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Abstract 

Network speeds and bandwidths have improved over time. However, the frequency of network attacks 

and illegal accesses have also increased as the network speeds and bandwidths improved over time. Such 

attacks are capable of compromising the privacy and confidentiality of network resources belonging to 

even the most secure networks. Currently, general-purpose processor based software solutions used for 

detecting network attacks have become inadequate in coping with the current network speeds. Hardware-

based platforms are designed to cope with the rising network speeds measured in several gigabits per 

seconds (Gbps). Such hardware-based platforms are capable of detecting several attacks at once, and a 

good candidate is the Field-programmable Gate Array (FPGA). The FPGA is a hardware platform that 

can be used to perform deep packet inspection of network packet contents at high speed. As such, this 

thesis focused on studying designs that were implemented with Field-programmable Gate Arrays 

(FPGAs). Furthermore, all the FPGA-based designs studied in this thesis have attempted to sustain a 

more steady growth in throughput and throughput efficiency. Throughput efficiency is defined as the 

concurrent throughput of a regular expression matching engine circuit divided by the average number of 

look up tables (LUTs) utilised by each state of the engine‟s automata. The implemented FPGA-based 

design was built upon the concept of equivalence classification. The concept helped to reduce the overall 

table size of the inputs needed to drive the various Nondeterministic Finite Automata (NFA) matching 

engines. Compared with other approaches, the design sustained a throughput of up to 11.48 Gbps, and 

recorded an overall reduction in the number of pattern matching engines required by up to 75%. Also, the 

overall memory required by the design was reduced by about 90% when synthesised on the target FPGA 

platform.  
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 Introduction 1.

 

This chapter briefly introduces the concept of computer networks and the related security issues involved. 

This is closely followed by the fundamentals, problem statement, thesis statement, contributions and 

finally the outline of the research work.  

 Introduction to Computer Network Security and Management 1.1

A computer network is defined to be a set of autonomous, independent computer systems which are 

interconnected so as to permit interactive resource sharing between any pair of systems” (Roberts and 

Wessler 1970). As such, there is a need to monitor how the various interconnected computer systems are 

secured on any given network.  

Computer network security (Rufi 2006, p. 4) refers to the various processes involved in protecting 

computers on a network. The protection is against malicious (dangerous) attacks or intrusions by both 

external and internal users. Also, computer-mediated communication networks have succeeded in linking 

people together, spreading knowledge and connecting institutions together from all over the world. 

Networked societies regard such a network as a computer-supported social network (Wellman 2001, pp. 

2031-2034). The printed media and publications such as newspapers, books, magazines, and posters to 

mention but a few have adapted to website technology. The technology uses a system of interlinked 

hypertext documents referred to as the World Wide Web (WWW or W3).  

Furthermore, network management became necessary. The management process involves a broad 

range of functions that involve the use of tools to administrate, operate, and reliably maintain computer 

network systems. The deployment of security measures have to work in line with organisational measures 

and policies in order to be effective (Gollmann 2011). Also, network management requires the use of a 

variety of software and hardware devices, which aid in the network administration process. The 

management process is concerned with the reliability, efficiency, capacity and capabilities of data transfer 

channels. The process also covers a broad range of research components such as: security, performance 

and reliability. The security component deals with the protection and authorisation of eligible users on the 

network. Although, there may not be a clear distinction between the security-relevant components of a 

given system, the use of specific rules and regulations to check the excesses of legitimate users on the 

network should be encouraged.  

The performance component deals with the ways to identify and fix bottlenecks in the network 

such as network connection and speed. The reliability component ensures an uninterrupted availability of 
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network service, and also ensures that the problems relating to hardware and software malfunctions (or 

crashes) are easily restored.  

To capture the essence of computer security, the process of information asset compromise need to 

be understood as described by Gollmann (2011, p. 34) based on the following: 

a. Confidentiality: This involves the prevention of unauthorised disclosure of information. 

b. Integrity: This involves the prevention of unauthorised modification of information. 

c. Availability: This involves the prevention unauthorised withholding of information or resources. 

Most network security systems rely on layers of protection. The layers are made up of multiple 

components including network monitoring and security applications. The components are usually 

managed by a trained network or system administrator, who implements the security and policy 

requirements. The administrator is normally required to protect the confidentiality and integrity of 

secured information, while ensuring that only legitimate employees are granted adequate access to the 

network resources.  

 Fundamentals 1.2

This thesis is primarily concerned with developing a novel approach that is capable of effectively 

detecting attacks or intrusions flowing into a computer network. Such attacks usually appear in a given 

pattern within a data packet, and require to be stopped in real-time. The design described in this thesis is 

suitable for matching multiple characters and patterns at once. The process of performing the matching 

activity is known as pattern matching. Pattern matching as described by Komendantsky (2012, p. 150), 

involves the problem of deciding whether or not given a word defined over a finite alphabet of characters, 

and a given regular expression belongs to the language expressed by the regular expression. As such, 

given any T* representing the set of all strings defined over an alphabet T, then any „regular expression 

defined over T always describes a regular language‟ (Rayward-Smith 1991). Refer to Section 2.2 for 

more background details on regular expressions. 

Furthermore, any pattern that can be matched by a regular expression can also be matched by an 

automaton. Unlike pattern recognition which performs a likelihood of matching inputs, pattern matching 

is expected to generate an exact match. Parallel pattern matching involves the process of scanning 

multiple flows of characters with the aim of finding exact elements of a given pattern. Issues concerning 

network intrusions are security concerns that require urgent and proper attention. Intrusions are more 

commonly referred to as attacks or anomalies. Such attacks are actions or attempts aimed at 

compromising the confidentiality, integrity and availability of network resources.  

Also, intrusions are more difficult to define in terms of their behaviour or actions, but could be 

easily expressed in terms of their effect on a given automaton. As such, intrusion detection can be 

regarded as a method by which intrusions from outside or misuse from within an organisation‟s network 

are gathered and analysed using an intrusion detection system (IDS). The detection system is aimed at 

stopping any possible security breaches from incoming or existing attacks. The primary objective of this 

thesis is to create a design that frames the intrusion detection problem as a pattern matching problem. The 

problem is solved using efficient algorithms to implement the matching processes (refer to Section 2.3 for 

more on IDSs). Furthermore, the entire research is aimed at developing a fast, more efficient and less 

complex design for performing pattern matching.  

http://www.webopedia.com/TERM/S/system_administrator.html
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The choice of automata for the implementation of the pattern matching design depends on the 

appropriate choice of polynomial ( ) algorithm for deciding the basic problem. A polynomial time 

algorithm is any algorithm that runs in polynomial time O(  ), where k some constant independent of the 

problem size n (Mount 2003, p. 57). Consequently,    problems could be solved using a deterministic 

or nondeterministic Turing Machine (TM) (Hopcroft, Motwani and Ullman 2001, p. 414) respectively. 

Such    problems are set of all decision problems (problems with Boolean outputs e.g. „yes‟ or „no‟) 

that can be verified in polynomial time (Mount 2003, p. 59). The design automata in this thesis runs in 

polynomial time O(  m), with k being any positive integer, and n being the length of the regular 

expression. The value m is the number of regular expressions combined together to create the compound 

automata. Also, the memory requirement of the design runs in time O(nm). The choice of automata used 

in this thesis is based on the class of    problems under consideration. The class of such problems can 

best be solved using nondeterministic TMs as opposed to the deterministic TMs (Hopcroft, Motwani and 

Ullman 2001, p. 414).   

A number of optimisation strategies are employed in this thesis in order to generate a more 

efficient automata-based design. Such strategies are usually implemented as separate approaches, but this 

thesis combined multiple strategies into a single design. The design is then used for creating compact and 

efficient pattern matching systems that operate in a parallel configuration. Such optimisation strategies 

are discussed in Section 3.2. The idea is to generate a memory efficient and fast nondeterministic finite 

automata (NFA) based matching engines. The automata are finally implemented in a target Field 

Programmable Gate Arrays (FPGA) platform to perform hardware-based regular expression matching. 

Section 3.2.2f dwells more specifically on the concept of equivalence classification used to develop the 

approach in this thesis. 

 An analysis of the various related approaches is performed in Chapter 4 to measure how each 

approach compares to the other. After introducing the thesis approach in Chapter 3, the analysed results in 

Chapter 4 was collated and combined with the results of experiments obtained in the thesis in Chapter 6. 

Afterwards, a comprehensive analysis was performed again and further results were obtained. 

 Motivation 1.3

As network bandwidth has continued to steadily and rapidly increase, so have the frequency of network 

attacks. Network bandwidth is considered to be a measurement of the bit rate that a network interface 

supports, and is usually expressed in Bits/sec, Kilobits/sec (Kbps), Megabits/sec (Mbps), and Gigabits/sec 

(Gbps) etc. 

Data packets need to be processed and as such packet processing has become necessary. 

Furthermore, most patterns contained in data packets now appear in form of complex regular expression 

patterns which are increasingly difficult to define and detect. Also, string matching is no longer efficient 

in defining and detecting such complex patterns. Such patterns are mostly contained in packets of data 

that flow through a network system. Furthermore, the required processing flexibility and fast processing 

power could best be attained by utilising reconfigurable hardware devices such as FPGAs. Current 

FPGAs exploit specialised circuitry and parallelism, and have the ability to process multiple bytes or 

characters per clock cycle.  
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Currently, many approaches have been developed and implemented to deal with the problem of 

network intrusions using Network Intrusion Detection Systems (NIDS). The use of regular expression 

pattern matching as a viable alternative and solution to string pattern matching has become necessary. 

This is because regular expression matching systems have the ability to effectively scan a packet payload 

in order to detect suspicious contents. A packet payload is the data in the body of the packet block during 

a data transmission process. However, regular expressions are often a computational burden in 

applications such as NIDS, which rely heavily on the regular expressions. The computational burden is 

high, because matching against regular expression consumes a lot of computation time, which is in 

O(  m), with k being any positive integer, and n being the length of the regular expression. The value m 

is the number of regular expressions combined together to create the compound automata. 

The key challenge facing the development of an efficient regular expression pattern matching 

design lies in the ability to take full advantage of the processing speed and fine-grained parallelism 

provided by current reconfigurable hardware platforms such as FPGAs. The speed and parallelism is the 

fundamental advantage of FPGAs over microprocessor-based regular expression matching designs. 

Almost all the previous approaches have been trying to deal with issues such as: the increased clock 

operating frequency (or simply the design speed of matching measured in MHz) at a much reduced logic 

circuit cost. The logic circuit cost relates to the resources utilised within a confined FPGA logic space. 

Other issues include reduction in the latency and the number of logic elements utilised by the states of a 

given automata. Latency can be described as the delay experienced during a certain processing stage, such 

as the latency experienced in a parallel input/output (I/O) system during disk access operations. The issue 

of power consumption could also be efficiently dealt with by applying various optimisation strategies 

used for the effective hardware implementation. 

However, the primary concern in this thesis is to provide a good balance between obtaining a 

higher throughput, which is the continuous rate at which an input data stream is processed (Brodie, Taylor 

and Cytron 2006), and a higher throughput efficiency (Yang, Jiang and Prasanna 2008). The throughput 

efficiency determines the efficient use of logic resources by every state of a given FPGA-based automata 

such as the use of look up tables (LUTs) (refer to Section 2.6 for more details on LUTs). Furthermore, 

computing the throughput efficiency is important. This is because the throughput of a regular expression 

matching circuit alone is not enough to justify the length and complexity of the regular expressions 

implemented (Yang and Prasanna 2012). Also, the LUT efficiency alone does not account for the clock 

frequency of the matching circuit. This explains why computing the throughput efficiency is important in 

determining the efficiency of the designs implemented in this thesis. Refer to Section 6.2.3 for more on 

the computation of the throughput efficiency.  

 Thesis Statement 1.4

This thesis implemented a design that performs regular expression pattern matching using FPGAs. The 

approach addresses the problem of creating more compact and efficient VHSIC Hardware Description 

Language (VHDL) designs files. The files contain the memory and table-synthesis modules, which are 

attached to the Equivalence Class Descriptor (ECD) NFA-based automata simply referred to as ECD-

NFA. The ECD-NFA design was further improved by developing the optimised version of it called an 

Equivalence Class Direct Table-Synthesis NFA referred to as ECDRTS-NFA. The ECDRTS-NFA 
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completely discards the need for decoder circuits, together with the associated shift registers, multiplexers 

and other related logic circuit components. Chapter 5 discusses the full design and implementation of the 

approach. Furthermore, the approach implemented in this thesis incorporated the basic functionalities of a 

typical Snort NIDS. Snort was originally released in 1998 by Sourcefire founder, Martin Roesch (Roesch 

1999, p. 229). Typically, a Snort NIDS is based on rules and those rules are also based on intruder 

signatures. Section 2.2.1 discusses more about the structure of a Snort rule. 

Perhaps one of the most important aspects of this thesis which required attention was how to 

potentially reduce the large state transition table size of the ECDs. Problem of large input table size is an 

issue with most Deterministic Finite Automata (DFA) and other poorly designed NFA approaches. This 

thesis succeeded in reducing the hardware input table size by synthesising the table into a piece of logic 

using the Xilinx Synthesis Technology (XST) tool (Xilinx ISE 2012). The XST VHDL synthesis tool is 

bundled in the Xilinx Integrated Synthesis Environment (ISE) FPGA Project Navigator, version 14.4 

design suites. The synthesised table is then used to perform the necessary table lookup operations, which 

could be inefficient if not carefully designed. To improve the design, the table lookup operation function 

avoided the use of complex nested loop operations (refer to Section 5.3.3 for more details). This is simply 

because complex nested lookup operations are not supported by FPGAs.  

The design also addresses the current trend in pattern matching called parallel multi-character 

(Singapura et al. 2015) and multi-pattern matching. These types of pattern matching systems involve the 

creation of many blocks of NFA-based automata that perform regular expression matching in parallel. 

These blocks are called regular expression matching engines (or simply referred to as REMEs throughout 

this thesis). REMEs are usually built for a single pattern matching engine (Lin et al. 2006; Hieu et al. 

2011) in most related approaches. The design implemented in this thesis combined several patterns of 

varying degrees of complexity together within the same REME block. More importantly, the concept 

placed four sub-REMEs within every REME block, which were then arranged them in a parallel 

configuration. The design approach is fully explained Chapter 5. 

Lastly, the approach described in this thesis ensures that the throughput of the design only 

decreases steadily with every increase in the REME design complexity. The efficiency of the throughput 

decreases steadily too, especially in terms of the how much memory it consumes. The time it takes to 

synthesise, place and route the entire design on hardware is also reduced to the barest minimal. The 

performance of the overall throughput and throughput efficiency of the various REME designs in this 

thesis forms the basis for the statistical research hypothesis stated in Section 1.6.  

 Research Objective 1.5

The summary of the research objective is to determine whether or not the objective of creating scalable 

REME designs is achievable. The idea is to ensure that the REME designs only steadily decline in 

throughput and throughput efficiency. The rate at which this happens is to be established based on the 

result of experiments. Each of the studied approaches in this thesis that tried to scale up their REME 

designs also reported declines in their design throughput and throughput efficiency. Also, only a few of 

the directly related LUT-based approaches reported the number of LUTs utilised by their designs. A LUT 

is a collection of logic gates (National Instruments 2011) hard-wired on the FPGA. LUTs are used to 

implement function generators in CLBs (Xilinx 2012a). However, the number of LUTs utilised by each 

state of automata in a given sub-REME design automata is central to the computation of the throughput 
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efficiency of the design. Four sub-REME matching blocks make up a REME in this thesis. Lastly, the 

focus in this thesis is mainly on the LUT-based REME design approaches as discussed in Chapter 6. 

 Statistical Research Hypothesis 1.6

The experimental hypothesis of this thesis seeks to address the objective mentioned in Section 1.5. The 

hypothesis was then tested for significance in Section 6.3 of Chapter 6 and is stated thus: 

a. Null Hypothesis (HO): Increasing the number of patterns matched by each sub-REME has no 

effect on the throughput and the number of LUTs utilised by each sub-REME in the overall 

REME. 

b. Alternative Hypothesis (HA): Increasing the number of patterns matched by each sub-REME 

has an effect on the throughput and the number of LUTs utilised by each sub-REME in the 

overall REME. 

 Contributions 1.7

The details of the contributions made by this thesis are as discussed in Section 7. However, this section 

highlights the summaries of the contributions made as follows: 

i. The thesis introduced a novel ECD-NFA two-phased approach (refer to Section 5.4 for more 

details) with its optimised version called the ECDRTS-NFA. The approach is used to generate 

efficient NFAs for the various REMEs.  

ii. The process involved in performing (i) uniquely applies to NFAs only. This is because with 

NFAs, there is not necessarily a single current state that is reached anymore. Furthermore, a 

single ECD input can activate several transitions and states which is not applicable to DFAs.  

iii. All the inputs that do not trigger transitions were properly classified. This was achieved by 

grouping the inputs as a single ECD descriptor to be looked up. Also, all self and empty string 

transitions were also eliminated in the process, thereby further reducing memory requirement. 

iv. A minimised and compressed n-dimensional table of compressed ECDs (Gupta and McKeown 

1999, p. 150) was created. The table is suitable for a 4-byte input match.  

v. A simple algorithm was implemented to synthesise the table of ECDs generated in (iv) into a 

simple piece of logic for look up operations. This helped to cut down a lot of logic resources 

required such as: shift registers and decoders.  

vi. A very simple and less complex toolchain for implementing simple, fast and area efficient NFA-

based REMEs was implemented. The process was divided into the first phase, which is the 

software implementation phase, and the second phase which is the hardware implementation. 

vii. The design comprehensively combines multiple optimisation strategies discussed in Chapter 3. 

The design uses equivalence classification concept to create compact, memory efficient and fast 

NFAs for the hardware implementation in the second phase. The design also matches multiple 

characters by consuming four characters at once. The approach is designed to increase the speed 

of matching characters. 

viii. An algorithm was implemented to build nested sub-REME (Yang and Prasanna 2008; Yang and 

Prasanna 2012) blocks into each REME mentioned in (vi). The blocks are then arranged in 

parallel to execute multiple patterns in a single clock cycle.  
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ix. Using optimised the ECDRTS-NFA, a unique form of block RAM (BRAM) compression was 

utilised for the ECDs generated in the software design phase. The BRAMs supply 7-bit ECDs to 

the various matching units. This is in contrast to the BRAM centralised character matching 

approach (Xilinx 2011; Yang, Jiang and Prasanna 2008; Yang and Prasanna 2009; Ganegedara, 

Yang and Prasanna 2010; Hieu et al. 2011; Long et al. 2011) implemented for character 

matching. 

The main purpose of this thesis was to create an all-round design that combined numerous design 

strategies into a single approach. The design utilised the concept of equivalence classification for an 

NFA-based design, previously known to work with DFAs only as described by Brodie, Taylor and Cytron 

(2006, p. 194) and Tripp (2006). The concept was used to implement a variation of the DFA-based 

approach that now works with NFAs only. The detailed design process is found in Chapter 5, while the 

detailed analysis of the design performance is found in Chapter 6. 

 Outline 1.8

Chapter 1 briefly discusses the concept of computer network security and management. It also highlights 

some of the reasons that prompted research in the area of regular expression pattern matching for 

implementation in current NIDSs. The reasons leading to the novel approach described in the chapter is 

briefly introduced, while the various contributions made in thesis is highlighted. The chapter concludes 

with the statement of the research hypothesis. 

Chapter 2 gives brief background knowledge behind regular expression, and examines the issues 

relating to security breaches in current NIDS. The security threats and weaknesses used to exploit most 

computer networks are discussed. The chapter further elaborates on the basic concepts concerning Finite 

Automata (FAs). Some existing hardware platforms are briefly introduced, with a major focus on FPGAs. 

Hardware description languages (HDLs) were also briefly introduced, with a primary focus on VHDL, 

which is the HDL of choice in this thesis. 

Chapter 3 discusses the related approaches used in designing efficient regular expression pattern 

matching engines. The approaches are explained and closely examined in order to understand the 

strategies used in their implementation. The idea is to explore and relate them to the initial novel ECD-

NFA approach, which is later optimised as ECDRTS-NFA as described in Section 1.4.  

Chapter 4 relates to Chapter 3, but mainly analyses the various results obtained from all the related 

approaches discussed in Chapter 3. The analysis centres on the way each approach compares to the rest. 

The comparison is mainly concerned with the number of bytes consumed per clock cycle, as well as the 

density of the design. The density reflects the amount of logic resources utilised per state of a given 

automata. The throughput generated by the separate approaches and the number of patterns matched also 

forms another basis for comparison. 

  Chapter 5 describes in detail the FPGA-based approach described in this thesis. The approach in 

the chapter describes the novel two-phased design and toolchain approach. In the toolchain, the first phase 

describes the software based modular block module that is used to automatically generate the ECDRTS-

NFA VHDL codes necessary for interfacing with the second phase. The second phase of the approach 

describes the hardware-based modular block module, which is made ready for hardware synthesis, 

mapping, placement, and routing.  
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Chapter 6 analyses and explains the results obtained from the design described in Chapter 5. An 

evaluation of the various results obtained for the 4-byte input matching REME engines is presented. The 

chapter analyses the results obtained in this thesis against those obtained in Chapter 4. The analysis aims 

to establish the performance of the thesis design, while identifying its limitations too.   

Chapter 7 outlines the summary of the various contributions made by this thesis approach, and the 

conclusions drawn from it. The chapter also outlines the possible future work required to build upon the 

current design. A recommendation for improving some of the related approaches is highlighted. The 

chapter ends with a brief evaluation and concluding thoughts concerning the future of high-speed NIDs.  

A brief background of the study in this thesis is discussed in Chapter 2. Emphasis is on the basic 

concepts relating to regular expressions and how each relates to the design automata which are NFAs. 

The hardware platform of choice in this thesis, as well as the hardware description language used for 

implementing the various REMEs is further discussed in Chapter 2.   
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 Background 2.

 

Chapter 2 discusses the background knowledge of strings, regular expression and pattern matching. It also 

discusses the issues affecting network security and its accompanied threats and weaknesses. This chapter 

also discusses the hardware technologies used for pattern matching and the associated finite state 

machines. The hardware description language used to implement the various REMEs is also discussed in 

this chapter.  

 Introduction 2.1

The regular expression pattern matching engines described in this thesis are designed and implemented 

for FPGA platforms. This chapter starts by explaining the basic concepts relating to regular expressions. 

Section 2.2.1 illustrates the format in which regular expressions exist within a given Snort rule, which are 

usually in form of Perl compatible regular expressions (PCREs). Afterwards, using some basic 

operations, a description of simple NFAs constructed from regular expressions is discussed. The basic 

operations allow for the construction of more complex NFAs. The regular expressions described in this 

chapter appear in most of the rules found in several NIDS. The rules constitute the patterns of attacks 

present in most computer networks. The chapter further discusses what constitutes an NIDS and the 

security issues involved. The Hardware Description Language (HDL), basic FPGA logic circuits and the 

synthesis process involved is also discussed. 

 Regular Expression  2.2

To fully understand the concept behind regular expression pattern matching and the various approaches 

that implement them, there is a need to first understand what constitutes regular expressions. This Section 

summarises the concepts of alphabets, strings, and regular languages which constitutes regular 

expressions.  

An alphabet is a finite non-empty set of symbols. Conventionally, the symbol   is often used to 

represent an alphabet (Hopcroft, Motwani and Ullman 2001, pp. 28-29). Examples of an alphabet include: 

i.    = {0,1}, which is a binary alphabet. 

ii.    = {a,b,….,z},  which is a set of all lower-case letters. 

iii. A set of all American Standard Code for Information Interchange (ASCII) characters, which are 

printable. 
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A string (or word) is a finite sequence of symbols chosen from some alphabet  . In a binary alphabet such 

as    = {0,1}, a string of binary numbers could be formed, such as 1110001. An empty string is denoted 

by   [which] may be chosen from any alphabet whatsoever. A standard notation for determining the 

length of a given string x is given by | |. For instance: |   | = 3, | | = 1, and | | = 0. Furthermore, the 

notation defined as  t
 is normally defined to be the set of all strings of length t, with each having its 

symbol in the alphabet. Thus,  0
 = { }, regardless of what   represents. If   = {a,b} then   1

 = {a,b} and  

 2
 = {aa, ab, ba, bb}.While   and  1

 may contain the same elements,   is an alphabet while  1
 is a set of 

strings with length of 1 each. The set of all strings defined over an alphabet is denoted by   *
. Thus, given 

that   
= {x,y},  *  

= {   , x, y, xy, yx, xx, yy, ….} was obtained.  * 
could still be expressed further as:  *

 = 

 0
    1    2

   ......  

A language is a finite set of all strings chosen from some  *
. For the sake of clarity, if   is an 

alphabet, and L⊆   *
, then L is considered to be a language over  . It is also important to note that: 

i.  * 
is a language for any alphabet  . 

ii. Ø is the empty language over any alphabet  . 

iii. { } is the language composed only of empty strings.  

However, while Ø have no strings at all, { } stands for a single string of length 0. Thus, Ø ≠ { }, Ø
*
 = 

{   and Ø
0
 = {  , Øi

  , i   1 is empty because no strings can be selected form an empty set (Hopcroft, 

Motwani and Ullman 2001, p. 85). There are three basic operations that could be performed on a 

language, namely: union, concatenation and Kleene closure. The closure of a given language L is denoted 

L
*
, represents a set of strings that can be formed by taking any possible number of strings from L.  The 

term “Kleene closure” is attributed to S.C Kleene who is the originator of the regular expression notation 

and the closure operator (
*
). Given any two languages L and M, such that L = {aab, ba, bbb}, and M = 

{   aab}, then Hopcroft, Motwani and Ullman (2001, pp. 85-86) describe the following operations as:  

i. L M = {   ba, aab,  bbb}, which represents the union of L and M. 

ii. LM = {aab, ba, bbb, aabaab, baaab, bbbaab}, which represents the concatenation of L and M. 

iii. M
*
 = {    aab, aabaab, aabaabaab…}, which represents the Kleene closure of M. 

A finite language is considered to be a regular language, and the following definitions hold for a regular 

language: 

i. If a language is empty, it is considered to be a regular language. Thus, Ø is a regular language. 

ii. If a   ∑, then the language {   is a regular language. 

iii. If L and M are regular languages, then L M (union), LM (concatenation), and M
*
 (Kleene 

closure) are all regular languages too. 

A regular expression [can be used to] define exactly the same regular languages that various forms of the 

automata describe (Hopcroft, Motwani and Ullman 2001, p. 83). Section 2.2 discusses more on such 

automata. Furthermore, given that any T* represents the set of all strings defined over the alphabet T, 

„then any regular expression defined over T always describes a regular language‟ (Rayward-Smith 1991). 

Also, a regular expression (which is more commonly referred to as a „regexp‟) is a regular language 

constructed with character classes over a fixed alphabet (Yang, Jiang and Prasanna 2008). Regexps are 

commonly used to serve as the input language for a lot of systems concerned with string processing. In 

addition to the three basic operations carried out on a regular language, namely: union, concatenation, and 

Kleene closure; there are other common operations. Algebra allows for the construction of some form of 
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simple expressions, by repeatedly applying a set of arithmetic operators such as: + (plus) and * 

(multiplication) to previously constructed expressions. Hopcroft, Motwani and Ullman (2001, pp. 86-87) 

discussed the inductive steps involved in regexps operations as follows:  

1. If a and b are regexps, then a + b is also a regexp that denotes the union of L( ) and L( ), 

expressed as L(  +  ) =  L( )   L( ). 

2. If a and b are regexps, then ab is also a regexp that denotes the concatenation of L( ) and L( ), 

expressed as L(  ) =  L( ) L( ). 

3. If a is a regexps, then a
*
 is also a regexp that denotes the Kleene closure of L(a) expressed as 

L(a
*
) =  (L( ))

*
. 

4. If a is a regexps, then (a) which is a parenthesised a, is also a regexp that denotes the same 

language as a, expressed as (L( )) = L( ). 

In terms of operator precedence, the Kleene closure operator has the highest precedence, followed by the 

concatenation operator and finally the union operator. A good example of a regular expression is given 

thus: “/(m|n)*(pq)/”. The character “|” is called a pipe. When it is grouped in a regexp, it allows 

alternation of either parts of the regexp. For instance in (m|n), either “m” or “n” can be matched at a time. 

The Kleene closure operator in (m|n)* means that zero or more strings of either m or n is matched. Lastly 

from the regexp example “/(m|n)*(pq)/”, zero or more strings of either m or n is matched, before a single 

p followed by a single q is matched.  

It is importance to understand the general concepts behind regexps, before looking at how it 

applies to automata such as DFAs and NFAs. However, since the rules used for inspecting data packets 

flowing through a network contain harmful contents usually in form of regexps, there is a need to 

examine such rules. Section 2.2.1 discusses more on the structure of a typical Snort rule.  

2.2.1 Snort Rule Description 

Data is constantly flowing through a computer network in form of packets at any given time, creating 

traffic. Network traffic refers to the amount of data passing through such a network in a particular period 

of time. Contained in each of the data packets trafficking through the network are packet payloads. Each 

packet payload contains contents that may be harmful to a network system. The design in this thesis 

examines the packet payloads for suspicious contents that appear in the form of regexp patterns. The 

patterns are extracted from the Snort rules databases and closely examined. 

Most intruder activities on a given network have similar signatures to those of viruses (refer to 

Section 2.4.1 for more on viruses). Also, the Snort rules considered in this thesis were extracted from the 

Sourcefire community rules v.2.0 (Rehman 2003; Snort 2013). The rules are created based on the 

captured information regarding the signatures of the intrusions. Furthermore, the existing databases of 

known vulnerabilities are constantly exploited by intruders. However, the attack signatures that are 

already known are used to determine when an intruder is attempting to exploit the databases of the known 

signatures.  

Typically, Snort rules are composed of two logical parts namely: the rule headers and the rule 

options. The rule header and its options make up the structure of any given Snort rule as seen in Table 

2.1.The rule header determines the action to be taken by a rule, as well as the criteria used to match a rule 

against a data packet. Alert messages and other information pertaining to that part of a packet used to 
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generate alert messages are contained in the options part of the Snort rule. The focus of Section 2.2.1 is to 

describe the PCRE patterns contained in the content part of the rule options. This is because this thesis is 

more concerned with automating the regular expressions found within each packet payload. The 

automaton is then used to perform a packet inspection of harmful data packets flowing through a network. 

Table 2.1 shows the general structure of a Snort rule, which is further described with an illustration of the 

Snort rule presented in Table 2.3. Afterwards, the keyword “pcre”, which is the focus of this section, is 

explained separately in more detail. 

Table 2.1: The general structure of a Snort rule (Rehman 2003, p. 79). 

Rule Header Rule Options 

For illustrative purpose, consider the rule header and its options in Table 2.2. The rule was selected from 

the community service rule database provided by Sourcefire Inc. (Snort 2013).  

Table 2.2: A typical Snort community service rule (Snort 2013). 

 A typical Snort Rule 

Sample 

Rule 

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 

(msg:"PROTOCOL-FTP SITE EXEC attempt";flow:to_server, 

established; content: "SITE"; nocase; content: "EXEC"; distance: 0; 

nocase; pcre:"/^SITE\s+EXEC/smi"; metadata: ruleset community, 

service ftp; reference: bugtraq,2241; reference: cve, 1999-0080;  

reference: cve,1999-0955; classtype: bad-unknown; sid: 361; rev: 22;) 

 

Furthermore, the summary of the keywords found in the rule header of the Snort rule in Table 2.2 is 

presented in Table 2.3. 

Table 2.3: Table of Snort rule header (Snort 2013; Sourcefire 2013). 

Rule Header 

Keywords 

Description  

Alert An alert is the first part of the Snort rule and it is generated 

and sent to a file or console whenever a rule condition is 

met. The alert rule action is one of the predefined actions 

within the Snort rules, and can be user-defined 

Protocol: tcp The Transfer Control Protocol (TCP) is one of the protocols 

found in the rule header. The TCP keyword checks to ensure 

that the receiving host is prepared to receive TCP-type data 

packets. 

Source address: 

$EXTERNAL_NET 

The source address variable is the $EXTERNAL_NET, and 

it defines the external and untrusted network addresses that 

connects to the home network. 

Destination address: 

$HOME_NET 

$HOME_NET is the destination address variable. It defines 

the home network addresses to be protected against. 

Any The keyword “any” following the $EXTERNAL_NET or 

$HOME_NET variable applies the rule on all packets 

irrespective of the port number. 

21 The port number 21 after the $HOME_NET variable 

represents the port for all FTP-type packets. 

 

The other keywords found in rule options of the Snort rule in Table 2.2 are described in Table 2.4.  
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Table 2.4: Table of Snort rule options (Snort 2013; Sourcefire 2013). 

Rule Options 

Keywords 

Description 

msg The “msg” keyword is used to add text string to logs or alerts, and 

the messages that follow the keyword are placed within double 

quotation marks. In the message “PROTOCOL-FTP SITE EXEC 

attempt” for instance, the File Transfer Protocol (FTP) server 

command executes commands on an FTP server. “EXEC” is the 

argument to the FTP command name “SITE”. 

Direction 

operator: 

 -> or <- 

The direction operator “->” shows that the address variable 

$EXTERNAL_NET and the port number “any” on the left hand 

side are the source, while the address variable $HOME_NET and 

the FTP port number 21 on the right hand side are the destination. 

flow Options can be used with the “flow” keyword to determine the 

direction of packet flow. The option “to_server, established;” 

establishes a TCP session. The keyword signifies a response when 

applying a rule during a TCP session.  

content This is a significant keyword, because of its ability to locate a 

data pattern within a data packet. The keyword is used to identify 

intrusive signature similar to malware such as viruses. For 

instance, the Snort rule detects the pattern “SITE” in the TCP 

packets leaving the address variable $EXTERNAL_NET and 

entering the home network address variable $HOME_NET to port 

21 the port for FTP-type packets. 

nocase Is a keyword that is used in conjunction with the keyword 

“content”. For instance. nocase; content: "EXEC", allows for a 

case insensitive search of the content pattern “EXEC” . The 

keyword “nocase” has no argument of its own. 

distance The keyword “distance” means that the next match starts relative 

to the end of a previously searched pattern when searching for a 

specific pattern. For instance in the command “SITE EXEC”, the 

number of spaces to be ignored between “SITE” and “EXEC” is 

determined by the distance keyword of value 0. The distance of 

value 0 means start immediately after the previous pattern is 

matched. The allowable values for the keyword ranges from - 

65535 to 65535. 

metadata The “metadata” tag allows extra information concerning a rule to 

be embedded by rule writer based on a key-value format. For 

instance, “metadata: ruleset community, service ftp;” is a free-

form metadata having multiple keys: ruleset and service, as well 

having multiple values:  community and FTP. 

reference The keyword “reference” allows references to external attack 

identification systems to be included within the given Snort rule, 

including unique Universal Resource Locators (URLs). For 

instance, “reference: cve,1999-0955;” has a reference id system of 

type “cve” which is a URL prefix to the URL:  

http://cve.mitre.org/cgi-bin/cvename.cgi?name=, and reference id 

is given as: 1999-0955. 

classtype Snort rules use the “classtype” keyword for classifying attacks as 

part of a general attack class. This helps to organise the event data 

which Snort provides. For instance, “classtype: bad-unknown;” is 

a potentially bad traffic with medium priority. 

 

http://cve.mitre.org/cgi-bin/cvename.cgi?name
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 Table 2.4: (cont’d). 

Rule Options 

Keywords 

Description 

sid and rev The keyword “sid” is a rule option that is usually used with the 

“rev” keyword. The “sid” keyword provides information that is 

used to uniquely identify Snort rules, while the “rev” keyword 

identifies the revisions of unique Snort rules. For instance, “sid: 

361; rev: 22;” indicates that 361 is the unique id of the Snort rule 

and the revision is number 22. 

 

The only rule option that was left out of the sample Snort rule shown in Table 2.2 is the “pcre” keyword. 

All the other Snort rule options have been discussed in Table 2.3 and continued in Table 2.4. The “pcre” 

allows PCRE rules to be written more efficiently. The PCRE has a library of functions suitable for 

implementing regexps pattern matching. As such, considering the sample Snort rule option pcre: 

"/^SITE\s+EXEC/smi", it can be clearly seen that its argument is a regexp. The description of the regexp 

simply means: match the command pattern “SITE” at the very beginning of the match string, followed by 

a single or multiple spaces before the “EXEC” command is matched. The pattern modifiers “smi” imply 

the following: 

a. „i‟: The modifier will make all the matched characters in the pattern case-insensitive, whenever it 

is set.  

b. „s‟: If set, will make a dot metacharacter to match all the characters present in the pattern including 

newlines. 

c. „m‟: When set, ^ (caret) and $ (dollar) matches at the beginning and ending of the string. By 

default, the string is treated as a big line of characters. 

Furthermore, pcre evaluation can be a computational burden especially when every data packet flowing 

through the network has to be evaluated (Sourcefire 2013). Handing over such a computational burden to 

a separate pattern matching system such as the one implemented in this thesis is helpful. However, there 

is still a need to understand how the regexps extracted from the various Snort rules discussed in Section 

2.2.1 are converted to automata. Section 2.3 discusses more on what constitutes the Finite Automata (FA) 

as well as the basis and inductive steps involved in a regexp-to-NFA conversion, particularly an  -NFA. 

 Finite Automata 2.3

A Finite Automaton (FA) is considered to be an abstract machine, which can be in one or several states at 

any given time. Hopcroft, Motwani and Ullman (2001) describe a finite automaton as one that comprises 

of a set of states, having a control which moves from one state to another in response to external inputs. 

Such a control could be “deterministic”, meaning that a machine can only be in one state at any given 

time. If the machine has to be in several states at a given time, then the machine‟s control is 

“nondeterministic”. There two basic types of FAs are DFAs and NFAs. 

A DFA is a Finite State Machine (FSM) that accepts or rejects a finite string of characters or 

symbols. A DFA can be implemented in both hardware and software. Hopcroft, Motwani and Ullman 

(2001) describe the formulation for a given DFA say A as follows: 
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Given that A = (X,  ,    q0, F) a 5-tuple, then:     

1. X is a finite set of states. 

2. ∑ is a finite set of input symbols. 

3. A transition function given as:           X. 

4. Start state q0   X. 

5. A set F ⊆ X of accepting states. 

Given that a DFA “A = (Q,  ,    q0, F), the language is denoted by L(A) and is defined by L(A) = {w |   

(qo, w) is in F}” (Hopcroft, Motwani and Ullman 2001, p.52). The language of the DFA A consists of the 

set of strings w which take the start state qo to one of the accepting states in F. The symbol   is the 

transition function. Furthermore, “if L is L(A) for some DFA A, then…[we could say that] L is a regular 

language” (Hopcroft, Motwani and Ullman 2001, p. 52). 

The DFA can be described using a directed graph. Each vertex of the graph represents a state, and 

edges represent possible transitions. The DFA is an FA which accepts or rejects finite strings of symbols. 

For each given input, there is one and only one state to which the DFA can make a transition from its 

current. 

The NFA like the DFA is also described using a directed graph, and is considered to be a special 

kind of FA that accepts or rejects finite strings of symbols too. From each state and given input, the NFA 

can jump into several possible next states, when an input string of finite length is read by it. However, 

despite the added flexibility of an NFA over a DFA, an NFA cannot recognise a language that is not 

already recognised by a DFA. The proof that a DFA can do what an NFA does involves a special process 

of construction called the subset construction. The subset construction process constructs all subsets of 

the states of the NFA. Generally, most of the proofs concerning automata require constructing one 

automaton from another. 

The smallest DFA in worst case can have up to 2
n
 states, while the smallest NFA has just n states 

for the same language recognised by the DFA (Hopcroft, Motwani and Ullman (2001, p. 61). The initial 

state of the NFA is designated by a start state that has an inward arrow attached to it. Without a source 

vertex, the machine begins to process strings from the state called the initial state, by reading the first 

symbol of the input string. Based on its value, it makes the appropriate transitions to the next states. 

States shown with a double boundary are called accepting states, and there can be many of these in an 

NFA. The remaining states that are neither the start nor accepting states are the intermediary states.  

The formulation for a given NFA A is the same as that of a DFA, except for the transition function 

definition. The transition function for a given NFA A = (X,  ,    q0, F) is a 5-tuple such that its transition 

function is:           { }  pow(X). Note that pow (X) denotes the power set of X, which contains the 

set of all subsets of X, including the empty set Ø, and X itself. Also, if an NFA A = (Q,  ,    q0, F), then 

L(A) = {w|  (qo, w)   F   Ø. It then follows that the L(A) is the set of strings w in  *
 such that  (qo, w) 

contains at least one accepting (Hopcroft, Motwani and Ullman 2001, p. 59). 

Moreover, to successfully convert regexps to automata, NFAs with  -transitions which Hopcroft, 

Motwani and Ullman (2001, p. 72) calls an  -NFA, were implemented in this thesis. The idea behind the 

 -transition is that it allows an automaton to make transitions on the empty string  . However, the 

http://en.wikipedia.org/wiki/Subset
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definition of acceptance of strings and languages by an  -NFA is based on the formal definition of an 

extended transition function for the automata. By definition, a state q is  -closed by following all the 

transitions leaving state q with the label    On reaching every state by following  , the  -transitions 

leaving those states are also followed until all the states reachable from state q along the paths labelled   

are found. However, the full discussion on the  -closure of a state on  -NFAs is beyond the scope of this 

thesis. 

 The  -NFAs have a close relationship with regexps such that, when trying to prove the 

equivalence between the classes of languages accepted by both finite automata and regexps, the  -NFA 

proves to be useful. The formal notation of an  -NFA retains all the components together with the 

interpretations belonging to a traditional NFA. The only difference is that that the transition function 

  now takes as arguments: 

a. A state is in Q, and  

b. A member    { }, which is either an input symbol or the symbol  , and it is required that   

cannot be a member of the alphabet ∑ to avoid any confusion. 

It then follows that by using  -transitions it is possible to build an  -NFA from a collection of regexps. 

This is achieved by introducing new  -transitions from the newly created start state, to all the start states 

of all the  -NFAs constructed from the various regexps. New  -transitions are also introduced from their 

accepting states to an indistinguishably combined accepting state, which is possible as each of their 

various final states represents one output signal when implemented on a hardware device.  

Figure 2.1 illustrates the basis for the construction of an automaton from a given regular 

expression. From Figure 2.1, the first figure labelled (a) represents the regexp b, and the language of its 

automaton is {b}. The figure labelled (b) shows that the language for the automaton is { }, because there 

is only one path from the start state to the accepting and it is labelled   (Hopcroft, Motwani and Ullman 

(2001, pp. 102-103). The last figure labelled (c) shows that Ø is the empty language for the automaton, 

which has no paths from the start to the accepting state. Figure 2.2 illustrates the inductive step for the 

regexp-to- -NFA construction, given the regexps r and s. 

 

(a)                                                  (b) 

 

(c) 

Figure 2.1: Figure (a), (b) and (c), show the basis for the construction of an automaton from a 

regexp (Hopcroft, Motwani and Ullman 2001). 
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(a) 

 

(b) 

 

(c) 

Figure 2.2: The inductive steps in the construction of regexp-to- ϵ-NFA construction (Hopcroft, 

Motwani and Ullman 2001). 

From Figure 2.2, the first figure labelled (a) indicates that for the regexp r + s, the corresponding 

automaton starts from the new start state and then goes to either the start state of the automaton for r or 

that of s. Afterwards the accepting state of the automaton is reached by following the path labelled by the 

string L(r) or L(s) respectively (Hopcroft, Motwani and Ullman 2001, p. 103). Recursively applying the 

constructions in Figure 2.1 and 2.2 leads to the construction of the NFA for the regexp ((a|b)*)(cd) shown 

in Figure 2.3. Figure 2.3 shows how the NFA matches the set of strings: “aaaacd”, “bbbcd”, and “cd”: 

 

Figure 2.3: NFA for the regexp (a|b)*(cd) (Sidhu and Prasanna 2001). 

A variation of the DFA and NFA also exists and is called a Hybrid-FA (Becchi and Crowley 2007b). The 

Hybrid-FA attempts to bring together the strengths of both DFAs and NFAs, and all the nodes likely to 

lead to state explosion whenever a DFA is created from an NFA are forced to retain an NFA encoding. 

The rest of the states are then transformed into DFA nodes.  

DFA state explosion occurs when trying to convert DFAs into composite DFA from a given 

regexp. The regexp involved could be a single regexp with repeated wild cards (.*) and length 
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(constrained) restrictions, or regexps with multiple regexps combined together into a composite DFA. In 

the latter case, each of the combined regexp will have wild cards with length restrictions. The period (.) 

also called dot in the wild card represents a single character, while the character (*) placed after the dot 

implies that any number of character could be matched. The length restriction dictates the number of 

times a character or class of characters are repeated in regexp. Although in practice, if compiled in 

isolation, individual regexps with single wild cards mostly found in current rules do not lead to state 

explosions. However, the number of transitions could be affected, but not the number of states as 

observed by Becchi and Crowley (2007b).  

Generally „...if a regexp matches exactly j arbitrary characters, [then] 2
j
 states are needed to handle 

the exact j requirement‟ (Yu et al. 2006). A DFA for a regexp of length k and a length restriction j could 

potentially have up to k+2
j
 states in worst case as observed by Yu et al. (2006). A good example of such a 

pattern is: .*ab.{20}cd. For such a regexp, there could be at least: k+2
20

 = k+1048576 states in the DFA, 

which is composed of over a million states. This gets worse with every increase in the length restriction. 

The hybrid-FA exploits the fact that DFAs corresponding to the rules obtained from NIDS such as Snort 

show significant level of state transition redundancy. More so, such redundancies can easily be exploited 

by a lot of approaches (refer to Section 3.2.1, for more details). For the purpose of this thesis, focus is on 

the use of NFA at all times. This is because it is the choice of automata for implementing the approach in 

this thesis as earlier introduced in Chapter 1 and fully discussed in Chapter 5.  

There is a need to effectively match against complex regexps that repeatedly occur in current Snort 

rules. However, rules such as the ones provided by Snort are integrated into an Intrusion Detection 

System (IDS). Section 2.4 discusses more on the classes of IDS and their uses, with particular focus on 

Snort IDS.  

 Network Intrusion Detection System 2.4

Whenever there is an attack on network-based computer systems, the first line of defence is the use of 

intrusion prevention. Preventive methods such as the use of passwords and biometrics (Zhang and Lee 

2000, p. 2) which are implemented within techniques like: encryption and authentication are helpful but 

insufficient. The increased number of exploitable program bugs and errors, as well as technical and 

human weaknesses further compounds the problems faced by preventive measures. As such, intrusion 

detection has become the second line of defence necessary for protecting a computer network system. An 

intrusion detection system attempts to capture data from a given network traffic and then applies rules to 

it in order to identify anomalies present in the data packet. Intrusion detection system can be categorised 

as a network-based (NIDS) or host-based (HIDS) intrusion detection system (IDS) (Bolzoni and Etalle 

2008; Rehman 2003; Zhang and Lee 2000). A third category is the distributed IDS as described by Singh 

et al. (2015, p. 1).  

A NIDS runs at a network gateway and analyses the network traffic in order to detect unauthorised 

accesses and harmful contents flowing through the network. Also, the NIDS matches harmful contents to 

a known database of signatures, and generates an alert or logs the packet to a file or database. As such, 

Snort IDS is specifically designed to function as a NIDS. A HIDS acts as an agent that checks through the 

logged files of a system or application for suspicious activities. The HIDS is heavily dependent on the 

audit data provided by an operating system, which does the monitoring and evaluation of generated 
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events by the host programs or users. The distributed IDS collectively analyses events from many sources 

for traces of malicious activities (Singh et al. 2015, p. 1). 

Snort IDS is categorised on the basis of the techniques used for its implementation, just like other 

known IDS. The two main categories of IDS techniques are: signature-based (SBS) or misuse detection, 

and anomaly-based (ABS) IDS (Bolzoni and Etalle 2008; Zhang and Lee 2000). The SBS system such as 

Snort (Sourcefire 2013; Roesch 1999) is mainly concerned with utilising pattern matching techniques for 

detecting intrusions. The intrusions are based on stored databases of the signatures belonging to known 

threats. The SBS then attempts to match these known signatures against the analysed incoming data 

packets in real time. However, an ABS is implemented differently from the SBS, because an ABS „first 

builds a statistical model... [that describes] the normal network traffic,... [before flagging] off behaviours 

that significantly deviate from the model, as an attack‟ (Bolzoni and Etalle 2008, p. 2). 

Accordingly, an SBS NIDS typically applies string matching only to those sections of the packets 

likely to contain the offending data. For instance, Snort NIDS is a packet sniffer and logger designed to 

act as a lightweight NIDS to perform content pattern matching. The Snort NIDS detects different types of 

attacks and probes including: buffer overflow, Denial-of-Service (DoS) and other malware. This makes 

the NIDS a popular solution. Also, Snort NIDS has a real-time capability and sends alert updates to 

syslog, and server message blocks (SMB) using separate alert files (Roesch 1999). Snort NIDS attempts 

to check from the beginning that a given packet header has a high likelihood of containing hostile data 

before performing the highly compute-intensive task of examining the packet payload in more detail. 

However, while this may be efficient in detecting hostile packets, malicious packets can occasionally be 

overlooked and consequently allowed into the network (Hutchings, Franklin and Carver 2002, p. 111).  

For the purpose of this thesis, focus on the design is on the implementation of a framed SBS 

pattern matching problem. The framed problem is solved using the novel pattern matching approach 

introduced in Section 1.4. The design approach is vital because it detects malicious attacks that 

occasionally slip through a system such as Snort NIDS. This is achieved by independently carrying out 

the highly compute-intensive task of performing a deep packet inspection of each packet payload that is 

streaming through the network at high speed (Yang and Prasanna 2012; Singapura et al. 2015). The 

design can be comfortably placed physically between a network firewall and a home network. 

2.4.1 Network Security Issues 

Computer networks are vulnerable and could easily become insecure due to the various attacks it 

experiences on a daily basis. The attacks could compromise the network security in place, leaving it 

vulnerable to potential exploitation. These potential threats could be in the form of unauthorised accesses, 

spams, bugs, Denial-of-Service (DoS), malicious software and other related threats. There are four key 

threats which Aycock (2006, p. 1) identifies and refers to as the „four horsemen of the electronic 

apocalypse‟ namely: spam, bugs, DoS, and malicious software. The following briefly explains each of 

them: 

1. Spam: Is a term that is commonly used to refer to the heavily unsubscribed emails that Internet 

users receive almost on a daily basis, which Aycock (2006, pp. 1-124) describes as „... plagues 

[to] the mailboxes of Internet users worldwide‟. 

2. Bugs: These are program errors capable of stalling the execution of installed software. Such 

errors are hard to find, thereby posing a serious security flaw. 
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3. Denial-of-Service (DoS): A DoS attack typically slows down a network or computer system 

until it crashes. A DoS denies certified users fast access to authorised resources or services by 

simply flooding a machine with unsolicited requests.  

4. Malicious software: Malicious software has dangerous intent and includes the following: viruses, 

worms, Trojan horses, and spyware and adware. 

a. Virus: A virus is a self-replicating program code, capable of infecting system files. Virus 

only spreads locally within a computer, infecting its system files. A windows-based virus is 

an example of a virus that lives on a Unix-based file server. The virus remains inactive until 

it is exported and executed on a Windows-based machine(s) and executed. 

b. Worm: A worm is a malicious program that shares common characteristics with a virus. But 

unlike viruses, worms spread from computer to computer without any human intervention. 

A worm can replicate itself on a system in thousands, and that can cause individual 

computers, networks and web servers to slow down or to stop responding completely. A 

worm such as the Blaster worm, tunnels through a system and allows remote access. The 

worm can also overload network resources with the amount of traffic it generates.  

c.  Trojan horse: A Trojan horse in computing is a program which does not replicate or infect 

other files, unlike worms and viruses. It is a malware designed to behave like a genuine 

program but ends up secretly performing some extra tasks considered to be malicious. An 

executed Trojan can change desktop settings, damage and even delete system and user files. 

Some Trojans often called backdoors could even open doors for its attacker(s) to gain access 

into a system, thereby allowing confidential or personal information to be compromised. 

d.  Spyware: A spyware is software that gathers information from unsuspecting computers and 

transfers it to the interested party. For instance, user names and passwords could be 

extracted from stored files on a computer, or recorded using what Aycock (2006) describes 

as a „keylogger‟. The keylogger is described as the variation of a Trojan, which captures 

keystrokes only, without any vigorous trickery involved. Other information of interest 

include: email addresses and potential transaction details such as bank accounts and 

credit/debit card details. 

e. Adware: An adware bears resemblances with a spyware. The adware is another program that 

gathers information about the lifestyles of unsuspecting computer users without their 

consent. Such malware specifically targets market-focused advertisements or is „[used to] 

redirect a user‟s web browser to certain websites in the hope of making a sale‟ (Aycock 

2006, p. 17). 

Security weakness is another source of concern to most networks. Such weaknesses can be categorised 

into two main categories, namely: technical and human weaknesses.  

1. Technical weakness: These are weaknesses that are mostly software related. A good example of 

a technical software weakness is buffer overflow. A Buffer overflow occurs when the limit of an 

array, often a buffer in a given code is exceeded. An attacker could easily exploit such a 

weakness in a given code, and a good example of a typical buffer overflow is stack smashing.  

A stack smashing attack has to do with the prior knowledge of where the buffer is kept in a 

stack, which happens to be a local variable in a given code. A little flaw easily occurs when a 
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bound is never placed on the input being read. As such, when the stack-allocated buffer begins to 

fill up from low to high memory, the attacker can persistently write over the top of the return 

address on the stack. Furthermore, if the attacker‟s code is a shellcode that is followed by the 

associated return address, then as the fill_buffer returns control, it will resume the execution to 

the location where the attacker specified it, and then run the shellcode (Aycock 2006). 

2. Human weaknesses: These are weaknesses that are strictly attributed to humans. By forgetting to 

apply even the most basic security patches, users could potentially allow bugs into their networks 

or computer systems. Sometimes software with known vulnerabilities are installed or improperly 

configured. This could potentially leave holes for attackers to exploit. A good example is a fake 

email request. The email request could demand a user‟s attention to respond to a fake reward for 

some unsolicited lottery won. The attackers usually request the users to divulge their usernames 

and passwords in order to claim their prizes as observed by Aycock (2006).  

The knowledge of the categories of security issues discussed in this section is needful. Once the type of 

intrusions are known and stored as signatures in any rules database, then rules such as the once found in 

the Snort rule can then be properly applied in real-time to check against incoming data packets.  

 Furthermore, the design in this thesis required a form of circuit description during synthesis (refer 

to Section 2.7 for more details on synthesis), simulation and implementation. To efficiently describe such 

circuits, a fast processing hardware platform is needed, and a good candidate is the FPGA. FPGAs are 

programmed using hardware description languages. A hardware description language is a specialised 

standard text-based computer language used to describe the behaviour and structure of a given system and 

circuit design (Xilinx 2012a). Section 2.5 discusses more on hardware description language, particularly 

the type used to describe the various regular expression matching engine (REMEs) circuits. The REMEs 

were introduced in Section 1.4 and 1.7. However, Section 5.3 and 5.4 discusses the thesis approach and 

its full design implementation.  

 Hardware Description Language   2.5

A Hardware Description Language (HDL) is a program language used to describe digital circuits. It is 

common practice to use both HDL and synthesis software to build digital hardware. However, synthesis 

software cannot automatically derive a physical hardware on its own simply because the HDL codes are 

devoid of syntax errors. In other words a poorly written HDL code description cannot be easily translated 

into highly optimised and efficient implementation. Although, synthesis software is capable of 

performing HDL transformation and localised optimisations (Chu 2006), there is still a need to properly 

understand the structure of a HDL. This is because generating complex hardware or non-synthesisable 

HDL descriptions can easily be avoided by having proper knowledge of structure of the HDL. A HDL 

typically describes the various concepts involving connections between circuit parts, the concurrent 

operations and the propagation delays and timings that occur. Each type of HDL is designed to provide a 

solution for a peculiar application. For instance, the HDL called Constructing Hardware in a Scala 

Embedded Language (Chisel) (Bachrach et al. 2012, p. 1217) is designed to simply provide modernised 

features of current programming languages. The language is capable of specifying low-level hardware 

blocks. The idea behind Chisel HDL is to make it extendable enough „to capture...[important] high-level 

hardware design pattern‟ (Bachrach et al. 2012, p. 1217).  
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VHSIC Hardware Description Language (VHDL) was used as the HDL of choice to implement 

the design in this thesis. The choice of VHDL is purely based on familiarity and ease of use. While 

higher-level programming languages like Java is used to describe algorithms with sequential execution, 

VHDL is used to describe hardware that deal with more parallel execution. Mealy (2007) describes two 

primary purposes for a HDL like VHDL thus: 

a. The modelling of digital circuits which is a description of something that presents a certain 

level of detail is possible.  

b. Also, for a given circuit model, there is subsequent ease of simulation and/or testing of the 

circuit.  

VHDL has a considerable advantage when efficiently describing complex logic as follows: 

a. It describes a system‟s structure. Such as the decomposition of the system into subsystems 

and their relative interconnections.  

b. It specifies the function of a system, using familiar programming language constructs. 

c. It allows a system design to be simulated before being implemented and consequently 

manufactured. 

d. VHDL provides an easy mechanism for producing the device-dependent version of a 

design, which is synthesised from a more abstract specification. The specification leads to 

decisions that cut down on the overall market time for the design. 

The basic building blocks of VHDL are used in almost every design description. The description together 

with some redefined terms that have some meaning to the average designer is described by Perry (2002, 

pp. 2-3) as follows: 

a. Entity: An entity is described as the most basic building block in a design and all designs in 

VHDL are expressed in form of entities. The entity defines the I/O ports, which are the I/O 

entry points into the entity (Xilinx 1999).  

b. Architecture: Every entity to be simulated has at least one architecture description that 

describes the behaviour of the entity. One entity could contain multiple architectures, with 

each serving a different purpose like describing behaviour, and structure of the design etc. 

c. Configuration: A configuration is described as a statement that secures a component 

instance to an entity-architecture pair. The statement describes which behaviour is used for 

each entity. 

d. Package: A package is described as a collection of repeatedly used data types and the 

subprograms used in a given design. A package is like a tool box.  

e. Driver: A driver is described as a signal source. A signal driven by more than one source 

will have multiple drivers if all the sources are active. 

f. Bus: In VHDL, a bus is a unique signal type, which refers to a group of signals. In VHDL, 

the drivers of a bus can be switched off. 

g. Attribute: An attribute is a predefined data. The data is usually devoted to VHDL objects. 

An example is the highest operating temperature of a device. 

h. Generic: A generic term passes information to an entity. For instance, the number bytes to 

be read as input from a test bench could be passed into the entity as generic values. A test 
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bench is a HDL description that permits a designer to provide a documented and repeatable 

set of stimuli, which is portable across different simulators 

i. Process: This is the primary unit of execution in VHDL. All the operations executed in a 

simulation of a VHDL description are split into single or numerous processes. 

The VHDL circuit descriptions are were written for the target reprogrammable device referred to as 

Xilinx FPGA Virtex-6 device. The device is bundled with the XST VHDL synthesis tool (refer to Section 

2.7 for more details on XST VHDL synthesis tool). Section 2.6 discusses more about the FPGA device. 

 Field Programmable Gate Array 2.6

A Field Programmable Gate Array (FPGA) is a general-purpose reprogrammable semiconductor silicon 

device. The performance and function density of FPGAs have improved over the last two decades. The 

improvements were made possible due to the continuous decrease of device sizes (Trefzer 2015, p. 1). 

Also, the fast FPGA clock rate is capable of enhancing design performance (Brodie, Taylor and Cytron 

2006). The FPGA device is centred on a matrix of Control Logic Blocks (CLBs) which are connected 

through programmable interconnects (Xilinx 2014). The FPGA is designed for reconfiguration by users, 

after it is manufactured. The reconfiguration feature of the FPGA is the reason why it is called a field-

programmable device. An HDL such as VHDL is usually used to program and specify the FPGA 

configurations. Currently FPGAs easily push the 500MHz performance barrier (Xilinx 2014), and provide 

software flexibility in terms of programming. The benefit of hardware performance such as parallelism, 

which allows for thousands of parallel executions, is also an added advantage of the FPGA (Moussalli 

2014, p. 1). 

Timing verification for FPGA designs is required to check if the desired output responses are 

produced within stipulated timing constraints. For instance, the time it takes to setup and the time it takes 

to hold input signals need to be properly defined for correct timing computation. Black-Schaffer (2003, p. 

4) defines a setup time as the „amount of time the synchronous input (D)... [of a D-type flip-flop, such as 

a D-flip flop (DFF)] must be stable before the active (rising) edge of the clock‟. Also, Black-Schaffer 

(2003, p. 4) defines a hold time as the „as the amount of time the synchronous input (D) of the DFF must 

be stable after the active edge of the clock‟. Verifying the correct timing of valid data within the setup and 

hold time is a big challenge for FPGAs. The timing specification is important in determining the overall 

speed and consequently the design throughput. The throughput is usually limited by the operational clock 

frequency or hardware clock. As such optimising the operational clock frequency is necessary for 

achieving optimal performance. This is difficult to achieve because the performance of a design is highly 

dependent on correct timing constraints (Chu 2006).  

Nevertheless, FPGAs can be partially reconfigured. Partial reconfiguration also allows FPGAs to 

reconfigure selected areas at any time after its initial configuration. Partial reconfiguration is also an 

important feature that is used in communication devices. For instance, a communication device may 

control multiple connections, some of which require encryption. As such, it would be useful to be able to 

load different encryption cores without bringing the whole controller down when it is running. However, 

partial reconfiguration is not supported by all FPGA devices. From the functionality of any design, partial 

reconfiguration can be divided into two groups: 

i. Dynamic partial reconfiguration: Also known as an active partial reconfiguration (Lysaght et al. 

2006, p. 1; Lie and Feng-yan 2009, p. 445). Such reconfiguration permits changes to be made to 
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a part of the FPGA, while the rest of it is still running. A description of special regions called 

partial reconfigurable regions (PPR) describes the area of the FPGA that is reserved for 

implementing all tasks in one dynamically reconfigurable subset. Such a subset was utilised by 

Wang et al. (2010, p. 214) for implementing a character class with constrained repetition called a 

CCR-based scanner approach. In the approach by Wang et al. (2014), partial reconfigurable 

modules (PRM) were used to describe the implementation of a single dynamic task that was later 

mapped into a PPR. 

ii. Static partial reconfiguration:  During the process of static partial reconfiguration, the device is 

not active. While the partial data is sent into the FPGA, the rest of the device is stopped in the 

shutdown mode, and only activated after the configuration is completed (Lie and Feng-yan 2009, 

p. 445). 

Reconfigurable approaches take advantage of the nature of specific rules, like those found in the current 

popular Snort rules (Snort 2013). Any change to the rules will require the re-generation of a new circuit 

usually written in HDL such as VHDL. The HDL file is then recompiled, re-synthesised and re-

implemented in the FPGA (Tan and Sherwood 2005). A good example of such reconfigurable design is 

the one deployed by Clark and Schimmel (2004) using a multi-character decoding approach. The design 

was based entirely on similar reconfigurable approach. 

Full reconfiguration is required, especially by approaches that constantly either try to save more 

resources or improve performance. The performance could be measured in terms of design density. The 

density „is a measure of an implementation‟s capacity per unit area‟ (Brodie, Taylor and Cytron 2006). 

Density can be measured in die area (measured in mm
2
) or device specific resources such as LUTs in an 

FPGA.  

Furthermore, LUTs use a simple array indexing operation to retrieve data from memory. The 

retrieval process is performed without incurring any costly runtime computation or I/O operation. This is 

because retrieving data from memory is often faster than carrying out some complex routine with more 

procedures to achieve the same. In digital logic, an n-bit LUT with n = 2, 3, 4, 5, 6 and 7 can be 

implemented with a multiplexer. The select lines of the multiplexer are the inputs of the LUT. The 

approach in this thesis measured the throughput efficiency based on the ratio of the number of LUTs 

(Yang, Jiang and Prasanna, 2008; Clark and Schimmel 2004) utilised by each of states of the automata. 

The resulting value is then multiplied by the overall throughput of the design. Section 6.2.3 discusses 

more on the throughput efficiency computation process. 

The CLBs contained in a Xilinx FPGA Virtex-6 device (Xilinx 2012a, p. 7) are the main logic 

resources used for implementing both sequential and combinatorial circuits on FPGAs. The CLBs can be 

configured to provide functionality as simple as that of an inverter or as complex as that of a 

microprocessor. CLBs can also be used to implement different combinations of combinatorial and 

sequential logic functions. Such functions include: combinational gates like basic NAND gates or XOR 

gates. Other functions include: n-input LUTs with n = 2, 3, 4, 5, 6 and 7, multiplexing, and wide fan 

AND-OR structures. Each CLB contains two components called slices. The slices are connected to a 

switch matrix for accessing the general routing matrix as shown in Figure 2.4. Each slice (Xilinx 2012a) 

component contains „four LUTs, eight storage elements (Flip-Flops or FFs), wide-function multiplexers, 

and carry logic‟. The routing matrix is a flexible programmable unit used to connect the CLB logic blocks 

http://en.wikipedia.org/wiki/Digital_logic
http://en.wikipedia.org/wiki/Multiplexer
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with each other. The connection is such that each CLB is connected to a switch matrix for access to the 

general-routing resources, which runs vertically and horizontally between the CLB rows and columns. A 

similar switch matrix connects other resources, such as the digital signal processing (DSP) slices and 

block RAM resources (Xilinx 2014, p. 72). Figure 2.4 shows how a typical Xilinx FPGA Virtex-6 device 

CLB looks like (Xilinx 2012a, pp. 7-11). The first slice in the CLB labelled slice (0), is positioned at the 

bottom of the CLB, while the second slice labelled slice (1) is positioned at the top of the CLB. 

 

 

 

 

 

 

 

Figure 2.4: Arrangement of slices within the CLB (Xilinx 2012a), p. 7). 

The CLB slices have no direct connections between them. Each slice is organised as a column, with each 

having an independent carry chain. The LUTs within a slice can be implemented as a synchronous RAM, 

which is referred to as a distributed RAM. An n-bit LUT, with n = 2, 3, 4, 5, 6 and 7 can encode any n-

input Boolean function by modelling such functions as truth tables. The function generators in a Xilinx 

FPGA Virtex-6 device are implemented as 6-input LUTs (Xilinx 2012a). A distributed RAM is used for 

storage, while a 32-bit wide shift register is used for shifting data.  

The distributed RAM and the shift register are available only in a particular type of slice called 

SLICEM as seen in Figure 2.6. The counterpart of the SliceM is the SliceL. The upper-case letter “L” at 

the end of SliceL stands for „logic‟, while the upper-case letter “M” at the end of SliceM stands for 

„memory‟. The SliceL does not have a distributed RAM or shift register, which makes it different from 

the SliceM. However, the LUTs in a given SliceM as shown in Figure 2.6 can be made to function as 

synchronous RAM which is simply a distributed RAM. The SliceL LUTs can only function as a random 

combinational logic. Furthermore, the distributed RAM is a 256-bit RAM (4x64-bits) component and the 

shift register is a 128-bit (4x32-bits) register. The distributed RAM modules perform synchronous (write) 

function. A „synchronous read can be implemented with a storage element... [such as a] flip-flop‟ (Xilinx 

2012a). The FFs are eight in number within any given slice, and are configured as positive edge-triggered 

D-type FFs. Furthermore, the SR and CE signals are active High, where a higher voltage represents the 

binary digit of 1, used to assert the state of a logical condition. 

The LUTs in a SLICEM can be combined in different ways to form a larger storage for data 

(Chaves et al. 2008). Every slice contains three multiplexers namely: F7AMUX, F7BMUX, and F8MUX. 

A multiplexer is used to „combine up to four LUTs in order to provide any function of seven or eight 

inputs within the slice‟ (Xilinx 2012a). The F7AMUX and F7BMUX are used to generate inputs from 

any of the four LUTs in a given slice. The F8AMUX is used for joining all the four LUTs in order to 

Slice (1) 

COUT COUT 

CIN CIN 

Ug364_01_040209 

Switch 

Matrix  Slice (0) 

http://en.wikipedia.org/wiki/Boolean_function
http://en.wikipedia.org/wiki/Truth_table
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generate eight input function as shown in Figure 2.6. Figure 2.5 shows how the XST VHDL synthesis 

tool designate slices. An “X” followed by a number identifies the position of each slice in a pair as well as 

the column position of the slice. The “X” number counts slices starting from the bottom in sequence 0, 1 

(the first CLB column); 2, 3 (the second CLB column). A “Y” followed by a number identifies a row of 

slices. The number remains the same within a CLB, but counts up in sequence from one CLB row to the 

next CLB row, starting from the bottom (Xilinx 2012a, p. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5:  Row and Column relationship between CLBs and Slices (Xilinx 2012a, p. 8). 

From Figure 2.6, the section labelled “LUT RAMs” implements 6-input LUTs, and each of the four LUTs 

has six distinct inputs labelled A1-A6 and two distinct outputs 05 and 06. Each of the LUTs perform 6-

input Boolean functions arbitrarily. The 06 outputs are used whenever a 6-input function is applied. 

Irrespective of which function is implemented, the propagation delay through a LUT is independent, and 

the signals leaving each LUT can be through the 06 output or any the multiplexers (MUXs) outputs for 

the 05 output. The generated signals then enter the labelled “Carry-logic” in Figure 2.6, belonging to the 

05 output. Also the same signal is passed to select lines of the carry-logic MUX belonging to the 06. The 

same signal is also passed to the D input of the DFFs or the F7AMUX/F7BMUX from the 06 output 

(Xilinx 2012a).  

The DFFs or level-sensitive latches labelled as “FFs/Latches” in Figure 2.6 can be driven directly 

by a LUT output through the MUXs of each of the four LUTs or simply by the slice inputs which bypass 

the LUTS through the inputs namely: AX, BX, CX and DX. The latch is apparent whenever the clock 

signal is low. In the Xilinx FPGA Virtex-6 devices, only the last four out of the eight DFFs can be 

configured as edge-triggered DFFs. This means that whenever the first four DFFs are configured as 

latches, the four DFFs cannot be functional. However, the eight DFFs all have common control signal 

clocks (CLK), clock enable (CE) and set/reset (SR). When a DFF in a slice has set/reset (SR) or clock 

enable (CE), the other DFFs in the slice will also have SR or CE enabled by the common signal clock. 
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Figure 2.6:  Diagram of a SLICEM (Xilinx 2012a. p. 9). 

The FPGA arena (Mitra, Najjar and Bhuyan 2007) has witnessed a rapid acceptance and increase in speed 

and silicon logic size over the years. The latest devices support multi-gigabit throughput interfaces to the 

host processor. The FPGA is a preferred choice for many applications that use regexps. Such applications 

include: DNA sequencing, compilers, spam filters, and data mining applications, to mention but a few. 

The applications usually require periodic updates. Furthermore, the flexibility of the FPGA leverages the 

implementation of highly optimised parallel logic circuits, which support a multitude of REMEs.  

 Synthesis Process 2.7

Synthesis involves the process of translating HDL codes into a netlist. The netlist (Wain et al. 2006, p. 5) 

is the textual description of a circuit diagram or schematic. Verification is performed at the early stage of 

a design to determine if the design works according to specification and performance objective. The two 

main aspects of verification are „functionality and performance‟ (Chu 2006, p. 14). Functional 
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verification ascertains whether the right output responses are generated by a given design. Performance 

on the other hand, is based on the timing constraints. As such, timing verification is used to check if the 

desired responses are produced within the stipulated time constraint. At different levels of design 

abstraction and phases, verification is performed. The design abstractions are: High-level, Register-

Transfer level (RTL or RT-level), and Gate-level synthesis. Technology mapping is the fourth abstraction 

(Chu 2006, p. 14).  

High-level synthesis converts an algorithm specified unambiguously in terms of register transfer 

operations into an RTL description. RTL synthesis develops the structural implementation by utilising 

RTL components. The implementation comes after analysing the RTL behavioural description. A number 

of utilised components are often reduced by carrying out a partial degree of optimisation during the RTL 

synthesis. RTL data representation can be abstract, especially when signals are mostly assembled together 

and understood as a special category of data types. Such a data type can be an unsigned integer or system 

state. Furthermore, with RTL abstraction, broad expressions are used to specify the functional operation 

and data routing at the level of the behavioural description, A comprehensive FSM is then used to 

describe a system that is designed using RT methodology. The use of a clock signal in RTL description is 

a main feature found in storage components such as shift registers.  

Gate-level components such as AND-gates are utilised in structural implementation during Gate-

level synthesis. Hierarchical optimisations are performed to minimise the circuit size or meet the various 

design timing constraints. Lastly, during the technology mapping process, each device technology such as 

the Xilinx FPGA Virtex-6 device (Xilinx 2012a) consists of predefined set of primitive gate-level 

components. The components are packaged within the generic logic cells of the FPGA device. As such 

the generic components need to be mapped specifically into the respective cells of the selected technology 

during gate-level circuit implementation (Chu 2006, p. 13-15). Technology mapping is the process of 

gate-level circuit transformation and it is technology dependent. The process constitutes the final 

synthesis step. 

 During the process of verification at the various levels of abstractions, commonly used methods 

such as simulation are used for building and executing the system model using some test patterns. 

Afterwards, the output responses are then analysed and properly examined for correctness. It should be 

noted that simulation does not guarantee that selected stimuli can be used to verify the correctness of the 

whole design. Furthermore, while simulation can be used to identify major design flaws, it cannot 

guarantee the absence of errors. It becomes even more difficult to simulate low-level models consisting of 

millions of components using computers that perform sequential computations. This is because hardware 

operations are usually concurrent and parallel in nature (Chu 2006, p. 15).  

 However, a behavioural simulation is performed using a test bench which provides the necessary 

stimuli. A test bench can be as simple as a file with clock and input data or a complicated file containing 

an error checking capability. It could also be an input and output file that has the ability to perform 

conditional testing. Timing analysis can also be applied to analyse the circuit structure, determine the 

various input-output paths. For instance, timing analysis can be used to compute the propagation delays of 

the paths adjust the timing parameters accordingly. Such timing parameters could be worst-case 

propagation delays and maximal clock frequency.  
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The XST VHDL synthesis tool used for implementation in this thesis, takes the description of a 

design in a HDL file discussed in Section 2.5, and converts the file to a synthesised netlist. This is 

achieved by first carrying out functional (or RTL) simulation of the design description. The generated 

netlist file is called a native generic circuit (NGC). The NGC file contains both the logical design data and 

the associated design constraints. The NGC file takes the place of both the Electronic Data Interchange 

Format (EDIF) and netlist constraints file (NCF) files (Xilinx 2008a). The NGC files are either generated 

by the synthesis tools, schematic editors, or other design entry mechanism. The NGC file is then 

translated into a binary file format. The components and connections defined in the NGC file then 

mapped to the Control Logic Blocks (CLBs) (Xilinx 2008b). After the mapping process is completed, the 

design is then placed and routed to fit onto a target FPGA (Wain et al. 2006, p. 5). To establish the 

completeness of the design, a second post place and route simulation is performed to ensure that the 

design is been properly placed and routed. The application of compiled tools such as SmartOpt (Jang et 

al. 2009, p. 239) integrated into the XST, also allows more complex FPGA architectures to be further 

optimised and mapped to simpler netlist models.  

The synthesised netlist, which represents a logical view of the design, is processed during the 

design implementation (Xilinx 2008b) phases. The phases can be summarised thus:  

a. Translate: This is when the netlist and constraints are merged into an NGC file.  

b. Map: It is at this point that the components and connections defined by the NGD (logical design) 

file are mapped to FPGA components such as: CLBs and input/output blocks (IOBs). The output 

file is a native circuit description (NCD) file, which physically represents the design mapped to 

the various FPGA components such as shift registers, multiplexers, FFs and so on. The NCD file 

is then used by the programming file generator referred to as BitGen, to create a configuration 

bits file or bitstream (Xilinx 2010, pp. 136-137). The bitstream is used to program the target 

FPGA. 

c. Place and route: It is at this stage that the mapped NCD file is taken and used to place and route 

the design, before finally producing a final NCD file. The final NCD file is then used as the 

input to generate the configuration bits file for programming the target FPGA. 

Finally, the generated configuration bits file (Xilinx 2010, pp. 136-137) contains all the information 

required to program the target FPGA logic circuits. This is achieved by loading and executing the file in 

the target FPGA device. The final verification and debugging of the design is done by using a special tool 

called the Xilinx Chipscope (Wain et al. 2006, p. 5). This is done while the design is actively running on 

the target FPGA. A good example of an FPGA device with XST capability is the Xilinx ISE FPGA 

Project Navigator, version 14.4 design suit. 

  

 Chapter Summary 2.8

This chapter presented a general background leading to the understanding of regexps and pattern 

matching. An overview and brief description of intrusion detection and the various types of security 

issues were also discussed. The chapter briefly introduced what constitutes the FPGA hardware platform 

used for designing various design REMEs. XST was introduced in order to have some basic knowledge of 

what transpires during the design synthesis process and implementation. Chapter 3 reviews some of the 

various approaches that are most related to the approach implemented in this thesis. 
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 Approaches to Regular Expression Pattern Matching  3.

 

This chapter describes some important approaches used in designing REMEs namely: software and FPGA 

based approaches. The approaches are closely examined and later analysed in Chapter 4. The analysis 

gives a clearer understanding of how the various related approaches work in comparison to each another. 

The discussions on the various FPGA-based classification approaches builds up to the approach in this 

thesis, as discussed towards the end of the chapter. Chapter 5 discusses the full implementation of the 

design approach.  

 Introduction 3.1

The focus of this thesis is based on FPGA-based approaches, specifically the ones that deal with various 

forms of classification techniques. Nevertheless, Section 3.2.1 highlights some important general-purpose 

processor-based platforms. Specifically, approaches that deal with the equivalence and non-equivalence 

of states on a given FA are discussed. Hardware-based approaches exploit a high degree of parallelism 

and memory bandwidth, while creating compact automata accessible on on-chip memories. The amount 

of memory required for the implementations of such hardware-based architectures is considered to be 

high, often requiring many small on-chip memories. Memory bandwidth can also be a serious limiting 

factor for such systems. As such, the task of exploiting different techniques to reduce the number of 

required off-chip memory accesses is vital. The most common competing requirements are: design speed, 

memory, throughput and throughput efficiency. Most of the approaches described in this chapter sacrifice 

increased design throughput for lower memory utilisation. Other approaches try to increase the design 

throughput but end up with poor memory utilisation and throughput efficiency. The competing 

requirements have always been a trade-off, but the approach in this thesis has developed a way to balance 

such requirements. Section 3.2 reviews some of the originally developed string and trivial regexp 

matching approaches  

 Pattern Matching Design and Implementations 3.2

3.2.1 General-purpose and Processor-based Approaches  

a. String Matching Approaches 

An early compiler-search approach that locates specific character strings embedded in a character text 

was implemented by Thompson (1968, pp. 419-420). The compiler-search algorithm was incorporated as 

a context search compiler, applicable within a time-sharing text editor. The compiler was used in other 
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applications such as a symbol table search routine in an assembler. An IBM 7094 program was generated 

by the compiler as an object language from an acceptable regexp, considered as the source language. 

Consequently, the object language then generates a signal whenever an embedded string in the text 

matches a given regexp. The text serves as input to the object language (Thompson 1968, p. 421). 

A sub-linear search algorithm that searches for the characters of a pattern in a given text string 

precisely once was implemented by Boyer and Moore (1977, pp. 762-763). Sub-linearity in this case 

refers to the way the expected number of inspected characters in a given string decreases as the pattern 

length increases. The search is made in worst case time of O(nm) and average case time of O(n/m), where 

m is the pattern length, and n is the text length. With information gained by beginning the search at the 

tail end of the pattern, the algorithm is able to make significant leaps through the given text being 

searched.  

In another algorithm implemented by Knuth, Morris and Pratt (1977, pp. 323-328), all occurrences 

of a pattern in a given text could be found in average case linear time of O(n) and worst case linear time 

of O(m+n), where m is the pattern length, and n is the text length. This happens without backing up the 

input text the way traditional approaches do. The process of backing up the input text involves some 

complicated buffering operations that are frequently involved in the matching process. The algorithm that 

only requires O(m) internal memory locations „if the text is [to be] read from an external file, with only 

O(log m) units of time...[spent] between consecutive single-character inputs‟ was described by Knuth, 

Morris and Pratt (1977, pp. 323). 

A finite state string pattern matching machine was also implemented by Aho and Corasick (1975, 

p. 333). The machine searches within a given text string to find a match for a finite sequence of strings 

called a keyword. The algorithm construction time for the state machine is proportional to the keyword 

lengths summed together. The main objective of the approach is to implement a library bibliographic 

search program. The program enables the bibliographer to easily locate in a given citation index, all the 

titles that satisfy some Boolean function of keywords and phrases. 

However, the running time and number of required character comparisons in string matching is 

greatly influenced by the type of patterns, the data size and pattern lengths. The difficulty faced by such 

string matching approaches lie in the complexity of the current network attack signatures. Matching 

against such signatures often requires highly computationally intensive processes that consume a lot of 

the Central Processing Unit (CPU) processing time. As such, with a careful design, the expressive nature 

of regexps matching designs can be utilised to match against the complex attack signatures found in most 

current NIDS rules. Section 3.2.1b discusses some regexp matching designs, and highlights the main 

design structures and the processes involved. 

b. Regexp Matching Approaches 

i. Pseudo-equivalent State Merging Technique 

A technique that works by first compiling the string patterns into a FSM was described by Lin, Tai and 

Chang (2007, p. 11). The FSM matches any substring of input strings contained in any string pattern. It 

was observed that there is a high performance cost involved, and that the power consumed by the memory 

architecture relate directly to the size of the memory in use. As a result, the idea of reducing the table size 

of the required memory became necessary.  
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Lin, Tai and Chang (2007) further noted that „two states are equivalent if and only if their next 

states are equivalent‟. Also, two or more string patterns could have similar common substrings, whenever 

the patterns are converted into a FSM. Although the commonality between the substrings means that their 

respective states will have similar transitions, having similar transitions alone does not make them 

equivalent states. Furthermore, because such non-equivalent states cannot be merged directly without 

creating the problem of false positive matches, a reduction to the FSM‟s states and transitions becomes 

difficult. As a result, „Two states are defined as pseudo-equivalent states if they have identical inputs, 

failure transitions and outputs‟ (Lin, Tai and Chang 2007). 

A state-traversal mechanism was then introduced, and it involved reviewing the classical Aho-

Corasick (AC) algorithm (Aho and Corasick 1975). The aim was to exploit the algorithm‟s potential for 

reducing the number of state traversals on a FSM. As such, given a current state and an input character, 

the AC machine is tasked with determining whether or not the input character can trigger a valid 

transition. If the AC machine fails to trigger a valid transition, it is forced to jump to the next state where 

the failure transition points to. The same character is then considered repeatedly until the character causes 

a valid transition. The FSM formed by merging its pseudo-equivalent states is called merge_FSM as 

shown in Figure 3.1.  

The FSM is formed from the AC machine based on the pattern: (a) “bcdf”, and (b) “pcdg”. The 

dotted lines signify failure transitions, while the thin lines signify valid transitions. The new merge_FSM 

significantly lowers the number of states and transitions realised, leading to lower memory requirements. 

But, the merging of pseudo-equivalent states can result in creating a FSM with functional error. A 

functional error occurs when a final state is erroneously reached by a pattern say P2, instead of a pattern 

say P1. Such an error in matching leads to a false positive match. For instance, given the input string 

“pcdf”, the merge_FSM in Figure 3.1 erroneously leads to an accepting state 4, and wrongly reports a 

match as observed by Lin, Tai and Chang (2007). The reason for the false positive match is because 

neither of the patterns “bcdf” and “pcdg” was supposed to match the substring “pcdf”. Ordinarily, a 

traditional FSM would have simply triggered a failed transition and returned back to its initial state 0 

instead. 

To avoid having such false positive matches for instance, a mechanism was implemented that  

understood what distinguishes between the pseudo-equivalent state 2 and state 6 in the merged state 26 of 

the merge_FSM of Figure 3.1. The mechanism was such that if the predecessor state is 1, when reaching 

state 26, then it could be ascertained that in the original FSM it was state 2 that would have been reached. 

State 6 would have been reached in the original FSM, if state 5 was the predecessor state. To realise such 

a solution, A state traversal process capable of memorising the precedent paths entering into the merged 

states was required. The idea behind the implementation of such a traversal process is to ensure that all 

the merged states in the merge_FSM can easily be differentiated. The design reuses those memory 

locations storing zero vectors in form of {00}, as well as the non-zero match vectors to keep useful path 

information called „pathVec‟ (Lin, Tai and Chang 2007). 
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Figure 3.1: Merge_FSM formed by merging non-equivalent states (Lin, Tai and Chang 2007). 

The pathVec of a given state say state 1 in Figure 3.2 is expressed as: {P2P1} = {01}, where P2 represents 

pattern “pcdg” and P1 represents pattern “bcdf”. The least significant bit (lsb) bit value 1 represents P1, 

while most significant bit (msb) bit value 0 represents P2 in the bit vector {01}. In order to match the 

string “bcdf”, the first bit value in the pathVec of the each state needs to be set to 1 for the given path 0-

>1->26->37->4 of the pattern. The second bit is set to 1 also for each state in the pathVec of the given 

path 0->5->26->37->8, which matches the string “pcdg” as seen in Figure 3.2. Lastly, an additional bit 

called the „ifFinal‟ is introduced to each state, to indicate if a final state can be reached. Each state then 

stores the pathVec and ifFinal bit value in the format: „pathVec_ifFinal‟ as shown in Figure 3.2 and 

Figure 3.3. For instance, from Figure 3.3 it can be seen that the accepting state 6 has a „pathVec_ifFinal‟ 

value 001_1, which shows that the pattern “abcdef” has been matched. 

 

Figure 3.2: New state diagram of merge_FSM from Figure 3.1 (Lin, Tai and Chang 2007). 

An additional register called „preReg‟ was also created and used for tracing the precedent pathVec in each 

state. The register has a width equal to that of the pathVec. Each of the bits in the preReg represents a 

string pattern, and is updated in each state by performing a bitwise AND operation between the pathVec 

of the next state and the current preReg value. With the trace information, it is possible to keep track of 

the precedent path entering the newly merged state, making it possible to differentiate all merged states. 

The process of constructing a state traversal machine starts with the creation of states and valid 

transitions. It is then closely followed by the construction of the pathVec and ifFinal starting in the first 

step and completing in the second step (Lin, Tai and Chang 2007). Given patterns: “abcdef”, “apcdeg” 

and “awcdeh”, the construction process starts by adding the first pattern to the directed graph. Afterwards, 

similar edges are reused between the patterns that were created as a result of sharing a common labelled 

character, such as the character a at the start of all the patterns as shown in Figure 3.3. Afterwards, more 

patterns are subsequently added to the graph incrementally to create a bigger graph of the three patterns as 

shown in Figure 3.3. 
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Figure 3.3: Construction of pathVec and ifFinal (Lin, Tai and Chang 2007). 

For the construction of the state diagram belonging to the state traversal machine, the pseudo-equivalent 

states: 3, 8, and 13; 4, 9, and 14; 5, 10 and 15 are merged together into state 3, 4 and 5 as shown in Figure 

3.4. The merging process is based on their common input characters of c, d and e respectively. The 

pathVec of state 3 is altered to be {P3P2P1} = {001}||{010}||{100} = {111}, by performing a union 

operation on the pathVec of state 3, 8 and 13 of Figure 3.3. A similar operation is performed for state 4 

and 5 to give {111} as well. The final state diagram as shown in Figure 3.4 eliminates 6 states from the 

original AC machine shown in Figure 3.3.  

 

Figure 3.4: State diagram of the state traversal machine created from Figure 3.3 (Lin, Tai and 

Chang 2007). 

Furthermore, an issue identified as a cycle (loop) problem (Lin, Tai and Chang 2007) could arise during 

the process of constructing a state traversal machine. The problem needed to be efficiently tackled or 

avoided completely. Cycle problems are created when merging multiple sections of pseudo-equivalent 

states in a merge_FSM. The cycle generated could lead to false positive matching results. Lin, Tai and 

Chang (2007) observed that for a cycle problem to be prevented from occurring during the creation of a 

merge_FSM, only pseudo-equivalent states that are not likely to form a cycle should be merged. Such 

pseudo-equivalent states must not be part of any disorder sections of the AC state machine before they are 

merged.  

Sections are considered to be disordered if they have the potential to create a cycle in the process 

of merging their pseudo-equivalent states. The states involved must belong to the separate string patterns 

on the AC machine. For instance, the two patterns “abcdef” and “wdebcg”, which were used to construct 

the AC machine shown in Figure 3.5, caused a loop to exist by merging sections of the disordered 

pseudo-equivalent states. The states involved were state 4 and 7, as well as state 3 and 8 as shown in 

Figure 3.5. The new merge-FSM of Figure 3.6 created from the AC machine of Figure 3.5 now has a loop 

transition from state 5 to state 2 on input of character „b‟. The loop causes the input string “abcdebcdef” 

for instance to be mistaken as a match for the pattern “abcdef” as shown in Figure 3.6. Such a mismatch 

is said to be a false positive match. 
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Figure 3.5: AC state machine for the two patterns “abcdef” and “wdebcg” (Lin, Tai and Chang 

2007). 

 

Figure 3.6: Merging two disorder sections of pseudo-equivalent states of an AC machine (Lin, 

Tai and Chang 2007). 

In summary, adding multiple patterns to the directed graph could potentially lead to the creation of cycle 

problems. The cycles limit the amount of pseudo-equivalent states to be merged. The more the numbers 

of such patterns that cannot be merged, the more the limitation of such an approach, especially in terms of 

further memory reduction. As such one can conclude that the approach is not too memory efficient for 

multiple pattern matching applications. However, a proposed solution for resolving such cycle problems 

that can enable more patterns to merge together can be found in Section 7.2.1b. 

ii. Delayed input DFA 

Several packet content inspection engines have migrated from string matching to regexps matching, such 

as Snort (Roesch 1999) (refer to Section 2.3 for more on Snort NIDS) and Bro (Bro 2013). Bro (2013) is 

a powerful framework for network analysis, whose domain specific language allows for site-specific 

monitoring policies among other things. Cisco systems (Cisco 2013) have also integrated regexp-based 

content inspection capabilities into their Internetworking Operating System (written as iOS for short) 

among others. 

An approach that performs a deep packet inspection was described by Kumar et al. (2006), called a 

Delayed Input DFA (D
2
FA). The approach involves the scanning of every single byte of a packet payload 

with the aim of identifying predefined set of matching patterns. The memory architecture was created to 

utilise multiple on-chip memories. The design also ensures that each memory is uniformly applied and 

accessed over a „short duration, thus effectively distributing the load and enabling high throughput‟ 

(Kumar et al. 2006). 

The D
2
FA is able to reduce memory requirement in comparison to most conventional DFAs. The 

approach incrementally replaces the several transitions from the DFA with a single default transition. A 

default transition can be described as an „unlabelled outgoing transition [from any given state]‟ (Kumar et 

al. 2006) in the D
2
FA. The thick line transition in the D

2
FA (which is the figure to right hand side of 

Figure 3.7) represents the various default transitions, while the thin lines are transitions on character 

inputs. The D
2
FA approach is based upon the observation that a number of groups of states on a 

traditional DFA (which is the figure to the left hand side of Figure 3.7) have identical outgoing transitions 

(also referred to as edges). The duplicate information about the identical outgoing transitions is then 
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exploited with the aim of reducing the needed memory requirements. A good illustration is presented in 

the automata as shown in Figure 3.7. Figure 3.7 shows the effect of the default transition on the automata, 

based on the visible reduction made in relation to the number of transitions. A failure to transit on any 

state of the DFA, leads to a backward transition to the previous state. Also two or more states share a 

common transition character as they transit to the same state. Kumar et al. (2006) considered such 

commonalities as a redundancy, which exists in the transitions. As a result, by introducing a default 

transition back to the initial state of the DFA, every regexp becomes an independent entity that leads to a 

unique final (accepting) state. Also by introducing the default transition, this will ensure that cycles only 

exist within each of the three regexps matched on the automata as shown in the D
2
FA of Figure 3.7. 

 

Figure 3.7: Examples of automata which recognise the regexps: a+, b+c and c*d+ (Kumar et al. 

2006, p. 342). 

In order to guarantee that the D
2
FA meets the throughput objective of the design, a restriction was placed 

on the length of the longest default [transition] path. The default path is a path that comprises only default 

transitions. This helped to positively change the current version of the design. The aim was to find the 

least equivalent D
2
FA which satisfies a specified bound on the default path length. The worst-case 

performance of a D
2
FA based on the length of its longest default path was  bound.. The default transitions 

defined a collection of trees, with their transtions directed towards the root of the tree. This makes it 

possible to identify sets of transitions that generate the largest space reduction. But, choosing the default 

transition that produces the largest possible reduction where no cycle is created by the default transitions 

remained a question. 

The solution relied on modeling the problem as a maximum weight spanning tree problem in an 

undirected graph, also referred to as a space reduction graph. Again, based on the criteria that every 

vertex has only one outgoing default transition, it implied that an arbitrary vertex could be picked to 

represent the root of the default transition tree with all the default transitions directed towards the root 

state. The problem with the said procedure was that it generated too many long paths on the DFA when 

implemented on a typical network application. This implies that the final D
2
FA will require many 

transitions for every symbol it consumes. As a result with the selected tree root state centrally located, 

only some improvement was made, while the problem of having many long default paths remained 

prevalent. Becchi and Crowley (2007a, p. 147) showed that the problem of long default paths could be 

mitigated if none of the default transitions in a D
2
FA lead from a state with depth di to another state with 

depth dj, with dj   di. This ensured that any string of length N will only need at most 2N state traversals to 
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be processed, thereby guaranteeing a 2N time bound on all D
2
FA having only “backwards” transitions, 

where N is the length of any given string. 

However, by constructing a maximum weight spanning tree with specified bounded diameter of 1, 

it still remained unclear if that will lead to producing the smallest D
2
FA. The construction of such a tree is 

hard in a nondeterministic polynomial time (Hopcroft, Motwani and Ullman 2001, pp. 419-420). Kumar 

et al. (2006) realised that what they required was a collection of bounded trees of maximum weight. But, 

while the problem still requires a polynomial time if the diameter bounds is assigned the value 1, which is 

typical of any maximum weight matching problem, the problem still remained NP-hard for larger 

diameters.  

Kumar et al. (2006) further employed the use of Kruskal‟s algorithm (Kruskal 1956, p. 48; 

Hopcroft, Motwani and Ullman 2001, pp. 414-419). Kruskal‟s algorithm constructs a minimal weight 

spanning tree from a given connected graph, with distinct positive real numbers attached to each edge of 

the graph. In the algorithm, edges are examined in decreasing order of their weights. The method also 

ensures that the addition of any selected edge does not create a tree whose diameter exceeds a specified 

bound. Afterwards the tree edges are used to define default transitions. In order to minimise the distance 

to the selected root from any leaf of any tree, the default transitions are made to point towards the roots of 

each spanning tree. 

To properly estimate the reduction objectives of the D
2
FA, a term called duplicate transition was 

introduced. Transitions were considered to be duplicates, when more than one of such transitions leads to 

the same next state for the same input symbol (Kumar et al. 2006, p. 345). After constructing the minimal 

state DFA from the selected regexps, both the normal and refined versions of the spanning tree are then 

used to construct the D
2
FA. Table 3.1 shows the default transition paths having a path length of 4. The 

table also shows that the refined spanning tree yields relatively less complex D
2
FA in comparison to the 

normal spanning tree. Column 1 of Table 3.1 represents the various content inspection DFA engines that 

have been constructed from the group of regular expression sets belonging to each separate engine. The 

Cisco regexp group containing 590 regexps originally had 97873 normal spanning trees on its DFA. After 

applying the refined version of the spanning tree with a bounded default paths of 4 edges, there was a 

27.67% reduction in the total number of spanning trees in the D
2
FA produced. Bro648 regexp group 

recorded the highest reduction after refinement with about 32.15% reduction. The Snort11 group of 

regexps recorded the lowest refinement with just 1.21% reduction in the total number of spanning trees. 

Table 3.1: Number of transitions in D
2
FA with default path length bounded to 4 (Kumar et al. 

2006). 

DFA Normal 

spanning tree 

Refined 

spanning tree 

% Reduction 

Cisco590 97873 70793 27.67 

Cisco103 115654 82879 28.34 

Cisco7 37520 36091 3.81 

Linux56 69437 66739 3.89 

Linux10 314915 302112 4.07 

Snort11 180545 178354 1.21 

Bro648 11906 8078 32.15 
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In summary the D
2
FA reduces the memory requirements at the expense of multiple memory accesses. 

Also splitting a regexp set into constituent groups only adds to the number of memory accesses and 

generates more D
2
FAs, all of which need to be processed in parallel (Kumar et al. 2006, p. 346). 

However, by using a memory-based architecture to implement the D
2
FA, the multiple-embedded 

memories were used to map each D
2
FA in such a way that a character is processed in one memory cycle 

only. Embedded memories provide ample bandwidth, which further reduces the space requirement as 

observed by Kumar et al (2006). This is made possible by splitting the regexps into multiple groups and 

creating a D
2
FA for each of them. The shortcoming of the D

2
FA is that it introduces an additional cost of 

several memory accesses for each input character. This is because the D
2
FAs may need multiple default 

transitions to consume a single character. However, to ensure that the memories do not become a 

throughput bottleneck, each D
2
FA was mapped to each memory in a way that there was minimal 

fragmentation of the memory space. This kept each memory uniformly filled, with each receiving a fairly 

equal number of accesses. Furthermore, the embedded memories give some added flexibility in the face 

of frequent changes made to the regexps during each update.  

c. Delta Finite Automata 

This section reviews the orthogonal DFA approach called the Delta Finite Automata (   ) described by 

Ficara, Giordano and Procissi (2008). The   in     is an indication of the differences between adjacent 

states. The     machine is capable of reducing the number of states and transitions in a traditional DFA, 

by requiring only one transition per character. This further reduces the overall memory requirements, 

while enhancing the speed of the     machine. The novel state encoding scheme of the     machine was 

tested in packet classification. 

Ficara, Giordano and Procissi (2008) began by observing that most adjacent states on many DFAs 

share many common transitions. The shareable feature makes it possible to eliminate most of the 

redundant transitions, while leaving behind only the unique ones. Most orthogonal DFA methods trade-

off size for fewer number of memory accesses per input character. However, DFAs could still be made a 

lot faster by taking advantage of smaller fast memories such as caches, while becoming smaller in overall 

size. This is possible with the right scheme in place as observed by Ficara, Giordano and Procissi (2008) 

The D
2
FA automata implemented by Kumar et al. (2006) (refer to Section 3.2.1-ii) inspired the creation 

of the     scheme. Figure 3.8a, and 3.8b are the same figures originally presented by Kumar et al. (2006) 

as shown in Figure 3.7. The same figures are used in this section for the purpose of comparison. You may 

recall that a default transition was introduced between states with similar outgoing transitions in the D
2
FA 

shown in Figure 3.7.  

A higher memory compression was achieved by applying some refined diameter-bounded 

maximum weight spanning tree algorithm. The same default transitions are similarly represented by thick 

lines as shown in Figure 3.8b. Furthermore, the     as shown in Figure 3.8c retains the advantages of the 

D
2
FA, requiring only a single memory access per input character. Figure 3.8a represents a DFA on the 

alphabet {a,b,c,d}, which recognise the regexps (a
+
), (b

+
c) and (c

*
d

+
) (Ficara, Giordano and Procissi 

(2008, p. 33). Figure 3.8b also shows a D
2
FA for the same regexps set as that of the DFA in Figure 3.8a.  

 The     scheme was designed to reduce the memory footprint of the states. This is achieved by 

keeping in memory a limited number of transitions for each state. Ficara, Giordano and Procissi (2008) 

observed that adjacent states shared most of the next states associated with the same input character. For 
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instance, if we jump from state 1 to state 2 as shown in Figure 3.8a, and we are able to remember the 

whole transition set of state 1 using a local memory, then all the transitions defined in state 2 are already 

known as well. The knowledge gained concerning the transitions defined in each state eliminates the need 

for loops on same character transitions. Also, because each character leads to the same set of states as 

state 1, it means state 2 can then be described with fewer amount of bits.  However a jump from state 1 to 

state 3, where the next character to be consumed is a c, will create a different set of transitions, starting 

from state 1 as shown in Figure 3.8a.  

 The result of what is described as shown in Figure 3.8c is the     equivalence of the DFA in 

Figure 3.8a, excluding the accompanying local transition set. The     now has 8 edges as opposed to the 

20 in the DFA of Figure 3.8a and the 9 edges in the D
2
FA of Figure 3.8b. All the input characters of 

    require only a single state traversal as opposed to that of the D
2
FA 

 

   (a) The DFA                                  (b) The D
2
FA              (c) The     

Figure 3.8: Automata recognising (a+), (b+c) and (c*d+) (Ficara, Giordano and Procissi 2008). 

Algorithm 3.1 describes the pseudo-code for creating     from an N-state DFA, given a character set of 

C elements.  The algorithm works with the transition table represented by t[s,c] of the input DFA. The 

t[s,c] is an NXC matrix, having a row per state (2008). The i
th

 item in a given row stores the state number 

to reach upon reading an input char i. The end result is the compressible state transition table represented 

as tc[s,c] used to store for each state, the required transition by the     alone. Any other cell of the tc[s,c] 

matrix is filled with the special LOCAL_TX symbol which is taken care of using a bitmap data structure 

such as the one by Becchi and Cadambi (2007, p. 1065). A bitmap is considered to be a data structure 

used to represent the merged states and their respective transition labels. Refer to Section 3.2.1d for more 

details on a bitmap.  

Constructing the     machine requires a step for every transition (C) of each pair of adjacent 

states (NXC) in the input DFA (2008). The     requires a time complexity cost of O(NXC
2
) time and 

O(NXC) space, because the structure is based upon an NXC matrix. The tc matrix is first initialised with 

EMPTY symbols by the algorithm, which then copies the first root state of the original DFA into the tc. 

The tc acts as a base for the continuous storing of the difference between the consecutive states. 

Furthermore, because some states have identical sets of transitions, only the transition set of one of the 

states will need to be stored and the rest deleted. All the references to those single states left are then 

substituted. The process is repeated until the number of duplicate states becomes 0. The number of 

transitions per state is reduced due to the efficiency of the algorithm. 
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for     1, C do 

 tc[   ]    t[   ] 

end for 

for s   2, N do 

 for     1, C do 

       tc[   ]    EMPTY 

 end for 

end for 

for Sparent    1, N do  

      for     1, C do 

     Schild [   ]    t[Sparent,  ] 

       for  y   1, C do 

  if t[Sparent, y]   t[Schild, y] then 

            tc [Schild, y]   t[Schild, y] 

  else 

  if  tc [Schild, y]    EMPTY 

       tc [Schild, y]   LOCAL_TX 

  end if 

         end if  

        end for 

    end for 

 end for. 

 Algorithm 3.1:Pseudo-code for the creation of the transition table tc of a δFA from the transition 

table t of a DFA (Ficara, Giordano and Procissi 2008). 

The lookup operation in a     as expressed in Algorithm 3.2 starts by reading the current state together 

with its entire transition sets. The corresponding entries to each transitions defined in the set read from the 

state is then updated in the local storage (Ficara, Giordano and Procissi 2008). Lastly, the next state snext is 

then computed simply by observing the proper entry in the local storage tloc as follows: 

procedure Lookup ( ,  ) 

read ( ) /* which is implied*/ 

for i   1,   do 

      if tc[   ]   LOCAL_TX then 

 tloc[ ]   tc[   ] 

     end if 

end for  

Snext   tloc[ ] 

return Snext 

Algorithm 3.2: Pseudo-code for the lookup in a δFA. The current state is s and the input 

character is c (Ficara, Giordano and Procissi 2008). 

Figure 3.9 shows the internals of the lookup example for the     as shown in Figure 3.8c. The circle 

marked state 1 of Figure 3.9 represent state 1, while its internals include a bitmap to specify which 

transition set are identified. The bitmap and transition set were defined during construction as explained 

by Ficara, Giordano and Procissi (2008). Given the input string “abc”, the machine starts with t = 0 in 

state 1, and then copies the completely specified transition set into the local transition set. Figure 3.9 
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shows that input character a is first read and then the machine moves from state 1 to state 2 (t=0 to t=1). 

The move to state 2 specifies a single transition in the direction of state 1 on input of character c. 

Moreover, state 2 is an accepting state (underlined in Figure 3.9). When moving to state 3 on input 

character b, the transition taken is not specified within state 2, but is kept in the local transition set. State 3 

now has a single transition specified also, but this time the one in the local transition set changes to 5. 

When input character c is read, the machine moves to state 5, which again is accepted and specifies a 

single transition toward state 1. The result is as shown in Figure 3.9 thus: 

 

Figure 3.9: δFA internals: a lookup example (Ficara, Giordano and Procissi 2008). 

In summary, the design described by Ficara, Giordano and Procissi (2008) compresses well for a 

composite DFA having no complex regexp patterns consisting of wild-cards. Also, the ability to copy 

transition sets enables quick retrieval and reuse of state information across the states, leading to further 

reduction in memory requirement. 

d. Non-equivalent States Merging with Bitmap Compression 

The approach by Becchi and Cadambi (2007, pp. 1064-1066) involves the merging of several non-

equivalent states within a DFA. The scheme simply assigns labels on the input and output transitions of 

the DFA. The concept of equivalence of states was initially described by Lin, Tai and Chang (2007) in 

more detail in Section 3.2.1b-i. A bitmap based data structure that represents the merged states and their 

respective transition labels was also introduced in the scheme by Becchi and Cadambi (2007). Current 

rules contain more complex regexps, and when implemented as composite DFAs they place a high 

demand on memory. The complexity of the patterns further makes software regexp search engines slow 

and non-scalable. The argument then remains whether or not a reduction in the memory requirement for 

DFAs could increase their speed of matching. There is also the question of whether the DFAs could 

become more scalable and easier to implement within software regexp engines or specialised hardware 

architectures. 

The approach by Becchi and Cadambi (2007, p. 1066) places no requirement on the transition 

between two states reaching a common destination as opposed to the DFA methods described by Kumar 

et al. (2006). The scheme implemented by Kumar et al. (2006) does not perform state merging, but rather 

attempts to eliminate redundant transitions to common destinations. The process of eliminating the 

redundant transitions is based on the criteria that two states reach the same destination, and have the same 

transitions based on a given input character. A description of a compact DFA data structure representing a 

DFA with merged states and transitions was described based on Algorithm 3.3 and Figure 3.10. The use 
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of a bitmap data structure for string matching on DFAs, which uses pointer indirection, was also 

introduced.  

The data structure in Algorithm 3.3 shows that each state is made up of a structure having next 

state pointers for each of the 256 ASCII characters. A bitmap-based data structure was used to maintain 

pointers to valid next states in the transition table. The data structure uses a bitmap indexed by the input 

character to generate an address into the transition table. The bitmap eliminates the need to maintain 

explicit next state pointers as descried by Becchi and Cadambi (2007). A value of „1‟ in the i
th

 position of 

the bitmap index indicates a valid next state transition by the input character having the value i. Also, by 

counting the number of 1‟s until the i
th

 bit is reached in the bitmap, the address into the related transition 

table is obtained. A „0‟ on the other hand in the bitmap shows that the next state pointer does not exist in 

the transition table. This makes the transition default to the start state. Algorithm 3.3 shows the algorithm 

that uses a naïve data structure to represent a state in a DFA. 

The DFA_state { 

    RegExList*accepted_regexp: 

    unsigned int*bitmap[8]: 

    DFA_state*next_state[256]: 

    DFA_state*failure; 

  } 

Algorithm 3.3: Basic naïve data structure representing a state in a DFA (Becchi and Cadambi 

2007). 

Figure 3.10a shows the bitmap for state 3 as shown in Figure 3.11. The lower part shows the bitmap and 

its transition table for state 3 from the example in Figure 3.11. The figure shows that the number of 

entries in the transition table is equal to the number valid outgoing pointers from state 3 which is 5. Also, 

the number of five 1‟s in the bitmap tallies with the effective outgoing transition from state 3 (which are 

characters „a‟, „f‟, „g‟, „h‟ and „i‟). However, it shows that the basic bitmap-based data structure illustrated 

in Figure 3.10a does not eliminate duplicate entries in the respective transition table. Becchi and Cadambi 

(2007) designed a more straight forward approach for eliminating the problem of duplicate entries.  

The solution required the use of a second bit for all locations in the bitmap as shown in Figure 

3.10b. The bit is used to indicate whether or not the address into the transition table must be incremented. 

However, there was a high memory requirement for alphabets that required large bitmaps due to their 

large cardinality. To mitigate the memory problem, one level of pointer indirection table was inserted. 

The table was placed between the bitmap and the transition table containing only three distinct next state 

entries. The bitmap then generates an address into the pointer indirection table, which in turn holds a 

pointer into the transition table. The pointer indirection table only requires 2-bits, and has a width that is 

O(log n), where n is the number of distinct next states. As a result sixteen such entries will require to be 

packed into a 32-bit memory. However, the two shortcomings of a bitmap-based data structure (Becchi 

and Cadambi 2007) are as follows:  

i. Counting of 1‟s is necessary for processing the bitmap and for obtaining an address into the 

transition table, but it was time consuming. 

ii. Loading up the bitmap needs numerous memory accesses.  
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It was acknowledged that the two issues could be resolved to a certain level by splitting a large bitmap 

into several smaller bitmaps, with each appended with some additional comment. Further observation also 

shows that a state in a DFA built from most pattern rules rarely have valid outgoing transitions based on 

all possible characters in the alphabet set. Rather, the state has only a few valid character class transitions 

to valid next states.  

Another observation was that the DFA has most of its transitions directed towards a default 

(failure) state which is the initial state. Notwithstanding, non-equivalent states could be merged and 

relabelled to produce a compact DFA with a reduced memory requirement and increased scalability. The 

labels 0 and 1 as seen within black the squares appearing on transitions going into states 3 and 4, 

represent all input transitions of state 3 and 4 as shown in Figure 3.11. All transitions that are not shown, 

lead to state 0 in the figure. Characters in the range such as [g-i] labelled as transitions into state 5 

indicate that any of the characters „g‟, „h‟, or „i‟ could make a basic transition to the destination state 5, 

with state 6 as the accepting state. Considering Figure 3.11 as a motivating DFA example, a non-

equivalent state merging technique was introduced to further reduce the size of the DFA in Figure 3.11. 

The process involved the merging of two or more non-equivalent states. 

   

  

Figure 3.10:  (a) Rudimentary bitmap-based data structure, (b) More compact bitmap-based data 

structure using pointer indirection (Becchi and Cadambi 2007). 

  

 

Figure 3.11: DFA for regexp (a[b-e][g-i]|f[g-h]j)k+. (Becchi and Cadambi 2007). 
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Figure 3.12 shows how the non-equivalent states 3 and 4 were merged together. The merging of the two 

states was possible even though the affected states do not transit to state 5 on the same input character. 

However, that is not a requirement for state merging in such a scheme. Also, each transition arc is 

denoted by the character on which the transition occurs followed by the transition label as shown in 

Figure 3.12. 

 

Figure 3.12: DFA after merging states 3 and 4 (Becchi and Cadambi 2007). 

The first task to be performed while merging two states is to label their transitions, which is necessary as 

merged states share the same data structure. During DFA traversal, when such a data structure is 

accessed, it is necessary to monitor how a destination state was reached. It is also necessary to be aware 

of which portion of the data structure to access. The only restriction in labelling is that all input transitions 

of a state from the original DFA must have the same label as described by Becchi and Cadambi (2007).  

After merging states 3 and 4, the new merged state is relabelled as state 3_4, with its output 

transitions represented with trailing labels. The transitions [g-i]/0 and j/1 indicate that next state 5 is the 

same state reached from state 3_4, on inputs g, h or i, with label 0, as well as input j with label 1. 

Transitions a/0,1 and f/0,1 show that a transition is made upon consuming characters „a‟ and „f‟ 

irrespective of the label used to reach state 3_4. As shown in Figure 3.13, transitions of the type a.0/0,1 

now appear, where the label after the dot (.) relate to the destination state and the label after the „/‟ symbol 

relate to the source state of the transition. The transition a.0/0,1 from state 3_4 back to state 1_2  

demonstrates that: 

i. The transition carries with it a label 0 that specifies its destination state 1_2, which is meant for 

the underlying original DFA state 1. 

ii. The transition is taken when its source state 3_4 receives a label 0 or 1. 

With non-equivalent states 1 and 2 also being merged, the DFA shows how the outcome looks like as 

shown in Figure 3.13. 
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 Figure 3.13: DFA after merging states 1 and 2 from the example of Figure 3.12 (Becchi and 

Cadambi 2007). 

The data structure for the merged state 1_2 as shown in Figure 3.14 uses the same bitmaps depicted in 

Figure 3.10 prior to the merging of the two states as shown in Figure 3.14. The pointer indirection table 

indexes the transition table, where the next state pointers are stored. The table then supplies the 

destination labels for the outgoing transitions (Becchi and Cadambi 2007, p. 1068). The data structure 

does not require storing the source labels because they are implicit. However, state merging requires that 

the data structures of all the affected states should be updated. 

 

Figure 3.14: Merged data structure for the state 1_2 of Figure 3.13 (Becchi and Cadambi 2007). 

Generally, two or more states can be merged to form a single state by introducing labels on their 

transitions. The states that are merged can then be represented using a data structure that holds the 

separate bitmaps. The structure is a combined transition table made up of the union of their separate 

transition tables. The structure also consists of the updated pointer indirection table for every one of the 

original DFA states, as well as a structure to store the labels. A description of the algorithms for creating 

the destination labels, merging and labelling was also explained by Becchi and Cadambi (2007, pp. 1068-

1070), details of which are not relevant to this thesis. 

 In summary, the approach describes a scheme that substantially reduces the memory footprint of 

DFAs while retaining the speed with guaranteed worst-case performance. This was achieved by using the 

concept of the non-equivalence state merging of a DFA. This is based on a transition labelling technique, 

with label reuse. Another important advantage of the scheme is that by merging states together, more 

common destinations for other states are formed, thereby opening up more chances for further merging of 

states, which translates to more memory reduction. However like most DFA approaches affected by 
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complex regexp patterns consisting of wildcards and constrained repetitions, the approach here has not 

discussed the effect of such patterns on the design.  

 Table 3.2 gives a summary of the approaches described in Section 3.2. The summaries highlight 

the pros and cons of each of the approaches discussed in Section 3.2.1. 

  Table 3.2: Summary of all approaches discussed in Section 3.2. 

Approach Summary 

1. String matching approaches:  

a. Compile-Search Algorithm by 

Thompson (1968). 

Pros: 

The approach utilised a compile search algorithm to 

create a context-search compiler. The compiler then 

generates an object language from an acceptable 

regexp considered as the source language. A signal 

is generated whenever an embedded string in the 

given text matches a given regexp. 

Cons: 

The approach is not suitable for complex regexp 

pattern matching. 

b. A Sub-Linear Search Algorithm 

by Boyer and Moore (1977). 

Pros: 

The algorithm searches for the characters of a given 

pattern in a text string precisely once. With the 

information gained by starting a search at the end of 

the pattern, the algorithm is able to make significant 

leaps through the given text that is searched. The 

search is made in worst case time O(nm) and 

average case time O(n/m), where m is the pattern 

length and n is the text length. 

Cons: 

The approach is only suitable for string pattern 

matching. 
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Table 3.2: (cont’d). 

Approach Summary 

2. Regexp matching approaches  

a.  Pseudo-Equivalent State Merging 

Technique by Lin, Tai and Chang 

(2007). 

Pros: 

The approach describes a technique that first 

compiles the matching string patterns into a FSM. 

The output of the FSM is asserted whenever any 

substring of the input strings matches the string 

pattern. The approach is efficient in reducing the 

number of states and transitions belonging to an 

original FSM, which ends up reducing the overall 

required memory size. 

Cons: 

Cycle problems created during the merging of FSM 

states limits the amount of pseudo-equivalent states 

to be merged. As such, the fewer the number of 

patterns that can be merged, the more the limitation 

placed on the memory saving objective.   

b. Delayed input FA (D
2
FA) by Kumar 

et al. (2006). 

Pros: 

The approach is able to reduce the overall memory 

requirement by incrementally replacing several 

transitions from a given DFA with a single default 

transition.  

Cons: 

The D
2
FA introduces an additional cost of several 

memory accesses for each input character. This is 

because the D
2
FAs may need multiple default 

transitions to consume a single character. 

c. Delta Finite Automata (     by 

Ficara, Giordano and Procissi (2008).  

Pros: 

This is a special finite automaton (FA) that exploits 

the differences between two adjacent states. The idea 

is based on the fact that most adjacent states on DFAs 

share common transitions. The ability to copy 

transition sets enables the quick retrieval and reuse of 

state information across the states. This leads to 

further reduction in memory requirement.  

Cons: 

The use of a bitmap as the data structure of choice 

becomes a bottleneck as the number labelled 

transitions belonging to merged states grows. 

d.  Non-Equivalent State Merging with 

Bitmap Compression by Becchi and 

Cadambi (2007). 

Pros: 

The approach is built upon a bitmap based data 

structure which is indexed by the input character to 

generate an address into the state transition table. The 

approach places no restrictions on the transitions 

between two states reaching the same destination. 

Furthermore, by merging non-equivalent states, more 

common destinations for other states are formed.  

Cons: 

Processing the bitmap in order to obtain an address 

into the transition table is time consuming. Also, 

loading up the bitmap needs numerous memory 

accesses.  
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3.2.2 FPGA-Based Approaches 

An FPGA device is a highly reconfigurable device. Also, the fine-grained parallelism provided by an 

FPGA device can reduce the space and processing time requirement (Sidhu and Prasanna 2001) of most 

NFA designs, if well exploited. The approaches for high throughput regexps pattern matching exist for 

evaluation based on DFAs or NFAs (Yu et al. 2006; Tripp 2008; Sidhu and Prasanna 2001; Mitra, Najjar 

and Bhuyan 2007; Wang et al. 2010, p. 209). A hybrid-FA approach (Becchi and Crowley 2007b) also 

exists. The limited parallelism provided by serial processors such as multi-core CPUs (Yu et al. 2006) 

makes it suitable to implement DFA designs, but inefficient for NFA designs. NFAs are better suited for 

devices such as FPGAs, because of the parallelism provided by such a reconfigurable device.  

There are quite a number of FPGA-based approaches which were implemented in different ways 

(Brodie, Taylor and Cytron 2006; Mitra, Najjar and Bhuyan 2007; Jiang and Prasanna 2009; Becchi and 

Crowley 2008; Tripp 2006; Chaves et al. 2008; Wang et al. 2010; Singapura et al. 2015). One of the 

earliest known form of NFA implementation that uses logic was the one implemented by Floyd and 

Ullman (1982, pp. 603-604). In the logic approach, a regexp was converted into an NFA by first parsing 

the regexps. Afterwards, the McNaughton-Yamada algorithm (McNaughton and Yamada 1960, p. 41) 

was employed to recursively produce NFAs for regexps: R1 + R2, R1R2, and R1*, where R1 and R2 are any 

arbitrary regexps. However, the reconfigurable design constructed in this thesis also exploits the logic 

provided by an FPGA device. A description of the design is first introduced in Section 3.2.2f, but fully 

described and implemented in Chapter 5. 

a. Pattern Matching Designs using Self-Reconfiguration  

i. Fast Regular Expression Matching using FPGAs 

Sidhu and Prasanna (2001) describe an algorithm that automatically parses a regexp into its constituent 

sub-expressions. The algorithm then applies the  -NFA rules described by Floyd and Ullman (1982, pp. 

607-608) to construct an NFA that matches the same strings as the given regexp. The states of the NFA 

described by Sidhu and Prasanna (2001) were constructed using a technique called one-hot encoding 

(OHE). The OHE technique uses a Flip-Flop (FF) to represent each state in the NFA. A bit value of 1 

stored in each of the state FFs signifies that the state is currently active. The technique was also adopted 

by Baker and Prasanna (2004, p. 3).  

Figure 3.15a – 3.15d shows the FPGA implementations for the  -NFAs representing the regexps r1 

and r2 described in Figure 2.1 – 2.3 of Section 2.3 respectively. Algorithm 6 implements the logic 

structures in Figure 3.15a - 3.15d. The i port of the top level logic structure is permanently high (bit value 

1), since the given NFA is required to match strings beginning at any position in an input text. Another 

reason is because NFAs normally process a single string and determines if a match has occurred or not. 

The o port is connected to a FF that represents the accepting state of the NFA.  

Figure 3.15a, describes the logic structure for the NFA that matches a single character, with the FF 

relating to the accepting state removed. Figure 3.15b describes the logic that implements the NFA for the 

regexps r1|r2. An OR-gate is used as the only logic to combine the outputs of the NFAs N1 and N2 

representing the regexps r1|r2. Figure 3.15c describes the logic that implements the NFA for the regexp 

r1r2, which requires only three wired edges. Figure 3.15d shows the logic implementation for the regexp 

r1
*
. An OR-gate was used as the logic that combines the output of the two inputs in order to generate the 

output for the accepting state.  
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It was further observed that while implementing NFAs as logic, if all the source input FFs to the 

destination input FFs is on  –transitions, then the FFs can be removed without being implemented at all.  

Also, because  –transitions from accepting states only help in building bigger NFAs, then the FFs relating 

to the accepting states can also be removed. This is illustrated as shown in the logic structures of Figure 

3.15a - 3.15d for the given regexps r1 and r2. The arrows in the figures are wires. 

 

 

 

 

 

 

 

Figure 3.15: Logic structures for the regexps (a) single character, (b) r1|r2, (c) r1r2, (d) r1*. 

(Sidhu and Prasanna 2001). 

During the NFA construction, the algorithm accepts the regexp in postfix form. The postfix form removes 

the need for the “AND” metacharacters and helps to streamline the algorithm. The postfix form is 

obtained by performing a postorder traversal of the syntax tree of a given regexp. The algorithm makes 

use of a stack data structure and depends on the following placement and routing subroutines: place_char, 

place_|, place_., place_* as seen in Algorithm 3.4. The subroutines place the logic structures accordingly 

for a character. The metacharacters: char, |, . ,*, return a pointer reference to the placed structure (Sidhu 

and Prasanna 2001, pp. 230-231). The placement and routing subroutines take a constant O(1) time, while 

the algorithm is constructed in O(n) time, where n is the length of the regexp. The constructed NFA also 

processed one character each clock cycle in O(1) time. Although it took only O(1) time to process a 

character on a serial machine, it required about O(2
n
) time to construct the equivalent DFA.  

Implementing the NFA construction algorithm on FPGA architecture using self-reconfiguration 

requires that the NFA mapping time should be kept as small as possible. Self-reconfiguration refers to the 

ability of a device to generate configuration bits at runtime and also be able to modify its own 

configuration. This makes it possible for an NFA to be constructed as a configured logic on the device 

itself. The device that that can be configured to perform self-reconfiguration is referred to as a Self-

Reconfiguration Gate Array (SRGA). The mapping time consists of the time required to construct the 

NFA and produce configuration bits for the NFA logic (Sidhu and Prasanna 2001).  

Furthermore, it is essential that the overall mapping time should be minimal, because the NFA is 

constructed only at runtime during the user input of the regexp. The NFA construction algorithm was 

implemented as a program that took a regexp and generated its output as NFA logic. The output is in the 

form of an HDL description and technology mapped netlist (refer to Section 2.7). The mapped netlist is 

then placed and routed or straight away made to produce the required configuration bits (Xilinx 2010, pp. 

136-137; Sidhu and Prasanna 2001, p. 232). Algorithm 3.4 generates the corresponding NFA from the 
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regexp ((a|b)*) (cd) using Self-Reconfiguration implementation. Algorithm 3.4 performs the placement 

and routing operations. It is vital that the logic cell in which a given logic structure is described should be 

properly configured. By design, the pre-incremented counters row and col, together with registers row1, 

col1, row2 and col2 are used for the purpose of placement and routing. The stack pushes or pops a „row, 

col‟ pair in a single operation. Each of the switch cases for |, *, ., and char represent the subroutines. The 

clock cycles indicated on the right hand side of Algorithm 3.4 indicate the time it takes to configure the 

logic structures for each of the subroutines: char, |, . ,*,. 

                Clock Cycles 

1     row=I; col =0; i=0;                   [1] 

2  while(i<regexp_len) 

3  {  

4   switch(regexp[i]) 

5     {  

6       case char: place_char (regexp[i], col);       [46] 

7       push (0, col);                     [1]               

8               ++col;                [0]   

9 

10      case   | :  pop(&row1, &col1);                 [1] 

11               pop(&row2, &col2);               [1] 

12               place_|(row,col2);                [22] 

13               route_row(col2, col1);            [10] 

14               route_col(row, row2);              10] 

15               push(row, col2);              [1] 

16               ++row;                             [0] 

17       

18      case   . :  pop(&row1, &col1);                 [1] 

19               pop(&row2, &col2);               [1] 

20               place_.(row,                      [14] 

21               route_row(col2, col1);            [10] 

22               route_col(row, row2);             [10] 

23               push(row, col2);         [1] 

24               ++row;                             [0] 

25 

26      case   * :  pop(&row2, &col2);                 [1] 

27               place_*(row, col2);             [26] 

28               push(row,col2);                    [1] 

29               ++row                              [0] 

30 

31     } 

32   ++i 

33  } 

34       pop(&row, &col);          [1] 

35       route_input_high(row, col);                  [3] 

36       route_output_high_ff(row, col);        [3] 

Algorithm 3.4: NFA construction algorithm using Self-Reconfiguration (Sidhu and Prasanna 

2001). 
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In summary, the approach by Sidhu and Prasanna (2001) introduced a self-reconfiguration process. The 

process improved the construction time for an NFA by several magnitudes. The design accelerated the 

NFA process of automatically generating the required netlist. The netlist is then implemented and used to 

produce the configuration bits ready for loading the design onto a target FPGA device. The approach also 

set the pace for several other approaches that consider building reconfigurable designs.  However, the 

approach needed to be extended further to perform multi-character and multi-pattern matching (Sourdis 

and Pnevmatikatos 2004; Brodie, Taylor and Cytron 2006; Yamagaki, Sidhu and Kamiya 2008, 

Singapura et al. 2015).  

b. Multi-Character Regexp Matching Designs 

The concept of multi-character matching was explained by Becchi and Crowley (2008, p. 52) based on 

the scheme called k-DFA. The value k is the number of characters of a given input string consumed per 

single clock cycle. For a given DFA defined over an alphabet  , the non-compressed k-DFA has | |k
 

outgoing edges per state. The ability to make the k-DFA perform alphabet-reduction and implement 

default transitions (Becchi and Crowley 2007a, p. 147; Kumar et al. 2006) gave it a distinct advantage.  

 The concept of alphabet reduction is motivated by the example in the FSM scheme described by 

Brodie, Taylor and Cytron (2006, p. 194). The scheme uses only a small subset of the entire alphabet. The 

benefit of the default transition relates to its ability to remove all redundant transitions relating to DFAs 

This is achieved by taking advantage of the various state transitions driven by the same input character 

(Becchi and Crowley 2008; Kumar et al. 2006). This ensures that if the stride doubles, the number of 

states will be guaranteed to stay the same, even though the number of transitions increases very quickly.   

Bispo et al. (2007, p. 178) reviewed the current status and open issues regarding the synthesis of 

regexps targeting FPGAs. It was observed in their review that, multi-character matching per clock cycle 

was a viable option for a pattern matching scheme to achieve high clock frequency. However, with 

overlapped matching involved, such a design can lead to undesired results as all possible byte alignments 

(Clark and Schimmel 2004) must be put into consideration. The scheme that addressed the problem of 

overlapped matching was implemented by Yu et al. (2006). Also re-write rules were used to create more 

efficient regexps by eliminating the problem of repeated searches, and ensured that fewer passes were 

involved in the matching processes.  

A scalable pipeline architecture, which extended the AC machine to create an extended machine 

called Aho-Corasick DFA (AC-DFA) (Jiang, Yang and Prasanna 2010, pp. 3-6) was implemented. The 

AC-DFA converts a given string pattern with n characters into a DFA with n states. Thus, the AC-DFA 

takes O(m) time to process any given input stream that contains m characters. Beginning at the root of the 

AC-DFA, to the end of each pattern, a state is added per character to the tree, by each pattern. With the 

traditional AC-DFA, a single memory block holds only one active state at a time. The AC-DFA normally 

has cross transitions generated based on failure transitions, which differ from the traditional AC-DFA. 

The AC-DFA is made up of only a few staged processes aimed at finding the minimal pipeline depth of 

the DFA. The depth of a state on the AC-DFA is the directed distance from the root to that state. The 

minimal depth was achieved by removing most of the cross transitions in the AC-DFA rather than 

eliminating all the failure transitions like the other pipelined solutions do. Removing all the failure 

transitions can only lead to a deep and non-scalable pipeline design as observed by Jiang, Yang and 

Prasanna (2010).  
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Furthermore, in order to increase the throughput of the AC-DFA capable of performing multi-

character matching, a compressed AC-DFA was built by Alicherry, Muthuprasanna and Kumar (2006, pp. 

189-190). This version of the compressed AC-DFA can process W (W   1) characters per clock cycle, 

where W is the input width of the character input. The scheme divided each pattern into W-byte blocks 

used to construct the AC-DFA (Jiang, Yang and Prasanna 2010, p. 7). Afterwards, the W instances of the 

compressed AC-DFA were executed in parallel.  

i. Parallel String Matching Engine for a NIDS 

Tripp (2006, p. 21) describes an approach where a FSM operates on a single byte wide data input. The 

approach assigns a different FSM for each byte wide data path from a multi-byte input data word. The 

given search strings are first split into many interleaved substrings. Subsequently the outputs from the 

separate FSMs are then combined in a way that enables string matching to be performed in parallel across 

multiple FSMs. The approach builds upon the approach designed by Tripp (2005, p. 28), where a standard 

table-based FSM implementation was preceded by a preliminary multi-byte compression process that 

uses classification of inputs. The compression process reduces input data into a series of tokens, designed 

to run at a rate of one word per clock cycle.  

The approach described by Tripp (2005) explained the sharing of pre-FSM classifiers requiring 

some high logic cost for implementation. The approach provided a unique solution for resolving priority 

conflicts that may likely occur when some input data matches more than one of the patterns under 

consideration. Such an occurrence was attributed to the presence of wildcards in the patterns, which 

divided the ordering into two parallel systems. By using „primary‟ classifiers, all strings (Tripp 2005, p. 

31) are matched separately from those terminating with real characters. Those strings starting with 

wildcards are matched using the „secondary‟ classifiers. The approach described by Tripp (2006) was also 

designed to match the start and ends of strings which have a probable chance of occurring part way 

through a streaming data word. The process also requires the matching of the parts of the start and end 

string having wildcard characters. Higher performance was achieved by constructing a FSM that could 

match multiple bytes of input characters per clock cycle.  

Furthermore, given a w-byte wide input word, w different FSMs each of which is trying to match 

all w instances in the substrings consisting of a w-way interleaved search string was constructed as shown 

in Figure 3.16a. Each FSM has a w-bit match vector (Tripp 2006) output specifying the substrings 

matched per clock cycle. It follows that, if all the w substrings appear in a given order through the all w 

FSMs at the appropriate time, then a match is reported to be found for the search string. Figure 3.16b 

shows the set of search substrings with w = 4. With the occurrence of each of the last 4 bytes of the search 

string likely to relate to the instance when each of the related substring reports a match. Furthermore, a 

string alignment process was employed to tackle that. 
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Figure 3.16: (a) Matching interleaved substrings (Tripp 2006). 

 

 

 

 

 

Figure 3.16: (b) Interleaved substrings of the search string “the-cat-sat-on-the-mat” (Tripp 2006). 

However, the problem associated with table based compression is usually that of significant memory 

requirement. For instance, a Mealy machine with s states, i input bits and o output bits, the memory M 

requirement in bits could reach:  

 M= (⌈     ⌉ +o).    ⌈     ⌉ (Tripp 2005, p. 28).   

The rest of the approach describes how to minimise the memory size by creating a packed array (Tripp 

2008, p. 4), which could be implemented in an FPGA. Each entry also contains the base address of the 

state vector in the packed array for deciding the next state. The algorithm amounts to significant memory 

savings for larger FSMs since it avoids the use of two dimensional arrays. 

In summary, the approach could be further improved if the memory requirement for the state 

decoding can be further decreased by exploiting the redundancies that exist within the table. This could be 

achieved by exploiting the transition redundancies, using a form of memorisation based on a local 

transition set that can be attached to each state of the w FSMs. 

ii. Increased Striding with Run-Length Coding Scheme 

Brodie, Taylor and Cytron (2006) described a novel FPGA-based based pipelined FSM. The FSM 

employs encoding and compression techniques in order to improve the capacity and speed of character 

matching. The compiler decodes a set of regexps and places them in optimised design structures.  

The compiler circuit is first given a set of regexps, and then the regexp circuit implements the high 

throughput FSMs. Alphabet encoding was used to minimise each of the FSMs resources. High throughput 

and encoding was combined together to produce the symbol Equivalence Class Identifiers (ECI) encoding 

blocks. This was achieved by employing directly addressed tables and pairwise combination. The FSM‟s 

tables were then compressed and the resulting transition information is deployed in the Indirection and 

Transition Tables (ITT) (Brodie, Taylor and Cytron (2006, pp. 192-193). 

Word size = 4 

Search string =             “the -cat-sat-on-the-mat         ” 

Substring 0 =           “           e      t     t     -     -       ”           =   “ett --- ” 

Substring 1 =           “          -      -      -     t     m     ”           =   “----tm ” 

Substring 2 =           “     t     c     s     o    h     a      ”           =  “tcsoha ” 

Substring 3 =           “     h     a    a    n     e      t      ”           =  “haanet ” 
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The size of the table posed a practical limitation to the length of an input sequence that can be 

contained in any computing platform with fast storage. The index into the encoded table is called an ECI. 

An algorithm of O(| |k| |) divides   (alphabet) into a reduced set of ECIs (called ECDs in the design 

implemented in this thesis). The algorithm was used to form the columns of the given transition table  : Q 

x     Q, and the index into the encoded table is called an ECI. The FSM described by Brodie, Taylor and 

Cytron, constructs the pattern \$[0-9]+(\.[0-9]{0,1} with symbols: $, ., [0-9], and all other ([^$.0-9]) 

symbols not in the pattern (2006). The symbols are then represented by the corresponding ECIs: 0, 1, 2, 

and 3 respectively (Brodie, Taylor and Cytron 2006).  

The logic for converting a sequence of m symbols into an ECI suitable for presentation to a 

transition table became necessary for processing an input stream at high throughput. Furthermore, a direct 

technique for performing such an operation would require executing pairwise combinations using directly 

addressed tables. Theoretically, it means the method could be used to allocate an ECI to an arbitrary 

number of input symbols. Also, memory efficiency significantly reduced as the number of symbols 

covered in the final ECIs increased. Furthermore, with increased stride came the problem of more 

memory requirement. The striding process involves the consumption of multiple symbols in a single 

clock cycle by the FSM. The algorithm responsible for increasing the striding process is invoked 

repeatedly. Each time it is invoked, it doubles the number of symbols processed per clock cycle. 

Furthermore, to remedy the memory problem attributed to the increasing memory requirements, Brodie, 

Taylor and Cytron employed the use of a run-length coding scheme. The coding scheme is used to cut 

down the storage needs for a sequence of symbols that display sufficient redundancy.  

However, the coding scheme is only efficient whenever a significant amount of repetitions is 

found on a given input string. The idea behind the scheme was to be able to code a string say a
n
, where n 

is the run-length and a is the symbol using the notation n(a). For instance, the string 

“aabbbbaaaaaaabbbaabbaaa” is coded as 2(a)4(b)7(a) 3(b)2(a)2(b)3(a). As such, if each symbol and run-

length requires a byte of storage, then the example given would reduce the total amount of bytes needed 

from 23 bytes to 14 bytes only. The equivalent run-length coded transition table for the pattern \$[0-

9]+(\.[0-9]{0,1}is as shown in Figure 3.17. The 3-tuple entry 5(B,1,0) as seen in column 0, for state A of 

Figure 3.17 is read thus: n(next state, restart flag, accept flag). The value n is the run-length value. The 

restart flag indicates a restart transition, while the accept flag indicates an accept transition. The next state 

is the state transited to upon consuming the ECI value of 0 (which is the $ character). For instance, the 3-

tuple 5(B,1,0) indicates that there is a transition from state A to B on the input of the character $, which is 

to be restarted and not accepted. Even though the column compression technique saves memory, it also 

intensifies the cost of memory access to the transition table in order to obtain a chosen entry. For instance, 

from the ECI value 2 column of Figure 3.17, we can see that the run-length code for 1(D,0,1) is repeated 

twice. To solve the problem, a technique was introduced that uses indirection and transition tables 

(Brodie, Taylor and Cytron 2006). 
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States 

ECI 

0 1 2 3 

A 5(B,1,0) 3(A,1,0) 1(A,1,0) 5(A,1,0) 

B   1(D,0,1)  

C   1(E,0,0)  

D  1(C,0,0) 1(D,0,1)  

E  1(A,1,0) 1(A,0,1)  

Figure 3.17: Run-length coded transition table (Brodie, Taylor and Cytron 2006). 

The technique for the run-length coded table was optimised to use pre-computed prefix sums. The scheme 

places compressed columns in physical memory efficiently. The indirection table has a pointer used for 

reading the first memory word from the Transition Table Memory (TTM). An index was also created, 

which serves as the address where an entire column is accessed, by reading w successive words from the 

TTM. The w successive words are computed with x being the number of entries per memory word (2 * 5 

entries per word, for a dual-port memory) as follows: 

w   ⌈
           

 
⌉ 

The index and count values determined which entries in the first and last memory words were used in the 

column. The indirection table and the TTM were organised in a given way, and used by the state select 

block of the design (Brodie, Taylor and Cytron 2006, p.197). Further optimisations were later made to the 

final indirection table and the TTM. The optimisation helped to minimise the number of memory accesses 

to the run-length coded TTM using a unique memory packing scheme. 

In summary, the approach is suitable for implementation in FPGAs. However, the FPGA 

implementation produced a throughput of 4Gbps, and clocked only at 133MHz. The overall design was 

also limited by accommodating no more than a 1000 REMEs. 

c. Common Prefix, Infix and Suffix Matching Designs 

The approach described by Hieu et al. (2011, p. 108) compiles regexps with a view to optimising the 

hardware resources available in a target FPGA. Firstly, a technique which involved the sharing of 

common infixes in regexps was implemented. The design has the ability to recognise overlapped matches 

(Yu et al. 2006, p. 96). Secondly, the technique that constructed five adaptive building blocks was also 

described. The block designs combined the separate building blocks together to create the required 

hardware for a given set of regexps. Thirdly, a technique which automatically generated regexp pattern 

matching engines straight from the Snort rules database was also developed. 

The regexp matching architecture as shown in Figure 3.18 is composed of four main modules. An 

incoming input character obtained from the data FIFO is supplied to the character matching module in 

every clock cycle. This ensures that all current characters and character classes are matched. The output 

signals of the character matching module are then supplied to all the regexp matching engines (REMEs) 

residing within the PCRE matching module. Every REME is made up of a regexp constructed from some 

building block (BB). The common prefix matching process is implemented inside the PCRE matching 

module, while the common infix sharing process is handled separately in the infix matching module. 

Lastly, all matching signals are collated and encoded through the encoder module (Hieu et al. 2011). 



CHAPTER 3 

APPROACHES TO REGULAR EXPRESSION PATTERN MATCHING  

56 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18:Top-level diagram of regexp matching system (Hieu et al. 2011). 

Extracting common prefixes shared between multiple regular expressions was achieved by building a 

modular NFA in a step-wise order (Hutchings, Franklin and Carver 2002; Sourdis and Pnevmatikatos 

2004; Becchi and Cadambi 2007; Yu et al. 2006; Lee et al. 2007; Lin et al. 2006). In the NFA, all regexps 

are converted and joined together with the same start state (Hieu et al. 2011). The next step involved 

applying the algorithm to reduce all modular NFA states which share common accepting character and 

incoming states. 

However, with the infix sharing process there was a difference, because care is needed in the 

design to avoid false positive matches. This is because the infix is situated right in the central position of 

the pattern, which necessitated keeping track of the previous sub-match information.  In order to illustrate 

the concept, two regexps “abcdef” and “cdcdeg” were considered the example of patterns which share a 

common infix sub-pattern “cde” (2011). The implementation directly routes the output of the infix block 

to the two remaining sub-patterns. This guaranteed that all matches would be met, with the possibility that 

it could also lead to a false positive match. For instance, considering an input string like “abcdeg”, the 

match result will be reported against the pattern “cdcdeg”, which should not be. The reason is that, the 

previous successive match prefix was lost at the infix sharing block. As a result, by the time the output of 

infix block is made high (signal = „1‟), it will be difficult to establish which of the two patterns the signal 

originated from (Hieu et al. 2011; Lin et al. 2006). 

In order to address the problem with the infix issue, Hieu et al. (2011) designed a new sharing 

scheme. The new scheme kept track of all previous matches and extensively handled the problem of 

overlapping matches as shown in Figure 3.19. The scheme operated by replacing the common infix by a 

shift module in each regexp. The shift module was constructed using a k-bit shift register (Xilinx 2012c), 

with k as the length of the infix. The output of both the infix and shift module blocks are then ANDed 

before sending it to the suffix block, in order to match a signal from the prefix sub-pattern.  

 

 

 

 

 

 

in 

Character Matching Module 
PCRE Matching Module 

Input 

8 

out 

a 101101 
b  100001 
c 110011 

. . .  

. . .  

Infix Matching Module 

Encoder 

Module 

1 
B B B B

REME 1 

match 

REME 

REME 

prefix 

REME 

Infix 

Infix 



CHAPTER 3 

APPROACHES TO REGULAR EXPRESSION PATTERN MATCHING  

57 

 

 

 

 

 

 

 

 

Figure 3.19: The new infix sharing architecture (Hieu et al. 2011). 

The logic cost attributed to the use of 8-to-256 decoders (Clark and Schimmel 2003, p. 957; Clark and 

Schimmel 2004, p. 251) for handling character classes can be high (refer to Section d). However, the 

output signals from each of the decoders indicate that one of the 8-bit characters is matched. The 

increased cost of logic attributed to the decoder is due to the high number OR gates required when 

character classes are involved. Hieu et al. (2011) thereby utilised a Block RAM Centralised Character 

Matching (BCCM) scheme to handle character class matching instead. The BCCM has a depth of 256, 

with a width that is reliant on the number of unique characters in the regexp set. Data is then read as a bit 

vector of 256-bits, with each bit in the vector considered to be a match for the individual NFA states.  

 Accordingly, separate bits are automatically transmitted to applicable BB matching circuits. 

However, in the scheme it meant that each character matching circuit costs one 256-bit column in BRAM. 

While it is efficient for character class inputs, it will be a waste of memory for single character inputs. 

However, the memory waste could be mitigated by allowing only a single instance of similar characters in 

memory and sharing (Hieu et al. 2011) matching signals among the various REMEs. This will guarantee 

that the scheme will have no redundancies attributed to combinational logic. This will also reduce the 

number of LUTs utilised for building the block circuits.  

Further optimisations were also performed to gain more efficiency in the PCRE to NFA hardware 

implementation scheme such as the re-writing of regexps with constrained repetitions (Long et al. 2011, 

Yu et al. 2006). The process involved re-writing patterns with a small number of repetitions such as: n<3, 

where n is the number of repetitions. Without such optimisation effectively in place, the process could 

lead to a lot of logic and memory requirements. The optimisation is especially required when utilising a 

counter-based scheme like the one described by Long et al. (2011, pp. 67-68). For instance, an expression 

like a{3}, could be easily replaced by the simple expression “aaa” instead (Hieu et al. 2011, p.109). Also 

a single character option in an expression like “(a|b|c)” could easily be replaced by the character class 

“[abc]”, thereby eliminating the need for use of three OR-gates. 

In summary, the scheme sacrificed throughput for a reduction in the logic circuit cost. This is in 

comparison to the other decoding approaches. This implied that fewer LUTs and FFs costs are incurred, 

while enjoying the benefit of an average throughput. Moreover, there is always a trade-off between 

having to increase throughput and obtaining lower logic circuit costs with such approaches.  

d. Shared Character Decoding Designs 

i. Extended Shared Decoding Scheme 

The scheme described by Clark and Schimmel (2004, p. 249) is a more scalable FPGA approach used for 

pattern matching. The approach implemented by Clark and Schimmel is capable of sustaining a 

throughput in the ranges of 1 - 100 Gbps. The approach offered a trade-off between density and 
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throughput (2004). The density refers to the number of utilised logic circuits used within a limited circuit 

area. There is a significant advantage attributed to pattern matching in hardware such as FPGAs. 

However, performance degrades rapidly if such patterns are implemented in software-based designs 

(Becchi and Crowley 2007b; Yu et al. 2006; Kumar et al. 2006; Lin, Tai and Chang 2007). 

The scheme described by Clark and Schimmel (2004) retained and built upon the character shared 

decoding approach described by Clark and Schimmel (2003). The approach by Clark and Schimmel 

(2003) substituted comparators for decoders during implementation. However, the approach described by 

Clark and Schimmel (2004) achieved a higher throughput, by processing multiple input characters in 

parallel (Brodie, Taylor and Cytron 2006; Sourdis and Pnevmatikatos 2004; Tripp 2006; Sourdis and 

Pnevmatikatos 2003) as shown in Figure 3.20. To process n characters per clock cycle, the pattern 

matching circuit required n decoders. Each of the decoders decodes separate input characters per clock 

cycle. A higher throughput is guaranteed by the approach, but density was sacrificed in exchange for a 

higher throughput. 

By shifting n character inputs at once, a pattern may start at any given location within each of the 

n-character matching blocks. The approach made it necessary to scan for all patterns at every n possible 

offsets. Furthermore, n parallel NFAs were required by every pattern matcher to find pattern matches at 

all offsets. Each pattern matcher has an output that indicates when a match is obtained at any of the 

offsets. The pattern matches are aggregated through an AND gate. After the last packet is processed, k-

match signals are then collected in a k-match vector. The signals represent the outputs from the various 

NFAs within the various pattern matching blocks. The match output signals are then forwarded for 

onward packing into a 32-bit word output encoder (Clark and Schimmel 2004, p. 252). 

Every logic element (LE) in the design could implement at most a four-input logic gate and a FF. 

As such, a single LE was capable of matching up to four characters at once. The formula for computing 

the upper bound on the number of FPGA logic elements was proposed. The formula depended on the 

length of the pattern l, and the input width n. With the size of n greater than l, extra logic savings was 

achieved (Clark and Schimmel 2004, p. 252). This is because, the match function does not have more 

than l+1 inputs. More savings are achieved if the size of n increases, since l+1 remains the same. The 

ratio of LEs per pattern matcher, when n is greater than l is summarised as: 

LEs/Matcher = ⌈
   

 
⌉ x  (⌈
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Figure 3.20: Pattern matching module using a multi-character decoder NFA (Clark and 

Schimmel 2004). 

In summary, the approach is quite beneficial in terms acquiring higher throughput. This was achieved by 

using a shared character decoding approach to perform multiple character matching. However, by 

increasing the number of patterns matched, the design will be impractical for matching patterns having 

wildcards and character classes with constrained repetitions (Becchi and Crowley 2007b; Yu et al. 2006) 

and (Long et al. 2011). This is because, such patterns are capable of increasing the memory bandwidth 

and other logic circuits required, and that will be a major bottleneck to such a design. 

e. Regexp Matching Engine Designs  

i. Systematic Translation of Compact Matching Engines 

The software by Yang and Prasanna (2009) systematises the translation of regexps into compact and high-

performance regexp-NFAs (RE-NFAs) (Yang, Jiang and Prasanna 2008). Given a fixed number of fan-

out transitions per state an n-state, m-byte-per-cycle REME (Mitra, Najjar and Bhuyan 2007; Yang, Jiang 

and Prasanna 2008; Ganegedara, Yang and Prasanna 2010) is built in O(n x m) time and requiring O(n x 

m) memory. The whole circuit realised occupied no more than O(n x m) slices (Xilinx 2012a, p. 7) on the 

FPGA. However, Yang and Prasanna (2012) used a clever algorithm to create a spatially stacked n-state 

RE-NFA with max fan-out d in O(n x d) time, and produced a circuit that only utilised O( n x m x d
2
) 

area. Thus recursively, Yang and Prasanna (2012) was able to construct an n-state m-character REME in 

O(n x d x log2m), starting from a one-character matching circuit for an n-state RE-NFA.  

The focus of the design developed by Yang and Prasanna (2009) centred on the automatic parsing, 

conversion and construction of REMEs implemented by Yang, Jiang and Prasanna (2008). The REMEs 

were constructed using the regular expression matching, nondeterministic finite automata (RE-NFA) 
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architecture for a completely automatic FPGA implementation. The process involved in the construction 

of the REMEs was based upon the following components as outlined by Yang and Prasanna (2009):  

i. Dynamic translation from regexp parse tree to an even and segmental RE-NFA. 

ii. Programmed construction of RTL (refer to Section 2.7) codes in VHDL. This involved the 

creation of a spatially stacked circuit, a configurable number of times for multiple character 

matching (Brodie, Taylor and Cytron 2006; Sidhu and Kamiya 2008). 

iii.  Distribution of centralised character classification (Hieu et al. 2011; Long et al. 2011, p. 72) in 

BRAM, which is designed for up to 256 REMEs based on trivial heuristics (Yang and Prasanna 

2009). 

iv. Programmed construction of up to 16 pipelines in a two-dimensional layout. 

v. Development of a „benchmark generator of regexps with configurable pattern complexity 

parameters [namely] state count, state fan-in, loop back and feed-forward distances‟ (Yang and 

Prasanna 2009). 

The REME construction is in three phases: (1) parsing of the regexps into tree structures, (2) use of the 

modified McNaughton-Yamada (MMY) construction for creating the RE-NFAs, and (3) mapping of the 

RE-NFAs into structural VHDL suitable for FPGA implementation. The MMY parsing process required 

no  -transition-only nodes to be introduced, as described by Yang, Jiang and Prasanna (2008, pp. 32-33). 

The process of converting the regexp parse trees to NFAs retained the MMY used by Yang, Jiang and 

Prasanna (2008, p. 32). During the process, a selection rule was applied thus: 

i. Only patterns of average lengths were selected, and patterns that are too short or simple were 

avoided such as: ab{2} etc. 

ii.  Identical regexps in separate rules are considered to be one. 

iii. Regexps with long repetitions were avoided, such as regexps containing “[^\n]{256}”. As is the 

case with the own approach. 

iv. Regexps requiring back references were also avoided. 

The process of translating RE-NFA to VHDL (Yang and Prasanna 2009) required that each pair of nodes 

inside a lightly shaded ellipse is mapped to an entity statebit with one parameter as seen in Figure 3.21. 

The parameter is the number of input ports determined by the number of prior states that directly move to 

the present state. All inputs combine to a single OR gate within the entity statebit. This is trailed by 

character matching through AND logic, together with a state value register. The single bit output value 

attributed to the register is joined to the inputs of the immediate next states (Yang and Prasanna 2009) as 

shown in Figure 3.21. 

 

Figure 3.21: A modular NFA for “\x2F(fn|s)\x3F[^\r\n]*si” constructed using the MMY rules 

(Yang and Prasanna 2009). 
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The use of a BRAM-based character classifier to match any given 8-bit character class was described in 

the architecture by Yang, Jiang and Prasanna (2008) and Hieu et al. (2011). The classifier utilises a 256-

bit column of BRAM for every input character class. A function is called to observe and to associate each 

state‟s character class to the character class entries stored in the BRAM. Every 1-bit outcome is then 

routed from the BRAM to the correct entity statebit as input to the AND gate. This makes it possible to 

implement an n-state RE-NFA where n > 1, on a single BRAM having no more than 256 x n-bits using a 

two-phase approach thus: 

i. The first phase gathers a set of selected character classes from a regexp. A floating-point sorting 

key is then assigned each set. The assignment is based on the number of times a character class 

appears just once in the regex, and then its assigned sorting key becomes its index position 

within the regexp. Otherwise, the average of all its index positions within the regexp becomes 

the sorting key if the character class appears multiple times within the regexp.   

ii. The second phase sorts the unique character classes based on their sorting keys and instantiates 

them as BRAM columns. Each column is assigned and linked with the identifier of the 

instantiated character class. Lastly, the output of each column in the BRAM is then joined to 

character inputs with the same identifier.  

To effectively implement an automatic architectural optimisation, the REMEs are spatially stacked to 

form Multiple Character Matching (MCMs) circuits. Afterwards, they are grouped into clusters of 16. The 

clusters are then passed to a two dimensional staged pipeline structure (Yang, Jiang and Prasanna 2008, p. 

35). The benefits of the spatial stacking approach include: simplicity with a moderate time complexity, 

and flexibility which is the ability to generate an MCM REME of any natural number. This is unlike the 

temporal extension approach described by Yamagaki, Sidhu and Kamiya (2008, p. 134), which only 

generated RE-NFAs with m=2
i
, where m is the number of MCM REMEs, and i is the number of 

algorithmic iterations. 

The process of carrying out REME clustering for staged pipelining involved improving and 

providing a solution to the shortcomings of the approach described by Yang, Jiang and Prasanna (2008). 

In the approach, a two-dimensional staged pipeline was implemented using a priority encoder at every 

stage to generate the pattern matching outcomes. However, the problem with such approach was that the 

process involved in arranging REMEs into a staged pipeline structure was difficult and error-prone when 

done manually. Another difficulty with the approach was attributed to the complex operations involved in 

the buffering and circulation of the MCM signals, represented by the thick arrows as shown in Figure 

3.22. The figure is a 2-D staged pipeline design, with a total p pipelines and r stages per pipeline. 

Furthermore, there were problems of the routing complexity and varying resource utilisations arising as 

well. The problems led to performance variation between the REME clusters which is caused by the 

application of different REME grouping schemes.  
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Figure 3.22: Structure of a 2-D staged pipeline (Yang and Prasanna 2009). 

However, to overcome the problems mentioned, a simple heuristic was implemented to marshal k-REMEs 

with a total n-states and p-pipelines. The implementation was such that when adding a new REME to an 

existing pipeline, a function was called to relate each of the character classes in the current REME to the 

former accessed in the BRAM. Suitable links are then joined from the BRAM output to the inputs of the 

corresponding states whenever identical character classes are found. The time complexity of the 

procedure was estimated as O(k x n x w), where w is the number of unique character classes amid the n 

states in the k-REMEs, and the space complexity was estimated as O(256 x w).  

It was observed that in actual applications, w grows almost linearly with respect to a trivial n, but 

rapidly levels and propagates much slower than O(log n) as n becomes reasonably larger by a few 

hundred. Lastly, the process of matching outputs from all REMEs was prioritised by assigning higher 

priority to lower-indexed pipelines and stages. 

In summary, the staged and pipelined approach described by Yang, Jiang and Prasanna (2008, p. 

35), upon which that of Yang and Prasanna (2009) was built is effective in scaling up the number of 

REMEs in a single circuit. The process kept a linear growth in LUT usage, which is in relation to the 

number of REMEs. However, the scheme left some room for further optimisations in order to 

accommodate more regexps having a higher number of character classes and pattern length. The growth 

of such regexps has an impact on the clock rate of the hardware design, due to the higher cost of state fan-

in of the REME. Also regexps with long constrained repetitions usually take a toll on the amount of the 

LUTs and other related resources utilised by such designs considered in the approach. 

f. Classification-Based Designs 

The concept of classification was utilised by Brodie, Taylor and Cytron (2006), Gupta and McKeown 

(1999) and Tripp (2006) in their respective approaches. Arnold (2007, pp. 1-5) describes relations on a set 

of real numbers to include for instance: “ ”, “ ”, and “ ” etc. The symbol “ ”, is used to denote an 

abstract or specific relation such as: a  b to mean „a’ and „b’ are related. This concept was further 

elaborated by Arnold (2007, pp. 1-5) with the following definitions: 

i. A relation on a set S is a subset of S x S. 

ii. Given that   is defined over a given set S, the relation   could be reflexive, symmetric, and transitive.   

iii. A relation   on the same set S is said to be an equivalence relation if all three conditions in (ii) hold. 

iv. Given that   is an equivalence relation on a set S. Then   a   S, an equivalence class of a, is represented by 

[ ] as the set: [ ] = {      |        . (Arnold 2007). 
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Ilie, Solis-Oba and Yu (2005, p. 312) implemented an NFA reduction scheme that used the concept of 

equivalences (Lin, Tai and Chang 2007; Becchi and Cadambi 2007). The scheme optimally reduced the 

size and search time of any given arbitrary NFA, and by using equivalence, NFA states were merged 

successfully. The concept of equivalence was built upon the initial concept of NFA reduction based on 

left and right equivalences described by Ilie and Yu (2002, p. 338). The approach made it possible for 

NFAs to be reduced in their right (    and left (    invariant equivalence. The right invariance is the 

largest invariant equivalence to the right of the NFA, while the left invariance is the largest invariant 

equivalence to the left of the NFA (Ilie and Yu 2002).  

For instance, given any states say p and q, the distinguishability of the two states to the right, given 

any words that lead from p or q to the final states, was considered. The process can be performed 

symmetrically also to the left given any words that lead from the initial states to p or q. This is a form of 

„reversed automaton, [where] say [in the] NFA M
R
, all the transitions are reversed and the position of the 

initial and final states are interchanged‟ (Ilie and Yu 2002). Figure 3.23b shows states 1, 2 and 3 merged 

together because they belong to the same equivalence class of   . Similarly states 4, 5, and 6 were 

merged because they belong to the same equivalence class of   . However, Ilie, Solis-Oba and Yu (2005) 

observed that there is no exclusive way to use the    and    optimally. Figure 3.23d shows that the NFA 

from left has only two pairs of equivalent states: 1  3 and 1  2. It means that either states 1 and 2 or 

states 1 and 3 can be merged together, but not both. This is because merging states 1, 2 and 3 would 

introduce the word “bd” which does not belong to the language. An illustration on how equivalent classes 

are reduced using    and    is demonstrated in Figure 3.23a–3.23c and Figure 3.24. 

 

Figure 3.23: (a) An NFA, (b) The NFAs reduced version using  , (c) The NFAs reduced 

version using both    and    (Ilie, Solis-Oba and Yu 2005). 

 

Figure 3.24: An NFA, and its reduced versions using    and    (Ilie, Solis-Oba and Yu 2005). 

An NFA M = (Q, A,  , I, F) describes an algorithm O(| |k| |) that divides   into a reduced set of 

equivalence classes. This was achieved by forming the columns of the given transition table  : Q x     Q 
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to represent the classes (Brodie, Cytron and Taylor 2006). The index into the encoded table is called an 

ECI (refer to Section 3.2.2b-ii). Given a pattern \$[0-9]+(\.[0-9]{0,1}, the classes of characters: „$‟, „.‟, 

„[0-9]‟, and all other characters ([^$.0-9]) are created and represented by the ECI values 0, 1, 2, and 3 

respectively.  

Deep packet inspection (Becchi and Crowley 2008; Kumar et al. 2006; Kumar, Turner and 

Williams 2006) has become a critical function in various NIDS. The inspection process ensures that 

almost all the matching rules for any given packet are reported. An approach that was capable of 

resolving problems of priority conflicts was implemented by Tripp (2005, p. 31) (refer to Section 3.2.2-i). 

Priority conflicts are likely to occur due to the presence of certain input data. Such inputs are capable of 

matching more than one of the patterns under consideration, due to the presence of wildcards in the 

patterns. The solution involves dividing the ordering into two parallel systems. Afterwards, a „primary‟ 

classifier is used to find all strings separately from those that terminate with real characters. A 

„secondary‟ classifier is also used to find strings starting with wildcards (Tripp 2005). 

The use of a BRAM-based character classifier to match any given character class of 8-bits by 

utilising a 256-bit column of BRAM was described in the architecture by Yang, Jiang and Prasanna 

(2008, p. 35), Hieu et al. (2011) and Yang and Prasanna (2009). Also, a novel state encoding scheme was 

implemented by Ficara, Giordano and Procissi (2008). The scheme was tested for use in packet 

classification, with focus on reducing the memory footprint required by DFAs (refer to Section 3.2.1c).  

An approach based on a multi-stage classification was implemented by Gupta and McKeown 

(1999, p. 150). It was observed that quite a number of network services needed packet classification. Such 

services include: routing and access-control in network firewalls. A packet classifier is nothing but a set 

of rules which determines the class that a packet belongs to. A rule „classifies which flow a given packet 

belongs to, based on the contents of the packet header(s)‟ as described by Gupta and McKeown (1999). 

The classifier is founded upon certain criterion on a given number of F fields of the packet header. The 

classifier associates to every class an identifier or classID. The classID is responsible for uniquely 

assigning the action associated with any given rule. Structure is expected in the classifiers which if 

properly exploited, can affect the classification algorithm used. 

The classification process is necessary in order to decide which flow each arriving packet 

belonged to. This was necessary in order to properly forward and take the right action on such a packet. A 

good example of such an action is the filtering of the class of services to be apportioned to a given packet. 

The scheme described by Gupta and McKeown (1999) used a Recursive Flow Classification (RFC) 

technique. The technique exploits the structure and redundancies found in various network classifiers 

when matching rules on a network. The RFC process involves scanning of every single byte of packet 

header, with the aim of identifying predefined set of matching patterns. The classification algorithm is 

based on a simple heuristic algorithm called the RFC algorithm that has p phases as shown in Figure 3.25. 

Each p phase is made up of a set of parallel memory LUTs. Each of the table lookup is a reduction such 

that the value returned is shorter (in small bits) than the index of the memory access. 
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Figure 3.25: The packet flow RFC (Gupta and McKeown 1999). 

While it was possible for applications having tables that frequently change to be incrementally updated, it 

was observed that the subject required further investigation. Each added phase of the RFC increases the 

amount of compaction on the original classifier. As such, the idea of adjacency grouping of two or more 

rules was then implemented in order to alleviate the problem.  

Moreover, two rules are said to be adjacent if they are adjacent in some dimension. If indeed they 

are adjacent, then the two rules are merged to form a new rule. This is done in order to retain the 

specification of either of the two rules and the corresponding action associated with each rule. This is 

only achieved without further exploiting the redundancy and structure of the RFC. The setback with the 

RFC process is that it consumes too much memory, especially for classifiers with four fields in them.  

In order to implement the classification-based approach implemented in this thesis, a type of state 

transition table that determines the set of next states for each active current state on the initial ECD-NFA 

was explained. Members of an equivalence class shall be identified as the ones having identical columns 

in the table. However, on this occasion the table columns cannot be held as columns of next states 

numbers anymore, but as vectors of next state numbers. Afterwards, a number of entries in the table 

contained empty sets. 

i. The ECD-NFA Two-Phased Design 

The ECD-NFA design implemented in this thesis originally describes a composite NFA based on the 

concept of equivalence classification as described by Arnold (2007), Brodie, Taylor and Cytron (2006), 

Tripp (2006), Gupta and McKeown (1999), and Ilie, Solis-Oba and Yu (2005). The ECD-NFA is 

constructed in O(n
2
m) time, requiring no more than O(nm) memory, where n is the pattern length of a 

single regexp, and m is the number of patterns compiled together (Yu et al. 2006). However, the design 

generates O(log2m) REMEs originally containing ECD-NFAs. The design also requires O(k) memory 

locations to store the generated k ECDs in the hardware BRAM. The REMEs are then arranged in parallel 

as shown in Figure 3.26, and not in the two-dimensional staged and pipelined approach described by 

Yang and Prasanna (2009). The block diagram shows the overall structure of the two-phased scheme 

before it was optimised. 

The layout of the block design structure of the ECD-NFA is as shown in Figure 3.26. In the first 

phase of the processing chain, the program starts by compiling the regexp files extracted from the Snort 

rules. The regexps are then processed by the parser module. The module then calls the ECD-NFA 



CHAPTER 3 

APPROACHES TO REGULAR EXPRESSION PATTERN MATCHING  

66 

 

 

function generator to recursively create the n-byte ECD-NFA, where n = 2 and 4. The ECDs and their 

respective transition tables, as well as the BRAM modules are then generated. The ECD transition tables 

and the BRAM tables are then populated with the required ECDs.  

Furthermore, the ECDs generated are guaranteed to grow steadily at O(k), where k is the number of 

ECDs created. The ECDs are created by performing the cross product computation of two 1-byte ECD 

inputs of vectors of next states (or simply state vectors). The cross computation generates a new 2-byte 

state vector containing the union of the vectors of next state. The vectors are generated based on each 

given ECD input (refer to Section 5.4.1a for details) on the automata. The process is iterated until n = 4 

before it is halted, and the results of the 4-byte ECD-NFA are then translated into a synthesis-ready 

VHDL file. The required VHDL files are then interfaced with the second phase of the processing chain as 

shown in Figure 3.26. The full details of the operations, methods and processes involved in executing 

each of the two phases in the structure is discussed fully in Chapter 5.3.The summary of the block design 

in Figure 3.26 (refer to Section 5.4.2a for more details) is as follows: 

a. During the process of creating the ECD-NFA units in the second phase of Figure 3.26, each of 

the ECDs generated represents a class of inputs that trigger transitions representing unique state 

vectors. The state vectors represent sets of vectors of next states, transited to from any current 

state(s). Each of the ECDs represents those sets of inputs that have the same effect on the 

automata.  

b. The design then recursively performs a cross product computation of two ECDs state vectors, to 

generate an n-byte compressed ECD input transition table, using a similar tree-like RFC table 

structure described by Gupta and McKeown (1999), with n =  2 and 4. 

c. Once the n-byte table of ECDs are generated at each stage, the table of n-byte ECDs is then 

synthesised into logic. The synthesis process involves the use of a simple but fast algorithm in 

the hardware design phase contained in the second phase of Figure 3.26. An optimised 

algorithm is later implemented which eliminates the use of decoders, registers and other 

associated logic circuits completely (refer to Section 5.4.2a-ii for details). This gave rise to the 

optimised version of the ECD-NFA design called ECDRTS-NFA.  

d. The VHDL files representing the design are then passed as the output of the compiler process in 

the first phase of the design tool chain. With the VHDL files generated, a 28-bit input is 

supplied to the n-REMEs arranged in parallel in the second phase of the design toolchain as. At 

the end of the second phase of the implementation, a 4-bit vector of 1-bit matches corresponding 

to each parallel REME pipeline is generated for encoding.  

The need to reduce the construction and synthesis time of the ECD-NFA, led to the creation of ECDRTS-

NFA. The ECDRTS-NFA being the optimised version retains the basic structures of the ECD-NFA, but 

has increased performance and reduced logic circuit requirements (refer to Section 5.4.1 for more details).  
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Figure 3.26: The ECD-NFA two-phased toolchain design Block diagram. 

The major motivations and details of the approach are also discussed in detail in Section 5.1 and 5.3. The 

biggest problem that has been associated with most classification based approaches cost of losing the 

originating source of the original classifier. An example is the RFC memory saving scheme described by 

Gupta and McKeown (1999). This is because while the classifier can correctly decide the action for every 

newly arriving packet, it cannot correctly decide which rule in the original classifier it matched. This 

problem is attributed to the fact that the rules have been recursively merged over time while creating 

adjacency groups. This implies that the distinction among the rules is lost and thereby no longer 

distinguishable. The lack of distinguishability makes such approaches inefficient for implementing 

pattern-specific matching systems. However, the classification approach in thesis does not lose any 

information while creating the relevant 4-byte BRAM and ECD transition tables. 

The initial ECD-NFA design incurs a significant timing cost, due to the initial use of 7-bit input 

decoders with 128-bit wide registers. The table look up operation in the decoding modules performs a 

nested loop operation which is not suitable for the VHDL synthesis tools to execute. In fact, it makes it 

almost impossible to synthesise the design at all in the second phase of the design toolchain. The process 

timing issue inspired the need to eliminate the logic overheads attributed to the decoding units, by 

constructing the optimised version of the design namely ECDRTS-NFA (refer to Section 5.4.2a-ii for 

more details).  

Table 3.4 gives the summary of the approaches described in Section 3.2. The table also highlights 

the pros and cons of each of the separate FPGA-based approaches discussed in Section 3.2.2. 

parser 

module 

 

Regexp files extractors 

Snort 

PCRE 

ECD-NFA 

Generator 

BRAM unit 

1-BRAM 

ECD-Table 

Decoding unit 1 

s 

BRAM unit 

n-1 BRAM 

ECD-NFA 

Decoding unit n-1 

 

ECD-NFA unit 

BRAM Generator 

 

Test bench unit 
Network application 

32-bits 

n-bits 

32-bits <128- 4-bits 

32-bits <128-bits 4-bits 

n-REMEs 

n-REME matching pipelines 

Second Phase 

First Phase 

F 

T 

?byte 

ECD-NFA 

VHDL files 



CHAPTER 3 

APPROACHES TO REGULAR EXPRESSION PATTERN MATCHING  

68 

 

 

Table 3.4: Summary of FPGA-based approaches discussed in Section 3.2.2. 

Approach Summary 

1. Fast Regular Expression Matching 

using FPGAs by Sidhu and Prasanna 

(2001). 

Pros: 

The approach parses regexps into their constituent 

sub-expressions that are used to construct NFAs 

which match the same strings as the given 

regexps. Placement and routing subroutines were 

used to construct basic NFA logic building 

blocks, which converted regexps into NFA logic 

directly. This was achieved using a one-hot 

(OHE) technique, which made it possible to 

construct the NFA logic in O(n) time, where n is 

the length of the given regexps. The placement 

and routing subroutines only took O(1) time to 

construct and process a single character per clock 

cycle. This made the approach fast and efficient 

for pattern matching. Cons: 

The approach needs to be extended further to 

perform multi-byte and multi-pattern matching. 

2. Multi-Character Regexp Matching 

Designs 

 

a. Parallel String Matching Engines for 

NIDS by Tripp (2006). 

Pros: 

Tripp (2006) describes an approach that 

constructs a FSM which operates on a single byte 

wide data input. The approach works by assigning 

a separate FSM for each byte wide data path from 

a multi-byte input data word. The approach is 

designed to match the start and end of strings 

which have a probable chance of occurring part 

way through a streaming data. A match occurs 

when all w-byte wide FSM each report a match in 

a given order at all w instances in the substrings, 

consisting w-way interleaved search strings. The 

problem of memory was addressed by Tripp 

(2008) using a packed-array algorithm that 

amounts to significant memory savings for larger 

FSMs. 

Cons: 

Although the algorithm avoids the use of two 

dimensional arrays for storage by using a packed 

array technique, it is only useful for trivial string 

patterns. 
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Table 3.4: (cont’d). 

Approach Summary 

b. Increased Striding with Run-Length 

Coding by Brodie, Taylor and Cyron (2006). 

Pros: 

The FSM is built upon the compression technique 

that improves capacity and speed of matching. The 

compression technique uses equivalence class 

identifiers (ECIs) to represent the various 

compressed inputs in its state transition table. This 

was achieved by employing directly addressed 

tables and pairwise combination. The FSM‟s tables 

were then compressed and the resulting transition 

information is deployed in the Indirection and 

Transition Tables (ITT). An algorithm that 

consumes multiple symbols in a single clock cycle 

was implemented to make the design match 

patterns faster.  

Cons: 

The memory efficiency significantly reduced as the 

number of symbols covered in the final ECIs 

increased. Also with increased striding came the 

problem of more memory requirement. Further 

optimisation was required to reduce the number of 

accesses to the transition tables. 

3. Common Prefix, Infix and Suffix Matching 

Design by Hieu et al. (2011). 

Pros: 

The scheme involves sharing common prefix, infix, 

and suffix matching substrings used recognise 

overlapped matches (Yu et al. 2006). The design 

further incorporates within it 5 adaptive building 

logic blocks that make the required FSM for a 

given set of regexps. The design is able to resolve 

the problem of false positive matching at the infix 

block module, by introducing a shift module in 

each regexp module block. The output of both the 

infix and shift module blocks are ANDed (logic 

AND gate circuit), before sending it to the suffix in 

order to generate a match signal form the prefix 

sub-pattern.  

Cons: 

With character classes involved in the design 

process, decoding became an overhead. This was 

replaced with a block RAM centralised character 

matching (BCCM) scheme. As such, the scheme 

sacrificed throughput for reduced logic. 
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Table 3.4: (cont’d). 

Approach Summary 

4.  Shared Character Decoding Design  

a. Extended Shared Decoding Scheme by 

Clark and Schimmel (2004).  

Pros: 

The scheme implements an approach that 

sustained a throughput of matching in the ranges 

of 1 – 100 Gbps. The approach is built upon the 

one described by Clark and Schimmel (2003), 

which substituted comparators with decoders 

during implementation. A higher throughput of 

matching with lower cost was achieved. The 

approach by Clark and Schimmel (2004) was able 

to perform multi-character matching in a parallel 

arrangement, thereby increasing the speed of 

matching substrings.  

Cons: 

However, the approach incurred higher memory 

bandwidth and logic overhead. This made it 

infeasible to scale up the design.  

5.  Regexp Matching Engine Design  

a. Systematic Translation of Compact 

REMEs by Yang and Prasanna (2009). 

Pros: 

The scheme translates regexps into compact and 

high-performance regexps NFA (RE-NFA) 

matching engines (REMEs). BRAM–based 

centralised character classifiers were used to 

match against 1-byte character classes, which 

made it possible to implement an n-state RE-NFA 

on a single BRAM. The BRAM has no more than 

256 x n bit vector, and uses a two-phased 

toolchain approach. The first phase gathers 

together a set of exclusive character classes and 

assigns to it a floating point sorting key. The 

second phase sorts the unique character classes 

based on their sorting keys. The RE-NFAs are 

then carefully staged and pipelined to perform 

multi-character matching in a two dimensional 

arrangement using a priority encoder at all the 

stages automatically.  

Cons: 

The clock frequency of the overall design 

declines sub-linearly with respect to the state fan-

in, but with proper optimisation it could improve 

further. 
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Table 3.4: (cont’d). 

Approach Summary 

6.   Classification-Based Designs. Pros: 

The classification based designs utilise a simple 

input compression techniques using the concept of 

equivalence classification. The technique allows 

the grouping of all inputs that have the same effect 

on a given automata. The concept allows the states 

of a FSM like the NFA to be merged together 

successfully as described by Ilie, Solis-Oba and 

Yu (2005). The successfully reduction in the 

number of transitions and states on the NFA 

reduces the memory bandwidth and memory 

requirement. Implementing increased striding 

(Brodie, Taylor and Cytron (2006) also translate 

to increase in throughput with lower logic 

resource overheads leading to higher efficiency.  

The RFC algorithm by Gupta and McKeown 

(1999) is capable of assigning proper associated 

actions to any given rule. The algorithm also 

decides which flow each arriving packet belongs 

to. The ECD-NFA approach uses a unique form 

classification that applies to NFAs only. The 

approach compresses inputs using an equivalence 

classification concept. The method is capable of 

classifying inputs by exploiting the redundancies 

that normally exists in most transition tables. This 

is achieved by storing the compressed inputs in a 

BRAM format that is easily sythesised into a 

small piece of logic. 

Cons: 

The issue of memory bandwidth remains a 

hindrance to the overall throughput of matching in 

most approaches. Also, the issue memory 

utilisation is a problem especially for approaches 

that are based on non-equivalence classification.  

 Chapter Summary 3.3

As observed in this chapter, memory centric architectures have proven to be quite crucial in creating 

minimised automata. Approaches such as the  FA have the ability to reduce number of states and 

transitions in a given automaton. The  FA requires only a few transitions per state, allowing for faster 

matching. The approach  FA is an extension of the D
2
FA approach, which utilised fast memories such as 

caches for storing relevant state transition sets. The D
2
FA approach sets a diameter-bound for the default 

transitions of every tree on the overall spanning tree. This improved the memory bandwidth, as more 

redundant transitions were eliminated. Also equivalent and even non-equivalent state merging is possible 

by memorising precedent states. Furthermore, with memory reuse, it is possible to reduce the overall 

memory requirement of the  FA even further.  

The reconfigurable and parallel nature of the FPGA architecture could be properly exploited to 

create highly parallel matching units. The parallel matching units are capable of increasing the speed of 
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matching regexps. While most of the approaches try to build upon the concept of automatic construction 

of regexps into NFA logic, others further exploit the idea of using self-reconfigurable hardware devices 

such as the SRGA. Furthermore, approaches that are centrally focussed on increasing the speed of 

matching by employing multi-character matching schemes were examined. Such approaches use decoders 

arranged in parallel, but come at a cost of increased logic resources. The extra costs are mitigated by the 

use of a centralised BRAM character classification scheme. The BRAM is useful especially by allowing 

the sharing of inputs among various matching REMEs that are staged and pipelined to perform multi-

pattern and multi-character matching. The concept of classification was shown to practically apply to 

RFC-based algorithms for matching packet headers effectively.  

Lastly, equivalence classification based approaches were discussed, which have the tendency to 

create classified inputs for both DFA and NFA designs. However, the process of creating ECDs is only 

uniquely applied to the NFA implemented in this thesis. Furthermore, classification based approaches are 

capable of reducing the overall logic and memory requirement of a given design. If properly designed, 

such approaches are capable of obtaining higher throughput of matching, with no corresponding increase 

in the amount of utilised logic circuits. This in turn leads to an improvement in the throughput efficiency 

of a REME-based design. Improving the throughput and throughput efficiency of NFA REME-based 

designs is the basis of the study in this thesis and the other reviewed related approaches in general (refer 

to Section 5.3 for full details). 

Chapter 4 analyses the various approaches discussed in this chapter. The aim is to establish by way 

of comparison, the improvements made by each design to the overall throughput of matching. The 

remaining approaches that are also concerned with the throughput efficiency of their approach also 

reported the number of LUTs utilised by their approaches. In Chapter 6, such LUT-based REME 

approaches were compared with the design implemented in this thesis to ascertain the performance of 

both the throughput and the throughput efficiency of such designs. 

 



 

73 

 

 

 

 

 

 

 Analysis of Related Approaches 4.

 

This chapter focuses on the various results obtained from the related approaches examined in Chapter 3. 

The focus is to analyse and compare the approaches with the aim of ascertaining their performance. The 

analysis is based on the total number of characters consumed, the speed of matching, and throughput 

among other variables. A single table is also constructed and contains the summary of results obtained 

from the various sub-sections of the related approaches. The results are then used to analyse the various 

approaches. 

 Tables of Results for Related Approaches 4.1

This section shows how the various FPGA-based approaches discussed in Chapter 3 compare to one 

another based on their design categories. The results to be considered shall be based on the following 

attributes: the design approach and an n-byte match size, with n = 1, 2 and 4. Also, the speed of matching 

(MHz), throughput (Gbps), and the total number of characters matched shall be taken into consideration. 

 The results of each design approach are tabulated and shown by means of simple diagrams. The 

diagrams are based on the various categories of the related approaches. The entries for each table include: 

Design Approach, which represents the various separate design approaches. The devices used are all 

FPGA platforms, while Input represents the input bus width measured in bytes, and MHz represents the 

design speed. Tp, represents the throughput in Gbps, while T/Chars represents the total number of 

characters matched. Section 4.1.1 - 4.1.5 contains the table of results obtained for the various approaches 

discussed in Chapter 3, Section 3.2. 

4.1.1 Multi-Character Regexp Matching Designs Table 

Table 4.1 shows the design results obtained by Brodie, Taylor and Cytron (2006), Sourdis and 

Pnevmatikatos (2004) and Yamagaki, Sidhu and Kamiya (2008). The table shows that the approach by 

Sourdis and Pnevmatikatos (2004) has the best throughput and speed of matching.  

   Table 4.1: Compared results for multi-character regexp matching designs. 

Design Approach Input MHz Tp T/Chars 

Brodie, Taylor and Cytron (2006). 4 133.00 4.26  11126  

Sourdis and Pnevmatikatos (2004). 4 303.00 9.71  18032 

Yamagaki, Sidhu and Kamiya (2008). 4 113.40 3.63 40896 
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4.1.2 Common Prefix Sharing Design Table 

Table 4.2 shows the design results obtained by Hutchings, Franklin and Carver (2002), Lee et al. (2007), 

Lin et al. (2006) and Hieu et al. (2011). From the table, the design‟s speed of matching (MHz) reported by 

Lee, Hwang, and Park (2007) remained constantly 275.30MHz for a 1-byte and 2-byte character match. 

However, Table 4.1 shows that the approach by Lee, Hwang, and Park (2007) has the best throughput and 

speed of matching.  

    Table 4.2: Compared results for common prefix sharing designs. 

Design Approach Input MHz Tp T/Chars 

Hutchings, Franklin and Carver 

(2002). 

1 30.90 0.24 8003 

Lee, Hwang, and Park (2007). 2 275.30 4.40  19275 

Lin et al. (2006). 1 133.00 1.10 20914 

Hieu et al.  (2011). 1 231.25 1.85 13287 

 

4.1.3 Shared Character Decoding Design Table 

Table 4.3 shows the design results obtained by Clark and Schimmel (2003), Sutton (2004) and Clark and 

Schimmel (2004). The result for the 4-byte parallel character match reported by Sutton (2004) was 

considered against each attack patterns. Each result represented the three separate implementations in the 

design, and the average of each of the three results generated was considered. Also, the results presented 

by Clark and Schimmel (2004) for a 4-byte match was reported as a useful comparison with the rest of the 

results as seen in Table 4.3. The table shows that the approach by Sutton (2004) has the best throughput 

and speed of matching.  

  Table 4.3: Compared shared/partial decoding designs. 

Design Approach Input MHz Tp T/Chars 

Clark C.R and Schimmel E. D (2003). 1 253.00 2.00 17537 

Sutton (2004). 4 317.19 10.15 2016 

Clark and Schimmel (2004). 4 218.90 7.00 17537 

4.1.4 Regexp Matching Engine Designs Table 

Table 4.4 shows the results obtained for the approaches by Brodie, Taylor and Cytron (2006), Mitra, 

Najjar and Bhuyan (2007), Yang, Jiang and Prasanna (2008), and Yang and Prasanna (2009), 

Ganegedara, Yang and Prasanna (2010), Long et al. (2011) and Singapura et al. (2015). Singapura et al. 

(2015) reported an 8-byte REME design, with a design speed of 340. 63MHz. As such, the 4-byte match 

recorded a throughput of about 10.65Gbps only. Meanwhile, Yang and Prasanna (2012) reported two 4-

byte match designs. The table shows that the design by Ganegedara, Yang and Prasanna (2010) was able 

to eliminate all the multiple occurrences of identified rules, using a duplicate checker program. Out of the 

about 20,000 rules, they realised just about 2,000 distinct rules. This lead to an even greater reduction in 

the required amount of logic and memory utilised. The average of the respective throughputs and the sum 

of the characters matched for each pattern matching unit was considered. Also, the average of the results 

corresponding to the „webmisc‟ and „smtp‟ rules in the approach reported by Long et al. (2011) were 

considered. The results are reported in Table 4 and 5 of the reference paper by Long et al. (2011). 

http://www.refworks.com/refworks2/?r=references%7CMainLayout::init
http://www.refworks.com/refworks2/?r=references%7CMainLayout::init
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      Table 4.4: Compared results for regexp matching engine designs. 

Design Approach Input MHz Tp T/Chars 

Brodie, Taylor and Cytron (2006). 4 133.00 4.26 11126 

Mitra, Najjar and Bhuyan (2007). 16 100.78 0.81 10977 

Yang, Jiang and Prasanna (2008). 4 233.13 7.46 15000 

Yang and Prasanna, (2009). 4 300.00 9.60 28000 

Yang and Prasanna (2012). 4 198.6 6.36 120000 

Yang and Prasanna (2012). 4 166.7 5.33 100000 

Ganegedara, Yang and Prasanna 

(2010). 

4 202.90 6.50 16384 

Long et al. (2011). 1 155.50 1.24 1020 

Singapura et al. (2015). 8 340.63 21.8 100000 

 

4.1.5 Classification-Based Designs Table 

From the discussion in Section 3.2.2f, the results obtained for the approach by Brodie, Taylor and Cytron 

(2006) were considered. The full analysis is performed together with that of the approach implemented in 

this thesis and other REME related designs in Chapter 6. Not many approaches exist on regexp matching 

using classification-based approach to regexp matching. The scheme by Brodie and Cytron and Taylor 

(2006) was designed for DFA‟s and not NFAs. However, the table form of input compression described 

in the scheme was suitable for increasing the stride of any well-constructed NFA design. The approach by 

Gupta and McKeown (1999) reported no results. However, their hierarchical form of input classification 

was also useful in the design described in Chapter 5. 

     Table 4.5: Design result for an ECI-based design. 

Design Approach Input MHz Tp T/Chars 

Brodie, Taylor and Cytron (2006). 4 133.00 4.26 11126 

 

Table 4.6 comprises of all the 18 separate results reported for the various related approaches under the 

various categories of designs. The results are as presented in Table 4.1 – Table 4.5. 
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Table 4.6: Combined table results for the various FPGA-based approaches. 

Design Approach Input MHz Tp T/Chars 

Brodie, Taylor and Cytron (2006). 4 133.00 4.26  11126  

Sourdis and Pnevmatikatos (2004). 4 303.00 9.71  18032 

Yamagaki, Sidhu and Kamiya (2008). 4 113.40 3.63 40896 

Hutchings, Franklin and Carver (2002). 1 30.90 0.24 8003 

Lee, Hwang, and Park (2007). 2 275.30 4.40  19275 

Lin et al. (2006). 1 133.00 1.10 20914 

Hieu et al.  (2011). 1 231.25 1.85 13287 

Clark C.R and Schimmel E. D (2003). 1 253.00 2.00 17537 

Sutton (2004). 4 317.19 10.15 2016 

Clark and Schimmel (2004). 4 218.90 7.00 17537 

Mitra, Najjar and Bhuyan (2007). 16 100.78 0.81 10977 

Yang, Jiang and Prasanna (2008). 4 233.13 7.46 15000 

Yang and Prasanna, (2009) 4 300.00 9.60 28000 

Yang and Prasanna (2012). 4 198.6 6.36 120000 

Yang and Prasanna (2012). 4 166.7 5.33 100000 

Ganegedara, Yang and Prasanna (2010). 4 202.90 6.50 16384 

Long et al. (2011). 1 155.50 1.24 1020 

Singapura et al. (2015). 8 340.63 21.8 100000 

 Analysis of Related Designs 4.2

The analysis of the results as seen in Table 4.6 is based on the: speed of matching (MHz), the number of 

bytes consumed at once, the total number of characters matched, and the throughput (Gbps) only. This is 

because basic concern of this thesis like the other approaches is focused on improving the throughput of 

matching.  

4.2.1 Data Analysis of Results 

a. Single-Data Graphs 

Figure 4.1 - 4.4 shows the graphs of the results reported by the various designs as they appear in Table 

4.6. From Figure 4.1, it can be seen that about 77.78% of the designs implemented a multi-character 

matching design, with about 55.56% of them using a 4-byte character matching scheme. This was done 

with the aim of improving the overall throughput, which is often at the expense of incurring more logic 

circuit cost. However, the 16-byte input attributed to the design by Mitra, Najjar and Bhuyan (2007) and 

as shown in Figure 4.1 is split into sixteen 1-byte matching units. The sixteen matching units are 

combined into a single cohesive matching engine that outputs 16-bits. However, all of the combined 

matching units produced a cumulative throughput of 12.90 Gbps, which was split among the separate 

matching units. 

http://www.refworks.com/refworks2/?r=references%7CMainLayout::init
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     Figure 4.1: Graph of the input (n-bytes, n = 1, 2, 4, and 16). 

Figure 4.2 shows that 77.78% of the total characters matched per design are between the ranges of 10,000 

– 20,000 characters, for even the most efficient implementations. It also implies that going beyond that 

range does not necessarily translate to higher speed or higher throughput of matching for any 4-byte 

matching REME design. Further discussion on that is found in Section 4.2.1b concerning Figure 4.5. 

 

        Figure 4.2: Graph of the number of characters matched (ranging from 652-120000). 
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Figure 4.3 shows that the average throughput obtained by about 55.56% of the designs is around 4Gbps. 

About 33.33% of them fell between the ranges of 7.5Gbps - 10Gbps. Those designs having 4Gbps 

throughput have designs that clocked at speeds below 150MHz, while those between the ranges of 7Gbps 

– 10.65Gbps obtained speeds between the 200MHz – 340MHz range. 

 

         Figure 4.3: Graph of the throughput (ranging from 0.24-10.65 Gbps). 

Figure 4.4 shows that about 72.22% of the designs could not obtain beyond the speed range of 270MHz – 

280MHz. Any speed beyond that range would reflect an efficiently constructed design, which is rare 

especially beyond the 300MHz mark. However, most modern FPGAs such as the Xilinx FPGA Virtex-7 

device clock at 500MHz. Also, only a very compact and efficient design can take full advantage of the 

clock speed and the large amount of parallel logic and on-chip memory that is now available on such a 

device.  
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         Figure 4.4: Graph of the speed (ranging from 30.90MHz – 340.63). 

b. Double-Data Graphs  

Figure 4.5 shows the graphs which are based on the results shown in Table 4.6. The graphs are used to 

compare the relationship between the throughput and speed of matching, as well as the throughput and the 

total number of characters matched by each design. Looking at this perspective and starting with Figure 

4.5, it can be seen that increasing the number of characters beyond the ranges of 10,000 - 20,000 

characters does not necessarily improve the throughput.   

The design by Yang and Prasanna (2012) reported two separate 4-byte matching design 

implementations, while Singapura et al. (2015) reported the results of an 8-byte matching design. The two 

separate implementations by Yang and Prasanna (2012) recorded throughputs of 6.36Gbps and 5.33Gbps, 

while Singapura et al. (2015) recorded a throughput of 21.8Gbps. However, the 8-byte matching design 

by Singapura et al. (2015) recorded a design speed of 340.63 MHz. As such, for the purpose of 

comparison with all the other 4-byte matching designs, the throughput in the design by Singapura et al. 

(2015) is about 10.65Gbps for an equivalent 4-byte matching design. Figure 4.6 indicates that the higher 

the speed, the higher the throughput of matching. Obtaining an increase in design speed can only be 

possible when a design is further optimised and made more compact.  
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Figure 4.5: Distribution of the throughput and the total number of characters matched. 

 
Figure 4.6: Distribution of speed and the throughput of matching. 
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Graph for Throughput and Characters Matched  
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 Chapter Summary 4.3

The various FPGA-based designs are multi-character regexp matching designs. Some of the designs 

reported results for multi-character matches. However, most of the multi-character matching designs that 

are considered in most of the related approaches are 4-byte matching designs, and is considered a 

standard. The various designs that consume more than 4-bytes of characters only show slight 

improvement in the throughput and not in the overall design clock speed. This is because consuming 

more than four characters per clock cycle increases the number of memory accesses.  

Furthermore, the higher the memory latency the more the decline in the overall design operational 

clock frequency. As a result, a good 4-byte matching system combined with a better optimisation strategy 

is seen to produce better results. Another observation is that if a design combines multi-character and 

multi-pattern matching in the same design engine, the clock speed and the ratio of utilised logic further 

declines. However, the design in this thesis combined both multi-character and multi-pattern matching 

into all the four separate design engines. The full description of the design is found in Chapter 5 and later 

analysed in Chapter 6.  
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 Design and Implementation 5.

 

This chapter describes the FPGA-based approach that uses the concept of equivalence classification to 

implement a set of efficient parallel regexp pattern matching engines (REMEs). The description of the 

approach starts with the design called ECD-NFA, leading up to the optimised version called ECDRTS-

NFA. The design was first introduced in Sections 1.4 and 1.7, and is fully discussed in this chapter.  

 Motivation 5.1

This thesis is based on the desire to build an efficient REME-based design. The design takes advantage of 

the fine-grained parallelism provided by FPGAs. Current rules contain complex regexps, which when 

implemented place high demand on memory. The complexity of the current rules makes software regexp 

search engines slow and non-scalable.  

However, the main motivation behind the design approach implemented in this thesis is to 

significantly reduce the storage and processing time attributed to most NFA-based designs and their 

variants (Sidhu and Prasanna 2001). An FPGA is known to have good clock rate (Brodie, Taylor and 

Cytron 2006) which enhances performance. As such, the major challenge was how to come up with a fast 

and more scalable hardware regexp pattern matching approach. The approach should obtain higher 

throughput and lower logic circuit costs, compared to all the other related approaches. The following 

summarises the motivations for this thesis: 

i. There is the need to create a very simple and less complex toolchain (Yang and Prasanna 2009) 

for implementing simple, fast and efficient logic circuit NFA-based REMEs. The idea is to 

create a new design that outperforms the ones implemented by Mitra, Najjar and Bhuyan (2007), 

Yang, Jiang and Prasanna (2008), Yang and Prasanna (2009), and Ganegedara, Yang and 

Prasanna (2010). The related approaches mentioned are more directly concerned with the type of 

parallel REMEs implemented in this thesis. Furthermore, the design is split into two phases 

namely: the first phase (Software implementation) and the second phase (Hardware 

implementation on FPGAs). 

ii. The need to effectively utilise techniques that combine optimisations such as: edge reduction, 

alphabet reduction, increased striding (Becchi and Crowley 2008, p. 50), input classification 

(Brodie, Taylor and Cytron 2006; Tripp 2006; Arnold 2007), and prefix, infix and prefix sharing 

(Hutchings, Franklin and Carver 2002; Sourdis and Pnevmatikatos 2004; Yu et al. 2006; Lee et 
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al. 2007; Lin et al. 2006) into a single approach. Section 3.2.2c discussed the various 

optimisation techniques. 

iii. The need to create a design that performs multi-character and multi-pattern matching. This is in 

relation to the approach implemented by Sourdis and Pnevmatikatos (2004), Becchi and Crowley 

(2008), Clark and Schimmel (2004), Jiang, Yang and Prasanna (2010) and Yang and Prasanna 

(2012). The design also needs to be fast and capable of making the optimal use of the limited 

available FPGA logic resources. 

iv. To construct a design that builds into each REME in (i), multi-NFA REME blocks. The REME 

blocks are to be arranged in parallel configuration. The arrangement will allow for multi-

character and multi-pattern matching, while utilising fewer REMEs than those constructed by 

Mitra, Najjar and Bhuyan (2007), Yang, Jiang and Prasanna (2008), Yang and Prasanna (2009), 

and Ganegedara, Yang and Prasanna (2010). The design shall utilise the unique form of table-

synthesis of ECDs generated in the first phase of (i). 

v. Lastly, there is the need for the design to automatically and efficiently generate and integrate the 

required VHDL files, which are the expected outputs of the first software implementation phase. 

The generated output files are then supplied to the hardware in the second phase of the design 

toolchain for implementation. 

vi. The ECDs (refer to Section 1.4) shall be used to represent state vectors in the transition table of 

the ECD-NFAs. The inputs have the same effect on the automata, and exploit any redundancies 

normally associated with table-driven automata. The ECDs shall be generated in the first phase 

of the design, which will later prove to be useful when combining multiple NFAs into a single 

composite NFA. Furthermore, each time 2
i
-byte ECDs are generated recursively, where i = 1, 

2,..., higher byte input are generated, and required to perform multi-character matching. The 

ECDs grow steadily at O(k), where k is the number of ECDs created. This is achieved by 

performing a logical cross product computation of two 1-byte ECDs state vectors. The process 

ensures that for a 4-byte match process to occur for instance, n will not grow beyond the value of 

127. Any value where n>127, will consume too much logic e.g. LUTs and registers during the 

synthesis and implementation stage. As such, the higher the amount of components consumed, 

the poorer the obtained throughput efficiency (Yang, Jiang and Prasanna, 2008). 

 Design Concerns 5.2

Common prefix sharing is a basic feature considered in the design described in this chapter. The feature 

has been implemented by many approaches such as the ones by Hutchings, Franklin and Carver (2002), 

Lee et al. (2007), Lin et al. (2006), and Hieu et al. (2011). Prefix sharing is used to reduce the amount of 

logic and regexp matching engines used to represent patterns with common prefixes. This is achieved by 

sharing common input strings. Hutchings, Franklin and Carver (2002) succeeded in accelerating string 

matching by implementing common prefix matching.  

The approach also extended the NFA-based hardware implementation strategy described by Sidhu 

and Prasanna (2001) to include an additional operation called optionality. The operation is used to match 

zero or one input character per clock cycle. However, Hutchings, Franklin and Carver (2002) admitted 

that their design was far from being a complete solution, but hoped to address it in future. However, 

circuit optimisation is never an issue in the optimised ECDRTS-NFA design version. This is because the 
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ECDRTS-NFA handles optionality much more efficiently. However, circuit optimisation remained an 

open issue for Hutchings, Franklin and Carver (2002).  

Shared decoding approach (Clark and Schimmel 2003; Sutton 2004; Clark and Schimmel 2004) is 

also an important feature used in this thesis. There was the need to technically minimise the routing wires 

and logic circuits required for accessing character inputs by avoiding the use of character comparators. 

The comparator approach (Sourdis and Pnevmatikatos 2003) often failed to deal effectively with the issue 

of poor design speed and increased logic size. This is because the more characters are heavily pipelined, 

the more the clock latency between the FFs, which is attributed to the distance between them.  

However, even with a decoding approach constructed to perform multi-character matching, the 

overall design speed degrades significantly. This is because, the larger the design, the more the fan-out of 

the input stream required to traverse longer distances. A solution was obtained by using the concept of 

classification to reduce the size of the design. Using the classification technique, the design input bit size 

was reduced to 7-bits inputs instead of 8-bit inputs. The ECD-NFA design only utilised 7-to-128 decoders 

originally before it was optimised. This is a variation from the 8-to-256 decoders utilised in the 

approaches described by Clark and Schimmel (2003), Sutton (2004) and Clark and Schimmel (2004). 

Furthermore, the use of 7-to-128 decoders helped to save about 50% of the redundant output wires 

compared to the approaches by Clark and Schimmel (2004). Without the reduction in the size of the 

decoders, a high logic circuit cost is incurred when integrating it into a multi-character and multi-pattern 

matching design such as the one implemented in this thesis. However, even with such reductions, the 

ECD-NFA design still consumed too much logic resource. The design was too slow to synthesise and 

non-scalable too. As such, the design was optimised and the new version was called ECDRTS-NFA (refer 

to Section 5.3.3 for more details).    

The ECD-NFA approach is suitable for utilising fewer 6-bits input LUTs, registers and other 

circuit components, contained within each respective CLB. The utilised CLBs are closely packed together 

due to the nature of the design forcing the circuits into a confined region of the FPGA during circuit 

optimisation. Such efficient space utilisation helped to cut down the overall clock and routing delays 

experienced when performing parallel regexp matching. The speed of matching, the throughput, and 

throughput efficiency (Yang, Jiang and Prasanna 2008) improved in the process. Also, during the 

construction phases of the design implemented in this thesis: (a) regexps with long repetitions were 

avoided (Yang, Jiang and Prasanna 2008) such as “…[^\n]{1024}”, but  allowed regexps with flags: „s‟, 

„m‟, „i‟ (Long et al. 2011, p. 70), and (b) selected patterns with average lengths too (Yang, Jiang and 

Prasanna 2008).  

The design by Tripp (2006, p. 26) which was based on a memory saving scheme constructed for a 

difference array, is capable of storing all the table entries that are different from the values of the given 

default array. The array is then decomposed into a sequence of state vectors. The method that put together 

the state vectors into a one–dimensional packed array was later implemented by Tripp (2008, p. 4). The 

aim was to avoid clashes among the various active entries on the table. A similar idea for generating a 

one-dimensional vector of output bits by Tripp (2008) was also utilised in the table-synthesis module of 

the ECDRTS-NFA REME designs for generating the outputs used to supply ECDs to the NFA block 

modules.  
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 The Hardware Design Phase 5.3

The block design of the original ECD-NFA approach is divided into two phases as shown in the block 

diagram of Figure 3.26. The block diagram as shown in Figure 5.2 summarises the flow of the entire 

scheme. The first phase is made up of blocks labelled: Snort rules, PCRE regexps file extractor, parser, 

constructor and optimiser is connected to units (a), (b), and (c) (refer to Section 5.4.1 for details). The 

second phase is made up of the block labelled as hardware ECD-NFA/ECDRTS-NFA (FPGA) builder. 

Section 5.3.1 explains each of the decomposed modular components as shown in Figure 5.2.  

5.3.1 The Modular Block Module: First Phase 

a. Snort Rules/PCRE Extraction and Parsing Phase 

The Snort NIDS (Snort 2013; Roesch 1999, p. 229) was explained in Section 2.2.1 and 2.4. The regexps 

that are automatically extracted from the rich collection of regexps found in Snort rule database. 

Afterwards, the regexps are then read into the parser for subsequent conversion into tokens by the 

tokeniser module of the parser. The tokens are then used to construct the required parse trees used to build 

the various original ECD-NFAs. The parser, as shown in Figure 5.2 is based on the software initially 

implemented by Tripp (2008) for a DFA implementation. It is made up of various newly added and 

existing modules which have been updated accordingly for the NFA implemented in this thesis.  

Another module that was added was the regexp extractor module made up of the first two sub-

modules as shown in Figures 3.26 and 5.2 namely: PCRE regexp files generator. The extracted files serve 

as inputs into the parser module. The parser module then integrates the files automatically as described in 

Section 5.3.1b, and illustrated in Figure 5.2. The regexp extractor is capable of extracting four n-regexp 

files at once, where n=2, 3, 4, and 5 using a random function. The function is designed to select regexps 

without introducing bias by avoiding all manual processes of selection. This is because if the selection is 

biased or manually done, there is a chance that regexps with large constrained repetitions e.g. 

a{1024}will be intentionally avoided. That way only trivial regexps with shorter lengths may end up been 

utilised and that cannot prove the efficiency of the design, especially in a worst-case scenario. As such, 

the regexp extractor often ends up selecting extremely complex regexps which explains the fluctuations in 

the design results (refer to Section 6.2 of Chapter 6 for result details). Furthermore the regexps are 

extracted directly from the VRT Rule distributed by Sourcefire (v 2.0) community rules, 2001-2013 

(Snort 2013; Sourcefire 2009) provided by Snort. The files are afterwards uploaded and processed by the 

ECD-NFA parser. 

b. The ECD-NFA Design  

The construction and optimisation block as shown in Figure 5.2 is responsible for building the basic 

ECD-NFA building blocks. The blocks are then modified to construct the multi-character and multi-

pattern matching NFA REMEs. The REMEs are generated, integrated and transferred for subsequent 

hardware implementation. The unit labelled (a) in Figure 5.2 is the unit responsible for generating the 

BRAM equivalent of the hardware memory. The module is used to compress and store the table of 

generated ECDs.  

The unit labelled (b) in Figure 5.2 represents the module responsible for generating the table of 

compressed n-byte matching ECDs, where n = 2 and 4. The tables are later synthesised into logic during 

the hardware processing phase to perform table look up operations used for multi-character matching. The 
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process is iterated by scaling up the number of regexps per engine. The process also ensures that the 

number of ECDs generated per iteration for each combination of regexps, does not exceed 128 ECDs (0 - 

127) as explained in Section 5.1-vi. Figure 5.1 illustrates an n-byte multi-character and multi-pattern 

matching ECD-NFA engine. Looking at Figure 5.1, the label C represents the compression process in 

parser, while BRAM is a 4x256x8-bits memory block of compressed 1-byte ECDs. The label Tc 

represents a compressed-2D (two-dimensional) table of 2-byte and 4-byte ECDs. The label ≤5-regexps 

represents 4xECD-NFAs created for matching up to 5 regexps. Figure 5.1 is fully elaborated in Section 

5.4. Furthermore, 4-bytes of characters are streamed into the block engine per clock cycle. The streamed 

characters are then compressed into 2-byte and 4-byte ECDs in the n-byte ECD class table constructor 

where n = 2 and 4  as shown in Figure 5.2.  labelled (b), ,

The process is recursively performed to take on two copies of the 2-byte ECDs table and used to 

generate 4-byte ECD tables of compressed inputs (refer to Section 5.4.1a for more details). Meanwhile, 

the BRAM module in the parser is used to store the compressed 1-byte table of ECDs. The BRAMs 

provide a method of compression from raw data inputs to the various ECDs. The raw data inputs are then 

mapped by the BRAM module to their respective ECDs. Label (a) in Figure 5.2 contains the BRAM 

module responsible for the memory compression of the ECDs. When the construction process of the first 

phase is completed, the BRAM module is converted to an equivalent VHDL file representation of the 

actual 256x8-bits BRAM component on the hardware.  

The four ECD-NFAs corresponding to each 256x8-bit BRAMs and decoding modules are 

generated, as shown in Figure 3.26 and Figure 5.2. Each of the ECD-NFAs is driven by the inputs from 

the 4-byte table of compressed ECDs generated in label (a) of Figure 5.2 and as 4 x Tc in Figure 5.1. Four 

of the sub-REME blocks as shown in Figure 5.1 make up a single REME block. This forms the typical 

arrangement found in every REME block as shown in Figure 5.3 and Figure 5.7. The table look up 

operation is performed in the component labelled Tc in Figure 5.1 and the decoding units of Figure 3.26. 

The outcome is an n-bit vector of outputs used to supply ECDs to the four sub-ECD-NFAs, where n = 2 

and 4. The ECD-NFAs then perform the matching of the various ECDs with each of the four sub-ECD-

NFAs releasing 1-bit of output, which is encoded to form a 4-bit output vector.  

 

 

 

 

 

 

 

Figure 5.1: A 4-byte ECD-NFA for an n-regexp engine, where n = 2, 3, 4, and 5. 

c. VHDL Generator 

Once the design phase described in Section 5.3.1b is completed, the three units labelled (a), (b) and (c) in 

Figure 5.2 are then combined into multi-character and multi-pattern NFA blocks. The blocks are then laid 

out and saved as VHDL files. The files are made ready for integration and subsequent synthesis in the 

XST VHDL synthesis tool, during the hardware implementation process in the second phase.  
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This stage is quite crucial to the design in this thesis, because it saves so much construction time and 

resource. It also optimises the entire automata before generating the VHDL files. Attempting to achieve 

the same strategy through direct construction and optimisation on the hardware, would have been 

inefficient. The entire process would have been manual, difficult, error prone and time consuming, even 

when carrying out unit or modular testing. It is also more flexible to effect changes and updates to the 

design which is easily re-compiled afterwards. This is because the actual logic circuit implementation is 

not required at that point. With the VHDL files generated, the second phase of processing begins in 

Section 5.3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Software/hardware ECD-NFA/ECDRTS-NFA model. 

5.3.2 The Hardware Module: Second Phase 

a. Hardware Design  

This section deals with the hardware implementation of the design in this thesis, using the XST VHDL 

synthesis tool Figure 5.2 ECDRTS-NFA. It is the last block in  labelled as ECD-NFA/  (FPGA), and the 

further in Section 5.4. The block is partitioned into a number of modules. design description is elaborated 

The block module is pieced together with four sub-ECD-NFA blocks, four sub-table/decoding blocks and 

four sub-BRAMs blocks. Each REME block is made up of a memory component, a table/decoding 

component and an NFA component as shown in Figure 5.3. The block modules are automatically 

integrated into the VHDL file as the outputs of the software phase. The table/decoding module performs 

the function of decoding the respective inputs fetched from the memory component as shown in Figure 

5.3. The module uses the decoder circuit components for its decoding operations.  

Each of the separate engine blocks as shown in Figure 5.3 is made up of an average of 20 regexps 

or less. Each of the engines is as shown in Figure 5.1. However, the problem with the table/decoding 

module of Figure 5.3 is that it is time consuming and involves nested loop operations performed on four 

7-bit input decoders. FPGA synthesis tools are not designed to process such complex operations, which 

made it near impossible to synthesise the design even when trivial regexps were considered. It became 

clear that a major modification needed to be made to the design to eliminate nested loop operations. The 

decision led to the creation of the optimised version of the ECD-NFA called ECDRTS-NFA (refer to 

Section 5.3.3). 
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Furthermore, each row of the parallel REME blocks as shown in Figure 5.3 has four 256x8-bit 

BRAMs modules storing the compressed 1-byte ECDs as explained in Section 5.3.1b. Each of the four 

256x8-bit memories outputs 7-bits of ECDs. The ECDs are then concatenated to form 28-bit outputs. The 

output is then supplied as input to the table/decoding component to perform table look up operations. 

Once the operation is performed, a vector of < 128 bits is released as output. The output represents the 

<128 ECDs supplied as inputs to the block of four sub-ECD-NFAs. This is achieved by supplying a group 

of 7-bit ECDs to each one of the four sub-ECD-NFAs simultaneously. As such, it is possible to match up 

to 20 regexps if each sub-ECD-NFA was constructed with up to 5 regexps per block (refer to Section 5.4 

for details). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Block diagram of parallel 4-byte ECD-NFA REMEs. 

The remaining modules in this phase include the user constraint file (UCF) module for setting the clock 

timing, and the test bench module which specifies in VHDL the complete simulation environment for the 

analysed system unit under test (UUT). The test bench module contains both the UUT as well as the 

stimuli (data) for the simulation. Upon the completion of the design, the top level module is set 

accordingly. Afterwards, the synthesis process of compilation begins, in order to realise the design. 

Section 5.4 explains the various stages which the implementation of the design has to pass through in 

order to get it ready for transfer into the target Xilinx FPGA Virtex-6 device. The design as shown in 

Figure 5.3 is further elaborated in Section 5.4. 

5.3.3 The ECDRTS-NFA Design 

The optimised version of the ECD-NFA design referred to as the ECDRTS-NFA retains the basic 

constructs of the former as described in the first phase of the design construction phase. The optimisation 

process particularly affects the middle table/decoding component block module of each REME. The 

major change made to the block module involved the total eradication of the decoders used in the module 

and the operations involved. Also, the shift registers, LUTs and other logic components used by the 
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decoding units were eradicated too. The optimised block component now called the table-synthesis block 

simply synthesises the table of ECDs into pure logic. The logic components are a few LUT RAMs, shift 

registers and other logic elements needed to perform the given look up operations. The operations became 

almost a linear process compared to the initial nested loop operations performed with the decoders and 

shit registers in the initial design. The direct consequence of these optimisations led to increased speed of 

matching and reduced synthesis time of the overall design. The process of LUT packing became more 

efficient.  

The optimised design only utilises 2x  containing each of 36kBRAMs dual-port primitive memories

the 4 tables of 1-byte ECDs described in Section 5.3.2a. This reduction translated to just four 256x8-bit 

BRAMs utilised for every 20 regexps REME blocks in the ECDRTS-NFA design. This is opposed to the 

initial five 256x8-bit BRAMs for every 5-regexp or less REME block in the previous ECD-NFA design. 

This translated to a significant reduction in the number of required primitive BRAMs, from 

20x36kBRAMS to just 2x . As such, the design was able 36kBRAMs for every 20 regexps REME blocks

to save about 90% of the memories required from original ECD-NFA design. The detail of the optimised 

approach is also elaborated in Section 5.4. From now henceforth, discussion will dwell on the newly 

optimised ECDRTS-NFA design. 

 The Implementation Phase 5.4

5.4.1 Implementation of the First Phase 

This section elaborates more on how each of the aspects mentioned in Section 5.3 (design phase) together 

with the various modules and units as shown in Figures 5.1 - 5.3 are related. The discussion begins with 

the implementation of the first phase of the design. 

a. The ECDs and ECDRTS-NFA Algorithm 

The classification approach, like the one implemented by Yang, Jiang and Prasanna (2008), does not 

differentiate between individual, ranges or general character sets. This is because they are all referred to 

as character classification approaches (Yang, Jiang and Prasanna 2008). The approach consumes one 

character as input, and generates a match bit. The match is represented by the bit position it occupies on 

the output match vector, as illustrated in Algorithm 5.1. Algorithm 5.1 is used for constructing the 

ECDRTS-NFA design. The algorithm is also used to generate the required ECDs assigned to each of the 

respective state vectors and to demonstrate how the implemented design in this thesis actually works in 

practice. Given a simple example of a regexps such as: “/(a|b)*cd/”, the ECDs representing the state 

vectors based on Algorithm 5.1 was obtained. The equivalent state table and NFA are then generated. 

Based on the regexp “/(a|b)*(cd)/”, and the generated ECDs used to represent the various vectors of next 

states as seen in Table 5.1, the equivalent ECDRTS-NFA is first constructed. Afterwards, the NFA is 

minimised to create a more compact ECDRTS-NFA as shown in Figures 5.4 – 5.6. Figure 5.6 shows the 

constructed ECD-NFA with ECDs assigned as the new inputs for the transitions.  

It is interesting to know that all the NFAs as shown in Figures 5.4 – 5.6 perform the same 

matching process, but in different reduced forms. The total number of states and transitions on the 

original NFA as shown in Figure 5.4 has now been reduced from 11 states to 5 states as shown in Figure 

5.5. Also, the number of transitions has reduced from 13 transitions to as little as 7 transitions. All the 

epsilon and self-transitions in Figure 5.4 have been eliminated as shown in Figure 5.5. The letter z as seen 
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in Figure 5.5 represents all those characters in the ASCII character set that are not letter a,b,c, or d (z is 

simply represented by the class of characters [^abcd]). This reduction shows that while minimising the 

original NFA to form the ECDRTS-NFA, about 45% of the states and 53% of the transitions in the 

original NFA have been eliminated. This further created a more compressed and compact ECDRTS-NFA 

as shown in Figure 5.5 and Table 5.1 (which shows how the ECDRTS-NFA works). In Table 5.1 ECD 0 

represents the input class [ab], ECD 1 represents input c, ECD 2 represents input d, and ECD 3 represents 

the input class [^abcd]. 

On the input of ECD (0-3) as shown in Figure 5.6 and Table 5.1, the NFA remains on the initial 

state 0. On the input of ECD 0 on state 1, the NFA transits from state 1 to states 1 and 2. On the input of 

ECD 1 on state 2, the NFA transits from state 2 to state 3. On the input of ECD 2 on state 3, the NFA 

transits from state 3 to state 4. State 4 is the accepting state.  

 

Figure 5.4: NFA for the regexp (a|b)*(cd) (Sidhu and Prasanna 2001). 

 
Figure 5.5: Minimised classified ECDRTS-NFA. 

 

Figure 5.6: ECD-NFA with assigned ECDs. 

By performing steps (i) to (v) in Algorithm 5.1, the required table of compressed ECDs is then generated 

for the 2-byte match inputs. This is achieved by taking the cross product of each ECD column against 

itself and against any other ECD column as seen in Tables 5.2a – 5.2d.  

        Table 5.1: ECD table of the state vectors for the regexp “/(a|b)*cd/”. 

State ECD 0 ECD 1 ECD 2 ECD 3 

0 012 012 012 012 

1 12 - - - 

2 - 3 - - 

3 - - 4 - 

4 - - - - 
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The process then generates 16 new ECD columns which are merged to form just 5 unique ECD columns 

of state vectors. The cross product computation is demonstrated in Tables 5.2a – 5.2d, and is as described 

in steps (vi) – (vii) of Algorithm 5.1. Also, The ECD columns of each of the tables in Tables 5.2a – 5.2d 

represent the state vectors described in Algorithm 5.1 step (vi). The cross product between the state 

vectors represented as ECD 0 and ECD 1 in step iv of Algorithm 5.1 ensures that all costly OR operations 

and consequently OR logic gates are eliminated. This is further reduces the logic circuits required during 

the hardware synthesis process.   

Table 5.1 generates the ECD column labelled as ECD (0x1) seen in Table 5.2a. A similar process 

is executed to generate Table 5.2b – Table 5.2d. The fifth newly introduced ECD column was obtained as 

a result of the cross product computation, which generated a fifth ECD input. The input represents the 

new unique column of state vectors. Table 5.1 generated the 16 ECD columns of state vectors. Tables 

5.2b – 5.2d show that the growth of the ECDs is linear and not exponential as is the case with most of the 

DFA and non-optimised NFA approaches discussed in Chapter 3. 

After merging all the similar ECD columns and assigning to them unique 2-byte ECD class 

descriptors, a state vector for 2-byte ECDs was then obtained. Two 1-byte ECDs are then used to look up 

the table of 2-byte ECD as seen in Table 5.2e. The process is synthesised in the  module of table-synthesis

Figure 5.3, Figure 5.7 and Figure 5.9a. 

The cross product between ECD 1 x ECD 2 = ECD (1x2) = 4 as seen in Table 5.2e, reflects the 

cross product between ECD (1x2) = 4 as seen in Table 5.2b. By recursively running the algorithm again 

as explained in step (viii) of Algorithm 5.1, and merging the various state vectors seen in Table 5.3a, the 

4-byte ECDs are created.  Two 2-byte ECDs are then used to look up the table of 4-byte ECD. We then 

end up with the Table 5.3b which is created from the cross product of the various 2-byte ECD columns of 

state vectors as seen in Table 5.2e. The table now has 6 ECDs represented by each the table columns. The 

algorithm that was used to create the various ECDs generated from the various class vectors is as 

described in Algorithm 5.1.  

    Table 5.2: (a) ECD 0 cross product of itself and those of ECD (1, 2 and 3). 

State ECD (0x0) ECD (0x1) ECD (0x2) ECD (0x3) 

0 012 0123 012 012 

1 12 3 - - 

2 - - - - 

3 - - - - 

4 - - - - 
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    Table 5.2: (b) ECD 1 cross product between itself and those of ECD (0, 2 and 3).  

State ECD (1x0) ECD (1x1) ECD (1x2) ECD (1x3) 

0 012 0123 012 012 

1 - - - - 

2 - - 4 - 

3 - - - - 

4 - - - - 

                               Table 5.2: (c) ECD 2 cross product between itself and those of ECD (0, 1 and 3). 

State ECD (2x0) ECD (2x1) ECD (2x2) ECD (2x3) 

0 012 0123 012 012 

1 - - - - 

2 - - - - 

3 - - - - 

4 - - - - 

 

                                Table 5.2: (d) ECD 3 cross product between itself and those of ECD (0, 1 and 2). 

State ECD (3x0) ECD (3x1) ECD (3x2) ECD (3x3) 

0 012 0123 012 012 

1 - - - - 

2 - - - - 

3 - - - - 

4 - - - - 

 

                  Table 5.2: (e) 2-byte table of compressed ECD input classes. 

 ECD 0 ECD 1 ECD 2 ECD 3 

ECD 0 1 2 0 0 

ECD 1 0 3 4 0 

ECD 2 0 3 0 0 

ECD 3 0 3 0 0 
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Algorithm 5.1: Construction of n-ECD class vectors. 

INPUT: An n-state, m-character class input. The input state is s. 

OUTPUT: An n-state ECDRTS-NFA with the relevant multi-byte table of compressed ECDs.  

BEGIN 

i. Read and parse the regexps to be constructed into the equivalent ECDRTS-NFA. 

ii. For   i < n, where i = 0,1,2,3....n-1, and n is the total number of states in the NFA. If the 

transition (link) from state si is a self-transition from state si to itself upon consuming a non-

empty character, remove all such self-transitions  

iii. For   i < n, j < n and k < n, if the output of state si connects to the state inputs of some state sj 

upon consuming an empty string ( ), remove all such transitions ti,j  linking state si to sj. Create a 

new transition that connects state si to states sj and sk where sk > sj on a non-empty input. 

iv. For   i < n, j < n and for each transition ti,j from a state si  to a state sj, scan through. Store all 

next states transited to on the same input, into a set of next states. Store all the different sets of 

next states into a single vector of sets of next states and assign a single input character class 

descriptor to them. 

v. Assign to each classified inputs created in (iv) ECDs, which are the class descriptors. The ECDs 

now represent the sets of vectors of next states for all character classes that trigger transitions 

from a state si to a state sj, where i < n, j < n. 

vi. Repeat steps (i) - (v) for   si, i < n and store all the sets of vectors of next states in a list of state 

vectors for   states si in the ECDRTS-NFA. 

vii. Once step (vi) is completed, the process of building the compressed table of ECDs begins. The 

process first performs the cross product computation of any two sets of vectors of next states vi 

and vj    i < n, j < n contained within the list of state vectors stored in (vi). Subsequently, all the 

similar vectors are merged to become a single vector. Recursively performing step (vi) – (vii) 

generates a 4-byte table of ECDs two 2-byte tables. 

viii. Finally, exit the process after step (vii) and generate the VHDL file for the ECDRTS-NFA. The 

file is then uploaded to the XST VHDL synthesis tool for synthesis and implementation. 

END. 

During the second phase of the implementation phase described in Section 5.4.2a, two tables: Table 5.2e 

and 5.3b, representing 2-byte and 4-byte tables of ECDs respectively are then synthesised into logic in the 

table-synthesis module of Figures 5.3, 5.7 and 5.9a. The two tables are used to perform table look up 

operation (refer to Section 5.4.2a-ii for details). 

               Table 5.3: (a) Table of the 2-byte state vectors merged to form 6 new ECD columns. 

State ECD 0 ECD 1 ECD 2 ECD 3 ECD 4 ECD 5 

0 012 0123 012 0123 0124 0124 

1 12 3 - - 4 - 

2 - - - - - - 

3 - - - - - - 

4 - - - - - - 
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  Table 5.3: (b) 4-byte table of compressed ECDs. 

 ECD 0 ECD 1 ECD 2 ECD 3 ECD 4 

ECD 0 0 1 2 3 4 

ECD 1 0 3 2 3 4 

ECD 2 2 3 2 3 5 

ECD 3 2 3 2 3 5 

ECD 4 2 3 2 3 5 

 

The second phase of the design implementation describes the basic hardware architecture of the ECDRTS-

NFA. Section 5.4.2 discusses the inner workings of the design and shows how each of the modules are 

integrated to form block of sub-REMEs.  

5.4.2 Implementation of the Second Phase 

This section is divided into five major sections namely: (1) hardware architecture module, 2) user 

constraint timings, (3) synthesis, and (4) target device configuration. 

a. Hardware Architecture Module 

i. Memory Modules 

The BRAM referred to in this section is a primitive 36K BRAM block of memory. The BRAM block is 

constructed for compressing 1-byte ECDs. The ECDs are generated for an engine that matches between 8 

- 20 regexps per REME. This is dependent on the complexity of the regexps in question as explained in 

Section 5.4.1. The 2x36kBRAM memory block interfaces with the table-synthesis and ECDRTS-NFA 

block to form a single REME as shown in Figures 5.1  and 5.9a.  

The memory design as shown in Figure 5.7 reduces the total memory overheads incurred by at 

least 90%, during the construction of each REME. The reduction is in comparison to the other related 

approaches. This was achieved by first splitting the two 36K BRAMs into 512x72-bits blocks. Each of 

the 512x72-bits is further split into two 256x72-bit blocks. This produced four 256x72-bit blocks, with 

each containing just 256x8-bits of ECDs. But because we are dealing with < 128 classes of ECDs (2
7 

bits), the MSB (Most Significant Bits) of each 8-bit ECD input value is eliminated. This leaves us with 7 

bits rather than 8 bits to represent each of the 4-byte ECDs. The 7-bit outputs from all the four blocks of 

256x8-bit memories are then concatenated to form a 256x28-bit wide output of 4-byte ECDs. The ECDs 

are then supplied to the table-synthesis block module for processing as shown in Figure 5.7. 

The REME block arrangement implies that, only two 36K BRAMs are required to represent 4-

bytes of data inputs required for matching each of the four sub-REME NFA matching blocks. This  

translates to a significant reduction in memory in the optimised ECDRTS-NFA design, compared to the 

initial ECD-NFA design. Initially, the ECD-NFA utilised a single 36KBRAM for just one regexp 

matching REME engine. The design required about twenty 36KBRAMs to effectively match a 20 regexp 

matching REME engine block, which was a waste of memory. Figure 5.7 shows the grid layout of the 

2x36KBRAMs in more detail as illustrated in Figures 5.3 and 5.9a. 

To properly comprehend the synthesis process for the memory modules described in Figure 5.7, 

one of the four 256x28-bit blocks of memory was extracted. An explanation is given on how the extracted 

memory block would be synthesised in a synchronised order, together with the other three remaining 
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block memories. Figure 5.8a shows how the output of each Memx(0-3) tables was combined, where x = 

0, 1, 2 and 3. The first of the 256x28-bit block memories namely: Memx(0) as shown in Figures 5.8a – 

5.8d generated a 256x28-bit output belonging to Mem(0-3)(0) memory block. This was obtained by 

eliminating the MSB of each unit to produce a 7-bit output each. The four 7-bit outputs are then 

concatenated together to produce one 28-bit output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: 2x36kBRAM block interface.  

The process in Figure 5.8a is repeated for the other 3 memory tables: Mem1, Mem2 and Mem3 to also 

produce Output1, Output2 and Output3 all of which are 28-bits wide too. The outputs are also obtained by 

concatenating four of their separate 256x8-bit RAMs as shown in Figure 5.8b, Figure 5.8c and Figure 

5.8d respectively: 

 

 

 

 

 

 

 

 

 

Figure 5.8: (a) Four 256x8-bit table of ECDs for Mem(0-3) memory blocks.  (0) 
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               Figure 5.8: (b) Four 256x8-bit table of ECDs for Mem(0-3) memory blocks.  (1) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: (c) Four 256x8-bit table of ECDs for Mem(0-3) memory blocks.(2)  

  

 

 

 

 

 

 

 

 

 

 

Figure 5.8: (d) Four 256x8-bit table of ECDs for Mem(0-3) memory blocks.(3)  
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ii. Table-Synthesis Modules 

The four table-synthesis modules as shown in Figure 5.9a have the same structure. Within the architecture 

body of each module resides the compressed multi-byte table of ECDs resulting from the cross product of 

any two ECD‟s state vectors. Each of the state vectors is then represented by a class descriptor which 

designates each unique input as an ECD, as discussed in Algorithm 5.1 of Section 5.4.1a. Further 

illustration on how the basic synthesis process works using a short VHDL code snippet contained 

Algorithm 5.2. The code snippet uses the 2-byte and 4-byte tables of compressed ECDs, generated for the 

regexp “/(a|b)*cd/” as presented in Section 5.4.1a. With the generated 2-byte tables and 4-byte tables of 

ECDs, the process of the synthesis starts. 

The table-synthesis module as shown in Figure 5.9a contains the 2-byte and 4-byte tables of ECDs 

which are then synthesised into logic using LUT RAMs, multiplexers, shift registers and other related 

logic circuits. Executing the look up table process implies looking up 2 or 4 bytes of incoming 1-byte 

ECDs stored in the four sub-BRAM blocks. Afterwards, the module generates the vectors of < 128 bits 

representing each ECD that has been successfully scanned, for each of the four sub-blocks of the table-

synthesis module. The < 128 bit vector outputs coming out of each sub-block are then passed on to each 

of the four sub-NFA blocks for matching. Each of the four sub-blocks in each category forms what is 

referred to as sub-REME blocks. Each sub-REME block is made up of a BRAM, table-synthesis module 

and a sub-NFA block which make up one REME block as shown in Figure 5.9a. If one of the Tab(i) sub-

blocks of the table-synthesis blocks is expanded where i = 0, 1, 2, and 3, the hardware table-synthesis 

process can be executed as shown in Figure 5.9b. 

From Figure 5.9b, i1 = j1 = i2 = j2 = [0..6] bits, and each is an ECD input value. While k = Tab1(i1, 

j1) is a 7-bit value, and l = Tab1(i2, j2) is a 7-bit value. Tab1 is a table of 2-byte ECDs, while Tab2 is a 

table of 4-byte ECDs used to look up the ECD descriptors i1, j1, i2, j2. The inputs are fetched from the 

2x36KBRAM memory blocks in Figure 5.9a recursively. Whenever a match is found, a bit value of 1 is 

assigned to the bit position of the output vector of < 128 ECDs representing the total number of ECD 

inputs in Tab2.  The whole process is repeated until all the ECDs of Tab2 have all been scanned.  

The algorithm for the table-synthesis process also describes Table 5.2e and 5.3b. Step iv of 

Algorithm 5.2 begins by first declaring and assigning signals i1, i2, i3, i4, and the input & output ports in 

the entity and architecture bodies of the VHDL code snippet. The step describes how the 2-byte and 4-

byte table of compressed ECDs looks up multiple bytes from the stored 1-byte ECDs. The 1-byte ECDs 

are contained in the 2x36kBRAM block and are read into the table-synthesis block. Afterwards, the 

module generates the relevant < 128 bits of ECDs output in step v of Algorithm 5.2. The outputs are then 

fanned out to the various NFA blocks as shown in Figure 5.8. The output port of Figure 5.9 is a sub-

standard logic vector. The size of the port is relative to the number of 4-byte ECDs generated for the sub-

NFA blocks, during the parsing stage described in Algorithm 5.1.  
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The number of bit-vector positions in the output generated in Algorithm 5.2 has to be equal with the 

number of compressed ECDs expected by the sub-NFA blocks. The bit vector output of <128-bits is 

fanned-out to the four sub-NFA blocks for matching. Once again, the entire process involves a less costly 

table look up operation. Furthermore, due to the compact nature of the table-synthesis approach, the 

increased complexity of regexps utilised only has a linear effect on the overall growth of the design 

REMEs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

      Figure 5.9: (a) An expanded REME diagram as shown in Figure 5.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) One of the sub-NFA blocks of Figure 5.9a.Figure 5.9:  

Chapter 6 discusses the various results obtained for each category of the n-regexp REME designs, where 

n = 2, 3, 4 and 5. The design does not scale beyond 5-regexp REMEs at the moment. 
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Algorithm 5.2: Hardware synthesis process for the compressed n-byte ECDs. 

INPUT: An k x k table of n-byte ECD input class descriptors and a 28-bit input from the 2x36kBRAM 

block of Figure 5.9a, where n = 2 and 4, and k > 1. 

OUTPUT: A <128-bit vector of compressed ECDs.  

BEGIN 

i. Read the 28-bit inputs from the 2x36kBRAM and the k x k tables of n-byte ECDs. 

ii. Create the relevant 2-dimensional arrays converted into signal variables and initialise the same to 

contain the associated 2-byte and 4-byte tables of compressed ECDs. 

iii. Compute and process the sub-linear table-look up operations, to generate the relevant < 128-bit 

vector of outputs. Each bit position of the output bit vector represents an equivalent ECD value.   

iv. Initialise the tables of 2-byte and 4-byte tables of compressed ECDs. Assign the 1-bit value of „1‟ 

to the output variable. 

END. 

iii. ECDRTS-NFA Module Blocks 

From the ECDRTS-NFA block in Figure 5.9a, it can be seen that there are four sub-NFA blocks. Each of 

the four separate blocks represents a sub-REME that matches up to 5 regexps depending on the 

complexity of the regexps and design considered. The regexps used for building and testing these 

ECDRTS-NFA sub-blocks were selected from the VRT Rule distributed by Sourcefire (v 2.0) community 

rules, 2001-2013 (Snort 2013; Sourcefire 2009) provided by Snort. The rules selected contain attacks 

such as: malware-backdoor PROTOCOL-FTP CWD ~root attempt, PROTOCOL-FTP no password/bad 

login, POLICY-OTHER FTP anonymous login attempt, SERVER-MAIL RCPT TO overflow, FILE-

IDENTIFY.htr access file download request and many more.  

Each of the four NFA modules has the same structure and only varies in the number of states sub-

and ECDs generated. Algorithm 5.3 shows how the ECDRTS-NFA sub-blocks work. Figure 5.10 

illustrates the way the four sub-blocks are closely coupled together based on the overall ECDRTS-NFA 

block, with each containing the four sub-NFA as shown in Figure 5.9a. The two-phased process as shown 

in Figure 5.10 is computed in step iii of Algorithm 5.3. The step first describes the process responsible for 

initialising the state signal variables and processing the ECDs. The process drives the automation‟s 

transitions from one or multiple current states to one or multiple next states. This is achieved by 

consuming a single or multiple ECDs capable of activating multiple states at once, as expected of a 

typical NFA operation.  

Also, step v of Algorithm 5.3 is responsible for generating the < 128 bits of ECDs from the table-

synthesis module as shown in Figure 5.10. The ECDs are then fanned-out to the various sub-NFA blocks. 

The port ip is a bit vector of < 128 bits of ECDs that are supplied the NFA blocks as inputs. The CSV sub-

represents the current state bit-vector, while the NSV represents bit-vector of next states. Lastly, Figure 

5.10 illustrates how each of four sub-NFA blocks of the ECDRTS-NFA is further laid out as shown in 

Figure 5.9a. Each of the ECDRTS-NFA sub-NFA blocks as shown in Figure 5.10 is made up of the two-

phased process described in Algorithm 5.3. The four separate 1-bit outputs are then concatenated together 

to produce a 4-bit match vector for every single REME engine block as shown in Figure 5.9a. By 

recursively repeating the processes described in Algorithm 5.1, 5.2 and 5.3 all the relevant REMEs for 

each of the REME designs then generated. 
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                 Figure 5.10: Two-phased process for each NFA   sub-  block.

The algorithm used to describe the process of creating the creating the ECDRTS-NFA blocks to perform 

the matching process is described in Algorithm 5.3. 

 

Algorithm 5.3: Hardware synthesis process for the ECDRTS-NFA block. 

INPUT: A <128-bit of n-byte ECDs supplied to the NFA from the table-synthesis block of Figure 5.9a, where 

n = 2 and 4. 

OUTPUT: A k-bit vector of match output, where k < 128.  

BEGIN 

i. Read the <128-bit vector of n-byte ECDs from the table-synthesis block of Figure 5.9a.  

ii. Create the necessary signal variables and initialise them as: current states, next states and the variable 

that holds the total number of states on each sub-NFA. 

iii. Compute the two-phased processes as shown in Figure 5.10.  

iv. Generate the associated 1-bit match output against each of the four sub-NFA blocks of the overall 

ECDRTS-NFA block as shown in Figure 5.9a. Finally, encode all the outputs as a 4-bit vector of 

outputs. 

v. Generate the < 128 bits of ECDs from the table-synthesis module as shown in Figure 5.10  

This arrangement reflects the one portrayed in Figures 5.9a, 5.9b and 49. 

END. 

iv. Top Module 

The top module has an entity, architecture and processes code section as explained in Section 2.5. The top 

module instantiates and constructs all the various implementations described in Section 5.4.1. A separate 

process FF is used to speed up the transfer of the output of each table-synthesis sub-blocks, to the 

corresponding NFA blocks as shown in Figure 5.9a. Afterwards, a match vector is generated by sub-

concatenating the various match outputs of the overall NFAs and encoded accordingly. The test sub-

bench module specifies in VHDL the role of a complete simulation environment for the analysed system 

UUT (refer to Section 5.3.2a). It contains both the UUT as well as the stimuli for the simulation. The 

module also has a code section for the implementation of the top module.  

In the body of the entity a generic value for the word size of 4-bytes based on the architecture was 

initialised. An array of network data, representing the decimal equivalent of the ASCII character codes, 

was set and used to provide the stimuli for the top level module. The UUT module was then instantiated, 
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and afterwards a generic clock signal was set through a simple process. Another process that copies bytes 

of the network data into a single standard logic vector was then initiated. The final process involves 

fetching 4-byte data, and passing it to the output port of the instantiated top level module for onward 

passage to the BRAM block module as illustrated in Figure 5.7. 

b. User Constraint Timings 

This process involves a pre-synthesis and post-synthesis procedure, where the timing specification is set 

by the user or by default. There is a user constraint file (UCF) editor which allows the user to set the 

clock timing. The NET connectivity identifies groups of elements by specifying a net or signal that drive 

synchronous elements and pads. Such synchronous elements include: FFs, Latches, BRAMs, distributed 

RAMs etc. CLK is a short name for a CLOCK net. The TNM_NET is the equivalent timing name (TNM) 

on a net constraint, with the exception of the input pad nets. The timing name is used to identify the 

elements of a group used in a timing specification as described by Xilinx (2012b, p. 462).  

The PERIOD constraint is a basic timing and synthesis constraint used to check timings between 

all synchronous elements within a clock domain. The domain is usually defined in the destination element 

group (Xilinx 2012b). The HIGH (rising clock edge)|LOW (falling clock edge) keyword of the PERIOD 

constraint defines the initial clock edge (RISING|FALLING) for analysis of OFFSET constraints. The 

definition The HIGH|LOW value is set to 50% duty cycle, which is the default value for most clocks.   

A user constraint file (UCF) is generated and added to list of files attached to the top level module 

in preparation for synthesis. When the option for choosing the option to ignore the user timing constraints 

is selected in the properties environment, the system automatically synthesises the design. This is 

achieved by determining the best applicable and estimated timing constraint for the design‟s clock. The 

default timing is not exactly accurate when set automatically in comparison to the user specific timing 

constraints. The clock value for CLK had to be adjusted each time the design is synthesised to obtain the 

minimal timing requirement for each design. The two-line statements that describes how the timing editor 

outputs the clock timing based on the user settings is stated thus:  

NET “CLK” TNM_NET = CLK; 

   TIMESPEC TS_CLK = PERIOD “CLK” 5.778 ns HIGH 50%; 

The initial timing settings contained within the UCF is initialised and subsequently adjusted to achieve 

the best user-defined timing constrain. 

c. Synthesis  

For a full description of the synthesis process, refer to Section 2.7. Before the process of synthesis is 

initiated, a few settings were set using the process property for synthesis options. The three affected 

categories are: the synthesis options, the HDL options, and Xilinx specific options. The Synthesis process 

is somewhat systematic and begins by firstly having the VHDL codes synthesised or translated into a 

netlist (refer to Section 2.5). This is achieved using the installed XST VHDL synthesis tool software 

bundled within the family of Xilinx FPGA Virtex-6 device (refer to Section 2.7 for details).  

In summary, the XST VHDL synthesis tool simply performed the RTL parsing (refer to Section 

2.5) and circuit elaboration of the design. The tool also carried out some register/logic level optimisations 

(Xilinx 2012b, p. 23; Jang et al. 2009) and performed behavioural and post (translate, map, place and 
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route) simulations. The generated netlist file is saved as an NGC file. The NGC file served as input to the 

place and route process described in Section 2.7. 

d. Configuration File Generation 

The synthesised netlist (NGC file) generated in Section 5.4.2c is then implemented. The NGC file is 

converted into a binary format, where the components and connections that it defines are mapped to 

CLBs. The translation phase of the implementation stage generated a post-translate simulation model. At 

the translation phase, a process merged all of the input netlists and design constraints files for the design. 

The process finally generates an NCD output file. The NCD file was used to physically represent and map 

the design to the Xilinx FPGA logic components. Closely following the mapping phase was the place and 

route (PAR) phase. The phase takes the mapped NCD files, and then places and routes the design (refer to 

Section 2.7 for more details).The final phase in the implementation stage is the programming file 

generation phase. The phase involves the process of generating the configuration bits file (Xilinx 2010, 

pp. 136-137) used by the target Xilinx FPGA Virtex-6 device.  

 Chapter Summary 5.5

In this chapter a novel equivalence classification based approach to regexp pattern matching was 

presented. The approach is simple and less complex, and is capable of performing basic optimisations 

capable of creating classified inputs using a compressed and minimise NFA-based REMEs. The fact that 

the design is modular in approach and capable of utilising a single bit output to represent a class of 

multiple possible matching characters is incredible. The combined optimisation techniques used helped 

create a design that is uniquely applicable to NFAs only. The approach is capable of reducing the overall 

table size of the ECDs used to drive the design REMEs. The memory blocks also utilised within each 

REME only 2x36KBRAMs for up to 5-regexp sub-REMEs, instead of 20x36KBRAMs for every single 

regexp sub-REME. This reduction represents a 90% reduction in the total number of BRAMs that are 

required per each sub-REME. Building such efficient REMEs remains a challenge with most NFA-based 

hardware approaches. Chapter 6 discusses how the results of the design in this thesis vary across the four 

separate REME designs and how it compares favourably with the other related approaches studied in this 

thesis. The test of the research hypothesis is also discussed in Chapter 6. 
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 Evaluation of Results 6.

 

This chapter examines the various results obtained from the design and implementation process described 

in Chapter 5. Afterwards, the results of the related approaches explained in Chapter 4 are tabulated, 

compared and analysed together with the design results obtained in this thesis. This helps to establish the 

performance of the new approach. The discussion concludes with a brief summary of the factors that may 

be considered as design limitations. 

 Design Description 6.1

This chapter describes the results and the processes used to implement the various REME designs in this 

thesis, with particular reference to Section 5.4 of Chapter 5. You may recall that each REME block 

contains four separate sub-REME blocks. The various results for the four REME designs are as shown in 

Appendix 1.3 – 1.6. Also, the description of the number of ECDs and the total number of characters 

matched is as shown in Table 6.1 and Table 4.6 of Chapter 4. The four REME designs show how the 

approach in this thesis scales up with each increase in the number of regexps that are built into the 

ECDRTS-NFAs design thus: 

1.  BG2RE (denotes a 4-byte ECDRTS-NFA REME that matches up to 2 regexps). 

2.  BG3RE (denotes a 4-byte ECDRTS-NFA REME that matches up to 3 regexps). 

3.  BG4RE (denotes a 4-byte ECDRTS-NFA REME that matches up to 4 regexps). 

4.  BG5RE (denotes a 4-byte ECDRTS-NFA REME that matches up to 5 regexps). 

 Design Results 6.2

The various results of the ECDRTS-NFA designs are presented in the following section. This helps to 

portray the effect of the optimisations performed on the original ECD-NFA design. The section also 

shows how the various FPGA-based related approaches compare with the ECDRTS-NFA. 

6.2.1 ECDRTS-NFA and Related Approaches Result 

In this section, each of the results presented below is considered based on the same attributes discussed in 

Chapter 4 namely: the design approach and an n-byte match size, with n = 1, 2 and 4, with focus on 4-

byte matching designs considered to be the standard for comparison in this area of research. Also 

considered are the speed of matching (MHz), throughput (Gbps), and the total number of characters 

matched. The results appear in tables and are analysed by means of simple diagrams. Also the outcome of 

the research hypothesis in this thesis is discussed at the end of the chapter. The column headings of Table 
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6.1 have the same description and meaning as those of Table 4.1 - 4.6 of Chapter 4. Each column 

represents the important fields considered later on in Section 6.2.2b as shown in Table 6.1. 

 In Table 6.1 the last four entries show the 4-byte ECDRTS-NFA REMEs namely: BG2RE, 

BG3RE, BG4RE, and BG5RE. The acronym „BGnRE‟ simply means „block-engine group of n regexps, 

where n = 2, 3, 4 and 5‟. Four separate blocks of sub-REMEs make up each REME matching block. Each 

BGnRE contains 10 REME engines arranged in parallel to perform pattern matching as shown in Figure 

5.9a of Chapter 5. Furthermore, the BGnRE design matches up to 5 regexps at a time, with each REME 

made up of 4 x n regexps sub-REME. Table 6.2 shows the results of processing the set of n regexps for 

each sub-REME, and the total number of ECDs computed in each category. The table also shows the 

average number of ECDs per sub-REME reported for each BGnRE column as seen in Table 6.1. 

Table 6.1: The design approach compared with other related approaches as seen in Table 4.6. 

Design Approach Input 

(bytes) 

MHz Tp T/Chars 

Brodie, Taylor and Cytron (2006). 4 133.00 4.26  11126  

Sourdis and Pnevmatikatos (2004). 4 303.00 9.71  18032 

Yamagaki, Sidhu and Kamiya (2008). 4 113.40 3.63 40896 

Hutchings, Franklin and Carver (2002). 1 30.90 0.24 8003 

Lee, Hwang, and Park (2007). 2 275.30 4.40  19275 

Lin et al. (2006). 1 133.00 1.10 20914 

Hieu et al.  (2011). 1 231.25 1.85 13287 

Clark C.R and Schimmel E. D (2003). 1 253.00 2.00 17537 

Sutton (2004). 4 317.19 10.15 2016 

Clark and Schimmel (2004). 4 218.90 7.00 17537 

Mitra, Najjar and Bhuyan (2007). 16 100.78 0.81 10977 

Yang, Jiang and Prasanna (2008). 4 233.13 7.46 15000 

Yang and Prasanna, (2009) 4 300.00 9.60 28000 

Yang and Prasanna (2012). 4 198.6 6.36 120000 

Yang and Prasanna (2012). 4 166.7 5.33 100000 

Ganegedara, Yang and Prasanna (2010). 4 202.90 6.50 16384 

Long et al. (2011). 1 155.50 1.24 1020 

Singapura et al. (2015). 8 340.63 21.8 100000 

BG2RE. 4 367.34 11.44 8274 

BG3RE. 4 308.04 9.63 10229 

BG4RE. 4 293.71 9.18 10287 

BG5RE. 4 264.32 8.26 11127 

 

6.2.2 Data Analysis of All Designs 

The analysis is divided into two sections. Section 6.2.2a represents the results as seen in Table 6.1, while 

and 6.2.2b represents the results of Table 6.2 and Table 6.3 combined. The analysis of the results also 

includes the attribute referred to as: Throughput efficiency (Tpe), which is computed and discussed in 

http://www.refworks.com/refworks2/?r=references%7CMainLayout::init
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Section 6.2.3. Table 6.2 shows the number of ECDs generated by each „BGnRE‟, while Table 6.3 shows 

the total number of characters matched by each „BGnRE‟. Both Table 6.2 and Table 6.3 were generated 

during implementation in the XST VHDL synthesis tool, and the target device is the Xilinx FPGA Virtex-

6 device, which are all bundled in the Xilinx ISE FPGA Project Navigator, version 14.4 design suites.  

a. Analysis of the Combined Designs 

The basic concern in this thesis is to improve the throughput of the design. This is achieved while 

attempting to reduce the high logic circuit cost as obtainable in the other related approaches as reported in 

Chapter 4. Reducing processing time and storage costs is necessary in order to obtain good throughput 

efficiency. This is a serious challenge that all the related approaches are attempting to address. The 

diagrams reported in this section are based on the results reported in Table 6.1. Figures 6.1 -  6.4 show the 

various graphs reported against the various designs as they appear in Table 6.1. 

Figure 6.1 shows that about 73% of the designs were not able to get beyond the average speed 

range of 270MHz – 280MHz in their respective designs. This is because a design with a speed beyond 

such a range reflects good performance. The least recorded speed obtained and attributed to the poorest 

BG5RE design is 264.32MHz. The highest speed of 367.34MHz was recorded against the BG2RE design, 

which happens to be the best. In Figure 6.1, just about 27% of the designs were able to cross the 300MHz 

mark. It shows that the BG2RE design with a speed of 367.34MHz is about 14% faster than the speed of 

317.19MHz realised by the Singapura et al. (2015). The BG2RE is also about 92% faster than speed of 

30.90MHz reported by Hutchings, Franklin and Carver (2002). 

 

           Figure 6.1: Graph of the speed (ranging from 30.90MHz - 367.34MHz). 
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Figure 6.2 shows that the average throughput obtained by about 41% of the designs is between the ranges 

of 4.00 Gbps - 4.50 Gbps. However, 41% of them have a throughput value between the ranges of 7.5 

Gbps – 10 Gbps. Those designs with 4 Gbps throughput clocked at speeds below 150MHz, while those 

between the ranges of 7 Gbps – 10 Gbps achieved speeds between the 200MHz – 340MHz mark. The 

BG2RE achieved a throughput of 11.44 Gbps, which was the fastest compared to any of the other 4-byte 

REME designs. The least throughput reported among the designs was that of the BG5RE design. The 

BG5RE has a throughput of 8.26 Gbps, which is still better than about 63% of the other approaches as 

shown in Figure 6.2. However, the design by Singapura et al. (2015) is an 8-byte REME design, which 

explains the high throughput value of 21.8 Gbps that was reported as shown in Figure 6.2 

 

   Figure 6.2: Graph of the throughput (ranging from 0.24-11.44 Gbps). 

Figure 6.3 shows that the largest concentration of the total number of characters matched by about 77% of 

the designs is between the ranges of 10,000 – 20,000. The number represents characters matched by even 

the most efficient and best performing 4-byte REME designs. It also implies that matching characters 

beyond that threshold does not necessarily translate to better performance, when compared against the 

speed and throughput generated by the various designs. 
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           Figure 6.3: Graph of the total number of characters matched (ranging from 652-120,000). 

Figure 6.4 shows that about 77% of the designs implemented a multi-character matching design, and 

about 63.7% of them implemented a 4-byte wide character matching scheme which is considered to be 

the standard used. The aim of each design is to improve its overall throughput. Mostly, the throughput is 

obtained at the expense of higher logic circuit cost. Furthermore, a 4-byte matching design was mostly 

utilised by the various designs in order to balance resource utilisation with throughput of matching. Mitra, 

Najjar and Bhuyan (2007) implemented a design having sixteen 1-byte matching REMEs. The design is 

made up of a 16-byte wide matching unit, but because the overall throughput is split amongst the units, 

the design REME throughput is only 0.81 Gbps. Also, Singapura et al. (2015) reported an 8-byte 

matching REME design, with an overall throughput of 21.8 Gbps. 

0

20000

40000

60000

80000

100000

120000

140000

B
ro

d
ie

, 
T

ay
lo

r 
an

d
 C

y
tr

o
n

 (
2

0
0

6
)

S
o
u

rd
is

 a
n

d
 P

n
ev

m
at

ik
at

o
s 

(2
0
0

4
)

Y
am

ag
ak

i,
 S

id
h
u

 a
n
d

 K
am

iy
a 

(2
0

0
8

)

H
u

tc
h
in

g
s,

 F
ra

n
k

li
n

 a
n
d

 C
ar

v
er

 (
2

0
0

2
)

L
ee

, 
H

w
an

g
, 
an

d
 P

ar
k

 (
2

0
0

7
)

L
in

 e
t 

al
. 
(2

0
0

6
)

H
ie

u
 e

t 
al

. 
 (

2
0

1
1

)

C
la

rk
 C

.R
 a

n
d
 S

ch
im

m
el

 E
. 
D

 (
2

0
0

3
)

S
u
tt

o
n

 (
2
0

0
4

)

C
la

rk
 a

n
d

 S
ch

im
m

el
 (

2
0
0

4
)

M
it

ra
, 
N

aj
ja

r 
an

d
 B

h
u
y

an
 (

2
0
0

7
)

Y
an

g
, 

Ji
an

g
 a

n
d
 P

ra
sa

n
n
a 

(2
0
0

8
)

Y
an

g
 a

n
d

 P
ra

sa
n
n

a 
(2

0
0
9

)

Y
an

g
 a

n
d

 P
ra

sa
n
n

a 
(2

0
1
2

)

Y
an

g
 a

n
d

 P
ra

sa
n
n

a 
(2

0
1
2

)

G
an

eg
ed

ar
a,

 Y
an

g
 a

n
d
 P

ra
sa

n
n
a 

(2
0
1

0
)

L
o
n

g
 e

t 
al

. 
(2

0
1
1

)

S
in

g
ap

u
ra

 e
t 

al
. 
(2

0
1

5
)

B
G

2
R

E

B
G

3
R

E

B
G

4
R

E

B
G

5
R

E

T
o

ta
l 

N
u

m
b

er
 o

f 
C

h
a

ra
ct

er
s 

M
a

tc
h

ed
 

Design Approach 

Graph of the Number of Characters Matched 

Characters Matched



CHAPTER 6 

EVALUATION OF RESULTS  

108 

 

 

 

 

        Figure 6.4: Distribution of the Input (n-bytes, n = 1, 2, 4, and 16). 

b. Evaluation of the ECDRTS-NFA REMEs  

This section is based on the results reported in Table 6.2 and Table 6.3. It establishes the relationship 

between the combined ECDs and the number of characters utilised per REME block. The relationship is 

used to establish some pattern, as the design is scaled up from BG2RE to BG5RE engines. The short form 

of „BGnRE Average ECDs‟ simply means „the average number of ECDs for each BGnRE engine‟, as 

shown in Table 6.2. The short form „BGnRE 4-byte CH‟ simply means „the sum of the characters 

matched per clock cycle by each 4-byte BGnRE engine, with n = 2, 3, 4, and 5 as shown in Table 6.3.  

i. Graphs of the Distribution of ECDs 

Figure 6.5 - Figure 6.8 shows the distribution of the various ECDs reported for each 4-byte BGnRE 

engine as they appear in Table 6.2 and Table 6.3. The four categories of REMEs have 10 sub-REMEs 

each. The plots also show the distribution of the various ECDs obtained for the different BGnRE engines. 

Also, each of the sub-REMEs contains four parallel matching units arranged in parallel as explained in 

Section 5.3.  
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Table 6.2: Table of 4 x n-regexp ECDs and their averages. 

 

TYPE 

2RE 

ECDs 

AVG 3RE 

ECDs 

AVG 4RE 

ECDs 

AVG 5RE 

ECDs 

AVG 

ENG1 20  

 

23 

56  

 

32 

53  

 

56 

70  

 

60 

34 28 69 61 

22 24 53 65 

14 19 48 41 

ENG2 16  

 

29 

44  

 

32 

103  

 

66 

60  

 

64 

20 36 63 82 

37 22 59 73 

40 26 39 41 

ENG3 42  

 

27 

47  

 

39 

39  

 

45 

52  

 

61 

8 35 45 87 

39 33 40 58 

18 41 54 47 

ENG4 

 

 

32  

 

29 

41  

 

39 

53  

 

60 

66  

 

74 

32 49 55 68 

24 38 71 68 

25 28 58 94 

ENG5 24  

 

37 

61  

 

50 

54  

 

65 

75  

 

76 

63 36 75 79 

34 45 79 92 

24 55 52 55 

ENG6 33 22 24  

 

36 

48  

 

53 

70  

 

80 

15 48 74 95 

18 26 47 65 

19 43 40 90 

ENG7 11  

 

29 

40  

 

44 

37  

 

51 

58  

 

74 

37 45 58 75 

28 43 66 63 

39 48 40 99 

ENG8 28  

 

23 

25  

 

46 

37  

 

49 

83  

 

63 

8 49 44 44 

29 35 76 60 

25 74 37 65 

ENG9 

 

24  

 

28 

57  

 

49 

67  

 

56 

58  

 

72 

30 42 37 76 

21 48 62 86 

35 47 57 65 

ENG10 23  

 

28 

33  

 

36 

63  

 

58 

92  

 

83 

23 29 66 78 

37 33 36 55 

28 48 65 107 
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Table 6.3: 4 x n-regexp total number of characters matched with their sums per engine. 

Type 2RE 

Chars 

 

Sum 

3RE 

Chars 

 

Sum 

4RE 

Chars 

 

Sum 

5RE 

Chars 

 

Sum 

ENG1 15  

 

925 

362  

 

752 

295  

 

1151 

330  

 

1323 
630 26 344 473 

20 93 344 76 

260 271 178 444 

ENG2 22  

 

1300 

37  

 

605 

474  

 

1811 

60  

 

1151 
697 117 688 320 

453 23 597 476 

128 428 52 295 

ENG3 228  

 

319 

394  

 

886 

38  

 

802 

254  

 

1736 
37 125 235 380 

37 317 301 322 

17 50 228 780 

ENG4 320  

 

875 

50  

 

230 

39  

 

703 

73  

 

485 
49 40 47 98 

478 79 558 182 

28 61 59 132 

ENG5 24  

 

526 

145  

 

411 

228  

 

536 

203  

 

925 
142 46 59 52 

330 45 54 156 

30 175 195 514 

ENG6 521  

 

782 

52  

 

2761 

315  

 

765 

309  

 

1492 
13 286 364 488 

21 98 43 368 

227 2325 43 327 

ENG7 12  

 

692 

1048  

 

1320 

342  

 

876 

333 1465 

284 45 353 676 

275 44 138 361 

121 183 43 95 

ENG8 472  

 

1266 

220  

 

481 

342  

 

1487 

160  

 

882 
15 44 892 55 

331 163 193 314 

448 54 60 353 

ENG9 

 

64  

 

337 

964  

 

1198 

59  

 

1114 

212  

 

648 
26 51 630 194 

23 135 286 173 

224 48 139 69 

ENG10 314  

 

1252 

35  

 

800 

397  

 

1038 

94  

 

1020 
633 324 359 514 

281 258 136 232 

24 183 146 180 

 

Figure 6.5 shows the plot for BG2RE ECDs against each of the 10 REME engines. The figure also shows 

that 60% of the ECDs fall within a controlled range of 27 - 28 ECDs. Figure 6.6 represents the graph for 

the BG3RE ECDs. The figure was plotted against each of the 10 REME engines. Figure 6.6 shows that, 

about 60% of the ECDs fall within the controlled range of 38 - 52. This shows a steady rise in the number 

of ECDs as expected, compared to ones in Figure 6.5. This is attributed to the increase in the number of 

regexps contained in the BG3RE engines. Each sub-REME contained in the 10 BG3RE engines is 

implemented with 3-regexps each. This is a deviation from the 2-regexps implemented in each of the sub-
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REMEs contained within the BG2RE engines. The same applies to the BG4RE and the BG5RE engines 

with each implementing 4 and 5 regexps respectively.  

For the BG4RE engines about 80% of the number of ECDs steadily rose and fell mostly within the 

controlled range of 50 - 60 as shown in Figure 6.7. This also shows a steady rise in the number of ECDs 

compared to the ones reported in Figure 6.6. About 60% of the number of BG5RE ECDs fell within the 

controlled range of 60 - 83 for the BG5RE engines as shown in Figure 6.8. This steady and not drastic 

rise in the number of ECDs shows efficiency of the overall ECDRTS-NFA REME approach.  

It is expected that an increase in the number of regexps contained in each REME category will 

lead to an abnormal growth in the number of ECDs generated. This is a common problem with most 

traditional DFA and non-classification based NFA approaches. Complex regexps consisting of multiple 

wildcards with length restrictions beyond a 1000 are easily avoided by a lot of approaches. However, the 

ECDRTS-NFA REMEs implemented in this thesis have effectively contained the abnormal growth of the 

NFA states, transitions and the ECDs generated in the overall approach as shown in Figure 6.5 - Figure 

6.8.  

 

Figure 6.5: Distribution of BG2RE average ECDs for the 10 BG2RE engines. 

 

 

   Figure 6.6: Distribution of BG3RE average ECDs for the 10 BG3RE engines. 
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Figure 6.7: Distribution of BG4RE average ECDs against the 10 BG4RE Engines. 

 

 

Figure 6.8: Distribution of BG5RE average ECDs against the 10 BG5RE engines. 

ii. Graphs of the Distribution of ECDs and the Characters Matched 

Figures 6.9 - 6.12 show the various graphs of the reported results as they appear in Table 6.2 and  6.3. 

However, this time the graphs show the number of ECDs and the total number of characters matched 

against each sub-REMEs, with n = 2, 3, 4 and 5. The graph is plotted against each 10 BGnRE engines. 

From Figure 6.9 and 6.10, one can deduced that by increasing the total number of characters matched, the 

average number of ECDs for BG2RE and BG3RE engines only grows steadily.  

 Furthermore, the diagram for the BG4RE engines in Figure 6.11 showed that increasing the 

number of regexps matched takes a gradual toll on the design. This is especially the case when in the 

worst case scenario the selected regexps that are extracted (refer to Section 5.3.1a for details on the 

extraction process) all have wild cards and length restrictions beyond 1000. Figure 6.12 showed an 

improvement in the BG5RE engines, even though the number of regexps implemented in the design 

increased in comparison to the BG4RE engines. This steady growth is attributed to the effectiveness of 
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the design and its ability to generate compact and controllable automata. The design grows rather slowly 

and yet steadily when the number of regexps matched is increased as shown in Figure 6.12. The design 

does not grow drastically as with some of the related approaches. 

 

Figure 6.9: Graph for the ECDs and the total number of characters matched by the 

BG2RE engines.  

 

Figure 6.10: Graph for the ECDs and the total number of characters matched by the 

BG3RE engines. 
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Figure 6.11: Graph for the ECDs and the total number of characters matched by the 

BG4RE engines. 

 

Figure 6.12: Graph for the ECDs and the total number of characters matched by 

BG5RE engines. 
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6.2.3 Analysis of the Synthesised ECDRTS-NFA REME Designs   

The complete tables of results have been generated for each of the acronym BGnRE synthesised designs 

for the BGnREs described in Section 6.2.2, where n = 2, 3, 4 and 5. The concerned designs are: BG2RE, 

BG3RE, BG4RE, and BG5RL. Each of engines is made up of 10 REMEs, with each REME made up of 4 

sub-REMEs. This brings the total to 40 sub-REMEs for each BGnRE engine. The results of each category 

is summarised in Table 6.2 and Table 6.3. The detailed results are attached in Appendix 1.3 – 1.6 

respectively for consideration. 

a. BGnRE Schematic and Behavioural/Timing Simulation: 

For the purpose of illustration, the design in Appendix 1.2 represent the RTL design view of a 4-byte 

BGnRE design, with n = 2. The design is synthesised into logic using the XST VHDL synthesis tool. The 

design represents the interfacing of the synthesised RAMB36E1 (or simply 2x36kBRAMs) block 

through FFs. The FFs speed up the output of the 2x36kBRAM blocks (refer to Section 5.4.2a-i) the data 

is read from the BRAM blocks into the table-synthesis module (refer to Section 5.4.2a-ii) for performing 

the required table look up operations. Afterwards, a < 128-bit output is then generated and supplied into 

the four NFA blocks (refer to Section 5.4.2a-iii). This is achieved through FFs as shown in Appendix sub-

1.2.  

From the schematic diagram in Appendix 1.2, the 4-bit MATCH port is the only output port. The 

ADDRESS, CLK, EN and SET_RESET ports are the only input ports of the test bench component 

specified in the component‟s instantiation process. The logic element „ibuf‟‟ is an input buffer, which 

connects the inputs to the ADDRESS, SET_RESET and EN nets. The logic element „obuf‟(output buffer) 

connects the MATCH output net. The logic element „ibufg‟ is a dedicated buffer, with selectable I/O 

interface, and is used as the clock input. The buffer connects the CLK net, which is also connected to the 

global clock input AND gates (and4). The „and4‟ gate is used for testing the condition of the current 

states. The 7-bit ECDs within the range of 0 - 127 trigger the necessary transitions to the next states 

within the NFA block components. The remaining 128 – 256 inputs make up the redundant ECDs. sub-

Once a string of ECDs drive the transitions successfully from the initial state and is finally consumed at 

the accepting state, a 4-bit match output vector is obtained.  

By way of illustration, Appendix 1.1 shows how a behavioural simulation (refer to Section 2.7 for 

more on simulation) is performed in one of the 10 sub-REME BG2RE engine designs that was selected. 

The ISE simulator (Isim) bundled in the Xilinx ISE FPGA Project Navigator, version 14.4 design suites is 

used to run the behavioural and timing simulation by supplying it with the necessary stimuli. The test 

bench file contains the stimuli data and is integrated within the entire VHDL design. Afterwards, the 

design is first simulated using the Isim simulator to confirm that the design is working according to 

specification. From the diagram in Appendix 1.1, the match variable in the diagram named m_match, has 

a match array value of „0001‟ at time 410ns as indicated by the purple coloured cursor as shown on the 

left-hand side of the diagram in Appendix 1.1. The match indicates that the first out of the four sub-

REMEs found a match. The match is for the two regexps that were converted into the composite NFA of 

the first sub-REME block. Parallel matching occurs across the 10 sub-REME BG2RE engine designs 

synchronously. 
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b. Throughput and Throughput Efficiency 

The results as shown in Appendix 1.3 – 1.6, Pages 142 - 143, details the individual REME design result 

as summarised in Table 6.4. Considering the BG2RE design first, the average number of LUTs (refer to 

Appendix 1.3) utilised by the design is 469, and the obtained average speed is 367.34MHz. The average 

number of states per character is 828, and the bus width is 32-bits. Only 2xRAMB36E1 memory per 

REME was required in the ECDRTS-NFA, unlike the 20xRAMB36E1 memory per REME utilised by the 

initial ECD-NFA version. The throughput efficiency (Yang, Jiang and Prasanna 2008, p. 38) which is a 

standard method of computation is computed as follows: 

a. Throughput (Tp) = speed (MHz) * 32 (data bus width in bits)/1024. 

b. Throughput efficiency (Tpe) = (throughput * number of states)/number of LUTs). 

  = [(367.34*32)/1024]*828/469 

  = 11.48*1.7655 

                 Tpe  =  20.27. 

The Tpe of the BG2RE is 20.27. The same method is used to compute the throughput and throughput 

efficiencies of the BG3RE, BG4RE and BG5RE engine designs as shown in Table 6.4. The detailed result 

of each REME engine is as presented in Appendix 1.3 – 1.6.  

c. Comparison of LUT-based REME Designs 

Table 6.4 compares the results computed for the most related 4-byte LUT-based REME approaches with 

those of the BGnRE designs, with n = 2, 3, 4 and 5. Such designs reported the total number of LUTs 

utilised by their designs. The method of computing the throughput efficiency is as discussed in Section 

6.2.3a. 

                       Table 6.4: Compared results for related 4-byte LUT-based REME designs. 

Design Approach 
Input 

(bytes) 

Speed 

(MHz) 
Tp NoCH Tpe 

NoL/

NoS 

Yang, Jiang and 

Prasanna (2008) 
4 233.13 7.46 15000 3.4 2.2 

Yang and Prasanna 

(2012) 
4 198.6 6.36 

120000 
9.09 0.7 

Yang and Prasanna 

(2012) 
4 166.7 5.33 

100000 
3.63 1.47 

Yamagaki, Sidhu 

and Kamiya (2008) 
4 113.4 3.63 40896 3.86 0.94 

Clark and 

Schimmel (2004) 
4 218.9 7 17537 2.3 3.1 

BG2RE 4 367.34 11.44 8274 20.27 0.566 

BG3RE 4 308.04 9.63 10229 8.39 1.489 

BG3RE 4 293.71 9.18 10287 6.09 1.506 

BG4RE 4 264.32 8.26 11127 3.54 2.332 

The newly added column headings are: number of characters (NoCH), number of LUTs (NoL)/number of 

states (NoS). The last added column is Tpe = throughput * (number of states/number of LUTs). The Tpe 

refers to the throughput efficiency. The graph of the results as seen in Table 6.4 is as shown in              
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Figure 6.13 – 6.16. The LUT usage is the basis for computing the throughput efficiency, and is used to 

determine the overall efficiency of each separate approach.  

 Figure 6.13 shows that BG2RE REME design is by far having the highest throughput efficiency 

value, compared to any of the existing related LUT-based REME approaches. It has a Tpe value of 20.27, 

which is closely followed by the first design implemented by Yang and Prassana (2012) which has the 

value of 9.09. However, the other designs namely: BG3RE, BG4RE and lastly BG5RE engine with each 

having the value of 8.39, 6.09 and 3.54 respectively are better than other 4 remaining designs as shown in  

Figure 6.13.  

Figure 6.14 is a confirmation of the performance of the BG2RE, BG3RE, BG4RE and BG5RE 

engine designs in terms of the respective obtained throughputs of the designs. When compared to the 

other LUT-based REME NFA designs. However, as the number of regexps per each sub-REME of the 

four categories of REMEs increased from 2 – 5 regexps, the designs witnessed a steady decline in the 

throughput as expected. 

The ratio of LUT utilisation per each state of the automata implemented by the other related 

approaches is shown in Figure 6.15. From the figure, it is clear that the BG2RE engine design has the 

lowest ratio of LUTs per state utilisation compared to all the remaining designs. The BG3RE and BG4RE 

engines competed favourably with the remaining designs. Although the BG5RE engine performed better 

than two other designs, the 5-regexp implemented in the design took its toll on the design. However, it is 

expected that as more regexps are implemented within each design, the logic utilisation will tend to be 

higher. But, a steady growth rate of the logic utilised by any of the designs show that such a design can 

scale up even more with further optimisation.  

 

              Figure 6.13: Graph for the throughput efficiency. 
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                 Figure 6.14: Graph for the throughput (Gbps). 

 

                  Figure 6.15: Graph for the number of LUTs per number of states utilised. 
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The BG2RE, BG3RE, BG4RE and BG5RE engine designs all recorded the highest speed of matching 

compared to all the other approaches as shown in Figure 6.16. The figure shows that the four REME 

designs sustained a much higher speed compared to the rest of the designs. This is bearing in mind that 

the level of complexity of all the separate designs are high. The least among the designs with the speed of 

264.32MHz is still about 9.11% higher than the other related designs. The highest among them with 

367.34MHz is about 51.62% higher than all the others. 

 

                Figure 6.16: Graph for the speed (MHz) of matching. 

Section 6.3 is dedicated for testing the research hypothesis which was stated earlier in Section 1.6, page 6. 

A statistical test that compares the means for all the four categories of designs namely:  BG2RE, BG3RE, 

BG4RE and BG5RE engine, is utilised to test the results of experiments recorded as seen in Appendix 1.7 

and 1.8, Page 144.   

 Test of Statistical Hypothesis 6.3

It is important to state that the results of the experiments for the 10 REMEs per each BGnRE design, 

where n = 2, 3, 4 and 5 were independently performed. As such the possibility that the reported estimates 

are based solely on chance is considered as the null hypothesis (H0). The compliment of the null 

hypothesis is considered as the alternative hypothesis (H1). The chosen significance error level is denoted 

by   (alpha), and a value of 0.05 is assigned to   in this test. That means up to 5% error is tolerated 

which is generally considered as the standard.  

The statistic used in comparing the means of the group of REMEs is the One-way Analysis of 

Variance (One-way ANOVA) (IBM SPSS 2012). The ANOVA is used to divide the changeability among 

3 or more groups as well as within groups. The changeability within groups is estimated as the sum of 

squares of the difference between each value and the mean value of the group. The changeability among 

groups is estimated as the difference between the mean of the various groups and that of the mean of all 
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the values in all the groups. A degree of freedom is associated with each sum of squares, and is usually 

computed based on the number of groups and number of elements within each group. A mean square 

value is computed by dividing each sum of squares by its degree of freedom (IBM SPSS 2012). The 

result of such a division is considered to be the variance. The F ratio which is used for testing equality of 

group means is computed as follows: 

F = Mean Square Between   =     BSSM 

      Mean Square Within             WSSM 

 

There is a probability value called the p-value that is computed from the values of the F ratio and the two 

degrees of freedom (df) values as shown in the One-way ANOVA Table 6.5 and Table 6.6. Whenever the 

p value is strictly less than   (i.e. p <  ), the test is said to be significant.  

Also, there is a standard F distribution value denoted by Ftab, which has been precompiled and 

tabulated in the standard F distribution table reported by Rohatgi and Saleh (2001, pp. 681-683). The 

value of Ftab is obtained from the table using the numerator and denominator degrees of freedom that 

were pre-computed using the One-way ANOVA. If the tabulated value Ftab is strictly less than the 

calculated F ratio denoted by Fcal using the One-way ANOVA (i.e Ftab < Fcal), then the null hypothesis H0 

is rejected. This is because a large F ratio means that the variability among groups cannot happen by 

chance alone. 

A One-way ANOVA analysis was then performed on the results of experiment as shown 

Appendix 1.7 and 1.8. Appendix 1.7 contains the average throughput values for the 10 REMEs per each 

BGnRE design, where n = 2, 3, 4 and 5 grouped together. Appendix 1.8 contains the results for the 

number of LUTs utilised by each state contained in the same BGnRE engines. The throughput efficiency 

of the BGnRE engine designs was computed based on the average throughput and the LUTs utilised by 

each state of the engines as shown in Figure 6.13 and also discussed in Section 6.2. To perform the test, 

the Statistical Package for the Social Sciences (SPSS) version 21 provided by IBM SPSS (2012) was 

used.  

6.3.1 Testing the Throughput 

The One-way ANOVA analysis was performed for average throughput values of the 10 REMEs per each 

BGnRE design, where n = 2, 3, 4 and 5. The REMEs were grouped together as seen in Appendix 1.7, 

while the analysis is as shown in Table 6.5.  The Ftab value obtained from the standard F distribution 

table reported by Rohatgi and Saleh (2001, pp. 681-683) using the two degrees of freedom values 3 and 

36 is as shown Table 6.5. The value obtained is Ftab = 2.86. This clearly shows that with Fcal = 20.823, 

then with Ftab < Fcal, as such the null hypothesis (H0) is rejected. Also, the chosen significance error level 

is   = 0.05 while p = 0.000 as shown in Table 6.5. This shows that with p <  , the test is significant. 

Table 6.5: One-way ANOVA Analysis for the average throughputs of REMEs. 

 

 

 
 

 

BGnREs 
Sum of Squares df Mean Square F Sig. 

Between Groups 54.916 3 18.305 20.823 .000 

Within Groups 31.648 36 .879 
  

Total 86.564 39 
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6.3.2 Testing the Ratio of LUTs/States 

The One-way ANOVA analysis was also performed for the ratio of LUTs utilised by each state of the 

automata of the 10 REMEs per each BGnRE design, where n = 2, 3, 4 and 5. Given that Ftab = 2.86 

(Rohatgi and Saleh 2001, pp. 681-683), and that   = 0.05. The REMEs were also grouped together as 

seen in Appendix 1.8, while the test is as shown in Table 6.6. It can be clearly seen from Table 6.6 that 

Fcal = 4.492 and p = 0.009. As such, because Ftab < Fcal, the null hypothesis H0 is rejected. And because p 

<  , the test is significant. 

Table 6.6: One-way ANOVA Analysis for LUTs/States of REMEs. 

BGnRE 
Sum of Squares df Mean Square F Sig. 

Between Groups 19.734 3 6.578 4.492 .009 

Within Groups 52.712 36 1.464 
  

Total 72.445 39 
   

 
Based on the ANOVA analysis as discussed in Section 6.3.1 and 6.3.2, the conclusion is that we shall 

reject the null hypothesis H0 and accept the alternative hypothesis H1. This is because by increasing the 

number of regexps in each sub-REME contained in the 10 BGnRE design, where n = 2, 3, 4 and 5, the 

throughput and the number of LUTs utilised by each sub-REME in the overall REME is affected. This in 

turn has an effect on the overall throughput efficiency. However, the decline in the throughput and 

throughput efficiency experienced across the four groups of REMEs is steady and not drastic. This shows 

some promise that the design can actually be sustained and scaled up even beyond the BG5RE REME 

design, provided that the ECDRTS-NFA approach can be further optimised. 

 Chapter Summary 6.4

The ECDRTS-NFA approach showed that the BGnRE design, where n = 2, 3, 4 and 5 performed as 

expected. The BG2RE recorded the highest throughput and throughput efficiency compared to all the 

other related designs. Overall the chapter showed that it is possible to efficiently scale up the design 

beyond the BG5RE engine design. Although as the number of regexps is increased within each of the 

implemented REMEs, the throughput and the throughput efficiency declines. However, the decline is 

steady and not rapid as expected, which shows some promise for the ECDRTS-NFA approach.  

The ECDRTS-NFA approach is however affected especially by regexps consisting of longer length 

restrictions beyond a 1000. Such regexps easily increase the number of LUTs utilised per each state of the 

NFAs placed within each REME group. Notwithstanding, each REME design ended up utilising 

2x36kBRAM memories for every 4 sub-REMEs. For instance, the BG5RE engine design of the ECDRTS-

NFA approach utilised only a 2x36kBRAM to represent 20 regexps. This reflects a 90% reduction in 

memory requirement compared to the initial ECD-NFA approach as a result of optimisation. 

Moreover, the important benefits of the approach in this thesis is its ability to build stable, efficient 

and multi-pattern REMEs arranged in parallel to perform pattern matching. The approach achieves at 

least 75% reduction in the total number of REMEs, compared to the ones described by Mitra, Najjar and 

Bhuyan (2007), Yang, Jiang and Prasanna (2008), Yang and Prasanna (2009), and Ganegedara, Yang and 

Prasanna (2010) when considering less complex patterns. While about 30% reduction is achieved when 

considering more complex patterns. A Dell personal computer (PC) system running on A 64-bit windows 
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7 OS platform was used to implement the ECDRTS-NFA REME designs. The PC is fitted with a 2.67GHz 

CPU and 8.00GB installed RAM. The REME designs utilised minimal logic resources compared to most 

of the other related approaches. This is evident in the reported values of the throughput efficiencies shown 

in Appendix 1.3 – 1.6 and summarised in Table 6.4. Chapter 7 discusses the conclusions drawn from the 

thesis 
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 Conclusions 7.

 

The aim of this thesis was to efficiently create an input classification-based based approach. The approach 

was based on the concept of Equivalence Classification that was implemented for a target FPGA 

platform. The classification process was able to generate a categorised set of inputs referred to as 

Equivalence Class Descriptors (ECDs). The ECDs were used to drive the various NFA-based regexp 

pattern matching engines called REMEs in the initial approach called the ECD-NFA. After further 

optimisations, the ECD-NFA approach was then transformed into a more new version called the 

ECDRTS-NFA. The ECDRTS-NFA approach is made up of a set of more efficient parallel matching 

REMEs. The REMEs in each of the four categories of ECDRTS-NFA designs combined multiple 

optimisations into a single design. The overall design was broadly divided into two separate but 

interleaved phases which represent the software (parser) and hardware (target FPGA implementation) 

phases. 

 Contributions and Conclusions 7.1

A novel ECD-NFA two-phased and toolchain-based approach was designed and implemented. After a 

number of optimisations, the initial design was transformed into an ECDRTS-NFA design. The design 

generated efficient NFAs for the various parallel matching REMEs. This was achieved through the simple 

and less complex concept of equivalence classification. The concept was capable of classifying the 

various inputs on the automata. The classified inputs generated what is referred to as equivalence class 

descriptors, or simply ECDs. The ECDs were then used to represent the various classes of the compressed 

inputs based on their effect on the NFA-based automata. Each ECD represented state vectors, and were 

composed of sets of vectors of next states (refer to Section 3.2.2f-i and 5.3.3 for more details). 

The approach consisted of functional individual and collective BRAM blocks. The way the various 

BRAM blocks interfaced with the table-synthesis blocks as well as the NFA blocks was explained in 

Chapter 5 and analysed in Chapter 6. The original ECD-NFA design experienced some optimisation 

issues (refer to Section 5.3.3). The issues led to development of the optimised version, the ECDRTS-NFA. 

The issues include the following:  

a. Synthesis, place and route (PAR) processing delay: It was observed that the unnecessary time it 

took to synthesise and finally PAR the design was in the magnitude of 8 hours or more. This was 

predominantly caused by the complexity of the initial decoding module contained in each REME 

pipeline (refer to Section 5.3.1b). The affected module is the module labelled „Tc‟ (compressed-
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2D table of ECDs in the 4xDecoder units) as shown in Figure 5.1. The same module is also 

shown in Figure 5.3 and labelled as „4x . ECDs Decoder Module‟

b. Use of nested loops: Decoders with 128-bit wide shift registers were used to perform a table look 

up operation in the decoding module described in (a). The process initially required to fetch 

ECDs from the BRAM modules as seen in Figure 5.1 and 5.3. The BRAM module that was 

involved and labelled as 4x256*8-bits) BRAM module, released the requested ECDs to the 

decoding modules described in (a). After process by the decoding modules is completed, bit 

vectors of outputs were generated. The outputs were then passed to the ECD-NFA modules, 

labelled as 4 x ECD-NFA module (refer to Section 5.4.2a).  

However, the main problem was that the decoding process in the decoding module (refer to 

Section 5.4.2a-ii) required the use of a 4-level nested loop to perform the 2-byte and 4-byte look 

up operations involved (refer to Algorithm 5.2). The process took too long to synthesise even the 

most trivial tables of ECDs. In some cases the synthesis process just failed eventually. This was 

attributed to the fact that, the FPGA platform was never designed to perform multi-level nested 

loop operations, unlike in most high level languages such as Java. Also, the amount of logic 

needed to perform such operations was enormous. In fact, the process required that the entire 

logic circuits contained in the circuit elaboration should be fully constructed first. Afterwards, 

the time consuming process of trimming out all the irrelevant logic components begins. The XST 

achieves this by employing some clever in-built optimisation strategies during synthesis.    

c. Use of excess resources: Eventually it turned out that on occasions where the synthesis of the 

decoding module described in (b) was successfully converted into logic, the amount of LUTs, 

shift registers, and other logic components was simply too high. This significant logic circuit 

size, translates to poor throughput efficiency. This is inefficient for determining the performance 

of all the REME related approaches including the one in this thesis. 

The contributions made to this thesis have already been highlighted in Section 1.7. As a quick reminder, 

the contributions made can be summarised thus:  

i. This thesis introduced a novel ECD-NFA two-phased and toolchain approach (refer to Section 

3.2.2f-i) with its optimised version called the ECDRTS-NFA. The approach was used to generate 

efficient NFAs for the various REMEs. The REMEs were then arranged in parallel to perform 

multi-character and multi-pattern matching. This was made possible through the use of the 

simple and less complex concept of equivalence classification. 

 The process classified the various inputs on the automata, and then generated the relevant 

ECDs. The ECDs are then used to represent the various classes of the compressed inputs based 

on their effect on the NFA-based automata. This was a deviation from the DFA based schemes 

described by Brodie, Taylor and Cytron (2006), and Tripp (2008, p. 4). The process described in 

the approach performed alphabet reduction in the process. Section 3.2.2f also explained the 

alphabet reduction compression process described by some classification-based approaches. 

ii. The process involved in performing (i) uniquely applies to NFAs only. This is because with 

NFAs, there is not necessarily a single current state involved anymore, unlike with DFAs. 

Another reason is that given a single ECD input, several states could become active at once.  
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 In order to implement the classification-based scheme, a type of state transition table that 

determined the set of next states for each active current state, was defined. Members of an 

equivalence class were identified as the ones that had identical columns in the table. However, 

on this occasion, the table columns could no longer be columns of next states anymore. The table 

columns are now vectors of next states.  

iii. The redundancies found within the ECDs were further exploited, by applying an efficient 

compression technique. Also, the algorithm was able to eliminate all self and empty string 

transitions, thereby performing edge reduction in the process. This helped us to reduce the 

number of redundant transitions on the automata. Section 3.2.1b - 3.2.1d explains more on edge 

(transition) reduction schemes. 

iv. Once the ECD-NFAs are generated, a minimised and compressed n-dimensional table of 

compressed ECDs (Gupta and McKeown 1999, p. 150) was created, suitable for a multi-byte 

input match. The multi-byte matching process was necessary for increasing the stride (Brodie, 

Taylor and Cytron 2006) of matching. The process was then applied recursively to create an n-

byte matching process, with n = 2
k
, where k = 1 and 2.  

v. A simple algorithm was later designed and implemented to synthesise the ECDs tables generated 

in (iv) into logic. This helped to significantly cut down a lot of irrelevant logic resources such as: 

shift registers and decoders, which were a major bottleneck to the ECD-NFA design. However, 

the bottlenecks were completely eliminated in the optimised ECDRTS-NFA design. 

vi. A very simple and less complex toolchain for implementing simple, fast and area efficient NFA-

based REMEs (Mitra, Najjar and Bhuyan 2007; Yang, Jiang and Prasanna 2008; Yang and 

Prasanna 2009; Ganegedara, Yang and Prasanna 2010) was developed. The toolchain was 

divided into two phases: first phase (software implementation) and the second phase (hardware 

implementation on FPGAs). 

vii. The two-phased approach comprehensively utilised the techniques which combined multiple 

optimisations such as: edge reduction, alphabet reduction, increased striding (Becchi and 

Crowley 2008, p. 50), input classification (Brodie, Taylor and Cytron 2006; Tripp 2006; Arnold 

2007), infix, prefix and suffix sharing (Hutchings, Franklin and Carver 2002; Sourdis and 

Pnevmatikatos 2004; Yu et al. 2006; Lee et al. 2007; Lin et al. 2006). The approach also used 

input classification (Brodie, Taylor and Cytron 2006; Gupta and McKeown 1999, p. 150), to 

create compact memory efficient and fast NFAs for the hardware-based regexp matching 

REMEs. The techniques mentioned were discussed in Chapter 3. 

viii. The approach also performed multi-character matching (Sourdis and Pnevmatikatos 2004; 

Becchi and Crowley 2008; Clark and Schimmel 2004; Jiang, Yang and Prasanna 2010) at high 

speed, built into the REMEs (Mitra, Najjar and Bhuyan 2007; Yang, Jiang and Prasanna 2008; 

Yang and Prasanna 2009; Ganegedara, Yang and Prasanna 2010). The approach was designed to 

optimally use the limited available FPGA LUTs and other logic circuits. 

ix. A technique further was implemented that built nested sub-REME blocks into each REME 

mentioned in (vi). The blocks were then arranged in parallel to perform multi-pattern matching. 

The matching process was designed to use fewer REMEs than the ones proposed and 
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implemented by Mitra, Najjar and Bhuyan (2007), Yang, Jiang and Prasanna (2008), Yang and 

Prasanna (2009), Ganegedara, Yang and Prasanna (2010).  

x. Using the novel ECD-NFA optimised version referred to as ECDRTS-NFA, a unique form of 

block RAM (BRAM) compression for the ECDs was utilised. The compressed BRAMs 

generated in the first phase as mentioned in (vi) are used to supply 7-bit ECDs to the various 

matching units. This is in contrast to the way the BRAM centralised character matching 

approach (Xilinx 2011; Yang, Jiang and Prasanna 2008; Yang and Prasanna 2009; Ganegedara, 

Yang and Prasanna 2010; Hieu et al. 2011; Long et al. 2011) was implemented for character 

matching. 

xi. The required VHDL files representing the multi-character and multi-pattern REME blocks were 

efficiently and automatically generated. The files were then used to construct the required 

hardware REMEs in (ix), and served as input to the second phase in (vi). 

xii. The major idea behind the approach was to create an all-round design that combined numerous 

approaches into a single approach. The design was capable of using equivalence classification 

for an NFA-based design, previously known to work with DFAs only as described by Brodie, 

Taylor and Cytron (2006, p. 194) and Tripp (2006). This was followed closely by implementing 

the optimisations mentioned in (vii).  

 Future Work  7.2

The future works outlined in Section 7.2.1 are based on the limitations of some of designs proposed in 

Chapter 3, and how they may be improved. Also the future work described in Section 7.2.1a relates to 

how the design could be extended. However, the design serves as a foundational platform for designs that 

are LUT-based and are constructed using the concept of equivalence classification. 

7.2.1 Proposed Improvements 

a. Length Restriction Problems  

Section 2.3 has shown that the issue of state explosion attributed to complex regexp affects most 

conventional DFA and non-optimised NFA approaches. It is especially the case when patterns containing 

wildcards (.*) are combined to create composite DFAs as observed by Becchi and Crowley (2007b) and 

Yu et al. (2006). The condition becomes even worse, when such patterns contain significant length 

restrictions beyond a 1000 such as: .* a{1024,}e, abc.*cd{250}.*{250}. 

Furthermore, the efficient and compact nature of the ECDRTS-NFA design makes it stable and 

mostly unaffected by such state explosion issues. However, without some counting mechanism that is 

built upon a counter logic circuit, it is almost impossible to further reduce the amount of utilised logic 

circuit elements any further than it already is. Furthermore, as mentioned in Section 7c, the throughput 

efficiency is greatly affected by the overall logic circuit size for the circuit implementation of the design. 

Moreover, the bigger the logic circuit size, the poorer the overall design speed and the overall throughput 

of matching. 

A counter-based mechanism is by all means required. The mechanism needs to be constructed 

upon the ECDRTS-NFA approach to extend it further. Also, there is a significant amount of length 

restrictions prevalent in most of the current Snort rules, which easily increases the complexity of the 

design automata (Becchi and Crowley 2007b; Aycock 2006) during implementation. However, the 
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problem could be brought under control, but the difficulty lies in how best to achieve that without 

incurring more logic circuit costs during the hardware implementation. The counter mechanism should be 

able to keep track of the number of repetitions against the matched characters that are constantly streamed 

through the network. This could be achieved by utilising some simple shift registers and FFs combined in 

a particular way. Afterwards, the perceived mechanism should be implemented in the parser to form a 

counter-based module, and then finally generated as part of the VHDL files that represents the entire 

design.  

However, the counter mechanism has to ensure that the automata states remain unchanged while 

the counting is performed. To achieve this, some extra memories will be required to effectively keep track 

of which characters were matched repeatedly, and the instances that the characters were matched. The 

problem is that there is no FPGA device primitive memory that exists with such a capacity? And even if 

one exists, the key question is can it fit into the FPGA architecture and still be made portable enough to 

store every character streaming through the network?  

Notwithstanding, the ECDRTS-NFA approach can serve as a platform for any future counter-based 

designs. This is because no new states will be formed during the process of integrating such a mechanism, 

as the issue of state explosion has been brought under control by the design. Furthermore, successfully 

building and integrating such a counter-based mechanism into the ECDRTS-NFA design, will create a 

design that is faster, compact, memory efficient, and more scalable. The design will also experience 

higher throughput and throughput efficiency too. But all this is easier said than done. 

b. Cycle-Based Problems  

The design by Lin, Tai and Chang (2007) showed how to reduce the total number of states and transitions 

present on a given naive FSM. This was achieved by merging appropriate states and eliminating 

unnecessary transitions. However, the problem is further compounded when multiple patterns are added 

to the existing graph, leading to cycle problems. The cycle problems lead to false positive matching in the 

final merged FSM (refer to Section 3.2.1b-i for more details). 

In order to solve such problems, the addition of an extra buffer is proposed. The buffer is to be 

added to the table that stores the information regarding the next character to be matched from any given 

current state. For instance, state 5 as seen in the AC FSM of Figure 3.6 led to the formation of a cycle. A 

test should be performed at that state to test if the next character to be consumed in the pattern is not an 

„f‟ in order to complete the pattern match for the string pattern “abcdef”. If it turns out to be a „b‟ instead 

of an „f‟, forcing the AC FSM to start a match for the false positive string “abcdebcdef” instead, then the 

following should happen to resolve the problem: 

i. Split the pattern into four, starting from state 5. This is because state 5 is common to both 

patterns “abcdef” and “wdebcg”. This will form the sub-patterns “abcde” as pattern1, “wde” as 

pattern2, “f” as pattern3 and “cg” as pattern4.  

ii. There is the need to add additional state i from state 5 on input of b to another state t. From state 

t we can then transit to another added state v on input of c. From state v we can then transit to the 

accepting state 8 on the input of g. The former transition from state 3, which fell within the cycle 

on input of g can then be cut off. This will ensure that no cycle remains again on the AC FSM. 

iii. Lastly, the same pathVec and ifFinal vectors shall be utilised, together with the buffer, created 

during the merging of states as explained in Section 3.2.1b-i. A failure will then be reported 
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immediately if pattern3 does not begin with a character „f‟. Also a failure will be reported if 

pattern4 does not begin with character „c‟ and followed by „g‟. This will force pattern1 and 

pattern2 to terminate by reporting a 0 at the lsb position of their respective match vectors. 

This comes with an additional cost of two extra transitions and an additional state between states 5 and 8. 

However, the benefit is that no cycle will be formed. The idea of pattern splitting was also implemented 

by Kumar et al. (2006) in their Delayed Input DFAs (D
2
FA) approach in Section 3.2.1b-ii. 

c. Memory Centric Based Problems 

With BRAM centralised character based matching approaches such as the one by Yang, Jiang and 

Prasanna (2008), Yang and Prasanna (2009), Ganegedara, Yang and Prasanna (2010), Becchi and 

Crowley (2008), Hieu et al. (2011), and  Long et al. (2011), the basic problem can be deduced as follows: 

i. Use of 256-bits: Storing each character class of inputs as a 256x72-bit column on BRAMs is 

wasteful. This is especially true when only a single character such as „a’ is stored as an input, 

which takes up 256-bits of space alone. This is because the bit position of the character „a’ is a 1, 

while all [^a] are represented by 0‟s. In the approach described in this thesis, just 7 bits was used 

to represent each of the ECDs, and achieved the same purpose. 

ii. Complexity of patterns: The complexity of patterns determines the number of inputs generated 

when performing increased striding such as: 2-byte, and 4-byte matching. It then implies that the 

number of columns of the BRAMs used in most of the approaches mentioned earlier is very 

likely to exceed the maximum 72 columns for a 256x72-bit arrangement. That means that there 

will be additional requirement for additional primitive memories. 

However, with the classification approach described in this thesis, the growth of the input 

size has been successfully contained. This is because the design creates at most < 128 ECDs for 

every REME block. It then follows that by simply instantiating four 256x8-bit BRAM blocks for 

every sub-REME within a REME Block, every input will be represented as shown in Figure 

5.9a.  

d. Evaluation 

The Personal Computer (PC) used for benchmarking in the evaluation of this thesis is made up of an 

Intel-based processor. The PC is fitted with 8GB of installed primary memory. It has an observed 

3700MB of usable memory, and 3913 cached memory. The PC has a maximum clock operating 

frequency of 2.67GHz. Each category of design namely: BG2RE, BG3RE, BG4RE, and BG5RE engines 

are versions of the ECDRTS-NFA design. Furthermore, each design was built using extracted regexps 

from the VRT Rule distributed by Sourcefire (v 2.0) community rules, 2001-2013 (Snort 2013; Sourcefire 

2009) provided by Snort. The regexps were obtained from Snort NIDS and evaluated accordingly in 

Chapter 6.  

Furthermore, with a lower number of regexps compiled per REME, particularly in the case of the 

BG2RE design, the expected throughput of the design was the highest compared to all the other 4-byte 

related matching designs. The BG2RE design reported a 14% improvement over the next best reported 

throughput, and a 93% improvement over the worst reported throughput as seen in Table 6.1. 

Secondly, in terms of throughput efficiency the BG2RE engine reported over 58.61% 

improvement over the next best throughput efficiency belonging to the BG3RE engine. The design also 
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recorded an 88.65% improvement over the worst related approach as seen in Table 6.1. Each of the 

ECDRTS-NFA REME designs only utilised a 2x36kBRAM memory blocks. For instance, the BG5RE 

design utilised 2x36kBRAM rather than 20x36kBRAM memory blocks. This reduction portrayed a 90% 

reduction in the total number of required primitive memories. The throughput and throughput efficiency 

only steadily declined with increased pattern complexity as stated in the research hypothesis. 

 Chapter Summary 7.3

An ECDRTS-NFA design that could improve throughput with sustained throughput efficiency was 

proposed and implemented. The design was optimised to improve the synthesis and PAR time, by 

eliminating the use of decoders initially synthesised to perform table look up operations. The design also 

eliminated the use of nested loop operations usually associated with such decoding operations. This is 

important as FPGA devices are not designed to perform nested loop operations. The ECDRTS-NFA 

performs multi-character matching like the other related approaches, but in addition it also performs 

multi-pattern matching all within each REME design. The level of complexity in such a case is not 

comparable to the other related approaches, even though the parallel matching pipelined arrangement may 

be likened. 

 The equivalence classification concept which was used to generate inputs (ECDs) is only 

applicable to NFAs. This is because with NFAs, there is not necessarily a single current state involved 

anymore, as any classes of ECDs can activate several transitions and states at once. The implemented 

NFA minimisation technique helped in identifying, classifying and merging all the vectors of next states. 

The vectors were each efficiently and automatically assigned a unique ECD. Each ECD represents 

hundreds of separate similar state input characters that would have ordinarily been stored on the state 

transition table, which would have been impossible to efficiently store. This is especially important, when 

increasing the stride of matching by consuming multiple characters at once. 

 Another important contribution made by the ECDRTS-NFA approach is that it reduced memory 

wastage. This was achieved by utilising only 2x36kBRAMs to implement REMEs consisting of up to 20 

regexps of varying lengths. This is an improvement over the initial 20x36kBRAMs for the same 20 

regexps utilised by the ECD-NFA and other related approaches. The improvement in the design is 

measured in terms of the throughput of matching and the number of logic resources utilised within a 

confined circuit area in the target FPGA. The ECDRTS-NFA REMEs for each level of scaled REME 

designs are: BG2RE, BG3RE, BG4RE, and BG5RE engines. The BG2RE particularly recorded the best 

performance compared to the other groups of REMEs and the other related approaches as seen in Table 

6.1. Furthermore, due to the pipelined arrangement of the REMEs, the whole process of performing table 

look up operation became fast and efficient. Also, due to the compact nature of the table-synthesis 

approach, adding more patterns to each REME only had a linear declining effect on the overall design and 

the size of the ECD tables. As such, the design has a very good prospect of scaling up steadily with every 

step-wise increase in the number of compiled regexp per each sub-REME. This is also an important 

contribution to this thesis.  

Furthermore, the ECDRTS-NFA approach does not utilise the centralised BRAM character 

classification technique implemented by some of the other related. The BRAM character classification 

scheme was used by some approaches to supply character inputs to their various design REMEs, which is 

not too memory efficient. The ECDRTS-NFA approach instead utilises the novel compressed ECD table 
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synthesis technique. The technique helped to share up to 4-bytes of classified ECDs to the various 

REMEs efficiently. The compressed table of ECDs has an advantage over the centralised BRAM 

classification scheme. This because, the compressed table of ECDs scheme guarantees that each ECD is 

represented using just 7-bits instead of the 256-bits utilised by such centralised BRAM classification 

approaches.  

However, an incremental design which can serve as alternative approach and capable of building 

upon the existing ECDRTS-NFA design platform is required in future. The current platform generates 

scalable and stable NFA REMEs. But the design is in need of a counting mechanism to further minimise 

the number of logic resources used when synthesising complex REMEs consisting of regexps with long 

length restrictions beyond a 1000. With a counter-based ECDRTS-NFA approach that extends the current 

approach, the steady decline in the number of logic circuits utilised could be curtailed even further. Such 

a growth becomes evident as the regexp REMEs begin to exceed the threshold of n>5 in the BGnRE 

engines, where n = 2, 3, 4, 5. The proposed counter-based ECDRTS-NFA design can improve the current 

design, and make it more efficient in terms of performance. Also, with such a proposed design, fewer 

REMEs will be required to match thousands of regexp patterns. A minimal logic circuit cost in terms of 

LUT utilisation and other logic circuits, with a more sustained decline in the throughput of matching was 

shown to occur during implementation. This is also bearing in mind that the throughput efficiency is 

almost guaranteed to decline at a steady rate, and not drastically. 

 Concluding Thoughts 7.4

The future of FPGA-based designs such as the ECDRTS-NFA is bright. This is because there are on-going 

researches that are trying to improve even the most fundamental building blocks of digital designs such as 

the D-type Flip-Flop (DFF). The DFF according to Trefzer et al. (2015) is a widely utilised logic circuit 

for „pipelining in digital signal processing (DSP) and register files in microprocessors‟. Timing is 

essential in achieving maximum achievable clock speeds by most FPGA-based REME designs. This is 

especially the case with implemented approaches such as the ECDRTS-NFA. As such, an improvement in 

the clock-to-q delay, setup time, hold time and dynamic power consumption of DFF (Trefzer et al. 2015, 

p. 192) will have tremendous impact on the overall throughput of matching in any given REME circuit. 

FPGAs also provide high performance per watt of power consumption (Lacey, Taylor and Areibi 2016), 

making them flexible and power efficient in industrial application. 

High performance, greater flexibility, lower development cost and the faster time-to-market is 

attributed to current FPGAs. This gives most NIDS especially signature-based NIDS requiring parallel 

computations a genuine advantage when implemented using FPGAs. Also, by combining optimisations 

such as multi-character matching and BRAM-based character classification techniques (Singapura et al. 

2015), the FPGA can be exploited even further. Furthermore, mainstream software development practices 

show that FPGAs are attractive choices. This is because the FPGA tools have since adopted software-

level programming models including the open parallel programming models (OpenCL) standard. Also 

Lacey, Taylor and Areibi (2016) further explain that FPGAs are currently shifting towards System-on 

Chip (SoC), where Advanced Reduced Instruction Set Computer Machines (ARM) 32-bit and 64-bit 

processors and FPGAs are placed on the same fabric.  

Currently, Programmable Logic Devices (PLDs) are highly sought after. This is further confirmed 

by the WinterGreen market report of 2010 (WinterGreen Research Inc. 2010). The report which has about 
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287 pages and 148 tables and figures show that the global market for PLDs such as FPGAs has risen from 

$3.5 billion in 2009 and is anticipated to reach $9.6 billion by the end of year 2016. As such, there is a 

future for FPGAs and for applications that can take full advantage of the advancements made in the 

development of modern FPGAs. 
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APPENDIX 1.1: Simulated 4-byte Matching BG2RE sub-REME. 
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APPENDIX 1.2: RTL Diagram for BG2RE sub-REME.  
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APPENDIX 1.3: Results for the Ten BG5RE sub-REMEs. 

BG5RE 
Number 

of States 

Number 

of LUTs 
Speed 

LUTs

/State 

Average 

Throughput 

 Engine NOS NOL MHz 
NoL/

NoS 
AverageTp 

 1 1323 2960 252.91 2.24 7.9 

 2 1151 1352 282.65 1.175 8.83 

 3 1736 1999 255.76 1.152 7.99 

 4 485 2913 263.64 6.006 8.24 

 5 925 3577 255.17 3.867 7.98 

 6 1492 2020 294.64 1.354 9.21 

 7 1465 2339 262.19 1.597 8.19 

 8 882 1966 271.67 2.229 8.49 

 9 648 2489 250.88 3.841 7.84 

 10 1020 4327 253.68 4.24 7.93 

Std.Dev 395.7 875.71 14.52 1.64 0.46 

Mean 1112.7
 a
 2594.2

 b
 264.32 2.77  8.26 

AvgTp 8.26
 c
         

AvgTpe

= 

(a/b)*c) 

3.54         

 

APPENDIX 1.4: Results for the Ten BG4RE sub-REMEs. 

BG4RE 
Number 

of States 

Number 

of LUTs 
Speed 

LUTs

/State 

Average 

Throughput 

 Engine NOS NOL MHz 
NoL/

NoS 
AverageTp 

 1 1161 1299 321.75 1.12 10.05 

 2 1811 1834 284.41 1.01 8.89 

 3 802 633 392.47 0.79 12.27 

 4 703 1818 263.85 2.59 8.25 

 5 536 1628 285.63 3.037 8.93 

 6 765 1299 286.7 1.698 8.96 

 7 870 1377 268.6 1.572 8.39 

 8 1487 1454 281.29 0.98 8.79 

 9 1114 1905 300.21 1.71 9.38 

 10 1038 2249 252.14 2.171 7.88 

Std.Dev 386.13 444.63 39.71 0.75 1.25 

Mean 1028.7
 a
 1549.6

 b
 293.71 1.67  9.18 

AvgTp 9.18
 c
         

AvgTpe 

= 

(a/b)*c) 

6.09         
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APPENDIX 1.5: Results for the Ten BG3RE sub-REMEs. 

BG3RE 
Number 

of States 

Number 

of LUTs 
Speed 

LUTs

/State 

Average 

Throughpu

t 

 Engine NOS NOL MHz 
NoL/

NoS 
AverageTp 

 1 752 820 299.85 1.09 9.37 

 2 605 630 362.19 1.04 11.31 

 3 886 1080 303.31 1.219 9.48 

 4 230 1197 307.6 5.204 9.61 

 5 411 1462 281.37 3.557 8.79 

 6 2761 1082 312.79 0.392 9.78 

 7 1320 879 321.23 0.666 10.04 

 8 1266 1707 309.7 1.348 9.68 

 9 1198 1748 271.44 1.459 8.48 

 10 800 1139 310.95 1.424 9.72 

Std.Dev 708.57 368.76 24.23 1.49 0.76 

Mean 1022.9
 a
 1174.4

 b
 308.04 1.74  9.63 

AvgTp 9.63
 c
         

AvgTpe 

= 

(a/b)*c) 

8.39         

APPENDIX 1.6: Results for the Ten BG2RE engines. 

BG2RE 
Number 

of States 

Number 

of LUTs 
Speed 

LUTs/

State 

Average 

Throughput 

Engine NOS NOL MHz 
NoL/

NoS 
AverageTp 

1 925 242 407.5 0.262 12.73 

2 1300 618 386.55 0.475 12.07 

3 319 637 362.19 1.997 11.32 

4 875 356 380.19 0.407 11.88 

5 526 715 291.38 1.359 9.1 

6 782 266 375.78 0.34 11.74 

7 692 457 370.92 0.66 11.59 

8 1266 345 406.5 0.273 12.7 

9 337 584 363.5 1.733 11.36 

10 1252 463 328.84 0.37 10.28 

Std.Dev 367.88 165.07 35.06 0.66 1.1 

Mean 827.4
a
 468.3

 b
 367.34 0.79 11.48 

AvgTp 11.48
 c
         

AvgTpe 

= 

(a/b)*c) 

20.28         
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APPENDIX 1.7: Summary of the Average Throughput per REME Design. 

Engines BG5RE BG4RE BG3RE BG2RE 

 1 7.9 10.05 9.37 12.73 

 2 8.83 8.89 11.31 12.07 

 3 7.99 12.27 9.48 11.32 

 4 8.24 8.25 9.61 11.88 

 5 7.98 8.93 8.79 9.1 

 6 9.21 8.96 9.78 11.74 

 7 8.19 8.39 10.04 11.59 

 8 8.49 8.79 9.68 12.7 

 9 7.84 9.38 8.48 11.36 

 10 7.93 7.88 9.72 10.28 

Std.Dev 0.454 1.242 0.756 1.095 

Mean 8.26 9.179 9.626 11.477 

APPENDIX 1.8: Summary of the ratio of LUTs per State in each REME Design. 

Engines BG5RE BG4RE BG3RE BG2RE 

 1 2.24 1.12 1.09 0.262 

 2 1.175 1.01 1.04 0.475 

 3 1.152 0.79 1.219 1.997 

 4 6.006 2.59 5.204 0.407 

 5 3.867 3.037 3.557 1.359 

 6 1.354 1.698 0.392 0.34 

 7 1.597 1.572 0.666 0.66 

 8 2.229 0.98 1.348 0.273 

 9 3.841 1.71 1.459 1.733 

 10 4.24 2.171 1.424 0.37 

Std.Dev 1.637 0.743 1.483 0.655 

Mean 2.7701 1.6678 1.7399 0.7876 

             

 

 

 

            

 


