7200 578 ^ 5 7200 

156 4 - - 7200 579 ^ 5 7200 

eilA76_50 812 1 - - 7200 738 * 6 278 

406 2 - - 7200 738 * 6 940 
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Name 

         

𝑻𝟐 

        

Tnb 

CPLEX CSMH Algorithm 

Optimal 

Sol. 

No. R. Time (s) Sol. No. R.  Time 

(s) 

271 3 - - 7201 741 ^ 6 7200 

203 4 - - 7202 - - 7200 

163 5 - - 7200 - - 7200 

136 6 - - 7200 - - 7200 

eilA76_66 845 1 - - 7200 768 * 7 2412 

423 2 - - 7200 768 * 7 5345 

282 3 - - 7200 772 ^ 7 7200 

212 4 - - 7200 769 ^ 7 7200 

169 5 - - 7200 - - 7200 

141 6 - - 7200 - - 7200 

121 7 - - 7200 - - 7200 

eilA76_80 860 1 - - 7200 781 ^ 8 7200 

430 2 - - 7200 781 ^ 8 7200 

287 3 - - 7200 783 ^ 8 7200 

215 4 - - 7200 783 ^ 8 7200 

172 5 - - 7200 783 ^ 8 7200 

144 6 - - 7200 - - 7200 

123 7 - - 7200 - - 7200 

108 8 - - 7200 - - 7200 

eilA101_50 910 1 - - 7200 827 * 5 2209 

455 2 - - 7200 833 ^ 5 7200 

304 3 - - 7200 848 ^ 5 7200 

228 4 - - 7200 - - 7200 

182 5 - - 7200 - - 7200 

eilA101_66 931 1 846 6 268 846 * 6 300 

466 2 - - 7200 846 * 6 5364 

311 3 - - 7200 846 * 6 7200 

233 4 - - 7200 868 ^ 6 7200 

187 5 - - 7200 - - 7200 

156 6 - - 7200 - - 7200 

eilA101_80 945 1 - - 7200 858 ^ 7 7200 

473 2 - - 7200 858 ^ 7 7200 

315 3 - - 7200 865 ^ 7 7200 

237 4 - - 7200 863 ^ 7 7200 

189 5 - - 7200 - - 7200 

158 6 - - 7200 - - 7200 

135 7 - - 7200 - - 7200 
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Table 6.9: Comparison of the lower bounds produced by CPLEX and CSMH for 𝑻𝟏 and 

𝑻𝟐 

𝑻𝟏 𝑻𝟐 

Optimal 

Sol. 

CPLEX CSMS Optimal 

Sol. 

CPLEX CSMH 

LB %Gap LB %Gap LB %Gap LB %Gap 

371 367.5294 0.94% 354.5515 4.43% 371 370.6087 0.11% 354.5515 4.43% 

378 368.0119 2.64% 376.9945 0.27% 375 374.0333 0.26% 372.2941 0.72% 

366 364.9640 0.28% 343.1949 6.23% 378 364.4367 3.59% 367.7167 2.72% 

382 366.0000 4.19% 375.5642 1.68% 366 364.7095 0.35% 343.1949 6.23% 

375 362.1650 3.42% 364.8797 2.70% 382 366.0000 4.19% 371.0000 2.88% 

378 364.9665 3.45% 367.1494 2.87% 366 366.0000 0.00% 360.6417 1.46% 

381 369.0667 3.13% 374.0939 1.81% 375 358.9261 4.29% 365.3228 2.58% 

677 677.0000 0.00% 640.4404 5.40% 378 362.2288 4.17% 371.6156 1.69% 

698 671.8600 3.74% 677.2488 2.97% 381 364.9274 4.22% 372.9394 2.12% 

640 633.1636 1.07% 612.5018 4.30% 677 677.0000 0.00% 640.4404 5.40% 

640 635.5000 0.70% 629.2119 1.69% 689 680.0000 1.31% 677.0000 1.74% 

623 618.0870 0.79% 599.1210 3.83% 716 682.1268 4.73% 704.2018 1.65% 

634 613.3380 3.26% 620.8261 2.08% 640 640.0000 0.00% 612.5018 4.30% 

501 500.3902 0.12% 501.0000 0.00% 640 631.5000 1.33% 624.9952 2.34% 

537 511.3725 4.77% 537.0000 0.00% 694 662.4548 4.55% 637.6332 8.12% 

552 537.0000 2.72% 538.0000 2.54% 623 617.8667 0.82% 599.1210 3.83% 

514 474.9762 7.59% 514.0000 0.00% 631 614.5388 2.61% 622.6453 1.32% 

535 459.3289 14.14% 465.5482 12.98% 501 500.3902 0.12% 467.5271 6.58% 

518 460.3190 11.14% 510.8803 1.37% 501 501.0000 0.00% 489.5667 2.28% 

738 738.0000 0.00% 738.0000 0.00% 537 510.3183 4.97% 520.5895 3.06% 

750 732.7999 2.29% 723.3959 3.55% 552 538.0355 2.53% 548.3510 0.66% 

772 757.8079 1.84% 768.0827 0.51% 538 534.6250 0.63% 526.5343 2.13% 

736 733.8901 0.29% 730.2669 0.78% 514 482.8207 6.07% 495.0307 3.69% 

756 720.3275 4.72% 754.4379 0.21% 535 468.6333 12.40% 514.6325 3.81% 

559 552.1063 1.23% 554.6452 0.78% 518 500.1891 3.44% 514.6487 0.65% 

562 550.1111 2.12% 558.9278 0.55% 738 738.0000 0.00% 738.0000 0.00% 

548 537.7475 1.87% 547.0163 0.18% 741 736.2820 0.64% 737.5128 0.47% 

552 546.1393 1.06% 550.6893 0.24% 750 734.5884 2.05% 721.9751 3.74% 

565 553.1885 2.09% 563.1379 0.33% 767 764.4997 0.33% 763.7783 0.42% 

565 555.5726 1.67% 563.2845 0.30% 736 716.7393 2.62% 727.3115 1.18% 

738 708.2119 4.04% 734.9669 0.41% 756 723.4224 4.31% 754.7114 0.17% 

738 721.9806 2.17% 717.7974 2.74% 559 553.6224 0.96% 553.4257 1.00% 

768 738.1007 3.89% 761.2526 0.88% 560 550.4380 1.71% 557.3371 0.48% 

768 737.9937 3.91% 754.4035 1.77% 564 559.6480 0.77% 562.5770 0.25% 

827 799.5710 3.32% 825.8372 0.14% 548 541.1877 1.24% 542.9184 0.93% 

846 829.5004 1.95% 842.6713 0.39% 548 546.9363 0.19% 544.2247 0.69% 

846 837.3865 1.02% 843.7442 0.27% 565 562.5255 0.44% 561.8438 0.56% 

846 826.1638 2.34% 838.9900 0.83% 565 554.3046 1.89% 562.5858 0.43% 

- - - - - 738 710.0593 3.79% 735.4884 0.34% 

- - - - - 738 722.0668 2.16% 736.4473 0.21% 

- - - - - 768 734.9762 4.30% 761.2766 0.88% 

- - - - - 768 741.8414 3.41% 754.4035 1.77% 

- - - - - 827 801.4182 3.09% 825.6868 0.16% 

- - - - - 846 840.8321 0.61% 843.5580 0.29% 

- - - - - 846 822.6394 2.76% 843.7442 0.27% 

- - - - - 846 831.4000 1.73% 840.2255 0.68% 

Grand average % 

gap 

2.89%   1.90%     2.30%   1.99% 
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Table 6.10: Detailed comparison results of the CSMH vs Two-Level VNS for the Data set-1 

(𝑻𝟏) 

           Name             

𝑻𝟏 

           

Tnb 

Two-Level VNS CSMH Algorithm 

Sol. No. 

R. 

Time 

(s) 

Sol. No. 

R. 

Time (s) 

eil22_50 390 1      371 3 2    371 * 3 2 

195 2      378 3 3    378 * 3 3 

130 3  390 + 4 3    392 + 3 3 

eil22_66 385 1      366 3 5    366 * 3 3 

193 2  396 + 4 4    382 * 4 7 

129 3  370 + 3 3    375 + 3 5 

eil22_80 394 1      375 3 4    375 * 3 4 

197 2      378 4 5    378 * 4 10 

132 3      381 3 3    381 * 3 105 

eil23_50 711 1      677 3 3    677 * 3 3 

355 2  711 + 3 2    698 * 3 11 

237 3  725 + 3 5    725 + 3 8 

eil23_66 672 1      640 3 4    640 * 3 3 

336 2      640 3 4    640 * 3 3 

224 3 702 + 3 3    702 + 3 4 

eil23_80 654 1      623 2 4    623 * 2 2 

327 2      634 2 4    634 * 2 3 

eil30_50 526 1      501 2 4    501 * 2 6 

264 2 507 + 2 3    507 + 2 8 

eil30_66 564 1      537 3 6    537 * 3 7 

282 2 565 + 3 6    552 * 3 2302 

188 3 541 + 3 5    541 + 3 7200 

eil30_80 540 1      514 3 6    514 * 3 6 

270 2 540 + 3 7    535 * 3 6172 

180 3      518 3 6    518 * 3 8 

eil33_50 775 1      738 3 5    738 * 3 5 

388 2 766 + 3 6    766 + 3 7200 

258 3 822 + 3 4    822 + 3 7200 

eil33_66 788 1      750 3 9    750 * 3 4 

394 2      772 3 8    772 * 3 93 

263 3 792 + 3 5    792 + 3 7200 

eil33_80 773 1      736 3 6    736 * 3 9 

387 2      756 3 9    756 * 3 1087 

258 3 766 + 3 5    766 + 3 7200 

eil51_50 587 1      559 3 9    559 * 3 14 

294 2      568 3 11    562 * 4 108 

196 3  574 + 3 10    605 + 4 7200 

eil51_66 576 1      548 4 10    548 * 4 41 

288 2      552 4 11    552 * 4 171 

192 3 577 + 4 11    577 + 4 7200 

144 4 583 + 4 10    583 + 4 7200 

eil51_80 594 1      565 4 13    565 * 4 159 

297 2      565 4 12    565 * 4 1352 

198 3      582 5 11    578 ^ 5 7200 
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           Name             

𝑻𝟏 

           

Tnb 

Two-Level VNS CSMH Algorithm 

Sol. No. 

R. 

Time 

(s) 

Sol. No. 

R. 

Time (s) 

149 4  592 + 5 11    606 + 4 7200 

eilA76_50 775 1      738 6 21    738 * 6 237 

388 2      738 6 23    738 * 6 458 

259 3      741 6 22    741 ^ 6 7200 

194 4 787 + 6 23    787 + 6 7200 

155 5 783 + 6 22    784 + 6 7200 

130 6 779 + 6 22    780 + 6 7200 

eilA76_66 807 1      768 7 23    768 * 7 2450 

404 2      768 7 21    768 * 7 6178 

269 3      772 7 23    775 ^ 7 7200 

202 4      784 8 21    784 ^ 8 7200 

162 5 817 + 8 23    821 + 8 7200 

135 6 788 + 8 23    800 + 7 7200 

116 7 793 + 8 22    793 + 8 7200 

eilA76_80 821 1      781 8 23    781 ^ 8 7200 

411 2      781 8 23    781 ^ 8 7200 

274 3      784 8 22    784 ^ 8 7200 

206 4      787 8 23    787 ^ 8 7200 

165 5 788 + 8 23    792 + 9 7200 

137 6 807 + 9 24    811 + 9 7200 

118 7 816 + 8 23    816 + 8 7200 

103 8 834 + 8 23    834 + 8 7200 

eilA101_50 869 1      827 5 39    827 * 5 6143 

435 2      835 5 42    842 ^ 5 7200 

290 3 849 + 5 42    864 + 5 7200 

218 4 855 + 5 42    870 + 5 7200 

174 5 863 + 5 41    863 + 5 7200 

eilA101_66 889 1      846 6 43    846 * 6 230 

445 2      846 6 41    846 * 6 6213 

297 3      846 6 42    846 * 6 6544 

223 4 875 + 6 43    881 + 6 7200 

178 5 874 + 6 43    874 + 6 7200 

149 6 906 + 7 42    907 + 7 7200 

eilA101_80 902 1      859 7 42    859 ^ 7 7200 

451 2      859 7 45    858 ^ 7 7200 

301 3      859 7 45    864 ^ 7 7200 

226 4 775 + 7 42    903 + 7 7200 

181 5 886 + 7 43    886 + 7 7200 

151 6 886 + 7 42    891 + 7 7200 

129 7 905 + 7 44    905 + 7 7200 

 

 

 

 



164 

 

Table 6.11: Detailed comparison results of the CSMH vs Two-Level VNS for the Data set-1 

(𝑻𝟐) 

          Name              

𝑻𝟐 

            

Tnb 

Two-Level VNS CSMH Algorithm 

Sol. No. 

R. 

Time 

(s) 

Sol. No. 

R. 

Time 

(s) 

eil22_50 408 1 371 3 3    371 * 3 2 

204 2 375 3 4    375 * 3 4 

137 3    382 + 3 3    378 * 3 4 

eil22_66 403 1 366 3 2    366 * 3 3 

201 2    385 + 4 3    382 * 4 7 

134 3    367 + 3 2    366 * 3 3 

eil22_80 413 1 375 3 3    375 * 3 4 

206 2 378 4 3    378 * 4 23 

138 3 381 3 4    381 * 3 24 

eil23_50 745 1 677 3 4    677 * 3 2 

372 2    693 + 3 5    689 * 3 3 

248 3 716 3 4    716 * 3 4 

eil23_66 704 1 640 3 4    640 * 3 2 

352 2 640 3 4    640 * 3 4 

235 3 696 3 5    694 * 3 3671 

eil23_80 685 1 623 2 4    623 * 2 2 

343 2 631 2 4    631 * 2 3 

eil30_50 551 1 501 2 4    501 * 2 3 

276 2 501 2 3    501 * 2 4 

eil30_66 591 1 537 3 6    537 * 3 6 

296 2    552 + 3 7    552 * 3 20 

197 3 538 3 5    538 * 3 25 

eil30_80 565 1 514 3 6    514 * 3 8 

283 2 535 3 7    535 * 3 6452 

188 3 518 3 5    518 * 3 152 

eil33_50 812 1 738 3 4    738 * 3 4 

406 2 769 3 8    741 * 3 7 

271 3    799 + 3 4    799 + 3 7200 

eil33_66 825 1 750 3 5    750 * 3 4 

413 2 767 3 9    767 * 3 44 

275 3    775 + 3 5    786 + 3 7200 

eil33_80 810 1 736 3 8    736 * 3 7 

405 2 756 3 6    756 * 3 1144 

270 3    754 + 3 6    768 + 3 7200 

eil51_50 615 1 559 3 10    559 * 3 12 

308 2 560 4 9    560 * 4 90 

205 3 568 3 11    564 * 4 595 

eil51_66 603 1 548 4 10    548 * 4 14 

302 2 548 4 11    548 * 4 35 

201 3 774 4 10    772 ^ 5 7200 

151 4    570 + 4 11    585 + 5 7200 

eil51_80 622 1 565 4 11    565 * 4 72 

311 2 565 4 10    565 * 4 208 

208 3 587 4 10    578 ^ 5 7200 

156 4 579 5 10    579 ^ 5 7200 
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          Name              

𝑻𝟐 

            

Tnb 

Two-Level VNS CSMH Algorithm 

Sol. No. 

R. 

Time 

(s) 

Sol. No. 

R. 

Time 

(s) 

eilA76_50 812 1 738 6 21    738 * 6 278 

406 2 738 6 22    738 * 6 940 

271 3 738 6 22    741 ^ 6 7200 

203 4    767 + 6 22    790 + 6 7200 

163 5    775 + 6 24    778 +  6 7200 

136 6    762 + 6 21    766 +  6 7200 

eilA76_66 845 1 768 7 22    768 * 7 2412 

423 2 768 7 21    768 * 7 5345 

282 3 772 7 22    772 ^ 7 7200 

212 4 769 7 22    769 ^ 7 7200 

169 5    790 + 8 23    790 + 8 7200 

141 6    783 + 8 22    795 + 7 7200 

121 7    777 + 8 22    779 + 8 7200 

eilA76_80 860 1 781 8 23    781 ^ 8 7200 

430 2 781 8 22    781 ^ 8 7200 

287 3 783 8 23    783 ^ 8 7200 

215 4 783 8 22    783 ^ 8 7200 

172 5 783 8 22    783 ^ 8 7200 

144 6    796 + 8 23    802 + 9 7200 

123 7    805 + 8 23    817 + 9 7200 

108 8    841 + 8 22    843 + 8 7200 

eilA101_50 910 1 827 5 41    827 * 5 2209 

455 2 827 5 41    833 ^ 5 7200 

304 3 855 5 43    848 ^ 5 7200 

228 4    847 + 5 42    847 + 5 7200 

182 5    851 + 5 42    851 + 5 7200 

eilA101_66 931 1 846 6 43    846 * 6 300 

466 2 846 6 42    846 * 6 5364 

311 3 846 6 43    846 * 6 7200 

233 4 868 6 42    868 ^ 6 7200 

187 5    862 + 6 43    862 + 6 7200 

156 6    904 + 6 44    904 + 6 7200 

eilA101_80 945 1 859 7 42    858 ^ 7 7200 

473 2 859 7 43    858 ^ 7 7200 

315 3 859 7 46    865 ^ 7 7200 

237 4 859 7 43    863 ^ 7 7200 

189 5    878 + 7 44    889 + 7 7200 

158 6    883 + 7 45    903 + 7 7200 

135 7    883 + 7 42    903 + 7 7200 

 

 

 

 



166 

 

6.4. Summary 

In this chapter we have studied a new class of hybrid methodologies called mat-

heuristics that combines mathematical programming techniques with heuristic methods 

to solve CO problems. We have developed a hybrid collaborative sequential mat-

heuristic approach called the CSMH to solve the MT-VRPB. The exact method 

approach presented in Chapter 4 is hybridised with the Two-Level VNS algorithm of 

Chapter 5. The Two-Level VNS used three phases, i.e., initial solution by a modified 

sweep-first-assignment-second approach, improved solution by VNS, and packed 

solution by the BPP. Here a fourth phase, i.e., a mathematical model is incorporated in 

the Two-Level VNS algorithm to find optimal/better solution for the MT-VRPB. The 

overall performance of the CSMH remained very encouraging in terms of the solution 

quality and the average time taken. Comparing with the methodologies developed in the 

previous chapters (i.e., CPLEX and the Two-Level VNS meta-heuristic), the CSMH 

produced much better results on almost all fronts. As compared to CPLEX, it produced 

a higher number of optimal solutions and tighter lower bounds while spending a 

relatively much lower computation time. Comparing with the Two-Level VNS it also 

produced better quality solutions with a higher number of optimal/incumbent solutions, 

at the expense of requiring a larger computing time as one may expect. 
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Chapter 7 

 

Adaptation of the Two-Level VNS and 

Mat-heuristic to the VRPB and the MT-

VRP 

 

In this chapter we investigate two special cases of the MT-VRPB namely, the Vehicle 

Routing Problem with Backhauls (VRPB) and the Multiple Trip Vehicle Routing 

Problem (MT-VRP). The Two-Level VNS and the CSMH algorithms developed for the 

MT-VRPB in Chapter 5 and Chapter 6 are adapted to solve the VRPB and the MT-VRP 

separately. The results produced by the Two-Level VNS and the CSMH algorithms are 

compared with the best published solutions of the benchmark instances of these 

problems from the literature. Our implementations show that the Two-Level VNS 

algorithm is easy to adapt to other variants of the VRP and the mat-heuristic is a 

powerful algorithm for solving a variety of VRPs. 

7.1. The case of the VRPB 

The VRPB is already explained along with the literature review in Chapters 2 and 3. In 

this section we adapt our approaches to solve the VRPB efficiently and to test the 

methodologies developed in Chapters 4, 5 and 6. 
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7.1.1. VRPB Formulation  

The VRPB formulation is adapted from our MT-VRPB formulation presented in 

Chapter 4. This is a three-indexed commodity flow formulation. Before this Toth and 

Vigo (1997) and Mingozzi at el. (1999) provided two-indexed ILP formulations for 

their proposed exact methodologies for the VRPB.  

Notations: 

Sets 

{0} the depot (single depot) 

L the set of linehaul customers 

B the set of backhaul customers 

𝐾 the set of vehicles 

Input Variables 

𝑑𝑖𝑗 the distance between customers 𝑖 and 𝑗 (𝑖 ∈ {0} ∪ 𝐿 ∪ 𝐵, 𝑗 ∈ {0} ∪ 𝐿 ∪ 𝐵) 

𝑞𝑖 the demand of customer 𝑖 (such that  𝑖 ∈ 𝐿 for a delivery demand and 𝑖 ∈ 𝐵 for a 

pickup demand) 

Other Parameters 

𝐶 vehicle capacity 

Decision Variables  

𝑥𝑖𝑗𝑘 = {
 1, if vehicle 𝑘 travels from locaton 𝑖 directly to location 𝑗;             
0, otherwise                                                                                                 
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𝑅𝑖𝑗  =      is the amount of delivery or pickup on board on arc 𝑖𝑗 

Minimise Z = ∑    ∑    ∑    𝑑𝑘∈𝐾 𝑖𝑗
𝑥𝑖𝑗𝑘𝑗∈{0}∪𝐿∪𝐵𝑖∈{0}∪𝐿∪𝐵                  (7.1) 

Subject to ∑ ∑ 𝑥𝑗𝑖𝑘𝑘∈𝐾 = 1𝑗∈{0}∪𝐿∪𝐵                                       𝑖 ∈ 𝐿 ∪ 𝐵               (7.2) 

  ∑ ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 = 1𝑗∈{0}∪𝐿∪𝐵                                      𝑖 ∈ 𝐿 ∪ 𝐵               (7.3) 

  ∑ 𝑥𝑗𝑖𝑘𝑗∈{0}∪𝐿∪𝐵 = ∑ 𝑥𝑖𝑗𝑘𝑗∈{0}∪𝐿∪𝐵                𝑖 ∈ 𝐿 ∪ 𝐵, ∀ 𝑘 ∈ 𝐾          (7.4) 

  ∑ 𝑅𝑖𝑗 − 𝑞𝑗𝑖∈{0}∪𝐿 = ∑ 𝑅𝑗𝑖𝑖∈{0}∪𝐿∪𝐵                       𝑗 ∈ 𝐿               (7.5) 

  ∑ 𝑅𝑖𝑗 + 𝑞𝑗𝑖∈𝐿∪𝐵 = ∑ 𝑅𝑗𝑖𝑖∈{0}∪𝐵                             𝑗 ∈ 𝐵               (7.6) 

  𝑅𝑖𝑗  ≤ 𝐶 ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾                       𝑖 ∈ 𝐿 ∪ 𝐵, 𝑗 ∈ 𝐿 ∪ 𝐵; ∀ 𝑘 ∈ 𝐾          (7.7) 

∑ 𝑥0𝑗𝑘 = 1𝑗∈𝐿                                                                  ∀ (𝑘 ∈ 𝐾)            (7.8) 

  𝑅𝑖𝑗 = 0                                                              𝑖 ∈ 𝐿,   𝑗 ∈ 𝐵 ∪ {0}   (7.9) 

  𝑥𝑖𝑗𝑘 = 0                                                              𝑖 ∈ 𝐵, 𝑗 ∈ 𝐿 , 𝑘 ∈  𝐾  (7.10) 

 𝑥0𝑗𝑘 = 0                                                                 𝑗 ∈ 𝐵 , 𝑘 ∈  𝐾             (7.11) 

  𝑅𝑖𝑗 ≥ 0                                                     𝑖 ∈ {0} ∪ 𝐿 ∪ 𝐵, 𝑗 ∈ 𝐿 ∪ 𝐵     (7.12) 

  𝑥𝑖𝑗𝑘 = 0,1                              
        𝑖 ∈ {0} ∪ 𝐿 ∪ 𝐵, 𝑗 ∈ {0} ∪ 𝐿 ∪ 𝐵

𝑘 ∈  𝐾
    (7.13) 

Equation (7.1) illustrates the objective function representing the total distance travelled. 

Constraints (7.2) and (7.3) ensure that every customer is served exactly once (every 

customer has an incoming arc and every customer has an outgoing arc). Constraint (7.4) 
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states that the number of times vehicle 𝑘 enters into customer 𝑖 is the same as the 

number of times it leaves customer 𝑖. The vehicle load variation on a route is ensured by 

Constraints (7.5) and (7.6) for linehaul and backhaul customers respectively. Inequality 

(7.7) imposes the maximum vehicle capacity constraint. Inequality (7.8) imposes 

restrictions on every vehicle to be used once. Constraints (7.9) restricts that a load 

cannot be carried from a linehaul customer to a backhaul customer or to the depot. 

Constraints (7.10) and (7.11) impose a restriction that a vehicle cannot travel from a 

backhaul to a linehaul customer and neither can it travel directly from depot to a 

backhaul customer. Inequality (7.12) sets 𝑅𝑖𝑗 as a non-negative variable. Finally, in 

(7.13) the decision variable 𝑥𝑖𝑗𝑘 is set as zero-one variable. 

The validity of the mathematical formulation of the VRPB is checked using the IBM 

ILOG CPLEX 12.5. Hence it was implemented in CPLEX and it proved valid when 

tested on some VRPB benchmark instances.  

Model variants:  

Moreover, the above VRPB formulation can be relaxed from fixed fleet restriction by 

changing the precedence Constraint (7.8) by replacing = to ≤ instead, see (7.14).  

∑ 𝑥0𝑗𝑘 ≤ 1𝑗∈𝐿                                                                 ∀ (𝑘 ∈ 𝐾)           (7.14) 

Furthermore, we can allow backhaul only routes by removing Constraint (7.11) and 

replacing Constraint (7.8) to Constraint (7.15). 

∑ 𝑥0𝑗𝑘 ≤ 1𝑗∈𝐿∪𝐵                                                             ∀ (𝑘 ∈ 𝐾)           (7.15) 
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7.1.2. The Two-Level VNS Algorithm for the VRPB 

In Chapter 5, the VRPB was solved with free fleet (without imposing fixed fleet 

constraint) for the MT-VRPB. As explained in Chapter 3 the classical VRPB is studied 

in the literature mainly with the fixed fleet constraint. Since the MT-VRPB required 

multi-trip aspect this constraint was relaxed. However, here we would like to test if the 

Two-Level VNS algorithm is viable for the VRPB with fixed fleet utilization. Details of 

the implementation are provided in the following subsections.  

 

The Two-Level VNS algorithm is already elaborated in Section 5.2 in detail; for ease, 

here we present the algorithm and its components with any implementation differences 

as shown in Figure 7.1. 

 

Phase I: Initial solution - sweep-first-assignment-second approach 

1. Generate LH and BH open-ended routes using the sweep  

2. Create a distance matrix of end nodes from open-ended routes 

3. Solve the assignment problem by calling CPLEX (see Section 5.2 for 1, 2 & 

3) 

4. Impose fixed fleet utilization steps if required to obtain an initial feasible 

solution 𝑥.  

 

Phase II: Two-Level VNS Algorithm  

   Set: 𝑖𝑡𝑒𝑟 = 1 and  𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 400  

   Repeat the process while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 

Start outer-level 

Let: 𝐿𝑆𝑘
𝑂 =< 𝑅3, 𝑅4, 𝑅5 > set of refinement routines for the outer-level 

Set: 𝑘 = 1  

Repeat the process while 𝑘 ≤ 𝑁𝑘𝑚𝑎𝑥

𝐼  

a.1: Generate a neighbouring solution 𝑥′ ∈ 𝑁𝑘
𝑂(𝑥) at random; 
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a.2: Apply 𝐿𝑆𝑘
𝑂 on neighbouring solution 𝑥′ to improve it 

a.3: Assign the resulting solution 𝑥′ to 𝑥′𝑏𝑒𝑠𝑡  [𝑥′𝑏𝑒𝑠𝑡 = 𝑥′] 

a.4: Start inner-level uses 𝑥′𝑏𝑒𝑠𝑡 

Let:  𝐿𝑆𝑙
𝐼 =< {𝑅1& 𝑅6}, {𝑅2& 𝑅6}, {𝑅3& 𝑅6}, {𝑅4& 𝑅6}, {𝑅5& 𝑅6} > 

Set: 𝑙 = 1  

Repeat the process while 𝑙 ≤ 𝑁𝑙𝑚𝑎𝑥

𝐼  

a.4(1): Generate a neighbouring solution 𝑥′′ ∈ 𝑁𝑙
𝐼(𝑥′𝑏𝑒𝑠𝑡) at random 

a.4(2): Apply  𝐿𝑆𝑙
𝐼 [Multi-Layer local search optimiser framework] on 

the neighbouring solution 𝑥′′  

a.4(3): Assign the resulting solution 𝑥′′ to 𝑥′′𝑏𝑒𝑠𝑡  [𝑥′′𝑏𝑒𝑠𝑡 =  𝑥′′]  

a.4(4): If 𝑥′′𝑏𝑒𝑠𝑡 < 𝑥′𝑏𝑒𝑠𝑡 then 𝑥′𝑏𝑒𝑠𝑡 = 𝑥′′𝑏𝑒𝑠𝑡, set 𝑙 = 1 and got to 

a.4(1) 

Else set 𝑙 = 𝑙 + 1 and got to a.4(1) 

a.5: If 𝑥′𝑏𝑒𝑠𝑡 < 𝑥 then 𝑥 = 𝑥′𝑏𝑒𝑠𝑡; set 𝑘 = 1 and go to a.1 

Else set 𝑘 = 𝑘 + 1 and go to a.1 

Figure 7.1: Algorithmic steps of the Two-Level VNS for VRPB 

Initial solution: (Phase I) 

 

The initial solution for the VRPB is obtained by using the sweep-first-assignment-

second developed for the MT-VRPB in Section 5.2. The sweep phase of the sweep-first-

assignment-second procedure builds sets of open ended LH and BH routes. The LH/BH 

route matrix is then balanced by adding dummy LH/BH routes, if needed, containing 

the depot only, before solving the assignment problem to obtain the optimal matching of 

the combined LH/BH routes. Note that if the solution is not feasible in terms of the 

precedence backhauling constraints (explained in Section 3.1) then it can be amended 

by moving customers among routes before passing it on to the VNS stage of the 

algorithm. However this situation did not arise in solving the instances of the VRPB 
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data sets in this thesis. The initial solution obtained at this stage is feasible for the ‘free 

fleet VRPB’ but not necessarily feasible for the ‘constrained VRPB’ with the condition 

of using a given fixed fleet that must be utilised. Hence, the ‘free fleet VRPB’ initial 

solution is scrutinized for the ‘constrained VRPB’ condition; if the solution is found not 

to be complying with the fixed fleet condition, then a procedure is used to overcome this 

difficulty as follows. 

 

Fixed Fleet utilization procedure: 

 

In the cases where, in a problem instance, the number of routes in the matched sweep-

first-assignment-second solution is less than the given number of vehicles then empty 

dummy vehicle routes equivalent to the unassigned vehicles are added to the solution 

with no extra cost at this stage. And in cases where the number of routes in a problem 

instance solution is greater than the given fleet size then the additional routes (with least 

number of customers) are eliminated by moving customers from those routes and 

feasibly best inserted to other routes of the solution. Note that the process of re-locating 

customers may not be smooth in some cases due to large demands of some customers 

and the vehicle capacity constraints. In the case where such large customers could not 

be feasibly inserted into any of the other routes, then a route with the largest unused 

capacity is selected and some of its customers are moved to other routes before inserting 

the large customer to this route. 
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Neighbourhoods: (Phase II) 

 

The Two-Level VNS algorithm for the VRPB also uses all the six neighbourhoods, 

described in Section 5.3, in the same order. 

Multi-Layer local search optimiser framework: 

The multi-layer local search optimiser framework including the local search 

refinements, described in Section 5.4, are also unchanged for the VRPB in the Two-

Level VNS algorithm. 

 

BPP: The Bin Packing aspect is not needed here and therefore that phase is made void. 

7.1.2.1. Details of the VRPB Computations and the Data sets 

The Two-Level VNS algorithm and the initial solution design are implemented in C++ 

programming within the Microsoft Visual Studio Environment and the experiments 

were executed on a PC with Intel(R) Core(TM) i7-2600 processor, CPU speed 3.40 

GHz. 

VRPB Data sets: 

The computational results are reported for the two commonly used VRPB benchmark 

data sets. The first data set (referred to as data set-2 in this study) was initiated in Toth 

and Vigo (1996, 1997). The second data set (referred to as the data set-3 in this study) 

was introduced in Goetschalckx and Jacobs-Blecha (1989) and Toth and Vigo (1996, 

1997). 
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The date set-2 consisting of 33 instances was generated from 11 classical VRP test 

problems from the literature. These instances range in size between 21 and 100 

customers. Each VRP problem instance was used to generate three VRPB instances, 

each with a linehaul percentage of 50%, 66% and 80%. For further details about the 

instances in data set-2, see Toth and Vigo (1996, 1997 and 1999) and Wassan (2007). 

The data set-3 consists of total 62 instances ranging in size between 25 and 150 

customers with different backhauls percentages of 20%, 33% and 50%. In this data set, 

a uniform distribution of the vertex coordinates is done; where for the 𝑥 values [0, 

24000] interval is used and interval [0, 32000] is used for the 𝑦 values. The coordinates 

[12000, 16000] are used for the depot which is located centrally. For further details 

about the instances in data set-3, see Goetschalckx and Jacobs-Blecha (1989), Toth and 

Vigo (1996, 1997 and 1999) and Wassan (2007). Note that all these data sets can be 

downloaded from CLHO.  

The Two-Level VNS algorithm is run for a fixed number of iterations (i.e., 400 

iterations) to test each VRPB problem instance of the data set-2 and the set-3, which 

was empirically deemed acceptable in terms of solution quality and computational time. 

The algorithm was tested with different number of iterations on data sets and 400 

iterations proved best in terms of solutions quality and computational time. 

Glossary for tables: 

n= Number of total customers in an instances, 

L = Number of linehaul customers, 

B = Number of backhaul customers, 
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v = Fixed fleet, 

C = Vehicle capacity. 

The RPD (Relative Percentage Deviation) is obtained as follows. RPD = (Heuristic 

solution – Best known/Best known)*100. 

7.1.2.2. Two-Level VNS VRPB Results and Analysis  

The Two-Level VNS algorithm produced very competitive results for both data sets 

when compared to the best known solutions from the literature, with an overall average 

relative percentage deviation ARPD (Average Relative Percentage Deviation) of 0.00 

and 0.06 from the best known solution for the set-2 and the set-3, respectively.  

Comparison of the Two-Level VNS with some recent algorithms: 

The performance of our Two-level VNS algorithm is compared with the best algorithms 

from the literature which include RTS-AMP (reactive tabu adaptive memory 

programming search of Wassan, 2007), MACS (multi-ant colony system of Gajpal and 

Abad, 2009), RPA (route promise methodology of Zachariadis and Kiranoudis, 2012) 

and ILS (iterated local search algorithm of Cuervo et al., 2014). Table 7.1 shows the 

information about some of the recent algorithms including the Two-Level VNS and their 

corresponding number of runs used in our comparisons. 

It may not be possible to conduct a fair comparison of the algorithms with different 

number of runs, as the execution times for each run, different machines, etc. may differ. 

Nevertheless, we shall present results with basic explanation of the variations. 
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Table 7.1: Processor used and the number of runs for the published algorithms and the 

proposed Two-Level VNS 
 

Algorithm Processor Runs 

RTS-AMP: Wassan (2007) 50 MHz. Sun Sprac1000 5 

MACS: Gajpal and Abad (2009) 2.40 GHz. Intel Xeon 8 

RPA: Zachariadis and Kiranoudis (2012) 1.66 GHz. Intel Core 2 duo 10 

ILS: Cuervo et al. (2014) 2.93 GHz. Intel Core i7 10 

Two-Level VNS/CSMH  3.40 GHz. Intel Core i7 5/1 

 

The performance analysis summaries of these algorithms for the data set-2 and the data 

set-3 are provided in Table 7.2 and Table 7.3 respectively. The columns in both tables 

show the number of best known matched solutions, the average solution cost, the 

overall average of the relative percentage deviations (RPD) from the best known 

solutions and the average execution time taken by each algorithm. It can be observed 

from the average results that the Two-Level VNS algorithm is very competitive when 

compared to the best existing algorithms. For data set-2, the Two-Level VNS 

outperformed two of the algorithms in terms of the number of best known solutions 

found and matched with the ILS (2014). For data set-3, it finds very good solutions as 

compared to RTS-AMP (2007) and MACS (2009); however RPA (2012) and ILS 

(2014) find the maximum number of best known solutions. The detailed results of the 

Two-Level VNS vs the best known solutions are provided in Table 7.4 and Table 7.5 for 

the set-2 and the set-3, respectively. We can fairly claim that the proposed Two-Level 

VNS is an efficient and flexible enough performer that competes favourably against the 

powerful meta-heuristics that were specifically proposed for such particular problem. 
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Table 7.2: Comparison of the best VRPB algorithms with Two-Level VNS (data set-2) 

Algorithm Runs 
# Best sol. 

(out of 33) 

Avg. best sol. 

Cost 
Avg. RPD 

Avg. time 

(s) 

RTS-AMP (2007) 5 21 706.49 0.80 608.11 

MACS (2009) 8 28 701.49 0.09 25.65 

RPA (2012) - - - - - 

ILS (2014) 10 33 700.63 0.00 7.35 

Two-Level VNS 5 33 700.63 0.00 29.29 

 

 

Table 7.3: Comparison of the Two-Level VNS with the best algorithms (data set-3) 

Algorithm Runs 
# Best sol. 

(out of 62) 

Avg. best sol. 

Cost 
Avg. RPD 

Avg. time 

(s) 

RTS-AMP (2007) 5 40 290981.84 0.11 1835.98 

MACS (2009) 8 46 290838.73 0.07 67.57 

RPA (2012) 10 62 290576.06 0.00 246.89 

ILS (2014) 10 62 290576.22 0.00 22.89 

Two-Level VNS 5 51 290796.24 0.06 43.24 
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Table 7.4: Detailed results of the Two-Level VNS vs the Best-known (data set-2) 

Name n L B v C Best 

Known 

Two-Level 

VNS 

RPD 

      

  

 eil22_50 21 11 10 3 6000 371 371 0.00 

eil22_66 21 14 7 3 6000 366 366 0.00 

eil22_80 21 17 4 3 6000 375 375 0.00 

         eil23_50 22 11 11 2 4500 682 682 0.00 

eil23_66 22 15 7 2 4500 649 649 0.00 

eil23_80 22 18 4 2 4500 623 623 0.00 

         eil30_50 29 15 14 2 4500 501 501 0.00 

eil30_66 29 20 9 3 4500 537 537 0.00 

eil30_80 29 24 5 3 4500 514 514 0.00 

         eil33_50 32 16 16 3 8000 738 738 0.00 

eil33_66 32 22 10 3 8000 750 750 0.00 

eil33_80 32 26 6 3 8000 736 736 0.00 

         eil51_50 50 25 25 3 160 559 559 0.00 

eil51_66 50 34 16 4 160 548 548 0.00 

eil51_80 50 40 10 4 160 565 565 0.00 

         eilA76_50 75 37 38 6 140 739 739 0.00 

eilA76_60 75 50 25 7 140 768 768 0.00 

eilA76_80 75 60 15 8 140 781 781 0.00 

         eilB76_50 75 37 38 8 100 801 801 0.00 

eilB76_66 75 50 25 10 100 873 873 0.00 

eilB76_80 75 60 15 12 100 919 919 0.00 

         eilC76_50 75 37 38 5 180 713 713 0.00 

eilC76_66 75 50 25 6 180 734 734 0.00 

eilC76_80 75 60 15 7 180 733 733 0.00 

         eilD76_50 75 37 38 4 220 690 690 0.00 

eilD76_66 75 50 25 5 220 715 715 0.00 

eilD76_80 75 60 15 6 220 694 694 0.00 

         eilA101_50 100 50 50 4 200 831 831 0.00 

eilA101_66 100 67 33 6 200 846 846 0.00 

eilA101_80 100 80 20 6 200 856 856 0.00 

         eilB101_50 100 50 50 7 112 923 923 0.00 

eilB101_66 100 67 33 9 112 983 983 0.00 

eilB101_80 100 80 20 11 112 1008 1008 0.00 
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Table 7.5: Detailed results of the Two-Level VNS vs the Best-known (data set-3) 

Name n L B C v Best known 

Solution 

Two-level VNS 

Solution 

RPD 

A1 25 20 5 1550 8 229885.65 229885.65 0.00 

A2 25 20 5 2550 5 180119.21 180119.21 0.00 

A3 25 20 5 4050 4 163405.38 163405.38 0.00 

A4 25 20 5 4050 3 155796.41 155796.41 0.00 

B1 30 20 10 1600 7 239080.16 239080.16 0.00 

B2 30 20 10 2600 5 198047.77 198047.77 0.00 

B3 30 20 10 4000 3 169372.29 169372.29 0.00 

C1 40 20 20 1800 7 250556.77 250556.77 0.00 

C2 40 20 20 2600 5 215020.23 215020.23 0.00 

C3 40 20 20 4150 5 199345.96 199345.96 0.00 

C4 40 20 20 4150 4 195366.63 195366.63 0.00 

D1 38 30 8 1700 12 322530.13 322530.13 0.00 

D2 38 30 8 1700 11 316708.86 316708.86 0.00 

D3 38 30 8 2750 7 239478.63 239478.63 0.00 

D4 38 30 8 4075 5 205831.94 205831.94 0.00 

E1 45 30 15 2650 7 238879.58 238879.58 0.00 

E2 45 30 15 4300 4 212263.11 212263.11 0.00 

E3 45 30 15 5225 4 206659.17 206659.17 0.00 

F1 60 30 30 3000 6 263173.96 263173.96 0.00 

F2 60 30 30 3000 7 265214.16 265214.16 0.00 

F3 60 30 30 4400 5 241120.78 241120.78 0.00 

F4 60 30 30 5500 4 233861.85 233861.85 0.00 

G1 57 45 12 2700 10 306305.40 306305.40 0.00 

G2 57 45 12 4300 6 245440.99 245440.99 0.00 

G3 57 45 12 5300 5 229507.48 229507.48 0.00 

G4 57 45 12 5300 6 232521.25 232521.25 0.00 

G5 57 45 12 6400 5 221730.35 221730.35 0.00 

G6 57 45 12 8000 4 213457.45 213457.45 0.00 

H1 68 45 23 4000 6 268933.06 268933.06 0.00 

H2 68 45 23 5100 5 253365.50 253365.50 0.00 

H3 68 45 23 6100 4 247449.04 247449.04 0.00 

H4 68 45 23 6100 5 250220.77 250220.77 0.00 

H5 68 45 23 7100 4 246121.31 246121.31 0.00 

H6 68 45 23 7100 5 249135.32 249135.32 0.00 

I1 90 45 45 3000 10 350245.28 350245.28 0.00 

I2 90 45 45 4000 7 309943.84 309943.84 0.00 

I3 90 45 45 5700 5 294507.38 294507.38 0.00 

I4 90 45 45 5700 6 295988.45 295988.45 0.00 

I5 90 45 45 5700 7 301236.01 301236.01 0.00 

J1 94 75 19 4400 10 335006.68 335006.68 0.00 

J2 94 75 19 5600 8 310417.21 310417.21 0.00 

J3 94 75 19 8200 6 279219.21 279219.21 0.00 

J4 94 75 19 6600 7 296533.16 296533.16 0.00 

K1 113 75 38 4100 10 394071.17 394375.63 0.08 

K2 113 75 38 5200 8 362130.00 362130.00 0.00 

K3 113 75 38 5200 9 365694.08 365694.08 0.00 

K4 113 75 38 6200 7 348949.39 348949.39 0.00 

L1 150 75 75 4400 10 417896.72 417943.82 0.01 

L2 150 75 75 5000 8 401228.80 401228.80 0.00 

L3 150 75 75 5000 9 402677.72 403639.75 0.24 

L4 150 75 75 6000 7 384636.33 384636.33 0.00 

L5 150 75 75 6000 8 387564.55 387564.55 0.00 

M1 125 100 25 5200 11 398593.19 398869.79 0.07 

M2 125 100 25 5200 10 396916.97 397786.41 0.22 

M3 125 100 25 6200 9 375695.42 377315.94 0.43 

M4 125 100 25 8000 7 348140.16 348140.16 0.00 

N1 150 100 50 5700 11 408100.62 408100.62 0.00 

N2 150 100 50 5700 10 408065.44 408111.91 0.01 

N3 150 100 50 6600 9 394337.86 397621.99 0.83 

N4 150 100 50 6600 10 394788.36 398330.35 0.90 

N5 150 100 50 8500 7 373476.30 373723.37 0.07 

N6 150 100 50 8500 8 373758.65 376200.31 0.65 
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7.1.3. Solving the VRPB with Mat-heuristic (CSMH algorithm) 

The CSMH algorithm methodology proposed in Chapter 6 is adapted for the VRPB. 

Here, as explained in Section 7.1.2, the initial solution is generated and the fixed fleet 

constraint is imposed in Phase I of the algorithm. In Phase II, the Two-Level VNS is 

used first to obtain the best solution (note that Phase II is run single time) followed by 

Phase III where VRPB mathematical formulation model that uses CPLEX optimiser is 

used (replacing the MT-VRPB formulation implemented in Chapter 6) to obtain the 

optimal or improved incumbent solution. 

Computational experience 

The CSMH methodology is implemented with the same programming language and the 

computer specifications as in Chapter 6. 

The computational experiments are reported for two VRPB data sets (i.e., see set-2 and 

the set-3, see Section 7.1.2.1). For each instance the CSMH algorithm is run for a 

maximum CPU time of 2 hours (7200 seconds) for all the three phases. Since the Two-

Level VNS is fairly quick, within this time, the Phase II is run for 200 iterations. Note 

that the Two-Level VNS is run one time before the CPLEX optimiser is called. 

Glossary for tables: 

VNS Sol. = Solution obtained by Two-Level VNS, 

Opt. Sol. = Optimal solution, 

Incum. Sol. = Incumbent solution, 

UB = Upper Bound, 

LB = Lower Bound, 



182 

 

%Gap = % gap between optimal/incumbent solution and lower bound, 

Time (s) = CPU time in seconds taken to reach the solution. 

7.1.3.1. CSMH VRPB Results and Analysis 

The CSMH algorithm performed well and produced very competitive results for both 

data sets. When compared with the best known solutions from the literature, it produced 

results with overall ARPB of 0.06 and 0.09 for the set-2 and the set-3, respectively. 

Comparison of the CSMH with the Two-Level VNS and some recent algorithms: 

The performance of the CSMH algorithm is compared with the Two-Level VNS 

algorithm as well as some best published algorithms described earlier. Please see Table 

7.1 for the Processor information for the algorithms compared below; for CSMH 

algorithm same machine is used as of Two-Level VNS. The performance analysis 

summaries of these algorithms for the data set-2 and the data set-3 are provided in Table 

7.6 and Table 7.7 respectively. The columns in both tables show the number of runs the 

respective algorithms were executed, the number of best known matched solutions, the 

average solution cost, the overall average of the relative percentage deviations (RPD) 

from the best known solutions and the average execution time taken by each algorithm.  

Table 7.6: Comparison of the CSMH with the Two-Level VNS and the best VRPB 

algorithms in the literature (data set-2) 

Algorithm Runs 
# Best sol. 

(out of 33) 

Avg. best sol. 

Cost 
Avg. RPD 

Avg. time 

(s) 

RTS-AMP (2007) 5 21 706.49 0.80 608.11 

MACS (2009) 8 28 701.49 0.09 25.65 

RPA (2012) - - - - - 

ILS (2014) 10 33 700.63 0.00 7.35 

Two-Level VNS 5 33 700.63 0.00 29.29 

CSMH 1 29 701.18 0.06 3728.52 
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Table 7.7: Comparison of the CSMH with the Two-Level VNS and the best VRPB 

algorithms in the literature (data set-3) 

Algorithm Runs # Best sol. (out 

of 62) 

Avg. best sol. 

Cost 

Avg. RPD Avg. time 

(s) 

RTS-AMP (2007) 5 40 290981.84 0.11 1835.98 

MACS (2009) 8 46 290838.73 0.07 67.57 

RPA (2012) 10 62 290576.06 0.00 246.89 

ILS (2014) 10 62 290576.22 0.00 22.89 

Two-Level VNS 5 51 290796.24 0.06 43.24 

CSMH 1 48 290908.31 0.09 5735.73 

 

Despite the fact that the CSMH algorithm was designed for MT-VRPB, it has produced 

encouraging results in terms of solution quality when implemented on the VRPB. Since 

the results of the best published algorithms are reported from several different runs, it is 

not straight forward to compare the solution quality results. The CSMH however spends 

comparatively more time which is due to the fact that the algorithm incorporates both 

heuristic and MP aspects. For data set-2, the CSMH algorithm outperformed two of the 

algorithms in terms of the number of best known solutions found; however it did not 

perform better than Two-Level VNS and ILS (2014). For data set-3, it finds better 

solutions when compared with the RTS-AMP (2007) and MACS (2009); however RPA 

(2012), ILS (2014) and Two-Level VNS produced the maximum number of best known 

solutions. In our opinion relatively inferior performance of the CSMH is due to the 

fixed fleet imposition constraint of the classical VRPB. The detailed results of the 

CSMH algorithm are provided in Table 7.8 and Table 7.9 for the set-2 and the set-3, 

respectively. 
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Table 7.8: Detailed results of the CSMH algorithm (data set-2) 

          Name CSMH Algorithm 

VNS 

Sol. 

Opt. 

Sol. 

Incum. 

Sol. 

UB LB %Gap Time (s) 

eil22_50 371 371 - 371.0000 371.0000 0.00% 1 

eil22_66 366 366 - 366.0000 356.3833 2.63% 1 

eil22_80 375 375 - 375.0000 356.0640 5.05% 12 

                

eil23_50 682 682 - 682.0000 665.3576 2.44% 2 

eil23_66 649 649 - 649.0000 622.8153 4.03% 2 

eil23_80 623 623 - 623.0000 590.8078 5.17% 4 

                

eil30_50 501 501 - 501.0000 501.0000 0.00% 4 

eil30_66 537 537 - 537.0000 511.3064 4.78% 122 

eil30_80 514 514 - 514.0000 492.2562 4.23% 43 

                

eil33_50 738 738 - 738.0000 732.4866 0.75% 5 

eil33_66 750 750 - 750.0000 734.0343 2.13% 8 

eil33_80 736 736 - 736.0000 719.3315 2.26% 95 

                

eil51_50 560 559 - 559.0000 548.4229 1.89% 119 

eil51_66 551 548 - 548.0000 540.4508 1.38% 531 

eil51_80 574 565 - 565.0000 553.9328 1.96% 5820 

                

eilA76_50 741 739 - 739.0000 725.4580 1.83% 6733 

eilA76_60 773 768 - 768.0000 755.4523 1.63% 5643 

eilA76_80 781 - 781 781.0000 738.9720 5.38% 7200 

                

eilB76_50 811 - 801 801.0000 764.4242 4.57% 7200 

eilB76_66 873 - 873 873.0000 808.7466 7.36% 7200 

eilB76_80 919  - 919 919.0000 869.3950 5.40% 7200 

                

eilC76_50 713 - 713 713.0000 684.8103 3.95% 7200 

eilC76_66 734 - 734 734.0000 708.3127 3.50% 7200 

eilC76_80 733 - 733 733.0000 703.4388 4.03% 7200 

                

eilD76_50 690 690  - 690.0000 687.1383 0.41% 210 

eilD76_66 717 715 - 715.0000 713.8488 0.16% 7200 

eilD76_80 696 - 696 696.0000 684.4152 1.66% 7200 

                

eilA101_50 832 - 832 832.0000 808.6934 2.80% 7200 

eilA101_66 846 846 - 846.0000 843.7409 0.27% 2886 

eilA101_80 868 - 868 868.0000 828.4039 4.56% 7200 

                

eilB101_50 923 - 923 923.0000 870.2547 5.71% 7200 

eilB101_66 983 - 983 983.0000 920.6677 6.34% 7200 

eilB101_80 1011 - 1011 1011.0000 959.1865 5.12% 7200 
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Table 7.9: Detailed results of the CSMH algorithm (data set-3) 

  

Name 

CSMH Algorithm 

VNS Sol. Opt. Sol. Incum. 

Sol. 

UB LB %Gap Time 

(s) 

A1 229885.65 229885.65 - 229885.65 228283.70 70% 102 

A2 180119.21 180119.21 - 180119.21 176777.94 1.86% 14 

A3 163405.38 163405.38 - 163405.38 158778.00 2.83% 6 

A4 155796.41 155796.41 - 155796.41 151444.26 2.79% 4 

                

B1 239080.16 - 239080.16 239080.16 231751.67 3.07% 7200 

B2 198048.77 198048.77 - 198048.77 193238.26 2.43% 14 

B3 169372.29 169372.29 - 169372.29 163685.22 3.36% 4 

                

C1 350556.77 - 350556.77 350556.77 228042.37 8.99% 7200 

C2 215020.23 - 215020.23 215020.23 209339.42 2.64% 7200 

C3 199345.96 199345.96 - 199345.96 192.398.7666 3.48% 38 

C4 195366.63 195366.63 - 195366.63 188064.16 3.74% 36 

                

D1 322530.13 - 322530.13 322530.13 303851.93 5.79% 7200 

D2 316708.86 - 316708.86 316708.86 290715.54 8.21% 7200 

D3 239478.63 - 239478.63 239478.63 223393.60 6.72% 7200 

D4 205831.94 - 205831.94 205831.94 192434.94 6.51% 7200 

                

E1 238879.58 - 238879.58 238879.58 134351.75 1.88% 7200 

E2 212263.11 - 212263.11 212263.11 206621.09 2.66% 7200 

E3 206659.17 206659.17 - 206659.17 206054.83 0.29% 1105 

                

F1 263173.96 - 263173.96 263173.96 245312.54 6.79% 7200 

F2 265214.16 - 265214.16 265214.16 254872.20 3.90% 7200 

F3 241120.78 241120.78 - 241120.78 240850.28 0.11% 541 

F4 233861.85 233861.85 - 233861.85 233425.32 0.19% 466 

                

G1 306305.40   306305.40 306305.40 282699.98 7.71% 7200 

G2 245440.99 - 245440.99 245440.99 235855.88 3.90% 7200 

G3 229507.48 - 229507.48 229507.48 218424.98 4.83% 7200 

G4 232521.25 - 232521.25 232521.25 220434.50 5.20% 7200 

G5 221730.35 - 221730.35 221730.35 213122.77 3.88% 7200 

G6 213457.45 - 213457.45 213457.45 208343.07 2.40% 7200 

                

H1 268933.06 - 268933.06 268933.06 260229.68 3.24% 7200 

H2 253365.50 253365.50 - 253365.50 252543.17 0.32% 318 

H3 247449.04 - 247449.04 247449.04 241010.73 2.60% 7200 

H4 250220.77 - 250220.77 250220.77 239860.25 4.14% 7200 

H5 264121.31 264121.31 - 264121.31 264121.31 0.00% 167 
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Name 

CSMH Algorithm 

VNS Sol. Opt. Sol. Incum. 

Sol. 

UB LB %Gap Time 

(s) 

H6 249135.32 - 249135.32 249135.32 241378.92 3.11% 7200 

                

I1 350567.90 - 350567.90 350567.90 333096.41 4.98% 7200 

I2 309943.84 - 309943.84 309943.84 295645.55 4.61% 7200 

I3 294833.96 - 294833.96 294833.96 285108.39 3.30% 7200 

I4 295988.45 - 295988.45 295988.45 292129.46 1.30% 7200 

I5 301236.01 301236.01 - 301236.01 300857.61 0.13% 7200 

                

J1 335006.68 - 335006.68 335006.68 315165.06 5.93% 7200 

J2 310417.21 - 310417.21 310417.21 288343.42 7.11% 7200 

J3 279219.21 - 279219.21 279219.21 271760.64 2.67% 7200 

J4 296533.16 - 296533.16 296533.16 277765.14 6.33% 7200 

                

K1 294071.17 - 294071.17 294071.17 376498.69 4.46% 7200 

K2 362360.27 - 362360.27 362360.27 329756.80 9.00% 7200 

K3 365694.08 - 365694.08 365694.08 328565.66 10.15% 7200 

K4 348949.39 - 348949.39 348949.39 323025.60 7.43% 7200 

                

L1 417896.71 - 417896.71 417896.71 375739.91 10.09% 7200 

L2 401228.80 - 401228.80 401228.80 360280.26 10.21% 7200 

L3 406873.02 - 406873.02 406873.02 358571.33 11.87% 7200 

L4 385615.90   385615.90 385615.90 347057.31 10.00% 7200 

L5 387564.55   387564.55 387564.55 345160.55 10.94% 7200 

                

M1 399070.20 - 399070.20 399070.20 372952.55 6.54% 7200 

M2 400293.41   400293.41 400293.41 373797.02 6.62% 7200 

M3 378921.05 - 378921.05 378921.05 337888.52 10.83% 7200 

M4 348437.62 - 348437.62 348437.62 315738.45 9.38% 7200 

                

N1 408100.62   408100.62 408100.62 369544.69 9.45% 7200 

N2 409255.06 - 409255.06 409255.06 391009.37 4.46% 7200 

N3 394337.86   394337.86 394337.86 353570.42 10.34% 7200 

N4 394788.36   394788.36 394788.36 357078.74 9.55% 7200 

N5 375100.10   375100.10 375100.10 329286.79 12.21% 7200 

N6 378103.04   378103.04 378103.04 335022.98 11.39% 7200 
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7.2. The case of the MT-VRP 

The MT-VRP is already explained along with the literature review in Chapters 2 and 3. 

In this section we adapt our approaches developed in Chapters 4, 5 & 6 to solve the MT-

VRP.  

7.2.1. Formulation of the Basic Case 

The MT-VRP formulation is adapted from our MT-VRPB formulation presented in 

Chapter 4. This is a three-indexed commodity flow formulation. Before this Mingozzi at 

el. (2013) provided two set partitioning based formulations for their proposed exact 

methodologies for the MT-VRP. 

Notations: 

Sets 

{0} the depot (single depot) 

L the set of customers 

𝐾 the set of vehicles 

Input Variables 

𝑑𝑖𝑗 the distance between customers 𝑖 and 𝑗 (𝑖 ∈ {0} ∪ 𝐿, 𝑗 ∈ {0} ∪ 𝐿) 

𝑞𝑖 the demand of customer 𝑖  

Other Parameters 

𝐶 vehicle capacity 

𝑇 planning period (maximum driving time)  
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Decision Variables  

𝑥𝑖𝑗𝑘 = {
 1, if vehicle 𝑘 travels from location 𝑖 directly to location 𝑗;            
0, otherwise                                                                                                 

 

𝑅𝑖𝑗  =      is the amount of goods on board on arc 𝑖𝑗 

Minimise Z = ∑    ∑    ∑    𝑑𝑘∈𝐾 𝑖𝑗
𝑥𝑖𝑗𝑘𝑗∈{0}∪𝐿𝑖∈{0}∪𝐿                (7.16) 

Subject to ∑ ∑ 𝑥𝑗𝑖𝑘𝑘∈𝐾 = 1𝑗∈{0}∪𝐿                                       𝑖 ∈ 𝐿                        (7.17) 

  ∑ ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 = 1𝑗∈{0}∪𝐿                                       𝑖 ∈ 𝐿                       (7.18) 

  ∑ 𝑥𝑗𝑖𝑘𝑗∈{0}∪𝐿 = ∑ 𝑥𝑖𝑗𝑘𝑗∈{0}∪𝐿                          𝑖 ∈ 𝐿, ∀ 𝑘 ∈ 𝐾               (7.19) 

  ∑ 𝑅𝑖𝑗 − 𝑞𝑗𝑖∈{0}∪𝐿 = ∑ 𝑅𝑗𝑖𝑖∈{0}∪𝐿                       𝑗 ∈ 𝐿              (7.20) 

  𝑅𝑖𝑗  ≤ 𝐶 ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾                                 𝑖 ∈ 𝐿, 𝑗 ∈ 𝐿; ∀ 𝑘 ∈ 𝐾              (7.21) 

  ∑ ∑ 𝑑𝑖𝑗𝑗∈{0}∪𝐿𝑖∈{0}∪𝐿 𝑥𝑖𝑗𝑘 ≤ 𝑇                          ∀  𝑘 ∈ 𝐾             (7.22) 

  𝑅𝑖𝑗 ≥ 0                                                     𝑖 ∈ {0} ∪ 𝐿, 𝑗 ∈ 𝐿             (7.23) 

  𝑥𝑖𝑗𝑘 = 0,1                                       
        𝑖 ∈ {0} ∪ 𝐿, 𝑗 ∈ {0} ∪ 𝐿

𝑘 ∈  𝐾
          (7.24) 

Equation (7.16) illustrates the objective function representing the total distance 

travelled. Constraints (7.17) and (7.18) ensure that every customer is served exactly 

once (every customer has an incoming arc and every customer has an outgoing arc). 

Constraint (7.19) states that the number of times vehicle 𝑘 enters into customer 𝑖 is the 

same as the number of times it leaves customer 𝑖. The vehicle load variation on a route 

is ensured by Constraints (7.20). Inequalities (7.21) and (7.22) impose the maximum 
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vehicle capacity constraint and the maximum working day period constraints in which a 

vehicle is allowed to serve the routes respectively. Inequality (7.23) sets 𝑅𝑖𝑗 as a non-

negative variable. Finally, in (7.24) the decision variable 𝑥𝑖𝑗𝑘 is set as zero-one variable. 

The validity of the mathematical formulation of the MT-VRP is checked using the IBM 

ILOG CPLEX 12.5. Hence it was implemented in CPLEX and it proved valid when 

tested on some MT-VRP benchmark instances from the literature.  

7.2.2. The Two-Level VNS methodology for the MT-VRP 

In Chapter 5, the MT-VRP was extended and solved with backhauling aspect. However, 

as explained in the review of Chapter 4 the classical MT-VRP is studied independently 

in the literature. Here, we would like to test if the Two-Level VNS algorithm is viable for 

the MT-VRP. Details of the implementation are provided in the following subsections.  

The Two-Level VNS algorithm is already elaborated in Section 5.1.1 in detail but for 

completeness here we present its steps while emphasising on any implementation 

differences. 

Phase I: Initial solution – sweep approach 

 Generate an initial solution 𝑥 using the sweep method (see Section 5.2) 

 Apply the following refinement routines in a sequential order to improve the 

initial solution 𝑥 and then go to Phase II 

 

 1-Insertion_intra_route (𝑥) 

 1-Insertion_inter_route (𝑥) 

 Swap_1_1 (𝑥) 

 Swap_2_2 (𝑥) 

 Shift_2_0 (𝑥) 
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 Swap_2_1 (𝑥) 

 (see Section 5.3 for all refinement routines in Phase I) 

 

Phase II: Two-Level VNS Algorithm  

Initialize the solution pool data structure 𝑆𝑝 and add the initial solution 𝑥 to 𝑆𝑝, 

Set: 𝑖𝑡𝑒𝑟 = 1 and  𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 200  

Repeat the process while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 

Start outer-level 

Let: 𝐿𝑆𝑘
𝑂 =< 𝑅3, 𝑅4, 𝑅5 > set of refinement routines for the outer-level 

Set: 𝑘 = 1  

Repeat the process while 𝑘 ≤ 𝑁𝑘𝑚𝑎𝑥

𝐼  

a.1: Generate a neighbouring solution 𝑥′ ∈ 𝑁𝑘
𝑂(𝑥) at random; 

a.2: Apply 𝐿𝑆𝑘
𝑂 on the neighbouring solution 𝑥′  

a.3: Assign the resulting solution 𝑥′ to 𝑥′𝑏𝑒𝑠𝑡  [𝑥′𝑏𝑒𝑠𝑡 = 𝑥′] 

a.4: Start inner-level using 𝑥′𝑏𝑒𝑠𝑡 

Let:  𝐿𝑆𝑙
𝐼 =< {𝑅1& 𝑅6}, {𝑅2& 𝑅6}, {𝑅3& 𝑅6}, {𝑅4& 𝑅6}, {𝑅5& 𝑅6} > 

Set: 𝑙 = 1  

Repeat the process while 𝑙 ≤ 𝑁𝑙𝑚𝑎𝑥

𝐼  

a.4(1): Generate a neighbouring solution 𝑥′′ ∈ 𝑁𝑙
𝐼(𝑥′𝑏𝑒𝑠𝑡) at random 

a.4(2): Apply  𝐿𝑆𝑙
𝐼 [Multi-Layer local search optimiser framework] 

on the neighbouring solution 𝑥′′  

a.4(3): Assign the resulting solution 𝑥′′ to 𝑥′′𝑏𝑒𝑠𝑡  [𝑥′′𝑏𝑒𝑠𝑡 =  𝑥′′]  

a.4(4): If 𝑥′′𝑏𝑒𝑠𝑡 < 𝑥′𝑏𝑒𝑠𝑡 then 𝑥′𝑏𝑒𝑠𝑡 = 𝑥′′𝑏𝑒𝑠𝑡, set 𝑙 = 1 got to a.4(1) 

Else set 𝑙 = 𝑙 + 1 and got to a.4(1) 

a.5:  If 𝑥′𝑏𝑒𝑠𝑡 < 𝑥 then 𝑥 = 𝑥′𝑏𝑒𝑠𝑡; 𝑆𝑝 = 𝑥, set 𝑘 = 1 and go to a.1 

Else set 𝑘 = 𝑘 + 1 and go to a.1 

Phase III: Solving the Multiple Trips aspect using the BPP 

Initialize an special 3-dimentional data structure 𝑆𝑜𝑙𝑘 and let 𝑆𝑜𝑙𝑚𝑎𝑥 

number of solutions stored in 𝑆𝑝 and Let 𝑖𝑡𝑒𝑟𝐵𝑀𝑚𝑎𝑥 = 5. 

Set: 𝑖𝑡𝑒𝑟𝑆𝑜𝑙 = 1  
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Repeat the process while 𝑖𝑡𝑒𝑟𝑆𝑜𝑙 ≤ 𝑆𝑜𝑙𝑚𝑎𝑥  

Step1. Solve the BPP for solution p using CPLEX optimiser (𝑝 =

1, … , 𝑆𝑜𝑙𝑚𝑎𝑥) 

Step2. If solution p is feasibly packed then go to Step4 

Else, go to Step3 

Step3. Apply the Bisection Method  to optimise the bin capacity   

   Set: 𝑖𝑡𝑒𝑟𝐵𝑀 = 1  

   Repeat the process while 𝑖𝑡𝑒𝑟𝐵𝑀 ≤ 𝑖𝑡𝑒𝑟𝐵𝑀𝑚𝑎𝑥  

   Step3.(1): Use the Bisection Method  

   Step3.(2): Solve the BPP for solution p using CPLEX optimiser 

    

Step4. Store the solution in the special data structure 𝑆𝑜𝑙𝑘 according to 

what routes are served by which bins (vehicles) 

Figure 7.2: Algorithmic steps of the Two-Level VNS for the MT-VRP 

Initial solution: (Phase I) 

 

The initial solution for the MT-VRP is obtained by using the sweep procedure of Gillet 

and Miller (1974) clockwise as explained in Section 5.2 of Chapter 5. An illustrative 

example of our sweep implementation is shown in Figure 7.3. Moreover, we have used 

all six local search refinement routines is sequence in order to improve the initial 

solution before passing it to Phase II. 

 

Neighbourhoods: (Phase II) 

 

We have used in total six neighbourhoods in order to generate the neighbouring 

solutions for the MT-VRP. The neighbourhoods are implemented in the same manner 

and are kept in the same order without any significant changes as explained in Chapter 
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5. To show how the MT-VRP neighbourhood moves are conducted without backhauls, 

we provide their respective graphs in Figure 7.4 as illustrations. When using these 

neighbourhoods for the MT-VRP, they are allowed to move customer/customers from 

one route to another route and end-up emptying the route. This is allowed if it leads to a 

feasible solution since there is no fixed fleet constraint or feasibility issues in terms of 

the types of customers as in the VRPB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             
 

 

 

 

               Customers           

Figure 7.3: An illustrative example of the sweep procedure for the MT-VRP 

 

 

 

 

 

 

 

 

 

Depot 
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1-Insertion (intra-route)refinement routine

 
 

1-Insertion (intra-route)refinement routine 

 

1-1 Swap refinement routine 

 
 

2-2 Swap refinement routine 

 

2-0 Shift refinement routine 

 
 

2-1 Swap refinement routine 

 

Figure 7.4: Illustration of all the refinement routines implemented for the MT-VRP 
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The Multi-Layer local search optimiser framework: 

The framework structure used in the MT-VRPB in Chapter 5 and in the VRPB in this 

chapter remained unchanged for the MT-VRP. However, the neighbourhood moves are 

more freely conducted here due to the fact that the MT-VRP is much less constrained 

than the MT-VRPB and the VRPB. Since the MT-VRP has no backhauling and/or fixed 

fleet utilization constraints, for example, while conducting these neighbourhood moves 

during the search process a vehicle can be emptied due to result of shifting all customers 

from one route to other routes given that the resulting solution is better. 

BPP implementation: (Phase III) 

The Bin Packing process is implemented exactly as in the MT-VRPB (see Section 5.5) 

and the BPP is solved first followed by the Bisection Method to optimise the bin 

(vehicle) capacity. 

7.2.2.1. Details of MT-VRP Computations and the Data sets 

The Two-Level VNS algorithm for the MT-VRP is implemented in the same 

programming language and the computer specifications as in Chapter 5. 

The Two-Level VNS algorithm is tested on data set-4 using a fixed number of 200 

iterations, which was experimentally found to be acceptable in terms of solution quality 

and the computational time affordability. 

MT-VRP Data set:  

The computational experiments are reported for the most studied MT-VRP benchmark 

data set proposed in Taillard et al. (1996). This data set is referred to as data set-4 in this 



195 

 

study. The data set-4 was generated from nine VRP problems 1-5 and 11-12 of 

Christofides, Mingozzi and Toth (1979) and 11-12 VRP problems of Fisher (1994). For 

the data set-4 Taillard et al. (1996) used the same graphs, demands and vehicle 

capacities given in the VRP nine base problems. The authors have generated 104 sub-

problems in total by applying different values of 𝑚 (where  𝑚 is the number of vehicles, 

(i.e. 1,…,4), starting with an integer between one and the maximum number of vehicles) 

and 𝑇 (where 𝑇 is a maximum driving time). Moreover two values of 𝑇 are used as, 𝑇1 

and 𝑇2 for each value of 𝑚 (vehicles). The values of 𝑇1 and 𝑇2 are calculated as follows. 

𝑇1 = [1.05 𝑧∗/𝑚] and 𝑇2 = [1.1 𝑧∗/𝑚] rounded to nearest integer, where 𝑧∗  represents 

the VRP solution with unlimited number of vehicles used in Rochat and Taillard (1995). 

Moreover, a penalty factor 𝜃 = 2 is associated with all routes whose length violates the 

maximum driver time 𝑇. This specifies that the driver overtime is penalized in this data 

set. 

Moreover, the set-4 is divided in three groups (G1, G2 and G3) in the literature. The G1 

consists of 42 instances for which optimal solutions are known, whereas G2 consists of 

56 instances for which feasible (solutions where no overtime is used) solutions are 

reported and finally G3 consist of 5 non-feasible (instances for which overtime is used) 

solutions are reported. 

7.2.2.2. Two-Level VNS MT-VRP Results and Analysis 

The Two-Level VNS algorithm produced very competitive results for the MT-VRP (in 

terms of the solution quality and the computational speed) for data set 4 when compared 

with the best known solutions from the literature despite the fact that the proposed 

algorithm was originally designed for the MT-VRPB. The detailed results are provided 
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in Table 7.10, Table 7.11 and Table 7.12 for G1, G2 and G3, respectively; and the time 

comparison as shown in Table 7.13. 

Comparison of the Two-Level VNS with some best metaheuristic algorithms: 

The performance of the Two-Level VNS algorithm is compared with some well-known 

algorithms published in literature which provide detailed solutions for all the groups. 

The studies that are included in our comparisons are MRT (exact algorithm of Mingozzi 

et al., 2013); GA (genetic algorithm based heuristic of Salhi and Petch, 2007) and MA 

and MA+CLS (memetic algorithms of Cattaruzza et al., 2014a). 

For G1 group of instances (Table 7.10), the MRT produced all 42 optimal solutions. 

The Two-Level VNS algorithm remained very competitive, in terms of the solution 

quality (i.e., optimality and feasibility with no use of overtime), producing 26 optimal 

(12 feasible) solutions comparing with none optimal (33 feasible) of the GA, 33 optimal 

(9 feasible) of the MA and 37 optimal (5 feasible) of MA+CLS. Regarding the number 

of optimal/feasible solutions on this group of instances, although the Two-Level VNS 

appears to be the third best heuristic algorithm in the literature, it has produced 1 new 

best solution (CMT2-75 (4)) in G1. In terms of ARPD (average relative percentage 

deviation), the Two-Level VNS solutions are less than 1% away from the best known. 

For the G2 group of 56 instances (Table 7.11), the Two-Level VNS again performed 

quite well, in terms of the solution quality (i.e., no overtime used), producing 45 

compared to all 56 of the MA and MA+CLS and 29 of the GA solutions. Moreover, the 

Two-Level VNS also performed competitively on the basis of the ARPD of instances 

where the solutions were obtained. 
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For the G3 group of 5 instances (Table 7.12), the Two-Level VNS algorithm overall 

remained competitive and produced better quality results than the GA but inferior as 

compared to MA and MA+CLS.  

As for the computation time a fair comparison may not be possible since the algorithms 

compared here used different machines with different configurations. While PC 

machine specifications are provided in the beginning of this section, the other 

algorithms GA, MA and MA+CLS were run on Ultra Enterprise 450 dual processor 300 

megahertz and Intel Xeon 2.80 GHz processor, respectively. Table 7.13 shows the 

average computational times (in seconds) for the individual classes in the data set 4 as 

well as the overall average times in the last row of the table. The Two- Level VNS 

algorithm proved faster in all the classes of the data set-4 with the exception of one 

where with a marginal difference was recorded. 

 

 

 

 

 

 

 

 

 

 

 



198 

 

Table 7.10: Detailed results for 42 instances in G1 (Data set-4) 

        

Name 

(size) 

      

m 

        

T 

MRT  SP        MA MA + CLS Two-Level 

VNS 

Optimal Best Best Best Best 

CMT1 

(50) 

1 551 524.61 546.28 524.61 524.61 524.61 

2 275 533.00 x 533.00 533.00 533.00 

1 577 524.61 547.14 524.61 524.61 524.61 

2 289 529.85 549.42 529.85 529.85 529.85 

4 144 546.29 566.86 546.29 546.29 x 

CMT2 

(75) 

1 877 835.26 869.06 835.26 835.26 835.26 

2 439 835.26 865.48 835.77 835.26 835.26 

3 292 835.26 x 835.26 835.26 835.26 

4 219 835.26 856.77 835.77 835.77 835.32 

5 175 835.80 x 836.18 836.18 837.40 

1 919 835.26 869.73 835.26 835.26 835.26 

2 459 835.26 881.50 835.26 835.26 835.26 

3 306 835.26 869.11 835.77 835.26 835.26 

4 230 835.26 880.90 838.17 835.26 835.26 

5 184 835.26 883.29 835.77 835.77 835.77 

6 153 839.22 x 843.09 839.22 x 

CMT3 

(100) 

1 867 826.14 845.33 826.14 826.14 826.14 

2 434 826.14 850.65 826.14 826.14 826.14 

3 289 826.14 x 828.08 826.14 826.14 

1 909 826.14 845.33 829.45 829.45 828.26 

2 454 826.14 872.10 826.14 826.14 826.14 

3 303 826.14 869.48 826.14 827.39 826.14 

4 227 826.14 878.00 826.14 826.14 826.14 

CMT11 

(120) 

1 1094 1042.11 1088.26 1042.11 1042.11 1072.95 

2 547 1042.11 x 1042.11 1042.11 1073.96 

3 365 1042.11 x 1042.11 1042.11 x 

5 219 1042.11 x 1042.11 1042.11 x 

1 1146 1042.11 1088.26 1042.11 1042.11 1075.83 

2 573 1042.11 1110.10 1042.11 1042.11 1073.44 

3 382 1042.11 1088.56 1042.11 1042.11 1085.28 

4 287 1042.11 x 1042.11 1042.11 1062.30 

5 229 1042.11 1092.95 1042.11 1042.11 1088.46 

CMT12 

(100) 

1 861 819.56 819.97 819.56 819.56 819.56 

2 430 819.56 821.33 819.56 819.56 819.56 

3 287 819.56 826.98 819.56 819.56 819.56 

4 215 819.56 824.57 819.56 819.56 819.56 

1 902 819.56 819.97 819.56 819.56 819.56 

2 451 819.56 829.54 819.56 819.56 819.56 

3 301 819.56 851.16 819.56 819.56 819.56 

4 225 819.56 821.53 819.56 819.56 819.56 

5 180 824.78 833.85 824.78 824.78 826.90 

6 150 823.14 855.36 823.14 823.14 827.14 

# of solutions found (out of 42) 42 33 42 42 38 

# of optimal solutions found  42 0 33 37 26 

ARPD   3.41 0.04 0.02 0.63 
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Table 7.11: Detailed feasible results for 56 instances in G2 (Data set-4) 

              

Name (size) 

                

m 

             

T 

           

Best 

known 

SP        MA MA + 

CLS 

Two-Level 

VNS 

Best Best Best Best 

CMT1 (50) 3 192 552.68 560.26 552.68 552.68 558.16 

CMT2 (75) 6 146 858.58 x 858.58 859.16 x 

7 131 844.70 x 853.88 844.70 x 

CMT3 (100) 4 217 829.45 x 829.45 829.45 829.63 

5 173 832.89 x 832.89 832.89 x 

6 145 836.22 x 836.22 836.22 x 

5 182 832.34 901.30 833.02 832.34 x 

6 151 834.35 861.76 834.35 834.35 x 

CMT4 (150) 1 1080 1031.00 1064.06 1031.00 1031.00 1032.96 

2 540 1031.07 1065.86 1032.65 1031.07 1032.55 

3 360 1028.42 x 1029.56 1028.42 1037.29 

4 270 1031.10 x 1036.25 1031.10 1039.13 

5 216 1031.07 x 1032.69 1031.07 1039.33 

6 180 1034.61 x 1043.42 1034.61 1061.32 

8 135 1056.54 x 1056.93 1056.54 x 

1 1131 1031.07 1088.93 1031.07 1031.07 1031.51 

2 566 1030.45 1070.50 1030.45 1034.08 1032.55 

3 377 1031.59 1077.24 1031.63 1031.59 1032.13 

4 283 1031.07 1119.05 1031.07 1031.96 1032.83 

5 226 1030.86 1085.38 1033.05 1030.86 1036.34 

6 189 1030.45 1112.03 1032.16 1030.45 1037.26 

7 162 1036.08 x 1043.92 1036.08 1043.94 

8 141 1044.32 x 1044.71 1044.32 x 

CMT5 (199) 1 1356 1302.43 1347.34 1302.43 1302.43 1319.54 

2 678 1302.15 1346.63 1302.15 1306.26 1325.92 

3 452 1301.29 x 1301.41 1301.29 1325.18 

4 339 1304.78 x 1308.93 1304.78 1324.96 

5 271 1300.02 x 1307.78 1300.02 1319.86 

6 226 1303.37 x 1303.37 1308.40 1324.01 

7 194 1309.40 x 1315.41 1309.40 1329.24 

8 170 1303.91 x 1310.48 1303.91 1321.41 

9 151 1307.93 x 1329.86 1307.93 1325.66 

10 136 1323.01 x 1326.54 1323.01 1332.68 

1 1421 1299.86 1340.44 1299.86 1299.86 1317.01 

2 710 1305.35 1399.65 1305.35 1307.70 1324.34 

3 474 1301.03 1409.37 1301.03 1308.76 1323.57 

4 355 1303.65 1397.60 1303.65 1310.97 1324.72 

5 284 1300.62 1411.19 1308.04 1300.62 1326.44 

6 237 1306.17 1377.07 1306.17 1306.25 1328.94 

7 203 1301.54 1394.73 1311.35 1301.54 1324.64 

8 178 1308.78 x 1311.93 1308.78 1322.14 

9 158 1307.25 x 1312.28 1307.25 1330.12 
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10 142 1308.81 x 1312.04 1308.81 1320.9 

CMT11 

(120) 

4 274 1078.64 x 1080.12 1078.64 x 

CMT12 

(100) 

5 172 845.56 x 849.89 845.56 x 

F11 (71) 1 254 241.97 x 241.97 241.97 241.97 

2 127 250.85 x 250.85 250.85 x 

1 266 241.97 254.07 241.97 241.97 241.97 

2 133 241.97 254.07 241.97 241.97 241.97 

3 89 254.07 256.53 254.07 254.07 254.07 

F12 (134) 1 1221 1162.96 1190.21 1162.96 1162.96 1174.98 

2 611 1162.96 1194.24 1162.96 1162.96 1176.17 

3 407 1162.96 1199.86 1162.96 1162.96 1175.36 

1 1279 1162.96 1183.00 1162.96 1162.96 1166.86 

2 640 1162.96 1199.64 1162.96 1162.96 1174.71 

3 426 1162.96 1215.43 1162.96 1162.96 1187.57 

# of feasible solutions found (out 

of 56) 

  29 56 56 45 

ARPD   4.86 0.19 0.05 1.01 

 

Table 7.12: Detailed non-feasible results for 5 instances in G3 (Data set-4) 

     

Name 

         

m 

         

T 

               

Best 

known 

SP MA MA+CLS Two-Level 

VNS 

Best Best Best Best 

CMT1 3 184 569.54 586.32 569.54 569.54 588.51 

CMT1 4 138 564.07 632.54 564.07 564.07 603.34 

CMT2 7 125 866.58 1056.34 876.77 866.58 916.36 

CMT12 6 143 845.48 898.88 845.48 845.48 845.48 

F11 3 85 256.93 266.85 256.93 256.93 261.57 

ARPD 9.43 0.24 0.00 3.57 

 

Table 7.13: Average time (in seconds) for the problem classes of set-4 

Instance 

Name 

# GA MA MA+CLS  Two-Level 

VNS 

CMT1 8 16 10 30 8 

CMT2 14 30 25 118 18 

CMT3 12 70 52 173 46 

CMT4 16 206 169 493 155 

CMT5 20 484 354 1284 312 

CMT11 10 1132 99 302 74 

CMT12 12 45 37 138 45 

F11 6 93 21 40 17 

F12 6 584 87 87 81 

Average 295.56 94.89 296.11 84.00 
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7.2.3. Solving the MT-VRP with the Mat-heuristic (CSMH algorithm) 

The CSMH algorithm methodology proposed in Chapter 6 is adapted to solve the MT-

VRP. Hence, at Phase I the initial solution is generated as explained in Section 7.2.2. In 

Phase II, the Two-Level VNS is used to obtain a pool of solutions and in Phase III, the 

bin packing problem is solved for the solutions in the pool, and finally in Phase IV, the 

MT-VRP mathematical formulation model that uses CPLEX optimiser is used to obtain 

the optimal or improved incumbent solution. 

Computational experience 

The CSMH methodology is implemented with the same programming language and the 

computer specifications as in Chapter 6. 

Glossary for tables: 

 

+ : Solution obtained with overtime 

Rest is same as in Section 7.1.3 

7.2.3.1. CSMH MT-VRP Results and Analysis 

The CSMH algorithm is run for a maximum CPU time of 2 hours (7200 seconds) for all 

the four phases (in which the Phase II is set to 300 iterations). 

The CSMH algorithm is tested on G1 group of instances from data set-4. The algorithm 

performed very well and produced very high quality results. The detailed results are 

provided in Table 7.14. Note that even though most of results in this table are put under 

the “Incum. Sol.” (Incumbent solution) column, most of them are optimal. The reason 
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behind it is that within 2-hours computational time, the desired gap between upper and 

lower bounds was not achieved. 

Comparison of the CSMH with the Two-Level VNS and some recent algorithms: 

The performance of the CSMH algorithm is compared with the Two-Level VNS 

implementation and some best published algorithms (see Section 7.2.2.2). The detailed 

performance analysis of these algorithms for G1 (data set-4) are provided in Table 7.15. 

As it can be observed that the MRT exact algorithm produced optimal solutions for all 

42 instances in this group. Compared to the MRT, the CSMH algorithm remained 

extremely competitive in terms of solution quality, producing 39 optimal (3 

incumbent/feasible) solutions. Whereas comparing to the heuristic algorithms, it clearly 

performed better when comparing to none optimal (33 feasible) of GA, 33 optimal (9 

feasible) of the MA, 37 optimal (5 feasible) of the MA+CLS and 26 optimal (12 

feasible) of the Two-Level VNS. 
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Table 7.14: Detailed results of the CSMH for 42 instances in G1 (Data set-4) 

      

Name 

(size) 

     

m 

        

T 

CSMH Algorithm 

VNS Sol. Opt. 

Sol. 

Incum. 

Sol. 

UB LB %Gap Time 

(s) 

CMT1 

(50) 

1 551 524.61 524.61 - 524.61 520.62 0.76% 6215 

2 275 533.00 - 533.00 533.00 511.71 3.99% 7200 

1 577 524.61 524.61 - 524.61 515.03 1.83% 6123 

2 289 529.85 - 529.85 529.85 510.73 3.61% 7200 

4 144 574.84+ - 546.29 546.29 511.77 6.32% 7200 

CMT2 

(75) 

1 877 835.26 - 835.26 835.26 775.49 7.16% 7200 

2 439 835.77 - 835.26 835.26 763.67 8.57% 7200 

3 292 835.77 - 835.26 835.26 746.94 10.63% 7200 

4 219 735.28 - 835.26 835.26 745.33 10.77% 7200 

5 175 848.44 - 835.80 835.80 742.46 11.17% 7200 

1 919 836.18 - 835.26 835.26 782.20 6.35% 7200 

2 459 835.26 - 835.26 835.26 788.46 5.60% 7200 

3 306 835.77 - 835.26 835.26 783.77 6.16% 7200 

4 230 835.77 - 835.26 835.26 778.74 6.77% 7200 

5 184 838.60 - 835.26 835.26 778.20 6.83% 7200 

6 153 853.17+ - 839.22 839.22 773.55 7.82% 7200 

CMT3 

(100) 

1 867 828.42 - 826.14 826.14 778.86 5.72% 7200 

2 434 828.42 - 826.14 826.14 799.63 3.21% 7200 

3 289 829.63 - 826.14 826.14 791.23 4.23% 7200 

1 909 828.56 - 826.14 826.14 778.70 5.74% 7200 

2 454 829.63 - 826.14 826.14 790.45 4.32% 7200 

3 303 829.51 - 826.14 826.14 766.53 7.22% 7200 

4 227 829.65 - 826.14 826.14 779.58 5.64% 7200 

CMT11 

(120) 

1 1094 1077.14 - 1042.11 1075.03 967.02 10.36% 7200 

2 547 1072.90 - 1044.09 1072.90 943.18 12.42% 7200 

3 365 1042.11 - 1042.11 1042.12 935.47 10.23% 7200 

5 219 1045.32 - 1042.11 1042.12 933.35 10.44% 7200 

1 1146 1071.96 - 1042.11 1048.74 965.71 7.97% 7200 

2 573 1063.47 - 1042.11 1063.47 936.81 12.15% 7200 

3 382 1048.26 - 1048.26 1048.26 922.27 12.02% 7200 

4 287 1062.30 - 1044.09 1044.09 935.79 10.37% 7200 

5 229 1088.46 - 1042.11 1042.12 933.47 10.43% 7200 

CMT12 

(100) 

1 861 819.56 - 819.56 819.56 767.53 6.35% 7200 

2 430 819.56 - 819.56 819.56 778.36 5.03% 7200 

3 287 819.56 - 819.56 819.56 782.91 4.47% 7200 

4 215 819.56 - 819.56 819.56 774.95 5.44% 7200 

1 902 819.56 - 819.56 819.56 766.25 6.50% 7200 

2 451 819.56 - 819.56 819.56 780.96 4.71% 7200 

3 301 819.56 - 819.56 819.56 785.94 4.10% 7200 

4 225 819.56 - 819.56 819.56 789.83 3.63% 7200 

5 180 825.38 - 824.78 824.78 776.24 4.24% 7200 

6 150 824.46+ - 823.14 823.14 785.56 4.57% 7200 
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Table 7.15: Comparison of the CSMH with some best algorithms for 42 instances in G1 

(Data set-4) 

         

Name 

(size) 

               

m 

               

T 

MRT  SP        MA MA + 

CLS 

Two-Level 

VNS 

CSMH 

Optimal Best Best Best Best  Best 

CMT1 

(50) 

1 551 524.61 546.28 524.61 524.61 524.61 524.61 

2 275 533.00 x 533.00 533.00 533.00 533.00 

1 577 524.61 547.14 524.61 524.61 524.61 524.61 

2 289 529.85 549.42 529.85 529.85 529.85 529.85 

4 144 546.29 566.86 546.29 546.29 x 546.29 

CMT2 

(75) 

1 877 835.26 869.06 835.26 835.26 835.26 835.26 

2 439 835.26 865.48 835.77 835.26 835.26 835.26 

3 292 835.26 x 835.26 835.26 835.26 835.26 

4 219 835.26 856.77 835.77 835.77 835.32 835.26 

5 175 835.80 x 836.18 836.18 837.40 835.80 

1 919 835.26 869.73 835.26 835.26 835.26 835.26 

2 459 835.26 881.50 835.26 835.26 835.26 835.26 

3 306 835.26 869.11 835.77 835.26 835.26 835.26 

4 230 835.26 880.90 838.17 835.26 835.26 835.26 

5 184 835.26 883.29 835.77 835.77 835.77 835.26 

6 153 839.22 x 843.09 839.22 x 839.22 

CMT3 

(100) 

1 867 826.14 845.33 826.14 826.14 826.14 826.14 

2 434 826.14 850.65 826.14 826.14 826.14 826.14 

3 289 826.14 x 828.08 826.14 826.14 826.14 

1 909 826.14 845.33 829.45 829.45 828.26 826.14 

2 454 826.14 872.10 826.14 826.14 826.14 826.14 

3 303 826.14 869.48 826.14 827.39 826.14 826.14 

4 227 826.14 878.00 826.14 826.14 826.14 826.14 

CMT11 

(120) 

1 1094 1042.11 1088.26 1042.11 1042.11 1072.95 1042.11 

2 547 1042.11 x 1042.11 1042.11 1073.96 1044.09 

3 365 1042.11 x 1042.11 1042.11 x 1042.11 

5 219 1042.11 x 1042.11 1042.11 x 1042.11 

1 1146 1042.11 1088.26 1042.11 1042.11 1075.83 1042.11 

2 573 1042.11 1110.10 1042.11 1042.11 1073.44 1042.11 

3 382 1042.11 1088.56 1042.11 1042.11 1085.28 1048.26 

4 287 1042.11 x 1042.11 1042.11 1062.30 1044.09 

5 229 1042.11 1092.95 1042.11 1042.11 1088.46 1042.11 

CMT12 

(100) 

1 861 819.56 819.97 819.56 819.56 819.56 819.56 

2 430 819.56 821.33 819.56 819.56 819.56 819.56 

3 287 819.56 826.98 819.56 819.56 819.56 819.56 

4 215 819.56 824.57 819.56 819.56 819.56 819.56 

1 902 819.56 819.97 819.56 819.56 819.56 819.56 

2 451 819.56 829.54 819.56 819.56 819.56 819.56 

3 301 819.56 851.16 819.56 819.56 819.56 819.56 

4 225 819.56 821.53 819.56 819.56 819.56 819.56 

5 180 824.78 833.85 824.78 824.78 826.90 824.78 

6 150 823.14 855.36 823.14 823.14 827.14 823.14 

# of solutions found (out of 42) 

  

33 42 42 38 42 

# of optimal solutions found  

  

0 33 37 26 39 

ARPD  

  

3.41 0.04 0.02 0.63 0.02 

MRT = Mingozzi et al. (2013); SP = Salhi and Petch (2007); MA and MA+CLS = Cattaruzza et al. (2014a) 
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7.3. Summary 

This chapter presents the details of the implementations of our developed approaches in 

Chapters 4, 5 and 6 to solve two very important variants of the VRP, known as the 

vehicle routing problem with backhauls (VRPB) and the multiple trip vehicle routing 

problem (MT-VRP). One of the main objectives of this thesis is to design and 

implement an efficient and flexible algorithm that is able to solve the instances of a 

range of VRP variants. The Two-Level VNS methodology and its combination with 

mathematical programming the CSMH algorithms proved very successful 

implementation. We summarise here our findings and the analysis for both the VRPB 

and the MT-VRP, respectively as follows. 

The VRPB: 

In this chapter firstly the VRPB is formulated and its validity is checked using CPLEX. 

The Two-Level VNS methodology developed for the MT-VRPB is then adapted to solve 

the VRPB. The VNS algorithm proved robust in its implementation since it was 

designed in such way that could be implemented on the instances of a range of VRP 

variants. The neighbourhood moves are conducted in the same conventions and the 

refinement schemes used in the same order remain unchanged. However the algorithm 

needed some minor changes at its initial solution stage due to different typical VRPB 

constraints of utilizing given number of vehicles; and the BPP implementation was not 

required for the VRPB.  

The algorithm produced highly competitive results for both benchmark data sets when 

compared to the best known solutions from the literature, with an overall average 
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relative percentage deviation ARPD of 0.00 and 0.06 for the set-2 and the set-3, 

respectively, while spending relatively lower computer times. 

We then adapted the CSMH algorithm to solve the VRPB. The algorithm proved quite 

flexible in its implementation. The neighbourhood moved are implemented in the same 

conventions and the refinement routines used in the same order remain unchanged. 

However, the algorithm was slightly changed to accommodate the typical VRPB 

constraints of using the given fixed fleet and the MT-VRPB mathematical model used at 

Phase IV was replaced with the VRPB mathematical model. Hence, BPP is also 

removed from the algorithm as it is not needed for the VRPB. The algorithm produced 

very competitive results for the benchmark data sets when compared with the best 

algorithms in the literature. 

The MT-VRP: 

The MT-VRP is also formulated and the validity is checked using CPLEX. 

The Two-Level VNS methodology is also adapted to solve the MT-VRP without any 

significant changes to the original algorithm developed to solve the MT-VRPB in 

Chapter 5. The conventions of the neighbourhood moves and the order of the refinement 

schemes remain unchanged. However the algorithm needed some changes at its initial 

solution stage due to no backhauling aspect in the MT-VRP. The initial solution is 

generated with sweeping for complete routes instead of open routes. The BPP and 

Bisection models are used in the same manner.  

The algorithm produced quite competitive results (especially in terms of the 

computational speed) for the benchmark data set 4 when compared with the best known 
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solutions from the literature. Also the Two-Level VNS algorithm produced one new best 

heuristic solution. 

Moreover, the CSMH algorithm is also adapted and tested on a group of MT-VRP 

instances for which the optimal solutions are known. Minor changes are done such as 

sweep is used to generate complete routes instead of open routes at initial solution stage 

and a series of refinement routes are used to improve the initial solution before passing 

it to the second stage. All neighbourhood moves and refinement routines are used in the 

same order. The BPP and Bisection models are used in the same manner. Finally, MT-

VRPB mathematical model used at stage four is replaced with the MT-VRP 

mathematical model. 

The solutions produced by the CSMH algorithm are of a high quality. It outperformed 

all the heuristic/meta-heuristic algorithms and proved extremely competitive when 

compared with the exact algorithm of Mingozzi et al. (2013). 

The successful implementation of the Two-Level VNS and its combined version with 

mat-heuristic the CSMH algorithm on the three VRP models proves the generalizability 

and robustness of this methodology. 
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Chapter 8 

 

Conclusions 

 

In this chapter we summarize the main findings and the contributions of the research 

along with some future research directions 

8.1. Research Summary 

With the growing and more accessible computational power, the demand for robust and 

sophisticated computerised optimisation has increased for logistical problems. By 

making a good use of computational technologies, the research in this thesis has mainly 

concentrated on efficient fleet management by studying a class of vehicle routing 

problems and developing software embedded efficient solution algorithms.  

The research in this thesis starts by looking at the existing literature of the VRPs from 

various development angles. From the problem modelling side, clear efforts can be seen 

to bring the classical VRP models closer to the reality by developing their variants. 

However, apart from the real VRP applications (termed as ‘rich’ VRPs), it is also 

noticeable that the most of these classical VRP based variants address one or two 

additional characteristics from the real routing problem issues, concentrating on either 

operational or tactical aspects. Although the research in this thesis may not be 
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considered as comprehensive either but it is certainly one of those good efforts that 

bring the VRPs closer to the reality by addressing both the operational as well as tactical 

aspects.  

On the solution methodologies development side, there are enormous and impressive 

developments. Having established that the VRPs are NP hard combinatorial class of 

problems, there is an ample effort on the development of exact methods. The literature 

covers a variety of heuristics methodologies including the classical and the most modern 

ones. The literature also points out towards some works being developed in 

hybridisation of heuristics approaches including the most recent mat-heuristics that 

combine heuristics and exact methods. The mat-heuristics appears to be comparatively 

in its infant age at this point in time. Hence, a part of the research in this thesis is 

devoted in the development of a hybrid approach that combines heuristics and 

mathematical programming techniques. 

When reviewing the specific literature on the VRP problems focused in this thesis, the 

VRPB and the MT-VRP, there is not sufficient development on the problem modelling 

side in terms of bringing these problems closer to the reality. As for the methodological 

development to solve the VRPB and the MT-VRP there are some very successful 

efforts. For the VRPB, the literature records some early attempts in late 90s to solve the 

problem optimally though with a modest success. However, there are quite a few 

promising methodologies developed to solve this problem, divided in early traditional 

heuristic studies able to solve bigger instances of the problem with good enough 

solutions at the cost of reasonable computational efforts; and the more recent modern 

heuristics based algorithms able to perform much better in terms of solution quality but 

at noticeably higher computational costs. For the MT-VRP, there are some good studies 
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published in the literature, however as compared to the VRPB it has not drawn 

sufficient attention. The literature reports only one attempt on exact approach side; and 

several but comparatively less efficient heuristics works. One reason for this that could 

be deduced is that the MT-VRP is more closely related to the classical VRP which has 

been studied extensively in the literature. Hence there are more relevant works rather 

direct comparison studies of the MT-VRP. To fill the gap, the research in this thesis 

adds to the literature by investigating this problem directly and jointly with the VRPB. 

To investigate these versions of the VRP jointly we introduced a new variant called the 

Multiple Trip Vehicle Routing Problem with Backhauls (MT-VRPB) which remain the 

main focus of the thesis. The problem is thoroughly described and an ILP mathematical 

formulation of the MT-VRPB along with its possible variations presented. The MT-

VRPB is then solved optimally by using CPLEX along with providing an illustrative 

example showing validation of the formulation. A large set of MT-VRPB data instances 

is created which can be used for future benchmarking.  

The CPLEX implementation produced optimal solutions for small and medium size data 

instances of the MT-VRPB and generated lower bounds for all instances. Although 

CPLEX found a good number of optimal solutions and lower bounds for all the 

instances, this success may be considered merely as modest. However, the results 

produced by CPLEX proved very important for validation of the results produced by the 

heuristic methodologies later in the thesis. 

The MT-VRPB results show some big overall cost savings could be obtained by 

deciding the right fleet size and better vehicle utilisations with multiple trips and 
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backhauling. Hence, even at this point in thesis the results already prove the justification 

of studying the multiple trips and the backhauling aspects combined. 

Hence the research results reveal some vital information and implications from the 

managerial point of view in terms of making the tactical (acquisition) and fleet 

management (operational) decisions. 

As observed earlier the optimisation techniques could not cope with the larger instances 

of such hard complex problem, and relying on heuristics is an obvious choice. Hence we 

developed a two level VNS algorithm, called ‘Two-Level VNS’ to solve the MT-VRPB. 

The choice of using VNS for the VRPs has increased in recent literature due its 

simplicity and speed. The Two-Level VNS algorithm uses skeletons of the classical VNS 

and VND methodologies. A number of neighbourhoods and local searches are 

employed in an innovative way to achieve diversification at the outer level (basic VNS) 

of the algorithm and intensification at the inner-level (VND with multi-layer local 

search framework). The Two-Level VNS algorithm found very encouraging solutions 

when compared with the solutions found by CPLEX. It matched the majority (87%) of 

the optimal solutions ranging in size 21-50. The Two-Level VNS solved all the 168 

instances (105 feasibly with no overtime used); and the rest with a very small average 

overtime of only 5 and 10 units each for T2 and T1 data classes, respectively. Moreover, 

the speed of the algorithm remained outstanding spending less than 20 seconds on 

average per problem instance. These findings demonstrate the power of VNS yet again 

in terms of its speed, simplicity and efficiency.  

The Two-Level VNS algorithm found a very high number of feasible solutions costing 

low computational time proving itself for what it is known in the literature. Nonetheless 
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we wanted to investigate it further with the new class of the hybrid methodologies 

called mat-heuristics that combines mathematical programming techniques with 

heuristic methods to solve CO problems. Hence, in Chapter 6, a hybrid collaborative 

sequential mat-heuristic approach called the CSMH to solve the MT-VRPB is 

developed. The exact method approach developed in Chapter 4 is hybridised with the 

Two-Level VNS algorithm developed in Chapter 5. The Two-Level VNS used three 

phases, i.e., initial solution by a modified sweep-first-assignment-second approach, 

improved solution by VNS, and packed solution by the BPP. Here the fourth phase, i.e., 

mathematical model is incorporated in the Two-Level VNS algorithm to find 

optimal/better solution for the MT-VRPB. The overall performance of the CSMH 

remained very inspiring in terms of the solution quality and the time taken on average. 

Comparing with the methodologies developed in the previous chapters (i.e., CPLEX and 

the Two-Level VNS meta-heuristic), the CSMH produced much better results on almost 

all fronts. As compared to CPLEX it produced a higher number of optimal solutions 

with bigger size instances and tighter lower bounds while spending lower computation 

time on average. Comparing with the Two-Level VNS it also produced better quality 

solutions with a higher number of optimal/incumbent on the expense of spending 

understandably larger average computing time. 

Towards the end of the thesis, we tested our developed methodologies on the two 

versions of the VRP (VRPB and MT-VRP) mentioned in the beginning of this section. 

The reason of conducting these experiments was to see how far we have been successful 

in achieving one of the main objectives of the thesis which is to design and implement 

new efficient hybrid meta-heuristic/mat-heuristics algorithms that is able to solve a 

range of VRP variants.  
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In Chapter 7 a three-indexed mathematical formulation of the VRPB adapted from our 

MT-VRPB formulation is presented; and its validity is checked using CPLEX. Note that 

the complexity of the two-indexed VRPB formulations presented in the literature is not 

provided, however it is considered to be less complex as compared to our three-indexed 

ILP formulation. Moreover, the two-indexed ILP formulations were not directly tested 

with CPLEX, hence we did not compare the efficiency of these two types of 

formulations. We implemented the Two-Level VNS algorithm, developed in Chapter 5, 

to solve the VRPB. The VNS algorithm proved robust in its implementation since it was 

designed in such way that could be implemented on the instances of a range of VRP 

variants. The neighbourhood moves are conducted with the same conventions and the 

order of the refinements remain unchanged. However the algorithm needed some minor 

changes at its initial solution stage due to some different typical VRPB constraints such 

as ‘must utilisation’ of the given number of vehicles and disabling the use of the BPP 

implementation that is not required for the VRPB. The algorithm produced very 

competitive results for both benchmark data sets when compared to the best known 

solutions from the literature, with an overall average relative percentage deviation 

ARPD of 0.00 and 0.06 for the set-2 and the set-3, respectively.  

The CSMH algorithm of Chapter 6 is also tested for the VRPB. The implementation 

remained fairly straight forward by replacing the formulation and VNS parts of the MT-

VRPB with the VRPB ones. The algorithm produced competitive results for the 

benchmark data sets when compared with the Two-Level VNS and the best algorithms in 

the literature. However, it was noted that the performance of the CSMH remain 

relatively inferior due the reason that this version of the VRPB uses a typical constraint 
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of fixed number of vehicles that must utilised which did not go well with the exact 

method part of the algorithm. 

Moreover, in Chapter 7 we solved the classical MT-VRP. First, a three-indexed 

mathematical formulation of the MT-VRP adapted from our MT-VRPB formulation is 

presented; and its validity is checked using CPLEX. The Two-level VNS methodology is 

then implemented to solve the MT-VRP again without any significant changes to the 

original algorithm developed to solve the MT-VRPB in Chapter 5. Apart from the 

backhauling conventions that needed changes at the initial stage, the neighbourhood 

moves and the order of the refinement schemes remain unchanged. Here the initial 

solution is generated by sweeping for complete routes instead of open routes. The BPP 

and Bisection models are used in the same manner. The algorithm produced very 

competitive results (in terms of the solution quality and the computational speed) for the 

benchmark data set 4 when compared with the best known solutions from the literature. 

Lastly, the CSMH algorithm is tested for the MT-VRP. The implementation remained 

once again fairly straight forward by replacing the formulation and VNS parts of the 

MT-VRPB with the VRPB ones. The CSMH algorithm is tested on a group of MT-VRP 

instances for which the optimal solutions are known. The solutions produced by the 

CSMH algorithm are of very high quality. It outperformed all the previously published 

heuristic/meta-heuristic algorithms and proved extremely competitive matching most 

solutions when compared with the exact algorithm of Mingozzi et al. (2012). Matching 

most solutions with the only existing exact algorithm for this problem in the literature 

can be considered as significant development. 
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It can be observed that the successful implementation of the Two-Level VNS and the 

CSMH algorithms on the three VRP models with some trivial amendments prove their 

generalizability and the robustness. 

8.2. Future Research 

There are a number of ways in which the research in this thesis could be taken further.  

Model extensions:  

We hope to bring the MT-VRPB model even closer to reality by incorporating further 

"rich" aspects, such as time windows, multiple depots or heterogeneous fleet. We 

believe that the most promising aspect is to extend the backhauling part to other 

delivery and pickup models, as the "deliveries first, backhauls second" constraint is in 

our opinion very restrictive. The VRPB is a specific case of VRP with Deliveries and 

Pickups (VRPDP) models. If we remove the "deliveries first, backhauls second" 

restriction, we arrive at another model known as VRP with Mixed Deliveries and 

Pickups (VRPMDP). It is relatively easy to adapt the methods in this thesis for the 

VRPMDP, as in the main part of the algorithm we merely need to skip the steps of 

checking that no backhauls precede any deliveries. (The "fixed fleet utilisation" 

constraint is also removed in all VRPDP models apart from the VRPB.) However, we 

instead need to check the feasibility of routes for every arc on the route. This is due to 

the issue of fluctuating arc loads; see Wassan et al., (2008a, 2008b). Moreover, the 

initial solution is based on matching linehauls and backhauls, so we need to experiment 

whether this is still a sufficiently good initial solution. Another relevant model is the 

VRP with Simultaneous Deliveries and Pickups (VRPSDP). In this model each 
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customer may send and receive goods, so they are linehauls and backhauls in 

one. Conceptually, the VRPSDP and the VRPMDP differ little. 

The above models, and the VRPB itself, have been criticised for the assumptions they 

require. It is considered excessively restrictive not to allow any backhauls before 

linehauls. Yet, the VRPMDP where this assumption is removed lead to the "load 

shuffling problem" (backhaul goods block access to linehaul goods on board in the 

vehicles), see Wassan and Nagy (2014) for a more detailed explanation. This led to a 

new model known as VRP with Restricted Mixing of Deliveries and Pickups, see Nagy 

et al., (2013). In this model some free space is required to maintain access to goods, 

unless the vehicle has only linehaul or only backhaul goods. Likewise, the VRPSDP 

makes the assumption that the linehaul and backhaul needs of a customer must be 

served in a single visit. Relaxing this leads to the model of VRP with Divisible 

Deliveries and Pickups (VRPDDP), see Nagy et al., (2015).  Perhaps the most realistic 

version would be the VRP with Restricted Mixing of Divisible Deliveries and Pickups, 

as suggested in Wassan and Nagy (2014). All these models could be enhanced to 

include the multi-trip aspect. For further information on the various VRPDP models 

mentioned here, please refer to the overview provided by Wassan and Nagy (2014). 

Methodological extensions: 

We believe that the performance of our developed methods can be enhanced by 

hybridisation of tabu search or some other learning based meta-heuristics such as 

adaptive memory programming, reactive search mechanisms with VNS can enhance the 

quality of results though possibly at some extra computational cost. 
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In the near future we hope to continue the existing research work to investigate the 

further power of mat-heuristics. For instance, currently our CSMH algorithm uses only 

single pass between the Two-Level VNS and the mathematical programming technique. 

Nonetheless, it produced very interesting results for variety of VRP problems. However, 

we believe the efficiency of our CSMH algorithm can be increased by incorporating 

tabu search/learning aspects in the heuristics side of the algorithm. The performance of 

the developed mat-heuristic can be enhanced by designing a cyclic algorithm that 

exchanges information and interplays between the heuristic and the exact techniques.  

We believe that further investigation of some of the key aspects highlighted above on 

both the modelling and the solutions methodologies side would achieve even better 

overall fleet management efficiency that is required in modern day business and 

environmental needs. 
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Appendix A:  
 

 

Connecting CPLEX with Microsoft Visual Studio 

 

One of the efficient features of CPLEX is that it comes with a set of different libraries 

through which its optimisers can be embedded in different programming languages on 

different operating platforms. CPLEX provides two ways known as Concert Technology 

and Callable Library through which it facilitates the programs coded in different 

programming languages to successfully use CPLEX optimisers. Brief descriptions of 

these two features are given below. 

Concert Technology: The Concert Technology comes with set of Java, C++ and .Net 

class libraries. The primary job of these libraries is to facilitate the Application 

Programming Interface (API) that also consists of modelling facilities. Hence, this 

interface permits programmers to embed CPLEX optimisers in Java, C++ or .Net 

applications. Figure a.1 shows the set of libraries Concert Technology consists of 

different programming languages used on different operating system platforms. 

The CPLEX Callable Library: The Callable Library is also a set of C libraries through 

which programmers can embed CPLEX optimisers in many applications developed in 

various programming languages such as C, C++, Visual Basic, FORTRAN or any other 

language that is capable of calling C functions. Therefore, Callable Library consists of 

cplexXXX.lib and cplexXXX.dll libraries for Windows platforms and libcplex.a, 

libcplex.so, and libcplex.sl for UNIX platforms. 
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Java cplex.jar 

C++ ilocplex.lib 

concert.lib 

.NET ILOG.CPLEX.dll 
ILOG.Concert.dll 

 

Java cplex.jar 

C++ libilocplex.a 

libconcert.a 

.NET -------------------- 

Figure a.1: Concert technology libraries for different operating systems Source: 

User’s Manual for CPLEX V12.5 

 

C++ code of the MIPstart 
 

 IloNumVarArray startVar(env);  
 IloNumArray startVal(env); 
 
 for(i=0; i<nbTotCust; i++){ 
  for(j=0; j<nbTotCust; j++){ 
   startVar.add(R[i][j]); 
   startVal.add(R_VNS[i][j]); 
     
   for(k=0; k<nbTotBins; k++){ 
    startVar.add(X[i][j][k]); 
    startVal.add(X_VNS[i][j][k]); 
   } 
  } 
 } 
 cplex.addMIPStart(startVar, startVal); 
 startVar.end(); 
 startVal.end();  
 

Figure a.2: C++ code for the MIPstart 

 

 

Concert Technology libraries 

 

Microsoft Windows UNIX 
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Contributions to the subject knowledge 

 

A list of the contributions made by the research in this thesis to the subject knowledge 

and understanding is as follows. 

- The research in thesis reviews the VRP literature extensively, both the modelling 

and methodological developments, and reproduces it in a different format for 

better understanding of the readers. 

- A new variant of the VRP, multiple trip vehicle routing with backhauls (MT-

VRPB) is introduced with a graph theoretical description.  

- A mathematical formulation of the MT-VRPB is presented and a large set data 

instances generated which could serve as future benchmarks in the subject area 

research.  

- Optimal solution is obtained for small and medium size instances by 

implementing CPLEX.  

- For instances of large size, a VNS algorithm based on two levels (Two-Level 

VNS) is designed to obtain a continuous balance between intensification and 

diversification which produced very competitive results for a range of VRP 

variants.  

- A new hybrid collaborative sequential mat-heuristic algorithm (CSMH) is 

developed which combines our two level VNS meta-heuristic and the exact 

methodology used in CPLEX through the MIPstart mechanism provided by the 

IBM ILOG CPLEX Optimisation Studio. The CSMH proved very high quality 

results on all three variants of the VRP tested in this thesis. 



245 

 

- Two further variants the VRPB and the MT-VRP are studied, mathematical 

formulations presented, and the Two-Level VNS and the CSHM algorithm are 

successfully implemented and tested on those problems with some trivial 

changes which demonstrate the generalizability and the robustness of the 

developed approaches. 

- The better fleet management modelling and the results of this thesis may not 

only be utilised for commercial advantage to the relevant businesses but also 

have a positive impact on environment issues such as reduction in CO2 

emissions due to less vehicle working hours, fuel savings, etc.  
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2. Another paper based on the research work in Chapters 6 and 7, titled “A 

Collaborative Sequential Mat-heuristic approach for a range of VRP variants” 

will be submitted to a suitable ¾* journal. 

 

 


