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Abstract
We introduce a two-parameter family of birational maps, which reduces to 
a family previously found by Demskoi, Tran, van der Kamp and Quispel 
(DTKQ) when one of the parameters is set to zero. The study of the singularity 
confinement pattern for these maps leads to the introduction of a tau function 
satisfying a homogeneous recurrence which has the Laurent property, and the 
tropical (or ultradiscrete) analogue of this homogeneous recurrence confirms 
the quadratic degree growth found empirically by Demskoi et al. We prove 
that the tau function also satisfies two different bilinear equations, each of 
which is a reduction of the Hirota–Miwa equation (also known as the discrete 
KP equation, or the octahedron recurrence). Furthermore, these bilinear 
equations are related to reductions of particular two-dimensional integrable 
lattice equations, of discrete KdV or discrete Toda type. These connections, 
as well as the cluster algebra structure of the bilinear equations, allow a direct 
construction of Poisson brackets, Lax pairs and first integrals for the birational 
maps. As a consequence of the latter results, we show how each member of 
the family can be lifted to a system that is integrable in the Liouville sense, 
clarifying observations made previously in the original DTKQ case.

Keywords: Hirota bilinear form, Liouville integrability, discrete KdV, 
discrete Toda lattice, tropical
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1.  Introduction

In recent work [4], Demskoi, Tran, van der Kamp and Quispel (DTKQ) introduced a one-
parameter family of birational maps, given by the Nth-order difference equation

(
un + un+1 + . . .+ un+N

)
un+1un+2 · · · un+N−1 = α,� (1)

for each integer N � 2. It was shown that the equation  (1) admits 
⌊N+1

2

⌋
 independent first 

integrals, explicitly derived in terms of multi-sums of products, and from a conjectured 
formula for the degrees dn of the iterates (quadratic in the index n) it was inferred that 
limn→∞ n−1 log dn = 0 for each N, so that the corresponding map should have vanishing 
algebraic entropy in the sense of [15]. These results suggested that (1) should correspond to a 
finite-dimensional system that is integrable in the Liouville sense [27, 41].

For all N it was noted in [4] that, up to orientation, the map

σ : (u0, . . . , uN−1) �→ (u1, . . . , uN)

defined by (1) preserves the canonical volume form

Ω = du0 ∧ · · · ∧ duN−1,

so that σ∗Ω = (−1)NΩ for each N. This means that for N = 2 the map σ is symplectic, while 
for N = 3 it can be reduced to an anti-symplectic (orientation-reversing) map by restricting 
to a level set of one of the first integrals; so this is enough to imply Liouville integrability for 
N = 2, 3. However, in the absence of a suitable symplectic or Poisson structure, it is not pos-
sible to assert that the maps are Liouville integrable for N � 4.

In this paper we consider a generalization of (1) with two parameters, given by



N∑
j=0

un+j + β




N−1∏
k=1

un+k = α,� (2)

and show that this slight extension allows a natural interpretation of the observations made 
in [4], in terms of a Liouville integrable system with 

⌊N
2

⌋
 degrees of freedom. In fact, for 

even N we shall show that the solutions of (2) are related to the (N,−1) periodic reduction of 
Hirota’s discrete KdV equation, for which Liouville integrability was proved in [20], while 
for odd N they are connected to reductions of a discrete Toda lattice, considered recently in 
[22]. Furthermore, for all N these maps are linked to reductions of the Hirota–Miwa equa-
tion (also known as the discrete KP equation, or the octahedron recurrence), which connects 
them to certain cluster algebras [8] and leads to some associated symplectic maps, referred to 
as U-systems [21].

The original derivation of the equation (1) was based on the fact that it is dual to a linear 
difference equation of order N, in the sense introduced in [34]: the pair of dual equations have 
a first integral in common, and each equation appears as an integrating factor for the other one 
in the total difference of this first integral. The same observation applies to the more general 
version (2), by introducing

ζ =




N−1∑
j=0

un+j + β


(

α−
N−1∏
k=0

un+k

)
.� (3)

The latter quantity is seen to be a first integral of (2) by noting the identity
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∆ζ = (un+N − un)


α−

( N∑
j=0

un+j + β
) N−1∏

k=1

un+k


 ,

in terms of the total difference ∆ = S − 1, with S  being the shift operator such that SFn = Fn+1 
(where Fn is any function of n). The linear factor above shows that (2) is dual to the linear 
equation un+N − un = 0, in the same sense that (1) is, and for β = 0 the quantity ζ reduces to 
the first integral that is denoted by the same letter in [4].

The key to our results is the use of the singularity confinement pattern of (2) to obtain 
its ‘Laurentification’ [12], i.e. a lift to a higher-dimensional system which has the Laurent 
property in the sense of [5]. (A formal definition of Laurentification will be given in the next 
section.) The solution of the higher-dimensional system can then be shown to satisfy a Hirota 
bilinear equation (in fact, two bilinear equations for each N). Our main result, from which all 
the rest can be derived, is the following.

Theorem 1.1.  Suppose that

un =
τn+3τn

τn+2τn+1
� (4)

is a solution of (2). Then τn satisfies the bilinear equation

τn+N+2τn = γn τn+N+1τn+1 + α τn+Nτn+2,� (5)

where the quantity γn is 2-periodic, that is

γn+2 = γn ∀n;

and conversely, the equation (5) for τn, with the 2-periodic coefficient γn, has a first integral β 
such that un given by (4) satisfies (2). Moreover, if un is given by (4), then when N is even (2) 
has a first integral K such that τn satisfies

τn+2N+1τn = −α τn+2Nτn+1 + K τn+N+1τn+N ,� (6)

while for N odd (2) has a first integral K̄  such that

τn+2N+2τn = α2 τn+2Nτn+2 + K̄ τ 2
n+N+1.� (7)

An outline of the paper is as follows. In the next section, we explain how we originally 
obtained the above result, using the singularity confinement method (or an arithmetical ana-
logue of it) to find a Laurentification of (2), given by a multilinear equation for a tau function 
(equation (10) in section 2). We also present a tropical (ultradiscrete) version of the multi-
linear equation, as well as a corresponding tropical version of (2), and show how this can be 
used to obtain an explicit formula for degree growth (quadratic in n). For any fixed N, it is 
then possible to derive the bilinear equation (5), as well as (6) or (7), either numerically (with 
specific initial data) or symbolically (working with rational functions of initial data). The 
complete proof of theorem 1.1, for arbitrary N, is reserved until section 3, where we begin by 
deriving (5) via a modified version of (2) (see equation (22) below), before treating the rest of 
the result and its detailed consequences for even/odd N separately. The interpretation in terms 
of Liouville integrability is naturally achieved by considering a lift of (2) to dimension N + 1, 
obtained by eliminating the parameter β: this yields equation (19) in section 3. A schematic 
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picture of the connections between the main equations involved, valid for arbitrary N, is pro-
vided by the following diagram:

The vertical arrows above denote maps between solutions of an equation and the one below 
it. The other results in section 3 are based on the connection between bilinear equations and 
cluster algebras, as explained in [8], which leads to a Poisson structure for the lifted DTKQ 
equation  (19). For N even, both bilinear equations  (5) and (6) reveal the connection with 
reductions of Hirota’s discrete KdV equation; while for N odd, the second bilinear equa-
tion (7) leads to a link with reductions of a discrete time Toda equation, as well as an associ-
ated Bäcklund transformation (or BT, in the sense of [25]). In order to illustrate these results, 
we provide full details for the particular even case N = 4 in section 4, and for the odd case 
N = 5 in section 5, before finishing with some conclusions.

Shortly after completing this work, we were made aware of recent results by Svinin [39, 
40], who has constructed a large class of difference equations  admitting a Lax pair, and 
described the first integrals for some of them. In particular, the generalized DTKQ equa-
tion (2) arises as the case k = 1 of a first integral for one of the systems presented by Svinin; 
see the unnumbered equation appearing before (66) in [40]. We make a further comment on 
the connection with Svinin’s work in our conclusions.

2.  Singularity confinement and Laurentification

In this section we describe the experimental approach which led us to theorem 1.1.
The first relevant tool here is the singularity confinement test, which was introduced in [9] 

as a heuristic method for identifying discrete systems that may be integrable. In its original 
form, this method has the drawback that many systems with confined singularities have posi-
tive algebraic entropy [15], but recently singularity confinement has been refined to include 
information about deautonomization, which renders it a more effective tool [10, 31, 35]. If we 
apply the basic singularity confinement test to (2) for a few small values of N, then in all cases 
we find that the singularity pattern is

. . . , ε, ε−1, ε−1, ε, . . . ,� (8)

where the latter is the leading power of ε when the singularity is approached as ε → 0.
In fact, in order to see the singularity pattern, we do not really need to apply the singularity 

confinement test per se, but rather an arithmetical version of it, by considering orbits of (2) 
defined over Q, for rational values of the parameters α,β . This can be turned into a semi-
numerical method for measuring the growth of complexity [1], with the rate of growth of the 
logarithmic heights of the iterates being taken as a measure of entropy [11]. Furthermore,  
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if the map is defined over Q, then one can consider reduction modulo a prime p, in which case 
the appearance of a singularity at some iterate un ∈ Q means that the p-adic norm |un|p > 1, 
and the p-adic expansion of the iterates (expanding in powers of p) is analogous to the expan-
sion in powers of ε in the usual singularity confinement test (see [23, 24] for an application 
of this idea).

To see this method in practice, consider (2) for N = 5 with α = 3, β = −10, which gives 
the recurrence

un+5 = 10 − (un + un+1 + un+2 + un+3 + un+4) +
3

un+1un+2un+3un+4
,

defined over Q, and choose the five rational initial data u0 = u1 = u2 = u3 = 1, u4 = 4. The 
sequence continues as

11
4

,
23
44

,
316
253

,
1628
1817

,
7153
2923

,
194735
46028

,
2800493
3066460

,
115286767
186573385

, . . . ,� (9)

and if we factorize each of the above terms then we find

11
22 ,

23
22 ·11

,
22 ·79
11·23

,
22 ·11·37

23·79
,

23·311
37·79

,
5·17·29·79
22 ·37·311

,
37·75689

22 ·5·17·29·311
,

59·61·103·311
5·17·29·75689

, . . . ,

which can be taken mod p for p = 11, 23, 37, 79, 311 etc to reveal the singularity pattern 
p−1, p, p, p−1 at leading order, in accordance with (8) (while the choice p = 2 is special here 
because the coefficient β vanishes mod 2 in this example).

There is a close link between singularity confinement for discrete systems and the Laurent 
property [18, 29]. In the context of integrability, the Laurent property appears at the level 
of Hirota bilinear equations: the Hirota–Miwa (discrete KP) equation can be derived from 
mutations in a cluster algebra [32], which means that it has the Laurent property, and this 
property is inherited by its reductions to recurrences of Somos (or Gale-Robinson) type [5, 
30]. Furthermore, it seems likely that any birational map with confined singularities can be 
lifted to a higher-dimensional ‘Laurentified’ system, i.e. one that has the Laurent property. In 
specific examples, Laurentification in this sense has been obtained by passing to homogene-
ous coordinates [42], or by using recursive factorization [12, 13].

For completeness, here we provide a general definition of what it means to ‘Laurentify’ a 
birational map, which includes the case of recurrences or difference equations considered in 
the sequel.

Definition 2.1.  Let ψ be a birational map of M-dimensional affine space AM , defined by 
rational functions with coefficients belonging to an integral domain K, where A = A(F) for 
some field F containing the field of fractions of K. Suppose that a fixed set of coordinates 
τ = (τ0, τ1, . . . , τM−1) is chosen for AM ; these coordinates are regarded as initial data for ψ. 
Then, in terms of these coordinates, ψ is said to have the Laurent  property if for all n ∈ Z, 
each component of the iterates ψnτ  belongs to the ring R of Laurent polynomials in the initial 
data, that is

R := K[τ±1
0 , . . . , τ±1

M−1].

Definition 2.2.  Let ϕ be a birational map of N-dimensional affine space. A birational map 
ψ in dimension M � N  is said to be a Laurentification of ϕ whenever there is a rational map 
π such that the diagram

A N W Hone et alJ. Phys. A: Math. Theor. 51 (2018) 044004
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is commutative, and ψ has the Laurent property.

For the equation (2), regardless of the means by which we obtain the singularity pattern, 
the form of (8) immediately suggests that we should try the substitution (4) in order to obtain 
the Laurentification.

Proposition 2.3.  Given the substitution (4), un is a solution of (2) whenever the tau  
function τn satisfies the multilinear relation

τn+N+3τ
2
n+N

N−1∏
j=1

τn+j = ατn+3τn+N

N+1∏
j=2

τn+j − β
N+2∏
j=1

τn+j

−τnτn+3

N+2∏
j=3

τn+j −
N−1∑
k=1

τn+kτn+k+3

N+2∏
j=1

j�=k+1,k+2

τn+j,

�

(10)

which is of order N + 3 and homogeneous of degree N + 2. For each N � 2 the recurrence 
(10) has the Laurent property, i.e. the iterates are Laurent polynomials in the initial data 
τ = (τ0, τ1, . . . , τN+2). More precisely,

τn ∈ Z[α,β, τ±1
0 , . . . , τ±1

N+2] ∀n ∈ Z.

Proof.  To prove the Laurent property for the equation (10), we make use of the bilinear 
relation (5) in theorem 1.1, of which an independent proof is given in the next section. Let 

R := Z[α,β, τ±1
0 , . . . , τ±1

N+2]. The period 2 coefficient appearing in (5) takes two distinct val-
ues, given by

γ0 = (τN+1τ1)
−1

(
τN+2τ0 − ατNτ2

)
, γ1 = (τN+2τ2)

−1
(
τN+3τ1 − ατN+1τ3

)
∈ R,

using the fact that τN+3 ∈ R , which follows directly from (10). So the iterates of (10) coincide 
with those of (5), subject to fixing γ0, γ1 as above. Now we can make use of proposition 5.4 in 
[30], which implies that the nonautonomous Somos recurrence (5) has the Laurent property, 
meaning that

τn ∈ Z[α, γ0, γ1, τ±1
0 , . . . , τ±1

N+1]

for all n. Upon substituting γ0, γ1 ∈ R into the Laurent polynomials obtained from (5), the 
result follows.� □ 

For β = 0, corresponding to (1), particular cases of the preceding result have been proved 
before. The case N = 2 of the recurrence (10) with β = 0 was found previously by the recur-
sive factorization method: this is theorem 8 in [12], while theorem 10 in the same paper 
corresponds to the case N = 3, but with the inclusion of certain periodic coefficients; and 
some results for general N are found in [14]. For any particular N it can be verified directly 
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with computer algebra that the Laurent property holds, by applying a method attributed to 
Hickerson, that is described in [36]; but a direct proof along these lines for all N is not so 
straightforward.

Example 2.4.  When N = 5, the recurrence (10) becomes

τ8τ
2
5 τ4τ3τ2τ1 = ατ6τ

2
5 τ4τ

2
3 τ2 − βτ7τ6τ5τ4τ3τ2τ1 − τ7τ6τ5τ4τ

2
3 τ0 − τ7τ6τ5τ

2
4 τ

2
1

−τ7τ6τ
2
5 τ

2
2 τ1 − τ7τ

2
6 τ

2
3 τ2τ1 − τ 2

7 τ
2
4 τ3τ2τ1,

�
(11)

where we have set the index n → 0 for brevity.

The Laurent property means that the iterates of (10) can be written as

τn =
Nn(τ )

τ dn
,� (12)

where the numerator Nn is a polynomial in the initial data that is not divisible by any of the 
variables τ0, τ1, . . . , τN+2, while τ dn denotes the Laurent monomial in these variables speci-
fied by the denominator vector dn, an integer vector whose components give the exponents 
for each variable. Due to the homogeneity of (10), the degree growth of the iterates can be 
determined from that of the denominators. If we further assume that there are no cancellations 
between numerators and denominators on the right-hand side, then (as is well known in the 
context of cluster algebras [6, 7]), the denominator vector dn satisfies the max-plus tropical  
(or ultradiscrete) analogue of (10), which takes the form

dn+N+3 + 2dn+N +
N−1∑
j=1

dn+j = max


dn+3 + dn+N +

N+1∑
j=2

dn+j,
N+2∑
j=1

dn+j, . . .


 ,

�

(13)

where each of the omitted terms in the max corresponds to one of the terms on the right-hand 
side of (10). The vector form of (13) means that each component of dn satisfies the same tropi-
cal equation.

Example 2.5.  When N = 5, the tropical version of (11) can be written as

d8 + 2d5 + d4 + d3 + d2 + d1 = max
(

d6 + 2d5 + d4 + 2d3 + d2,
7∑

j=1

dj,
7∑

j=4

dj + 2d3 + d0, M̂
)

,

where

M̂ = d7 + d1 +max
(

d6 + d5 + 2d4 + d1, d6 + 2d5 + 2d2, 2d6 + 2d3 + d2, d7 + 2d4 + d3 + d2

)
;

once again we have set n → 0 for brevity.

From the explicit form of the above equation, the task of solving (13) for general N 
looks like it might be a formidable one, but in fact there is an enormous simplification that 
can be made. The point is that the substitution (4) that lifts (2) to (10) also has a tropical 
analogue, which allows (13) to be reduced to a max-plus version of (2), and the latter 
turns out to have a very simple behaviour: all solutions reach a fixed point after finitely 
many steps.

A N W Hone et alJ. Phys. A: Math. Theor. 51 (2018) 044004
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Proposition 2.6.  Given the substitution

Un = dn+3 − dn+2 − dn+1 + dn,� (14)

the quantity Un is a solution of a tropical version of (2), given by

Un+N =
[
max(−Sn, Un, Un+1, . . . , Un+N−1)

]
+

, Sn =

N−1∑
j=1

Un+j� (15)

(with [x]+ denoting max(x, 0) for x ∈ R), whenever dn is a scalar solution of (13). Moreover, 
for any choice of real initial data for (15) there exists C � 0 and an integer m � 0 such that

Un = C ∀n � m.� (16)

Proof.  The max-plus equation (15) is obtained from (2) by solving for the highest iterate 
un+N and replacing (+,×) with (max,+) in the usual way (setting all coefficients to 1), while 
a direct calculation verifies that if dn satisfies the scalar version of (13) then Un given by (14) 
is a solution of (15). Now given an N-tuple of real initial values (U0, . . . , UN−1), we consider 
the iteration of the equivalent map in RN  given by

(U0, . . . , UN−1) �→ (U′
0, . . . , U′

N−1)� (17)

where

U′
j = Uj+1 for 0 � j � N − 2, U′

N−1 = [max(−S, U0, . . . , UN−1)]+, S =
N−1∑
j=1

Uj.

The initial data can be divided into four disjoint subsets of RN , defined by

(i) S � 0, maxj∈{1,...,N−1}(Uj) � U0;
(ii) S � 0, Uj < U0 ∀j ∈ {1, . . . , N − 1};
(iii) S < 0, Uj < −S ∀j ∈ {0, . . . , N − 1};
(iv) S < 0, maxj∈{0,...,N−1}(Uj) � −S.

By examining each of these regions, it follows that the quantity S is non-decreasing under the 
action of the map (17), and after finitely many iterations it attains a maximum value S = NC at 
a fixed point Uj = C � 0 for 0 � j � N − 1. To see this, begin by considering initial data lying 
in region (i). In that case, the maximum of the Uj is attained at some k ∈ {1 . . . , N − 1}, and 

U′
N−1 = Uk = C � 0, with S′ =

∑N−1
j=1 U′

j = S + U′
N−1 − U1 =⇒ S′ − S = Uk − U1 � 0. All 

subsequent iterations stay in this region, C remains the maximum value, and all components take 
this same value after a finite number of steps. Next, take initial data in region (ii), to find U′

N−1 = U0 
and S′ − S = U0 − U1 > 0. In that case, the maximum value is C = U′

N−1 > U′
0 = U1, and so 

region (i) is reached after a single step. For case (iii), one step of (17) gives U′
N−1 = −S > 0, 

so S′ − S = −S − U1 > 0, and hence maxj∈{0,...,N−1}(U′
j ) = U′

N−1 > −S′ which means that 
either region (iv) is attained when S′ < 0, or otherwise S′ � 0 and region (i) has been reached 
instead. Finally, starting off in region (iv) gives U′

N−1 = Uk = C � −S > 0 for some k, and 
S′ − S = Uk − U1 � 0. If the sum S′ < 0, a finite number of subsequent steps remain in re-
gion (iv), with C as the maximum value, until this sum changes sign, so that eventually region 
(i) is reached, and the proof is complete.� □ 
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Upon comparing the substitution (14) with (16), the explicit form of the scalar solution of 
(13) is obtained immediately, for sufficiently large n.

Corollary 2.7.  For any real (N + 3)− tuple of initial values (d0, d1, . . . , dN+2), there ex-
ist real parameters A, Ā, B, C with C � 0 and an integer m � 0 such that the solution of the 
scalar version of (13) is given by

dn =
1
4

Cn2 + Bn + A + Ā(−1)n ∀n � m.� (18)

Remark 2.8.  The iterates of (10) are given by (12), where the vector dn has components 
d( j)

n , giving the degree of the exponent of τj, for 0 � j � N + 2. For each j in this range, this 

gives the initial data d( j)
k = −δjk, 0 � k � N + 2, for a scalar solution of (13). Hence the 

degrees of the denominators of the iterates of (10) can be calculated exactly, while (by homo-
geneity) the degree of each numerator is one more than the degree of the denominator. In par
ticular, C = 0 in the solution for j = 0, and in fact d(0)

n = 0 ∀n � 1, since there is no division 
by τ0 when (10) is iterated forwards, and C = 1 in the solution for d( j)

n , 1 � j � N − 1. With 
more detailed analysis, the precise degree growth of (2) can also be derived, but it follows 
from (18) that it must be quadratic, which is consistent with the empirical results found in [4] 
for the case β = 0. More detailed results for symmetric QRT maps, which include the case 
N = 2 of (2), are given in [13].

The Laurent property, combined with the quadratic degree growth of the iterates of (10), 
suggests that there should also be bilinear relations satisfied by the terms. Thus we can apply 
the method described in [19], starting with particular numerical values of the initial con-
ditions and looking for the smallest integer q such that a matrix M of size 

⌊ q
2

⌋
+ 1, with 

entries Mij = τq+i−jτi+j−2, has vanishing determinant: this corresponds to a bilinear rela-
tion of minimal order, with constant coefficients. By considering matrix entries of the form 
Mij = τq+�i−j+kτ�i+j+k−2, for different choices of offset k, one can also obtain minimal order 
relations whose coefficients have period � > 1.

To illustrate the method, we pick N = 5 with α = 3, β = −10, and use (11) to generate the 
particular sequence that starts from τ0 = τ1 = . . . = τ6 = 1, τ7 = 4, beginning

1, 1, 1, 1, 1, 1, 1, 4, 11, 23, 79, 148, 1244, 9860, 75 689, 370 697, . . . ,

whose ratios τn+3τn/(τn+2τn+1) produce (9). By considering bilinear relations with constant 
coefficients, the minimal relation is found to be of order q = 12, corresponding to the matrix 
M with entries Mij = τ12+i−jτi+j−2. However, all but three of the entries in a vector spanning 
the one-dimensional kernel of M are zero, and it is sufficient to take the 3 × 3 minor

M′ =



τ12τ0 τ10τ2 τ 2

6

τ13τ1 τ11τ3 τ 2
7

τ14τ2 τ12τ4 τ 2
8


 =




1244 79 1
9860 148 16

75 689 1244 121


 , detM′ = 0,

whose kernel is spanned by the vector (1,−9,−533)T, corresponding to the bilinear relation 
(7) with N = 5, α = 3 and the particular value K̄ = 533 for the first integral. With this same 
numerical sequence, one can also obtain relations with periodic coefficients, starting from 
period � = 2, by taking the matrix with entries of the form Mij = τq+2i−j+kτ2i+j+k−2, so that 
the minimum order relation has q = 7, and for k = −1, 0 one has 3 × 3 minors with
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det




4 1 1
23 11 4

148 79 23


 = 0 = det




11 4 7
79 23 11

1244 148 316


 .

Each of the two matrices above has a one-dimensional kernel, spanned by (1,−1,−3)T, 
(1,−2,−3)T respectively, corresponding to the three-term bilinear relation (5) with N = 5, 
α = 3, γ0 = 1, γ1 = 2.

For fixed N, once bilinear relations have been obtained for one or more particular numer
ical sequences of values of τn, these relations can then be checked for arbitrary initial data and 
coefficients by symbolic computations with a computer algebra package. Such computations 
provide a computer-assisted proof of theorem 1.1, for any specific choice of N, but to prove it 
for all N requires some general arguments, presented in the next section.

Sequences generated by certain bilinear recurrences of Somos type also admit further bilin-
ear relations of higher order (see [33], for example), with the coefficients being first integrals, 
and this has been used to obtain first integrals for four-term Somos-6 and Somos-7 recurrences, 
in [19] and [8], respectively. Another approach to finding first integrals, based on reduction of 
conservation laws for the discrete KP or BKP equations, was used in [28]. However, in what 
follows we will apply the method in [22], obtaining first integrals from Lax pairs arising by 
reduction of lattice equations (discrete KdV, discrete Toda, and/or discrete KP).

3.  Proof and consequences of the main theorem

In order to understand how the solutions of (2) are related to certain Liouville integrable  
systems, it is helpful to consider the equation of order N + 1 obtained by eliminating β:

En[u] := un+N+1 − un + α




1
N−1∏
j=1

un+j

− 1
N∏

j=2
un+j


 = 0.� (19)

To see how this arises, one can solve (2) for β, which gives

β =
α

N−1∏
j=1

un+j

−
N∑

j=0

un+j,

and then apply the total difference operator Δ to both sides; from this it follows that β defined 
as above is a first integral for (19). For all N, it can also be checked that (19) has the first 
integral

ζ̂ =

N∏
j=0

un+j + α

N−1∑
k=1

un+k,� (20)

which is related to the first integral (3) of (2) by ζ̂ = ζ − αβ.
For the proof of the first part of theorem 1.1, it is convenient to introduce another lift of (2) 

to dimension N + 1, defined via (4) by setting

π1 : un = wnwn+1 where wn =
τnτn+2

τ 2
n+1

.� (21)
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This can be regarded as an intermediate step between (2) and (10). Upon making the substitu-
tion (21), we find that (2) produces the equation

En[w] :=
N∑

j=0

wn+jwn+j+1 + β − α
N−1∏
j=1

wn+jwn+j+1

= 0.
� (22)

If the substitution (21) is interpreted as a Miura map, then (22) can be regarded as a modified 
version of the generalized DTKQ equation (2)

Lemma 3.1.  The quantity given in terms of wn and shifts by

γn[w] =
N∏

j=0

wn+j −
α∏N−1

j=1 wn+j
� (23)

provides a 2-integral of the modified generalized DTKQ equation (22).

Proof.  A direct calculation shows that

(S2 − 1) γn[w] =
N∏

j=2

wn+j ∆En[w] = En[w]
N∏

j=2

wn+j,

where

En[w] := wn+N+2wn+N+1 − wn+1wn +
α

N∏
j=2

wn+j




1
N−1∏
k=1

wn+k

− 1
N+1∏
k=3

wn+k




�

(24)

denotes the lift of (19) to N + 2 dimensions obtained from the first substitution in (21). Hence 
the quantity γn[w] gives a 2-integral of both (22) and (24), where in the first case (23) can be 
rewritten as a function of wn, . . . , wn+N−1 using (22).� □ 

If we substitute for wn with the ratio of tau functions given in (21), then we see that (23) is 
equivalent to the bilinear equation (5). Thus the following result is an immediate consequence 
of the preceding lemma, and proves the first part of theorem 1.1.

Corollary 3.2.  The quantity given in terms of τn and shifts by

γn =
τn+N+2τn − ατn+Nτn+2

τn+N+1τn+1
� (25)

is a 2-integral of the multilinear equation (10).

Remark 3.3.  In general, γn can be considered as a 2-integral for (22), (24) or (10), but it 
can only be considered as a 2-integral for (2) or (19) when N is odd, because only then can it 
be written purely in terms of un and shifts.

As the above remark indicates, there are considerable differences between the cases of 
even/odd N, so henceforth we consider these two cases separately.
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3.1. The case of even N

In the case of even N, we introduce another dependent variable vn, which is defined by

π2 : vn =

N−2
2∏

j=0

un+2j =

N−1∏
k=0

wn+k =
τnτn+N+1

τn+1τn+N
.

� (26)
It turns out that vn satisfies a travelling wave reduction of Hirota’s lattice KdV equation,

Vk+1,l − Vk,l+1 = α

(
1

Vk,l
− 1

Vk+1,l+1

)
,

� (27)
obtained by imposing the periodicity condition

Vk+N,l+1 = Vk,l =⇒ Vk,l = vn, n = lN − k,

which is called the (N, 1)-reduction of (27). By taking the reciprocal of the dependent variable 
and rescaling, this is equivalent to the (N,−1)-reduction considered in [20].

Proposition 3.4.  If N is even and un is a solution of (2), then vn = unun+2 · · · un+N−2 is a 
solution of

vn+N+1 − vn = α

(
1

vn+N
− 1

vn+1

)
,� (28)

which is the (N, 1) periodic reduction of the lattice KdV equation (27).

Proof.  For N even, (5) is a special case of the second bilinear equation  in the statement 
of proposition 4.2 in [22]. Upon solving (5) for γn and noting that (since γn has period 2) 
(SN − 1)γn = 0, the equation  (28) follows immediately by taking vn to be the ratio of tau 
functions given in (26).� □ 

The result of proposition 4.2 in [22] shows that the (L, M) periodic reduction of (27) is 
actually associated with two different bilinear equations, so applying this result to the case 
(L, M) = (N, 1) considered here, for even N we immediately obtain the second relation (6) in 
theorem 1.1, in the following form.

Corollary 3.5.  For even N, the quantity given in terms of τn and shifts by

K =
τnτn+2N+1 + ατn+1τn+2N

τn+Nτn+N+1
� (29)

is a first integral of (10), which via (4) produces a first integral of (2) or (19) defined by

K[u] :=




N−1∏
j=0

un+2j + α


 u

N
2

n+N−1

N−2∏
k=1

(un+kun+2N−2−k)
� k+1

2 �.� (30)

Remark 3.6.  Observe that, as it is written, the expression (30) is a polynomial in un+j for 
j = 0, . . . , 2N − 2, which can be rewritten as a rational function of any N adjacent iterates 
by using the recurrence (2) to eliminate higher shifts. The corresponding first integral (29) 
in terms of tau functions satisfying equation  (10) is regarded in a similar way. By setting 
un = wnwn+1, K[u] also provides a first integral for (22) or (24).
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3.1.1.  U-systems and other Liouville integrable maps.  We can now discuss Liouville integra-
bility of various maps associated with (2) for N even.

Using the presymplectic form which comes from the cluster algebra associated with the 
bilinear recurrence (5) (see [8] and references), the variables wn defined in terms of tau func-
tions by (21) provide a set of symplectic coordinates. The corresponding symplectic map in 
dimension N is defined by

wn+Nwn

N−1∏
j=1

w2
n+j = γn

N−1∏
j=1

wn+j + α,� (31)

which is an example of a U-system [21], and (up to overall scaling) the nondegenerate Poisson 
bracket preserved by (31) is the one given by equation (3.21) in lemma 3.13 of [20], that is

{wm, wn} = (−1)m−n+1wmwn for 0 � m < n � N − 1.� (32)

(For a specific example of this bracket, see equation (81) in section 4 below.)
As is shown in [20], theorem 3.14, the nondegenerate bracket for (31) lifts to a bracket for 

(28) in dimension N + 1, which has rank N and one Casimir. There is another Poisson bracket 
for (28), coming from a discrete Lagrangian formulation, and the two different brackets are 
compatible with one another.

There is another cluster algebra that arises, namely the one associated with the bilinear 
recurrence (6). The variables vn defined by (26) provide symplectic coordinates for the corre
sponding U-system, which is the map in dimension N given by

N∏
j=0

vn+j = −α

N−1∏
k=1

vn+k + K,� (33)

preserving a nondegenerate bracket that has the same form in these coordinates as the one for 
wn above, i.e.

{vm, vn} = (−1)m−n+1vmvn for 0 � m < n � N − 1.� (34)

This lifts to another Poisson bracket for the reduced KdV map (28) in dimension N + 1, which 
also has rank N and one Casimir; in fact, it is a linear combination of the two compatible 
brackets found in [20], so they all belong to the same Poisson pencil, consisting of the brackets

λ1{ , }1 + λ2{ , }2,� (35)

for arbitrary (λ1 : λ2), where { , }1,2 are any two fixed independent brackets in this family.
According to corollary 2.2 in [22], each of the bilinear equations (5) and (6) has a matrix 

Lax representation (2 × 2 and N × N , respectively), and this yields Lax pairs for the corre
sponding U-systems (31) and (33). However, it is more convenient to make use of the 2 × 2 
Lax pair for the discrete KdV reduction, as obtained in [20]. This produces a complete set 
of first integrals for the map (28), which Poisson commute with respect to any bracket in the 
pencil (35). Hence the Liouville integrability of the map (19) follows from that of (28), as 
described by the following result.

Theorem 3.7.  For N even, let ϕ and χ denote the birational maps in dimension N + 1 
defined by (19) and (28) respectively, and let ψ denote the lift of (31) to N + 2 dimensions 
given by

ψ : (w0, w1, . . . , wN−1, γ0, γ1) �→ (w1, w2, . . . , wN , γ1, γ0).
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Then with πj for j = 1, 2 defined by (21) and (26), each of the birational maps ψ,ϕ,χ pre-
serves a Poisson bracket such that the diagram

� (36)

of rational Poisson maps is commutative. In particular, the bracket preserved by ϕ is of rank 
N, being specified by

{u0, u1} = u0u1, {u0, uN−1} = − α∏N−2
j=1 uj

, {u0, uN} = −u0uN +
α2

(∏N−1
j=1 uj

)2 ,

� (37)

with {u0, uj} = 0 for j = 2, . . . , N − 2. Moreover, each of the three horizontal maps is inte-
grable in the Liouville sense.

Proof.  As already mentioned, theorem 3.14 in [20] says that the bracket (32) lifts to a bracket 
for (28). This can be made more explicit by first extending (31) to the map ψ in dimension N + 2, 
which preserves a Poisson bracket of rank N, defined by extending (32) to include the extra 
coordinates γ0, γ1 as a pair of Casimirs. Then the formula vn = wnwn+1 · · ·wn+N−1 from (26) 
defines a Poisson map π : CN+2 → CN+1, with a corresponding Poisson bracket for the vari-
ables vn, n = 0, . . . , N , denoted by { , }2 say (as in [20]), so that π∗{vm, vn}2 = {π∗vm,π∗vn}. 
This rational Poisson map factors as π = π2 ◦ π1, where π1 is defined by un = wnwn+1, as in 
(21), and π2  by vn = unun+2 · · · un+N−2. A direct calculation shows that the pushforward of 
the bracket (32) by π1 yields (37), and the product γ0γ1 pushes forward to a Casimir of the 
latter bracket, which by construction is preserved by (19). By theorem 4.1 in [20], the map 
χ is Liouville integrable: it has D + 1 independent first integrals I0, I1, . . . , ID with D = N

2 , 
coming from the trace of a monodromy matrix, which commute with respect to the bracket 
{ , }2, with I0 being a Casimir. The pullbacks of these integrals, π∗

2 Ij, provide D + 1 commut-
ing integrals for the map ϕ; and pulling back once more gives the same number of integrals 
π∗Ij for ψ, including only one Casimir π∗I0 = −(γ0γ1)

N/2 (see remark 3.15 in [20]), so taking 
another independent Casimir, i.e. γ0 + γ1, gives a full set of commuting first integrals. Hence 
the Liouville integrability of ψ and ϕ is proved.� □ 

Remark 3.8.  For a fixed value of K, the second U-system (33) can also be regarded as being 
Liouville integrable with respect to the nondegenerate bracket (34). As already mentioned, this 
lifts to another independent bracket in the pencil (35), { , }1 say, for the map χ defined by (28).

3.2. The case of odd N

As is mentioned in remark 3.3, in the case that N is odd, γn can be considered as a 2-integral 
for (2), and via the substitution (4) the first bilinear equation (5) yields

A N W Hone et alJ. Phys. A: Math. Theor. 51 (2018) 044004



15

N−1∏
j=0

un+j = γn

N−3
2∏

k=0

un+2k+1 + α,� (38)

which is the U-system associated with this bilinear recurrence. The latter defines a symplectic 
map in dimension N − 1, whose corresponding nondegenerate Poisson bracket is specified by 
equation (3.22) in lemma 3.13 of [20], namely

{un, un+1} = unun+1, {un, un+j} = 0 for 2 � j � N − 2.� (39)

(For a particular example, see (91) below.) The U-system (38) can naturally be viewed as a 
reduction of the Hirota–Miwa equation, and a Lax pair and first integrals can be obtained 
immediately by applying corollary 2.2 in [22]. The case N = 5 is presented explicitly in 
section 5.

At this stage, for the odd case we can already state a partial analogue of theorem 3.7.

Theorem 3.9.  For N odd, let ϕ denote the birational map in dimension N + 1 defined by 
(19) and let ψ denote the birational lift of (38) to N + 1 dimensions given by

ψ : (u0, u1, . . . , uN−2, γ0, γ1) �→ (u1, u2, . . . , uN−1, γ1, γ0).

Then there is a birational map π̂1 such that the diagram

� (40)

of birational Poisson maps is commutative. Moreover, the Poisson bracket preserved by ϕ is 
of rank N − 1, with non-zero brackets given by (37).

Proof.  The bracket (39) for the U-system (38) in dimension N − 1 extends to a bracket 
for ψ by including the additional coordinates γ0, γ1 as two Casimirs. Taking n = 0, 1 in (38) 
defines uN−1 and uN as rational functions of u0, u1, . . . , uN−2, γ0, γ1, and conversely gives γ0 
and γ1 as rational functions of u0, u1, . . . , uN, so this specifies a birational transformation π̂1 
between these two sets of coordinates in dimension N + 1. A direct calculation shows that the 
bracket preserved by ϕ takes the same form (37) as for N even, but in this case there are two 
independent Casimirs given by γ0, γ1.� □ 

When N is odd, the fact that the coefficient γn in (38) is 2-periodic means that neither this 
U-system, nor the corresponding bilinear equation (5), can be related to a reduction of discrete 
KdV, which would require the period of γn to divide N (see proposition 3.7 in [20] and propo-
sition 4.2 in [22]). However, it turns out that there is a connection with reductions of another 
integrable two-dimensional lattice equation, namely a discrete form of the Toda lattice. This 
connection arises from the fact that τn satisfies the other bilinear equation (7), which is the 
content of the following statement.

Proposition 3.10.  For odd N, the quantity given in terms of τn and shifts by

K̄ =
τnτn+2N+2 − α2τn+2τn+2N

(τn+N+1)2� (41)

is a first integral of (10), which via (4) produces a first integral of (2) or (19) defined by
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K̄[u] :=




N−1∏
j=0

sn+2j − α2


 (sn+N−1)

N−1
2

N−3
2∏

k=1

(sn+2ksn+2N−2k−2)
k,� (42)

where

sn = unun+1.� (43)

Proof.  Taking γn as given by (25) and applying the total difference operator to K̄  yields the 
identity

∆K̄ =
τn+2N+2τn+1

τn+N+2τn+N+1
(SN+1 − 1) γn − α

τn+2N+1τn+2

τn+N+2τn+N+1
(SN−1 − 1) γn+1,

so that the right-hand side vanishes because (S2 − 1)γn = 0 and N is odd. This completes the 
proof of the statement, and also the proof of theorem 1.1.� □ 

Remark 3.11.  The preceding result means that, for each odd N, the Somos-(N + 2) recur-
rence (5) is related to (7), which corresponds to two copies of a Somos-(N + 1) recurrence 
with the iterates interlaced, since the iterates with even/odd indices decouple from each other. 
For the particular case N = 3, the relation between Somos-5 (with autonomous coefficients) 
and two copies of Somos-4 was shown in proposition 2.8 of [17], and interpreted as a Bäck-
lund transformation in [2].

3.2.1.  Lax pair associated with a discrete Toda equation.  The five-point lattice equation

Vk,l

Vk+1,l
− Vk−1,l

Vk,l
+ α2

(
Vk+1,l−1

Vk,l
− Vk,l

Vk−1,l+1

)
= 0� (44)

is a discrete time Toda equation [3, 16]. The (1,−P) periodic reduction of (44) corresponds to 
imposing the condition

Vk+1,l−P = Vk,l =⇒ Vk,l = vn, n = kP + l,� (45)

which leads to the ordinary difference equation

vn

vn+P
− vn−P

vn
+ α2

(
vn+P−1

vn
− vn

vn+1−P

)
= 0.� (46)

Upon introducing a tau function Tn such that

vn =
Tn

Tn+1
,� (47)

we can immediately apply proposition 3.1 in [22], where the (Q,−P) periodic reduction 
of (44) was considered; here we are only concerned with the case Q = 1, which gives the  
following result.

Proposition 3.12.  If vn given by (47) satisfies (46), then there is a first integral K̄  such that 
Tn satisfies the bilinear equation

Tn+2PTn = α2 Tn+2P−1Tn+1 + K̄ T2
n+P,� (48)

and conversely every solution of (48) provides a solution of (46).
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We now present a Lax representation for (44), which originates from a map associated with 
a discretization of the Toda lattice in [37, 38], and subsequently provides a Lax representation 
for (46).

Proposition 3.13.  The discrete Toda equation (44) is equivalent to the the discrete zero 
curvature equation

L(Πk,l, Vk,l, η)M(Vk+1,l, Vk,l+1, η) = M(Vk+1,l−1, Vk,l, η)L(Πk+1,l, Vk+1,l, η),
�

(49)

where η is a spectral parameter, and

L( p, v, η) =
(

p + η v
−v−1 0

)
, M(u, v, η) =

(
1 − α2uv−1 − αη −αu

αv−1 1

)
.� (50)

Proof.  The equation (49) implies that both

Πk+1,l =
αVk+1,l

Vk,l+1
+

1
α

(
Vk,l

Vk+1,l
− 1

)
� (51)

and

Πk,l =
αVk+1,l−1

Vk,l
+

1
α

(
Vk,l

Vk+1,l
− 1

)
,� (52)

and these two relations together imply the discrete Toda equation (44).� □ 

By imposing the periodicity condition (45), the Lax matrices in (49) reduce to

Ln := L( pn, vn, η), Mn := M(vn, vn−P+1, η),

where from (51) we have

pn =
αvn

vn−P+1
+

1
α

(
vn−P

vn
− 1

)
,� (53)

and the zero curvature equation reduces to

LnMn+P = Mn+P−1Ln+P.� (54)

With this notation, we can introduce the monodromy matrix as

Mn := (1 − αη)M−1
n Ln−P+1 . . . Ln−1Ln.� (55)

This satisfies a discrete Lax equation, which follows from the identity (54).

Corollary 3.14.  The (1,−P) periodic reduction (46) obtained from the discrete Toda equa-
tion is equivalent to the discrete Lax equation

MnLn+1 = Ln+1Mn+1.� (56)

The equation (56) means that the shift n → n + 1 is an isospectral evolution for the mono-
dromy matrix (55). From (50), the determinant is detMn = 1 − αη, while trMn  is a monic 
polynomial of degree P in η whose coefficients provide first integrals of (46).

Upon comparing (41) with (48), we see that for odd N the solutions of (2) correspond to 
two interlaced sets of tau functions,
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Teven
n = τ2n, Todd

n = τ2n+1,� (57)

such that for P = N+1
2  there are two sets of solutions of (46) given by

veven
n =

Teven
n

Teven
n+1

, vodd
n =

Todd
n

Todd
n+1

.� (58)

Then from (43) we may write the even/odd index quantities sj as

s2n = ŝeven
n :=

veven
n

veven
n+1

, s2n+1 = ŝodd
n :=

vodd
n

vodd
n+1

.

The equation (46) for the reduced Toda map is invariant under the scaling vn → λvn, for any 
non-zero λ, as are the quantities ŝeven/odd

n . Hence in this case (46) becomes an equation of 
order 2P − 1 = N  for each of the latter quantities, that is

ŝn · · · ŝn+P−1 − ŝn−P · · · ŝn−1 + α2
(

1
ŝn · · · ŝn+P−2

− 1
ŝn−P+1 · · · ŝn−1

)
= 0.

�

(59)

Each iteration of (19) intertwines two sets of solutions of the above equation.

Proposition 3.15.  For even/odd n taken separately, the formula (42) defines a U-system 
in dimension N − 1 = 2P − 2 with coordinates ŝ0, ŝ1, . . . , ŝN−2, preserving a nondegenerate 
Poisson bracket given by

{ŝn, ŝn+1} = ŝnŝn+1, {ŝn, ŝn+P−1} = −2ŝnŝn+P−1, {ŝn, ŝn+P} = 2ŝnŝn+P,
�

(60)

with all other brackets {ŝn, ŝn+j} for 0 � j � N − 2 being zero. This lifts to a bracket of rank 
N − 1 in dimension N that is preserved by (59), with K̄  being a Casimir, where the extra 
bracket is

{ŝn, ŝn+N−1} = − α2

ŝn+1 · · · ŝn+N−2
.� (61)

Proof.  According to theorem 4.6 in [8], the bilinear equation (48) preserves a log-canonical 
presymplectic form, which reduces to a symplectic structure for the U-system

ŝP
n+P−1

P−2∏
j=0

(ŝn+jŝn+N−1−j)
j+1 = α2ŝP−1

n+P−1

P−2∏
k=1

(ŝn+kŝn+N−1−k)
k + K̄� (62)

in dimension N − 1. The symplectic structure is equivalent to a nondegenerate log-canonical 
Poisson bracket, of the form {ŝm, ŝn} = cmnŝmŝn, where (cmn) is a constant skew-symmetric 
Toeplitz matrix. Taking the Poisson bracket of ̂sn+j with both sides of (62) for j = 1, . . . , P − 2 
produces a system of 2P − 4 homogeneous linear equations for the entries of the first row of 
this matrix, which is readily solved to yield (60), up to overall scaling by an arbitrary non-zero 
constant. Upon lifting this bracket to dimension N and requiring that K̄  be a Casimir, taking 
the bracket of ̂sn with both sides of (62) leads to the above expression for {ŝn, ŝn+N−1}.� □ 

In the case of odd N, a partial analogue of the bottom part of the diagram (36) arises by 
taking two iterations of the map ϕ in (40), that is
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� (63)

where the vertical map π̂2  is defined by using (43) either for even values, or for odd values of 
n only, and

χ̂ : (ŝ0, ŝ1, . . . , ŝN−1) �→ (ŝ1, ŝ2, . . . , ŝN)

is defined by (59) with P = (N + 1)/2. The diagonal entries of the monodromy matrix Mn 
in (55) are functions of the ratios ŝj = vj/vj+1 (although the off-diagonal entries are not), so 
that trMn  directly provides first integrals for (59). Moreover, from the above diagram, the 
integrals provided by trMn  can be pulled back by π̂2  to give integrals for ϕ2.

In fact, we can say rather more: the two sets of integrals obtained by taking even/odd n in 
(43) coincide, so they pull back to integrals for ϕ. The reason is that the map ϕ corresponds 
to a Bäcklund transformation for the discrete Toda reduction, in the sense of [25]. In order to 
show this, it is necessary to consider the two sets of reduced Lax matrices

Leven/odd
n := L( peven/odd

n , veven/odd
n , η), Meven/odd

n := M(veven/odd
n , veven/odd

n−P+1 , η)

for even/odd n separately, and introduce a gauge transformation matrix defined by

Gn :=
(
η + u2n+1 − κ vodd

n

−(veven
n+1)

−1 −1

)
, κ = α−1(1 − γ0γ1).� (64)

Lemma 3.16.  The gauge matrix (64) intertwines the even/odd reduced Lax matrices as 
follows:

Leven
n Gn = Gn−1Lodd

n ,� (65)

Meven
n Gn = Gn−PModd

n .� (66)

Proof.  In order to prove these intertwining relations, it is helpful to note that 
det Leven/odd

n = 1 and detMeven/odd
n = 1 − αη, while detGn = κ− η follows from the fact 

that u2n+1 = vodd
n /veven

n+1, which is a consequence of the tau function formulae (57) and (58). 
Thus, in both (65) and (66), the determinants of the left/right-hand sides agree, and henceforth 
it is sufficient to check only three out of four matrix entries in each equation. The (2, 2) entries 
on each side of (65) are identical, and the same is true for (66), so we need only consider the 
(1, 2) and (2, 1) entries. Taking the difference of the (2, 1) entries on each side of (65) requires 
that

−(veven
n )−1

(
u2n+1 − κ− podd

n

)
− (vodd

n )−1 = 0� (67)

should hold. By using tau functions it is clear that u2n = veven
n /vodd

n , so that the equality (67) 
boils down to the identity

podd
n = u2n + u2n+1 − κ.� (68)
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To prove the latter, we successively use ratios of tau functions to go between different vari-
ables. On the one hand, we have

γ0γ1 =
(

veven
n−P+1 − αvodd

n

)(
1

veven
n+1

− α

vodd
n−P+1

)
,� (69)

which follows from (5), while on the other hand

vodd
n−P

vodd
n

−
veven

n−P+1

veven
n+1

= u2n−N+1 · · · u2n(u2n−N − u2n+1) = α(u2n − u2n−N+1)

by (19). Combining the above with the fact that u2n−N+1 = veven
n−P+1/vodd

n−P+1, and then compar-
ing (51) with (69), leads to the alternative formula (68) for podd

n . Similarly, the equality of the 
(1, 2) entries on each side of (65) boils down to an equivalent formula for peven

n , that is

peven
n = u2n−1 + u2n − κ.� (70)

The equality of the (2, 1) entries on each side of (66) is a direct consequence of the identity 
(69), while to verify the (1, 2) entries it is sufficient to note that

γ0γ1 =
(

vodd
n−P − αveven

n

)(
1

vodd
n

− α

veven
n−P+1

)
.� (71)

Both (69) and (71) are proved in the same way, by expressing the terms on their right-hand 
sides in terms of tau functions, and using (5) together with the 2-periodicity of γn.� □ 

For the case of odd N, we can now state a closer analogue of the bottom part of the diagram 
(36).

Theorem 3.17.  For odd N = 2P − 1, the map ϕ defined by (19) corresponds to a Bäcklund 
transformation (BT) for the reduced Toda equation (46). The BT is a 2-valued Poisson corre-
spondence between solutions of (59), which preserves all the first integrals obtained from the 
trace of the monodromy matrix (55), and there is a commutative diagram

� (72)

where χBT  denotes one of the branches of the correspondence.

Proof.  To begin with, suppose that un is a solution of (19), with τn being a corresponding 
tau function, so that un = τn+3τn/(τn+2τn+1). Then for the gauge matrix Gn given by (64), 
repeated application of (65) shows that

(Meven
n )−1Leven

n−P+1 . . . Leven
n−1Leven

n Gn = (Meven
n )−1Leven

n−P+1 . . . Leven
n−1Gn−1Lodd

n

= · · ·
= (Meven

n )−1Gn−PLodd
n−P+1 . . . Lodd

n−1Lodd
n ,
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and then by applying (66) it follows that the monodromy matrices for the even/odd index  
solutions of (46) are related by

Meven
n Gn = GnModd

n ,� (73)

proving the claim that the first integrals for these two sets of solutions coincide.

Now suppose instead that an adjacent set of 2P variables veven
j  is given, corresponding 

to a set of initial data for (46), and define a transformation to another set vodd
j , say with 

j = 0, . . . , 2P − 1 in each case, by the gauge transformation of monodromy matrices (73) for 
n = 2P − 1. With this choice of indices, veven

2P  appearing in G2P−1 should be specified in terms 
of veven

j  for 0 � j � 2P − 1 according to (46), and the quantities uk with even/odd indices can 
be defined as the ratios

u2j =
veven

j

vodd
j

, u2j+1 =
vodd

j

veven
j+1

, j = 0, . . . , 2P − 1.

Imposing the condition (65) for n = P, . . . , 2P − 1 implies that vodd
j  for j = 0, . . . , 2P − 1 are 

determined completely by the initial veven
j , together with u4P−1 and the Bäcklund parameter κ 

appearing in each of the Gn. The requirement that (66) should also hold then ensures that (73) 
is satisfied for n = 2P − 1, that is

Meven
2P−1(η)G2P−1(η) = G2P−1(η)Modd

2P−1(η)� (74)

for all η, so the monodromy matrices Meven/odd
2P−1  have the same spectrum, and this requirement 

imposes an additional relation on u4P−1. In that case, the correspondence between veven/odd
j  is 

fixed up to a choice of square root, which can be seen directly by applying the notion of spec-
trality from [25]: upon noting that, for η = κ, a vector in the kernel of the transposed gauge 
matrix is given by

v =

(
(veven

2P )−1

u4P−1

)
=⇒ GT

2P−1(κ)v = 0,

it follows that

vTMeven
2P−1(κ)G2P−1(κ) = 0T =⇒ vTMeven

2P−1(κ) = µ vT

for some μ, so vT  is a left eigenvector of the monodromy matrix for this value of η. Thus (κ,µ) 
is a point on the spectral curve

µ2 − trMeven
2P−1(κ)µ+ 1 − ακ = 0.

So, for a fixed choice of the initial data and the parameter κ, there are two possible values of 
μ, and by writing

Meven
2P−1(κ) =

(
a b
c d

)

this leads to two possible values for
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u4P−1 =
µ− a
veven

2P c
=

b
veven

2P (µ− d)
.

Hence the BT defined in this way is a 2-valued correspondence between veven/odd
j , and also 

provides a 2-valued correspondence between the quantities ̂seven/odd
j  for j = 0, . . . , N − 1. The 

iteration of the map ϕ defined by (19) corresponds to one particular branch of the correspond-
ence, χBT  say, with the other branch corresponding to ϕ−1.

It remains to verify that this is a Poisson correspondence, preserving the Poisson structure 
for the coordinates ŝj in proposition 3.15. To see this, note that the branch χBT  is associated 
with the bilinear equation  (7), which arises from a cluster algebra, and takes the form of 
two copies of (48) for even/odd indices. By applying theorem 4.6 in [8], the corresponding 
presymplectic form reduces to a symplectic form ω̂  in dimension 2N − 2 for the combined 

U-system coordinates ̂seven/odd
j  for j = 0, . . . , N − 2, being a sum of two identical symplectic 

forms which are switched under the action of the map ϕ, that is

ω̂ = ω̂even + ω̂odd, ϕ∗ω̂even/odd = ω̂odd/even.

Now χBT  preserves all the first integrals of (59), including K̄ , hence it must also preserve the 
lifted bracket in dimension N given by (60) and (61).� □ 

The Liouville integrability of the map χ̂ in (63), defined by (59), is worthy of a more 
detailed treatment elsewhere, as is the connection of the BT with that for the even Mumford 
systems in [26]. In section 5 below we merely present the details for the particular case N = 5.

4.  An even example: N = 4

For N = 4 the equation (2) becomes

(un + un+1 + un+2 + un+3 + un+4 + β)un+1un+2un+3 = α,� (75)

and its lift (19) is the map ϕ in dimension 5 defined by

ϕ : un+5 − un +
α

un+2un+3

(
1

un+1
− 1

un+4

)
= 0.� (76)

If we set un = τn+3τn
τn+2τn+1

, then the tau function τn satisfies (10), which in this case is of degree 
6, being given by

τ7τ
2
4 τ3τ2τ1 = ατ5τ

2
4 τ

2
3 τ2 − βτ6τ5τ4τ3τ2τ1 − τ6τ5τ4τ

2
3 τ0 − τ6τ5τ

2
4 τ

2
1

−τ6τ
2
5 τ

2
2 τ1 − τ 2

6 τ
2
3 τ2τ1

�
(77)

(with n → 0 for brevity). The iterates of (77) satisfy a Somos-6 relation, namely the first bilin-
ear equation (5), which takes the form

τn+6τn = γnτn+5τn+1 + ατn+4τn+2, γn+2 = γn,� (78)

while the second bilinear equation (6) is

τn+9τn = Kτn+5τn+4 − ατn+8τn+1,� (79)
in this case.
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For N = 4, taking wn = τnτn+2

τ 2
n+1

 yields the U-system (31) for (78). Each iteration of the 

U-system is symplectic, and it lifts to the map

ψ : (w0, w1, w2, w3, γ0, γ1) �→
(

w1, w2, w3,
γ0w1w2w3 + α

w0w2
1w2

2w2
3

, γ1, γ0

)
� (80)

in six dimensions, preserving the log-canonical Poisson bracket given by

{wm, wn} = cmnwmwn, (cmn)0�m,n�3 =




0 1 −1 1
−1 0 1 −1
1 −1 0 1
−1 1 −1 0


 , {γm, wn} = 0.

� (81)
Under the map defined by setting un = wnwn+1, that is

π1 : (w0, w1, w2, w3, γ0, γ1) �→ (w0w1, w1w2, w2w3, w3w4, w4w5)

where

w4 = ψ∗w3 =
γ0w1w2w3 + α

w0w2
1w2

2w2
3

, w5 = ψ∗w4 =
γ1w2w3w4 + α

w1w2
2w2

3w2
4

,

the bracket (81) yields the bracket (37) preserved by (76).

The second U-system (33), associated with (79), is obtained by taking vn = τnτn+5
τn+1τn+4

= unun+2, 
producing the birational map

ψ̂ : (v0, v1, v2, v3) �→
(

v1, v2, v3,
K − αv1v2v3

v0v1v2v3

)
,� (82)

which is symplectic with respect to the 2-form

ω =
∑

0�i<j�3

1
vivj

dvi ∧ dvj.

Up to overall scale, this symplectic form corresponds to the nondegenerate log-canonical 
Poisson bracket given by {vm, vn} = cmnvmvn, with the same coefficients cmn as in (81).

The (4, 1) periodic reduction of the lattice KdV equation, given by setting N = 4 in (28), 
is equivalent to the 5-dimensional birational map

χ : (v0, v1, v2, v3, v4) �→
(

v1, v2, v3, v4, v0 + α
( 1

v4
− 1

v1

))
.� (83)

This arises either by lifting (82) to one dimension higher and eliminating K, which becomes a 
first integral for (83) in the form

K = v0v1v2v3v4 + αv1v2v3,� (84)

or by using vn = unun+2 to obtain the transformation

π2 : (u0, u1, u2, u3, u4) �→ (u0u2, u1u3, u2u4, u3u5, u4u6).

In the first case, the nondegenerate bracket for (82) lifts to the bracket { , }1 defined by

{v0, v1}1 = v0v1, {v0, v2}1 = −v0v2, {v0, v3}1 = v0v3, {v0, v4}1 = −v0v4 − α,
� (85)

while the bracket (37) is pushed forward by π2  to the bracket { , }2 specified by
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{v0, v1}2 = v0v1 − α, {v0, v2}2 = −v0v2 + α2v−2
1 ,

{v0, v3}2 = v0v3 − α3(v1v2)
−2, {v0, v4}2 = −v0v4 + α4(v1v2v3)

−2.
� (86)

The Poisson brackets { , }1,2 are compatible with each other, and both are preserved by (83).
From the Lax representation of the KdV equation we derive the corresponding monodromy 

matrix for the (4, 1)-reduction, as in [20], that is

M(v0, v1, v2, v3, v4,λ) = M(v4,λ)L(v3, v4,λ)L(v2, v3,λ)L(v1, v2,λ)L(v0, v1,λ),

where λ is a spectral parameter, and

L(V , W,λ) =
(

V − α
W λ

1 0

)
, M(V ,λ) =

(
V λ

1 α
V

)
.� (87)

The associated discrete Lax equation for the map (83) is

L(v0, v1,λ)M(v0, v1, v2, v3, v4,λ) = M(v1, v2, v3, v4, v5,λ)L(v0, v1,λ),

and the trace of the monodromy matrix is given by

trM(v0, v1, v2, v3, v4,λ) = I2λ
2 + I1λ+ I0,

where the coefficients are three functionally independent integrals, namely

I0 = g0g1g2g3g4,

I1 = g0g1g2 + g1g2g3 + g0g1g4 + g0g3g4 + g2g3g4 +
αg2g3

g0
,

I2 = g0 + g1 + g2 + g3 + g4 +
α

g0
,

conveniently expressed in terms of the quantities g0 = v0 and gi = vi − α/vi−1 for i = 1, 2, 3, 4. 
Comparison with (84) reveals that K, a Casimir for the bracket { , }1, is expressed as

K = I2α
2 + I1α+ I0,

while I0 is a Casimir for { , }2, and all of these integrals are in involution with respect to both 
brackets.

By setting vn = unun+2, the Ij pull back to three integrals for the map (76), which commute 
with respect to the bracket defined by (37) with N = 4. A further pullback provides three 
independent commuting integrals for (80), with a fourth one being the Casimir γ0 + γ1.

5.  An odd example: N = 5

For N = 5 the equation (2) is

(un + un+1 + un+2 + un+3 + un+4 + un+5 + β)un+1un+2un+3un+4 = α,� (88)

which via (4) corresponds to the degree 7 equation (11), whose iterates also satisfy a Somos-7 
recurrence with a period 2 coefficient, given by

τn+7τn = γn τn+6τn+1 + ατn+5τn+2.� (89)

The U-system associated with (89) is

unun+1un+2un+3un+4 = γnun+1un+3 + α, γn = γn+2,� (90)

and the nondegenerate log-canonical Poisson bracket in 4 dimensions for (90) is given by
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{un, un+1} = unun+1, {un, un+2} = 0 = {un, un+3}.� (91)

By eliminating β from (88), or eliminating γn from (90), we obtain a lift to the same equa-
tion in 6 dimensions, namely the N = 5 case of (19), which is equivalent to

un+6 − un =
α

un+2un+3un+4

(
1

un+5
− 1

un+1

)
.� (92)

Upon taking the bracket of both sides of (90) with u0 for n = 0, 1, we see that (91) lifts to a 
Poisson bracket of rank 4 in 6 dimensions, with the additional brackets being

{un, un+4} = − α

un+1un+2un+3
, {un, un+5} = −unun+5 +

α2

u2
n+1u2

n+2u2
n+3u2

n+4
.

�

(93)

This 6-dimensional bracket is preserved by (92).
From proposition 2.1 and corollary 2.2 in [22], the bilinear equation (89) is the compat-

ibility condition of the scalar Lax pair

Ynφn+6 + ανφn+4 = ξφn, φn+2 =
1

un+1

(
− νφn + φn+1

)
,

where un is given in terms of the tau function by (4), ν  and ξ are spectral parameters, and

Yn =
τn+8τn

τn+6τn+2
= unun+1un+2un+3un+4un+5.

For n = 0 the scalar Lax pair can be rewritten as a 2 × 2 matrix system in terms of u0, u1, . . . , u5, 
leading directly to a Lax pair for the map

ϕ : (u0, . . . , u5) �→ (u1, . . . , u6)

corresponding to (92), given by

L(ν)Φ = ξΦ, Φ̃ = M(ν)Φ,� (94)

with the tilde denoting the index shift n → n + 1, and

L(ν) =
3∑

j=0

L( j)ν j, M(ν) =

(
0 1

− ν
u1

1
u1

)
,

where

L(0) =

(
0 u0

0 1

)
, L(1) =

(
−u0 −γ0

u2
− u0(u1 + u2 + u3)

−1 β + u0

)
,

L(2) =

(γ0
u2

+ u0(u2 + u3) γ0 + u0u1(u3 + u4)− α
u2u3

−β − u0 − u1 γ1

(
1
u1
+ 1

u3

)
+ u1(u3 + u4) + u2(u4 + u5)− α

u1u3u4

)
,

L(3) =

( −γ0 0
−γ1

u1
− u2(u4 + u5) +

α
u1u3u4

−γ1

)
.

In the above formulae, β, γ0, γ1 stand for the functions of uj defined by (88) for n = 0, and by 
(90) for n = 0, 1, respectively.
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The compatibility condition for the system (94) is the discrete Lax equation

L̃(ν)M(ν) = M(ν)L(ν).

The spectral curve corresponding to the Lax matrix L(ν) is a curve of genus 2 in the (ν, ξ) 
plane,

det(L(ν)− ξ1) ≡ ξ2 + (K3ν
3 − K2ν

2 + K1ν − 1)ξ + K0ν
6 + αν5 = 0,

�
(95)

whose coefficients Kj provide 4 functionally independent first integrals for (92), namely

K0 = u0u1u2u3u4u5 − α(u0 + u5) +
α2

u1u2u3u4
, K1 = u0 + u1 + u2 + u3 + u4 + u5 −

α

u1u2u3u4
,

K2 =

5∑
j=0

ujuj+2 +

2∑
j=0

ujuj+3 − α

(
1

u1u2u3
+

1
u1u2u4

+
1

u1u3u4
+

1
u2u3u4

)
,

K3 = u0u2u4 + u1u3u5 − α

(
1

u1u3
+

1
u2u4

)
,

with indices read mod 6 in the first sum above. The first integral in (20) is

ζ̂ = u0u1u2u3u4u5 + α(u1 + u2 + u3 + u4) = K0 + αK1.

From (88) and (90) we can identify

K0 = γ0γ1, K3 = γ0 + γ1, K1 = −β = u0 + u1 + u2 + u3 +
γ0

u0u2
+

γ1

u1u3
+

α

u0u1u2u3
,

K2 = u0u2 + u0u3 + u1u3 +
γ0(u0 + u1 + u2)

u0u2
+

γ1(u1 + u2 + u3)

u1u3
+ α

(
1

u0u1u3
+

1
u0u2u3

)
.

By construction, if we consider γ0, γ1 as functions of uj defined by (90) for n = 0, 1, then these 
are Casimirs of the bracket given by (91) and (93). Hence K0, K3 are also Casimirs of this 
bracket, and one can verify directly that {K1, K2} = 0, which shows that (92) is a Liouville 
integrable map in 6 dimensions.

For N = 5, the other bilinear equation in theorem 1.1 is (7), which in this case becomes

τn+12τn = α2τn+10τn+2 + K̄τ 2
n+6.� (96)

From the substitution (4), the conserved quantity K̄  in (96) can be written in terms of uj for 
0 � j � 9, as defined in (42), which gives

K̄ = u0u1u2
2u2

3u3
4u3

5u2
6u2

7u8u9 − α2u2u3u2
4u2

5u6u7,

and then using (90) the resulting expression can be further rewritten as a function of γj  and 
only four adjacent uj, which reveals that it is a polynomial in the quantities Kj obtained from 
the Lax pair above, that is

K̄ = K3
0 + αK2

0K1 + α2K0K2 + α3K3.� (97)
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For P = 3, the recurrence (46) corresponds to the six-dimensional map

(v0, v1, . . . , v5) �→
(

v1, v2, . . . ,
v1v2

3

v0v1 + α2(v2
3 − v1v5)

)
,� (98)

and in this case the monodromy matrix (55) is

M5(η) = (1 − αη)M(v5, v3, η)−1L( p3, v3, η)L( p4, v4, η)L( p5, v5, η),

where, from (53), there is dependence on v0, v1, v2 via p3 = αv3/v1 + α−1(v0/v3 − 1), and 
similarly for p4, p5. By taking the ratios ŝn = vn/vn+1, the iterates of (98) can be reduced to 
those of (59), which in this case yields the map

χ̂ : (ŝ0, ŝ1, ŝ2, ŝ3, ŝ4) �→
(

ŝ1, ŝ2, ŝ3, ŝ4,
ŝ0ŝ2

1ŝ2
2ŝ3ŝ4 + α2(ŝ3ŝ4 − ŝ1ŝ2)

ŝ1ŝ2ŝ2
3ŝ2

4

)
,

� (99)
and by proposition 3.15 this preserves the Poisson bracket in 5 dimensions given by

{ŝn, ŝn+1} = ŝnŝn+1, {ŝn, ŝn+2} = −2ŝnŝn+2,
{ŝn, ŝn+3} = 2ŝnŝn+3, {ŝn, ŝn+4} = −α2(ŝn+1ŝn+2ŝn+3)

−1.� (100)

By construction, the above bracket has

K̄ = ŝ1ŝ2
2ŝ3(ŝ0ŝ1ŝ2ŝ3ŝ4 − α2)

as a Casimir. The trace of the monodromy matrix is a monic cubic polynomial in η,

trM5(η) = η3 + H2η
2 + H1η + H0,

where H0, H1, H2 provide three functionally independent first integrals for the map (98), but 
since they depend only on the ratios vn/vn+1 they are also first integrals for (99), with the 
explicit expressions

H2 =
1
α
(ŝ0ŝ1ŝ2 + ŝ1ŝ2ŝ3 + ŝ2ŝ3ŝ4 − 3) + α

(
1

ŝ1ŝ2
+

1
ŝ2ŝ3

)
,

H1 =
1
α2 (ŝ0ŝ2

1ŝ2
2ŝ3 + ŝ0ŝ1ŝ2

2ŝ3ŝ4 + ŝ1ŝ2
2ŝ2

3ŝ4 − 3) +
ŝ3ŝ4

ŝ1
+

ŝ0ŝ1

ŝ3
− ŝ2 +

α2

ŝ1ŝ2
2ŝ3

− 2H2

α
.

The formula for H0 has been omitted, since it is related to H1, H2 and the Casimir K̄  by

K̄ = α3H0 + α2H1 + αH2 + 1.� (101)

Then a direct computation of the bracket {H1, H2} = 0 using (100) shows that the map (99) 
is Liouville integrable.

By setting ŝn = u2nu2n+1, it follows from theorem 3.17 that the quantities Hj coming from 
the monodromy matrix pull back to first integrals for (92). By a slight abuse of notation, we 
use the same symbols to denote the pullbacks of these integrals, and explain how they can be 
rewritten as functions of the quantities Kj found previously. The key point is that, for fixed K0, 
the spectral curve in the (η,µ) plane coming from the monodromy matrix, that is

det(M5(η)− µ1) ≡ µ2 − (η3 + H2η
2 + H1η + H0)µ+ 1 − αη = 0,

is isomorphic to (95) via the change of coordinates

η = κ− ν−1, µ = −ξν−3, with K0 = 1 − ακ.
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This leads to the relations

H0 = K3 − κK2 + κ2K3 − κ3, H1 = K2 − 2κK1 + 3κ2, H2 = K1 − 3κ,

so that the identity (101) for K̄  follows immediately from (97).

6.  Conclusions

We have shown that the key to understanding the integrability of the family of maps consid-
ered in [4] is to introduce an additional parameter β, as in (2), and then lift to one dimension 
higher, eliminating this parameter to obtain (19). Although the properties of the map differ 
according to the parity of the dimension N, the Poisson bracket preserved by (19), in N + 1 
dimensions, is given by the same formulae (37) for both even and odd N. For the case of 
even N, we have found that the Liouville integrability of (19) follows from the corresponding 
results for reductions of Hirota’s lattice KdV equation, considered in previous work. For odd 
N, the situation is more complicated: the connection with a reduction of the bilinear discrete 
KP (Hirota–Miwa) equation provides a Poisson bracket, a Lax pair, and a set of first integrals, 
but showing that these are in involution requires more work, and a general proof is lacking. On 
the other hand, for N = 2P − 1, there is an intriguing connection with a Bäcklund transforma-
tion (BT) for the (1,−P) reduction of the discrete time Toda equation (44). For the general 
(Q,−P) Toda reductions, considered briefly in [22], it would be interesting to construct a BT 
and see if there is a natural analogue of (19) for Q > 1.

In fact, a different lift of (2) has already appeared in the work of Svinin: it is the equa-
tion obtained by eliminating α, namely

ui+N

(
ui+1 + · · ·+ ui+N+1 + β

)
= ui+1

(
ui + · · ·+ ui+N + β

)
,

which corresponds to replacing T(i) → ui, s → N , H0 → 1, H1 → −β  in the case case k = 1 
of equation (54) in [40], where a large class of difference equations with Lax representations 
are presented. For all systems obtained from the choice of integer parameters (h, n) = (1, 1) 
in [40], Svinin obtained hyperelliptic spectral curves and corresponding sets of first integrals, 
including the equation (2) as a special case. In the future, it would be instructive to derive 
Hirota bilinear forms and Poisson structures for other equations found in [39, 40], and under-
stand them from the viewpoint of Liouville integrability.

The starting point for all of the results in section 3 was the derivation of the Hirota bilinear 
equations associated with (2). This was achieved in two ways: first of all, in section 2, via an 
experimental approach involving the singularity confinement test (or an arithmetical version 
of it), followed by the lift to a Laurentification of (2), whose tropical analogue yields an exact 
calculation of degree growth; and secondly, once numerical and symbolic calculations pro-
duced bilinear equations for particular (small enough) values of N, by proving suitable alge-
braic identities in the general case. This combination of analytical, numerical and algebraic 
methods appears to be very effective, and we propose to apply it to other families of difference 
equations or maps in the future.
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