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Abstract

We consider a model of conformity that permits a non-conformist

equilibrium and multiple conformist equilibria. Agents are assumed

to behave according to a best reply learning dynamic. We detail the

conditions under which a social norm and conformity emerge. The

emergence of conformity depends on the distribution of intrinsic pref-

erences, the relative costs and benefits of conformity and the topology

of agent interaction.
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1 Introduction

Social norms are pervasive in human society. For example, consumption

norms dictate what clothes, cars or music are ‘acceptable’ or ‘fashionable’

while work norms dictate ‘proper effort’, ‘normal working hours’ or a ‘rea-

sonable wage’ (Lewis 1967, Akerlof 1980, Jones 1984, Elster 1989, Bernheim

1994). Norms can be sustained because of ‘costs to non-conformity’ in the

form of indirect costs, such as guilt, or more direct costs, such as being

forced out of employment (Kreps 1997). But: Why do some actions become

norms but not others? Why do norms emerge in some choice settings and

not others? and, Can policy makers influence behavior though manipulat-

ing norms?1 In this paper we study a simple multiple equilibrium model of

conformity with the aim of gaining some insight on these issues.

In the model, an agent’s payoff is a sum of intrinsic utility, determined

solely by his own action, and social utility, determined by how his action

‘fits with that of others’. Social utility is determined relative to some norm

of behavior and depends on how closely an agent’s actions conform to the

norm and on the proportion of the population that are conforming to the

norm. If nobody conforms then social utility is zero irrespective of behavior

and agents maximize utility by maximizing intrinsic utility. If everybody

conforms to the norm then social utility is such that all agents maximize

utility by conforming, even if they sacrifice intrinsic utility in doing so. This

implies multiple equilibria, including a ‘non-conformist’ equilibrium where

all agents maximize intrinsic utility (or ‘do what they want’) and ‘conformist

equilibria’ where all agents conform to some norm and receive maximal social

utility (but sacrifice intrinsic utility).

What equilibrium should we expect to emerge? To address this equilib-

1The Fresno State Social Norms Project is one example of attempting to influence
behavior through manipulating norms. The aim of the project is to reduce alcohol abuse
through changing student perceptions of ‘normal behavior’. Other possibilities include
influencing attitudes to saving for retirement, recycling, playing truant at school etc.
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rium selection question we use a standard evolutionary or learning model

approach (Fudenberg and Levine 1998). Agents are modelled as interact-

ing repeatedly over time and choosing an action using a best reply rule: an

agent chooses the action in this period that would have maximized his pay-

off in the last period. Occasional shocks perturb the system and thus allow

the dynamic to potentially evolve between different conformist equilibria or

from a conformist to non-conformist equilibrium and so on. We shall detail

the conditions under which conformity can emerge and the actions that may

become norms.

Why can an action emerge as a norm? For some agents, conforming to

the norm may be a relatively ‘easy option’ because any sacrifice in intrinsic

utility is small and so a little social utility is enough to compensate. As

the proportion of conforming agents increases then the social utility from

conformity increases and other agents become willing to sacrifice increased

amounts of intrinsic utility to conform. Conformity can therefore spread

through a ripple effect to those who must sacrifice the most intrinsic utility to

conform. This logic can be reversed to argue that non-conformity can emerge

because ‘not-conforming’ is a relatively ‘easy option’ for those who could gain

most intrinsic utility from ‘not-conforming’, and so on. The balance is tipped

towards the emergence of conformity if conforming is the ‘easy option’ for

a larger proportion of agents than is not-conforming. Norms most likely to

emerge are those that require relatively little sacrifice in intrinsic utility for

a significant proportion of the population.

For the most part we focus on a global interaction setting where agents

could be seen to interact on a population wide level. Thus, social utility is

determined by the total population. In Section 5 we consider an alternative,

local interaction setting, where norms and social utility are determined rel-

ative to a particular location. The analysis of the global interaction setting

naturally extends to the local interaction setting. The local interaction set-

ting does, however, generate ‘richer dynamics’ of multiple, evolving norms as
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we shall illustrate through examples. These examples will demonstrate how

the dynamics of conformity depend on the ‘topology of agent interaction’.

We shall not attempt in this paper to explain why individuals have desires

for social utility or ‘to fit in’.2 It will be taken as given that a conformist

equilibrium exists in the sense that if everybody conforms to a norm then

everybody would want to conform to the norm. As such, we do not attempt

to provide a complete story of why a conformist equilibrium would emerge.

By detailing, however, when a conformist or non-conformist equilibrium can

emerge and by characterizing the actions that can become norms we can

provide important insights on the emergence of norms.

Closely related results are due to Akerlof (1980) and Azar (2004). Azar

(2004) questioned why a tipping norm can persist. He showed that for a

norm to persist there must be sufficient agents who ‘like tipping’. This result

is consistent with our analysis where an action becomes a norm if there are

sufficiently many agents who receive high intrinsic utility from conforming.

Akerlof (1980), using the example of a norm to set artificially high wages,

questioned whether social custom would be gradually eroded if it is costly

for individuals to persist in the custom. He showed that custom can survive.

Our analysis suggests that one could go further by saying that conformity

or social custom can not only survive but emerge, even if it is not in agents

interests for it to do so. Indeed, whether or not conformity or non-conformity

emerges in our model is unrelated to the relative Pareto ranking of conformist

and non-conformist equilibria. One strand of the existing literature on con-

formity attempts to explain social norms as ‘optimal’ in the sense that a

conformist equilibrium Pareto dominates a non-conformist equilibrium (El-

ster 1989). Our results reflect the common thread in the literature on best

reply dynamics that the risk dominance of equilibria and not Pareto ranking

2See, amongst others, Jones (1984), Bernheim (1994), Kreps (1997) or just about any
social psychology textbook for more on this issue. Also, Wooders, Cartwright and Selten
(2006) show that in any game with many agents there exists a ‘conformist equilibrium’
(where similar agents perform similar actions) irrespective of any desires for social utility.
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is key (Young 1993). Related results are also due to Ochs and Park (2004)

who model a dynamic adoption process where agents subscribe to a network

if network size is sufficiently large. Differences in agent preferences create a

ripple effect, similar to the one of this paper, where the more subscribe to

the network the more will be induced to subscribe to the network.

The motivation behind this paper was to study ‘emotional’ or ‘social’ con-

formity whereby individuals conform to ‘fit in’ or ’avoid guilt’ etc. In reality

social utility, as we define it, could be interpreted much more generally. For

example ‘social utility’ could reflect tangible benefits from agent coordina-

tion or institutionalized punishment for not obeying rules. Our framework is,

however, somewhat distinct from that modelling conformity in coordination

games (e.g. Young 1993) because non-conformity (or non-coordination) is an

equilibrium and indeed payoffs at the non-conformist equilibrium may exceed

those of the conformist equilibrium. There is also no appeal to incomplete

information in our model. This distinguishes our results from the literature

on ‘informational’ conformity (e.g. Bikhandani, Hirshleifer and Welch 1992,

Juang 2001) where agents imitate successful or popular actions in the hope

of obtaining a higher intrinsic utility.

We proceed as follows: Section 2 introduces the model, Section 3 presents

the main results, Section 4 provides examples of payoff functions, Section 5

discusses local interaction and Section 6 concludes. All proofs are contained

in an Appendix

2 Model and notation

The model used is inspired by that of Bernheim (1994).3 There exists a

continuum of agents. Each agent has a type from a set T ≡ [−1, 1]. A
population is described by a cumulative distribution function F , with cor-

3There are some notable differences. In particular, Bernheim (1994) provides a more
subtle model of conformity in which actions serve as a signal of type.
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responding continuous probability density function f , over the set of types

T where f(−1), f(1) > 0.4 Agents simultaneously choose an action from

set X = [−1, 1]. For simplicity, agents of the same type will be assumed
to choose the same action.5 This allows us to describe actions by an action

profile a that maps T into X with a(t) indicating the action chosen by agents

of type t. Let A denote the set of action profiles.

The payoff of an agent is the sum of two components - intrinsic utility

and social utility. We define each in turn.

2.1 Intrinsic utility

Intrinsic utility depends on the difference between type and action; formally,

there exists function I : [0, 2] → R such that an agent of type t receives

intrinsic utility I(|t− x|) from choosing action x.6 We make the following

assumption,

Assumption 1: I(z) is continuous, achieves a maximum at z = 0 and is

(weakly) concave.

Thus, an agent of type t maximizes his intrinsic utility by choosing action

x = t. The further his chosen action from t then the lower his intrinsic utility.

We shall say that intrinsic utility is linear if I(z) = β1−β2z for some β2 > 0.

2.2 Social utility

Social utility will be determined relative to some norm. This means making

assumptions of what ‘the norm’ is. We will assume that an action constitutes

the norm if it is being chosen by a larger proportion of the population than

any other action. Let ρ(x, a) be the proportion of the population choosing

4More formally, we can allow that f(−1), f(1) = 0 but require that f(−1+α), f(1−α) >
0 for some α > 0 arbitrarily small.

5See footnote 12 in Section 2.5 for further elaboration on this assumption.
6To simplify notation we shall write I(t− x) instead of I (|t− x|).
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action x given action profile a.7 We shall denote by µ(a) the ‘norm’ given

action profile a. If there exists action x∗ ∈ X such that ρ(x∗, a) > ρ(x, a)

for all x 6= x∗ then we call x∗ the norm and set µ(a) = x∗. Otherwise we

say that there is no norm and set µ(a) = φ. If there does exist a norm x∗

then an agent who chooses x∗ is said to conform while an agent who does

not choose x∗ is said to not conform.

Given an action profile a where µ(a) 6= φ define

∆(x) :=


µ(a)−x
µ(a)+1

if x ∈ [−1, µ(a))
x−µ(a)
1−µ(a) if x ∈ (µ, 1(a)]

0 if x = µ(a)

. (1)

Value ∆(x) denotes ‘relative distance’ between action x and the norm µ(a).

The value of ∆ can range from 0 to 1 with 0 indicating conformity and 1 that

either action 1 or −1, the actions most removed from the norm, are chosen.8
Let ρ(a) := ρ(µ(a), a) denote the proportion of the population conforming

to the norm. If µ(a) = φ then set ∆(x) = 0 for all x and ρ(a) = 0.

Social utility will depend on relative distance ∆(x) and proportion ρ(a);

formally, there exists a social utility function E : [0, 1] × [0, 1] → R such

that an agent choosing action x given action profile a receives social utility

E(∆(x), ρ(a)). We shall normalize E(∆, 0) = 0 for all ∆. Thus, social

utility is zero irrespective of action if there is no norm. As discussed in

the introduction (see also Section 4) ‘social utility’ is really just a measure

of the general ‘costs or benefits’ to conforming. For example, social utility

could reflect network effects or be positive or negative etc.9 Note also that

7In a continuum population ρ(x, a) may equal 0 for all x.
8The choice of relative distance (i.e. for x > µ relative to 1−µ and for x < µ relative to

µ−(−1)) is for convenience and we could obtain equivalent results using absolute distance
x− µ.

9Kreps (1997) states four reasons for conformity: 1. conformity is costless, 2. con-
formity permits coordination, 3. conformity is costly but leads to future benefits (e.g.
avoidance of guilt), and 4. conformity is desirable in itself. Reason 1 is a reflection of
a ‘flat’ intrinsic utility function. Reasons 2, 3 and 4 could be incorporated within our
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social utility does not depend on type or on the norm. This is a simplifying

assumption that could be relaxed.

Some justification should be made for our choice of norm. The primary

assumption made is that there exists at most one norm. If there is only

one norm, then modelling the norm as the ‘most observed’ action seems

appropriate but our method of proof would allow us to define the norm

differently, for example, as some exogenous focal point. More contentious

is the assumption that there be a unique norm given that one may imagine

different norms in different sections of the population. On a practical level

it is not clear how one would model multiple norms within a social utility

function as defined above. Instead, we shall model, in Section 5, multiple

norms as arising from local interaction. That is, we shall permit different

norms in different sections of the population but use a framework of local

interaction to determine what are ‘different sections of the population’.

It seems natural that social utility should be decreasing in the ‘individual

extent of non-conformity’ as given by ∆. We allow for the possibility of a

discontinuity in ∆ at 0 to reflect a possible discrete jump in social utility

between conformity and non conformity.

Assumption 2: E(∆, ρ) is non-increasing in ∆ and continuous in ∆ with a

possible exception at ∆ = 0.

Assumptions 1 and 2 will be made throughout without further acknowledg-

ment. We also introduce two Properties on payoff functions that while harder

to interpret shall essentially prove to be necessary and sufficient conditions

in the analysis. We discuss both Properties further in Section 4.

Property 1: For any action profile a ∈ A

E(0, ρ(a))− E(ρ(a), ρ(a)) ≥ ρ(a) [E(0, 1)−E(1, 1)] . (2)

definition of social utility.
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The value E(0, 1)−E(1, 1) compares conformity with choosing −1 or 1 when
all agents conform and thus measures the largest possible differential in social

utility. Given an action profile a in which proportion ρ are conforming,

Property 1 requires that the drop in social utility from choosing an action x at

relative distance of ρ from µ(a) is equal to ρ times the largest possible drop in

social utility. This requires (see Section 4) that social utility drop relatively

sharply for non conformity. For example, if claiming zero unemployment

benefit is the norm (Akerlof 1980, Lindbeck, Nyberg and Weibull 1999) then

Property 1 would require that claiming some unemployment benefit leads to

a relatively large drop in social utility.10 Examples satisfying this property

are provided in Section 4. We say that Property 1 holds with equality if the

inequality in (2) can be replaced by an equality. We say that Property 1

does not hold if the inequality in (2) can be replaced by a strictly less than

inequality.11

2.3 Payoff functions

Payoffs are given by function u : X × T ×A→ R where

u(x, t, a) = I(t− x) +E(∆(x), ρ(a)). (3)

is the payoff of an agent of type t from choosing action x given action profile

a. We introduce a second Property relating intrinsic utility to social utility.

Property 2: For any action profile a and actions t, x ∈ X where either

µ(a) < x < t or t < x < µ(a),

[E(0, δt)−E(δx, δt)]−[E(0, δx)− E(δx, δx)] ≥ [I(t− x)− I(t− µ)]−[I(0)− I(x− µ)]

(4)

10To fit this example with our action space we can equate x = −1 with zero unemploy-
ment and x = 1 with 50 years unemployment. The norm is µ = −1.
11This is a strong notion of requiring Property 1 to not hold in that we require the less

than inequality to apply for any action profile a ∈ A.
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where δt := ∆(t) and δx := ∆(x).

If intrinsic utility is linear then the right hand side of (4) is zero and so,

given that δt > δx, Property 2 merely requires, as intuition would suggest,

that the differential in social utility between conforming and non-conforming

should be non-decreasing in the proportion of the population conforming

(Akerlof 1980, Lindbeck, Nyberg and Weibull 1999). For example, the less

people are claiming unemployment benefit the greater the stigma to claiming

unemployment benefit. If intrinsic utility is strictly concave then the right

hand side of (4) is strictly positive and so we require more. The more concave

is intrinsic utility then the wider need grow the gap in social utility between

conforming and non-conforming as the proportion conforming increases. We

say that Property 2 does not hold if the inequality of equation (4) can be

replaced by a strictly less than inequality.

2.4 Nash Equilibrium

A Nash equilibrium is an action profile a such that u(a(t), t, a) ≥ u(x, t, a) for

all x ∈ X and t ∈ T . The assumptions made are sufficient for the existence

of a non-conformist equilibrium a where a(t) = t for all t ∈ T and µ(a) = φ.

That is, social utility is zero and an agent of type t chooses x = t, maximizing

intrinsic utility. We say that there exists a conformist equilibrium centered

on x∗, denoted ax
∗
, where ax

∗
(t) = x∗ for all t ∈ T if

I(t− x∗) +E(0, 1) ≥ I(t− x) +E(∆(x), 1) (5)

for all t, x ∈ X. A conformist equilibrium ax
∗
is said to be not strict if

there exists at least one t and x combination for which equation (5) holds

with equality. We say that conformity is an equilibrium if ax is a conformist

equilibrium for any x ∈ X. Finally, we say that conformity is not a strict

equilibrium if ax is not a strict conformist equilibrium for any x ∈ X.
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2.5 Dynamics

Agents interact over an indefinite number of time periods τ = 0, 1, 2, ....

There exists an initial action profile a0. Let aτ(t) denote the action chosen

by agents of type t in period τ . We shall consider a variant of a best reply

dynamic in which each agent primarily chooses the action for the current pe-

riod that would have maximized his payoff in the previous period (Fudenberg

and Levine 1998). Given action profile a an agent of type t has best reply set

Bt(a) := {x ∈ X : u(x, t, a) ≥ u(x0, t, a) for all x0 ∈ X}. The set Bt(a) may
contain multiple actions. In this case we assume agents would pick the action

closest to conformity. Let12

BRt(a) := min
x∈Bt(a)

{|x− µ(a)|}.

Define,

ρB(x, a) :=

Z
t:x=BRt(a)

f(y)dy

as the proportion of the population for whom x is a best reply given action

profile a.

For the most part we assume that the proportion of the population who

choose action x in period τ is given by ρ(x, aτ) = ρB(x, aτ−1). However, in

each period τ with probability λ > 0 there is a shock. If there is a shock then

some action x 6= µ(a) is randomly selected and the proportion choosing x is

given by13

ρ(x, aτ ) = ρB(x, aτ−1) + ε

12In the model agents who are indifferent between conforming and not-conforming will
conform. This can clearly be criticized for making conformity more likely. In reality, any
tie breaking rule would suffice and all of our results would hold with the rule BRt(a) =
minx∈Bt(a){|x− t|}. The rule we use has the merits of greatly simplifying the analysis.
13Or, if ρB(x, aτ−1) > 1− ε then ρ(x, aτ ) = 1.
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where ε > 0 is a real number. Further if x∗ = µ(aτ−1) then14

ρ(x∗, aτ) = ρB(x∗, aτ−1)− ε.

We shall use the phrase ‘a shock to action x’ if x is selected.

The dynamic modelled is one of best reply with shocks where shocks are

minor perturbations to the proportion choosing some action and could be

equated with experimentation or a response to advertising etc. It is a zero

probability event that a ‘positive shock’ occurs twice for the same action

and so the proportion choosing an action purely because of shocks cannot

exceed ε. A ‘positive shock’ is, however, mirrored by a ‘negative shock’ to the

proportion conforming to the norm. Thus, a norm can be subject to repeated

negative shocks. This makes it more difficult for sustained conformity to

emerge. Our results are not dependent on this specific model of shocks,

chosen for convenience. Note that we shall equate a state of the dynamic

with an action profile. More formally, the state of the dynamic is given by

function ρ detailing the proportion choosing each action.

3 The emergence of conformity

We begin by detailing the conditions under which the proportion conforming

to a norm will grow or diminish. If there exists a norm x∗ then those agents

with types near to x∗ have the most incentive to conform. The distribution

of types around x∗ thus proves fundamental. Let

G(γ, x∗) = F ((1− γ)x∗ + γ)− F ((1− γ)x∗ − γ) (6)

for all γ ∈ [0, 1]. Function G measures how agent types are distributed

around x∗. Clearly, G(0, x∗) = 0 and G(1, x∗) = 1. If F is the uniform

distribution then G(γ, x∗) = γ. If, say, G(0.1, x∗) = 0.9 then we could say

14Or, if ρB(x∗, aτ−1) < ε then ρ(x∗, aτ ) = 0.
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that a high proportion of agents have types near to x∗.

Theorem 1: Consider action profile a where x∗ = µ(a). If Properties 1

and 2 hold and there exists a conformist equilibrium centered on x∗ then

ρB(x∗, a) ≥ G(ρ(a), x∗). If intrinsic utility is linear, Property 1 holds with

equality, Property 2 holds and conformist equilibrium ax
∗
is not strict then

ρB(x∗, a) = G(ρ(a), x∗). If intrinsic utility is linear, there does not ex-

ist a strict conformist equilibrium and Property 1 does not hold or Prop-

erty 1 holds with equality and Property 2 does not hold then ρB(x∗, a) <

G(ρ(a), x∗).15

If conformity to x∗ is to increase then we require ρB(x∗, aτ) to increase.

Theorem 1 indicates that this will depend on the distribution of types around

the norm and whether Properties 1 and 2 hold. In particular, if proportion

ρτ are conforming to norm x∗ in period τ then Properties 1 and 2 imply (see

the Appendix for details) that those agents with types within distance ρτ

of x∗ will conform in period τ + 1. Proportion G(ρτ , x∗) have types within

distance ρτ of x∗. Thus, ρτ+1 = ρB(x∗, aτ) ≥ G(ρτ , x∗). If conformity is

to be sustained and/or increase then we need ρτ+1 ≥ ρτ . So we need that

G(ρτ , x∗) ≥ ρτ . That is we require sufficiently many agents with types near

to x∗.

Applying Theorem 1 we first provide conditions such that the non-conformist

equilibrium will occur with vanishing frequency in the long run.

Corollary 1: If Properties 1 and 2 hold and conformity is an equilibrium
then for sufficiently small ε as λ tends to zero the probability that ρ(aτ) = 0

for large τ also tends to zero.

Thus, given Properties 1 and 2 conformity will emerge to some extent in that

a norm will exist and a positive proportion of the population will sacrifice

15Note that the x∗ here could be some exogenous focal point. Thus, the result is more
genral than assuming the norm is the action played by most agents.
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intrinsic utility in order to conform. The proportion who do conform, how-

ever, could be small. The following result provides conditions under which a

norm will emerge where all agents conform.

Corollary 2: If Properties 1 and 2 hold, conformity is an equilibrium and

there exists x∗ ∈ X such that G(γ, x∗) > γ for all γ ∈ (0, 1) then as λ tends
to zero the probability that ρ(aτ) ≥ 1− ε for large τ tends to one.

For conformity to increase over time we require that G(ρτ , x∗) > ρτ over

consecutive periods. The requirement that G(γ, x∗) > γ for all γ ∈ (0, 1)
captures this in ensuring that ρB(x∗, aτ ) ≥ G(ρτ , x∗) > ρτ . In each period,

the increase in the proportion of agents conforming is enough to entice agents

with ‘more extreme preferences’ to conform and so on. Conformity spreads

from those with types near to x∗ to those with more extreme types. The re-

quirement that G(γ, x∗) > γ for all γ ∈ (0, 1) is relatively mild. For example,
it is satisfied if the distribution over types is unimodal.16 We provide some

illustrations after our next result. Corollaries 1 and 2 do not specify what

norms will emerge but it is clear that actions for which G is ‘large’ are the

most likely candidates. The following result is immediate from Theorem 1.

Corollary 3: Suppose that intrinsic utility is linear and Property 1 holds
with equality. If ρ(aτ) > ε and the conformist equilibrium aµ(a

τ ) is not strict

then G(ρ(aτ), µ(aτ)) ≥ ρ(aτ ).

In reality any norm could emerge if the potential gains to esteem are suffi-

ciently large. Corollary 3, however, shows that whether an x∗ norm could

emerge will depend on G. To illustrate where norms can emerge consider

16By unimodal we mean F (t) ≤ 0.5t for all t ∈ [−1, x∗], F (t) ≥ 0.5t for all t ∈ [x∗, 1]
and f(µ) > f(t) for t 6= µ. Here

G(γ, x∗) = F ((1− γ)x∗ + γ)− F ((1− γ)x∗ − γ)

> 0.5 ((1− γ)x∗ + γ)− 0.5 ((1− γ)x∗ − γ) = γ.
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three examples depicted in Figure 1. For each Example we indicate the

range of x∗ for which G(γ, x∗) > γ for all γ.

Peaked at 0: If f(t) = 1− |t| then x∗ ∈ (−0.5, 0.5).

Peaked at -1: If f(t) = 1
2
(1− t) then x∗ < 0.

Bimodal: If f is symmetric around 0 with f(t) = 1
4
for t ∈ [0, 0.1); f(t) = 4 for

t ∈ [0.1, 0.2]; f(t) = 15
64
(1−t) for t ∈ (0.2, 1] then x∗ ∈ [0.1, 0.2]∪ [−0.2,−0.1].

As already stated the requirement that G(γ, x∗) > γ for all γ does seem mild

but it need not hold. If, for example, approximately half of agents have types

near to −1 and half near to 1 then the requirement is not met. Conformity
need not spread in this case because if, say, all those with types near to −1
conform to an x∗ = −1 norm social utility need not be such that those agents
with types near to 1 wish to conform. Conformity does not spread because

of the disparity in tastes.

4 Conformity and social utility

So far we have emphasized the importance of the distribution over types in

determining the emergence of conformity. In this section we shall explore

the role of payoff functions and the social utility function. If the distribution

over types is uniform then G(γ, x) = γ for all γ and all x and so, given the

discussion above, this presents a limiting case where conformity is ‘least likely

to emerge’. The following result demonstrates the necessity of Properties 1

and 2 in this case.

Corollary 4: Suppose that types are distributed uniformly, conformity is
not a strict equilibrium and intrinsic utility is linear. If Property 1 does not

hold, or Property 1 holds with equality and Property 2 does not hold then
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ρ(aτ ) ≤ ε for all τ .17

If the distribution over types is not uniform (or there exists a strict conformist

equilibrium) then Properties 1 and 2 are not necessary; the ‘incentives to

conform’ inherent in the distribution over types could compensate for the

‘lack of incentives to conform’ implied by a relaxation of Properties 1 and

2. Clearly, however, Properties 1 and 2 are important in determining the

emergence of conformity. We consider four examples, illustrated in Figure

2, to discuss the properties. In looking at Property 2 suppose that I(z) =

β1−β2z−β3z2 for all z and some real numbers β1 and β2, β3 ≥ 0 and µ = 0.
Property 2 reduces to [E(0, t)−E(x, t)]− [E(0, x)−E(x, x)] ≥ 2β3x(t− x)

for t > x > 0 and t < x < 0.

Example 1, Conform or not: Consider the simplest form of social utility
function

E1(∆, ρ) =

(
0 if ∆ 6= 0

h(ρ) if ∆ = 0

for some function h. There is no distinction in ‘how close an agent is to con-

forming’. An agent who conforms receives positive social utility and one who

does not receives zero social utility. It is immediate from (2) that Property

1 holds if there is concavity in social utility with respect to ρ. That is, if

h(ρ) ≥ ρ for all ρ. Thus we require social utility to be ‘relatively responsive

to ρ’ when ρ is small. Property 2 requires β3 to be sufficiently small. For

example, if h(ρ) = ρ then β3 ≤ 0.5 would do.
This form of social utility function is extreme in its distinction between

conformity and non-conformity and easily satisfies the two properties but is

not unreasonable for certain choice settings. Bernheim (1994) considers a

model of conformity where any deviation from a norm is seen as a signal of

an agent with ‘most extreme types’. Thus, any deviation from the norm leads

17By Theorem 1 we know that ρB(x∗, a) < G(ρ(a), x∗). Given that f is uniform we
have that G(ρ(a), x∗) = ρ(a). The result is now immediate.
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to a substantial loss in social utility. Function E1 may also be appropriate in

dealing with network or coordination effects. If there is a positive externality

from using the same action as others then this could be modelled by setting

h(ρ) = ρ.

Example 2, a continuous social utility function: Let,

E2(∆, ρ) = −ργ1∆γ2

for all ∆ ∈ [0, 1] and some real numbers γ1, γ2 > 0. This social utility

function is continuous and so there is no discrete drop in utility for non-

conformity. Property 1 does, however, require that social utility fall ‘steeply’

for deviations from µ. It turns out, that ‘steep enough’ requires γ1+ γ2 ≤ 1.
Formally,

E2(0, ρ)−E2(ρ, ρ) = ργ1ργ2 ≥ ρ [E2(0, 1)−E2(1, 1)] = ρ

if γ1 + γ2 ≤ 1 (where ρ ≤ 1). So, we require convexity in social utility with
respect to ∆ whereby social utility is more responsive to ∆ the smaller is ∆.

For example, the change from claiming one to two months unemployment

benefit results in a relatively large change in stigma compared to a change

from eight to nine months benefit.

Example 3, a concave social utility function: For social utility to be
concave in ∆ we need that differences in social utility grow rapidly for small

∆. The most extreme example of this is,

E3(∆, ρ) =

(
−∆2 if ∆ 6= 0 and ρ > 0

1 if ∆ = 0 and ρ > 0

Recall that E3(∆, 0) = 0 by assumption for all ∆. Thus, once a positive

proportion of the population conform the full differences in social utility

exist. An extreme example but one where concavity in social utility with
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respect to ∆ is compensated by the responsiveness of social utility to ρ.

Property 1 is satisfied because

E3(0, ρ)−E3(ρ, ρ) = 1 + ρ2 ≥ ρ [E1(0, 1)−E1(1, 1)] = 2ρ

One setting where this example may be appropriate is if there exists an ‘insti-

tutionalized punishment mechanism’ where there exists a norm and ‘author-

ity’ punishes any deviation from the norm.18 In this context the punishment

need not depend on ρ.

Example 4, summary: Consider a general functional form,

E4(∆, ρ) =

(
ρ(2− ρ)(1−∆)γ3 if ∆ 6= 0
ρ(2− ρ)(1 + γ4) if ∆ = 0

for some real numbers γ3, γ4 ≥ 0. To satisfy Property 1 we require that

E3(0, ρ)−E3(ρ, ρ) = ρ(2−ρ)(1+γ4−(1−ρ)γ3) ≥ ρ [E3(0, 1)−E3(1, 1)] = ρ(1+γ4)

implying that

(1 + γ4)(1− ρ) ≥ (2− ρ)(1− ρ)γ3

for all ρ ∈ (0, 1). This is satisfied if γ3 ≥ 1 and γ4 ≥ 1. That γ3 ≥ 1

implies that E4 is (weakly) convex in ∆. That γ4 ≥ 1 implies that E4 is

discontinuous at ∆ = 0. Property 2 requires

(1 + γ4 − (1− x)γ3) [t(2− t)− x(2− x)] ≥ 2β3x(t− x).

This is satisfied if 1 + γ4 ≥ 2β3. So, again we require β3 small.

In summary, a social utility function ‘most likely’ to satisfy Properties 1 and

2 would, as we see in Example 4, be discontinuous in social utility at ∆ = 0

18Our definition of a norm (as the most used action) may not be appropriate in this
context but the analysis is easily adapted to an exogenous norm.
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and have the concavity in ρ and convexity in ∆ properties of Examples 1

and 2. If an agent can achieve relatively high social utility through non-

conformity, even when the proportion conforming is small, then Property 1

is not satisfied and conformity need not emerge.

Note that the relationship between intrinsic utility and social utility is

important in determining whether or not there exists a conformist equilib-

rium centered on a norm x∗. Clearly, however, if social utility is sufficiently

large relative to intrinsic utility and E(0, 1) > E(x, 1) for all x 6= x∗ then

there always exists a conformist equilibrium centered on x∗. The ‘shape of

the social utility function’ is also important in determining the behavior of

agents who do not conform. In Example 1 an agent of type t who does not

conform will clearly choose x = t. More generally, an agent of type t, even

if he does not conform, may choose an action x 6= t and so is still influenced

by social utility.

5 Local interaction

An extension of the model is to allow local interaction (Fudenberg and Tirole

1998). That is, to suppose an agent may interact with only a subset of the

population or that his social utility is determined relative to a subset of the

population. In many instances this seems appropriate, perhaps reflecting

simple geography, such as a norm within a workplace, or that agents only

care about the views of certain others, such as friends. Local interaction also

has the advantage of permitting ‘richer norm dynamics’. In particular, there

can be multiple norms and an increased opportunity for norms to change

over time. How to model local interaction is, however, not so clear and so

we will limit ourselves here to two objectives. First, to illustrate how the

previous analysis can be extended to a local interaction setting. Second, to

illustrate how ‘richer norm dynamics’ can emerge with local interaction. We

leave a more complete exploration of local interaction to future research.
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Suppose that there exists a set of Locations L = [−1, 1]. There is a
continuous probability density function f over T × L detailing how agents

are distributed across types and locations. Local interaction is characterized

by a real number η ∈ (0, 2]. An agent interacts with all those agents within
distance η of his location. Given an action profile a, action x and location l

let ρ(x, l, a) denote the proportion of those agents located between l− η and

l + η who choose action x. Formally, if a(t, l) states the action chosen by

those of type t at location l then19

ρ(x, l, a) :=

R l+η
l−η

R
t:a(t,y)=x

f(p, y)dpdyR l+η
l−η

R
t∈T f(p, y)dpdy

.

Given action profile a, if there exists action x∗ ∈ X such that ρ(x∗, l, a) >

ρ(x, l, a) for all x 6= x∗ then we call x∗ the norm at location l and set µ(l, a) =

x∗. Otherwise we say that there is no norm at location l and set µ(l, a) = φ.

An agent conforms if he is at location l and chooses action µ(l, a). Note that

at different locations there may be different norms.

The social utility function can be defined as previously where ∆ and ρ

are determined relative to a location. For example, an agent at location l

receives social utility E(∆(x), ρ(µ(l, a), l, a)) from choosing action x where

∆(x) measures the relative distance between x and µ(l, a). If η = 2 then

there is global interaction and we have the situation previously modelled. If

η < 2 then we have local interaction. Extending the dynamic (and notation)

in a natural way, if there is a shock in period τ , an action x and location l∗

are randomly selected and

ρ(x, l, aτ ) = ρB(x, l, aτ−1) + ε

while

ρ(µ(l, aτ−1), l, aτ) = ρB(µ(l, aτ−1), l, aτ−1)− ε.

19If l−η or l+η do not belong to L then truncate the range of the integrals as appropriate.
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for all l ∈ [l∗ − η, l∗ + η].

In Section 3 we saw that the value of G as a measure of the distribution

of types informed whether or not conformity could invade. We introduce the

analogue in a local interaction setting. Fix an action profile a and location l∗

where µ(l∗, a) = x∗. For all l let ρl := ρ(x∗, l, a) and define t+l := (1−ρl)x+ρl
and t−l := (1− ρl)x− ρl. Define,

G(a, µ(l∗, a), l∗) :=

R l∗+η
l∗−η

R t+y
t−y

f(p, y)dpdyR l∗+η
l∗−η

R 1
−1 f(p, y)dpdy

.

The G function just defined is analogous to that used earlier and serves the

same purpose.20 It gives a measure of the proportion of agents with whom

an agent at location l∗ interacts who will conform to x∗.

Corollary 5: If Properties 1 and 2 hold and conformity is an equilibrium
then ρB(µ(l, a), l, aτ ) ≥ G(aτ , µ(l, a), l) for all l. If intrinsic utility is linear,

Property 1 holds with equality, Property 2 holds and conformist equilibrium

aµ(l,a) is not strict then ρB(µ(l, a), l, aτ ) = G(aτ , µ(l, a), l).

GivenG and Corollary 5 we can begin to explore how conformity may emerge.

Two sketch examples allow us to illustrate some of the issues.

Example 5: In this example the emergence of conformity is less likely than
with global interaction. Conformity will ‘spread’ across locations but not

necessarily across types.

Let f(t, l) = 0.25 for all t and l. Thus, agents are distributed uniformly across

locations and types. Suppose that µ(a0, l) = φ for all l and a shock occurs

in period 1 at location l∗ = 0 to choose action x∗ = 0. Thus ρ(x∗, l, a1) = ε

for all l ∈ [−η, η] and ρ(x∗, l, a1) = 0 for all other l. In period 2 agents at

20Recall that G(γ, µ) = F ((1−γ)µ+γ)−F ((1−γ)µ−γ). In calculating G(a, µ(l∗, a), l∗)
we are essentially summing the G(ρl, µ) over locations near to l∗. If η = 2 then
G(a, µ(l∗, a), l∗) = G(ρ(a), a).
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locations l ∈ [−η, η] who have types ‘close’ to 0 will conform as illustrated in
Figure 3a. Suppose that ‘close’ is t ∈ [−γε, γε] for some γε. Now ρ(x∗, l, a2) >

0 and µ(l, a2) = x∗ for all l ∈ (−2η, 2η). The closer, however, is l to l∗

then the larger is ρ(x∗, l, a2). Specifically, ρ(x∗, l, a2) = γε(1− |l| /2η) for all
l ∈ (−2η, 2η). The larger is ρ(x∗, l, a2) then the wider the range of types
at location l for which conformity is a best reply. So, in Period 3 we get a

‘diamond’ of type, location combinations within which agents would conform

to x∗. At the limit of the diamond only those with types t = x∗ choose x∗. In

period 3 we have ρ(x∗, l, a3) > 0 for all l ∈ (l∗ − 3η, l∗ + 3η) while ρ(x∗, l, a3)
is still larger the closer is l to x∗, and so on.

If conformity is to emerge then the ‘diamond’ of Figure 3a must ex-

pand rather than contract over time. From Corollary 5 we know that if

G(x∗, l, aτ) > ρ(aτ , x∗, l) then conformity can spread at location l. As we

have seen, however, the further is l from x∗ then the lower is G(x∗, l, aτ).

This makes it more difficult for conformity to emerge in the local interac-

tion setting. Specifically, we know that if intrinsic utility is linear, Prop-

erty 1 holds with equality and conformist equilibrium ax
∗
is not strict then

γε = ε. Calculation yields G(x∗, 0, a2) = 3
4
ε and G(x∗, η, a2) = ε

2
. Crucially,

ρB(x∗, l, a2) = G(x∗, l, a2) < ε for all l and so conformity is disappearing.

We know, however, from Theorem 1, that conformity would emerge in this

setting if η = 2. If η < 2 then ‘twice the density’ of agents with types near

x∗ are required so that ρ(x∗,−η, a2) ≥ ε and conformity can emerge.

Finally, note that, if the norm emerges, then ρ(aτ , x∗, l) > 0 for all l ∈
(l∗ − τη, l∗ + τη) and so, in the absence of further shocks, the norm will

necessarily spread until ρ(aτ , x∗, l) > 0 for all l ∈ L.¥

Example 6: In this example local interaction makes it easier for conformity
to emerge. Conformity may not ‘spread’ across locations.

Suppose that distribution f is such that ‘most agents at location l have types

near to t = l’. That is, location is strongly correlated with type. Agents who
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interact therefore tend to have the same type. With the aid of Figure 3b

we can trace through the differences with the earlier example. In period 2

the diagram is the same. If, however, η is small then G(x∗, l∗, a2) ' 1 and

G(x∗, l∗ − η, a2) ' 0.5 because almost all of the agents around l∗ have types

near to x∗. In terms of Figure 3a all agents at locations around l∗ have

types ‘in the shaded area’. This results in a ‘stretching out’ of the diamond

in Period 3, as illustrated in Figure 3b, because any type of agent would

conform with such a high proportion of agents conforming. Consequently

G(x∗, η, a3) ' 1 because all of agents around l∗− η will have types near to l∗

and in the shaded area, and so on.

Conformity can emerge very easily in this setting. Indeed, any action

could become a norm. Even if there are relatively few agents with a particular

type x∗ this need not stop x∗ emerging as a norm provided that an agent of

type x∗ interacts with other agents who have types near to x∗. Conformity

need not, however, spread across locations. That half of the agents with

whom a person interacts conform is a large inducement to conform. But,

the further removed is l from x∗ the fewer are the agents of the type that

want to conform even with this inducement. Generally, there exists a set

of types Tn(x∗) where the best reply is to not conform even if ρ(x∗) = 0.5.

At locations distant from l∗ it may be that all agents have types belonging

to Tn(x∗). Thus, there may be a ‘stable state’ where an x∗ norm exists at

locations around l∗ but not at more distant locations.¥

These two examples illustrate some of the issues concerning the emergence of

norms in local interaction setting. We have not, as yet, however, addressed

the possible consequences of different norms at different locations. In Ex-

ample 6 the presence of multiple norms appears inevitable while in Example

5 we might expect that it depends on the frequency of shocks and speed

with which conformity spreads. Clearly, however, multiple norms are possi-

ble. Suppose that there exists location l such that µ(a, l0) = x1 for l0 < l

and µ(a, l00) = x2 for l00 > l. A first observation is that µ(a, l) = φ and
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ρ(a, x1, l) = ρ(a, x2, l).21 Thus, an agent ‘at the boundary’ between norms

must interact with as many conforming to x2 as conforming to x1. Revisiting

Example 6 allows us to illustrate the implications of this.

Example 6’: The distribution over types is assumed to be the same as
Example 6. In addition, if l > l0 then there are proportionally more agents

around location l than location l0. Consider the boundary between norms at

location l. If ρ(a, x1, l) = ρ(a, x2, l) then proportionally more agents must

be conforming to norm x1 than x2 to balance up the fact that there are

potentially more agents to conform to norm x2 than x1. This requires a

precise balancing act of forces such as in Figure 4. This may suggest that

a ‘stable’ boundary between norms is unlikely but, on reflection, there is

no reason to suppose it should not occur. In particular, at lower locations

the norm x2 will begin to ‘die out’ and at higher locations the norm x1 will

begin to ‘die out’ so a stable boundary location may occur. If it does occur,

however, norms must be sufficiently distinct. Let Tc(x2) be the set of types

that would want to conform to an x2 norm if ρ(x2) ≥ 0.5. If all agents at
location l have types belonging to set Tc(x2) and l < x2 then, given the bias

in f , we should expect ρ(a, x2, l) > 0.5 > ρ(a, x1, l) and the norm at l must

be x2. Thus, if x1 ∈ Tc(x2) we could not expect to observe an x2 and an x1

norm coexisting. For sufficiently low l, however, some agents will not have

types belonging to Tc(x2) and the x2 norm will begin to die out. At this

point a different norm could exist. Given the correlation between type and

location this implies that x1 and x2 must be sufficiently distinct.¥

This section has only briefly touched on the issues that arise with local in-

teraction but has hopefully served its purpose. One conclusion that we can

draw is how the emergence of conformity will depend on the nature of agent

interaction. For example, if an agent’s social utility is determined by his in-

teraction with agents that have similar preferences then this encourages the

21This follows from the definitions of a norm.
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emergence of conformity. This also allows multiple norms to emerge across

agents with different preferences.

6 Concluding remarks

We have analyzed a model of conformity in which there exists both con-

formist and non-conformist equilibria and have provided conditions under

which conformity does or does not emerge. Three things prove important in

the emergence of conformity. First, the distribution of types in the popula-

tion. The more agents have types ‘close to the norm’ then the more likely

is conformity to emerge. Second, the ‘shape of the social utility function’.

The larger are the losses in social utility for deviation from the norm then

the more likely is conformity to emerge. Finally, the topology of agent inter-

action. Whether agents interact with subsets of the population and whether

they interact with agents of similar types can impact on the emergence of

conformity.

We highlight four areas for future research. The issue of local interaction

is clearly one area that could be explored more deeply with differing assump-

tions on the ‘network of interaction’. A second issue is the rate at which

conformity may emerge. The current paper details the ‘long run’ outcomes

of the dynamic but the literature on equilibrium selection has highlighted the

importance of looking also at rates of convergence (Fudenberg and Levine

1998). Intuitively one could expect a short waiting time for conformity to

emerge given that its emergence requires only one shock. It may take longer,

however, for population wide conformity to emerge. In particular, if a norm

and stable state emerge where half of the population conform to some norm

it appears unlikely that the norm would change in ‘normal time’ to one where

all agents would want to conform, even if such a norm exists. A related issue

is the stability of equilibrium. We have taken the approach in this paper that

the initial state could be the non-conformist equilibrium and have provided

25



conditions under which conformity may emerge. A distinct approach would

be to set the initial state as a conformist equilibrium. One would expect that

conformity can ‘survive’ under more general conditions than it can emerge.

One final issue is how things change with incomplete information about the

norm. For example, if the norm is to tip 15% in a restaurant how should it be

interpreted if an agent tips 14%. In the Examples of Section 4 we assumed

that social utility dropped quickly for deviations from the norm. This is

consistent with Bernheim (1994). Azar (2004), however, makes the case that

social utility should not drop quickly around the norm given the ‘fuzziness’

at the margin as to whether agents are conforming or not. In our framework

this argument is not so appropriate given that we also judge the strength of

conformity by the proportion choosing the norm (and not something near

the norm). It would be interesting, however, to see how the dynamics of

conformity change if agents who choose actions near to the norm are seen as

potentially conforming, both in terms of the social utility they receive and

the perceived level of conformity within in the population.

7 Appendix

Theorem 1 and the corollaries are proved with the help of 6 Lemmas.

Lemma 1: For any action profile a and type t, if x = BRt(a) and t < µ

then t ≤ x ≤ µ or if t > µ then t ≥ x ≥ µ.

Proof: Set t < µ. If x < t then I(0) ≥ I(t − x) and E(∆(t), ρ(a)) ≥
E(∆(x), ρ(a)). But then u(t, t, a) ≥ u(x, t, a) and so t ∈ Bt(a) contradict-
ing that x = BRt(a). If x > µ then I(µ − t) ≥ I(x − t) and E(0, ρ(a)) ≥
E(∆(x), ρ(a)). But then u(µ, t, a) ≥ u(x, t, a) and so µ ∈ Bt(a) again con-
tradicting that x = BRt(a). A symmetric argument treats t > µ.¥

Lemma 2: For any action profile a where µ := µ(a) and any types t1, t2 ∈ T ,
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if µ = BRt1(a) and µ = BRt2(a) then µ = BRt(a) for all t ∈ (t1, t2). Also
µ = BRµ(a).

Proof: First, I(0) ≥ I(x) for all x and E(0, ρ) ≥ E(∆(x), ρ) for all ρ and x.

Thus, µ = BRµ(a). If µ = BRt(a) then

I(t− x)− I(t− µ) ≤ E(0, ρ(a))− E(∆(x), ρ(a))

for all x. Suppose that t1 < t < µ. By concavity of I

I(t1 − x)− I(t1 − µ)

µ− x
≥ I(t− x)− I(t− µ)

µ− x
≥ I(µ− x)− I(0)

µ− x

for all x ≥ t1 and so µ = BRt(a) whenever µ = BRt1(a). A symmetric

argument treats t1 > t > µ.¥

Some notation: Given an action profile a let t+ := (1− ρ(a))µ(a) + ρ(a) and

t− := (1− ρ(a))µ(a)− ρ(a).

Lemma 3: Consider action profile a and norm µ = µ(a). If Property 1 holds

and there exists a conformist equilibrium centered on µ then u(µ, t+, a) ≥
u(t+, t+, a) and u(µ, t−, a) ≥ u(t−, t−, a). If intrinsic utility is linear, Prop-

erty 1 holds with equality and conformist equilibrium aµ is not strict then

u(µ, t, a) < u(t, t, a) for any t < t− or t > t+. If intrinsic utility is linear,

there does not exist a strict conformist equilibrium aµ and Property 1 does

not hold then u(µ, t+, a) < u(t+, t+, a) and u(µ, t−, a) < u(t−, t−, a).

Proof : Consider t+. If there exists a conformist equilibrium centered on µ

then

I(1− µ) +E(0, 1) ≥ I(0) +E(1, 1). (7)

By property 1

E(0, ρ(a))−E(ρ(a), ρ(a)) ≥ ρ(a) [E(0, 1)−E(1, 1)] (8)
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Note that ∆(t+) = ρ(a) and so

u(µ, t+, a) = I(t+ − µ) +E(0, ρ(a)) ≥ I(0) +E(ρ(a), ρ(a)) = u(t+, t+, a)

if

ρ(a) ≥ I(0)− I(t+ − µ)

I(0)− I(1− µ)
. (9)

By Assumption 1 and concavity,

I(t+ − µ) ≥
·
t+ − µ

1− µ

¸
I (1− µ) +

·
1− t+ − µ

1− µ

¸
I (0)

implying that
t+ − µ

1− µ
≥ I(0)− I(t+ − µ)

I(0)− I(1− µ)

But, by construction,
t+ − µ

1− µ
= ρ(a).

This demonstrates the first part of the proof. If intrinsic utility is linear,

Property 1 holds with equality and conformist equilibrium aµ is strict then

the inequality of equations (9), (8) and (7) can be replaced with equalities.

Thus u(µ, t+, a) = u(t+, t+, a). For an agent of type t > t+ this implies that

u(µ, t, a) < u(t, t, a). If intrinsic utility is linear, there does not exist a strict

conformist equilibrium and Property 1 does not hold then equation (9) holds

with equality, (7) with a less than inequality and (8) with a strictly less than

inequality implying that u(µ, t+, a) < u(t+, t+, a) as desired. A symmetric

argument treats t−.¥

Lemma 4: Consider action profile a where µ := µ(a). If Properties 1 and 2

hold and there exists a conformist equilibrium aµ then

£
t−, t+

¤ ⊆ {t ∈ T : µ = BRt(a)}

If intrinsic utility is linear, there does not exist a strict conformist equilibrium

28



aµ and Property 1 holds with equality but Property 2 does not hold then

µ 6= BRt+(a),BRt−(a).

Proof : From Lemma 2 we only need check that µ = BRt+(a),BRt−(a).

Consider t+. We need to show that

I(t+ − µ) +E(0, ρ(a)) ≥ I(t+ − x) +E(∆(x), ρ(a)) (10)

for all x. From Lemmas 1 and 3 we can reduce this to x ∈ (µ, t+). Fix
an x ∈ (µ, t+). Let δ be such that (1 − δ)µ + δ = x. Note that δ =

(x−µ)/(1−µ) = ∆(x) ≤ ρ(a) and ρ(a) = ∆(t+). So, applying Lemma 3 we

know that

I(x− µ) +E(0, δ) ≥ I(0) +E(∆(x), δ). (11)

By Property 2

I(t+−µ)−I(t+−x)+E(0, ρ(a))−E(∆(x), ρ(a)) ≥ I(x−µ)−I(0)+E(0, δ)−E(∆(x), δ)
(12)

Combining (11) and (12) gives (10) and the desired result for the first part

of the Lemma. Now, suppose that intrinsic utility is linear, Property 1 holds

with equality and there does not exist a strict conformist equilibrium aµ. By

Lemma 3, the inequality of (11) becomes a less than inequality. If Property

2 does not hold then the inequality of (12) becomes a strictly less than

inequality. Thus, u(µ, t+, a) < u(x, t+, a) for all x ∈ (µ, t+) and so µ 6=
BRt+(a) as desired. A symmetric argument treats t−.¥

Proof of Theorem 1: The first part of the statement is immediate from
Lemma 4 and the definitions of G, t+ and t−. The second part of the state-

ment is immediate from Lemmas 3 and 4 implying that {t ∈ T : µ = BRt(a)} =
[t−, t+]. The final part of the statement is immediate from from Lemmas 2,

3 and 4 implying that {t ∈ T : µ = BRt(a)} ⊂ (t−, t+).¥

Lemma 5: For any action profile a and action x 6= µ(a), if x = BRt(a) for
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some t then x /∈ BRt0(a) for all t0 6= t.22

Proof: Suppose otherwise. Thus, x = BRt0(a) and x = BRt00(a) for some

t0, t00 ∈ T and x 6= µ. Suppose that t00 ≤ µ. By Lemma 1, t0 < t00 ≤ x < µ.

Repeating the argument of Lemma 2, x = BRt(a) for all t ∈ [t0, t00]. Let ν be
a small positive number. Given that x ∈ BRt00(a)

I(x− t00) +E(∆(x), ρ(a)) > I(x+ ν − t00) +E(∆(x− ν), ρ(a)).

By Assumptions 1 and 2 (continuity) this would imply that for ν sufficiently

small,

I(x− t00)− I(x+ ν − t00) > E(∆(x), ρ(a))−E(∆(x+ ν), ρ(a)).

But this implies for an agent of type t = t00 − ν that

I(x− ν − t) +E(∆(x+ ν), ρ(a)) > I(x− t) +E(∆(x), ρ(a))

contradicting that x = BRt(a). A symmetric argument treats t00 > µ.¥

Lemma 6: Consider action profile a0 where µ(a0) = x∗. If Properties 1

and 2 hold, there exists conformist equilibrium ax
∗
and λ = 0 then either

ρ(a0) ≤ ρ(a1) ≤ ρ(a2) ≤ ... or ρ(a0) ≥ ρ(a1) ≥ ρ(a2) ≥ .... If G(γ, x∗) > γ

for all γ ∈ (0, γ) for some γ then limτ→∞ ρ(aτ) > γ.

22If there is not continuity in the esteem or intrinsic utility function then Lemma 5 may
not apply. To illustrate let,

E5(∆, ρ) =

 5ρ if ∆ = 0
4ρ if ∆ ≤ ρ
0 if ∆ > ρ

and set I(t − x) = −5(t − x)2 and F (t) = 0.5(1 + t). Consider initial state a0 where
ρ(0, a) = 0.2 and µ(a) = 0. Now, E5(0, ρ) = 1 and E5(0.2, ρ) = 0.8. Calculation yields,
BRt(a) = 0 for all t ∈ [−0.2, 0.2] and BRt(a) = 0.2 for all t ∈ (0.2, 0.6]. Thus ρ(0, a1) =
ρ(0.2, a1) = ρ(−0.2, a1) = 0.2.
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Proof: By Lemma 5, either µ(aτ) = x∗ or µ(aτ) = φ. By Lemma 2, to each τ

we can associate types tLτ and t
H
τ such then a

τ(t) = x∗ for all t ∈ (tLτ , tHτ ) and
aτ(t) 6= x∗ for all other τ . Thus, ρ(aτ) = F (tHτ )− F (tLτ ). Clearly, t

L
τ+1 ≤ tLτ

if and only if tHτ+1 ≥ tHτ . So, if t
L
τ+1 ≤ tLτ then ρ(aτ+1) ≥ ρ(aτ ) implying

that tLτ+2 ≤ tLτ . Iterating the argument gives that t
L
τ 0 ≤ tLτ for all τ

0 > τ .

Thus, t0τ is non-increasing in τ . If tLτ+1 ≥ tLτ then tHτ+1 ≤ tHτ . So, if t
L
τ+1 ≥ tLτ

then ρ(aτ+1) ≤ ρ(aτ) implying that tLτ+2 ≥ tLτ . Iterating the argument gives

that tLτ 0 ≥ tLτ for all τ
0 > τ . Thus, tLτ is non-decreasing in τ . Note that

because −1 ≤ tLτ ≤ x∗ the limτ→∞ tLτ exists. Similarly the limτ→∞ tHτ exists.

Now, by Theorem 1, ρ(aτ ) ≥ G(ρ(aτ−1), x∗). Thus, if ρ (aτ−1) ≤ γ then

ρ (aτ) ≥ G(ρ(aτ−1), x∗) > ρ (aτ−1). Suppose that limτ→∞ ρ(aτ) = ρ∗ ≤ γ.

Let t−∗ = x∗(1−ρ∗)−ρ∗ and t+∗ = x∗(1−ρ∗)+ρ∗. We know thatG(ρ∗, x∗) > ρ∗

but, this implies, for sufficiently large τ , that G(ρ(aτ ), x∗) > ρ∗as desired. ¥

Proof of Corollaries 1 and 2: We make use of the concepts of stochastic
stability and a regular perturbation of a Markov Process derived from the

work of Freidlin and Wentzell (1984) and developed by, amongst others,

Young (1993). We provide here a very informal discussion of the issues and

the reader is advised to consult Young (1993) for a more complete discussion.

The analysis assumes a non-ergodic Markov Process P 0. This process is

perturbed by shocks that occur with probability λ to give an ergodic Markov

Process P λ. Process P λ has a unique stationary distribution θλ where θλa
denotes the cumulative relative frequency of state a. A state a is stochastically

stable if limλ→0 θλa > 0. Thus, for small λ, only stochastically stable states

are observed with a probability significantly different to zero. The process

P 0 gives rise to a set of stationary states ΣS. When λ > 0 transition from

a ∈ ΣS to a0 ∈ ΣS is possible but requires shocks. The stochastic potential

of a stationary state a is the sum, over all stationary states a0 ∈ ΣS, of

the minimum number of shocks the transition from a0 to a would require.

The stochastically stable states (Theorem 4 of Young 1993) are those with

minimum stochastic potential. That is they are the stationary states that
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can be reached with fewest shocks.

Now consider the dynamic of this paper equating states with action pro-

files. For each action x ∈ X we can derive, assuming that λ = 0, the action

profile −→a τ
x that occurs in period τ given initial state a0x where µ(a0x) = x

and ρ(a0x) = ε. Let NC ⊂ X denote the set of actions where x ∈ NC if

and only if there exists a finite τ such that −→a τ
x = a (where a is the non-

conformist equilibrium). If x ∈ NC then no shocks would be required for x

to be replaced as a norm. Let ρ∗x := limτ→∞−→a τ
x. Given a real number ρ let

s(ρ) := {min y ∈ Z : ρ − yε ≤ ε}. Informally, if x /∈ NC is the norm then

s (ρ∗x) is the number of shocks that would need to occur for x to no longer be

the norm. For each x /∈ NC set d(x) :=
©
min d ≥ 1 : s(−→a d

x) = s (ρ∗x)
ª
.23 A

finite d(x) exists. Note that if ρ∗x ≤ ε but x /∈ NC then d(x) = 1. For each

action x /∈ NC let −→a x :=
−→a d(x)

x and let sx := s(−→a x). For each x ∈ NC set

sx = 0. As we discuss in the final paragraph,
−→a x can be seen as a ‘represen-

tative’ of the action profile that will occur in the long run if x is the norm

and there are no shocks; integer sx is the number of shocks that would be

required for x to be replaced as a norm. [To avoid technical complications we

assume that ρ(−→a x) is not divisible by ε. See the end of the proof for further

comment].

One complication of using stochastic stability is that we require a finite

state space. We ‘construct one’ by amending the ‘original’ dynamic. For

each x /∈ NC and any positive integer b ≤ sx let −→a −bx denote a strategy

profile where µ(−→a −bx ) = x and ρ(−→a −bx ) = ρ(−→a x)− bε. We can think of −→a −bx
as the action profile that results if b consecutive shocks occur from action

profile −→a x. In the amended dynamic when λ = 0 we assume for all x /∈ NC

that (1) −→a x is a stationary state and (2) action profile −→a x occurs in period

τ +1 if action profile a0x or
−→a −bx , for any b, occur in period τ . For all x ∈ NC

we assume that (3) action profile a occurs in period τ + 1 if action profile

23If there exists no such d then put d(x) =
©
min d ≥ 1 : s(−→a d

x) = s (ρ∗x)− 1
ª
. This can

occur if limτ→∞−→a τ
x is a multiple of ε but sequence {−→a τ

x} never attains its limit.
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a0x occurs in period τ . Essentially, this condenses the ‘original’ dynamic to a

summarized version where, if x is the norm, we ‘fast forward’ the dynamics

to go immediately to either state −→a x or a and then we ‘truncate’ the dynamic

by assuming that nothing else would change. Partition action space X into

subsets NC,X1, .., Xς such that x ∈ Xy if sx = y. Let XF denote a finite

subset of X that contains at least one action x ∈ Xy or NC for every subset

Xy and NC that has positive measure (according to distribution F ). Set XF

is representative of the number of shocks required to move between norms.

The final step in defining the amended dynamic is to assume that shocks can

only occur at actions x ∈ XF and that if µ(aτ) = x∗ then a shock cannot

occur at x∗.

Given this amended dynamic we can consider finite state space Σ that

contains a0x for all x ∈ XF , a if NC is non-empty and −→a x,
−→a −1x , ...,−→a −sxx if

x ∈ XF\NC. If λ = 0 then the amended dynamic is a deterministic Markov

chain on state space Σ. Denote the transition matrix by P 0. Let ΣS denote

the set of stationary states where −→a x ∈ ΣS for all x ∈ XF\NC and a ∈ ΣS

if NC is non-empty. If λ > 0 then we have an aperiodic and irreducible

Markov Process on state space Σ with transition matrix P λ. The family of

Markov Processes P λ is a regular perturbation of P 0 as defined by Young

(1993).

The transition from −→a x to any other a ∈ ΣS requires sx shocks. The

transition from a to −→a x ∈ ΣS requires one shock. Thus, applying Theorem

4 of Young (1993), if action profile −→a x∗ is stochastically stable then sx∗ =

maxx∈XF sx. If there exists
−→a x such that sx ≥ 2 then a is not stochastically

stable. We now prove Corollaries 1 and 2 given the amended dynamic.

Corollary 1: if f is not uniform then there exists some µ ∈ X and ν > 0 such

that f(x) > 1
2
for all x ∈ (µ−ν, µ+ν). Thus, there exists ν, γ > 0 such that

G(γ, x∗) > γ for all x∗ ∈ (µ− ν, µ + ν) and γ ∈ (0, γ). Applying Lemma 6,
for sufficiently small ε, ρ∗x > 2ε for all x ∈ (µ− ν, µ + ν). Thus there exists

x ∈ Xy for some y ≥ 2. This gives the desired result. If f is uniform then
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G(γ, x∗) = γ and so ρ∗x ≥ ε for all x. This means that NC is the empty set

and Corollary 1 is immediate.

Corollary 2: if there exists x∗ ∈ X such that G(γ, x∗) > γ for all γ then

by Lemma 6 and continuity of f there exists region (x1, x2) 3 x∗ such that

ρ∗x > 1− ε for all x ∈ (x1, x2). Clearly, sx achieves its maximum for such x

proving Corollary 2.

Finally we can comment on why outcomes given the amended dynamic are

consistent with those of the original dynamic. Lemma 6 and the properties of

G allow us to truncate the dynamic at−→a x and fast forward to go immediately

to −→a x. This is because we know, from Lemma 6, that for any state aτx where

µ(aτx) = x and ρ(aτx) < ρ∗x the dynamic will evolve, in the absence of future

shocks, until the number of shocks required to ‘escape an x norm’ is given by

sx = s(−→a x). Thus, we are not altering the likelihood of a transition between

norms. Given the nature of XF , and for the properties of the dynamic of

interest here, assuming that shocks can happen at only a finite set of actions

is also acceptable. This is because XF includes a ‘representative’ from each

Xy and so we are capturing the likelihood of ‘escaping’ from norm x to some

other norm x0 6= x. Also, stochastic stability does not depend on the relative

probabilities of a shock occurring at each state (Young 1993). Thus, we can

take just one representative from each Xy. That positive shocks could occur

twice for the same action (possible in the finite setting) is directly ruled out.

Finally, we are imposing that the initial state belong to Σ. Given, however,

that consecutive shocks can erode any norm and our focus is on long run

dynamics there is no loss in generality in assuming the initial state is a or a0x
for some x.

[If ρ(−→a x) is divisible by ε then we have to do slightly more. This is

because if sx shocks occur then ρ(x, a) = ε and ρ(x0, a) = ε for some x0 6= x

and so there is no norm. This means that a must belong to Σ. It also means

the transition from −→a x to −→a x0 requires sx + 1 shocks. Note, however, that
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the number of shocks required to reach a does not change. Further, our proof

does not use that a /∈ Σ. Thus, the conclusions remain valid.]¥

Proof of examples of distributions: We consider the three examples in
turn. First, f(t) = 1− |t|. Then

F (t) =

(
1
2
+ t+ t2

2
if t ∈ [−1, 0]

1
2
+ t− t2

2
if t ∈ (0, 1].

Fix a µ ≤ 0 and a γ. Suppose that µ− γµ+ γ ≤ 0. Then

G(γ) = (µ− γµ+ γ) +
1

2
(µ− γµ+ γ)2 − (µ− γµ− γ)− 1

2
(µ− γµ− γ)2

= 2γ + 2γµ− 2γ2µ.

Thus G(γ) > γ if γ(1+2µ) > 2γ2µ. We know that γ2µ ≤ 0 and γ(1+2µ) > 0
if µ > −1

2
giving the desired result. If µ− γµ+ γ > 0 then

G(γ) = (µ− γµ+ γ)− 1
2
(µ− γµ+ γ)2 − (µ− γµ− γ)− 1

2
(µ− γµ− γ)2

= 2γ − µ2 + 2γµ2 − γ2µ2 − γ2.

Thus G(γ) > γ if γ > µ2(1 − γ). We know that µ − γµ + γ > 0 so γ >

−µ(1 − γ). Thus we have the desired result if 0 ≥ µ ≥ −1. A symmetric
argument treats µ > 0.

Now, let f(t) = 1
2
− 1

2
t. This implies that

F (t) =
3

4
+

t

2
− t2

4

for all t. Thus,

G(γ) =
1

2
(µ− γµ+ γ)− 1

4
(µ− γµ+ γ)2 − 1

2
(µ− γµ− γ) +

1

4
(µ− γµ− γ)2

= γ − 1
2
γµ+

1

2
γ2µ.
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So, G(γ) > γ if 1
2
γµ > 1

2
µ or µ < 0.

Finally, let f be symmetric around 0with f(t) = 1
4
for t ∈ [0, 0.1); f(t) = 4

for t ∈ [0.1, 0.2]; f(t) = 15
64
(1− t) for t ∈ (0.2, 1]. The full proof is somewhat

tedious but we can sketch the proof for the seemingly most unlikely case of

µ = 0.1. When γ ≤ 1
9
we have µ − γµ + γ ≤ 0.2. So, G(γ) ≥ F (0.1 −

0.1γ + γ) − F (0.1) ≥ 4[0.1 − 0.1γ + γ − 0.1] > γ. For 1
9
≤ γ ≤ 3

11
we have

G(γ) ≥ F (0.2)−F (0.1) = 2
5
> γ. Note that µ−γµ−γ = −0.2 when γ = 3

11
.

So, for γ ≥ 3
11
we have G(γ) ≥ F (0.2)−F (−0.2) = 17

20
. In summary, we have

shown that G(γ) > γ for all 0 < γ < 17
20
. The remaining γ can be treated as

in the first example (f(t) = 1− |t|).¥

Proof of Corollary 5: Applying Lemmas 3 and 4 we know that if Properties
1 and 2 hold, conformity is an equilibrium and ρ(µ, l, a) = ( then µ = BRt(a)

for all agents at location l with type t ∈ [t−( , t+( ] where t+( := (1 − ()µ + (

and t−( := (1− ()µ− (. If Property 1 holds with equality, Property 2 holds

and conformist equilibrium aµ is not strict then µ = BRt(a) only for those

agents at location l with type t ∈ [t−( , t+( ]. The statement of the Corollary is
now trivial.¥
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Figure 1: The range of µ for which conformity can invade in different populations: 
 
1a: f(t) = 1 –|t|.   
 

 
 
1b: f(t) = 0.5(1 – t).  
 

 
 
1c: f is bimodal. 
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Figure 2: Examples of esteem functions. 
 
2a: Discontinuous and non-discriminatory. 
 

 
 
2b: Convex and continuous. 

 
 
2c: Concave and discontinuous 
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Figure 3a: Type and location combinations for agents who conform for Example 5. 
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Figure 3b: Type and location combinations for agents who conform for Example 6. 
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Figure 4: The coexistence of norms: 
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