
Soft Computing manuscript No.
(will be inserted by the editor)

Heuristic Procedures for Improving the Predictability of a Genetic
Programming Financial Forecasting Algorithm

Michael Kampouridis · Fernando E. B. Otero

Received: date / Accepted: date

Abstract Financial forecasting is an important area in com-

putational finance. EDDIE (Evolutionary Dynamic Data In-

vestment Evaluator) is an established Genetic Programming

(GP) financial forecasting algorithm, which has successfully

been applied to a number of international financial datasets.

The purpose of this paper is to further improve the algo-

rithm’s predictive performance, by incorporating heuristics

in the search. We propose the use of two heuristics: a se-

quential covering strategy to iteratively build a solution in

combination with the GP search and the use of an entropy-

based dynamic discretisation procedure of numeric values.

To examine the effectiveness of the proposed improvements,

we test the new EDDIE version (EDDIE 9) across 20 data-

sets and compare its predictive performance against three

previous EDDIE algorithms. In addition, we also compare

our new algorithm’s performance against C4.5 and RIPPER,

two state-of-the-art classification algorithms. Results show

that the introduction of heuristics is very successful, allow-

ing the algorithm to outperform all previous EDDIE ver-

sions and the well-known C4.5 and RIPPER algorithms. Re-

sults also show that the algorithm is able to return signifi-

cantly high rates of return across the majority of the datasets.

Keywords genetic programming · financial forecasting ·

EDDIE · sequential covering · dynamic discretisation

1 Introduction

Data mining is an active research area focused on the design

and development of computational methods to discover (cre-

ate) a model from real-world data (Piatetsky-Shapiro and

M. Kampouridis · F.E.B. Otero (B)

School of Computing, University of Kent, UK

E-mail: F.E.B.Otero@kent.ac.uk

M. Kampouridis

E-mail: M.Kampouridis@kent.ac.uk

Frawley, 1991; Fayyad et al, 1996). Classification is one of

the main data mining tasks, where the goal is to create a

predictive model that represents the relationships between

input attributes’ values and the values of a class attribute

by analysing the data. It usually involves two steps. In the

first step (model creation), the algorithm builds a model by

analysing cases from the training data. At this point, the al-

gorithm has access to the information of both input and class

attributes. In the second step (model evaluation), the model

created is used to classify new data, to simulate the use of fu-

ture (unseen) data. During this step, the algorithm has only

access to the input attributes’ values to make a prediction.

The class attribute value is only used to evaluate the model’s

prediction: if the predicted value is the same as the actual

value, the prediction is marked as correct; otherwise, it is

marked as incorrect. Hence, the goal is to create the most

accurate model given a set of training data.

Genetic Programming (GP) is an evolutionary technique

inspired by natural evolution, where computer programs act

as the individuals of a population (Koza, 1992; Poli et al,

2008). GP has been extensively used for classification prob-

lems. Its characteristic of being able to produce white-box

models makes it a more trustworthy algorithm to its users.

GP has been successfully applied for classification in dif-

ferent real-life applications, ranging from medical diagnosis

(Giacobini et al, 2014), to fraud detection (Phua et al, 2010)

and remote sensing (Dos Santos et al, 2011).

An application that we will be focusing on this paper is

financial forecasting, and particularly the prediction of buy

opportunities. Financial forecasting is a vital area in compu-

tational finance (Tsang and Martinez-Jaramillo, 2004). The-

re are numerous works that attempt to forecast the future

price movements of a stock; several examples can be found

in Chen (2002); Binner et al (2004). Furthermore, GP has

many times been used in the past for financial forecasting

(Wilson and Banzhaf, 2010; Wang et al, 2010; Abdelmalek

2 Michael Kampouridis, Fernando E. B. Otero

et al, 2009; Agapitos et al, 2010; Abdou, 2009), and has

shown it is able to identify patterns in the data.

EDDIE is a well-established genetic programming fi-

nancial forecasting tool, which has been found to outper-

form traditional decision rule induction methods, such as

C4.5, and return high accuracy results over different interna-

tional stock markets (Li, 2001; Tsang et al, 2000). Recently,

EDDIE 8-ATTR (Kampouridis and Otero, 2013) was intro-

duced, which is one of the latest algorithms from the EDDIE

series. While previous EDDIE algorithms were using pre-

specified periods for the indicators from technical analysis

(e.g., 20 days Moving Average, 50 days Momentum), ED-

DIE 8-ATTR was the first algorithm to allow these periods

to be directly selected by the GP. Thus, instead of the al-

gorithm’s user pre-specifying a number of fixed period val-

ues for the technical indicators, as it traditionally happens

in both academia and industry, EDDIE 8-ATTR allowed the

GP to evolve different periods for each technical indicator.

In addition, the algorithm used attribute construction, which

allowed for a better representation and search of the problem

search space. As a result to the above modifications, ED-

DIE 8-ATTR was able to produce new technical indicators,

which improved the algorithm’s predictive performance.

The purpose of this paper is to further improve the pre-

dictive performance of EDDIE by incorporating heuristics

into EDDIE’s search. This is paramount, because of the sig-

nificance of the financial forecasting field itself, which re-

quires the continuous development of new and improved al-

gorithms. The new version, EDDIE 9, uses two well-known

heuristics in combination with the GP search: a sequential

covering strategy to iteratively build a solution in combi-

nation with the GP search and the use of an entropy-based

dynamic discretisation procedure of numeric values. A se-

quential covering strategy has been successfully used in GP

for boolean domains (Otero and Johnson, 2013), allowing

the automatic decomposition of the original problem into

smaller (more tractable) subproblems. Furthermore, super-

vised learning algorithms usually employ a dynamic dis-

cretisation procedure to handle numeric attributes, with the

aim of deterministically calculating a threshold value that

best fits the data. To examine the effectiveness of the pro-

posed improvements, we test the new EDDIE 9 version in

20 datasets and compare its predictive performance against

three previous EDDIE algorithms. In addition, we also com-

pare our new algorithm’s performance against C4.5 and RIP-

PER, two state-of-the-art classification algorithms.

The rest of this paper is organised as follows: Section 2

presents a general overview of previous EDDIE algorithms.

Section 3 then details how we incorporated heuristics into

EDDIE’s search. Sections 4 and 5 then present the experi-

mental setup and discuss the obtained results, respectively.

Finally, Section 6 concludes this paper and discusses future

work.

2 The EDDIE algorithm

In this section, we present the different versions of EDDIE

that are going to be used in our experiments and the reasons

for using each version.

2.1 EDDIE 7

EDDIE 7, and EDDIE in general, is a forecasting tool, which

learns and extracts knowledge from a set of data. The kind

of question EDDIE tries to answer is ‘will the price increase

within the n following days by r%?’ The user first feeds the

system with a set of past data; EDDIE then uses this data

and through a GP process, it produces and evolves Genetic

Decision Trees (GDTs), which make recommendations of

buy (1) or not-to-buy (0).

The set of data used is composed of three parts: daily

closing price of a stock, a number of attributes and sig-

nals. Stocks’ daily closing prices can be obtained online

in websites such as http://finance.yahoo.com and also

from financial statistics databases like Datastream. The at-

tributes are indicators commonly used in technical analy-

sis (Edwards and Magee, 1992); which indicators to use de-

pends on the user and his/her belief of their relevance to the

prediction. The technical indicators that we use in this work

are: Moving Average (MA), Trade Break Out (TBR), Filter

(FLR), Volatility (Vol), Momentum (Mom), and Momentum

Moving Average (MomMA).1

The signals are calculated by looking ahead of the clos-

ing price for a time horizon of n days, trying to detect if

there is an increase of the price by r% (Tsang et al, 2000).

For this set of experiments, n was set to 20 and r to 4%. In

other words, the GP is trying to use some of the above indi-

cators to forecast whether the daily closing price is going to

increase by 4% within the following 20 days.

After we feed the data to the system, EDDIE creates

and evolves a population of GDTs. Figure 1 presents the

Backus Normal Form (BNF) (Backus, 1959) (grammar) of

EDDIE 7. As we can see, the root of the tree is an If-Then-

Else statement. The first branch is either a boolean (testing

whether a technical indicator is greater than/less than/equal

to a value), or a logic operator (and, or, not), which can hold

multiple boolean conditions. The first branch also includes

a V ariable, which can be anyone of 12 pre-defined techni-

cal analysis indicators;2 this variable is tested whether it is

1 We use these indicators because they have been proved to be quite

useful in developing GDTs in previous works like Martinez-Jaramillo

(2007), Allen and Karjalainen (1999) and Austin et al (2004). Of

course, there is no reason why not use other information like funda-

mentals or limit order book. However, the aim of this work is not to

find the ultimate indicators for financial forecasting.
2 These are the 6 indicators mentioned earlier; each indicator has

two different period lengths, 12 and 50 days, thus resulting to a total of

12 technical indicators.

Improving the Predictability of a GP Financial Forecasting Algorithm 3

<Tree> ::= If-Then-Else <Condition> <Tree> <Tree>

| Decision

<Condition> ::= <Condition> AND <Condition>

| <Condition> OR <Condition>

| NOT <Condition>

| Variable <RelationOperation> Threshold

<Variable> ::= MA 12 |MA 50 | TBR 12 | TBR 50 | FLR 12

| FLR 50 | Vol 12 | Vol 50 |Mom 12 |Mom 50

|MomMA 12 |MomMA 50

<RelationOperation> ::= “>” | “<” | “=”

Terminals:

Decision is an integer (Positive or Negative implemented)

Threshold is a real number

Fig. 1 The Backus Naur Form of the EDDIE 7.

greater than/less than/equal to a Threshold, and depending

on the result, we move to the ‘Then’ or the ‘Else’ branch.

The ‘Then’ and ‘Else’ branches can be a new GDT, or a de-

cision, to buy or not-to-buy (denoted by 1 and 0).

A sample GDT is presented in Fig. 2. This tree informs

us that if the 12 days Moving Average is less than 6.4, then

the trader should buy; otherwise, the tree checks whether the

50 days Momentum is greater than 5.57. If the above is true,

then the trader is advised not-to-buy; if it’s false, the trader

is advised to buy.

Depending on the classification of the predictions, we

can have four cases: True Positive (TP), False Positive (FP),

True Negative (TN), and False Negative (FN). As a result,

we can use the metrics presented in Equations 1, 2 and 3.

Rate of Correctness:

RC =
TP + TN

TP + TN + FP + FN
(1)

Rate of Missing Chances:

RMC =
FN

FN + TP
(2)

Rate of Failure:

RF =
FP

FP + TP
(3)

The above metrics combined give the following fitness func-

tion, presented in Equation 4:

ff = w1 ∗RC − w2 ∗RMC − w3 ∗RF , (4)

where w1, w2 and w3 are the weights for RC, RMC and

RF respectively. These weights are given in order to reflect

If

<

MovingAverage-12 6.4

Buy(1) If

>

Momentum-50 5.57

Not-Buy(0) Buy(1)

Fig. 2 Sample GDT generated by EDDIE 7.

the preferences of investors. For instance, a conservative in-

vestor would want to avoid failure; thus a higher weight

for RF should be used. For our experiments, we choose to

include strategies that mainly focus on correctness and re-

duced failure. Thus these weights have been set to 0.6, 0.1

and 0.3 respectively.

The fitness function is a constrained one, which allows

EDDIE to achieve lower RF. The effectiveness of this con-

strained fitness function has been discussed in Tsang et al

(2005); Li (2001). The constraint is denoted by R, which

consists of two elements represented by a percentage, given

by:

R = [Cmin, Cmax] , (5)

where Cmin = Pmin

Ntr

× 100%, Cmax = Pmax

Ntr

× 100%,

and 0 ≤ Cmin ≤ Cmax ≤ 100%. Ntr is the total num-

ber of training data cases, Pmin is the minimum number of

positive position predictions required, and Pmax is the max-

imum number of positive position predictions required.

Therefore, a constraint of R = [50, 65] means that the

percentage of positive signals that a GDT predicts3 should

fall into this range. When this happens, then w1 remains as

it is (i.e. 0.6 in our experiments). Otherwise, w1 takes the

value of zero.

2.1.1 Advantages and Disadvantages of EDDIE 7

EDDIE 7 is a re-implementation of a previous EDDIE al-

gorithm, named FGP-2. This algorithm was one of the very

first tested on financial markets and was found very success-

ful. It was even compared against a Random Walk model

and the well-known classifier C4.5 (Quinlan, 1993); FGP-

2 outperformed both. We then added a few more technical

indicators and re-implemented Li’s FGP-2, and we called it

EDDIE 7.

3 As we have mentioned, each GDT makes recommendations of buy

(1) or not-to-buy (0). The former denotes a positive signal and the latter

a negative. Thus, within the range of the training period, which is t

days, a GDT will have returned a number of positive signals.

4 Michael Kampouridis, Fernando E. B. Otero

<Tree> ::= If-Then-Else <Condition> <Tree> <Tree>

| Decision

<Condition> ::= <Condition> AND <Condition>

| <Condition> OR <Condition>

| NOT <Condition>

| <VarConstructor> <RelationOperation> Threshold

<VarConstructor> ::= MA period | TBR period | FLR period

| Vol period |Mom period

|MomMA period

<RelationOperation> ::= “>” | “<” | “=”

Terminals:

MA, TBR, FLR, Vol, Mom, MomMA are function symbols

Period is an integer within a parameterised range, [MinP, MaxP]

Decision is an integer (Positive or Negative implemented)

Threshold is a real number

Fig. 3 The Backus Normal Form of EDDIE 8.

A main disadvantage of the EDDIE 7 algorithm is the

fact that it is using technical indicators, pre-specified by the

user, and with a fixed period length. As we saw above, ED-

DIE 7 can accept 12 and 50 days MA, 12 and 50 days TBR,

and so on. The periods 12 and 50 are fixed. Nevertheless,

one could argue that the choice of these two periods is not

the optimal one. To address this issue, we created EDDIE 8,

which is presented next.

2.2 EDDIE 8

The novelty of EDDIE 8 is in its extended grammar, which

allows the GP to search in the space of indicators to form

its Genetic Decision Trees (Kampouridis and Tsang, 2010,

2012). While EDDIE 7 was using 12 indicators pre-specified

by the user, EDDIE 8 is not constrained in using any pre-

specified indicators, but it is left up to the GP to choose the

optimal ones.

As we can see from the grammar in Fig. 3, there is a

function called <VarConstructor>, which takes two chil-

dren. The first one is the indicator, and the second one is the

<Period>. <Period> is an integer within the parameterised

range [MinP,MaxP] that the user specifies. As a result,

EDDIE 8 can return decision trees with indicators like 15

days Moving Average, 17 days Volatility, and so on. The ad-

vantage of EDDIE 8 is thus that the period is not an issue

any more, and it is up to the GP to decide which lengths

are more valuable for the prediction. This makes EDDIE 8 a

more dynamic and powerful algorithm.

A sample GDT is presented in Fig. 4. As we can observe,

the periods 12 and 50 are now in a leaf node, and thus are

subject to genetic operators, such as crossover and mutation.

The rest of the EDDIE 8 algorithm behaves in exactly

the same way with EDDIE 7.

If

<

VarConstructor

MovingAverage 12

6.4

Buy(1) If

>

VarConstructor

Momentum 50

5.57

Not-Buy(0) Buy(1)

Fig. 4 Sample GDT generated by EDDIE 8.

2.2.1 Advantages and Disadvantages of EDDIE 8

The major advantage of EDDIE 8 is that it is not restricted

to use pre-specified periods. In order to see the new algo-

rithm’s effectiveness, we compared it with EDDIE 7, over 10

different datasets. EDDIE 7 was proven to be more robust,

in terms of average results (Kampouridis and Tsang, 2010,

2012). This was because, EDDIE 8’s performance was com-

promised by the enlarged search space. With the old gram-

mar (EDDIE 7), EDDIE used 6 indicators from technical

analysis with two pre-specified period lengths. For instance,

if one of the indicators was Moving Average, then the two

period lengths used would be 12 and 50 days. On the con-

trary, EDDIE 8 could use any period within a given param-

eterised range, which for our experiments was set to 2-65

days. Thus, the algorithm could come up with any indicator

within that range, and not just with 12 and 50 days. As we

can see, the search space of EDDIE 8 was much bigger than

the one of its predecessor.4 In order to address the issue of

exploring better EDDIE 8’s big search space, we introduced

attribute construction into the algorithm, which will be pre-

sented below, in Section 2.3.

On the other hand, an advantage of the algorithm was

that it would usually find better optimal solutions (e.g. out

of 50 individual runs, EDDIE 8 would normally have its best

tree with significantly higher fitness than the best tree of ED-

DIE 7). Thus, EDDIE 8 was better than EDDIE 7 in terms

of best results.

4 To make this clearer, let us give an example: if a given GP tree can

have a maximum of k indicators, then the permutations of the available

12 indicators (we are using 6 different indicators, with 2 periods each,

thus 6 ∗ 2 = 12) under EDDIE 7 are 12k ; on the other hand, if EDDIE

8 is using the same 6 indicators with periods within the range of 2

to 65 days, then the permutations of the available 384 indicators (we

are using 6 different indicators with 65-1=64 periods each, thus 64 ∗
6 = 384) are 384k . It is thus obvious that EDDIE 8’s search space

is significantly larger, which can therefore explain the difficulties of

EDDIE 8 of consistently finding good solutions.

Improving the Predictability of a GP Financial Forecasting Algorithm 5

<Tree> ::= If-Then-Else <Condition> <Tree> <Tree>

| Decision

<Condition> ::= <Condition> AND <Condition>

| <Condition> OR <Condition>

| NOT <Condition>

| <VarConstructor> <RelationOperation> Threshold

|<VarConstructor> <RelationOperation> <VarConstructor>

<VarConstructor> ::= MA period | TBR period | FLR period

| Vol period |Mom period

|MomMA period

<RelationOperation> ::= “>” | “<” | “=”

Terminals:

MA, TBR, FLR, Vol, Mom, MomMA are function symbols

Period is an integer within a parameterised range, [MinP, MaxP]

Decision is an integer (Positive or Negative implemented)

Threshold is a real number

Fig. 5 The Backus Normal Form of EDDIE 8-ATTR.

2.3 EDDIE 8-ATTR

The previous versions of EDDIE only created GDTs involv-

ing the combination of tests composed by a triple (attribute,

operator, value), where the value is a numeric constant, as

most of machine learning algorithm used for knowledge dis-

covery. In order to allow the creation of new attributes, ED-

DIE’s grammar is extended to allow the creation of tests in-

volving the direct comparison of indicator values using a

relational operator, presented in Figure 5. This new version

is called EDDIE 8-ATTR.

The main modification is the introduction of the pro-

duction “<VarConstructor> <RelationOperation> <Var-

Constructor>” to the symbol “<Condition>”, which de-

fines the rules for creating the conditions of If-Then-Else

statements of the GDTs. The new grammar allows EDDIE

8-ATTR to create GDTs with the same structure as EDDIE

8 and also GDTs that can define new attributes, in a simi-

lar fashion as GP-based attribute construction methods (Hu,

1998; Otero et al, 2003; Krawiec, 2002)—i.e., creating new

boolean conditions combining indicators (attributes) using

AND, OR and NOT operators. A sample GDT of EDDIE 8-

ATTR is presented in Figure 6. It is important to emphasise

that this GDT could not be created by the original EDDIE

8, since it involves a condition comparing indicator values

directly—i.e., a new boolean attribute represented by the

condition “MovingAverage 20 > Momentum 50”.

2.3.1 Advantages and Disadvantages of EDDIE 8-ATTR

EDDIE 8-ATTR successfully addressed the problem of inef-

fective search of EDDIE 8 by introducing attribute construc-

tion. Results in Kampouridis and Otero (2013) showed that

this attribute construction was beneficial to the algorithm,

If

>

VarConstructor

MovingAverage 20

VarConstructor

Momentum 50

Not-Buy(0) Buy(1)

Fig. 6 Sample GDT generated by EDDIE 8-ATTR using a new

boolean attribute represented by the condition “MovingAverage 20 >

Momentum 50”.

which was able to outperform its two predecessors, EDDIE

7 and EDDIE 8, in 8 of the 10 tests examined. Results also

indicated that the introduction of more productions that al-

low the direct comparison of indicators in a single tree, can

have a significantly positive effect to the tree’s predictive

performance.

However, although the results ranked EDDIE 8-ATTR

first, they were not statistically significant, indicating that

there was still room for improvement in the search process

of EDDIE. This thus led us to consider using further heuris-

tic processes in the search, which will be described in Sec-

tion 3.

3 Incorporating heuristics into EDDIE’s search

The current EDDIE 8-ATTR algorithm (and also previous

EDDIE versions) follows a traditional GP approach, where

the algorithm is given solution components (non-terminal

and terminal symbols) and the evolutionary process is re-

sponsible to find an optimal combination of these compo-

nents to create a solution to the problem. The aim of this

process is to “get a computer to do what needs to be done,

without telling it how to do it” (Koza, 1992). If we look at

the structure of GDTs generated by EDDIE 8-ATTR, there

is a dependency regarding the position of conditions in the

tree—e.g., a condition sub-tree that works well in a top level

If-Then-Else statement does not have the same effect if

moved down the tree, since the top-level condition has a big-

ger effect on the overall tree than a lower-level one. There-

fore, individuals are fragile to the application of search ope-

rators—it is very easy for a crossover or mutation operation

to disrupt the quality of an individual. A small change in a

near-optimal individual can produce a very poor individual.

That puts extra pressure on the GP search, since not only

the correct conditions have to be created, but also they need

to be placed in the correct position of the GDT. On top of

this, the conditions involve numeric threshold values, test-

ing a particular indicator value using a relational operator

(e.g., MA 12 < 0.5), which should be created throughout

the evolutionary process and are subject to the search opera-

6 Michael Kampouridis, Fernando E. B. Otero

tors; and the “Decision” (output of the GDT) is a random

selected integer (1 [buy] or 0 [not-buy]). Therefore, even

if the correct condition is created and placed in the correct

position, the candidate solution can have a poor fitness if

the decision node of the GDT outputs the incorrect value.

There is no way of rewarding a candidate solution for par-

tial correctness—even when the structure of the individual

contains correct structures, the fitness is calculated taking

into account only the correctness of the output.

Let’s consider the search strategy employed by other su-

pervised learning algorithms. The majority of them do not

attempt to create the complete solution in one step, they

instead use a heuristic to decompose the original problem

into smaller (more tractable) subproblems. The divide-and-

conquer strategy is employed by top-down decision tree in-

duction algorithms to build a decision tree. At the start of

the top-down process, an attribute is selected to divide the

training data—the first attribute selected corresponds to the

root node of the tree. Each branch originating from the node

tests a different value in the domain of the attribute and the

training data is divided according to the outcome of the tests

(i.e., each branch is associated with the subset of the train-

ing data that satisfies its test). The procedure of selecting an

attribute is then repeated to further divide the subsets.

Rule induction algorithms usually employ a sequential

covering strategy to generate a list of classification rules,

with the aim of reducing the complexity of creating a com-

plete list by transforming the problem into a sequence of

subproblems concerning in creating a single rule. The se-

quential covering is an iterative procedure, in each iteration

a rule is created and the training cases covered by the rule

(i.e., the training cases that satisfy the condition of the rule)

are removed. A rule solves a subproblem—i.e., it classifies

a subset of the training data. This process is then repeated

until all training cases are covered by a rule. Note that each

iteration is dealing with a different problem, since the train-

ing data changes from one iteration to the next.

In this section we present the details of proposed ex-

tension to EDDIE (named EDDIE 9), which incorporates

heuristics into the GP search. The aim is to apply the GP in

a modular way: instead of relying on the GP to evolve a com-

plete GDT (candidate solution), the GP is used in combina-

tion with a sequential covering strategy to iteratively build

the solution. Additionally, threshold values in the condition

tests are automatically determined by a dynamic discretisa-

tion procedure, instead of randomly selected. In this way,

the GP search is focused in finding an optimal combination

of conditions to classify a subset of the training data (i.e.,

search for subproblem solutions), while the complete solu-

tion is created by the sequential covering procedure.

Input: training data

Output: GDT

1: training← all training data;

2: GDT ← {};
3: while |training| not empty do

4: rule← RunGP(training);

5: training← training − CoveredData(rule, training);

6: GDT ← GDT + rule;

7: end while

8: return GDT ;

Fig. 7 High-level pseudocode of the sequential covering procedure in

EDDIE 9.

3.1 The new EDDIE 9 algorithm

The sequential covering employed in EDDIE 9 is presented

in Figure 7. Starting with an empty solution and the com-

plete training data, it evolves a partial solution using the GP,

removes all training cases that satisfy its conditions and adds

it to the solution. A partial solution is represented by a single

If-Then-Else, where both Then and Else correspond to a

“Decision”—it is regarded as a partial solution, since it cor-

responds to a rule that classifies only a subset of the training

data. The procedure is then repeated until there are no train-

ing cases remaining. In other words, each execution of the

GP evolves a rule, which classifies a subset of the training

data. Since the training data classified by previous rules is

removed, subsequent executions of the GP evolves a differ-

ent rule—a rule classifying a different subset of the training

data.

Given that the GP is not used to generate a complete so-

lution to the problem, EDDIE 9 grammar is a simplified ver-

sion of the grammar used by EDDIE 8 and EDDIE 8-ATTR.

Instead of evolving a complete GDT, a single rule is evolved

by the GP. Therefore, no nested If-Then-Else are allowed

and both Then and Else are fixed to “Decision”. Figure 9

presents the grammar of EDDIE 9. Note that while each exe-

cution of the GP creates a rule, where nested If-Then-Else

are not allowed, the sequential covering creates a GDT to

combine the individual solutions created by the different ex-

ecutions of the GP. Individual solutions are combined by

nesting their If-Then-Else—the If-Then-Else of itera-

tion 2 is added under the Else branch of the rule created

in iteration 1; the one from iteration 3 is added under the

Else of the rule created in iteration 2, and so forth. The it-

eratively solution construction is illustrated in Figure 8. As

a result of this procedure, the structure of the solution cre-

ated by EDDIE 9 is the same as the structure of EDDIE 8.

The main difference between the algorithms is related to the

search strategy: in EDDIE 8 and EDDIE 8-ATTR, the GP

is responsible to evolve the complete solution for the prob-

lem, while in EDDIE 9 the GP evolves partial solutions that

Improving the Predictability of a GP Financial Forecasting Algorithm 7

If

DynVarConstructor

MovingAverage 12

Buy(1) Not-Buy(0)

(a) Solution of iteration 1.

If

DynVarConstructor

MovingAverage 12

Buy(1) If

DynVarConstructor

Momentum 50

Not-Buy(0) Buy(1)

(b) Solution of iteration 2.

Fig. 8 Sample GDT generated by the sequential covering in EDDIE 9:

in (a) the solution at the end of the first iteration; in (b) the solution at

the end of the second iteration.

are combined by a sequential covering strategy to create a

complete solution.

Another difference between the proposed EDDIE 9 and

EDDIE 8 is regarding the creation of the tests (conditions)

involving the indicators. According to the grammar in Fig-

ure 9, there are no “<RelationOperator>” nor “Threshold”

symbols in the grammar, and the <VarConstructor>” sym-

bol is replaced by a “<DynVarConstructor>”. Instead of

relying on the evolutionary process to find good combina-

tions of (indicator, relational operator, threshold) to create

the conditions, EDDIE 9 uses a data-driven procedure to

automatically determine the relational operator and thresh-

old value, given an indicator and the current training data.

Therefore, the GP is responsible for creating the structure of

the tests (the combination of conditions in the antecedent of

the rule) and the actual relational tests are created in a deter-

ministic way by checking the training data—as detailed in

Subsection 3.2. Note that the rule returned as a results of the

execution of the GP (line 4 in the pseudocode in Figure 7)

already contains the relational operator and threshold values

in all conditions for all its conditions, in the same structure

as EDDIE 8.

3.2 Dynamic discretisation of indicator values

According to the grammar in Figure 9, the candidate so-

lutions evolved by the GP do not contain complete con-

<Tree> ::= If-Then-Else <Condition> Decision Decision

<Condition> ::= <Condition> AND <Condition>

| <Condition> OR <Condition>

| NOT <Condition>

| <DynVarConstructor>

<DynVarConstructor> ::= MA period | TBR period | FLR period

| Vol period |Mom period

|MomMA period

Terminals:

MA, TBR, FLR, Vol, Mom, MomMA are function symbols

Period is an integer within a parameterised range, [MinP, MaxP]

Decision is an integer (Positive or Negative implemented)

Fig. 9 The Backus Normal Form of EDDIE 9.

ditions. Conditions represent boolean expressions that test

an indication value against a threshold value using a rela-

tional operator. Since the algorithm has the training data, it

is possible to check whether a test—a combination of (in-

dicator, relation operator, threshold)—is a good test or not.

More importantly, looking at the data, the algorithm can de-

terministically calculate the test that best fits the data. To

this end, EDDIE incorporates a dynamic discretisation pro-

cedure based on the entropy measure. This is inspired by

similar uses of the entropy measure to discretise continuous

attributes (Quinlan, 1993; Otero et al, 2008, 2013).

The dynamic discretisation is a procedure applied to the

candidate solutions in order to be able to evaluate them—a

solution can only be evaluated if it contains complete con-

ditions—and it has an indirect effect on the solutions’ struc-

ture. While the structural changes resulting from the dis-

cretisation are not permanent modifications, the fitness of

the candidate solution directly reflects the quality of the con-

ditions created by the discretisation procedure.

Let us consider the candidate solution illustrated in Fig-

ure 10(a). This solution is evolved by the GP following the

grammar rules of EDDIE 9. As we mentioned, this solution

cannot be directly evaluated since the “<DynVarConstruc-

tor>” subtrees do not represent a complete boolean test.

Therefore, before evaluating each individual of the GP (can-

didate solution), the dynamic discretisation procedure is ap-

plied to transform the individual representation back to

EDDIE 8’s representation—illustrated in Figure 10(b). The

transformation step works as follows. Starting from the root

node of the individual’s tree with all the training data avail-

able, the tree is traversed in depth-first fashion. When a

“<DynVarConstructor>” node is found, the dynamic dis-

cretisation procedure is used to select a relation operator

and threshold to create a condition. In order to select the

best threshold value given the current training data, all val-

ues in the domain of the indicator (I), which is specified by

“<DynVarConstructor>”, are considered. A threshold value

8 Michael Kampouridis, Fernando E. B. Otero

If

AND

DynVarConstructor

MovingAverage 12

DynVarConstructor

Momentum 50

Buy(1) Not-Buy(0)

(a) EDDIE 9’s generated solution.

If

AND

>

VarConstructor

MovingAverage 12

5.5

≤

VarConstructor

Momentum 50

4.9

Buy(1) Not-Buy(0)

(b) Solution at the end of the discretisation (EDDIE 8 format).

Fig. 10 Illustration of the effect of the dynamic discretisation transfor-

mation: in (a) the solution generated by EDDIE 9; in (b) the solution

transformed into EDDIE 8’s format by the discretisation procedure.

v divides the training data into two sets: the set where I ≤ v

and another set where I > v. The best threshold value cor-

responds to the value v that minimises the entropy in both

sets, given by:

E(I, v;D) =
|DI≤v|

|D|
· entropy(DI≤v)

+
|DI>v|

|D|
· entropy(DI>v) ,

(6)

where |DI≤v| is the total number of examples in the interval

I ≤ v (subset of the training data where the indicator I has

a value less than or equal to v), |DI>v| is the total number

of examples in the interval I > v (subset of the training data

where the indicator I has a value greater than v) and |D| is

the size of the training data. Both values of entropy(I ≤ v)

and entropy(I > v) are given by:

entropy(T) =
1

∑

S=0

−

(

|TS |

|T |
· log2

|TS |

|T |

)

, (7)

where T is the subset of the training data (DI≤v or DI>v)

and TS is the subset of T that is associated with signal S.

After selecting the best threshold value v, the relational op-

erator is selected based on the entropy of the two generated

sets, given by:

operator =







≤ , if entropy(DI≤v) < entropy(DI>v)

> , if entropy(DI≤v) > entropy(DI>v)
. (8)

At the end of the discretisation procedure, the “<DynVar-

Constructor>” node is replaced by EDDIE’s 8 equivalent

“<VarConstructor><RelationOperator>Threshold”, as il-

lustrated in Figure 10.

Before continuing traversing the tree, the current train-

ing data is filtered according the the parent of the “<Dyn-

VarConstructor>”. If the parent is a node:

– AND: if the “<DynVarConstructor>” is the first child

to be evaluated, the training data passed to the second

child is filtered to include only the subset that satisfies its

conditions; after both children are evaluated the training

data is filtered to include only the examples that satisfy

both “<DynVarConstructor>” conditions;

– OR: after both children are evaluated, the training data is

filtered to include only the examples that satisfy one of

the “<DynVarConstructor>” conditions;

– NOT: after both children are evaluated, the training data

is filtered to include only the examples that do not satisfy

the “<DynVarConstructor>” condition.

In this way, the dynamic discretisation is tailored to the cur-

rent training data—when a “<DynVarConstructor>” node

is reached, the threshold value and relational operator is se-

lected according to the available data.

4 Experimental Setup

4.1 Algorithms

Our goal is to investigate whether the introduction of the

heuristics is beneficial to the EDDIE algorithm. We are thus

going to compare the performance of EDDIE 9 to EDDIE 7,

EDDIE 8, and EDDIE 8-ATTR. Furthermore, we will also

compare the performance of EDDIE 9 to two state-of-the-art

classification algorithms, C4.5 (Quinlan, 1993) and RIPPER

(Cohen, 1995). More specifically, for the purposes of our

experiments, we will be using Weka’s (Witten and Frank,

2005) implementation of the algorithms, which are J48 and

JRip, respectively.

4.2 Datasets

For our experiments, we run tests for 25 datasets. These

datasets consist of daily closing prices of 18 stocks from

FTSE 100, and 7 international indices. The 18 FTSE 100

stocks are: Aggreko, Amlin, Barclays, British Petroleum

Improving the Predictability of a GP Financial Forecasting Algorithm 9

(BP), Cadbury, Carnival, Easyjet, First, Hammerson, Impe-

rial Tobacco, Marks & Spencer, Next, Royal Bank of Scotl-

land (RBS), Schroders, Sky, Tesco, Vodafone and Xstrata.

The 7 indices are: Athens Stock Exchange (Greece), Dow

Jones Industrial Average (DJIA - USA), Hang Seng Index

(HSI - Hong Kong), Mid-cap Deutscher Aktien Index (MD-

AX - Germany), and National Association of Securities De-

alers Automated Quotations (NASDAQ - USA), Nikkei (Ja-

pan), and New York Stock Exchange (NYSE - USA).5 The

training period is 1000 days and the testing period 300.

Because we need to tune the parameters of our new algo-

rithm (EDDIE 9), we will use 5 of the above datasets (ran-

domly selected) for tuning purposes. The remaining 20 will

then be used for testing all algorithms. The 5 datasets that

will be used for the tuning of EDDIE 9 are: Aggreko, Bar-

clays, First, Marks & Spenser, and Xstrata. To avoid any

biases, these 5 datasets will not be used during the testing

phase presented in the Results section.

4.3 Parameter Tuning

There are two main parameters that are affected by the se-

quential covering procedure; these are the number of genera-

tions and the population size. As we are creating smaller so-

lutions (rules) to cover a subset of the training data, it might

not be necessary to run the GP for many generations—in or-

der to avoid overfitting—or even to have a large number of

individuals in the population. Furthermore, another parame-

ter we need to experiment with is the minimum number of

cases for the sequential covering iteration, we can choose

to stop the procedure if the number of available (not cov-

ered) cases falls below a minimum value. Since the number

of combinations for the above parameters can be high, we

divided the tuning process into two phases.

In the first phase, we were interested in selecting the best

combination of generations and population size. We experi-

mented with 4 different settings for number of generations:

15, 25, 35, and 50. We also experimented with the follow-

ing generation size settings: 50, 100, 200, 300, and 500. For

this set of experiments, we kept the number of available (not

covered) cases (from sequential covering process) the same,

and equal to 0 (i.e., the sequential covering goes on as long

as the number of uncovered training cases is greater than or

equal to 0). Hence, we tested EDDIE 9 with 15 generations

and population 50, 100, 200, 300 and 500 (5 different exper-

iments), then with 25 generations and the same population

size combinations, and so on. In total, we ran 20 EDDIE

9 experiments with the above different settings. We then

ranked the results in terms of Fitness, RC, RMC, and RF

by using the non-parametric Friedman statistical test with

5 The datasets used in our experiments can be downloaded from:

http://www.cs.kent.ac.uk/people/staff/mk451/datasets.html

Table 1 GP parameters values used in the experiments.

GP Parameters

Max Initial Depth 6

Max Depth 8

Generations 50

Population size 500

Tournament size 2

Reproduction probability 0.1

Crossover probability 0.9

Mutation probability 0.01

Weight {w1, w2, w3} {0.6, 0.1, 0.3}
Period [2,65]

the post-hoc Hommel’s test (Demšar, 2006; Garcı́a and Her-

rera, 2008). Results showed that the top ranking algorithm

for Fitness was the 25-300-0 configuration (i.e., 25 genera-

tions, 300 population size, and availability value equal to 0),

for RC the 15-200-0 configuration, for RMC the 25-300-0,

and for RF the 35-100-0. We thus decided to tune the above

configurations with the availability parameter from sequen-

tial covering.

Tuning the number of available cases in sequential cov-

ering was the second phase of our parameter tuning. We had

already tested the value 0, and we then tested the values

25, 50, 75 and 100. Thus, for each ‘winning’ configuration

from the first phase, we replaced the 0 with 25, 50, 75, and

100. Therefore, in addition to 25-300-0, we also tested 25-

300-25, 25-300-50, 25-300-75 and 25-300-100. We also did

the same with 15-200-0, and 35-100-0. Hence in total we

ran an extra 12 set of experiments. We again followed the

same ranking process as with the first phase. Results showed

that configurations 35-100-0 and 15-200-0 had equal ranks

across the four performance metrics. At the end, we selected

the 15-200-0 configuration to be our standard EDDIE 9 al-

gorithm, as it has a lower number of generations and thus

runs much faster than the equally performing 35-100-0.

We did not experiment with any other GP parameters,

as we did not think that these would be affected by the in-

troduction of the new heuristics into EDDIE. These GP pa-

rameters have been tuned in previous experiments and are

presented next.

4.4 Other Parameters

The remaining GP parameters for the algorithms tested in

this paper are presented in Table 1. For statistical purposes,

the GP is run 50 times. The process is as follows. We create

a population of 500 GDTs, which are evolved for 50 genera-

tions, over a training period of 1000 days. At the last gener-

ation, the best performing GDT in terms of fitness is saved

and applied to the testing data. As already explained, this

procedure is done for 50 individual runs.

Both C4.5 and RIPPER are run with the default values:

C4.5 {confidence factor in the pruning equal to 0.25, min-

imum number of cases per leaf node equal to 2}; RIPPER

10 Michael Kampouridis, Fernando E. B. Otero

Table 2 Summary results for the different EDDIE versions: EDDIE 7 (ED7), EDDIE 8 (ED8), EDDIE 8-ATTR (ED8-AT), and EDDIE 9 (ED9).

The metrics used for the comparison of the algorithms are: Fitness, Rate of Correctness (RC), Rate of Missing Chances (RMC), and Rate of

Failure (RF). Results are in the [0, 1] scale—best results are shown in boldface. The last row of the table shows the average raking according to

the Friedman statistical test, where the lower the rank the better the algorithms’ performance.

Fitness Rate of Correctness (RC) Rate of Missing Chances (RMC) Rate of Failure (RF)

Algorithm ED7 ED8 ED8-AT ED9 ED7 ED8 ED8-AT ED9 ED7 ED8 ED8-AT ED9 ED7 ED8 ED-AT ED9

Amlin 0.54 0.55 0.54 0.58 0.51 0.52 0.51 0.55 0.42 0.43 0.42 0.33 0.41 0.4 0.42 0.39

Athens 0.54 0.54 0.52 0.51 0.53 0.53 0.52 0.51 0.19 0.25 0.27 0.26 0.53 0.53 0.55 0.55

BP 0.60 0.58 0.58 0.59 0.56 0.53 0.54 0.55 0.39 0.42 0.40 0.35 0.32 0.34 0.34 0.35

Cadbury 0.66 0.68 0.68 0.63 0.64 0.65 0.66 0.60 0.18 0.17 0.18 0.23 0.34 0.33 0.32 0.36

Carnival 0.50 0.50 0.49 0.45 0.51 0.51 0.50 0.44 0.17 0.15 0.14 0.14 0.63 0.63 0.63 0.66

DJIA 0.69 0.69 0.68 0.68 0.65 0.65 0.64 0.64 0.13 0.16 0.2 0.16 0.29 0.28 0.28 0.30

Easyjet 0.55 0.51 0.53 0.59 0.49 0.45 0.47 0.53 0.58 0.67 0.63 0.45 0.29 0.31 0.29 0.29

Hammerson 0.51 0.55 0.59 0.56 0.49 0.53 0.57 0.53 0.51 0.38 0.32 0.27 0.45 0.43 0.4 0.43

HSI 0.65 0.65 0.66 0.68 0.61 0.6 0.61 0.65 0.24 0.27 0.27 0.13 0.30 0.29 0.28 0.31

Imp 0.62 0.61 0.62 0.62 0.58 0.57 0.59 0.58 0.48 0.45 0.44 0.34 0.27 0.29 0.28 0.32

MDAX 0.52 0.52 0.54 0.53 0.49 0.49 0.51 0.49 0.24 0.20 0.18 0.15 0.52 0.51 0.50 0.51

NASDAQ 0.61 0.60 0.61 0.63 0.57 0.55 0.56 0.59 0.37 0.42 0.36 0.23 0.30 0.31 0.32 0.33

Next 0.55 0.51 0.55 0.60 0.50 0.47 0.50 0.55 0.41 0.48 0.43 0.30 0.37 0.39 0.36 0.35

NIKEI 0.56 0.54 0.53 0.58 0.54 0.52 0.51 0.55 0.23 0.30 0.34 0.16 0.46 0.48 0.48 0.45

NYSE 0.56 0.57 0.58 0.56 0.54 0.55 0.55 0.53 0.26 0.21 0.20 0.20 0.45 0.44 0.44 0.46

RBS 0.54 0.56 0.58 0.57 0.50 0.53 0.54 0.54 0.41 0.37 0.34 0.32 0.40 0.39 0.38 0.39

Schroders 0.59 0.60 0.62 0.61 0.55 0.57 0.59 0.57 0.36 0.33 0.26 0.24 0.37 0.36 0.36 0.38

Sky 0.57 0.56 0.54 0.62 0.53 0.52 0.49 0.58 0.43 0.47 0.49 0.34 0.34 0.34 0.36 0.32

Tesco 0.64 0.65 0.65 0.66 0.59 0.61 0.61 0.63 0.30 0.29 0.27 0.22 0.30 0.28 0.29 0.30

Vodafone 0.46 0.52 0.49 0.51 0.44 0.50 0.47 0.48 0.37 0.30 0.32 0.21 0.56 0.51 0.54 0.52

Avg. Rank 2.75 2.85 2.35 2.05 2.80 2.75 2.35 2.10 2.90 3.05 2.75 1.30 2.70 2.19 2.10 2.99

{1/3 of the data used for pruning, weight of a case in a rule

equals to 2}. Since these algorithms are deterministic, they

are executed only once on each dataset.

5 Results

This section presents the results from our experiments. We

will first present the results from the comparison of our pro-

posed version EDDIE 9 with previous EDDIE versions, na-

mely EDDIE 7, EDDIE 8 and EDDIE 8-ATTR. Then, we

will also compare the performance of EDDIE 9 with C4.5

and RIPPER, two state-of-the-art classification algorithms.

5.1 Comparisons with previous EDDIE versions

Table 2 presents the average results, over 50 runs, for all

EDDIE algorithms for Fitness, RC, RMC, and RF. When an

algorithm has the best value for a given dataset among all

other algorithms, then the respective value is in bold fonts.

As we can observe, EDDIE 9 has done quite well in terms

of Fitness and RC, where it returned the best results in 9

and 10 datasets, respectively. Results for RMC were even

better for EDDIE 9, where it returned the best RMC in 17

datasets out of the 20 tested. Lastly, in terms of RF, EDDIE

9 returned the best values in 5 datasets. The last row of the

table presents the average rank of each algorithm—the lower

the average rank, the better the algorithm’s performance—

for each metric. As we can observe, EDDIE 9 ranks first

in terms of Fitness, RC, and RMC. The average rank was

calculated by running the non-parametric Friedman test.

Table 3 Statistical test results according to the non-parametric Fried-

man test with the Hommel’s post-hoc test. Statistically significant dif-

ferences at the α = 0.05 level are in bold.

Algorithm Average Rank Adjusted pHomm

(i) Fitness

EDDIE 9 (c) 2.05 –

EDDIE 8-ATTR 2.35 0.4624

EDDIE 7 2.75 0.1728

EDDIE 8 2.85 0.1296

(ii) Rate of Correctness (RC)

EDDIE 9 (c) 2.10 –

EDDIE 8-ATTR 2.35 0.5402

EDDIE 8 2.75 0.2226

EDDIE 7 2.80 0.1728

(iii) Rate of Missing Chances (RMC)

EDDIE 9 (c) 1.30 –

EDDIE 8-ATTR 2.75 3.82E-4

EDDIE 7 2.90 1.77E-4

EDDIE 8 3.05 5.44E-4

(iv) Rate of Failure (RF)

EDDIE 8-ATTR (c) 2.10 –

EDDIE 8 2.19 0.0824

EDDIE 7 2.70 0.2832

EDDIE 9 2.99 0.8064

These observations are further supported by the results

of the Hommel’s post-hoc test (Demšar, 2006; Garcı́a and

Herrera, 2008), and are presented in Table 3. For each algo-

rithm, the table again shows the average rank according to

the Friedman test (first column), and the adjusted p-value of

the statistical test when that algorithm’s average rank is com-

pared to the average rank of the algorithm with the best rank

(control algorithm) according to the Hommel’s post-hoc test

(second column). When statistically significant differences

between the average ranks of an algorithm and the control

Improving the Predictability of a GP Financial Forecasting Algorithm 11

algorithm at the 5% level (p ≤ 0.05) are observed, the line

is tabulated in bold face.

As we can observe in Table 3, EDDIE 9 ranks first in

terms of Fitness, RC, although not significantly at the 5%

level. EDDIE 8-ATTR ranks then second, in both cases, and

EDDIE 7 and EDDIE 8 take the last two positions. In addi-

tion, EDDIE 9 ranks first and significantly outperforms all

other EDDIE algorithms for RMC. Lastly, EDDIE 9 ranks

in the last position in terms of RF. This appears to happen

due to the fact that EDDIE 9 has increased the number of

false positive signals (FP), in the expense of true negatives

(TN). However, this increase does not affect the other three

metrics (Fitness, RC, RMC). Overall, EDDIE 9 has done

very well, as it ranked first in three out of the four perfor-

mance metrics tested. Hence, we believe that this makes it

an important addition to the EDDIE family.

5.2 Comparisons with state-of-the-art

This section presents the comparative results between our

new algorithm, EDDIE 9, and two well-known state-of-the-

art algorithms, C4.5 and RIPPER. Since C4.5 and RIPPER

use a different fitness function than the EDDIE algorithm,

in this section we will not be comparing this value. We will

only be making comparisons for the remaining performance

metrics, i.e., RC, RMC, and RF. We first present the aver-

age results, over 50 individual runs, for EDDIE 9; C4.5 and

RIPPER are deterministic algorithms, hence they were run

once per dataset. These results will be presented in Section

5.2.1.

However, while average results are meaningful in Ma-

chine Learning as they can give us an idea of the expected

performance of a given algorithm, in this section we will

also be presenting the best results for EDDIE 9. Best results

refers to the best tree in terms of fitness, out of 50 runs in

the training set, which was then applied to the unseen test-

ing set—i.e., a single best tree is selected from the 50 runs.

Thus, below in Section 5.2.2 we present the RC, RMC, and

RF results for the best tree of each algorithm. This is par-

ticularly meaningful in the financial sector, because if an in-

vestor was using EDDIE 9 in the stock market, s/he would

first run the algorithm multiple times and then select the best

performing tree (model) for trading. Therefore, having an al-

gorithm with very good performance in terms of best tree is

an important aspect in the financial forecasting sector. These

results will be presented in Section 5.2.2.

5.2.1 Average results

The good performance of EDDIE 9 continues also when

compared to the state-of-the-art. Table 4 presents the aver-

age results for EDDIE 9, and Table 5 presents the statistical

test results. EDDIE 9 ranks again first for RC and RMC,

with the latter rank being significant at the 5% level. In ad-

dition, EDDIE 9 ranks last in terms of RF. The reason of the

poor performance in terms of RF appears again to be a high

number of FP signals.

5.2.2 Best results

Table 6 presents the best results for EDDIE 9, and Table

7 presents the statistical test results. What we can observe

here is that selecting the best tree6 of EDDIE 9 has intro-

duced further improvements in the ranking results. In terms

of RC, EDDIE 9 again ranks first, and is also significantly

better than the RIPPER algorithm. In terms of RMC, ED-

DIE 9 maintains its previous excellent performance and sig-

nificantly outperforms C4.5 and RIPPER. Lastly, in terms

of RF, EDDIE 9 ranks first for the first time, although not

significantly. Nevertheless, our findings imply that selecting

the best tree for trading has only positive effects, with no

negatives.

5.3 Computational times

Table 8 presents the computational times in seconds that

each of the EDDIE algorithms took to complete a single run.

Results are over all datasets. When compared to the compu-

tational time for inducing a decision tree of C4.5 and RIP-

PER, the EDDIE variations are a factor of 20 to 70 slower

(C4.5) and a factor of approximately 7 to 23 slower (RIP-

PER). This is expected, given that both C4.5 and RIPPER

create and prune a single candidate decision tree using a

deterministic procedure, while the EDDIE variations mul-

tiple candidate decision trees are created before finding the

best decision tree. With regards to the EDDIE algorithms,

EDDIE 9 is the slowest one, and takes about 70 seconds

on average to complete a single run. This makes it slower

in a factor of 3.5 when compared to the fastest EDDIE al-

gorithm, which is EDDIE 7, and only takes approximately

20.5 seconds on average. Thus, the addition of the heuristic

processes introduced in EDDIE 9 (sequential covering and

dynamic discretisation) has slowed down the algorithm.

However, it should be noted that in the current financial

forecasting application the computational time taken by the

algorithms to induce a classification model has a relatively

minor importance, since it represents an off-line applica-

tion (i.e., it involves daily predictions rather than intra-day

ones). Hence, the introduced improvements in the perfor-

mance metrics justify the slower exectution speed of EDDIE

9. In addition, GP algorithms can be easily parallelised since

each tree builds and evaluates a candidate solution indepen-

dent from all other trees in the population. Therefore, a large

speed up could be obtained by running a parallel version of

6 Refer to Section 5.2 for the definition of best tree.

12 Michael Kampouridis, Fernando E. B. Otero

Table 4 Average results for comparison with state-of-the-art (C4.5, RIPPER). Results are in the [0, 1] scale—best results are shown in boldface.

The last row of the table shows the average raking according to the Friedman statistical test, where the lower the rank the better the algorithms’

performance.

Rate of Correctness (RC) Rate of Missing Chances (RMC) Rate of Failure (RF)

Algorithm EDDIE 9 C4.5 RIPPER EDDIE 9 C4.5 RIPPER EDDIE 9 C4.5 RIPPER

Amlin 0.550 0.453 0.467 0.330 0.457 0.531 0.390 0.469 0.450

Athens 0.510 0.467 0.413 0.260 0.276 0.394 0.550 0.576 0.621

BP 0.550 0.467 0.510 0.350 0.474 0.438 0.350 0.400 0.363

Cadbury 0.600 0.527 0.553 0.230 0.350 0.433 0.360 0.403 0.354

Carnival 0.440 0.587 0.503 0.140 0.239 0.337 0.660 0.593 0.659

DJIA 0.640 0.670 0.667 0.160 0.062 0.118 0.300 0.303 0.287

Easyjet 0.530 0.540 0.550 0.450 0.498 0.458 0.290 0.266 0.276

Hammerson 0.530 0.507 0.593 0.270 0.331 0.396 0.430 0.449 0.350

HSI 0.650 0.573 0.627 0.130 0.248 0.150 0.310 0.332 0.316

Imp 0.580 0.593 0.567 0.340 0.355 0.452 0.320 0.318 0.311

MDAX 0.490 0.503 0.487 0.150 0.397 0.493 0.510 0.508 0.526

NASDAQ 0.590 0.573 0.450 0.230 0.396 0.584 0.330 0.282 0.359

Next 0.550 0.470 0.450 0.300 0.482 0.568 0.350 0.380 0.377

NIKEI 0.550 0.617 0.380 0.160 0.062 0.677 0.450 0.410 0.597

NYSE 0.530 0.563 0.500 0.200 0.364 0.525 0.460 0.411 0.458

RBS 0.540 0.567 0.493 0.320 0.332 0.370 0.390 0.359 0.420

Schroders 0.570 0.493 0.643 0.240 0.276 0.309 0.380 0.438 0.290

Sky 0.58) 0.583 0.427 0.340 0.497 0.626 0.320 0.222 0.407

Tesco 0.630 0.587 0.600 0.220 0.429 0.278 0.300 0.235 0.299

Vodafone 0.480 0.633 0.450 0.210 0.261 0.380 0.530 0.410 0.558

Avg. Rank 1.75 1.90 2.34 1.20 2.40 2.40 2.27 1.92 1.80

Table 5 Statistical test results for average performance according to

the non-parametric Friedman test with the Hommel’s post-hoc test.

Statistically significant differences at the α = 0.05 level are in bold.

Algorithm Average Rank Adjusted pHomm

(ii) Rate of Correctness (RC)

EDDIE 9 (c) 1.75 –

C4.5 1.90 0.6352

RIPPER 2.34 0.1155

(iii) Rate of Missing Chances (RMC)

EDDIE 9 (c) 1.20 –

C4.5 2.40 1.47E-4

RIPPER 2.40 1.47E-4

(iv) Rate of Failure (RF)

RIPPER (c) 1.80 –

C4.5 1.92 0.6926

EDDIE 9 2.27 0.2661

EDDIE, as it has actually been shown in (Brookhouse et al,

2014), where speed ups of up to 21 times were observed.

5.4 Average Annualised Rate of Return

Lastly, in addition to the performance metrics mentioned in

the previous sections (i.e., fitness, RC, RMC, RF), we also

decided to use an additional metric for the comparison of

the algorithms. This metric is related to the return the algo-

rithm yields, and is called Average Annualised Rate of Re-

turn (AARR). The formula for this metric is presented be-

low. It should be stated that AARR is not part of the fitness

function. However, rate of return is a very important invest-

ment metric, and that is why we use it as a reference. There-

fore, we use an investment performance criterion (AARR),

based on the following hypothetical trading behaviour.

Hypothetical Trading Behaviour: We assume that when

a positive position is predicted by a GDT, one unit of money

is invested in a stock reflecting the current closing price. If

the closing price does rise by r% or more at day t within the

next n trading days, we then sell the portfolio at the closing

price of day t. If not, we sell the portfolio on the nth day,

regardless of the price.

Given a positive position predicted, for example, the ith
positive position, for simplicity, we ignore transaction cost,

and annualise its return by the following formula:

ARRi =
250

t
∗
Pt − P0

P0

(9)

where P0 is the buy price, Pt is the sell price, t is the number

of days in markets, 250 is the number of total trading days in

one calendar year. Given a GDT that generates N+ number

of positive positions over the period examined, its average

ARR is shown in Equation (10):

AARR =
1

N

N+∑

i=1

ARRi (10)

According to Table 9, EDDIE 9 has done quite well

in terms of AARR. In 13 out of the 20 datasets tested, it

achieved a profit (AARR > 1). Overall, the algorithm achi-

eved an AARR equal to 1.2205, which indicates that an in-

vestor would make an average annual return of 22% by using

EDDIE 9.

Improving the Predictability of a GP Financial Forecasting Algorithm 13

Table 6 Best results for comparison with state-of-the-art (C4.5, RIPPER). Results are in the [0, 1] scale—best results are shown in boldface.

The last row of the table shows the average raking according to the Friedman statistical test, where the lower the rank the better the algorithms’

performance.

Rate of Correctness (RC) Rate of Missing Chances (RMC) Rate of Failure (RF)

Algorithm EDDIE 9 C4.5 RIPPER EDDIE 9 C4.5 RIPPER EDDIE 9 C4.5 RIPPER

Amlin 0.590 0.453 0.467 0.250 0.457 0.531 0.370 0.469 0.450

Athens 0.480 0.467 0.413 0.160 0.276 0.394 0.560 0.576 0.621

BP 0.560 0.467 0.510 0.360 0.474 0.438 0.330 0.400 0.363

Cadbury 0.650 0.527 0.553 0.030 0.350 0.433 0.370 0.403 0.354

Carnival 0.310 0.587 0.503 0.040 0.239 0.337 0.700 0.593 0.659

DJIA 0.580 0.670 0.667 0.350 0.062 0.118 0.280 0.303 0.287

Easyjet 0.570 0.540 0.550 0.290 0.498 0.458 0.330 0.266 0.276

Hammerson 0.520 0.507 0.593 0.230 0.331 0.396 0.450 0.449 0.350

HSI 0.500 0.573 0.627 0.580 0.248 0.150 0.260 0.332 0.316

Imp 0.570 0.593 0.567 0.170 0.355 0.452 0.390 0.318 0.311

MDAX 0.510 0.503 0.487 0.090 0.397 0.493 0.500 0.508 0.526

NASDAQ 0.600 0.573 0.450 0.200 0.396 0.584 0.330 0.282 0.359

Next 0.500 0.470 0.450 0.420 0.482 0.568 0.370 0.380 0.377

NIKEI 0.560 0.617 0.380 0.010 0.062 0.677 0.450 0.410 0.597

NYSE 0.560 0.563 0.500 0.120 0.364 0.525 0.440 0.411 0.458

RBS 0.630 0.567 0.493 0.020 0.332 0.370 0.380 0.359 0.420

Schroders 0.580 0.493 0.643 0.310 0.276 0.309 0.360 0.438 0.290

Sky 0.720 0.583 0.427 0.040 0.497 0.626 0.290 0.222 0.407

Tesco 0.670 0.587 0.600 0.150 0.429 0.278 0.280 0.235 0.299

Vodafone 0.470 0.633 0.450 0.250 0.261 0.380 0.530 0.410 0.558

Avg. Rank 1.60 2.05 2.34 1.25 2.05 2.69 1.85 1.90 2.24

Table 7 Statistical test results for Best according to the non-parametric

Friedman test with the Hommel’s post-hoc test. Statistically significant

differences at the α = 0.05 level are in bold.

Algorithm Average Rank Adjusted pHomm

(ii) Rate of Correctness (RC)

EDDIE 9 (c) 1.60 –

C4.5 2.05 0.1547

RIPPER 2.34 0.0354

(iii) Rate of Missing Chances (RMC)

EDDIE 9 (c) 1.25 –

C4.5 2.05 0.0114

RIPPER 2.69 9.06E-6

(iv) Rate of Failure (RF)

EDDIE 9 (c) 1.85 –

C4.5 1.90 0.8743

RIPPER 2.24 0.4111

Table 8 Average computational times (over all data sets) in seconds to

complete a single run for each of the EDDIE algorithms on a 2.53 GHz

Intel Xeon computer. The deterministic C4.5 and RIPPER algorithms

take on average 1 and 3 seconds, respectively, to complete an individual

run.

Algorithm Time (seconds)

EDDIE 7 20.478

EDDIE 8 38.140

EDDIE 8-ATTR 48.112

EDDIE 9 70.358

5.5 Discussion

From the results presented in this section, we can draw sev-

eral conclusions. First of all, it is apparent that the introduc-

tion of discretisation and sequential covering has improved

the average performance of the EDDIE algorithm. As we ob-

served in Tables 2 and 3, our new version EDDIE 9 ranked

first in Fitness, RC, and RMC. The only metric that EDDIE

Table 9 Average Annualised Rate of Return (AARR) for the 20

datasets for EDDIE 9. 13 out of the 20 datasets have achieved a profit

(AARR > 1).

Dataset AARR Dataset AARR

Amlin 1.52 MDAX 0.93

Athens 1.07 NASDAQ 1.42

BP 1.07 Next 1.18

Cadbury 0.88 NIKEI 1.15

Carnival 0.36 NYSE 0.88

DJIA 1.07 RBS 0.75

Easyjet 2.49 Schroders 1.60

Hammerson 0.71 Sky 1.24

HSI 1.86 Tesco 1.94

Imp 1.65 Vodafone 0.62

9 had a lower performance was RF, although results were not

significant at 5% level. On the other hand, the improvements

for RMC were statistically significant. This is a very impor-

tant result, because improving the RMC means that the algo-

rithm is able to identify more buy opportunities. Therefore,

thanks to EDDIE 9 an investor increases its chances to make

profit by reducing the number of missed buy opportunities.

In addition, EDDIE 9 achieved positive results when co-

mpared to the well-known C4.5 and RIPPER algorithms in

terms of RC, RMC and RF, as shown in Tables 4 and 5. Al-

though the improvements in RC are not significant, EDDIE

9 outperforms both C4.5 and RIPPER in terms of RMC and

the differences are statistically significant at the 5% level.

Hence, if an investor needed to choose which algorithm to

use, the best option would be EDDIE 9.

As explained, the above average results are given as a

measure of expected behaviour of the given algorithms. Ho-

wever, in real-world applications such as the one of financial

forecasting, it is even more important to have good perfor-

14 Michael Kampouridis, Fernando E. B. Otero

mance in terms of the best model. As we mentioned earlier,

in a real scenario, an investor would decide which model to

use after running the algorithm multiple times and then se-

lecting the best performing model in the training datasets.

The best results, which were presented in Tables 6 and 7,

re-confirmed EDDIE 9’s strengths. EDDIE 9 outperformed

both C4.5 and RIPPER with statistically significant differ-

ences on RMC and also outperform RIPPER with statisti-

cally significant differences on RC. An investor, who would

use the best model after multiple runs, would be able to get

the best performance in all three metrics (RC, RMC, RF)

when compared to C4.5 and RIPPER. Hence, in a real sce-

nario, EDDIE 9 would be the best classification algorithm

among the well-know C4.5 and RIPPER.

Lastly, our results in Table 9 showed that EDDIE 9 is

not simply a good classification algorithm, but also a prof-

itable one. As we mentioned in the previous section, for the

20 datasets tested in this paper, EDDIE 9 would return an

annual profit of 22% on average.

6 Conclusion

To conclude, this paper presented work on the application

of heuristic processes into the GP financial forecasting algo-

rithm named EDDIE 9. Our proposal included two heuris-

tics: (i) a sequential covering strategy to iteratively build a

solution in combination with the GP search, and (ii) the use

of an entropy-based dynamic discretisation procedure of nu-

meric values. The sequential covering strategy allowed for

the automated decomposition of the original problem into

smaller subproblems. In addition, the dynamic discretisation

process allowed for the deterministic calculation of thresh-

old values that best fit the data.

Computational experiments showed that EDDIE 9 achi-

eved positive results when compared to all three previous

EDDIE versions, as well as C4.5 and RIPPER, in the major-

ity of our test cases. More specifically, EDDIE 9 achieved

first rank in terms of average Fitness, Rate of Correctness

and Rate of Missing Chances against both the previous ED-

DIE versions. In addition, EDDIE 9 achieved first rank in all

metrics (including Rate of Failure) in terms of best results.

Moreover, EDDIE 9 showed remarkable improvements in

the Rate of Missing Chances, outperforming both the pre-

vious EDDIE versions and well-known C4.5 and RIPPER

with statistically significantly differences at the 5% level,

which effectively allows investors to identify more buy op-

portunities, and thus increase their profit opportunities. This

profitability was confirmed when we looked into the aver-

age annualised return rates across the 20 datasets, where we

found that EDDIE 9 was not only proven to be a competi-

tive classification algorithm, but also a profitable one, as it

yielded an annualised average return of 22%.

There are several interesting directions for future rese-

arch. First, it would be interesting to evaluate the use of a

pruning procedure to potentially improve the solutions of

the GP. This could reduce the size of the overall solutions

and also improve their predictive performance. Second, the

use of different discretisation procedures can improve the

generation of the indicators’ tests. Exploring the use of an

heuristic to reorder the individual solutions—e.g., rank them

based on their quality—to improve the quality of the final

solution is a direction worth further exploration.

References

Abdelmalek W, Hamida S, Abid F (2009) Selecting the best

forecasting-implied volatility model using genetic pro-

gramming. Journal of Applied Mathematics and Decision

Sciences, vol. 2009, Article ID 179230, 19 pages

Abdou H (2009) Genetic programming for credit scoring:

The case of egyptian public sector banks. Expert Systems

with Applications 36(9):11,402–11,417

Agapitos A, O’Neill M, Brabazon A (2010) Evolutionary

learning of technical trading rules without data-mining

bias. In: Schaefer R, Cotta C, Kołodziej J, Rudolph G

(eds) Parallel Problem Solving from Nature – PPSN XI,

Springer, Lecture Notes in Computer Science, vol 6238,

pp 294–303

Allen F, Karjalainen R (1999) Using genetic algorithms to

find technical trading rules. Journal of Financial Eco-

nomics 51:245–271

Austin M, Bates G, Dempster M, Leemans V, Williams S

(2004) Adaptive systems for foreign exchange trading.

Quantitative Finance 4(4):37–45

Backus J (1959) The syntax and semantics of the proposed

international algebraic language of Zurich. In: Interna-

tional Conference on Information Processing, UNESCO,

pp 125–132

Binner J, Kendall G, Chen SH (eds) (2004) Applications

of Artificial Intelligence in Finance and Economics, Ad-

vances in Econometrics, vol 19. Elsevier

Brookhouse J, Otero FEB, Kampouridis M (2014) Work-

ing with OpenCL to speed up a genetic programming fi-

nancial forecasting algorithm: Initial results. In: Wagner,

S. and Affeneller, M. (eds) GECCO 2014 Workshop on

Evolutionary Computation Software Systems (EvoSoft),

pp.1117–1124

Chen SH (2002) Genetic Algorithms and Genetic Program-

ming in Computational Finance. Springer-Verlag New

York, LLC

Cohen W (1995) Fast effective rule induction. In: Proceed-

ings of the 12th International Conference on Machine

Learning, Morgan Kaufmann, pp 115–123

Improving the Predictability of a GP Financial Forecasting Algorithm 15

Demšar J (2006) Statistical Comparisons of Classifiers over

Multiple Data Sets. Journal of Machine Learning Re-

search 7:1–30

Edwards R, Magee J (1992) Technical analysis of stock

trends. New York Institute of Finance

Fayyad U, Piatetsky-Shapiro G, Smith P (1996) From data

mining to knowledge discovery: an overview. In: Ad-

vances in Knowledge Discovery & Data Mining, MIT

Press, pp 1–34

Garcı́a S, Herrera F (2008) An Extension on “Statistical

Comparisons of Classifiers over Multiple Data Sets” for

all Pairwise Comparisons. Journal of Machine Learning

Research 9:2677–2694

Giacobini M, Provero P, Vanneschi L, Mauri G (2014) To-

wards the use of genetic programming for the prediction

of survival in cancer. In: Cagnoni S, Mirolli M, Villani M

(eds) Evolution, Complexity and Artificial Life, Springer

Berlin Heidelberg, pp 177–192

Hu Y (1998) Constructive induction: Covering attribute

spectrum. Feature Extraction Construction and Selection

pp 257–272

Kampouridis M, Otero FEB (2013) Using attribute construc-

tion to improve the predictability of a GP financial fore-

casting algorithm. In: Proceedings of the Conference on

Technologies and Applications of Artificial Intelligence,

IEEE Xplore, pp 55–60

Kampouridis M, Tsang E (2010) EDDIE for investment

opportunities forecasting: Extending the search space of

the GP. In: Proceedings of the IEEE World Congress on

Computational Intelligence, Barcelona, Spain, pp 2019–

2026

Kampouridis M, Tsang E (2012) Investment opportunities

forecasting: Extending the grammar of a gp-based tool.

International Journal of Computational Intelligence Sys-

tems 5(3):530–541

Koza J (1992) Genetic Programming: On the programming

of computers by means of natural selection. Cambridge,

MA: MIT Press

Krawiec K (2002) Genetic programming-based construction

of features for machine learning and knowledge discov-

ery tasks. Genetic Programming and Evolvable Machines

3(4):329–343

Li J (2001) FGP: A genetic programming-ased financial

forecasting tool. PhD thesis, Department of Computer

Science, University of Essex

Martinez-Jaramillo S (2007) Artificial financial markets: An

agent-based approach to reproduce stylized facts and to

study the red queen effect. PhD thesis, CFFEA, Univer-

sity of Essex

Otero FEB, Silva M, Freitas A, Nievola J (2003) Genetic

programming for attribute construction in data mining. In:

Proc. of EuroGP, LNCS 2610, pp 384–393

Otero FEB, Freitas A, Johnson C (2008) cAnt-Miner: an ant

colony classification algorithm to cope with continuous

attributes. In: Ant Colony Optimization and Swarm Intel-

ligence (Proc. ANTS 2008), pp 48–59

Otero FEB, Freitas A, Johnson C (2013) A New Sequential

Covering Strategy for Inducing Classification Rules With

Ant Colony Algorithms. IEEE Transactions on Evolution-

ary Computation 17(1):64–76

Otero FEB, Johnson CG (2013) Automated problem decom-

position for the boolean domain with genetic program-

ming. In: Proceedings of the 16th European Conference

on Genetic Programming, EuroGP 2013, Vienna, Austria,

pp 169–180

Phua C, Lee V, Smith K, Gayler R (2010) A Comprehensive

Survey of Data Mining-based Fraud Detection Research.

http://www.bsys.monash.edu.au/people/cphua/

Piatetsky-Shapiro G, Frawley W (1991) Knowledge Discov-

ery in Databases. AAAI Press

Poli R, Langdon W, McPhee N (2008) A Field Guide to Ge-

netic Programming. Lulu.com

Quinlan JR (1993) C4.5: programs for machine learning.

Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA

Dos Santos J, Ferreira C, Da S Torres R, Gonçalves M, Lam-

parelli R (2011) A relevance feedback method based on

genetic programming for classification of remote sensing

images. Information Sciences 181(13):2671 – 2684

Tsang E, Martinez-Jaramillo S (2004) Computational

finance. IEEE Computational Intelligence Society

Newsletter pp 3–8

Tsang E, Li J, Markose S, Er H, Salhi A, Iori G (2000) ED-

DIE in financial decision making. Journal of Management

and Economics 4(4) (online)

Tsang E, Markose S, Er H (2005) Chance discovery in stock

index option and future arbitrage. New Mathematics and

Natural Computation, World Scientific 1(3):435–447

Wang P, Tsang E, Weise T, Tang K, Yao X (2010) Using GP

to evolve decision rules for classification in financial data

sets. In: Cognitive Informatics (ICCI), 2010 9th IEEE In-

ternational Conference on, pp 720 –727

Wilson G, Banzhaf W (2010) Fast and effective pre-

dictability filters for stock price series using lin-

ear genetic programming. In: Evolutionary Computa-

tion (CEC), 2010 IEEE Congress on, pp 1–8, DOI

10.1109/CEC.2010.5586297

Witten H, Frank E (2005) Data Mining: Practical Machine

Learning Tools and Techniques, 2nd edn. Morgan Kauf-

mann

