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Experimental Implications of the Entanglement Transition in Clustered

Quantum Materials

by Hannah Irons

Clustered quantummaterials provide a new platform for the experimental study of many-

body entanglement. Here we address a simple model featuring N interacting spins in a

transverse field. The field can induce an entanglement transition (ET). We calculate the

magnetisation, low-energy gap and neutron-scattering cross-section and find that the

ET has distinct signatures, detectable at temperatures as high as 10% of the interaction

strength. Unlike a quantum critical point, the signatures of the ET are stronger for

smaller clusters.
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Chapter 1

Introduction

This thesis is part of a collaborative e↵ort between experimentalists and theorists into

understanding and detecting a phenomenon known as the entanglement transition. The

authors role in the collaboration was to use analytical and numerical methods to describe

the behaviour of small finite-sized systems in relation to their entanglement and the

entanglement transition. The main goal was to predict neutron scattering results for

these models and to comment on a feasible temperature scale for experimentation. This

chapter outlines the motivations behind this project and gives a chapter summary.

1.1 Motivation

The motivation behind any research project is a simple desire to learn more about an

interesting topic. This is subjective to an extent, but for many scientists in many di↵er-

ent fields a system undergoing some great behavioral change is a platform for interesting

an exciting physics [13] [14] [15]. This project and the collaborative e↵orts in connection

with it are founded on the goal of experimentally realising the entanglement transition.

The entanglement transition, described in Chapter 2, is a new kind of quantum transi-

tion that is yet to be found experimentally and has very little theory developed around it

[9] [12] . The entanglement transition is the change of the type of entanglement present

in a system that occurs at a point where the system becomes semi-classical and breaks

the entanglement entirely [16] [17] [18]. Being able to detect this type of transition is a

1
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complex problem, tackled within the collaboration using a process of theory and exper-

imental methods working in harmony [8]. Firstly, as discussed in Chapter 2, identifying

entanglement in a system has its own challenges, and secondly, the measures used to

quantify the amount of entanglement in a system are theoretical measures that do not

relate well to global experimental techniques [15] [19] [20] [21] [22] [23]. One of the other

biggest challenges faced in this project is to find this phenomenon at temperatures that

could be experimentally achievable. Quantum phenomena can be very sensitive to ther-

mal fluctuations, having the underlying quantum behaviour destroyed by even relatively

low temperatures.

The beginnings of the theory around the entanglement transition comes from the tech-

niques developed in the recent field of Quantum Information being applied to known

systems in condensed matter physics [16]. Quantum Information treats information as a

resource, this concept has opened up this field as one of the most innovated and exciting

areas in recent times [24]. Entanglement plays a key role in the techniques developed

in Quantum Information mostly in the form of entangled qubits. By applying these to

more complex but solvable models in condensed matter, shine a new light into both of

these fields. Papers from Wootters and collaborators began by exploring the distribution

of entanglement in small systems of three qubits and developed a method of quantifying

the amount of entanglement called concurrence (also described in Chapter 2)[19] [20]

[21]. It is seen in this project that finite-sized calculations can o↵er a great insight into

these more complex systems and the distribution of entanglement [9].

Quantum Information and finite-sized calculations in this thesis have helped us under-

stand better an unusual behaviour seen in 1D antiferromagnetic chains called factori-

sation. First described by Kurmann et al. in 1982, factorisation occurs in the ordered

antiferromagnetic phase of 1D chains with an applied external field where, at a partic-

ular value of the field, the ground state of the system spontaneously looses all quantum

fluctuations [18]. The spins remain antiferromagnetic with long range order but with-

out any fluctuations, which can be observed with the absolute value of the correlation

functions showing a perfect flatness [25]. Factorisation is introduced in Chapter 3 with

results for the correlation functions in Chapter 5. It is the factorisation field where the

entanglement transition occurs. Quantum Information has shown that below the factori-

sation field the chains are antiferromagnetically entangled and above the transition they

are ferromagnetically entangled. At the transition because the system becomes classical
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and the ground state becomes separable, there is zero entanglement. The transition in

the thermodynamic limit takes place entirely in the antiferromagnetically ordered phase,

and by tuning the anisotropy between the interactions in the spin chain it is accepted

that the entanglement transition is an entirely separate phenomenon from critically that

induces the phase transition in the chains to being ferromagnetically aligned with the

applied field.

This project predicts experimental neutron scattering results for a class of small molecu-

lar magnets, as of yet the collaboration hasn’t conducted any experiments based on these

results but being able to experimentally detect the entanglement transition is one of the

most important motivations behind the work presented in this thesis. Being able to use

neutron scattering experiments to identify the entanglement transition for the first time

would be a step towards using entangled states in some sort of application. Quantum

Information is already paving the way in using entanglement in innovative and practical

way such as Quantum Key Distribution (QKD) for security and encryption purposes [15]

[26] [16]. Using entanglement and the entanglement transition in molecular magnets is

still very far away, but it starts with understanding the theory and the mechanism of the

transition and this thesis manages to give real predictions in finding the entanglement

transition at achievable temperatures. Producing molecular magnets in itself is a new

and innovative field, and together with the progress being made into entanglement gives

a very promising future for the interesting concepts and physics studied in this thesis.

1.2 Chapter Summary

The thesis is organised in the following way; with the relevant background chapters

discussing entanglement and the models used in this project with a commentary on the

application of these models to real materials and experiments. The results chapters then

progress with the complexity of the models used starting with a simple, but insightful,

dimer system, and then building up larger finite-sized systems, whilst discussing the

trends towards the thermodynamic limit. The final results chapter is the accumulation

of the goals of the project by detailing the results of finding the entanglement transition

in small magnetic molecules at finite temperatures using the neutron scattering cross-

section.
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Chapter 2 presents the development of entanglement from its conceptualisation and

its place in quantum mechanics to being able to identify it in a real system and then

quantifies the amount of entanglement in a system. The EPR paradox from Einstein,

Poldoski and Rosen from the 1930’s best encapsulates the exciting time around the

formation of quantum mechanics and the philosophical discussions between scientists on

how to interpret the strange behaviour that was being discovered in quantum systems.

The concept of entanglement is tightly connected to other quantum concepts accepted

by the Copenhagen Interpretation that describe uncertainty and duality other statistical

and probabilistic techniques. Chapter 2 outlines the postulates that the EPR paradox

makes, the consequences of the thought experiment to how best describe the e↵ects of

entanglement using an alternative model. This alternative model developed by Einstein

was a Hidden Variables model that says that quantum mechanical systems have a set

of unknown parameters that dictate the results of certain measurements. With these

concepts explained, the chapter uses them to work through examples of measurements on

entangled pairs to build a Bell’s Inequality [27]. Bell’s Inequality is a testable threshold

that can be experimentally broken by an entangled system.

The second half of Chapter 2 focuses on newer developments made to the field of en-

tanglement by its reevaluation in the recent field of Quantum Information. The core of

this is to treat entanglement as a resource for information, when applied to real systems

this leads to being able to theoretically quantify the amount of entanglement in a given

system. Here, two central ways of quantifying entanglement are described; these are von

Neumann Entropy that uses the idea that an entangled state contains more information

and therefore has a higher entropy; and concurrence that uses the spin-flip transforma-

tion of a particular state to project a state onto it’s transformed orthogonal counterpart

and describe the amount of overlap between them [21]. Lastly, as the goal of this project

is to identify the entanglement transition, the chapter briefly discusses phase transitions,

quantum critical points and the criterion for the entanglement transition.

Chapter 3 is the second background chapter and gives the Hamiltonians for all the

models and variation of the models used in this thesis and is referred to throughout

the thesis. The focus of this project is using the 1D anisotropic XY-model Hamilto-

nian for antiferromagnetic spin chains, this can be adjusted to the isotropic XY-model

and the other end of the scale, to the Ising model. This model is used because of an

unusual occurrence in these antiferromagnetic chains to factorise at a particular field
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[18]. Factorisation and its connection to the entanglement transition is explained in

chapter 3. The anisotropic XY-model Hamiltonian is used for finite-sized calculations

predominantly but a commentary on the thermodynamic limit is made in this chapter

and Chapter 5. With periodic boundary conditions this model can even be applied to

molecular magnets in ring formations. Chapter 3 also provides a literature review on the

type of real materials and crystals that the models and ideas presented in the project can

be applied to. There is particular attention paid to molecular magnets in the literature

as another recent field that is opening up exciting avenues for interesting behaviour that

can be chemically tunable [7] [28]. In very recent publications scientists are starting to

explore entanglement in some molecular systems and the e↵ects of doping di↵erent ions

[29] [30] [4].

The next three chapters collect the results and conclusions of this project. Chapter 4

serves as a template, outline the process of studying these models starting with a simple

dimer model. The dimer has the advantages of being easily solved with a small Hilbert

space making it easier to look directly at the eigen states to understand better the

behaviour of the system. The process starts with solving the system and studying the

energy spectrum, here a level crossing between the two lowest energy levels coincides with

the calculated factorisation field. By looking directly at the eigen states that correspond

to the lowest energy values it is shown that one is the antiferromagnetically entangled

singlet and the other a ferromagnetically entangled state. The ground state changes

from the antiferromagnetically entangled state to the ferromagnetically entangled state

at the level crossing at the factorisation field. At this point any linear combination of the

states is a valid eigen state and it can be shown that a linear combination can be found

that shows the states to be separable and thus unentangled. The chapter concludes by

calculating concurrence for the dimer [2].

Chapter 5 expands on the previous chapter, using the same process of exact diagonal-

isation to solve larger finite-sized systems for open and periodic boundary conditions.

Results are detailed for even numbered finite-sized systems from 4 spins to in some cal-

culations for 12 spins being the computational limit for exact diagonalisation. As with

the dimer before, the energy spectra are calculated for the models and level crossings

observed in the ground state. The larger the system the more level crossings there are

between the two lowest states [31], care is taken to prove that it is only the last level

crossing that causes the system to factorise. This is done explicitly for the 4 spin system
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where it is still possible to directly study the components of the states. For larger sys-

tems the correlation functions are used to study the e↵ect of the level crossings, showing

a complete ‘flatness’ in the correlations at the factorisation field. These calculations are

extended into some finite temperature calculations to test the robustness of the e↵ects

of the level crossing. This chapter also explores criticality and implications for the ther-

modynamic limit. It concludes by calculating concurrence for a systems from 4 spins to

12 spins for open and periodic boundary conditions.

The last results chapter uses everything learned in previous chapters and applied it to

modeling small molecular rings, with particular focus to the plaquette of 4 spins and the

hexagon of 6 spins. This chapter is about the experimental implications of the entangle-

ment transition, as such the results calculated are for measurable quantities, including

magnetisation and most importantly, the magnetic neutron scattering cross section [12].

The entanglement transition in the plaquette and hexagon show a clear change in the

spectral weight of the scattering function when passing through the factorisation field.

The scattering function can be split into its component parts depending on the direction

of the correlation function that it consists of. For example, the scattering function for

the correlations in the xx, yy, zz or xy directions can be calculated separately and it can

be seen where the antiferromagnetic and ferromagnetic peaks from the whole scattering

function originate from. Using this it can be seen that before the transition the scat-

tering function is predominantly made up of antiferromagnetic interactions and after it

it is dominated by ferromagnetic interactions aligned with the direction of the applied

field. This chapter also tests how robust the features of the entanglement transition

are for di↵erent system sizes for a range of low temperatures, finding that typically the

transition is still visible around 10% of the interaction energy J .

Lastly, Chapter 6 explores a di↵erent way of modeling small molecules such as the pla-

quette and Hexagon. This method takes into consideration any cross-term interacts that

might arise in the 2D geometry of the small rings. Though both models and Hamiltoni-

ans used in describing the plaquette and hexagon systems are valid the alternative one

would consider a molecule whose orbitals overlap in way that would cause cross-term

interactions between the x and y directions between neighbouring ions. This section is

not completed to the same level as the anisotropic XY-model approach, but highlights

some interesting physics present in these models.
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Chapter 7 provides a summary of the work presented in this thesis and comments on the

key results and conclusions in respect to the main objectives of the project. This chapter

will also comment on further work based on the foundations that this collaboration has

made with the hopes that the next level of this work would involve experimentation on

real quantum spin clusters.



Chapter 2

The Entanglement Transition

Since its conceptualisation in the mid 1930’s, entanglement has had a complicated and

controversial history. Quantum mechanics (QM) has evolved with the concepts involved

in entanglement inherent in its framework. In contrast to classical mechanics, entangle-

ment provides a platform in QM in which to ask some fundamental questions, questions

that in classical mechanics seem redundant. The crux of this is that in a quantum me-

chanical system most properties can be directly measured. Instead, it is a theory based

on ensembles and probability, which brings the act of measurement upon a system under

scrutiny.

This chapter looks to introduce entanglement and its importance to the early stages of

development for quantum mechanics. Here, the EPR (Einstein-Podolsky-Rosen) para-

dox is used as a narrative to describe the complex ideas behind entanglement and why

it has a controversial history. At the time, two interpretations of QM were formulated;

one being the, now accepted, Copenhagen Interpretation and the other based on Lo-

cality and a Local Hidden Variables model. Resolution came for physicists regarding

entanglement when Bell’s inequalities were formed and later when real experiments were

conducted.

Entanglement has seen a resurgence of interest since the late 1990’s when Wootters and

colleagues put forth the principles behind quantifying the amount of entanglement in a

spin system [19] [20] [21]. Since then several developments have been made in quantifying

entanglement in di↵erent ways, in particular von Neumann entropy which is outlined

in this chapter as it demonstrates the main ideas that are then built upon in many of

8
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the other methods [15]. When quantifying entanglement in this thesis, concurrence is

calculated as it is a commonly utilised quantity and a fairly straight-forward method.

Concurrence is also outlined in this chapter with addition examples set out in detail, in

Chapters 4 and 5.

Lastly, this project is centered around the entanglement transition, thus this chapter

will describe what that means and how the entanglement transition is di↵erent from a

typical phase transition.

2.1 Entanglement

Entanglement is a purely quantum mechanical phenomenon with no analogous behaviour

seen in classical mechanics. A quantum mechanical system, including an entangled

system, has a strong relationship with measurement. The act of measurement on a QM

system can not be fully separated from it, having a significant e↵ect on the outcome

of the system. In a classical object it is possible to measure the length of that object

with relative certainty, without changing it. For a quantum mechanical object, like

a photon, it is possible to either measure its position or its wavelength (to obtain its

momentum). A photon exhibits wave particle duality which has been well demonstrated

using a set of Young slits experiments. The general set-up of the experiment sends

individual photons towards two appropriately distanced slits and then the photons are

individually recorded by an array of detectors past the slits. Each photon behaves like a

wave when passing through the slits, which allows it to interfere with itself. Statistically

this forms a wave di↵raction pattern on the detectors. In addition, the photons behave

like localised particles on arrival at the detector. Indeed, it is possible, by placing an

additional detector at one of the slits , to determine which of the two slits a particular

photon went through. However, when this is done the di↵raction pattern is lost.

The Young slits experiments are a powerful way to describe interesting phenomena

such as duality, uncertainty, non-commuting parameters and the e↵ect measurement

can have on a quantum mechanical system. The type of measurement dictates whether

the photon behaves like a wave or a particle and the accuracy of the measurement relate
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to the uncertainty in Heisenberg’s uncertainty principle given below;

�x�p � ~
2
. (2.1)

Position x and momentum p are non-commutable quantities. If one parameter is mea-

sured with high accuracy then the other can not be measured with any accuracy. In a

strict sense, this means that if one parameter is measured accurately then it is not just

that the other is immeasurable but that it has no physical meaning at the moment of

measurement and can never be recorded simultaneously. For the photon, this is under-

standable, if its momentum is measured then the photon is exhibiting wave behaviour

and a wave has no local position to measure.

Entanglement is the principle that one part of an entangled system can have a physical

influence on another part of that system without interacting with it and even when

they are beyond each others’ local environment i.e. a measurement taken independent

of the distance between them. This apparently instantaneous transfer of information

contradicts relativity and caused concern for physicists at the time. In the 1930’s Ein-

stein, Podolsky and Rosen developed a thought experiment that became known as the

EPR paradox, to clarify the restricting nature of quantum mechanics. They proposed

that QM was “incomplete” and that the idea that measurable quantities could be non-

commuting or physically unknowable could be circumvented by a more complete theory.

Einstein developed a model of hidden variables that were able to describe unknown

parameters that exist before measurement.

2.1.1 The EPR Paradox

The EPR paradox is a thought experiment, devised in the early years of QM. When

navigating this bizarre and new area of physics the EPR paradox was based on two

principles that show the core di↵erence between classical and quantum physics. The

first condition reads

“ ... every element of the physical reality must have a counterpart in the physical theory.”

[32]

In classical physics, this statement is straight forward: the direct measurement of the

length of a piece of string with high certainty is its length as a physical property. In a
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QM system measuring the length of something with a strong certainty is not a direct

measurement. An electron’s ‘length’ does not have much meaning, it is usually taken

as a point particle with the accuracy of its length more associated with its position. As

seen in equation 2.1 the accuracy of its measured position has a profound e↵ect on the

system, which is addressed in the second hypothesis:

“... if without in anyway disturbing the system, we can predict with certainty (i.e.

with a probability equal to unity) the value of a physical quantity, then there exists an

element of reality corresponding to that quantity.” [32]

This statement essentially says that the act of measuring a system should not change

the system. The Copenhagen Interpretation of QM contradicts this, as was described

above using Young’s Slits experiments as an example. Einstein developed his local hid-

den variables (LHV) model to explain such phenomena and still obey the conditions for

the EPR paradox [33]. Einstein devised what he thought of as a more complete quan-

tum theory that was more fundamental than what statistical mechanics could provide.

Hidden variables were the supposed statistical and otherwise unknowable quantities of

a system [15]. Additionally, they described the outcome of a measurement without the

need of the measurement being performed.

The EPR paradox can be summerised using a pair of specially prepared spin particles as

an example. A particle with a zero spin decays into two equal and opposing particles. In

order to conserve spin they must have opposing spin in the same given direction. They

must conserve momentum also and travel in opposite directions. They are then separated

by an arbitrary long distance that removes them from each others’ local environment. If

these particles are entangled then they can behave ‘non-locally’ regardless of distance,

this means that one particle can a↵ect the other. The consequence of this ‘action at

a distance’ is that it implies an instantaneous transfer of information that could be

interpreted to break causality.

The two separated particles are labeled particle A and B, with their spin direction

referred to spin A and B. If measured in the same direction the spins will always anti-

align, which would be the same for an entangled pair or a classically anti-correlated pair.

If the spins are measured in di↵erent directions then if they are entangled. The first

measurement taken, say on spin A, will directly influence the spin of spin B. Before a

measurement the spin of both particles is undefined. LHV model is used to explain the
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unusual behaviour of entangled particles by saying that there is a set of variables that

describe all measured outcomes. This is best explained in an example using the Bell

Inequalities, demonstrated in the following section.

2.1.2 Bells Inequalities

In 1964 J.S Bell formulated a family of inequalities to mathematically represent the

EPR paradox using a model that incorporated Local Hidden Variables. The inequality,

if broken would indicate that the measured system could not be described using the

LHV model but were an entangled pair. This was the first method that scientists could

use as a foundation to test the existence of entanglement [27]. The inequalities produce

a probabilistic limit on the statistical measurement of a string of paired particles. An

experiment can be set up where a source emits pairs of equal and spin opposing particles.

Each pair of spin A and spin B are measured separately in any direction ↵,� and � (not

necessarily orthogonal). Before the particles are measured their respective spins are

undefined in any direction. A possible scenario for any measurement outcome is given

a subscript label i where table 2.1 maps out all possible scenarios with N
i

giving the

number of times scenario i will be realised, statistically, when the experiment is measured

a number of independent ways . If the particles are measured in the same direction then

the outcome will always be an anti-aligned arrangement of spins [34] [15] [35].

Label Number of Scenario i realised Particle A Particle B

1 N1 ("
↵

"
�

"
�

) (#
↵

#
�

#
�

)
2 N2 ("

↵

"
�

#
�

) (#
↵

#
�

"
�

)
3 N3 ("

↵

#
�

"
�

) (#
↵

"
�

#
�

)
4 N4 ("

↵

#
�

#
�

) (#
↵

"
�

"
�

)
5 N5 (#

↵

"
�

"
�

) ("
↵

#
�

#
�

)
6 N6 (#

↵

"
�

#
�

) ("
↵

#
�

"
�

)
7 N7 (#

↵

#
�

"
�

) ("
↵

"
�

#
�

)
8 N8 (#

↵

#
�

#
�

) ("
↵

"
�

"
�

)

Table 2.1: All possible measurement scenarios are given a label from 1 to 8 that
corresponds to the number of times the scenario is realised N

i

. Each scenario has a
predetermined planned for particle A that has the anti-aligned measurement for particle
B for any direction of measurement ↵,� and �. These scenarios can be used to calculate
the probability of a given outcome when particles A and B are measured in di↵erent

directions.

Any measurement recorded for the pairs of spins have a probability that can be deduced

from table 2.1. For example, a measurement has occurred on a pair of spins. Spin A
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was measured in the ↵ direction and was found to be in the state |"
↵

i and spin B was

measured in the � direction and also found to be in the state |"
�

i. This corresponds to

scenarios N2 and N4. The probability of this measurement is written as follows, with

the notation P (A,B) for the measurement on spin A and B;

P ("
↵

, "
�

) =
N2 +N4
P8

i=1Ni

. (2.2)

Any measurement can be used to construct a probability and can be combined to form an

inequality on the basis that the combined probability of two possible orientations of spin

is greater than just one possible orientation of the spin. [36]. With all possible scenarios

included and the sum of all scenarios equal to one then a more general inequality can

be constructed for spin A and spin B [32];

It is said that the spins are undefined until measured for both a Quantum Mechanical

outcome and using Einstein’s LHV model. By describing the paired systems using LHV

it is e↵ectively saying that before the spins are measured, they have a predisposed plan

to point in an agreed arrangement dependent on the direction measured. This allowed

the spins to always point opposite to each other without information traveling between

them and angular momentum remaining conserved. This hidden plan is characterised by

a set of parameters called � and assumes that the probabilities of the measured results

are independent of the directional choices made on either particle and also independent

of actually being measured at all [22]

For example if the hidden variables have a given plan for spin A to always measure a

positive spin regardless of direction represented i.e. ("
↵

"
�

"
�

) then the plan for spin B

is (#
↵

#
�

#
�

). This can be seen on table 2.1 labeled i = 1. For this case any direction

measured will give an anti-aligned result "#. But � is random with an even probability

distribution, so that all plans for the spins are valid and as equally likely. Another plan

for spin A may be ("
↵

"
�

#
�

) and Spin B has (#
↵

#
�

"
�

) (labeled 2) and so on until all

possible plans are accounted for so that:

Z

⇢ (�) d� = 1. (2.3)

If the plan mentioned above, with the label 2 if taken and all possible pairs of measure-

ments are taken it can be seen how many measurements obey the conservation of spin
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or not.

Direction for A Direction for B measurement Conserved

↵ ↵ |"#i X
↵ � |"#i X
↵ � |""i ⇥
� ↵ |"#i X
� � |"#i X
� � |""i ⇥
� ↵ |##i ⇥
� � |##i ⇥
� � |#"i X

Table 2.2: Hidden Variables model for scenario N2 where all combinations of the
directions of measurement is considered. The table then states whether spin has been

conserved with a tick or a cross symbol.

Table 2.2 lists all the possible measurement outcomes for plan N2 which conserves spin

5
9 of the times. This can be done for all plans described by hidden variables, continuing

with the labels introduced in table 2.1; 1 and 8 conserve spin 9
9 always; and 2 ! 7

conserve spin 5
9 of the times. This gives a probability for anti aligned spins to be 2

3 .

The same measurement set up can be applied to a pair of anti-correlated spins that are

represented by an entangled wavefunction:

| (A,B)i = 1p
2

h

|"i
A

⌦ |#i
B

� |#i
A

⌦ |"i
B

i

. (2.4)

This is an entangled singlet that represents an anti-correlated dependence between spin

A and spin B. If either spin is measured then the whole wavefunction collapses and the

spin on the other particle can be known without further measurement. For example,

when spin A is measured to be |"i then the second term in the singlet can not be true

and the configuration left is |"#i thus without measuring it, it is known that spin B is

|#i.

Before the three directions ↵,� and � are discussed a simple set up where spin A is

measured first in the z direction and spin B is measured at an angle ✓ in respect to

A, is demonstrated. This arrangement is shown in Figure 2.1, where S denotes a spin

measurement.

When the measurement for spin B is performed in the z direction, i.e when ✓ = 0 then

the measurement in vector form is |#i
z

= [ 01 ]. The xz plane is chosen to perform the spin
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SAZ

SB

Figure 2.1: The measured direction of particle A is set as the z direction and is
measured first. The direction of the measurement particle B is dependent on ✓ and is
measured after particle A. If the system is entangled then the measurement on particle
A will give information on the spin direction of particle B dependent on the angle ✓.

measurements in. A component measured in this plane can be written in the following

way (as outlined in Rae’s Quantum Mechanics textbook [37]):

Ŝ
✓

= Ŝ
z

cos ✓ + Ŝ
x

sin ✓

=
~
2

0

@

cos ✓ sin ✓

sin ✓ � cos ✓

1

A . (2.5)

This matrix has the eigenvalues ±1
2~ with the corresponding eigenvectors:

Ev1 =

0

@

cos ✓2

sin ✓

2

1

A

Ev2 =

0

@

� sin ✓

2

cos ✓2

1

A (2.6)

The measurement for spin B can be written as a linear combination of the eigen vectors

where the coe�cients must coincide with a down measurement in the z direction, in the

✓ basis, thus:
0

@

0

1

1

A = sin
✓

2

0

@

cos ✓2

sin ✓

2

1

A+ cos
✓

2

0

@

� sin ✓

2

cos ✓2

1

A . (2.7)

Using this it is possible to construct the probabilities of each possible result given spin

A is measured first. Given spin A measured in the z direction yields |"i then dependent
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on ✓ the probability that spin B gives the measurement |"i also is P""(✓) = sin2 ✓2 .

Correspondingly the probability of a |#i result for spin B is P"#(✓) = cos2 ✓2 . This makes

sense, as an example, for ✓ = ⇡

3 then P"" = 1
4 and P"# = 3

4 , given the appropriate

sample size. The same is worked out for spin A being measured as |#i and all possible

measurements are provided:

P""(✓) = sin2
✓

2

P"#(✓) = cos2
✓

2

P#"(✓) = cos2
✓

2

P##(✓) = sin2
✓

2
. (2.8)

For this simple arrangement, the probability is only dependent on the direction that

spin B given by ✓. Bell’s inequality describes this arrangement quantum mechanically

and is given as [22] [23];

P""(✓) + P"#(✓) + P#"(✓)� P##(✓)  2. (2.9)

In this form for the set up described and shown in Figure 2.1 the inequality can not

be broken as it reduces down to cos2 ✓2  1, which is always obeyed. Thus even a

quantum mechanical interpretation can not describe an entangled state for two directions

of measurement. When all three possible directions are included and spin A can be

measured in any one of those directions then many examples of Bell’s Inequalities can

be constructed that can be broken. Allowing for a range of directions to be measured

is what helps to define what is entangled and what system is just strongly correlated.

Wootters states;

“... one of the primary distinctions between quantum entanglement and ordinary cor-

relation [is that] entangled particles exhibit a correlation not just for one measurement

but for a whole class of mutually exclusive measurements. [19]”

His paper discusses measurements mutually exclusive in being ‘up’ and ‘down’ or ‘left’

and ‘right’. This section will conclude with an entangled example being worked through

using a more general form to the angles being measured with a suitable range of angles

that would show entanglement, being derived.
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Unlike with LHVM, where the measurements are predetermined but hidden, the results

for an entangled pair without hidden variables is a↵ected by the relationship between

the directions of measurements: ↵,� and �. There is no need for these directions to

be orthogonal to each other, and for this example they will be put in the xz plane as

before, with the angles ✓
↵�

, ✓
��

and ✓
↵�

showing their configuration as demonstrated in

Figure. 2.2.

S

S

S
= +

Figure 2.2: In this measurement arrangement particle A is still measured first but
can be in any direction. The directions ↵,� and � need not be orthogonal to each other
and in this example are in the same 2D plane. The relationship between the angles and

their directions are indicated in the figure.

The directions of the measurements and the angles between them shown in Figure.

2.2 are arbitrary but whether or not a particular arrangement can be shown to break

Bell’s Inequality and indicate an entangled pair is not. It should be said, that when

Bell’s Inequality is broken the system must be entangled but if it is not broken it can

not be said that it is not entangled (as demonstrated by the above example). The

inequality is a limit for a system to behave classically. The process now is to build up

an example of a Bell’s Inequality that represents three possible measurement directions

for entangled singlets. This is achieved using Table. 2.1 and listing probabilities of

all possible outcomes. An example for this is given by Eq. 2.2 for P ("
↵

, "
�

). There

are six possible pairs of measurements that yield an |""i result for all directions, and

four possible di↵erent states, this equates to 24 possible combinations of measurements.
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Using the example for a |"#i result, the probabilities are listed below:

P (#
↵

, "
�

) = P (#
�

, "
↵

) =
N7 +N8
P8

i=1Ni

P (#
↵

, "
�

) = P (#
�

, "
↵

) =
N6 +N8
P8

i=1Ni

P (#
�

, "
�

) = P (#
�

, "
�

) =
N4 +N8
P8

i=1Ni

. (2.10)

The same process can be applied to all other probabilities 1. It is logical that the com-

bined probability of two measurement results is greater than the probability of another,

it follows from Eqs. 2.2 and 2.10:

N7 +N8 +N2 +N4
P8

i=1Ni

� N4 +N8
P8

i=1Ni

, (2.11)

which can be written in terms of its probabilities to form an example of a Bell’s Inequality

that represents this system and can be tested:

P (#
↵

, "
�

) + P ("
↵

, "
�

)� P (#
�

, "
�

) � 0. (2.12)

Using the arrangement that ✓
↵�

= ✓
↵�

+ ✓
��

and the probabilities discussed in Eq. 2.8

the inequality can be written in terms of the angles between the measurement directions

and it is possible to explore possible experimental set-ups that can show entanglement:

cos2
✓
↵�

2
+ sin2

✓
↵�

+ ✓
��

2
� cos2

✓
��

2
� 0. (2.13)

This inequality can be broken and the function can go negative for certain values of

✓. Figure. 2.3 fixes ✓
��

= 100� or 5
9⇡ rads and plots Eq.2.13 as a function f(✓) of

✓
↵�

. It can be seen that for most part the inequality is obeyed, but there is a small

section of angles that would experimentally imply entanglement. Figure. 2.4 shows the

dependence of both angles on the inequality. As it is only the negative regions of the

function that of are interest in detecting entanglement any part of the function that is

� 0, and therefore obeys the inequality, is capped at zero and plotted in yellow. This

allows the negative regions to stand out as two dark triangular regions that relate to

possible experimental set-up that would detect entanglement if present.

1
In general; for anti-aligned pairs the probabilities P ("

i

, #
j

) = P ("
j

#
i

) and P (#
i

, "
j

) = P (#
j

"
i

)

always, but for aligned pairs P ("
i

, "
j

) 6= P ("
j

"
i

) and P (#
i

, #
j

) 6= P (#
j

#
i

).



Chapter 2. The Entanglement Transition 19

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 π/2 π 3π/2 2π

f(
θ
)

θαβ

θβγ=5π/9

Figure 2.3: Bell’s Inequality in Eq. 2.13 with the LHS labeled f(✓) and the angle
✓
��

= 5
9⇡. Any value of the function less than zero breaks the inequality and is

considered entangled.

Figure 2.4: Bell’s Inequality in Eq. 2.13 with the LHS plotted as a surface dependent
on the two angles ✓

↵�

and ✓
��

. For legibility, any part of the function that obeys the
inequality, i.e. is � 0 is capped and plotted in yellow. The two dark triangular regions
show the parameters for the angles that give a negative results and break the inequality,

thus show and experimental arrangement to detect entanglement.

As an example, let ✓
↵�

= 200� and ✓
��

= 100� then the function gives the value �0.133

to [3 s.f]. This is in clear violation of Bell’s Inequality and indicates a non-classical and
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therefore entangled system.

There are many ways to develop a Bell-type inequality in order to test for entangled pairs,

Clauser and Horne worked on a variant called the Clauser-Horne-Shimony-Holt (CHSH)

inequality [22] [23] [15]. In 1981 Lo and Shimony derived a new Bell-type inequality with

a specific experimental arrangement in mind that would take into account the e�ciency

of the detection process [1]. In short, they proposed an experiment that used Na atom

pairs forced into an electronic singlet state, which once suitably separated were sent

through Stern-Gerlach fields to send up-spin particles to one detector and down-spin to

another for each pair.

Figure 2.5: Experiment arrangement from Lo and Shimony 1981. The sodium atoms
travel along the x axis to a point where a laser pump excites them into a known
entangled state. They are then separated far enough away to ensure that they out
outside of each others local environments. Their respective spins are determined by
Stern-Gerlach set-ups which can be rotated to di↵erent orientations given by ‘a’ and ‘b’
to measure the spins in di↵erent directions. There are detectors after the Stern-Gerlach
sections to measure that the spins are ‘up’ or ‘down’ in that particular direction. A
statistical picture of the entangled states can be built up to determine whether they

break Bell’s Inequalities. [1]
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Figure.2.1.2 shows the proposed experiment from their 1981 paper. The Stern-Gerlach

sections rotate on their own y axis denoted by y0 and y00 with an angle respect to the z

axis labeled a and b, allowing for a flexible measurements in di↵erent directions. This

experiment type using atomic cascades and others with polarisers where explored in the

1980s by such groups as Shimony’s, Selleri and Zeilinger, and Alain Aspect [38] [39] [40].

Alain Aspect and collaborators ran a series of high accuracy experiments using calcium

cascade sources and published in 1981 and 1982 in agreement with the quantum mechan-

ical predictions of entanglement over any local theory, even giving the optimal angles

used to break the CHSH inequity [38] [39]. Aspect et al. experiments are considered the

definitive experiments that support the quantum mechanic interpretation of these types

of systems. It is widely accepted through the development of Bell’s Inequalities and the

experiments that followed that entanglement and its unusual implications are real and

can not be explained using LHVM, and that the Copenhagen interpretation of quantum

mechanics does the best job of explaining quantum phenomena.

2.2 Measures of Entanglement

Quantum information (QI) is a young discipline whose development provides an excit-

ing platform to explore uses for quantum phenomena such as using entanglement as a

commodity or a resource. Quantum mechanics is a theory based on probability and

ensembles, QI is a natural progression of the theory by taking the link between proba-

bility and entropy. Quantifying entanglement is akin to quantifying entropy and entropy

is used to describe the amount of information in a system [15]. This section explains

some of the basics behind quantifying entanglement using the approach of quantum

information theory and starts with von Neumann entropy [22] [23] [41] [42].

2.2.1 von Neumann Entropy

A pure state that describes a pair of spins, for example, antiferromagnetically aligned

as |"#i, does not need to be written using probabilities and contains only one piece of

information. An entangled singlet as written in eq. 2.4 has an equal probability of being

in |"#i or in |#"i. The entangled state contains more possibilities and thus has a higher

entropy than a pure state and contains more capacity for information. The entropy used
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to probe entangled systems is called the von Neumann entropy and is given below:

S(⇢̂) = �Tr(⇢̂ log2 ⇢̂). (2.14)

The argument of the von Neumann entropy is the density operator ⇢̂. The density

operator in terms of the density matrix is written as:

⇢̂ =
X

nm

|u
m

i ⇢
mn

hu
n

| (2.15)

where the orthonormal basis states are described by |ui and ⇢
mn

are the matrix elements

of the density matrix for positions m and n. These elements are calculated from the all

the eigen states of the system | 
i

i (in the |u
n

i basis). It is scaled by the probability

p
i

of the system being in any particular state (an example of this being a Boltmann

distribution across the states dependent on temperature):

⇢
mn

=
X

i

hu
m

| 
i

i h 
i

|u
n

i p
i

. (2.16)

For a quantum mechanical system the probability of the system being in state | 
i

i is

p
i

such that all probabilities of possible states is unity:
P

i

p
i

= 1. This means that

all the probabilistic information about the state of a quantum system is contained in

the density matrix and the density operator. If the system is in one state | i, such

that the probability of being in that state is exactly 1 and the probability of being

in any other state is zero, that state could be a pure state or an entangled state but

not a superposition of multiple states. In this case the density matrix is made from a

single state that contains all the information about the system. The density operator

is analogous to the number of microstates or multiplicity in classical entropy. The von

Neumann entropy is usually given in log base 2 to describe the entropy as an expression

or expectation value of ‘bits’ of information.

This definition of entropy in a quantum mechanical system and the density matrix pro-

vide the foundation for most of the di↵erence methods used in quantifying entanglement.

With the recent developments in QI there have arisen many di↵erent but similar param-

eters used to quantify the amount of entanglement in a system all of which give zero

for a pure state as one limit to the scale and 1 for a maximally entangled state. These
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methods di↵er with the quantity of entanglement present in a system, as they are sen-

sitive to it in di↵erent ways [19] [43] [44] [45] [46]. A popular measure of entanglement,

and the one predominantly used in this project is Concurrence.

2.2.2 Concurrence

In the late 90’s and early 2000’s William Wootters wrote several papers on entanglement

as a quantifiable resource focusing on di↵erent ways to theoretically quantify entangle-

ment and in the potential quantum technologies fields that were opening up to make use

of entanglement as a resource [19] [20] [21]. This section will briefly describe Wootters

process in developing concurrence as a measure of entanglement. Chapter 4 uses con-

currence to quantify entanglement in a dimer and Chapter 5 does the same for larger

finite-sized systems.

One mathematical way to test how entangled a given state is, would be to test how

‘separable’ it is by seeing how much it overlaps with an orthogonal state. The spin-flip

transformation takes a state and transforms its components into a state orthogonal to

the original. The central concept of concurrence is to project the spin-flipped state onto

its original state and see how much they overlap. A pure state would have no overlap

and an maximally entangled state i.e a Bell state would have maximal overlap [47].

For example for the Bell state given by equation 2.4 the spin-flipped state is simply

| ̃i = � | i, thus when projected |h | ̃i| gives the maximum overlap of 1 [47]. This is

the definition of concurrence for a 2-qubit state as seen in Wootter’s original paper in

1997 and the definition is expanded to apply to more complex systems between more

particles in Co↵man, Kundu and Wooters paper on ‘Distributed Entanglement’ in 2000

[21]. Here the density matrix is used to describe the system so that ⇢
AB

is the density

matrix that describes a qubit represented by A and B. The spin-flipped density matrix

(between two spins) is defined as:

⇢̃ = (�
y

⌦ �
y

) ⇢⇤ (�
y

⌦ �
y

) , (2.17)

where �
y

is the Pauli matrix for y and where the matrix basis is (|""i , |"#i , |#"i , |##i).
2 The spin-flipped density matrix is then projected as a matrix product ⇢

AB

⇢̃
AB

and

the eigenvalue of this 4⇥ 4 matrix are taken and are all real and positive. The positive

2
The multiple qubit spin-flip operation is ⇢̃ = �⌦N

y

⇢⇤�⌦N

y
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roots of these eigenvalues are �
i

for i = 1, 2, 3 and 4 from the highest eigenvalue to the

lowest. The concurrence is then quantified as: [21]

C
AB

= max {�1 � �2 � �3 � �4, 0} . (2.18)

This is the concurrence for any pair of qubits in a system of particles. For larger systems

the concurrence is a local measurement and can be taken from a 2-qubit subsystem that

represents the behaviour of the whole system [48]. This is achieved using the reduced

density matrix and is shown explicitly in Chapter 5. This means that the above equation

for concurrence can be used for any system that can be reduced to a 4⇥ 4 matrix with

only 4 eigenvalues �.

The above definition for concurrence is for the ground state concurrence, i.e. when the

qubit system is at T = 0. For finite temperatures, thermal concurrence or concurrence

mixing is a non-trivial approach in comparison. The range of eigenstates of the system

can be weighted in di↵erent ways with interesting results for di↵erent low temperature

ranges [26]. Thermal concurrence is not calculated in this project but would have been

one of the first calculations to explore in further work connected to this project.

There are many ways that have been developed that can quantify entanglement in the

past decade [49] [44] [50]. A lot of them adopt similar methods to von Neumann entropy

and the concept of information as a resource, or mutual information between systems

[51][52][53]. Many other use similar concepts to concurrence or start with concurrence

and modify it [54] [55] [56]. In this thesis, to specifically quantify entanglement, only

concurrence is used as a suitable local measure for the systems and models explored. We

emphasise that the main criterion for the project is to calculate results of experiments

that do not necessarily quantify entanglement directly but may show phenomena asso-

ciated with changes in entanglement. Concurrence, in this respect has been our guide

as a theoretical measure to gather more about the systems studied in this project.

2.3 Quantum Critical Points

A phase transition marks a quantitative and qualitative change in the behaviour of a

system. Common phase transitions are encountered in normal environmental thresholds,

for example water freezing into ice. Like with ice, temperature is a common parameter
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used to explore phase transitions, but depending on the type of transition, pressure and

external magnetic fields are also common. Water turning into ice is a good example of

a first order phase transition, which means that the transition is discontinuous. In this

case a sudden structural change takes place that reorganizes the water molecules into

an ordered crystal structure. A water to gas transition can be second order around a

critical point where pressure and temperature parameters can be controlled to achieve

a continuous transition from liquid to vapor or vice versa [13] [57].

A critical point indicates some very interesting behaviour, often called criticality that has

a region of influence from that point. Near the critical point, thermodynamical quantities

of the system demonstrate power law distributions describing the distance from the

critical point. These power law properties and parameters are characterised by a set of

critical exponents that annotate the specific power law. These critical exponents describe

the power law change in specific heat, isothermal compressability, or the di↵erence in

density between the gas and liquid phases as the critical point is approached [14] [13].

The correlation length of a system diverges at a critical point and in a magnetic transition

the spin-spin correlation functions are often used to explore a measurable changes in the

system.

A quantum phase transition [QPT] is a transition that has been suppressed to zero and

is driven by quantum fluctuations instead of thermal fluctuations. At a quantum critical

point the transition becomes second order and the correlation length still diverges but

correlations in the system should be of an entirely quantum nature. The di↵erence

between a system that is classically correlated and one that is dominated by quantum

correlations is that the quantum correlations are inherently entangled. A well studied

system that has interesting entangled ground state properties are 1D antiferromagnetic

systems which are the core systems considered in this project. The models used to

describe them are documented in Chapter 3 [57].

The purpose of the project was to explore a specific kind of transition at a QCP that

indicates a change of the type of entanglement in a system as opposed to a change in

its phase. The recent resurgence of interest in entangled systems and how to quantify

entanglement has lead some scientists to reevaluate the QPT phenomenon particularly

in 1D-antiferromagnetic chains. This has brought to the fare the phenomena of factori-

sation [18] and the entanglement transition which are closely related, but distinct from
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the QPT.

2.4 The Entanglement Transition

The entanglement transition, though not a phase transition, is a quantum transition

that occurs in the ground state of certain entangled systems [9] [56] [12]. These types

of systems that are explored in this project are outlined in Chapter 3 and are chosen

because of a factorisation phenomena that they possess in an applied field. It is demon-

strated that the factorisation point of our model are distinct from the QCP that occurs

as a phase transition in antiferromagnetic chains when they become ferromagnetically

aligned with the external field. Factorisation is pivotal to the entanglement transition as

it destroys entanglement, making the system a semi-classical anti-ferromagnetic chain

at the factorisation field only [58] [59]. Above and below this point the system is en-

tangled and is so in such a way the the entanglement present is entirely di↵erent after

the transition. In the thermodynamic limit the entanglement goes from anti-parallel en-

tanglement to parallel entanglement, entirely in the antiferromagnetically ordered phase

before experiencing the QPT at the critical field.

The next chapter introduces the systems used in this project to identify the entangle-

ment transition and explains factorisation in these chains and its relationship with the

entanglement transition. Chapter 4 shows the processes used to identify the entangle-

ment transition in a 2-site dimer model, using the small system size as an advantage

to explore the entangled states directly. Here we show the required change of entan-

glement; from anti-parallel to parallel, with the entanglement being completely broken

at the factorisation field. These requirements for an entanglement transition are tested

in compliance to small finite-sized models in Chapter 5. We then start to explore the

implications of the transition with respect to measurable quantities by gaining more

understand by using the real space correlation functions. The real space correlation

functions show quantum correlations in the ordered phases, which are destroyed at the

factorisation field. This can be seen by a complete ‘flatness’ in the absolute value of the

real space correlation functions. Lastly, Chapter 6 explores the experimental implica-

tions further by calculating the neutron scattering cross-section for small quantum spin

clusters showing a robustness to low temperatures of the signatures of the entanglement

transition.
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Quantum Magnets

Identifying the entanglement transition using neutron scattering experiments is a compli-

cated task. The approach requires a balance between theoretical models as a foundation

and potential real materials that are comparable. The theory portion of the collabora-

tion builds upwards, using finite-sized calculations that are exactly solvable for a range

of spin chain based models. These models can represent di↵erent arrangements, such

as; 1D chains, doped chains or small ring shaped magnets. With this flexibility, they

may be easily adjusted by using the correct parameters to predict real crystal behaviour.

Presently, the experimental side of the collaboration has focused on 1D crystal exper-

iments using Cs2CoCl4 that relates to the anisotropic 1D XY-model [5] [60]. Further

models and potential materials are discussed in this chapter to demonstrate the breadth

of systems that could provide an experimental insight into the entanglement transition.

The previous chapter outlined the key qualities and features of entanglement and the

di�culties involved in study entanglement both theoretically and experimentally. With

the concepts behind detecting entanglement and theoretically quantifying entanglement,

the entanglement transition was introduced in relation to the quantum critical point as

a separate phenomenon [16]. It was also shown that recent theoretical studies have

managed to find signatures of the entanglement transition in the anisotropic XY-model

[9] [12]. Though with similar intentions, this projects aims to identify the entanglement

transition using neutron scattering experiments at achievable temperatures. To realise

this, it is vital to understand the models involved and how they can relate to certain real

materials. This chapter contains a discussion of the suitability of various models that

27
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may be used find an appropriate material for use in a neutron scattering experiment.

The theoretical models used are presented here with their Hamiltonians as a guide to

be referred back to in the remainder of the thesis.

3.1 Model Hamiltonians

Spin chain systems are well-established within the condensed matter community and

have been a prime candidate for re-examination using more recent quantum informa-

tion theory (QIT) concepts [17] [22] [23] [24]. This approach has exposed an untapped

resource of entangled systems that can be used to identify the entanglement transition.

The majority of the work conducted in this project and the relevant literature [61] [56]

[58] [59] [62] [63] [64] [65] [66] [67] [68] [69] [70] have used variations of the anisotropic

XY-model for a 1D spin system. The core reason for this is that the doubly degenerate

ground state of the anisotropic XY-model is highly entangled and exactly solvable. For

the thermodynamic limit, the model is solved using analytical methods that are well

documented and commonly used [10]. These methods were introduced by Lieb, Shultz

and Mattis in 1961 [71], applied to the anisotropic XY-model in the ground state with

no additional external field. The Hamiltonian for the anisotropic XY-model is;

Ĥ = �J

N

X

j=1

(1 + �)Ŝx

j

Ŝx

j+1 + (1� �)Ŝy

j

Ŝy

j+1. (3.1)

It describes a Heisenberg spin chain of spin 1/2 moments confined to lay on the xy

plane. The sign of the interaction energy, J , determines whether the system is anti-

ferromagnetic or ferromagnetic, with nearest neighbour interactions only. The anisotropy

between x and y interactions is given by �, and for 0 < �  1 the model is in the Ising

universality class. The Ising model for interactions only allowed in the x direction is

returned for � = 1;

Ĥ = �2J
N

X

j=1

Ŝx

j

Ŝx

j+1. (3.2)

With no interaction terms in the y direction the Ising model acts as the classical limit

to the XY-model. The other limit on the anisotropy parameter is � = 0, which recovers
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the isotropic XY-model where the interactions in x and y are equal;

Ĥ = �J

N

X

j=1

Ŝx

j

Ŝx

j+1 + Ŝy

j

Ŝy

j+1. (3.3)

Where the model is in the XY universality class. For a more generalised spin-12 chain

that allows for interactions in any direction the XYZ-model is introduced;

Ĥ = �J
N

X

j=1

(1 + �)Ŝx

j

Ŝx

j+1 + (1� �)Ŝy

j

Ŝy

j+1 + �Ŝz

j

Ŝz

j+1. (3.4)

A new anisotropy parameter is added for the interaction in the z direction called �. For

all the models and their respective Hamiltonians listed above for 1D chains of various

interactions they can be applied to finite sized systems or 1D chains in the thermody-

namic limit where the chain length N ! 1 to replicate the behaviour of a crystal made

of 1D chains.

To guide these models towards an entanglement transition or critical behaviour, such

as described in Chapter 2, the tuning parameter is an applied external field. Therefore

the most generalised version of the Hamiltonian for a 1D chain with an external field is

given;

Ĥ = �J

N

X

j=1

(1 + �)Ŝx

j

Ŝx

j+1 + (1� �)Ŝy

j

Ŝy

j+1 + �Ŝz

j

Ŝz

j+1 � h
z

n

X

j=1

Ŝz

j

. (3.5)

In this instance the direction of the field, though given in the z direction is still completely

general as in relation to the interactions in di↵erent directions any model can be resolved.

By setting the z direction interactions to zero, i.e � = 0 , then the anisotropic XY-model

with an applied transverse field is formed. In this case the direction of the field is very

important and will be kept in the transverse z direction as shown below;

Ĥ = �J

N

X

j=1

(1 + �)Ŝx

j

Ŝx

j+1 + (1� �)Ŝy

j

Ŝy

j+1 � h
z

n

X

j=1

Ŝz

j

. (3.6)

The anisotropy in a 1D system originates from the di↵erence between the interaction

strengths in the xy plane, instead of relating to the crystallographic directions of the

chain. Fig. 3.1 depicts a single site where the xy plane is shown in cyan. This interaction

plane is called the easy plane, and the transverse field is perpendicular to this in the z
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axis. With the xyz axes set up as the interaction axes, the notation abc is used for the

crystallographic axes. The Hamiltonian dictates the physics involved in the model and it

will only describe observables in terms of the interaction xyz axis. The crystallographic

axes become relevant when real materials are introduced and knowledge of the crystal

parameters are needed.

a

bc

xz

y

Figure 3.1: The direction of the chain is arbitrary and is chosen to be along the b-axis
in relation to the crystallographic basis. The interaction xyz-axes can be oriented in
any way in relation to the chain direction. In practice there would be a crystal field
that links the orientation of the two bases by a rotation matrix. The inset maps out the
interaction axes in cyan, where the 2D plane through the ion represents the easy-plane
for the XY-model as the xy-plane. The application of an applied transverse field would
be transverse to the easy-plane i.e. the z direction and not necessarily perpendicular

to the orientation of the chain.

In a general sense, the above means that the direction of the chain is dependent on the

material and could be coupled to the interaction axes in any way. This is discussed

in more detail in section 3.4, with Cs2CoCl4 as an example. Fig. 3.1 fixes the chain

direction along the b axis as an example. The figure demonstrates the relationship

between the axes and how this can potentially relate to a range of variations on the

XY-model and a range of possible candidate materials.
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The anisotropic XY-model is the core Hamiltonian (Eq. 3.6) used in this thesis for

reasons that are documented in this chapter, in regards to its properties and the promise

of di↵erent materials that it can be applied to. The 1D anisotropic XY-model with a

transverse field is inherently entangled. This has recently reignited interest in 1D spin

chains, making them accessible models to identify and quantify entanglement. This

forms the basis of the research conducted in this project.

3.1.1 The Factorisation Field

Quantum spin chains have have a very unusual ground state feature, called factorisation,

as described by Kurmann, Thomas and Muller in 1982 in their paper ‘Antiferromagnetic

Long-Range Order in the Anisotropic Quantum Spin Chain’ [18]. The spin chains with

a non-zero applied field have two phases; an antiferromagnetically ordered phase with

long-range order (LRO); and after some critical field value a ferromagnetic phase aligned

with the field. LRO means that the correlations between any pairs of spins proliferate

the whole sample, with any pair of spins regardless of distance apart, having a non-zero

correlation (this is described in more detail in Chapter 5). Within the ground state of the

ordered phase the correlation functions are e↵ected by quantum fluctuations only except

at one particular value of the field that forcing the system into a semi-classical state and

e↵ectively neutralising all quantum fluctuations. At this point, at the factorisation field,

the system is a ‘classically’ ordered antiferromagnetic chain with the signature of a

completely flat correlation function for its absolute value.

The ground state for the thermodynamic limit of the spin chains is known to be dou-

bly degenerate [71] [72] [10] for the ordered phase, up to the critical field. Below the

factorisation field the system is anti-parallel entangled and above it, parallel entangled.

Exactly at factorisation the system has zero entanglement and the degenerate states

become separable.

The factorisation field is dependent on the anisotropy of the system, for the XYZ-model

given by Eq. 3.5 it is dependent on the three directions and their di↵erent strength of

interactions; where the interaction in the x direction is J
x

= J(1 + �); the interaction

in the y direction is J
y

= J(1 � �); and the interaction in the z direction is J
z

= J�.
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The general formula for the factorisation field to obey is, from Kurmann et al. [18];

h2
x

(J
x

+ J
y

)(J
x

+ J
z

)
+

h2
y

(J
x

+ J
y

)(J
y

+ J
z

)
+

h2
z

(J
x

+ J
z

)(J
y

+ J
z

)
= 1. (3.7)

This describes an ellipsoidal surface for the factorisation field that can be easily simplified

for the di↵erent Hamiltonians used in this thesis. For both the anisotropic XY-model

and XYZ-model there is only a field in the z direction thus h
x

= 0 and h
y

= 0. For

the anisotropic XY-model there is also no interaction in the z direction, thus J
z

= 0,

therefor the factorisation field h
f

for the anisotropic XY-model is;

h
f

=
p

1� �2, (3.8)

and for the XYZ-model is;

h
f

=
p

(1 + �)2 � �2, (3.9)

using the notation for the anisotropy parameters used in the Hamiltonians, and where

the field is in units of J .

The factorisation field always occurs in the ordered phase, thus it is always less than or

equal to the critical field: h
f

 h
c

. For the anisotropic XY-model the critical field is

h
c

= 1, for the isotropic model where � = 0 then h
f

= h
c

= 1 the two field values over

lap and there is no entanglement transition, as there is no entanglement recovered in the

ferromagnetic phase for h > 1 [2]. By choosing a material that coincides with suitable

value of the anisotropy � then the entanglement transition can be tuned away from the

critical field and any region of criticality that might interfere with the entanglement

transition.

The factorisation field is described in more detail in subsequent chapters in regards to

finite-sized systems and how to detect its e↵ects. Chapter 4 solves for a dimer the

requirements for a factorised state, where for the anisotropic XY-model it is shown to

be the same as Eq. 3.8 and further details the phenomenon in terms on the energy

spectra of the model and the eigen states involved [16] [17] [58] [59] [56]. Chapter 5

expands on this for larger finite-sized calculations; commenting on the e↵ects of system

size; discussing the importance of degeneracy in the ground state; proving the conditions

for factorisation in an N = 4 system; and using the correlation functions to detect the

e↵ects of factorisation on larger finite-sized systems.
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3.2 Theory

The previous section introduced the models and variants used in this thesis, focusing on

the anisotropic XY-model for antiferromagnetic spin chains. This section discusses the

methods used to solve them.

The majority of the literature study some variation of the XY-model in the thermo-

dynamic limit [61] [56] [58] [59] [62] [63] [64] [65] [66] [67] [68] [69], with some using

finite-sized system calculations with periodic boundary conditions [9] [12]. These finite-

sized models open up a wider range of materials to examine, all with di↵erent benefits

and di�culties. This project explores a variety of the finite-sized systems, by exact di-

agonalisation of the Hamiltonian with the addition of the XYZ-model, which can not be

solved exactly in the thermodynamic limit. The model is flexible enough to explore open

and periodic boundary condition e↵ects for a range of small systems that can provide

insight into the thermodynamic limit. An appealing benefit of using finite-sized calcu-

lations with periodic boundary conditions is that it may be used to solve a selection of

generalised molecular magnets [73] [74] [75] [29].

Using exact diagonalisation to solve for finite-sized systems has a lot of benefits; the solu-

tions are exact and provide the full breadth of eigen vectors and associated eigen values;

with these it is possible to accurately calculate thermal properties using the Boltzmann

distribution; and for very small systems it is possible to study the relevant states di-

rectly, which is put to great use in Chapters 4 and 5. The only disadvantage is that the

Hilbert space of the Hamiltonians scales with 2N meaning that the computational limit

for exact diagonalsation is met for systems around N = 12. This thesis explores system

sizes up to N = 10 consistently, with N = 12 calculations used sparingly to emphasis

an argument, or feature tending towards the thermodynamic limit.

This project focuses on finite-sized calculations with some commentary on the thermo-

dynamic limit. There are a few key papers that document the anisotropic XY-model

in the thermodynamic limit using complex analytical methods to solve it exactly. Lieb,

Shultz and Mattis focused on the anisotropic model, stating that the isotropic model

has no long range order (LRO) [71]. They use the correlation functions to probe the
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ordered phase. The correlation functions are;

⇢↵�
j,j

0 = h 0|Ŝ↵
j

Ŝ�
j

0 | 0i. (3.10)

The correlation operator gives the expectation value of the correlation between any two

components ↵,� = x, y, z of the spins at two sites (j and j0) separated by any distance

in a known state | 0i. For a system in the thermodynamic limit, Leib 1961 uses Wicks

Theorem from quantum field theory to form the following results, which are quoted

here without proof. This process was then developed further by Pfeuty 1971 [72] and

Barouch and McCoy 1971 [10] separately, with variation to the model. Pfeuty 1970

takes the 1D Ising Model with an additional term in the Hamiltonian for a transverse

external field. Barouch and McCoy also use an external transverse field but keep the

model more general by allowing for in-plane anisotropic interactions. Thus the Barouch

McCoy paper studies the Hamiltonian given by Eq.3.6, which is the bench mark for the

collaboration .The two point correlation functions developed in these papers are given

below for correlations in xx, yy and zz respectively;

⇢
xx

(R) =
1
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⇢
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⇢
zz

(R) = h2
z

� 1

4
G

R

G�R

. (3.13)

The parameter R is the distance between any pair of spins at two sites j and j0 so that

R = |j � j0|. The function G
R

is defined as;

G
R

=

Z

⇡

0
d�

tanh (�!
�

)

2⇡!
�

[cos (R�)(1 + h
z

cos�)� h
z

� sin (R�) sin�] , (3.14)
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where � = 1/T is the inverse temperature and the function !
�

defined as;

!
�

=
1

2

p

(h
z

� sin�)2 + (1 + h
z

cos�)2. (3.15)

Any results presented in this thesis regarding the anisotropic XY-model in the thermo-

dynamic limit were obtained using the above formulae [71] [72] [10], with codes written

within the collaboration by Jorge Quintanilla with assistance from Luigi Amico, with

careful consideration taken to ensure all results converge.

3.3 Materials

This section provides a literature review on the di↵erent types of materials that relate

to the Hamiltonians from section 3.1 and their theoretical results. Attention is given

to the energy spectra of these models and and level crossings observed in finite-sized

systems and and theoretical measures of entanglement. The link between level crossings

degeneracy and the requirement for factorisation is found in Chapter 4 for the dimer

and discussed in more detail in Chapter 5 for other finite-sized systems.

The dimer model (N = 2) on its own, even when used as a toy model, has been instru-

mental in unlocking the core mechanisms behind the entanglement transition [76] [77]

[78] [79] [2]. It is a great indicator that investigation of finite-sized systems may aid in

identifying the entanglement transition in molecular magnets using neutron scattering

experiments. In addition, the dimer model is well-represented by two linked molecules

representing a spin-12 each.

More recent reports demonstrate that exploitation of these molecular spin clusters may

be used as a resource for exploring quantum magnetic phenomena like entanglement

[2]. The benefit of small molecular systems is that they allow for tailored coupling

in a collection of synthesised materials. In particular, antiferromagnetic rings have

proven useful in quantum information processes [74] [80]. Candini (2010) et al. explore

an e↵ective dimer system synthesised as two connected rings of Cr7Ni. Each ring is

approximated as a S = 1/2 molecule. The two molecules are antiferromagnetically

interacting with one another through a superexchange in the joining ligand as shown in

Fig. 3.2.
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Figure 3.2: The bipy-dimer structure from two Cr7Ni rings. Cr ions are in purple
and Ni ions are in green. The remaining colours are non magnetic particles that do not

contribute to the overall spin From Candini (2010) [2].

The system behaves like a dimer and undergoes a ground state crossing by a lowering of

one of the triplet states crossing the singlet state. The energy levels and state structures

for a dimer are discussed in greater detail in chapter 4. They are integral in explaining

underlying magnetic behaviour in quantum spin clusters using quantum entangled states

[81] and are commonly used as a starting point for analysing entangled states in spin

systems [64] [82].

Entanglement can be theoretically detected using concurrence to quantify entanglement

on a scale between 1 (for maximally entangled states) and 0 (for a completely separable

state) see Chapter 2 section 2.2 and for a calculated example for the dimer see Chap-

ter 4 section 4.4. Candini (2010) et al.. predict this in an experimentally accessible

range as an e↵ect detectable at 50mK. It can be observed from Fig. 3.3 that as the

temperature tends to zero, the change in concurrence becomes a transition between a

maximally entangled state from the singlet ground state, to a factorisable state with

zero concurrence.

Concurrence is applied to finite-sized chain systems with periodic boundary condition

by Rossignoli (2008,2009) using spin-12 anisotropic XYZ Heisenberg chains in a applied

field for di↵erent types of interactions [83] [3]. They explore systems of N = 10 and

50 qubits in their ground state, and describe a transition in parity between entangled

anti-parallel and parallel states that occurs over the factorisation field. The concurrence

is not sensitive to the type of entanglement and it is through an analysis of the parity

that the di↵erence in the states above and below transition can be ascertained.

A key conclusion of the above paper is that at su�ciently low temperatures kT =

5 ⇥ 10�4J
x

, where the thermal concurrence goes to zero. Fig. 3.4 from Rossignoli et
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Figure 3.3: a) is the thermal Concurrence calculated for the (Cr7Ni)2-dimer model
for a range of temperatures and external magnetic field in the z-direction B. The dark
red region describes a state that is maximally entangled (in this example it is the
maximally entangled singlet state) and the dark blue region represents a pure state
with zero concurrence. b) shows the molecular dimer energy spectrum and a level
crossing for field parallel to x and c) parallel to z. The level crossing coincides with the
change from an entangled state to a pure one. From Candini et al. (2010-Figure 4). [2]

al.. shows the concurrence for a cyclic chain of 50 sites for T = 0 (dotted lines) and

kT = 5⇥104�J
x

(filled lines). At zero temperature there is a break in the concurrence at

the factorisation field as the amount of entanglement from one state is given below the

transition, and amount of entanglement for another state is taken past the transition.

Figure 3.4: The concurrence and thermal concurrence (nC for a scaled concurrence)for
the periodic XYZ-model for 50 spins. The red lines represent the antiparallel entangled
state and the blue lines are parallel entangled states. The dashed lines are for the zero
temperature calculations and the filled lines are for kT = 5 ⇥ 10�4J

x

, where in this
paper V

x

= J
x

the interaction energy in x . The factorisation field for this model (h
f

)
in this paper is called b

s

. The ground state concurrence shows a break in concurrence
at the factorisation field, where the entanglement is quantified for the antiparallel state
and then suddenly for the parallel state. At low finite temperature, a mixing in the
states allows for the entanglement to go to zero, though there is a slight shift away from

the exact factorisation field. From Rossignoli et al.. (2014-Figure 4) [3].

This measure is more physical when the thermal concurrence is calculated and the
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concurrence at the factorisation field goes to zero at su�ciently low temperatures. Con-

currence is a suitable tool for a range of models both infinite and finite-sized to quantify

entanglement. To fully understand the nature of entanglement, a more in depth analysis

in conjunction with concurrence is recommended.

For other finite-sized systems, we explore more complex configurations, like ring struc-

tures and can identify any entangled states and interesting ground state features in the

energy spectrum. Lorusso et al. explore three CrCu based ring configurations where

they focus on the e↵ect the copper ions have as a magnetic defect in the rings. The

copper has a di↵erent spin value than the chromium and gives an additional inhomo-

geneity favouring ferromagnetic coupling. The paper looks at how these concepts a↵ect

the entanglement in the di↵erent ring systems. The ring structures and energy spectra

are shown in Fig. 3.5a and 3.5b.

The energy spectra of two of the molecules, Cr8Cu and Cr12Cu2, are shown for an

externally applied field ranging from 0T to 7T, which was suitable for their purposes.

In relation to the entanglement transition, to select these molecules as viable candidates

we would need to go to higher fields to observe a level crossing between the two lowest

states as discuses in Chapters 4 and 5. The spectra diagrams do not show a crossing,

though it is easily deduced that the energy of one of the excited states is rapidly lowered

with the external field and would cross the previous ground state at a higher value of

the field.

The field value required for a crossing, though comparatively high, is not unobtainable

for these materials. With or without the additional copper ions, the chromium rings

are well studied and various di↵erent sizes of rings would give an interesting family

of compounds to explore entanglement, and the entanglement transition. An array

of possible models that exhibit a factorisation field form a sensible beginning for the

project’s exploration for a detectable entanglement transition. They give, in turn, a

range of potential materials that would give real experimental impact to the field.

In recent years, Siloi and Troiani have thoroughly explored the entanglement in a family

of Cr8 molecular nanomagnets [29] [30] [4], and the flexibility that these structures

bring to the task of detecting entanglement. They use an entanglement witness that,

like concurrence, originates from the reduced density matrix called Negativity. They
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(a) From Lorusso et al.. Figure 1 and 4. left) is a selection of structures for the three CrCu ring
configurations that Lorusso explore. Green: Cr and Orange: Cu. right) The low level energy

spectra for Cr8Cu2 and Cr12Cu2 [28].

(b) For the range of applied field given there is no level crossing in the ground state for either
molecule. If the field was increased further it would be expected that one of the excited states

would cross the ground state [28].

use Negativity as a method of theoretically quantifying entanglement and they give a

threshold temperature range in which the quantity can be detected.
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For a pure Cr8 ring the energy gap is given as � = 0.559J . That in turn gives a

threshold temperature of T = 1.58J . Silio et al. addresses two main variants of the Cr8

rings; firstly they take the ring in reference to their individual spins whilst exchanging

the eighth ion for a range of di↵erent ions with varying spin vales; secondly they take

the molecule as a whole and link two together as a dimer through a super exchange

as also seen in Candini et al. [29] [30] [4] [2]. By exchanging a chromium ion with

various other magnetic ions they are able to change the entanglement in the system in

a way that would be chemically tunable. What they find is that the neighbouring ions

to the magnetic defect acquire a stronger entangled state as an entangled pair with the

defect. If the defect has a larger spin value than the chromium i.e S
Cr

= 3/2 then

the entanglement is increased. If the spin of the defect ion was less than 3/2 then the

opposite would occur and the neighbouring pairs would become less entangled. This

principle is demonstrated in Fig. 3.6.

Figure 3.6: Using Negativity to quantify entanglement, Silio et al. show the amount
of entanglement experienced by nearest neighbour pairs in a family of 8-spin chromium
rings doped by di↵erent metals with di↵erent spin values. If the dopant ion has a spin
value greater than chromium i.e 3/2, then the entanglement around that ion increases.
If it is less than S = 3/2 then the amount of entanglement around the ion decreases,

as indicated diagrammatically. From Siloi et al. Figure 2 [4].

The figure describes the amount of entanglement in each neighbouring pair of spins

in the family of chromium rings. The eighth ion is replaced by a di↵erent magnetic

ion with a di↵erent spin that a↵ects the entanglement of its neighbouring interacting

spins. The black boxes provide a reference as the pure chromium ring and the plots

show that with a higher spin value i.e zinc, the entanglement between the zinc and the
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chromium is increased and for an ion like manganese the opposite is observed. The e↵ect

of this on the entangled pairs is shown diagrammatically in the figure inset. This reflects

the tunability and flexibility of these molecules when studying entanglement with the

additional advantages of a large energy gap and temperature spectrum.

The last part of the paper describes the rings as whole spin clusters acting together as

a dimer. The advantages of a maximally entangled state composed of the ring dimer

can show factorisation, with an entanglement witness like Negativity going to zero. It

is not a concept that is fully elaborated upon but strengthens the idea that these clus-

tered materials would be ideal to physically detect the entanglement transition through

neutron scattering experiments.

3.4 Experiments

The previous section detailed some of the underlying theoretical concepts that help to

identify a suitable candidate system to explore further to predict experimental results.

In this section we look at the e↵ects of some of these concepts and models have in

experiments documented in the literature, outlining a range of di↵erent types of ma-

terials. Such as, the e↵ect of level crossing in the measured magnetisation [7], or the

neutron scattering cross section for chromium rings. Firstly, we discuss experiments on

a material that closely matches the anisotropic XY-model for Eq. 3.6, looking at 1D

crystals for the infinite system model. Then discussing a selection or interesting dimer

materials and some clustered quantum nano-magnets. Where possible, we remark on

temperature scales, applied field ranges of factorisation and other relevant factors or

complications that the theoretical models do not consider, as to provide a commentary

on their respective suitability for experimentation.

3.4.1 1D Crystals

A material of interest for our collaboration was Cs2CoCl4 as a good candidate for prelim-

inary experiments. The material is an approximation of the anisotropic XY-model with

the anisotropy equated to � = 0.2. Algra et al. describe its complex structure and how

it relates to the 1D XY-model [5]. The study investigates the specific heat capacity of

Cs2CoCl4 under 1K experimentally, and compares it to predictions using the XY-model
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while discussing the applicability of the theory under specific parameters. The crystal

structure is orthorhombic K2SO4 with the lattice parameters a0 = 9.74
�
A ,b0 = 7.39

�
A

and c0 = 12.97
�
A.

The cobalt ions provide the basis to understanding the magnetic structure and are

surrounded by tetrahedra of chlorine ions. These tetrahedra are slightly distorted, which

leads to a splitting of the S = 3/2 orbital. This leaves the system occupying S = 1/2

states with a su�cient energy gap of 1.3(1)eV that allows the model to be a good

approximation. It is not clear from the physical structure alone where the 1D magnetic

structure forms; the magnetic chains are represented by a superexchange between Co

ions through neighbouring Cl ions.

(a) The crystal structure of Cs2CoCl4. The black ions represent the Co2+ spheres and the grey
spheres show the structure of the distorted Cl tetrahedra. The chains formed by the magnetic
interactions are directed along the b-axis. On four of the Co2+ ions are shaded angular planes
showing the orientations of the xy easy plane. The inter-chain interactions are depicted with

di↵erent dashed lines. From Kenzelmann et al.. (2002-Figure 2) [60].

(b) The superexchange path between two Co2+ through their Cl tetrahedra forming an interac-
tion along the b-axis. From Algra (1976- Figure 2).

Figure 3.7: The crystallographic structure and the 1D magnetic structure of Cs2CoCl4
[5].

The 1D magnetism arises from a superexchange interaction between the cobalt ions

along the b-axis as depicted in Fig.3.7b from Algra et al.; the resulting exchange leads



Chapter 3. Quantum Magnets 43

to antiferromagnetic 1D chains. Fig. 3.7a shows a selection of these chains within the

crystal lattice, where angular grey planes indicate the orientations of the easy xy plane.

The chains couple weakly with each other, drawn as dashed lines for J
ab

and J
ac

. In

a certain temperature range these interactions are negligible until the system passes

below 222mK and transitions into a 3D ordered phase. Below this temperature the

energy scale of the inter-chain interactions is comparable to the temperature scale, and

the 1D XY-model is no longer an option for describing the system.

The chains cant with respect to each other with two di↵erent easy plane orientations,

the consequences being some small frustration is added to the system and an added

di�culty in applying a transverse field to both xy planes. Kenzelmann (2002) et al..

did not apply a transverse field to both sets of chains, instead having to compromise

between them.

The crystal Cs2CoCl4 represents the anisotropic 1D XY-model su�ciently for temper-

ature states above 222mK, where the energy scale and gap allow for a S = 1/2 spin

regime. The magnetic chains form along the b-axis, and in relation to the Hamiltonian

the anisotropy of the crystal is equivalent to � = 0.2. The anisotropy in the system tunes

the entanglement transition away from the critical field, i.e. for � = 0.2 the factorisation

field is approximately h
f

= 0.98h
c

.

The material has shown that the model is very sensitive towards perturbations that take

it out of the 1D regime and the temperature scale to find this quantum phenomenon is

very important. Kenzelmann et al gives the exchange coupling J = 0.23 ± 0.01 meV

which gives a maximum temperature scale of 2.7K, the transition at 222mK, would

thus equate to approximately 8% of the exchange coupling. In terms of relating this

to the theory, where the temperature scale is set dependent to the exchange coupling

J , then a calculation done for T = 0.1J would be a real temperature of 260 ± 15mK

in an experiment. These experimental conditions are taken under consideration with

all temperature calculations. Theory and experiment agree that this is not a su�cient

balance of external parameters to find the entanglement transition.
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3.4.2 Dimer Materials

The dimer model is an extremely useful origin for understanding theoretical concepts

as it is easy to solve and break down to its component states [77] [76]. It is more than

just a toy model and can be applied to more complex models and systems including

structures made of dimers [41] [78] [79], cluster systems that approximate a dimer [2]

[77] and a dimerised 1D chain of spins [84] [85].

Section 3.3 introduced one of the models that uses concurrence to quantify entanglement

Candini (2010), which approximates a spin 1/2 dimer made up of two connected Cr7Ni

rings. This molecular dimer magnet is called a (Cr7Ni)2-bipy dimer and is shown in

Fig.3.2.

The bipy-dimer would be a good candidate in terms of the entanglement as a dimer

model exhibits a maximally entangled anti-parallel state and results are calculated for

concurrence at 50mK and 55mT for the transition which could be achieved experi-

mentally. To fully assess a bipy-dimer, as to its suitability to detect the entanglement

transition in an experiment further work would be needed to construct some theoretical

neutron scattering data. For our definition of the entanglement transition (see section

2.4) the states above and below the factorisation field need to be entangled and for the

isotropic XY-model, represented by the bipy-dimer, this is not the case. If it is possible

to adjust or dope the molecular rings that make up the dimer to exhibit some anisotropy

in the xy plane then I believe it would be feasible to detect the entanglement transition

using this basis, as explored in Chapter 4.

Dimers can turn up in a range of materials. Belik et al. 2007 discuss magnetic suscepti-

bility in copper based materials that have many possible structures [77]. They describe a

Cu2O6(OH)2 crystal that is made up of edge sharing dimers and form a chain structure.

The spin gap of this system is given as 139K, which would allow the entangled singlet

of the dimer to dominate behaviour. Although they measure magnetisation for a wide

range of fields (0 � 30T), there is not enough information to assess any change of spin

state that would support an entanglement transition. However, these type of complex

dimer materials that contain additional structures could warrant further study with

respect to entanglement measures and their possible detection by measuring neutron

scattering cross sections [79].
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3.4.3 Molecular Magnets

Clustered quantum materials o↵er an exciting platform for many research areas. Re-

cently some groups have emerged that are looking at the entanglement present in these

molecules [73] [28] [29] [30] [4]. There are also many publications on magnetic molecules

that discuss their energy spectrum and step features in their magnetisation that could be

indicative of a change in entanglement [86] [8] [87] [6] [88] [7] [89] [75]. Any of these ma-

terials could become the ideal candidate to physically detect the entanglement transition

in a real material with additional analysis of the theoretical models .

A review article in the Chemical Society Review by Timco, McInnes and Winpenny in

2013 provides information on the process of synthesising and studying heterometallic

rings [6]. They outline the synthesis of Chromium based rings with the flexibility of

replacing chromium ions with other magnetic impurities. The current methods allow

for an impressive range of possible ring structures, constructing large single crystals of

rings using 8, 10 or 12 magnetic ions per ring.

The review discusses a few of the di↵erent compounds that switch one chromium ion with

other magnetic ions, with the reasoning that the Cr rings “give rich well-resolved EPR

(electron paramagnetic resonance) spectra” [6]. They use this with other techniques,

including inelastic neutron scattering (INS) and magnetic susceptibility experiments to

identify the energies of the spin states involved in this family of materials.

Figure 3.8: a) The structure of a 8 spin chromium ring with an ion swapped. Green:
Cr, Purple: dopant, Red: O, Yellow: F , Blue: N and Black: C. b) shows the anti-
ferromagnetic scheme of the ring in the case where the exchanged ion also supports
antiferromagnetic interactions. c) The spin ladders for Cr7Cd, Cr7Mn and Cr7Ni; the
spin values for the ground states and the available excited states are labelled. This is
generated using two J

CrCu

exchange interactions; one anti-ferromagnetic (�12 cm�1);
and one ferromagnetic (+6.5cm�1) From Timco et al.. Figure 1 and 2. [6].
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The coloured molecule in Fig. 3.8 shows a general schematic for the family of rings

studied. The green balls represent the chromium ions and the purple ball shows the

replaced ion, which were Ni, Co, Mn, Zn, Cd and Mg. The pure chromium ring consists

of antiferromagnetically-interacting spins in an octagon arrangement; the additional

atoms do not contribute to the magnetic structure. The listed magnetic ions that the

purple ball represents are also in favour of antiferromagnetic interactions, as indicated

by the schematic in Fig. 3.8. It is also possible to dope the rings with an ion that favours

ferromagnetic interactions such as copper [7]..

Using a variety of techniques including INS they are able to take the molecule as a whole

macroscopic system and determine the spin and energy of the ground state and lowest

excited states. These are shown as a ‘spin ladder’ in Fig. 3.8 for Cr7Cd, Cr7Mn and

Cr7Ni respectively. This is a fairly simple approach and for some of the dopants it is not

e↵ective to consider the system as a whole but instead to use a microscopic Hamiltonian,

which considers the individual spins, as in the XY-model. This has its computational

restrictions that puts a cap on the size of molecule that can be solved using exact

diagonalisation based on our full spectrum diagonalisation studies. This makes an 8-

spin system viable, a 12-spin system extremely time consuming and anything greater

impractical or impossible on a work station.

Engelhardt et al. use quantum Monte Carlo (QMC) methods applied to a 12-spin

chromium ring with two chromium ions replaced with copper on sites 6 and 12 [7]. They

use a microscopic isotropic Heisenberg Hamiltonian that considers the nearest neighbour

interactions with cross term interactions. They compare QMC results with experimental

methods looking at magnetic susceptibility and magnetisation, using them to probe the

existence of state level crossings with the energy spectrum.

The peaks observed in the magnetic susceptibility that are labelled in the green inset

as 2.35T, 5.31T and 13.32T match up with the calculated level crossings in the ground

state indicated by black blocked in arrows in Fig. 3.9. Other level crossings within

the low level excited states are indicated with empty arrows. These crossings are visi-

ble experimentally at low temperatures, which gives a good thermal occupation of the

states involved in the crossings only. For finite-sized molecules, using magnetic suscep-

tibility and observing ‘steps’ in the magnetisation is a viable option for experimentally

measuring level crossing features in the energy spectrum.
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Figure 3.9: Figure 4 and 6. a) Data from magnetic susceptibility experiments showing
peaks at 2.35T, 5.31T and 13.32T for Cr10Cu2. The insert in blue shows these peaks as
steps in the magnetisation. b) these peaks are a result of level crossings in the ground
state indicated by the black arrows. The empty arrows point to level crossings in the
excited states that would be detectable at higher temperatures.From Engelhardt et al.

[7].

If we were to apply a microscopic Hamiltonian (e.g. the anisotropic XY-model) to one of

these chromium ring systems, be it a pure ring of any ion or mixed/ doped ring, it is vital

to understand how the geometry e↵ects the interactions in the molecule. Some of the

systems could be well represented by a 1D chain Hamiltonian with periodic boundary

conditions. This allows for a single orientation local axis with anisotropic interaction

axes. Other models may have a complex orbital structure where the interaction axes

require a di↵erent local axes per site. This would require a more complex Hamiltonian

that accounts for cross terms in the interactions depending on the angles between axes.

Neutron scattering data are calculated for these options are in Chapter 6 with the

orientation of the model fully described.

Timco et al. considers this option for the case of Cr7Ni and they look at the energy gap

of the system for a range of external fields up to 12T at a low temperature of 66mK.

They observe a minimum where the system avoids a level crossing in the ground state

at 10.5T, which they describe as what would have been the critical field in this finite

system. In Chapter 5 we discuss such level crossings in detail, showing that, rather than

corresponding with the critical field they correspond to the factorisation field. They do

observe a level crossing within the excited state that a↵ects the size of the gap as shown

in Fig. 3.10.

It is clear that this family of chromium ring structures o↵er a promising opportunity
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Figure 3.10: Part of the energy spectrum for Cr7Ni ring between 6T and 12T data
collected at 66mK using INS transitions, indicating occupation in the low energy levels.

From Timco et al. [6].

to study the energy spectra and states of small nanomagnets. Consequently this gives

insight to the entanglement within these states. These materials are diverse and exciting;

the synthesis is well documented, allowing for single crystal samples of many di↵erent

combinations of ions. They o↵er an energy gap that would support low temperature

experiments. Careful analysis could find materials where experiments would scan over a

range of external fields that would feature a level crossing between di↵erent spin states.

It is also very clear that a careful study of interactions and orbitals would be required

to identify what kind of microscopic Hamiltonian would be an acceptable model for the

molecule, specifically whether the anisotropic 1D XY-model would be suitable or a more

complex Hamiltonian that considers cross term interactions. With this in mind, the

validity of the theory connected to modelling small nanomagnets using Eq. 3.6 with

periodic boundary is confirmed but the path to finding a suitable physical candidate to

match is a task that requires further study into molecular magnets.

INS techniques are vital in probing the entangled low-lying states of these molecular

nanomagnets. Using Cr8 rings as a benchmark for a whole family of suitable ring

materials, Baker et al. [8] provide the ground work for INS experiments. The techniques

require high quality single crystals to be able to identify the unique structure of the rings.

Fortunately many of the papers discussed here describe the ring systems’ synthesis as
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extremely tunable and diverse, producing high quality samples [86] [8] [87] [28] [4].

A pure chromium ring is described by the following Hamiltonian [8]

Ĥ = �J

8
X

j=1

Ŝ
j

Ŝ
j+1 +D

8
X

j=i

Ŝz

2
j

. (3.16)

With periodic boundary conditions to link site 8 to site 1, J = 1.46meV and D =

�0.038meV with the anisotropy D in the z-axis being perpendicular to the plane of the

molecule. Baker et al. explore the ground state and higher energy states using INS

and compare with a simulation built from the neutron scattering cross section, which

projects the correlations between sites into reciprocal space. These results are presented

in Fig. 3.11.

Figure 3.11: (a)-(c) INS data for a Cr8 ring for a range of energies showing di↵erent
magnetic structure. (d)-(f) simulated data matching the above using the equation for

scattering cross section.From Baker et al.. Figure 3 [8].

The model and scattering cross section function recreate the data e↵ectively. This

validates our intentions to use a simple 1D model with periodic boundary conditions to

predict INS data in an experiment that probes the entangled low-energy states in these

types of ring configurations. Baker et al. do not search for entanglement in the Cr8, but

the entanglement transition signature could be detectable using the scattering function

applied to the Hamiltonian shown in eq 3.16. This would be a strong basis on which to

put forward a suitable material for experimental purposes.
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The chromium rings are a precursor to an abundance of exotic nanomagnets that in-

trinsically hold interesting entangled states. It is speculated that a compound within

this family could be synthesised to have some kind of anisotropy within the xy-plane.

It would then be feasible to more directly model a system using the parameters for a

specific molecular magnet i.e. the anisotropy value, and the value exchange interaction

J , to determine a suitable range of fields and temperatures to experiment with. It would

be valuable to see if a similar process could be done with smaller nanomagnets of 4 or 6

spins, in particular with the special case of an N = 4 plaquette, where a detailed analysis

of the wavefunctions is possible and would greatly enrich the understanding towards an

experiment (calculated and documented in Chapter 5 with INS data in Chapter 6).

The above small, clustered materials are the main focus of this thesis, where they have

been modelled thoroughly using exact diagonalisation of the Hamiltonian. The systems

are small enough to allow for exact diagonalisation despite the large Hilbert space that

is involved. The models show promising neutron scattering cross section data, but as of

date there are no experimental results to compare with.

It is believed that these nanomagnets or dimer-based materials would be the ideal can-

didates to experimentally detect the entanglement transition for the first time. This will

be applied theoretically over the following chapters



Chapter 4

The Entanglement Transition in a

Spin Dimer

The previous chapter outlined the theoretical models explored in this project and their

physical counter parts. It is understood that the entanglement transition is found in 1D

spin chain systems where the size of the chain is not a factor. It is logical to initiate

a study of the entanglement and the entanglement transition with the well-known spin

dimer. The spin dimer is much more than a toy model; as discussed in chapter 3, it

can directly relate to real materials [2] [28] and is inherently strongly entangled and

easily solved. It o↵ers the unique opportunity to understand the mechanism behind

the entanglement transition by being able to look directly at the exact entangled states

involved.

In this chapter, both analytical and numerical methods are used to solve the dimer

model for a factorised state. The XY-model is an ideal simplification of the general spin

chain model to start with, as it is well documented in the thermodynamic limit [71] [72]

[10] [18] and it is useful to consider this comparison. In addition, the study expands into

the XYZ-model to demonstrate the similarities in the models whilst taking advantage

of the flexibility of the dimer.

51
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4.1 Wavefunction Derivation of a Factorised Dimer

Chapter 3 introduced the factorisation field in section 3.1.1 as the key to understanding

the entanglement transition. It was identified that the factorisation field in 1D spin

chains is the driving mechanism underlying the entanglement transition [16]. In the

thermodynamic limit this accounts for a certain field value that causes the two-fold de-

generate ground state to become semi-classical and exhibit a ‘flatness’ in the correlation

functions in the ordered phase. At this point the system is no longer quantum mechan-

ical and can not be entangled in any way; above and below this point the system is

entangled and the act of passing through the factorisation field changes the type of the

entanglement [3]. Kurmann et al. assumes a factorised wavefunction for a general 1D

anitferromagnetic spin chain and derives an ellipsoidal function of a general field that

describes the factorisation field [18].

The Hamiltonian for a general 1D spin chain with an applied field is given in Eq. 3.5

with the anisotropy parameters given as � and �. The Hamiltonian is general and

allows for the applied field to point in any direction in a basis that is related to the

interaction axis. The factorisation field h
f

is addressed as a ground state property

that turns the degenerate ground state in the thermodynamic limit into a separable

state that can not be entangled, but is classically antiferromagnetically ordered. More

explicitly, Kurmann says “it [the ground state] factorises into single-site states exhibiting

the same expectation values hS↵
i

i as the classical two-sublattice Neel-type state with the

spins of the two sublattices being in a spin-flop configuration within the XY plane.”[18].

Both above and below this field value the system shows correlator e↵ects from quantum

fluctuations. The formula for the factorisation field is given in the previous chapter in

Eq. 3.7. Where the anisotropy parameters are as follows; J
x

= J(1 + �), J
y

= J(1� �)

and J
z

= J�. The factorisation field for the anisotropic XY-model is given in Eq. 3.8

and the XYZ-model given in Eq. 3.9, where h
f

is in terms of the interaction energy J

for both cases.

It is possible to explicitly derive Eq. 3.8 for the anisotropic XY-model using the same

methods as Kurmann et al. for the two site model, showing no N-dependence for the

factorisation field in finite-sized systems. We start by writing the general Hamiltonian
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from Eq. 3.5 for a 2-site model with periodic boundary conditions [18];

H =
X

↵=x,y,z

J
↵

Ŝ↵1 Ŝ
↵

2 + J
↵

Ŝ↵2 Ŝ
↵

1 � h
↵

Ŝ↵1 � h
↵

Ŝ↵2 . (4.1)

This has the basis as {|""i , |"#i , |#"i , |##i} for the dimer. In this basis we write a

known separable antiferromagnetic state for two sites in the form;

| i = | 1i | 2i = (a1 |"i+ b1 |#i)⌦ (a2 |"i+ b2 |#i). (4.2)

This can then be applied to the Schrodinger equation such that it is an eigenstate of the

Hamiltonian:

H | i = E | i . (4.3)

By substituting the spin operators for their Pauli matrices counterparts; Ŝ↵ = ~
2�

↵;

and allowing the Eq. 4.2 act on the appropriate site, the following H | i ⌘ H | 1i | 2i

becomes;

H | 1i | 2i =
J
↵

~2
4

X

↵=x,y,z

(�↵⌦I) | 1i (I⌦�↵) | 2i�
h
↵

~
2

X

↵=x,y,z

(�↵⌦I) | 1i+(I⌦�↵) | 2i ,

(4.4)

where I is the unity matrix
�

1 0
0 1

�

. By writing Eq. 4.2 in its separate states in vector

form, such that;

| 1i = a1 |"i+ b1 |#i =

0

@

a1

b1

1

A

| 2i = a2 |"i+ b2 |#i =

0

@

a2

b2

1

A , (4.5)

it is possible to expand Eq. 4.4 fully and determine the requirements for each component

of the basis ({|""i , |"#i , |#"i , |##i}) for a real eigenstate that would factorise the system

and find the field, in which that state would occur. These components for the basis can

be found when expanding Eq. 4.2 for its more general form | i and applied to Eq. 4.3;

E | i = Ea1a2 |""i+ Ea1b2 |"#i+ Eb1a2 |#"i+ Eb1b2 |##i . (4.6)



Chapter 4. The Spin Dimer 54

Using this and comparing it to the expanded form of Eq. 4.4 then the following equation

for each basis component are found;

Ea1a2 |""i =

✓

~2
2
[(J

x

� J
y

)b1b2 + J
z

a1a2]�
~
2
[(hx1 � ihy1)b1a2

+ (hx2 � ihy2)a1b2 + (hz1 + hz2)a1a2]

◆

|""i ,

Ea1b2 |"#i =

✓

~2
2
[(J

x

+ J
y

)b1a2 � J
z

a1b2]�
~
2
[(hx1 � ihy1)b1b2

+ (hx2 + ihy2)a1a2 + (hz1 � hz2)a1b2]

◆

|"#i ,

Eb1a2 |#"i =

✓

~2
2
[(J

x

+ J
y

)a1b2 � J
z

b1a2]�
~
2
[(hx1 + ihy1)a1a2

+ (hx2 � ihy2)b1b2 � (hz1 � hz2)b1a2]

◆

|#"i ,

Eb1b2 |##i =

✓

~2
2
[(J

x

� J
y

)a1a2 + J
z

b1b2]�
~
2
[(hx1 + ihy1)a1b2

+ (hx2 + ihy2)b1a2 � (hz1 + hz2)b1b2]

◆

|##i . (4.7)

From here small simplifications can be applied to the system. For the anisotropic XY-

model model the field is not staggered and applied in the transverse z so h1 = h2 = h
z

and h
x

= h
y

= 0. The interactions are simplified too: J
z

= 0, and as stated above

J
x

= J(1 + �) and J
y

= J(1� �). So that the Eqs. 4.7 become;

Ea1a2 = ~2�Jb1b2 � ~h
z

a1a2

Ea1b2 = ~2Jb1a2

Eb1a2 = ~2Ja1b2

Eb1b2 = ~2�Ja1a2 + ~h
z

b1b2. (4.8)

By substituting the J and ~ terms for E = E

J~2 and h
f

= h

z

J~ the four equations become;

(E + h
f

)a1a2 = �b1b2

Ea1b2 = b1a2

Eb1a2 = a1b2

(E � h
f

)b1b2 = �a1a2. (4.9)

These are then solved simultaneously to find that for the anisotropic XY-model the
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result for the factorisation field is h
f

=
p

1� �2 as shown by Kurmann et al. and given

in Eq. 3.8 [18]. It has been demonstrated that the factorisation field present in the dimer

is quite independent of the size of the system. It is now logical to explore the energy

spectra of the dimer models and to explicitly show a factorised state taking advantage

of the small Hilbert space of the dimer.

4.2 Energy Spectrum

The energy spectra of the dimer is well known and can be obtained directly by solving

the Hamiltonian for two interacting spins [90]. It is useful to explore using di↵erent

parameters a↵ecting the system, such as the anisotropy and for a transverse field. As

previously stated, the Hamiltonian for the general XYZ-model with an applied field is

provided in Chapter 3 Eq.3.5, this section details the results for the energy spectra of

this Hamiltonian and its anisotropic XY-model counterpart, for N = 2.

4.2.1 Anisotropic XY-Model

For the anisotropic XY-model dimer we form the Hamiltonian matrix from Eq. 3.6 by

letting N = 2. As before, � is the anisotropy in the easy-plane and � is the interaction

strength in the z direction, when � = 0 we recover the XY-model. The Hamiltonian

matrix follows:

H
XY

=

0

B

B

B

B

B

B

@

�h
z

0 0 �

0 0 1 0

0 1 0 0

� 0 0 h
z

1

C

C

C

C

C

C

A

(4.10)

This can be solved analytically or numerically for the parameters h
z

for the applied field

and the anisotropy �. Solving the eigen value problem Eq. 4.10, the eigenvalues are

given analytically as:

E0 = �1 , E1 = �
p

�2 + h2
z

, E2 =
p

�2 + h2
z

and E3 = 1. (4.11)

These values are plotted in Fig. 4.1 as the whole energy spectra of the anisotropic

XY-model dimer for several value of �.
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Figure 4.1: The energy spectra for the anisotropic XY-model dimer. (a) Isotropic
XY-model where � = 0. (b) Anisotropic XY-model where � = 0.5. (c) Anisotropic
XY-model where � = 0.8. (d) Ising Model returned when � = 1. The data for these

plots was calculated numerically.

With the exception of the Ising model, the energy spectrum plots in Fig. 4.1 shows

the two lowest energy levels and their associated eigenstates cross over. For the Ising

case, the states form two doublets at zero field Fig. 4.1 (d), the red line represents the

spins in favourable alignment with the field, thus it lowers the energy required to be in

that state. For the anisotropic case the two levels that cross each other are entangled

with the initial ground state having antiparallel entanglement and the second ground

state having parallel entanglement. For the isotropic model (Fig. 4.1 (a)) the state that

crosses is a pure ferromagnetic state in the direction of the applied field as also seen in

Candini et al reproduced in Fig. 3.3. These level crossings are where the entanglement

changes and provides the first insight into what is driving the entanglement transition

[2].

The field value where the states cross is dependent on �. Fig. 4.2 (left) shows the level

crossing for a range of anisotropy for 0  �  1. The antiferromagnetically entangled

ground state singlet is neither dependent on � nor the applied field and is plotted as

the straight black line. As the anisotropy increases the level crossing tends to zero field
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Figure 4.2: (a) The two lowest energy states for a range of anisotropy � for the
XY-model calculated numerically. The singlet ground state is independent of field and
anisotropy. As the transverse field increases it lowers the energy of the first excited
state until the gap is closed and the states cross over. (b) the points where the two
levels cross is compared to the factorisation field obtained analytically by Eq. 3.8.

until it becomes the Ising model. These points are then taken and compared to the

factorisation field from Eq. 3.8 and plotted in Fig. 4.2 (right). It is clear that the level

crossing takes place at the factorisation field and it is this degeneracy between di↵erently

entangled states that enables factorisation.

To be exact, using the two lowest eigenvalues from Eq. 4.11 (found analytically), and

equating them as �1 = �
p

�2 + h2
z

, this is a simple rearrangement to return the

factorisation field from Eq. 3.8.

4.2.2 XYZ-Model

The Hamiltonian matrix for the XYZ-model dimer calculated from Eq. 3.5 is given as:

H
XY Z

=

0

B

B

B

B

B

B

@

�h
z

+ �
2 0 0 �

0 ��
2 1 0

0 1 ��
2 0

� 0 0 h
z

+ �
2

1

C

C

C

C

C

C

A

(4.12)

For comparison, it is necessary to explore the energy spectra of the XYZ-model. Figs.

4.3 and 4.4 are results for di↵erent values of the out-of-plane anisotropy as �, each

demonstrating the in-plane anisotropy for � = 0.0, 0.4, 0.8 and 1.0. It can be seen how

� a↵ects the energy spectra.
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Figure 4.3: The energy spectra for the XYZ-model dimer for a selection of in-plane
anisotropy �. For the out-of-plane anisotropy are � = 0.5. (a) � = 0.0. (b) � = 0.4.

(c) � = 0.8. and (d) � = 1.0.

As expected, the energy diagrams are similar to the anisotropic XY-model and with

inspection of the eigenstates they are essentially the same. Like with the XY-model,

the in-plane anisotropy parameter � takes the two ferromagnetically entangled states

(plotted in pink and green) and separates them in energy. As a result, as � increases,

the value of h
z

, at which the energy levels cross, decreases. The addition of a finite

� lowers the energy of the antiferromagnetically entangled states. By controlling �

and �, one could e↵ectively position the entanglement transition at a desirable applied

field strength. One would also have control over the size of the gap and therefore the

temperature where a transition could still be detected.

For the XYZ-model the factorisation field is dependent on two parameters, � and � and

is shown as a region in Fig. 4.5. The data is taken from the level crossings and matches

values when Eq. 3.9 is used. Like before, the analytical solution for the energy levels

for the XYZ-model dimer is given as:

E0 =
� � 2

2
, E1 =

�2
p

�2 + h2
z

� �

2
, E2 =

2
p

�2 + h2
z

+ �

2
, and E3 =

� + 2

2
(4.13)
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Figure 4.4: The energy spectra for the XYZ-model dimer for a selection of in-plane
anisotropy �. For the out-of-plane anisotropy are � = 1.0. (a) � = 0.0. (b) � = 0.4.

(c) � = 0.8. and (d) � = 1.0.

By using the two lowest energy eigenvalues and equating them: ��2
2 =

�2
p
�

2+h

2
z

��
2

then this is also easily rearrange to show the factorisation field for the XYZ-model as a

function of � and �.

With this level of flexibility within the anisotropy planes, that only seem to move the

entanglement transition, it is plausible that some anisotropic molecular dimer could be

the key material to detect it experimentally.

4.3 Entangled and Factorised States

The energy spectra plots have pin pointed the factorisation field and have related it to

the crossing of the two lowest eigenstates. In this section these states will be specifically

probed to analyse their structure and to relate their degeneracy to a factorised state.

At the level crossing where the two states become degenerate, any linear combination

of these states is also a valid eigenstate, but it is a particular combination of the states

that will factorise.
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Figure 4.5: The factorisation field for the XYZ-model is given by Eq. 3.9. The
figure shows the factorisation field as a region covered by the anisotropy 0 < � < 1 and
0 < � < 1 where the values are taken from the level crossings in the energy spectra that
represent the factorisation field. These resu;ts were obtained numerically and checked

against Eq. 3.9.

Factorisation is vital to the entanglement transition as it explicitly demonstrates that

the entanglement in the system is exactly zero at the transition. It is also advantageous

to analyse the separate state as it will show the type of entanglement that each state

has, thus a complete change in entanglement across the transition is observed. This

is key as operators that quantify entanglement, like concurrence, can not di↵erentiate

between types of entanglement.

A general factorised state for a spin dimer is represented by the following equation:

| i = (↵1 |"i+ �1 |#i)⌦ (↵2 |"i+ �2 |#i), (4.14)
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this is expanded and can be written in terms of a vector in the same basis ({|""i , |"#i

, |#"i , |##i}) as the eigenstates in order to compare them directly.

| i =

0

B

B
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@
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�1↵2

�1�2
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A

. (4.15)

This is used in the next two sections to prove factorisation in the anisotropic XY-model

and XYZ-model.

4.3.1 Anisotropic XY-Model

One of the two lowest eigenstates for the XY-model is given analytically by:

| 
A

i =

0

B

B

B

B

B

B

@

1p
1+⇤2

0

0

� ⇤p
1+⇤2
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C

C

A

, (4.16)

where for simplicity

⇤ =

p

�2 + h2
z

� h
z

�
, (4.17)

which at the factorisation field becomes:

⇤ =
1�

p

1� �2

�
. (4.18)

The other lowest state is antiferromagnetic and remains constant, displayed:
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B

B
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. (4.19)



Chapter 4. The Spin Dimer 62

For this dimer model any linear combination of the two lowest ground states that would

be valid at the factorisation field can be written as:
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C

C

C

A

, (4.20)

from knowing their general structure from Eqs. 4.16 and 4.19. These can then be

compared to the factorised state:
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. (4.21)

These form four simultaneous equations for an under determined system, with the ad-

ditional requirement of A and B being probabalistically normalised, i.e |A|2 + |B|2 = 1,

additionally |↵1|2 + |�1|2 = 1 and |↵2|2 + |�2|2 = 1. A solution to these simultaneous

equations proves that they are able to factorise. Examples for both the XY-model and

XYZ-model are provided to demonstrate that a linear combination of the states can be

found to obey the requirements to factorise.

Example: For � = 0.80 then from Eq. 4.18 ⇤ = 1
2 at the factorisation field. Putting this

value for ⇤ into the linear combination written in Eq. 4.20;
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This gives the following set of simultaneous equations:

A =

p
5

2
↵1↵2

B = ↵1�2
p
2

B = ��1↵2

p
2

A = �1�2
p
5. (4.23)

Solving these gives, and using the normalisation rules states above, the linear combina-

tion of | 
A

i and | 
B

i that give a factorised state for � = 4
5 is:

B =
2

3
and A =

p
5

3
. (4.24)

Having established that, when degenerate at the factorisation field, the ground state

becomes factorisable, there is some last additional information that can be learned from

looking at the occupied ground state and its basis components. This will be useful as

a comparison to larger finite-size systems for N=4 where the basis is more complicated.

As said before and is clear by looking at Eq. 4.16 and 4.19 one of the two lowest-lying

states is a ferromagnetically entangled state and the other is the maximally antiferro-

magnetically entangled state. Both are impossible to factorise on their own and it can

be said that they are entangled in completely di↵erent ways.

Fig.4.6 shows the amplitudes of the ground state in the basis {|""i , |"#i , |#"i , |##i}.

It is seen that the antiferromagnetically entangled state has equal occupation in the

two antiferromagnetic bases |"#i and |#"i as is normal. But now the occupation can be

visualised for the ferromagnetically entangled state, where the majority of the state is

in |""i with the alignment of the applied field. There is little occupation left in |##i. As

the field increases, the two spins will slowly saturate to fully occupy the pure state |""i

and lose all entanglement. The amount of entanglement quantified by concurrence for

both models is calculated in section 4.4.

4.3.2 XYZ-Model

With the anisotropic XY-model and XYZ-model being of the same universality class, the

similarities in the XYZ-model spectra is also seen in their states, with Fig.4.7 showing
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Figure 4.6: Using the parameter � = 0.6 for the XY-model that gives h
f

= 0.80,
the basis components of the ground state are shown as a function of the transverse
field. The amplitude is taken over the probability density of the wavefunction so that
it is easier to distinguish between the constituent plots. This becomes more vital when

looking at larger states where there is a lot of overlap in the probability density.

the amplitudes of the basis of the XYZ-model and Fig. 4.6 being essentially the same.

The first lowest-lying energy state for the XYZ-model is the same as the XY-model show

as | 
B

i in Eq. 4.19 and the other lowest-lying state | 
A

i has the same structure as Eq.

4.16 but with a new definition of ⇤ given below;

⇤ =

p

�2 + h2
z

� h
z

�
, (4.25)

which at h
f

for the XYZ-model (from Eq. 3.9) becomes;

⇤ =
1 + � �

p

(1 + �)2 � �2

�
. (4.26)

Example: For the parameters shown in Fig. 4.7 the anisotropies are � = 0.5 and

� = 0.5, which gives the following ferromagnetically entangled state to [4dp] (calculated
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analytically and verified numerically):
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Using the same method that was demonstrated for the anisotropic XY-model shown by

following in Eqs. 4.20 and 4.21 and solving for a new set of simultaneous equations,the

linear combination that factorises when these states are degenerate is A = 0.9988 and

B = 0.0495 to [4dp].

The amplitudes of the ground state wavefunction in the basis {|""i , |"#i , |#"i , |##i},

for the same parameters are given in Fig. 4.7. It is clear that the XYZ-model has the

same state behaviour as the XY-model with the di↵erence being only where the states

cross.
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Figure 4.7: Using the parameters � = 0.5 and � = 0.5 for the XYZ-model that gives
h
f

=
p

(2). Unsurprisingly � does not appear to change the structure or amplitudes
of the ground state, in comparison to the ground state in the anisotropic XY-model.

The only apparent a↵ect of � is to change where the states factorise and cross.

It is important to demonstrate the similarities in the XY-model and the XYZ-model by
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using the dimer which is solvable for both, because in the thermodynamic limit the XYZ-

model is not exactly solvable (analytically and numerically), but the mechanisms are the

same and real materials should not be excluded for experimentation. It is speculated

that finite-sized systems could be used to predict the factorisation field value in materials

that can be modeled by the XYZ-model in the thermodynamic limit, and further assist

in verifying new materials for experimentation.

4.4 Concurrence

In Chapter 2 we discuss the theoretical measures of entanglement and introduce con-

currence in section 2.2.2. In short, concurrence describes the overlap between a state

and its orthogonal spin-flipped self, the concept being that an entangled state will have

some overlap and a pure state will not [15].

The dimer is a special model when considering entanglement and has been prevalent in

the studies around quantum information [15] and using entanglement as a resource. The

spin dimer can occupy a maximally entangled state with any additional sites reducing the

amount of entanglement as the complexity of the Hilbert space grows. This is discussed

in [21] paper on “Distributed Entanglement”, when using three entangled qubits: A,

B and C. They use concurrence to “show that the squared concurrence between A and

B, plus the squared concurrence between A and C, cannot be greater than the squared

concurrence between A and the pair BC.” That is to say, for three sites interacting

equally, no pair of sites can be maximally entangled and still be entangled with the

third site as the entanglement is distributed between them.

In this section, the concurrence for the maximally entangled state from Eq.2.4 that

applies to both models for the dimer will be explicitly calculated. The density matrix

for a dimer in the singlet state (from Eq. 4.19) can be written as follows:
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1
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The spin-flip matrix ⇢̃ is calculated using Eq. 2.17 and as ⇢̂ is real and Hermitian then

the complex conjugate of ⇢̂ is also ⇢̂. When ⇢̃ is calculated it is also the same as ⇢̂:
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. (4.29)

So for this example the product ⇢̂⇢̃ is also just ⇢̂. It is this product matrix whose

eigenvalues (�
i

in descending order) are used to define concurrence, shown in Eq. 2.18.

The eigenvalues of ⇢̂⇢̃ are �1 = 1,�2 = 0,�3 = 0 and �4 = 0, therefore the square roots

are the same, making the concurrence C = max {1, 0} and thus the concurrence for the

maximally entangled state is 1 as expected. When a state is maximally entangled then

it has a complete overlap with its spin-flipped version, hence the maximum value for

concurrence is 1.

The same method is used for the other lowest-lying state but has been calculated nu-

merically for a range of anisotropy � and � and as a function of the applied field. The

results for these are plotted for the XY-model in Fig. 4.8 and the XYZ-model in Fig.

4.9.

Fig. 4.8 shows the numerically calculated concurrence for the anisotropic XY-model for

a range of in-plane anisotropy values including � = 0 for the isotropic model and � = 1.0

for the Ising model. At the factorisation field, where the energy levels cross, the two

lowest-lying eigenstates become degenerate and thus any linear combination of them is

a valid eigenstate of the system. The calculation uses state | 
B

i from Eq. 4.19 in the

field-steps in the calculation up until the factorisation field, and then | 
A

i from Eq. 4.16

after the crossing. At the exact point of factorisation it was checked analytically using

the results for the in-plane anisotropy � = 0.8 at h
f

= 0.6 for the linear combination

found in Eq. 4.22 that the concurrence is indeed zero for a factorisable state. Rossignoli

et al. experience a break in the concurrence for the ground state concurrence as seen in

Fig. 3.4 for their finite-sized calculations [3].

Fig. 4.8 gives the concurrence for the isotropic XY-model (for � = 0) and produces

the same results for concurrence in the ground state as Candini et al. reproduced in

Fig.3.3. The system has maximum entanglement for C = 1 before the level crossing and
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Figure 4.8: Concurrence for the XY-model for a selection of in-plane anisotropy �.
The concurrence quantifies the amount of entanglement in a single ground state. It
does not consider the level crossing as a degenerate state i.e any linear combination
of the two lowest-lying eigenstates would be valid and could give a di↵erent value for
the concurrence, it is only the linear combination of states that give a factorised state
that would give a zero value for concurrence. Instead the calculation uses the singlet
state up to the crossing value and the lowered ground state after the crossing, this is
represented as a sudden break in the concurrence and is why at the factorisation field

the concurrence is not given as zero.

zero entanglement for the pure state |""i with C = 0. For higher � it is observed that

although the system is not maximally entangled for the state in Eq. 4.16, and despite

the small occupation in |##i component, as seen in Fig.4.6, there is still a substantial

amount of entanglement in this region. This slowly decreases as the system saturates.
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Figure 4.9: Concurrence for the XYZ-model for (a) � = 0.5 and (b) � = 1.0.

Lastly, the concurrence for the XYZ-model is plotted for � = 0.5 and � = 1.0 for a
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few values of �. Again the entangled singlet is clearly depicted as having C = 1 and the

ferromagnetic state having decreasing concurrence with applied field.

The spin dimer has been successful in helping to define the underlying mechanism behind

the entanglement transition within finite sized systems. In its own right it can be directly

related to magnetic dimer molecules. By breaking down the states and energy spectra it

is seen that the factorisation field coincided with a level crossing between the two lowest

states. At this point a linear combination of these states can be found for both the

anisotropic XY and XYZ-model that shows the state to factorise, and therefore become

separable. It is this mechanism of an antiparallel entangled state changing into a parallel

entangled state whilst having zero entanglement at the point that they cross that defines

the entanglement transition. As it has been discussed the factorisation field has no size

dependence on the system. In subsequent chapters it is shown how these ideas evolve

for larger finite-sized systems.



Chapter 5

The Entanglement Transition in

1D Spin Chains

This chapter extends on the principles discussed in the previous chapter with regards to

the dimer model. As the model evolves into more complex finite-sized systems, the work

is split into two variants: one for open boundary conditions (OBC) and one for periodic

boundary conditions (PBC). The calculations are small enough to use exact diagonal-

isation methods to obtain the eigenstates and eigenvalues of the Hamiltonian, but can

be used together to provide insight into the thermodynamic limit. The entanglement

transition is examined with regards to the system size. It is found that factorisation

within the ground state plays the crucial role in both the finite-sized systems and the

thermodynamic limit.

It is important to develop a technique for detecting the entanglement transition in these

systems when it is impractical to look at just the energy spectra. This is achieved by

studying the correlation functions in the ordered phase (i.e the antiferromagnetically

ordered phase with long range order (LRO)) that would indicate a semi-classical/ fac-

torised state by exhibiting a complete flatness in the absolute value of the correlation

functions [25]. The correlation functions form the main ingredient towards predicting

neutron scattering data, so if, in real space, they can show a signature of the entangle-

ment transition it is practical to suggest that a signal could be detected in the neutron

scattering function [8]. The neutron scattering cross-section is modeled in Chapter 6

on the foundations made in this chapter by studying closely the real space correlation

70
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functions. Although concurrence has been discussed in Chapters 2, 3, 4 and at the end

of this chapter, it is a theoretical measure for quantifying entanglement and the ultimate

purpose of the project is to form a theory of the entanglement transition that can be

experimentally tested.

The main focus in this chapter is to understand the mechanism driving the entanglement

transition in finite-sized systems whilst identifying their advantages over the thermody-

namic dynamical limit. This is then applied to identify more real finite-sized models to

simulate neutron scattering experiments in the next chapter.

5.1 Energy Spectrum and the Energy Gap

In the thermodynamic limit the two lowest states are completely degenerate until the

critical field is reached [10]. The factorisation field does not correspond to a crossing

between the energy levels of these states as there is never a di↵erence in their respective

energies until the critical field. Instead, there is an apparent change in the type of entan-

glement dominating the behaviour of the system. Rossignoli et al. describes factorisation

in the anisotropic XYZ Heisenberg model as exhibiting a “degenerate symmetry-breaking

separable ground state”, meaning at the point in which the system factorises the ground

state, spontaneously becomes unentangled and the type of entanglement present switches

[3]. For the finite-sized systems, discussed in this chapter, the two di↵erently entangled

states cross multiple times, also switching the type of entanglement but without factoris-

ing. The entanglement transition in these finite-sized must have a stricter definition than

the dimer model explored in Chapter 4. The dimer model exhibits just one level crossing

that meets the requirement for factorisation, but the finite-sized systems have multiple

points of degeneracy, thus the definition of the entanglement transition in these systems

must match the implications shown in the thermodynamic limit (i.e must prove factori-

sation in the ground state). The absolute definition of the entanglement transition is

that it is not enough for the system to change the type of entanglement present but at

the point of the transition, for the entanglement to be completely broken.

For the dimer, the structure of the entanglement of the two states was simple, with one

being antiferromagnetically entangled and the other being completely ferromagnetically



Chapter 5. The Entanglement Transition in Finite Chains 72

entangled as seen in Figs. 4.6 and 4.7. In the thermodynamic limit the states are de-

scribed as anti-parallel and parallel entangled and having an additional phase transition

at the critical field that indicates a ferromagnetic phase at high fields. Small systems in

between these have more complicated entangled states. In this chapter, to better under-

stand the entanglement in finite-sized system we are able to look at the two lowest-lying

energy states for the N = 4 system taking advantage of its still relatively small Hilbert

space (that grows 2N ).

For all these finite-sized systems it is possible to observe the energy spectrum and the

energy gap between the two switching ground states. To be clear, the gap in the ther-

modynamic limit is between the degenerate ground state and the next excited state. It

is one of the main di↵erences that contributes to the adequateness of finite-sized systems

for detecting the entanglement transition above zero temperature, compared to those in

the thermodynamic limit.

5.1.1 Finite Chains

This section is split in two parts to deal with open boundary conditions (OBC) and

periodic boundary conditions (PBC) separately to explore the energy spectrum and to

identify the main di↵erence that shows that PBC are vital for a factorised state to occur.

Open Boundary Conditions: Single Chains

Open boundary conditions describe single unattached chains of varying length. This

could be achieved by doping a quasi-1D system leading to a Poisson distribution of chain

lengths. The chains would be formed from doping the quasi-1D material with a non-

magnetic impurity, with the doping percentage dictating the distribution of chain length.

A simulation of up to a million sites was performed for di↵erent doping percentages and

confirmed that a Poisson distribution of chain lengths is indeed obtained. Fig. 5.1 is a

diagram representation of a doped chain system.

With appropriate levels of doping, this system can be easily approximated by a relatively

small range of chain lengths that can be solved using exact diagonalisation. This means

that chain lengths longer than N=10 are so improbable that they can be neglected.

The distribution of the chain length requires that any change of entanglement to be
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a

b

Figure 5.1: A diagram of an example of a doped system with a distribution of chain
sizes. The blue balls are the magnetic ions and the grey balls are the non-magnetic

dopants. Small finite-sized chains are formed along the a axis in this example

detected needs to be consistent regardless of chain length. Having a level crossing at the

factorisation field would support this idea.
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Figure 5.2: The energy spectrum of the anisotropic XY-model with � = 0.4 for a
N = 4 chain with open boundary conditions.

Fig. 5.2 and 5.3 show the complete energy spectra for an N=4 chain described by

the anisotropic XY-model for the anisotropy parameter � = 0.4 and 0.8, respectively.

The two lowest energy levels cross twice in both cases without any higher energy levels

crossing with them. For � = 0.8 it becomes di�cult to see the level crossings in this way,
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Figure 5.3: The energy spectrum of the anisotropic XY-model with � = 0.8 for a
N = 4 chain with open boundary conditions.

so to display it more clearly Fig. 5.4 plots the energy gap between the two lowest energy

levels. This is for a range of even chain lengths from N = 2 to N = 10 for � = 0.2 1.

For di↵erent chain lengths the two lowest energy levels cross a number of times equal to

N

2 , as seen in the literature for the anisotropic XY-model [31]. None of the crossings

for the di↵erent chain lengths occur at a common point. None of them cross at the

factorisation field, which for � = 0.2 is h
f

= 0.980. This is discouraging for the OBC

model as without a common trend independent of chain lengths, no common trend can

be detected in a doped system. Also without a crossing at the factorisation field, the

states can not factorise (this is addressed more explicitly in the following section 5.3. In

contrast, for periodic boundary conditions, the results are more promising [9] [12].

An alternative option, OBC could be realised by synthesizing molecular magnets with

one doped non-magnetic impurity per ring. This would allow for a consistent chain

length within a single material, instead of a distribution of chain length. The is con-

ceptualised in Fig. 5.5, which gives a diagrammatic example of the type of system that

would be applicable to a model with OBC.

1
this is to compare values with PBC in later sections.
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Figure 5.4: The absolute value of the gap between the two lowest energy states
|E0�E1| for the anisotropic XY-model where � = 0.2 for a range of chain lengths with

open boundary condition for N = 2, 4, 6, 8, 10

.

. .
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1N

Figure 5.5: A diagram of an example of a doped ring system with chain size N . The
blue balls are the magnetic ions and the grey ball is a non-magnetic dopants. The
ring has open boundary conditions due to the non-magnetic impurity indicated by the

dashed line and dopant breaking the interaction between sites 1 and N .

For any interesting features that occur in OBC systems but are not consistent with chain

length then it could still be possible to study them in suitable molecular magnets that

have been doped to break the interaction between the first and last sites. Silio et al.

doped molecular magnets with single ion that interacted di↵erently to the Cr ions that

made up the rest of the ring, it seems plausible to dope with a non-magnetic ion [29]

[30] [4].
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Periodic Boundary Conditions: Bulk Properties and Clusters

Periodic boundary conditions let the last spin in the chain interact with the first spin

as if they were nearest neighbours, giving a symmetry to the system that the OBC

single chains do not have. This can be used to simulate the bulk of a material to give

information about the thermodynamic limit or can be used to describe small molecular

spin clusters. In this chapter the discussion is valid for both, and in the next chapter

molecular magnets and their neutron scattering cross section is calculated where the

geometry of the model e↵ects the results.

When looking at the N = 4 energy spectra for the same parameters as before but now

with PBC, the structure of the ground state appears similar with N

2 level crossings, but

unlike the case of OBC, the last level crossing coincides with the factorisation field for

the di↵erent anisotropy values. This is shown in Figs. 5.6 and 5.7.
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Figure 5.6: The energy spectrum of the anisotropic XY-model with � = 0.4 for a
N = 4 system with periodic boundary conditions.

Again it is the two lowest energy levels that form a switching ground state and the

other excited states to do not cross the ground state. For N = 6 and 8, the two lowest

energy levels are plotted in Fig. 5.8 and this behaviour can be confirmed for these larger
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Figure 5.7: The energy spectrum of the anisotropic XY-model with � = 0.8 for a
N = 4 chain with periodic boundary conditions.

systems. They also support the trend that the states cross a number N

2 times, with the

last level crossing always positioned at the factorisation field.
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Figure 5.8: The two lowest energy level for the anisotropic XY-model with � = 0.4
and PBC for N = 6 (left) and a N = 8 (right). The levels cross N

2 times. No other,
higher energy levels cross the ground state energy.

For clarity in exploring larger system sizes, the value of the gap between the two ground

state energies is taken and plotted for the anisotropic XY-model and XYZ-model to

comment on the thermodynamic limit.
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5.1.2 Thermodynamic Limit

The bulk properties using finite-sized calculations with PBC can o↵er an insight into

the properties in the thermodynamic limit. It is known that as N ! 1 the two states

become degenerate up to the critical field [10] [71] [72]. This trend is observed using

the finite-sized system calculations up to N = 10 and the features from the energy

spectra are used to developed a method to find the critical field in this section. This

section seeks to show the di↵erences and similarites in the system between finite-sized

calculations and the thermodynamic limit, in particular, focusing on the factorisation

field and criticality.
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Figure 5.9: The absolute value of the gap between the two lowest energy states for the
anisotropic XY-model, where � = 0.2 for a range of system sizes with periodic boundary
condition for N = 2, 4, 6, 8, 10. The figure inset illustrates the fate of the degeneracy
found as the thermodynamic limit is approached: as the system sizes increase the gap

at zero field tends towards zero.

Fig. 5.9 shows the gap for a range of even N (to avoid magnetic frustration 2. Frustration

can seriously e↵ect the physical properties of a system and is an interesting field to study

in its own right [91] [92]) for N = 2 to 10 for anisotropy � = 0.2. As expected, the two

ground states cross N

2 times like the OBC case before it, but with each systems’ final

2
Magnetic frustration is a conflict in magnetic interactions. In this case, if a an antiferromagnetically

interacting chain of an odd number of spins were connected with periodic boundary conditions then the

two edge spins would be of the same spin orientation and would not be able to interact antiferromag-

netically towards each other [90]
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level crossing always occurring at the factorisation field h
f

= 0.980 for the example in

Fig. 5.9 . As the system size increases, the number of ground state level crossings also

increases, therefore, with the last crossing always being at h
f

, the distances between

crossings get smaller as the gap begins to completely close. This is supported by the

insert in Fig. 5.9 that shows the largest value of the gap, which we find to be always at

h = 0, tending towards zero. To fully explore the degeneracy of these two states, it is

the region between the factorisation field and the critical field that needs to be closely

examined.
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Figure 5.10: The absolute value of the gap between the two lowest energy states
for the anisotropic XYZ-model where � = 0.5 and � = 0.5 for N = 2, 4, 6, 8, 10 with

periodic boundary conditions.

For the XYZ-model the same trends are observed for the parameters � = 0.5 and � = 0.5

with the factorisation field h
f

= 1.414 [3dp]. The di↵erence for the XYZ-model is that

the critical field is unknown, but an analysis of the degeneracy could open up an easy way

in which finite-sized calculations could approximate the critical field for the XYZ-model

in the thermodynamic limit. We will now discuss this.
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Criticality

Although finite-sized systems do not exhibit a critical field, these calculations can be used

to pinpoint where the degeneracy of the ground state would split in the thermodynamic

limit. As a proof of concept this is done for the anisotropic XY-model to show the

critical field with reasonable errors at h = 1.00, by analysis of the gradient of the gap

past the factorisation field.
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Figure 5.11: This takes a higher resolution of data points from Fig.5.9 in the region
before the factorisation field at h

f

= 0.9798 to a reasonable higher field value. As
the system size increases and the two lowest states become complete degenerate in
the thermodynamic limit, this degeneracy is kept until the critical field, and not the
factorisation field. This is examined by assessing the gradient of the energy gap as
shown in the inset. At high fields the gradient is a constant and after the factorisation
field but before the critical field it tends towards zero, this indicates that the gap is

tending towards zero in this region.

Fig. 5.11 shows a section of Fig. 5.4 from h = 0.96 to h = 1.02 that is recalculated

at higher resolution and plotted to focus on the region between the factorisation field

and the critical field. As the system size increases, there is a di↵erence in the behaviour

of the gap in this small section. Just after the factorisation field, as N increases, the

slope of the gap vs h
z

curve decreases. This then inflects so at higher fields the curves

for di↵erent system sizes become parallel. This is depicted in the figure inset, where

the gradient of the gap for the field value h = 0.98025, which is slightly above h
f

, tend
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towards zero in the thermodynamic limit. this is attributed to the gap closing and the

two lowest-lying energy levels closing and the ground state becoming slowly degenerate.

For much higher values of the field where the spins are likely to be saturated, h = 3.00,

the gradient is independent of system size and above zero. This means that past the

factorisation field the states remain degenerate in the thermodynamic limit where at

some point (the critical field) they diverge.

Using Ansatz methods it is possible to further confirm this critical behaviour as the

system tends to the thermodynamic limit by achieving larger system sizes [93]. The

XY-Hamiltonian is rewritten using second quantisation and is used to explore the two

di↵erent parity ground states. The formula for the energy dispersion is calculated from

this; Barouch et al. and Leib et al. both use the Jordan-Wigner Transformations (JWT)

to describe the Hamiltonian in the mathematical context of spinless fermions [10] [71]

Here we follow the more accessible proof from lecture notes by Fabio Franchini.

Using the raising and lowering operators it is possible to rewrite the XY-Hamiltonian

given by Eq.3.6 using second quantisation;

�+ = (�x + i�y)/2

�� = (�x � i�y)/2, (5.1)

The anisotropic XY-Hamiltonian becomes:

H = �J
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. (5.2)

This Hamiltonian cannot be diagonalised as di↵erent sites obey di↵erent commutation

and anticommutation relations. The JWT are applied to the Hamiltonian in this form,
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where the JWT are given for each operator as:

�+
j

= ei⇡
P

l<j

 

†
l

 

l 
j

��
j

=  †
j

e�i⇡

P
l<j

 

†
l

 

l

�z
j

= 1� 2 †
j

 
j

. (5.3)

The JWT give an additional phase factor e±i⇡. In Eq.5.3,  represents the fermionic

operators and  †
j

 
j

can be described as a number operator n̂
i

. The number operator

counts up to site j but does not include it, as it commutes with the string to the left of

site j. A new dummy indexing variable l is being used that has to be on the commuting

side of j and for j + 1 includes j. The fermion operators obey the following relations:

n

 
i

, †
j

o

= �
ij

, { 
i

, 
j

} = 0,
n

 †
i

, †
j

o

= 0, (5.4)

this means that the number operator can only equal zero for sites where it can create,

and 1 for sites where it can annihilate: n̂
l

=

8

>

<

>

:

0

1
. Using this principle and changing

the sum of the exponentials to a product as ei⇡(n̂1+n̂2+...+n̂

j�1) ⌘ ei⇡n̂1 · ei⇡n̂2 · · · ei⇡n̂j�1

then an alternative way to write the JWT becomes:
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By writing the JWT in this way it takes away the exponential terms, making it eas-

ier to manage. Looking at these and reviewing the anticommutation relations gives

{1� 2n̂
l

, 
l

} =
n

1� 2n̂
l

, †
l

o

= 0. Taking the Hamiltonian in the form from Eq.5.2, the

individual terms can be transformed and simplified in the following way:

�+
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j+1 j
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j+1 j
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j
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j

 †
j+1, (5.6)



Chapter 5. The Entanglement Transition in Finite Chains 83

where at the boundary for j = N , the transformation terms cannot pair to left of the

Jordan-Wigner string and j + 1 becomes j + 1 = 1 for periodic boundary conditions

in the new basis. For the separate boundary conditions of the string we let µx

N

a dual

lattice operator;

µx

N

⌘
N

Y

j=1

(1� 2n̂
j

) , (5.7)

such that the boundary terms are;
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Thus the transformed Hamiltonian becomes:
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The anisotropic XY-model in this form does not commute with �z, this means that

it does not conserve the number of fermions, however since they are only created or

destroyed in pairs then whether the system is even or odd remains consistent. [93]. By

separating the Hamiltonian into even and odd parity, it can be managed using periodic

and anti-periodic boundary conditions, incorporated into Eq. 5.9 by µx

N

= +1 for PBC

and µx

N

= �1 for anti-PBC. These separate conditions describe the two di↵erently

entangled ground states of this system. The Hamiltonian can be separated as:

H = H+ +H�. (5.10)

These separate parts of the Hamiltonian take di↵erent boundary conditions, where the

even term H+ takes PBC where  
j+N

=  
j

, and the odd term H� take anti-PBC

where  
j+N

= � 
j

. The even and odd Hamiltonians can be solved separately using the

same methods giving the same dispersion relation. This is done by using their di↵erent
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boundary conditions to give formulae for the two lowest energy levels up to the critical

field, which in the thermodynamic limit becomes the same level. This process will not be

described in full, with the method outlined in more detail in Fabio Franchini’s lecture

notes [93]. The Hamiltonians are Fourier transformed into k-space and then for the

Hamiltonian to be diagonalised the Bogoliubov transformation is used to define a new

basis of operators. This new basis allows the Hamiltonian to be diagonalised [94]. The

Bogoliubov transformation rewrites the Hamiltonian and finds its energy spectrum. The

dispersion is given;

E
k

=
q

(cos k � h)2 + �2 sin2 k, (5.11)

where in k-space the di↵erent periodic boundary conditions for the JW string can be

rewritten as:

k =

8

>

<

>

:

2⇡
N

n for PBC

2⇡
N

(n+ 1/2) for anti-PBC
(5.12)

where n = 0, 1, · · · , N � 1 the two energy levels are then calculated for each condition

where:

E =
1

2

N�1
X

k

E
k

. (5.13)

Using Eq.5.11 and 5.13 with the two conditions on k from Eq. 5.12, then it is possible to

further explore the behaviour of the energy spectrum of the anisotropic XY-model. We

emphasize that the di↵erent boundary conditions that give the separate parity states

are for the transformed Hamiltonian in Eq. 5.9 both applied to the original Hamiltonian

for the anisotropic XY-model with PBC. The above derivation for the dispersion and

energy levels was provided by Sam Carr. These equations for the energy levels are used

in this section to calculate results for finite-sized calculations that tend towards the

thermodynamic limit for field values up to the critical field h
c

= 1. This is used for

system sizes that can not be reached using exact diagonalisation. Fig.5.12 shows how

the gap changes for systems up to N = 16. The figure inset zooms in near the critical

field and shows how the two states become completely degenerate in the thermodynamic

limit, using N = 200 and two anisotropy values for � = 0.2 (red line) and � = 0.6 (blue

dashed line).

The purpose of the above derivation is to demonstrate that in the thermodynamic limit

the states are truly degenerate past the factorisation field and up to the critical field.
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Figure 5.12: The gap function plotted from the absolute di↵erence from Eq 5.11 given
the two parameters in Eq. 5.12 provide by Sam Carr. This is for system sized up to
N = 16 and the figure inset zooms in around the critical field for system size N = 200

for the anisotropy � = 0.2 and 0.6.

This is important because it stresses the real di↵erence for the entanglement transition

whether it is in the thermodynamic limit or for finite-sized systems. In finite-sized

systems the entanglement transition is a very clear switching of ground states at a level

crossing. The gap is defined slightly di↵erently in the thermodynamic limit as it is the

gap between the two ground states and the first excited state. This di↵erence from

the gap could support the reasoning why finite-sized systems are so promising for the

experimental detection of the entanglement transition at finite temperature.

Exploring the thermodynamic limit and understanding how the system become degen-

erate in the ground state, it is possible to use this to probe where the critical field

of a system is, by using finite-sized calculations that best represent the behaviour of

thermodynamic limit around criticality.

It seems evident that the system size up to N = 10 is enough to be able to predict

thermodynamic limit behaviour, in particular with identifying the critical point. Figure.

5.13 is the gradient analysis of Figure. 5.11 for the di↵erent system sizes. Small intervals

in the field are taken and their slope recorded. Just after the factorisation field, as the

system grows, the gradient tends to zero. At higher fields it tends towards some finite
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Figure 5.13: The gradient analysis of the energy is fully explored in this figure where
for the values of the field between the factorisation field and h = 1.00 the gradient
lowers as the system size N increases. Past this it tends towards a constant. The kink
in the gradient suggest that in the thermodynamic limit the two lowest energy states
peel away from each other between 0.99975  h  1.0075, this indicate the critical field.

value. What is encouraging is that there is a very noticeable kink in the graph for N = 8

and N = 10, that indicates a critical field where the degeneracy splits. This ‘kink’ is

situated with the accuracy of 0.99975  h
c

 1.0075. It can also be noted that for

systems N = 2, 4 and 6 the critical field can not be seen in this way.

A similar analysis was undertaken for the XYZ-model to identify the critical field for

the anisotropy parameters � = 0.5 and � = 0.5. The gap for this model is shown in

Fig. 5.10. Similar to the XY-model, it can be seen that after the factorisation field

h
f

= 1.414 [3dp] the gap is closing again. At higher fields, the di↵erent system sizes

converge on one slope. Within that region there is a critical field for the thermodynamic

limit and a gradient analysis was able to approximate a value for the critical field as

h
f

< h
c

< 1.5. An accuracy greater than this was not be observed. In an experimental

situation even this approximation would be useful to material where the value for the

critical field is unknown [95].
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5.2 Additional Discussion

Within the duration of this project, some literature on the Entanglement Transition

emerged, with two particular papers being very relevant to this collaboration. The

first of the two papers is discussed in brief in this section to the extent that their goals

overlap with the work presented in this thesis. The second paper uses neutron scattering

predictions and is discussed in Chapter 6.

Campbell et al. 2014 thoroughly explore the long-range quantum correlations in 1D spin

chains [9]. They use the anisotropic XY-model which is introduced in Chapter 3, in brief

the interactions between spins are within the xy plane and the strength of the interaction

in the x direction di↵ers to the strength of the interaction in the y direction. The

paper studies the version of the model with ferromagnetic interactions with an applied

transverse field. The model has a ferromagnetic ordered phase and goes through a QPT

and becomes paramagnetic at the QCP where the driving parameter is the applied field,

which at this point is called the critical field. They use finite sized calculations to show

that at finite temperatures the model complies with scaling behaviour and information

about the thermodynamic limit can be estimated. Using these finite sized systems and

techniques that describe the thermodynamic limit they probe criticality and a second

point of interest where the system factorises.

In the thermodynamic limit the ground state of the anisotropic XY-model is doubly

degenerate and at factorisation they become separable. For smaller systems sizes the

two lowest states cross and become factorisable at the factorisation field. This is shown

by Campbell et al. in Figure. 5.14.

In Figure 5.14 the applied transverse field is given by � and the anisotropy between the

interaction strength is given by �. The left hand side figure shows the di↵erence between

the lowest two energy states, the white lines are where they cross. The right hand side

figure gives an example of the energy spectrum for � = 0.5 where the two lowest energy

levels cross at a particular value of the field. This is for a system size of 5 spins where

the levels cross twice but only one of the crossings coincide with the factorisation field.

The key point about factorisation is that when the states become separable but are

degenerate their can be no entanglement in the system. However above and below this

field they are entangled the the act of passing through the factorisation field changes the
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Figure 5.14: The energy spectrum information for the anisotropic XY-model from
Campbell et al. (right) shows an example of the lowest energy level eigenvalues for an
N = 5 spin chain with periodic boundary conditions. The two lowest eigenvalues cross
twice, this is elaborated upon by the left figure which shows E1 �E0 for a range of the
applied transverse field � and the anisotropy parameter �, the white lines indicate the

two level crossings. [9].

type of entanglement present. This forms our definition of the entanglement transition

that would predict a quantity of entanglement going to zero at the transitions and

changing the type of entanglement after it.

Campbell et al. use two di↵erent measures of entanglement, these are Quantum Discord

(QD) and Entanglement of Formation (EoF) [9]. QD uses the concept of information

behind von Neumann Entropy as described in section 2.2.1. The EoF quantifies the

minimum number of entangled qubits that would be needed to replicate the real state

being measured and uses concurrence as described in section 2.2.2. They use these

techniques to probe the correlations and thermal correlations in the system for both finite

sized systems and in the thermodynamic limit. They conclude that the ground state

factorisation that is observed in the finite sized calculations is an inherently di↵erent

quantum transition from criticality.

5.3 Factorisation and Degeneracy

The key requirements for the entanglement transition in finite-sized systems are clear;

firstly the two ground states with parallel and anti-parallel entanglement to become

degenerate at a level crossing, and secondly the states need to factorise in order to break

the entanglement at that point. For small systems larger than the dimer, the two ground
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states cross multiple times o↵ering more than one field where the states are degenerate.

It is at this stage where it needs to be shown that the degeneracy does not necessarily

lead to factorisation. As it is seen in the thermodynamic limit where the states are

completely degenerate, it is the factorisation field that separates the states as proven in

Kurmann et al. [18].

Following from the process employed in Chapter 4 where we looked at the structure

of the eigenstates that were the two ground states before and after the entanglement

transition we found the wave functions of our model analytically for N = 2. To recap, for

h  h
f

, the ground state is the anti-ferromagnetic singlet | 
A

i = 1p
2

�

|"#i � |#"i
�

. For

h � h
f

the ground state is ferromagnetically entangled: | 
B

i = 1p
1+�2

�

|""i � � |##i
�

.

The parameter � controls the amount of parallel entanglement in this state. It has the

form � =
p

1 + h2
z

/�2 � h
z

/� and evidently � ! 0 as h
z

! 1. In Chapter 4, examples

for the anisotropic XY-model and XYZ-model were taken to demonstrate factorisation

at h
f

. In this section, we will develop this further and apply it to the N = 4 systems for

OBC and PBC and demonstrate that it is only at the level crossing that coincides with

h
f

where factorisation is possible. As the system sizes increase, so does the Hilbert space

by a factor of 2N making it considerably more di�cult to examine the wavefunctions. For

N = 4 there are 16 basis states that make up the Hilbert space and it is still reasonable to

examine the states directly. The basis is {|""""i, |"""#i, |""#"i, |""##i, |"#""i, |"#"#i,

|"##"i, |"###i, |#"""i, |#""#i, |#"#"i, |#"##i, |##""i, |##"#i, |###"i, |####i} for sites

labeled |1234i.

The N = 4 systems for both open and periodic boundary conditions have two level

crossings, but only with periodic boundary conditions does one of these level crossings

coincide with the factorisation field. With the dimer it was seen that the degeneracy at

a level crossing, allowed for a linear combination of these states to become factorisable.

For systems with more than one level crossing it is important to assess whether the level

crossing at the factorisation field o↵ers factorisation and verify that the others do not.

The linear combination of the ground state at a level crossing is, for any system:

| i = A | 
A

i+B | 
B

i . (5.14)

For all values of N we investigated, the last crossing between the two ground states is

at h
f

. The ground state is | 
A

i for h
z

 h
f

and | 
B

i for any h
z

> h
f

. At h
f

the
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coe�cients A and B in the linear combination (Eq. 5.14) can be chosen to produce an

unentangled state, i.e. one of the form:

| i = (a1 |"i+ b1 |#i)⌦ (a2 |"i+ b2 |#i)⌦

. . .⌦ (a
N�1 |"i+ b

N�1 |#i)⌦ (a
N

|"i+ b
N

|#i) . (5.15)

Indeed Kurmann, Thomas and Muller proved that the particular factorised state ob-

tained by choosing a2n+1 = a1, b2n+1 = b1, a2n = a2, b2n = b2 for all n = 1, 2, . . . is

realised at h
f

but not at any other value of the field (we note that the proof in Kurmann

et al. is N -independent)[18]. In particular, the Kurmann-Thomas-Muller state is not

realised at the other crossings occurring at lower values of h
z

. One could ask, however,

whether the more general factorised state in Eq.5.15 could be achieved by an appropri-

ate choice of the coe�cients A and B at other values of the field. We have checked this

explicitly in the N = 4 case by examining the numerically-determined wave functions.

Factorisation cannot be achieved unless there is degeneracy between | 
A

i and | 
B

i. This

still leaves open the possibility of factorisation at the field h1 < h
f

where the first gap

closing occurs. To examine this possibility, we equate the linear superposition (Eq. 5.14)

to the factorised state given in Eq. 5.15. For N spins, this leads to 2N equations (one

for each spin) in 2N + 2 unknowns (A, B and the a and b coe�cients). The variables

are therefore over-determined for N � 4. we observe a common structure to the two

ground states, such that the component parts of the basis used in  
A

are not used in
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B

and vice versa, as shown in the below representation of the states:
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, (5.16)

thus the system reduces to 2N�1 equations involving the A coe�cient and another 2N�1

equations involving the B coe�cient for N = 4 with periodic boundary conditions. Any

linear combination of the two lowest states when they are degenerate are in turn valid

eigenstates. Using ↵ and � we show the vector configuration of the states for N = 4 that

when compared to the factorised state given by Eq. 5.15, the 16 simultaneous equations

that are formed are decoupled into two subsets each dependent on one of the single-spin



Chapter 5. The Entanglement Transition in Finite Chains 92

states:

A↵1 = a1a2a3b4 , �B�1 = a1a2a3a4,

�A↵1 = a1a2b3a4 , �B�2 = a1a2b3b4,

A↵1 = a1b2a3a4 , �B�3 = a1b2a3b4,

�A↵2 = a1b2b3b4 , �B�2 = a1b2b3a4,

�A↵1 = b1a2a3a4 , �B�2 = b1a2a3b4,

A↵2 = b1a2b3b4 , �B�3 = b1a2b3a4,

�A↵2 = b1b2a3b4 , �B�2 = b1b2a3a4,

A↵2 = b1b2b3a4 , �B�4 = b1b2b3b4. (5.17)

Due to the few parameters that characterise the amplitudes it can be deduced that all

‘a’ coe�cients are the same magnitude as are all ‘b’ coe�cients.

|a1| = |a2| = |a3| = |a4| where� a1 = a2 = a3 = a4;

|b1| = |b2| = |b3| = |b4| where� b3 = b1 = b2 = b4. (5.18)

This reduces the complexity of the problem and allows us to find equivalent ratios from

both states that must be equally satisfied, if the states are to be completely separable:

�1
�4

=
a4

b4
;

↵2
1

↵2
2

=
a4

b4
. (5.19)

The two degenerate states are factorisable only if the following ratio is true:

↵2
1

↵2
2

⌘ �1
�4

. (5.20)

This equality was tested for both level crossings for the N = 4 system and was found true

for the values at the factorisation field. The ratio is not satisfied at the first level crossing

where the states, though degenerate, are unable to factorise. The results for both level

crossing are summarised in table 5.1. The table gives results for level crossings for the

anisotropy parameter � = 0.6 which leads to the first level crossing at h
LC1 = 0.345

(found numerically) and the second level crossing at the factorisation field h
LC2 = 0.800

(found numerically and verified by Eq. 3.8). Here, it is shown that the results for the

first level crossing do not obey Eq. 5.20 and does not factorise; whereas, the results for
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the second level crossing, at the factorisation field does obey Eq. 5.20 and therefore, can

fully factorise.

Field h ↵1 = ↵2 = Ratio ↵ = Result:

h
LC1 = 0.345 0.43279197427683 0.250381927198709 2.9878 [4 d.p]

h
LC1 = 0.345 �1 = �2 = Ratio � =

h
LC1 = 0.345 0.4111456380398136 0.1729715591278917 2.3770 [4 d.p] ⇥
Field h ↵1 = ↵2 = Ratio ↵ = Result:

h
LC2 = 0.800 0.474341649025257 0.15811388300842 9.0 [8 d.p]

h
LC2 = 0.800 �1 = �2 = Ratio � =

h
LC2 = 0.3800 0.7717436331412898 0.0.08574929257125442 9.0 [8 d.p] X

Table 5.1: The table documents the results on whether a level crossing in the N = 4
spin system with PBC can factorise or not. Using the values obtained numerically for
N = 4 with in plane anisotropy � = 0.6 at the levels crossings; h

LC1 = 0.345 and
h
LC2 = 0.800. For the first level crossing, at h

LC1, the parameters for ↵1, ↵2, �1 and
� do not obey the ratio derived in Eq.5.20 and are unable to factorise. For the second
level crossing, at the factorisation field: h

LC2 = 0.800, the parameters for ↵1, ↵2, �1
and � not obey the ratio derived in Eq.5.20 and therefore can factorise.

For larger systems it becomes impractical to directly examine the coe�cients of the

ground state wavefunctions. In these instances it is possible to observe the real space

correlation functions. At factorisation, as the states become separable the system be-

comes semi-classical. This is reflected in the correlation functions in the LRO phase

where the correlation functions, in essence go ‘flat’ and ground state fluctuations disap-

pear [25]. By scanning over the multiple level crossings for larger systems we observe

true factorisation only for the level crossings that coincide with the factorisation field,

the results for the correlation functions are given in section 5.5.

5.4 Wavefunctions

By taking advantage of the N = 4 system and the manageable size of the states, it is

possible to probe the states exactly. This allows us to explore this complex arrangement

of entanglement within the di↵erent ground states, and visually show the di↵erence in

the states between OBC and PBC.

The di↵erences between the open boundary conditions and the periodic boundary con-

ditions become vividly apparent when viewed visually. By looking at the energy levels

alone, it is the similarities that are obvious; most prevalently it can be seen that the two

energy levels cross the same number of times. The periodic boundary conditions add a
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symmetry to the system, which is reflected in the wavefunction and is best discussed by

plotting the amplitude of the probability of our chosen basis states for the ground state

wavefunction. The basis is given in the above section 5.3. These are given in Fig. 5.15,

5.16 and 5.17 for OBC, PBC and the XYZ-model with PBC respectively.
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Figure 5.15: The wavefunction amplitude for the anisotropic XY-model spin chain
for N = 4 and � = 0.6. The spin basis for a N = 4 system is more complicated
than for the dimer and without PBC the occupied states lack symmetry. Only the
fully antiferromagnetic states pair up (|"#"#i+ |#"#"i) and the two ferromagnetic anti

aligned pairs (|""##i+ |##""i)

The wavefunction for the ground state of the N = 4 chain (OBC) is similar to the

structure for PBC, but lacking in symmetry which means that the amplitudes do not

group like they did for PBC. The amplitude of the individual basis states rarely repeat

with only the fully antiferromagnetic states (|"#"#i+ |#"#"i) matching interactions and

amplitudes, and the two ferromagnetic anti aligned pairs (|""##i+ |##""i) as indicated

in Fig. 5.15.

The states swap over at the level crossing and switch from one set of eight basis states

with non-zero amplitudes to the other set of eight, which would be a step towards making

the states separable at the level crossings. As neither of the level crossings occur at the

factorisation field for OBC and the di↵erences in the amplitudes, it is not possible to

acquire a linear combination of these states that leads to factorisation.
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Figure 5.16: The wavefunction amplitude for the anisotropic XY-model for a N = 4
system with period boundary conditions for � = 0.6. With the periodic boundary
conditions all spins in the system experience the same interactions. This four-fold
symmetry is reflected in the occupied ground state, where orientation with the same

interactions can now double up as indicated in the legend.
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Figure 5.17: The wavefunction amplitude for the anisotropic XYZ-model for a N = 4
system with period boundary conditions for � = 0.6. As supported by the dimer results
and the energy spectrum there is no real di↵erence in the XYZ-model where the same

basis states are occupied in the ground state as found in the XY-model.
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When periodic boundary conditions are applied, all the conditions for a factorised ground

state come together. The amplitudes of the wavefunction for the anisotropic XY-model

with � = 0.6 are given in Fig.5.16 and in comparison to OBC the wavefunction be-

comes much clearer to understand. To aid this, the two states can be rewritten in kets

representing a plaquette N = 4 arrangement:
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Where we have used the standard shorthand for singlets. Here, we write the

ket notation for the N = 4 system in a square clockwise arrangement to be able to

demonstrate a singlet state between sites four and one, i.e. | 1 2
4 3 i. The parameters

↵’s and �’s are functions of h
z

and are from Eq.5.16. The field-evolution of these

wavefunctions is plotted in Fig.5.16 alongside the N = 2 case. Note that both ground

states feature both parallel and anti-parallel entanglement.

In continuation from conclusions drawn from the dimer, the XYZ-model N = 4 system

is consistent with the anisotropic XY-model. The same states are occupied at similar

proportions and the same conditions for factorisation are satisfied at the second level

crossing.

The size of the states quickly become unmanageable for systems above N = 4 where

N = 6 states are made up of 64 bases, even visually it is impractical. Fortunately there

are other ways that indicate a factorised state in a spin chain. In the thermodynamic
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limit the correlation functions are used to find a ‘flatness’ that would indicate a semi-

classical state where the spins classically snap into antiferromagnetic long-range order.

5.5 Correlation Functions

The correlation functions are an e↵ective measurement that visually represent the spin

behaviour in a chain. In the thermodynamic limit the real space correlators take any

spin in the chain and compare it to all others as a function of their displacement. This

can show the order and give information about the correlation length of the system.

Directly, the correlation functions can not quantify the entanglement in the system and

even a very strongly correlated system does not equal an entangled system.

For all directions for ↵� = x, y, z the correlation functions for displacement R where

R = |i� j| are given as:

⇢
↵�

(R) =
D

Ŝ↵
i

Ŝ�
i+R

E

. (5.23)

For antiferromagnetic interactions, the correlation function zigzags between anti-correlated

and correlated as the spins form a general anti-ferromagnetic order. The maximum value

the correlation functions can take is ⇢
↵�

(R) = 1
4 , an example of this being at R = 0 when

the calculation is for a spin correlated with itself. It should be noted that to have LRO,

the correlators do not have to be all maximally correlated. LRO is demonstrated by a

non-zero correlator at long distances, where it can be shown that the correlator tends

to some finite value as R ! 1. The behaviour of the correlation functions is carefully

considered in the numerical results depending on the computational limit and require-

ment on R, meaning that when discussing the thermodynamic limit it is important to

verify that all calculations computationally converge.

Quantum fluctuations in the ground state of the anisotropic XY-model e↵ect the cor-

relation functions but do not destroy LRO in the antiferromagnetically ordered phase.

Thermal fluctuation can destroy LRO and their e↵ects can mask the behaviour of quan-

tum fluctuations. Above zero temperature there are additional thermal fluctuations and

for the system to still exhibit an entanglement transition it needs to be in a regime

that is dominated by the ground state. This means that the temperature of the system

needs to be comparable to the gap of the system, where in the thermodynamic limit

this gap is between the doubly degenerate ground state and the excited states. Fig.



Chapter 5. The Entanglement Transition in Finite Chains 98

5.18 shows diagrammatically an antiferromagnetic chain with LRO in the ordered phase

with quantum fluctuations; a classical antiferromagnetic correlation with LRO, such

that would be seen at the factorisation field; and an antiferromagnetic correlations with

very strong fluctuation that could be thermal fluctuations, with the full length of decay

of the correlators shown demonstrating a finite correlation length [25] [56] [96] [48].

displacement
0

xx

-
displacement

0

xx

-

displacement

0

xx

-

Figure 5.18: The green plot shows an example of an antiferromagnetic chain with LRO
and quantum fluctuations. The blue plot shows an example of an antiferromagnetic
chain with LRO and no fluctuations. The red plot shows an example of an antiferro-
magnetic chain with no LRO with a finite correlation length, where the fluctuations

that caused the decay could be thermal fluctuations.

Ideally, in the correct temperature regime, the e↵ect of the factorisation field would

be enough to overcome any thermal and quantum fluctuations and produce classical

looking ‘flat’ correlation function . This temperature needs to be comparable to the gap

in the system. This is a very low temperature, which has implications on the numerical

methods used to compute the results in the thermodynamic limit. The computations

need to go to larger and larger system sizes the lower the temperature is, in order to

capture the full behaviour of the system. This is related to the correlation length and

becomes incredibly important at these low temperatures, where the decay in correlations

span large distances. If the full correlation length is not taken, then the system when

Fourier transformed can lead to false results 3.
3
Imagine an extremely long correlation length that decays over many sites but only the portion of

the middle of the correlation function was taken and Fourier Transformed. The middle section would

appear ‘flat’ and it’s Fourier transform would tend towards a delta peak.
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Computationally, the lowest temperature that was achieved with full convergence of

results was at T = 0.1J . This was not low enough to find the entanglement transition in

the thermodynamic limit and was in agreement with unpublished experimental results

from within the collaboration.

5.5.1 Thermodynamic Limit

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-20 -15 -10 -5  0  5  10  15  20

ρ
xx

Displacement

h=0.97
h=0.98
h=0.99
h=1.00

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-30 -20 -10  0  10  20  30

ρ
xx

Displacement

h=0.97
h=0.98
h=0.99
h=1.00

Figure 5.19: The absolute value for the correlation function for the xx interactions for
the thermodynamic limit. (a) is the ground state correlations across the factorisation
field h

f

= 0.98 [3 sf] for � = 0.2. The red line shows a flat correlation function at
the factorisation field and it can be clearly seen that above and below this value the
corrrelators buckle around the red line demonstrating the quantum fluctuations. (b)
shows the same results for above zero temperature for T = 0.1J the correlations in the
system decay monotonically, no LRO is recovered at the factorisation field or around
it, and definitely no LRO flat correlations. These results were calculated using the
equations given in Chapter. 3 section 3.2 for the method developed by Barouch and

McCoy [10]

Fig. 5.19 shows results calculated for the thermodynamic limit in the ground state and

at T = 0.1J , across the factorisation field for � = 0.2 at h
f

= 0.980. The absolute value

for the correlator is taken as it is already known that the system is antiferromagnetic

for the xx correlation function. This makes it is easier to identify true ‘flatness’ in the

ordered phase. The red line shows a flat correlation function at h
f

= 0.980 exactly and

just above and below it there is a ‘buckling’ around that flat line indicating quantum

fluctuations. At above zero temperature the decay of the correlation length is severe at

T = 0.1J and there is no LRO an no identifiable quantum fluctuations.

The correlation functions, and as a progression the neutron scattering cross section,

are global measurements, which is another reason why it is vital to capture the entire

correlation behaviour of the system. It is important to be able to quantify and identify
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entanglement using a global measurement. Entanglement is typically quantified by a

local theoretical measures, like concurrence. When using finite-sized systems, the di↵er-

ence between a global measurement and a local measurement becomes less distinct, and

it is more relevant to discuss the finite-sized systems with PBC as molecular magnets

instead of using them to describe bulk properties of the thermodynamic limit. The corre-

lations are strengthened by periodic boundary conditions, making them ideal candidates

to resist fluctuations in the correlation functions as is demonstrated in the section below.

5.5.2 Finite Chains

In this section, the correlation functions are used to explore the region across the level

crossings in the finite-sized systems for both the OBC and PBC and for low temperature

calculations.

Figure 5.20: The absolute value for the correlation function for the xx interactions
for the N = 4 chain with open boundary conditions for the interactions from one edge
of the chain to the other, where the pairs of correlations (⇢

i,j

) start at site i = 1 and the
comparison site j runs from j = 1, 2, 3, 4 to the other edge of the chain. Field values are
taken across the two level crossing for (a) LC1 and (b) LC2. The degeneracy at these
points do not o↵er a flatness in the correlation function, however the presence of a level
crossing is indicated by a general ‘step’ down in the correlation function. For both the
plots the correlation functions just before the levels crossings do not noticeably change

and are behind the red lines

Fig. 5.20 shows the absolute value for the real space correlator ⇢
xx

. For a better

comparison to the periodic boundary conditions the displacement of the correlator is

taken for pairs of spins from one end of the chain to the other where the pairs of
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Figure 5.21: The absolute value for the correlation function for the xx interactions for
the N = 4 chain with periodic boundary conditions where because of the symmetry for
the PBC case the displacement is R = |i� j|. The first column are results for the zero
temperature ground state and the second is for above zero temperature at T = 0.1J .
The interactions are the same for any site at the displace on the x axis due to the
symmetry of the system. As with the open boundary conditions, results across both
the level crossings are shown in the rows. TheN = 4 system is quite unique and with the
system being so small, a flat correlation function is achieved at the first level crossing in
the ground state despite the system not completely factorising. The correlator remains
flat and the second level crossing at the factorisation field is indicated by a large ‘jump’
in the correlations. At T = 0.1J it is seen that the temperature fluctuations destroy

LRO at LC1 but it is recovered at the factorisation field h
f

= 0.980.

correlations (⇢
xx

(i, j)) start at site i = 1 and the comparison site j runs from j = 1, 2, 3, 4

to the other edge of the chain. This way the furthest displacement is possible to analyse

the full ‘length’ of the correlation function. Measurements are taken that span both level

crossings for this system at h
LC1 = 0.300 and h

LC2 = 0.790, neither of which coincide

with the potential factorisation field for � = 0.2 at h
f

= 0.980. Without the feature

of a level crossing there is no chance to break the entanglement. It has already been

shown in previous sections that these states do not factorise. As a test to the correlation

functions it is also observed that no ‘flatness’ is achieved. Despite this, the states still

cross over and a ‘jump down’ in the correlators is seen, thus the correlators are sensitive

to the level crossings.
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The N = 4 system with PBC in Fig. 5.21 shows the correlators (left column) for the

ground state and (right column) for the temperature T = 0.1J . With PBC, the N = 4

correlators become quite compact with the furthest distance two spins can be apart

being two sites. Therefore any flatness in the correlations are reliant on the correlation

between sites 1 and 3 (or 2 and 4). This isn’t ideal, so it is fortunate that an analysis

of the states was directly possible. At zero temperature, the systems’ xx-correlation

function goes flat at the first level crossing and remains so until it passes through the

second level crossing at the factorisation field. By looking at the T = 0.1J correlator it

is seen that the correlator only goes flat at the factorisation field h
f

= 0.980. This is

robust at these temperatures. This is very promising and could indicate a temperature

range for possible experimentation.

For the slightly larger systems for N = 6 with OBC and PBC assessing the correlation

functions gives a wider distance of sites to confirm a flat behaviour for the whole system.

It is the best option to look for factorisation where we can no longer study the states on

their own. Results are plotted for measurements that span each level crossing for the

parameter � = 0.2 for OBC and PBC at zero and finite temperatures.

The N = 6 open chain correlation functions plotted in Fig. 5.22 holds no surprises.

Across all three of the level crossings there is no evidence for a factorised state. Again,

the level crossings do not coincide with the factorisation field but they are detectable as

jumps in the correlators.

The same system with PBC becomes instantly more interesting. At each level crossing,

as the field increases to the final level crossing at the factorisation field, the correla-

tors detect the crossing but experience an overall reduction. As Fig.5.23 shows, at the

first level crossing exactly, there is some flattening in the ‘middle’ of the system. This

flattening spreads a little on the second level crossing and at the factorisation field the

system goes completely flat.

Above zero temperature for T = 0.1J it can be seen in Fig.5.24 that the flatness in the

correlators at the factorisation field is robust at this temperature. This stands as an

encouraging result for finite-sized systems and a more thorough temperature analysis

takes place in the next chapter when discussing neutron scattering data.
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Figure 5.22: The absolute value for the correlation function for the xx interactions
for the N = 6 chain with open boundary conditions for the interactions from one edge
of the chain to the other, where the pairs of correlations (⇢

i,j

) start at site i = 1 and
the comparison site j runs from j = 1, 2, 3, 4, 5, 6 to the other edge of the chain. Again,
without periodic boundary condition edge e↵ects prevent any LRO or ‘flatness’ in the

correlation functions in the single chains.

The N = 8 systems are the last system size where correlators will be plotted for the same

parameters and temperatures given from theN = 6 example. The trends and advantages

of these systems are clear and there are more techniques to consider in conjunction with

the correlations functions. Fig.5.25 shows the correlation function for a N = 8 single

chain spanning its four level crossings. No indication to a factorised state is found across

any of the level crossings. Interestingly, at the last level crossing, the correlator does

level out in comparison, but can not maintain a flat behaviour towards the the edge of

the chain.

The correlations for theN = 8 system with PBC at zero temperature is shown in Fig.5.26

with its temperature counterpart at T = 0.01J given in Fig.5.27 spanning its four level

crossings. Like the N = 6 model, with each level crossing as the field increases the

correlators increasingly flatten at the that degenerate point. The states switch until at

the factorisation field the correlators become truly flat indicating a classical correlation.
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Figure 5.23: The absolute value for the correlation function for the xx interactions
for the N = 6 system with periodic boundary conditions taking field values across all

three level crossings.

Figure 5.24: The absolute value for the correlation function for the xx interactions
for the N = 6 system with periodic boundary conditions taking field values across all

three level crossings for T = 0.1J .
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Figure 5.25: The absolute value for the correlation function for the xx interactions
for the N = 8 chain with open boundary conditions for the interactions from one edge
of the chain to the other, where the pairs of correlations (⇢

i,j

) start at site i = 1 and the
comparison site j runs from j = 1, 2, 3, 4, 5, 6, 7, 8 to the other edge of the chain, taking
field values across all the level crossings. The chain system does not tend towards the
behaviour of the thermodynamic limit and finds no flat behaviour in the correlators

across any field range.

At finite temperature, for T = 0.01J , these features are still seen but the jumps in the

correlators seems to vanish and it is the factorisation field features that remain robust

at low temperatures.

The next chapter explores these small periodic boundary condition systems as small

magnetic rings. It is ascertained whether these features shown in the correlators are

detectable using neutron scattering techniques and tests their evolution within a low

temperature scale.

5.5.3 Reciprocal Space Correlations Function

A step towards studying the neutron scattering cross section, which has its complications

for small geometric shaped molecules, is to look at the reciprocal space correlation
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Figure 5.26: The absolute value for the correlation function for the xx interactions
for the N = 8 system with periodic boundary conditions taking field values across all
the level crossings. Across the first three level crossings there is a little flattening of the
correlation function but it doesn’t reach the whole system. Only at the factorisation

field h
f

= 0.98 does the system become completely flat

function in the thermodynamic limit. Simply transforming the correlation functions into

reciprocal space would not consider the geometry for a small clustered system that the

neutron would experience. When discussing bulk properties using finite-sized systems

with PBC, the systems are so small that numerical resolution in creating the step sizes

in reciprocal space would add fluctuations around the peak. In this section, to relate

better to more realistic neutron scattering data, only the thermodynamic limit will be

discussed as a preface to principles behind neutron scattering.

As mentioned previously, neutron scattering information is global information; the neu-

trons can not limit themselves to only interact with pairs of sites within the sample.

The data produced is in reciprocal space. This highlights how important it is when con-

sidering the correlation function to capture the whole length of behaviour of the system,

whether it is LRO or a full correlation decay.
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Figure 5.27: The absolute value for the correlation function for the xx interactions
for the N = 8 system with periodic boundary conditions taking field values across all
three level crossings for T = 0.01J . This temperature does not a↵ect the flat behaviour

at the factorisation field.

By understanding the real-space correlation functions it is possible to split ⇢
xx

(R) into

two terms that describe di↵erent parts of its behaviour, such that;

⇢
xx

(R) = (�1)R
h

⇢short
xx

(R) +
�

�

�

⇢bulk
xx

�

�

�

i

; (5.24)

where (�1)R shows the underlying antiferromagnetic behaviour in the correlators; ⇢short
xx

represents the e↵ect of the quantum fluctuations on the correlators, thus at h
f

then

⇢short
xx

= 0; and
�

�⇢bulk
xx

�

� represents the bulk behaviour of the correlators.
�

�⇢bulk
xx

�

� is a posi-

tive constant in the ordered phase and zero when disordered. The system is disordered

in xx at h � h
c

and for finite temperatures T � 0. In simplistic terms, the reciprocal

space correlation functions are just the Fourier transform of the real space correlation

functions, as written below [97];

F [⇢
xx

](k) =
1

2⇡

1
X

R=�1
exp�ikR ⇢

xx

(R), (5.25)



Chapter 5. The Entanglement Transition in Finite Chains 108

For our purposes, for a theoretical view of the entanglement transition at zero temper-

ature the Fourier transform of F [⇢short
xx

](k) is a suitable tool. In the ground state we

look for the behavior of F [⇢short
xx

](k) to equal a flat line of finite value at exactly h
f

4.

The flat line corresponds to the anti-ferromagnetic classical chain that ⇢bulk
xx

represents,

F [rhobulk
xx

] would give a delta peak if the limits of R±1 could be taken. By eliminating

the FT of the bulk takes the delta peak away, leaving any FT peak a result of quantum

fluctuations. Above and below the transformed peak has di↵erent behaviour giving the

peak a non-monotonic trend as h passes over the entanglement transition [97] [25].

Figure 5.28: These show diagrammatically the FT behaviour of the model in the
thermodynamic limit above zero temperature for an example of (a) non monotonic
behaviour of the k-space correlator indicating a collapse of quantum fluctuations and the
entanglement transition and (b) monotonic behaviour that indicates that no transition

has taken place as the FT peak steadily decays.

Above zero temperature, a more realistic behaviour of the FT peak is from all of Eq.5.25

including the bulk behaviour, which because of thermal fluctuations is no longer a delta

peak and needs to be considered. As h increases the area under the FT peak must stay

the same so the width of the peak is an indicator for our purpose. To elaborate, without

the entanglement transition the correlators would show an antiferromagnetic ordered

phase become a ferromagnetic one as h increased, with the FT peak steadily decreasing

to a flat line as the spins saturated in the z direction. If there was an entanglement

transition and its signature was able to dominate over the thermal fluctuations then at

that point the system would become a classical-like antiferromagnetic chain and the FT

peak would tend towards a delta peak depending on the computational limits on R.

This would be represented by a non-monotonic behaviour in the FT peak as h passed

over h
f

. These two scenarios are represented diagrammatically by Fig.5.18.

4F [⇢short
xx

](k) also equals a flat line at high fields as the system has classically saturated and there

are no quantum fluctuations as h ! 1.
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For the finite-sized calculation for small quantum clustered materials, a signature of the

entanglement transition is identified directly using the neutron scattering cross section

in chapter 6.

5.6 Concurrence

Concurrence was introduced in Chapter 2 as a commonly employed theoretical measure

of entanglement and in Chapter 4 it was shown explicitly how to calculate concurrence

for a dimer model. Concurrence is a local measure between two spins. For systems

larger than N = 2 the concurrence of any two spins within that system is sensitive to

the entanglement of the whole the system. This means that two spins can be labeled

as a ‘subsystem’ with the remainder of the whole system being its e↵ective ‘environ-

ment’. The concurrence calculated for the subsystem contains information about the

environment too, and for our ring models with PBC any two spin subsystem will give

the concurrence for the whole system. To separate the subsystem the reduced density

matrix RDM is used to describe the behaviour of the whole system [56]. To prove its

e↵ectiveness to the system as a whole entity we will give an example using a two-spin

system, where the first spin is called the subsystem and the second spin is called the

environment. This arrangement is diagrammatically shown in Fig. 5.29.

1 2

Sub Env

1 2

4 3

Sub

Env

1 2

3

4

6

5

Sub

Env

Figure 5.29: These are diagrams showing how to separate a whole system into a
subsystem and the environment that acts on for a few di↵erent system sizes that go
towards constructing the reduced density matrix. The dashed lines indicate the di↵erent

options for periodic or open boundary conditions.

In practice there is very little reason to perform the RDM on a two spin system as exact

operations are simple to do on such a small system. Here, we will use the example to

demonstrate that a measurement performed on the subsystem of the two-spin system

only, i.e. on spin 1, can detect whether the system as a whole is in an entangled or pure
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state. We recall from Chapter 4 the density matrix for the ground state singlet | i for

a dimer is:

⇢̂ = | i h | = 1

2

0

B

B

B

B

B

B

@

0 0 0 0

0 1 �1 0

0 �1 1 0

0 0 0 0

1

C

C

C

C

C

C

A

. (5.26)

The RDM is;

⇢̂
RDM

=
X

�=",#
(I⌦ h�|

e

) ⇢̂ (I⌦ |�i
e

) , (5.27)

here, � represents the spin of the environment of the system that is discarded i.e "

and # for the dimer, and the unity matrix I ensures that the operation is performed

on the correct spins such that: |�i
s

⌘ |�i ⌦ I and |�i
e

⌘ I ⌦ |�i. The operation pulls

out everything attached to the environment and its spin basis and the RDM of the

subsystem is left behind.

⇢̂
s

=
X

�=",#
h�|

e

1

2

⇣

|"i
s

|#i
e

h"|
s

h#|
e

� |#i
s

|"i
e

h"|
s

h#|
e

� |"i
s

|#i
e

h#|
s

h"|
e

+ |#i
s

|"i
e

h#|
s

h"|
e

⌘

|�i
e

; (5.28)

extracting out the environment:

⇢̂
s

=
X

�=",#

h1

2
h�| #i

e

h�| #i⇤
e

|"i
s

h"|
s

� 1

2
h�| "i

e

h�| #i⇤
e

|#i
s

h"|
s

�1

2
h�| #i

e

h�| "i⇤
e

|"i
s

h#|
s

+
1

2
h�| "i

e

h�| "i⇤
e

|#i
s

h#|
s

i

=
1

2
|#i

s

h#|
s

+
1

2
|"i

s

h"|
s

. (5.29)

Therefore the RDM of the system is:

⇢̂
RDM

=
1

2

0

@

1 0

0 1

1

A . (5.30)

This reduced density matrix, though only containing data from the subsystem, can tell

us that the system as a whole is not pure and contains entanglement. For comparison,

let the system be in an available pure state |""i and produce the reduced density matrix
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in the same way:

⇢̂
s

=
X

�=",#
h�|

e

⇢̂ |�i
e

=
X

�=",#
h�|

e

�

|"i
s

|"i
e

��

h"|
s

h"|
e

�

|�i
e

=
X

�=",#
h�| "i

e

h" |�i⇤
e

|"i
s

h"|
s

= |"i
s

h"|
s

, (5.31)

this gives the following reduced density matrix;

⇢̂
RDM

=

0

@

1 0

0 0

1

A . (5.32)

In contrast to entangled singlet state, Eq. 5.32 tells us the the whole system is in a pure

state.

We return to Fig 5.29 but regard the two diagrams larger than two spins, we show that

for the calculations in this section the subsystem taken from the finite-sized systems

contains spin 1 and 2 only as N increases. The dashed lines in the diagrams indicate

that both PBC or OBC can be used. For PBC the system is symmetric and any pair of

neighbouring spins would give the RDM. It should be noted that di↵erent pairs of spins,

that are not nearest neighbours, would yield di↵erent results. For OBC the implications

of the RDM are more complex, as the calculation is heavily dependent on which sites

make up the subsystem, i.e. a subsystem for sites 1 and 2 would give di↵erent results

than a subsystem containing sites 2 and 3 despite also being nearest neighbours. It

is speculated that the edge sites contain very di↵erent e↵ects than bulk sites. In this

section, results for concurrence for OBC are given with a subsystem of sites 1 and 2

only. The following derivation for the RDM for our model is not generalised enough

to calculate for any pair of spins, but the preliminary results are interesting and thus

included.

For all the finite-sized systems used in this work we are able to take the exact ground

state as calculated numerically and use it form the RDM for a system that completely

occupies the ground state at T = 0. This also means that the calculation does not

consider the degeneracy at di↵erent level crossings, and can only take a single state at a
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time instead of being able to take any linear combination of degenerate states. For the

finite-sized systems we will derive the RDM matrix for the N = 4 system outlining the

process that is consequently the same for the N = 6 and above models. A general state

| i in the basis for a N = 4 system in terms of its wavefunction amplitudes is:

| i =

0

B

B

B

B

B

B

B

B

B

@

C1

C2

C3

...

C16

1

C

C

C

C

C

C

C

C

C

A

(5.33)

For this state the subsystem will consist of spin 1 and spin 2 and the environment that

is extracted will be spin 3 and 4. The extraction basis for � comes from spins 3 and 4

and is "", "#, #" and ##. The reduced density matrix can be written in general:

⇢̂
s

=
X

�="","#,#",##
h�|

e

�

| i h |
�

|�i
e

. (5.34)

As the sum is processed through � ="", "#, #", ## it pulls out the environment and leaves

the subsystem behind. This can be considerably slimmed down since only the parts of

the extracted basis that match up will give a non-zero term for the subsystem. For

example, let �e be any part of the extracted basis and �s be what is left over from the

subsystem (with i representing which amplitude C from | i from i = 1, 2, 3...16 and j

from h |⇤):

C⇤
j

C
i

h�|�e

i

i
⌦

�e

j

|�
↵

|�s

i

i
⌦

�s

j

�

� , (5.35)

this will only give a non-zero term if �e

i

= �e

j

for when the sum takes the terms for

� = �e. For example, when � ="" and �e ="":

C⇤
j

C
i

h"" | ""i h"" | ""i |�s

i

i
⌦

�s

j

�

� ) C⇤
j

C
i

|�s

i

i
⌦

�s

j

�

� . (5.36)

This is repeated for all the extracted basis "", "#, #" and ## of the environment. The

RDM is made up of a sum of the coe�cients C⇤
j

C
i

and the subsystem basis |�s

i

i
D

�s

j

�

�

�

essentially describes the position in the 4⇥ 4 RDM that the sequences of coe�cients are



Chapter 5. The Entanglement Transition in Finite Chains 113

placed. As shown:
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This process was repeated for the N = 6 system where the subsystem for spins 1 and

2 were retained, and the environment of spins 3 to 6 was extracted. The coe�cients C
i

of the state | i and the coe�cients C⇤
j

of h | were for i, j = 1, 2, 3...64 and for larger

systems i, j = 1, 2, 3...2N for system size N . A pattern was quickly apparent and though

extrapolation a RDM was constructed for any finite-sized system where the state is

known. The pattern can be summerised as follows:
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Where m = 2N

4 for finite-sized systems of size N . It should be reiterated here that this

general form for the RDM is for our finite-sized model where the subsystem taken is

always sites 1 and 2. This (4 ⇥ 4) RDM for Eq.5.38 is used to calculate the ground

state concurrence of any of the finite-sized systems discussed in this chapter from the

subsystem containing sites 1 and 2. In the same method that was demonstrated in the

previous chapter for the dimer model.

The matrix ⇢̂⇢̃ is solved for the eigenvalues (�
i

) in descending order, and are used to

define concurrence from Eqs. 2.17 and 2.18.

Fig.5.30 uses this derivation to calculate the ground state nearest neighbour concurrence

for a range of finite-sized systems up to N = 12 for PBC for � = 0.5 and h
f

= 0.866. As
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concurrence can not distinguish between types of entanglement, it can only comment on

a scaled amount of entanglement. It is observed that despite switching states multiple

times, the finite-sized system evolves quickly towards thermodynamic limit behaviour,

leaving an apparently smooth curve (within the plots precision) for N = 12. As with the

dimer calculations, in the ground state, the calculation does not consider degeneracy,

so it can not give zero entanglement based on this constraint, see section 4.4. For N=4

it was possible to find the correct linear combination of ground states that lead to a

factorised state, then use the calculated linear combination to calculate concurrence.

For the in-plane anisotropy � = 0.6 and out-of-plane anisotropy � = 0 the factorisation

field is h
f

= 0.8 exactly; the linear combination for A | 
A

i + B | 
B

i is A = 0.729 and

B = �0.685 [3d.p] gives the concurrence tending towards zero 8.70⇥ 10�5.

In the apparent thermodynamic limit (N = 12) both alternating states are tending

towards zero entanglement at the factorisation field. This supports that the thermody-

namic limit does not require a switching of states for an entanglement transition to take

place, suggesting that in the thermodynamic limit, concurrence is a continuous function.

In contrast, for very small systems, having proved that entanglement is zero at the fac-

torisation field it can be deduced that the entanglement transition happens suddenly

as the states become degenerate and switch. This occurs with relatively strong entan-

glement on each side of the factorisation field, which facilitates the detection of the

transition compared to the thermodynamic limit.

The same calculation was run again for the exact same parameters for � = 0.5 and

h
f

= 0.866 but for OBC. Fig.5.31 plots the results. Without the same symmetry that

the periodic boundary conditions system has, this plot only shows the amount of entan-

glement at the edge of the chains; for sites 1 and 2 only. It is likely that the concurrence

in the centre of the respective chain lengths is quite di↵erent. Unfortunately, this av-

enue was not explored and it can only be speculated that the results would give further

interesting insights in the chain models and their edge e↵ects.

By studying Fig.5.31 alone there are some interesting features to discuss. Despite the

system not factorising and the correlators producing showing no indication of a classical

state, asN increases, the thermodynamic limit evolves towards a common behaviour that

looks very much like an entanglement transition. This has not been fully understood

in this project. It seems that for both N = 10 and N = 12 they find a common
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behaviour and tend towards zero at around the same field value. This field value is not

the factorisation field for the parameters plotted, and if it does coincide with a level

crossing we do not know if it is the last level crossing or if there is any significance if it

is. Perhaps more interestingly, would be to see if the concurrence calculated from the

central spins of the chain (i.e. for sites N

2 and N

2 ± 1) would also have a point where

the concurrence tended to zero as the system size increased towards the thermodynamic

limit and whether it was at the same point as Fig. 5.31, somewhere new, or even

tending towards the same behaviour as the PBC plots in Fig. 5.30. This would ask the

question whether there was some finite-sized system size where the behaviour PBC and

OBC tend towards each other and if so, then that particular limit could still be exactly

solvable using exact diagonalisation. Alternatively, if both OBC and PBC tend towards

di↵erent outcomes then this comments on the very strong e↵ects the edges of chains can

have on the overall behaviour of the system. As said, this particular avenue for OBC

was not pursued as was conducted late into the project. Further work into this area

and, in general, by exploring the behaviour of thermal concurrence would o↵er further

information into the entanglement transition in these 1D antiferromagnetic systems.

The following chapter solely looks at the finite-sized models with periodic boundary con-

ditions and examines molecular magnets of di↵erent sizes. The chapter focuses on the

experimental implications of the entanglement transition and explores the neutron scat-

tering cross section of these small nanomagnets. We show their suitability for detecting

the entanglement transition above zero temperatures.
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Figure 5.30: The concurrence between two neighbouring spins as calculated from
the reduced density matrix for a range of system sizes N = 4, 6, 8, 10 and 12 for the
anisotropic XY-model with � = 0.5 at the ground state. As the system evolves towards
the thermodynamic limit, the concurrence tends to zero at the factorisation field only.
For smaller systems, breaks can be seen that indicate the level crossings and the states
switching over. The calculation does not take the states as degenerate at these crossings
and thus the vanishing of concurrence exactly at the factorisation field exactly can not

be shown.
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Figure 5.31: The nearest neighbour concurrence as calculated from the reduced den-
sity matrix from sites 1 and 2 for a range of system sizes N = 4, 6, 8, 10 and 12 for the

anisotropic XY-model with � = 0.5 at the ground state for OBC.



Chapter 6

Experimental Implications for

Molecular Magnets

The theoretical foundations that describe the mechanism of the entanglement transition

have been fully described in previous chapters. Chapter 4 identifies the connection

between the entanglement transition and a level crossing between the two lowest-lying

energy levels at the factorisation field. Chapter 5 expands on this by exploring the

energy spectra of larger finite-sized systems and finds that the number of level crossing

is dependent on system size 2
N

as supported by Giorgi et al [31]. We go on to prove

that it is only the last level crossing in the systems with periodic boundary conditions

that coincides with the factorisation field that actually factorises. It is clear that for

the entanglement transition in finite-sized systems to occur the two lowest eigenstates

need to cross, at that point they become degenerate. Degeneracy in the ground states

doesn’t automatically mean that they would be able to completely factorise and it is this

factorisation that breaks the entanglement in the system. The requirement is so; the

system must undergo a change in the type of entanglement, and at the transition, the

entanglement must be broken letting the system become separable. The particular type

of entanglement in the finite-sized systems is not straight forward, and is not a simple

case of antiferromagnetic entanglement switching over to ferromagnetic entanglement.

An observation of the amplitudes of the states involved show a complex arrangement

of entanglement in both states, but what is clear is that these states are orthogonal to

each other. In this chapter we are able to plot the neutron scattering cross-sections and

to better understand what the measurable e↵ects of these two ground states would be.

118
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Chapter 5 also calculated the real space correlation functions, which contribute to the

neutron scattering function. A clear indication of the entanglement transition was seen

in the real space correlation functions when the absolute value of |⇢
xx

(R)| became ‘flat’

across the displacement in the system for all R 6= 0 where R = |i � j|. These e↵ects

translate well into reciprocal space and their neutron scattering cross-section that relates

directly to real experiments, give a clear signature of the entanglement transition in this

chapter.

Chapter 6 explores the experimental implications of these finite-sized systems by using a

more physical interpretation of their PBC by studying them as small magnetic molecules.

We present neutron scattering predictions for a range of system sizes, whilst focusing on

the plaquette and hexagon model in great detail. Neutron scattering experiments o↵er

a wide range of techniques to probe the inner magnetic structure of materials. Albeit

based on simplified models, the theoretical predictions in this chapter are produced in

a way that are easily comparable to real experimental results. As a preface to the

calculated scattering functions for clustered quantum molecules, a brief outline of the

basics behind various neutron scattering methods is also provided.

6.1 Magnetic Signature

It is well-known that the level crossings described in the previous chapter coincide with

jumps in total magnetisation [89]. Fig.6.1 shows the magnetisation of the anisotropic

XY-model as a function of the applied field for N = 4 open and closed clusters (the

parameter values are given in the caption). N/2 jumps are seen, corresponding to each

of the gap closings. For the closed rings, the last jump coincides with the entanglement

transition.

In previous chapter we have shown that the key feature of the state at h
f

in our model is

that it is devoid of quantum entanglement [18] [62] [63] [58] [59] [16]. One consequence

of this is that, as in any classical state, but unlike the states at higher and lower values

of h
z

, all phase coherence between the wave functions of individual spins is lost at h
f

.

Meaning that the individual quantum components, i.e the spins, can be described using

their wave functions and when the system is entangled all the wavefunctions are in

phase. At the factorisation field, when the entanglement is broken, the phase of the



Chapter 6. Experimental Implications for Molecular Magnets 120

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2

〈 S
z 〉

hz/J

0

0.2

0.4

 0  0.5  1  1.5  2

∆
〈 S

z 〉

hz/J

T=0.00
T=0.01
T=0.05
T=0.10
T=0.20

Figure 6.1: Total z-axis magnetisation per site hS
z

i as a function of applied field
for a cluster with N = 4 magnetic sites described by the anisotropic XY-model. The
temperatures are as indicated (in units T/J), with the bottom set of curves correspond-
ing to a closed ring, or plaquette, and the top set of curves to a small chain segment
or, equivalently, a broken ring, as depicted. The anisotropy parameter is � = 0.5 in
all cases. The inset shows the di↵erence between the chain and the ring. The arrow
indicates the field at which the ground state of the ring factorises exactly, where the
largest jump in magnetisation takes place and also where the di↵erence between the

chain and ring magnetisation is largest.

wave function of each individual spin can fluctuate independently of the others. The

individual spin phases can be considered as a new, delocalised degree of freedom that

emerges at h
z

= h
f

.

Experimentally, this could be accessed through measurements of magnetisation of sam-

ples with di↵erent concentrations of open and closed rings. The inset to Fig. 6.1 shows

the prediction for such a measurement in the simplest, limiting case, when one sample

is made up exclusively of open rings, while the others are all closed. Clearly, in the

ground state, the maximum di↵erence in magnetisation h�S
z

i occurs quite precisely at

the factorisation field. The e↵ect is smoothed by temperature, but it is clearly visible

for T ⇠ 10% of J . Two sample values of J/k
B

for real cluster magnets are 17 K for Cr8

[8] and 138 K for Cu2PO4OH [77] . A smaller peak is seen at the field at which there

is another level crossing. This is what one would expect in view of the approximate
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factorisation at that field which we noted above. The enhanced value of h�S
z

i is due

to the fact that the jump in magnetisation occurs at a di↵erent value of the field for an

open ring, where the exactly factorised state is never realised.

6.2 Neutron Scattering Techniques

Neutron scattering techniques o↵er a wide and versatile approach to exploring condensed

matter with many advantages over other methods. Thermal neutrons (300K) have the

ideal wavelength (� ' 1.6
�
A) for probing solids and excitations [98]. Neutrons interact

with matter in two ways; they can scatter directly o↵ the nuclei to provide information

about the structure; and they can interact with the electron orbitals. Neutrons have an

intrinsic spin. This means that the neutron can scatter o↵ the spin orbitals and give

data about the magnetic structure of the system through a dipole-dipole interaction.

This is a sweeping generalisation, as the processes involved in neutron scattering are

very complicated. The data that is theoretically predicted for neutron scattering exper-

iments rely on the advanced methods in magnetic neutron scattering [99]. This section

will outline the basics of di↵erent types of neutron scattering as a progression towards

constructing the scattering function that was used to produce results for a simplified

model of a small family of magnetic molecules.

6.2.1 Neutron Scattering for Magnetic Molecules

This chapter is connecting the theory of the entanglement transition with quantities that

can be measured and are easily comparable to real neutron scattering experiments. The

models used with PBC are now fully recognised as small molecular rings and magnetic

structures instead of representing any bulk properties of the larger system size limit.

Here, we take the anisotropic XY-model 1D Hamiltonian as first given by Eq. 3.6 with

PBC and use this to model a 1D antiferromagnetic chain that has been shaped into a

ring based molecule. Fig. 6.2 shows the formation of our rings diagrammatically for the

N = 4 system to make a plaquette and the N = 6 system that forms a hexagon. In

Chapter 5 when discussing our models with PBC the results for the energy spectra and

correlation functions did not depend on the geometry of the system. When calculating
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Figure 6.2: A simple model of a magnetic cluster with N = 4 (left) and N = 6
(right) magnetic sites. The green arrows represent the global X,Y axes. The dashed
lines represent the local Sx and Sy easy axes (tangentially and radially, respectively; by
convention the positive orientations correspond to the clockwise and outward directions,
respectively). The Z and Sz axes point out of the page. The blue lines represent bonds
along which magnetic interactions occur. We assume the interactions between the spins
are diagonal in the local axes and given by the anisotropic XY-model in Eq. 3.6. If one
of the bonds is missing between site N and site 1 we obtain open boundary conditions,
indicated by the blue dashed lines. The distance “a” indicated on each plot is used as

the unit of length and is set to 1 for any calculations.

the neutron scattering cross-section the geometry of the molecules does matter with

regards to the incoming neutrons that interact with the molecules.

This section gives the formula used to calculate the neutron scattering cross-section

predictions that are plotted in this chapter. Here, we also provide enough of the the-

oretical background to the neutron scattering cross-section to be able to understand it

and demonstrate how we use it with respects to our magnetic molecules. In the model

defined by Fig. 6.2 and Eq. 3.6, Ŝx

i

and Ŝy

i

are the first two components of the spin

at site i, measured along axes contained in the xy plane but forming an angle �
i

with

the x and y axes, respectively. Let �̂↵R
i

be the ↵th component of the spin at site i with

respect to the global axes x, y depicted in Fig. 6.2, which are site-independent. These

are global axes fixed to the orientation of the crystal. In the case of a neutron scattering

experiment, they could equivalently be taken to be the axes of the instrument. The

neutron scattering cross-section is given by Lovesey [100], and its component parts are

explain in turn in the following text:

@2�

@⌦@E0 =
k
s

k
i

(�r
e

)2
�

�

�

g

2
F (q)

�

�

�

2
e�2W (q)S (q,!) , (6.1)
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Here the function F (q) is the magnetic form factor, which depends on the shape in

momentum space of the magnetic moment of the ions, which can not be considered

point particles in an experiment. The Debye-Waller factor is e�2W (q), which reduces

the intensity of the scattered peaks and is caused by the motion of the atoms from their

equilibrium positions. the g-factor and � refer to e↵ects of the neutron and are also

not considered in our theoretical calculations, as we only plot the scattering function.

Before describing the scattering part of Eq. 6.1 represented by the function S (q,!) we

will take a couple of paragraphs to describe some of the basics of neutron scattering

with the purpose of explaining the cross-section, and where q and ! originate from.

In Chapter 5 we discussed briefly the reciprocal-space correlation functions that are often

described as being in k-space. These were obtained using simple Fourier transforms for

our model in the thermodynamic limit. K-space relates to the change of momentum

that the neutrons experience as they interfere with the sample. The simplest version of

neutron scattering is elastic scattering. The incoming, or incident, neutrons interact with

the nuclei of the sample and scatter without exchanging energy, i.e. without gaining or

losing energy from the sample. Therefore the interaction can be described by the change

of momentum that the neutrons experience;

P = ~ki � ~ks = ~q. (6.2)

The transfer of momentum is described using vectors where ki is the wave vector for

any incident neutron and ks is its scattered wave vector. The notation q is introduced

as the projection between them: q = ki � ks. As this is elastic scattering, there is no

energy transfer, so the energy can be given as E = ~(!
i

� !
s

) = 0, where the frequency

is ! = 2⇡⌫ and does not change.

Inelastic Scattering is a more generalised approach to neutron scattering experiments,

as it allows for an exchange of energy to occur, in addition to a transfer of momentum.

This allows the neutrons to probe excitations such as spin waves by interacting with

the spin orbitals in the sample. The first di↵erence comes from redefining the scattering

vector q from Eq. 6.2 as the scattered neutrons can now take on a di↵erent wave vector

and wavelength. This is shown in Fig. 6.3 that shows diagrammatically energy loss or

gain when the neutrons interfere with the sample.
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Figure 6.3: The scattering vector q is the di↵erence of the momentum between the
initial k

i

and scattered neutrons k
s

for inelastic scattering. Here the scattered neutron
can either gain or loss energy during their interaction with the sample, this is reflected

in the scattering vector.

The scattering vector q for inelastic neutron scattering is given by [99]

q2 = k2
i

+ k2
s

� 2k
i

k
s

cos 2✓. (6.3)

The transfer of energy can be written as E = E
i

� E
s

= ~(!
i

� !
s

). This convention

means that if the scattered neutron loses energy to the sample then E > 0 and vice

versa.

The detectors in a neutron scattering experiment count the number of neutrons in a

small area dependent on a scattering angle, the energy of the scattered neutrons and

a unit of times for that the detectors collect ‘counts’, this is incorporated into the

neutron scattering cross-section. The incident neutrons are described as a collimated

beam of monochromatic neutrons; they interact with a sample and are scattered. The

di↵erential cross-section counts the scattered neutrons in given directions defined by

polar co-ordinates: 2✓ given in Fig. 6.3 and � as elevation from that plane. These

angles create a solid angle to a detector, where the flux of scattered neutrons � is

counted.

The solid angle defined by polar co-ordinates is given by the symbol ⌦, where �⌦ = �A

r

2 .
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r

2

A

z

Figure 6.4: The solid angle is mapped out using the polar co-ordinates ✓ and �.
This is shown as the volume that projects �A at a radius r. The cross-section is a
di↵erential with respect to the solid angle @⌦ with the idea of setting the resolution at

the detectors.

The area at the detector �A and the polar angles involved are drawn diagrammatically

in Fig.6.4. The total cross-section � is the ratio of scattered neutrons per unit time,

integrated for the total solid angle of a sphere � = 4⇡r2. To gather information about the

flux of neutrons in a given direction, the di↵erential cross-section ��

�⌦ is used in respect to

the solid angle, so that �⌦ is very small. This di↵erential function is defined in di↵erent

ways depending on the purpose of the measurement and the type of scattering. As a

general definition it is the solid angle density of neutrons scattered at a specific direction

per unit time over the incident flux.

For inelastic neutron scattering, the change of energy E = E
i

� E
s

= ~(!
i

� !
s

) is

brought into the cross-section, turning it into a double di↵erential over the scattering

angle �⌦ and also with respect to the energy transfer �E. In a broad interpretation this

is described as [99]:

@2�

@⌦�E
=

number or neutrons scattered per unit time into @⌦ and �E

incident flux · @⌦@E
. (6.4)

The partial di↵erential cross-section is represented di↵erently depending on the exper-

iment and implications. This can be for experiments that are a mixture of elastic and

inelastic scattering, or could be time varying samples and ‘time of flight’ experiments.

As the need of this project requires magnetic scattering over information about the

structure of the material, it is fortunate that the neutrons can be used to assess the
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space-time correlation function between magnetic components. For the predicted data

calculated in this chapter, it is assumed that the system is in equilibrium and the time

dependence is neglected. It is the scattering function in terms of the correlation functions

that will form the backbone of our neutron scattering predictions.

Returning to Eq. 6.1, the most important term is the total scattering function, which

can be broken down as follows:

S (q,!) =
X

↵,�

(�
↵,�

� q̂
↵

q̂
�

)S
↵�

(k,!) . (6.5)

The term (�
↵,�

� q̂
↵

q̂
�

) describes that the neutrons give information about the compo-

nent of the magnetic moment of the ions perpendicular to q, where q̂
↵

and q̂
�

are the

unit vectors for the components of q for ↵,� = x, y and z, though in our calculation

we constrain the neutrons to the xy plane so that q̂
z

= 0. The spin-resolved scattering

function is given by

S
↵�

(k,!) =
1

2⇡~

Z

dte�i!t

D

�̂↵k (0) �̂��k (t)
E

. (6.6)

Here

�̂k =
1p
N

X

R
j

eik.Rj �̂
j

(6.7)

is the Fourier transform of the spin operator expressed in terms of the global axes. As-

suming we know the magnetic form factor, Debye-Waller factor, etc. and that we detect

all neutrons regardless of the energy exchanged with the sample, ~!, the experiment

gives the integral S (q) ⌘
R

d!S (q,!) , which can be straight-forwardly related via Eq.

6.5 to the energy-integrated scattering function,

S
↵�

(q) =

Z

d!S
↵�

(q,!) . (6.8)

Inserting Eq. 6.7 into Eq. 6.6 and integrating w.r.t. ! we obtain

S
↵�

(q) =
1

N~
X

i,j

eiq.(Ri

�R
j

)
D

�̂↵
i

�̂�
j

E

. (6.9)

Here R
i

denotes the position vector of the ithmagnetic site in the cluster. The scattering

function is now represented in real space where the information about the spins in the
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system comes from the real space correlation functions, which were discussed and plotted

in the previous chapter. The problem of predicting the neutron scattering experiment

therefore reduces to expressing the correlators
D

�̂↵
i

�̂�
j

E

in terms of those in terms of the

local axes,
D

Ŝ↵
i

Ŝ�
j

E

. We do this using the rotations

�̂x
i

= cos�
i

Ŝx

i

� sin�
i

Ŝy

i

;

�̂y
i

= sin�
i

Ŝx

i

+cos�
i

Ŝy

i

;

�̂z
i

= Ŝz

i

.

(6.10)

Figure 6.5: The local axis maps onto the global axis per site as a function of the
rotations dependent on site and for angle �. This is a rotation in spin space, which
translates as the rotated Pauli matrices being written in terms of both �

x

and �
y

. As
the rotation is within the easy plane the z components remain unchanged.

This is shown visually by Fig.6.5, where the global axes in black share their origin with

the centre of a given molecule. The red local axis has its rotation dependent on site and

the vector R
i

shows the site position as relates directly to Eq. 6.9.

Thus � can be generalised

�̂↵
i

=
X

µ

⇤
↵,µ

(�
i

) Ŝµ

i

, (6.11)

where the matrix

[⇤
↵,µ

(�)]
↵ = x, y, z

µ = x, y, z

=

0

B

B

B

@

cos� � sin� 0

sin� cos� 0

0 0 1

1

C

C

C

A

(6.12)
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and the real space correlators are

D

�̂↵
i

�̂�
j

E

=
X

µ

X

�

⇤
↵,µ

(�
i

)⇤
�,�

(�
j

)
D

Ŝµ

i

Ŝ�
j

E

, (6.13)

which reduces the problem of calculating the correlators between components of the spins

defined with respect to the instrument’s axes
D

�̂↵
i

�̂�
j

E

to the correlators with respect to

the local crystal axes
D

Ŝµ

i

Ŝ�
j

E

. This can be inserted into Eq. 6.9 to calculate S
↵�

(q).

Once S
↵�

(q) are obtained, it is easy to get S (q).

For the results in this chapter, it is this scattering function that will be used to display

the information about the chosen magnetic molecules as they are all that are needed to

properly encapsulate the physics behind the ET and the experimental signatures that

could be taken from a real experiment.

6.3 Plaquette

As experienced from previous chapters, from a theoretical point of view, the most salient

feature of our model at the factorisation field h
f

is the transition between di↵erent types

of quantum entanglement [16]. It was shown from the amplitudes of the wavefunctions

that the two ground states that switch over at the transition are completely orthogonal

to each other. This suggests a strong e↵ect on the correlation functions, as seen from

a flattening in the real-space correlation function for PBC seen in section 5.5. In this

section, focusing on the plaquette the possibility of measuring, using neutrons, ET is

demonstrated by calculating the neutron scattering function.

Specifically, neutron scattering can be used to discriminate between antiferromagnetic

and ferromagnetic correlations and therefore a significant change in the magnetic neutron

scattering cross-section at h
f

is expected.

6.3.1 Anisotropic XY-model

Fig. 6.6 shows the frequency-integrated neutron scattering function S (q) as a function

of q
x

and q
y

for the anisotropic XY-model pictured in Fig. 6.2 for the N = 4 plaquette,

each time a ground state degeneracy is encountered there is a re-organisation of spectral
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hz=0.00

hz=1.50hz=1.25hz=1.00hz=0.92

hz=0.90hz=0.50hz=0.25

Figure 6.6: Frequency-integrated neutron scattering function S (q) as a function of q
x

and q
y

for the anisotropic XY-model pictured in Fig. 6.2 for the N = 4 plaquette. Each
panel corresponds to a magnetic field h

z

, as indicated for the Hamiltonian parameters;
� = 0.4 and � = 0. Note the values of h

z

are regularly-spaced except for two additional
panels, chosen to emphasise the sudden changes near the entanglement transition at

h
f

⇡ 0.917.

weight. For this set of parameters for N=4 and � = 0.4 the first level crossing occurs

between the plots at h
z

= 0.25 and h
z

= 0.50. At the last degeneracy, i.e. at the factori-

sation field h
f

= 0.916, there is a large transfer of weight to ferromagnetic peaks that

are not present in the zero-field state: one at q = 0 and N more at |q| = 2⇡
a

cos( ⇡
N

)�1,

� = 2⇡
N

n with n = 0, 1, 2, N � 1. The peaks corresponding to anti-ferromagnetic cor-

relations between the spins get much weaker, as their spectral weight is transferred to

the new, purely ferromagnetic ones. Thus the gap-closing fields between the two lowest

lying energy states (and especially the last one, corresponding in our model to exact

factorisation) have clear signatures in the neutron scattering cross-section, indicating

the re-organisations of correlations at such field values are crossed.

It is illuminating to plot the individual correlation functions S
↵�

(q), between di↵er-

ent components of the spins, which contribute to the scattering function S(q). Such

spin-resolved correlators can be accessed experimentally via polarisation analysis. Al-

ternatively, they can be obtained by observing, in a crystal, di↵erent regions of reciprocal

space and exploiting the dipole-selection rules. Our predictions are shown in Fig. 6.7 (a)

for the ground state of the N = 4 model with � = 0.4. From the previous chapter, it is

known that the system after h
f

, though dominated by ferromagnetic interactions, there
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Figure 6.7: Top panels: field dependence of the spin-resolved correlators across
the entanglement transition for a cluster with N = 4 spins and anisotropy parameter
� = 0.4. The top panels show the correlators S

xx

(q), S
yy

(q), S
zz

(q), and S
xy

(q)
under the indicated applied magnetic field, which is just below the factorisation field
h
f

⇡ 0.916. The bottom panels show the same correlators at a slightly higher field, also
indicated, which is just above h

f

. Bottom panels: the S
zz

(q) correlator over a broader
range of fields, as indicated. The two leftmost panels correspond to fields below the
first gap closing, the third and fourth panels are between the first gap closing and the

factorisation field, and the last panel is above the factorisation field.

is additional entanglement with other components of the state with antiferromagnetic in-

teraction. These are apparent as small antiferromagnetic peaks that lessen as the applied

field continues to increase. This is made evident by Fig.6.7 that splits up the scattering

function into its component parts before and after the entanglement transition.

The top panel shows how S
xx

(q), S
yy

(q), S
zz

(q), and S
xy

(q) change as the factorisation

field h
f

is spanned. The latter is essentially unchanged by the entanglement transition.

The xx and yy correlators have two sets of anti-ferromagnetic peaks: some are very

intense and are una↵ected by crossing the entanglement transition; others are much

weaker and get suppressed as h
z

goes from just below to just above h
f

. It is these

latter peaks whose disappearance is noticed in Fig. 6.6. Their persistence indicates
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that anti-ferromagnetic correlations overall change very little at the entanglement tran-

sition. Clearly, the suppression of anti-ferromagnetic correlations is not the dominant

phenomenon at h
f

. This sets a clear distinction between the entanglement transition

and the quantum critical point known to exist in the bulk (N ! 1) phase diagram of

these models. In contrast, the zz correlator changes dramatically at h
f

: it goes from

being featureless just below h
f

to showing very strong ferromagnetic peaks. This is

consistent with the jump in magnetisation discussed above section.

Fig. 6.7 (b) shows the zz correlator over a broader range of fields. At low fields the

z components of the spins are anti-ferromagnetically correlated. At the first closing

of the gap the system goes into the state where there are no correlations between the

z components of di↵erent spins, before emerging into the ferromagnetically-correlated

state above h
f

. Interestingly the first state is an adiabatic continuation of the third

one (supported by Fig. 5.16), the only di↵erence being the relative amplitudes of ferro-

and antiferromagnetic configurations. Although the S
zz

(q) function of q has the highest

spectral weight after the ET, the addition interactions from the remaining functions can

not be ignored as their contribution to the ferromagnetic peaks require that the new

overall state is entangled. This entanglement is lost at very high fields. When the field

saturates the spins to a state |""""i then the neutron scattering peaks become circular

in the 2D q
x

q
y

plane.

At finite temperatures, the neutron scattering functions look similar to those in the

ground state, as Fig. 6.7 also shows. The broadening of the entanglement transition

with temperature is further discussed below as seen in Fig. 6.8.

This shows the scattering function plots for a range of increasing field values for the

same anisotropic XY-model at T = 0.1J , which as a comparison to the thermodynamic

limit was unable to find any indication of the entanglement transition at the same finite

temperature. The graphs show that the same states are occupied compared to the zero

temperature plots and that a change to the ferromagnetically entangled state occurs,

however, the transition is more gradual. This is acceptable and the di↵erent entangled

states are still detectable using these neutron techniques.

It is clear from the above results that a di↵use neutron scattering experiment on such

finite-size magnets can be used to determine a “phase diagram” of the entanglement
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hz=0.00 hz=0.70hz=0.50hz=0.25
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Figure 6.8: Frequency-integrated neutron scattering function S (q) as a function of
q
x

and q
y

for the anisotropic XY-model pictured in Fig. ?? for the plaquette at T =
0.1J . Each panel corresponds to a magnetic field h

z

, as indicated for the Hamiltonian
parameters; � = 0.4 and � = 0. The transition becomes spread through a larger range
of field values at this temperature, though the changes in spectral weight are consistent

for the ET.

transition. Specifically, a sudden jump in S(q = 0) reflects the sudden change of corre-

lations occurring at h
z

= h
f

.

Interestingly, the sharp transition occurs at a value of the field that is N�independent

and given by the Kurmann et al.. 3.8 (the cyan line in Fig.6.9). Note in particular that

the transition identified does not correspond with the quantum critical point (QCP)

known to occur at h
c

= 1 in the thermodynamic limit N ! 1 (the black line in the

same figure).

The sharpness of the entanglement transition is in clear contrast to a quantum-critical

point, which is expected to be very broad in such small systems, even at zero temper-

ature. Indeed the critical field is evident as a much broader feature at another field

h⇤
c

, which is independent of � but depends strongly on N , being closer to h
c

for the

larger N value. This is what finite-size scaling would suggest for a critical point and

is in marked contrast to the signatures of the entanglement transition and other level

crossings that has been discussed above. The latter are thus clearly not long-wavelength

phenomena. Indeed as shown in Fig.6.9 the smoothed QCP is only apparent outside
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Figure 6.9: Ground-state value at q = 0 of the magnetic neutron scattering function,
S(q), as a function of the anisotropy parameter � and the applied field h

z

for N = 4.
The curved cyan and vertical black lines indicate, respectively, the factorisation field
h
f

(h
f

=
p

(1� �2)) and the quantum critical field in the limit N ! 1, h
c

= 1. [10]
[11] Insets: dependence of S(q) on wave vector q for h = 0.90 and 0.92, respectively.

These two values are just below and just above the entanglement transition.

the dome defined by the factorisation field, indicating that factorisation, not criticality,

dominates the phase diagram for clustered magnets.

6.3.2 XYZ-model

In this section we employ the same approach as above and discuss the calculated neutron

scattering cross-section plots for the XYZ-model, whose Hamiltonian is given in Eq. 3.5.

Fig. 6.10 is the scattering function for the ground state of the XYZ-model for the

following in plane anisotropy parameter � = 0.5 and out-of-plane anisotropy parameter

� = 0.5 as explored in the previous chapter for its energy spectra etc. A more detailed

selection of field values are provided, but it can be seen that the spectral weight only

changes at two field points. These correspond to the two degenerate points at the first

level crossing and the factorisation field at hf = 1.41. As expected, the plots are directly

comparable to the anisotropic XY-model from Fig. 6.6 as the distribution of the spectral
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Figure 6.10: Frequency-integrated neutron scattering function S (q) as a function
of q

x

and q
y

for the XYZ-model pictured in Fig. 6.2 for the plaquette. Each panel
corresponds to a magnetic field h

z

, as indicated for the Hamiltonian parameters; � = 0.5
and � = 0.5. An additional panel for a saturated field of h

z

= 10 is given at the end to
show how the ferromagnetic peaks become more rounded as the system become pure

weight for di↵erent phases are basically the same and it is only the position of the level

crossings that change.
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Figure 6.11: Ground-state value at q = 0 of the magnetic neutron scattering function,
S(q), as a function of the applied field h

z

and anisotropy parameters � for � = 0.0, 0.5
and 1.0 respectively, for the XYZ-model N = 4 plaquette.
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The same approach is taken to construct phase diagrams for the XYZ-model for a

selection of in plane anisotropy values for � = 0.0, 0.5 and 1.0 for 0.0  �  1.0 as given

in Fig. 6.11. The factorisation field follows the second level crossing from Eq. 3.9 and

there is a very distinct change from the predominantly antiferromagnetically entangled

ground state to the predominantly ferromagnetically entangled ground state, where the

ferromagnetic peak from S(0) very suddenly appears as indicated by the bright yellow

sections. Again, there is no indication of any QCP for systems of this small size and it

is thought that by being about to solve the XYZ-model exactly, that it provides insight

into further materials in which, to detect the entanglement transition using neutron

scattering.

=0.2 =0.6=0.4

Figure 6.12: Temperature-dependence of the quantity plotted in Fig.6.9 for the pla-
quette. The in-plane anisotropy is � = 0.2, 0.4 and 0.6 (left to right) as indicated.
The factorisation field h

f

is indicated in each case by the vertical cyan line. Inset:
dependence of S(q) on wave vector q for T = 0.1J and the perpendicular values of field

indicated, this corresponds to the inset of the ground state value in Fig.6.10.

At finite temperatures, the signature of the entanglement transition is less sharp, but

still clearly visible for temperatures ⇠ 10% of the exchange constant J . This is clear from

the finite-temperature plots in Fig.6.8. In addition, Fig.6.12 shows the same quantity

depicted in Fig.6.9 as a function of field and temperature for three particular values of

the anisotropy parameter, � = 0.2, 0.4 and 0.6. Clearly, the rapid change of S(q = 0)

with h
z

near h
f

persists. The insets to the � = 0.4 panels also show very similar re-

arrangements of the q-dependence of the scattering function to those shown in Fig.6.9,

albeit they occur over a wider field range.

For completeness, Fig. 6.13 gives the finite temperature signature of the entanglement

transition for the XYZ-model for the anisotropy values � = 0.5 and � = 0.0, 0.5 and

1.0 respectively. The dashed lines show the factorisation field for these values of the

anisotropy. As with the anisotropic XY-model the transition is still apparent though



Chapter 6. Experimental Implications for Molecular Magnets 136

0 0.5 1.0 1.5 2.0
Field h

0.001

0.05

0.10

0.15

T/
J

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0 0.5 1.0 1.5 2.0
Field h

0.001

0.05

0.10

0.15

T/
J

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0 0.5 1.0 1.5 2.0
Field h

0.001

0.05

0.10

0.15

T/
J

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

=0.0 =1.0=0.5

Figure 6.13: Temperature-dependence of the quantity plotted in Figure.6.11 for the
plaquette in the XYZ-model. The in-plane anisotropy values are for � = 0.5 � = 0.0, 0.5
and 1.0 (left to right) as indicated. The factorisation field h

f

is indicated in each case
by the vertical green dashed line.

over a broader range in the field as the temperature increases. It is arguable that the

XYZ-model could even be used to detect the ET at temperatures up to 15% of the

interaction energy.

The plaquette model provides a very strong case for a neutron scattering experiment

that would easily detect the entanglement transition in an achievable environment.

6.4 Hexagon

The same approach is used in studying the hexagon model using Figure.6.2 as the method

to calculate the global properties of the Hexagon. From the previous chapter, it is known

that the N = 6 model with periodic boundary conditions has distinct behaviour in the

correlation functions when the system experiences an external field that matches a level

crossing in the energy spectrum. This N = 6 system size has three level crossings with

the last level crossing at the factorisation field, where the correlation functions ‘flatten’

and the hexagon undergoes the ET. The neutron scattering function is plotted in Fig.

6.14 for the hexagon ground state for the same field steps as the plaquette and the same

parameters for � = 0.4 and h
f

= 0.916.

The states are antiferromagnetically entangled at zero field and at high fields after

the factorisation field level crossing become predominantly ferromagnetically entangled,

though in between this there are some more complicated types of entanglement. There

is little di↵erence at the first level crossing but at the second level crossing there is

some shift in the spectral weight to allow for some ferromagnetic peaks to join the
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hz=0.00 hz=0.90hz=0.50hz=0.25

hz=1.50hz=1.25hz=1.00hz=0.92

Figure 6.14: Frequency-integrated neutron scattering function S (q) as a function of
q
x

and q
y

for the XY-model pictured in Fig. 6.2 for the hexagon. Each panel corresponds
to a magnetic field h

z

, as indicated for the Hamiltonian parameters; � = 0.4 and � = 0.
Note the values of h

z

are regularly-spaced except for two additional panels, chosen to
emphasise the sudden changes near the entanglement transition at h

f

⇡ 0.916.

antiferrormagnetic peaks. It is at the last level crossing that the antiferromagnetic

peaks are reduced and the ferromagnetic peaks take an increase in intensity. As the

field continues to increase there is a gradual decrease in the antiferromagnetic peaks

until the state completely saturates and becomes ferromagnetic aligned with the field.

It was not possible to analyses directly the separate ground states for the system sizes

larger than the plaquette. For the hexagon there are 64 basis states where each ground

state has 32 non-zero amplitude components to assess, where again, the two ground

states are orthogonal to each other. It is possible to break the scattering function into

parts, as was done with the plaquette, in order to gain further information about the

origins of the di↵erent complex arrangements of peaks. Fig 6.15 shows the individual

contributions to the total scattering function. This break down reveals some complicated

structures in the di↵erent global planes that come from the geometry of the hexagon.

S
xx

(q) and S
yy

(q) have an antiferromagnetic contribution from particularly angled sites

with potentially some magnetic frustration in these planes, indicated by a pinch point

in the middle. However, when all summed the symmetry of the system is regained and

the pinch point lost. The ferromagnetic peaks seem to only be from S
zz

(q) so are only
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Figure 6.15: Field dependence of the spin-resolved correlators across the entanglement
transition for a cluster with N = 6 spins and anisotropy parameter � = 0.4. The panels
show the correlators S

xx

(q), S
yy

(q), S
zz

(q), and S
xy

(q) under the indicated applied
magnetic field, which are just below and above the factorisation field h

f

⇡ 0.916.

ferromagnetic aligned with the applied field. Across the factorisation field there is a little

change in all the component parts, with the biggest visual change being the strength of

the ferromagnetic interactions now dominating the scattering function. There is still a

significant amount of antiferromagnetism left to add to the entanglement in the system.

This is supported by the concurrence calculation in the previous chapter in Fig.5.30.

At finite temperatures, the shift in spectral weight for S(q) as the field increases follows

the same trends as the ground state from Fig. 6.14. The changes are, again, more

gradual and over a broader range of fields as shown in Fig. 6.16 for a reasonable high

finite temperature of T = 0.1J but the intention is the same. To demonstrate this

further the temperature scale is studied from a slice from the phase diagram, which like

before was plotted from S(0) for all anisotropy in Fig. 6.17.

Using Fig. 6.17, it is clearer to observe the changes over the level crossings, where for

low anisotropy all three crossings can be seen. It is also seen that the ferromagnetic

peak at S(q) emerges at the second level crossing and significantly strengthens at the

factorisation field. At high in plane anisotropy most of the features are lost and the

growth of the ferromagnetism could be called monotonic. The inset shows a qualitative

change in the scattering peaks for � = 0.4 as the antiferromagnetic peaks are suppressed

at the transition which can also be identified at temperatures up to T = 0.1J .
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hz=0.00 hz=0.60hz=0.50hz=0.25

hz=1.50hz=1.25hz=1.00hz=0.95

Figure 6.16: Frequency-integrated neutron scattering function S (q) as a function of
q
x

and q
y

for the anisotropic XY-model pictured in Fig. 6.2 for the hexagon at T =
0.1J . Each panel corresponds to a magnetic field h

z

, as indicated for the Hamiltonian
parameters; � = 0.4 and � = 0. The transition becomes spread through a larger range
of field values at this temperature, though the changes in spectral weight are consistent

for the ET.

The finite temperature e↵ects broaden the transition, where the figure inset for � = 0.4

in Fig.6.18 matches the qualitative change in behaviour as the one in Fig.6.17 but over

a broader range of the field. Also for � = 0.4 the distinction of the earlier level crossing

is lost very quickly, leaving only the entanglement transition significantly changing the

neutron scattering signature of the system at finite temperatures.

The XYZ-model gave encouraging results for the plaquette and results were obtained for

the hexagon were equally promising. The scattering cross-section plots for S(q) looked

the same as the anisotropic XY-model and there is no need to provide them all here.

Instead, in the same way as before, Fig. 6.19 shows a selection of phase diagrams for

the anisotropy parameters for � = 0.5 and � = 0.0, 0.5 and 1.0 respectively.

For � = 0.0 and 0.5 the distinction of all the level crossings are very apparent; the

second crossing shows the appearance of the central ferromagnetic peak, which then

jumps higher in intensity at the factorisation field in agreement with the plaquette from

Fig. 6.11 . For the last panel, � = 1.0 for low values of � the system tends towards

the Ising model where, as was also seen, in Fig.6.17 that the clear boundary at the
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Figure 6.17: Ground-state value at q = 0 of the magnetic neutron scattering function,
S(q), as a function of the anisotropy parameter � and the applied field h

z

for N = 6.
The curved cyan and vertical black lines indicate, respectively, the factorisation field
h
f

(h
f

=
p

(1� �2)) and the quantum critical field in the limit N ! 1, h
c

= 1. [10]
Insets: dependence of S(q) on wave vector q for h = 0.90 and 0.92, respectively. These

two values are just below and just above the entanglement transition

=0.2 =0.6=0.4

Figure 6.18: Temperature-dependence of the quantity plotted in Figure.6.17 for the
hexagon. The in-plane anisotropy is � = 0.2, 0.4 and 0.6 (left to right) as indicated.
The factorisation field h

f

is indicated in each case by the vertical cyan line. Inset:
dependence of S(q) on wave vector q for T = 0.1J and the perpendicular values of field

indicated, this corresponds to the inset of the ground state value in Figure.6.17

factorisation field is lost, we do not have a reason for this. The green line indicates the

factorisation field for � = 1 from Eq. 3.9, so it can be seen where the ferromagnetic

peaks start to deviate away from it. Therefore, for the temperature analysis the values

of � = 0.0 and 0.5 are taken and expanded for a temperature scale both with anisotropy
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Figure 6.19: Ground-state value at q = 0 of the magnetic neutron scattering function,
S(q), as a function of the applied field h

z

and anisotropy parameter � for � = 0.0, 0.5
and 1.0 respectively, for the XYZ-model hexagon. The dashed line on the last panel

for � = 1.0 shows the factorisation field h
z

.

� = 0.5 fixed in Figure.6.20.
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Figure 6.20: Temperature-dependence of the quantity plotted in Figure.6.19 for the
hexagon in the XYZ-model. The in-plane anisotropy values are for � = 0.5 � = 0.0
(left) and 0.5 (right) as indicated. The factorisation field h

f

is indicated in each case
by the vertical green dashed line.

The temperature analysis remains promising, and just like the plaquette (Fig. 6.13),

the XYZ-model shows a broadened entanglement transition up to a very respectable

finite temperature of 15% of the interaction J . Despite the broadening in the transition

there is still a very real qualitative change in behaviour of the system, that is more than

change between antiferromagnetism to ferromagnetism. The analysis has shown that

the states involved are complicatedly entangled and very di↵erently entangled across

the transition, with the two lowest-lying states being orthogonal. This is seen by the

di↵erent contributions of the scattering function from Fig.6.15 in conjunction with the

concurrence calculation in the previous chapter.

The hexagon model, though more complex that the plaquette in the states and arrange-

ment of entanglement is also a viable candidate for experimentation on small clustered
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quantum materials.

6.5 Larger Rings

Having discussed very small spin clusters of N = 4 and N = 6 separately, this section

will combine the discussion for slightly larger magnetic molecules as the behaviours

exhibited by the rings follows similar trends.

The zero-field magnetic neutron scattering spectrum of a system with N = 8 has been

investigated experimentally in detail by Baker et al. [8]. In their paper there is a

deep minimum in scattering at the ferromagnetic wave vector q = 0 and N sharp

antiferromagnetic peaks with |q| = 2⇡
a

at angles � = 2⇡
N

�

1
2 + n

�

, n = 0, 1, 2, . . . , N � 1

to the q
y

axis. A similar calculation for N = 8 confirms this close resemblance in Fig.

6.21 for � = 0.0 at zero field h = 0.0 (left) and at a saturated field h = 10.0 (right).

Figure 6.21: Frequency-integrated neutron scattering function S (q) as a function of
q
x

and q
y

for the anisotropic XY-model for the octagon. (left) is the zero field calculation
for an isotropic ring of N = 8 dominated by antiferromagnetic entanglement. (right)
is the saturated field calculation h

z

= 10 for a classical ferromagnet aligned with the
applied field.We take a larger range for q

x

and q
y

to visually determine that the whole
range of the scattering function is captured and repeats.

The scattering function is calculated in much the same way as the smaller molecules

shown in Fig. 6.2, a larger q range is used to ensure the whole signature is captured.

When the systems get larger the analysis of the scattering function becomes more di�cult

and the number of level crossings appear to change the behaviour of the system more
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Figure 6.22: Frequency-integrated neutron scattering function S (q) as a function of
q
x

and q
y

for the XY-model for the decagon. (left) is the zero field calculation for an
isotropic ring of N = 10 dominated by antiferromagnetic entanglement. (right) is the
saturated field calculation h

z

= 10 for a classical ferromagnet aligned with the applied
field.

gradually making the last level crossing at the factorisation field more di�cult to observe.

From Figure.6.21 it is clear that at these simple limits for h = 0, � = 0 the N = 8 system;

and Fig.6.22 for the N = 10 system, are completely antiferromagnetic and at h = 10.0

for � = 0 the ring systems are saturated ferromagnetically with the field.

These trends are seen in the hexagon and it was the signature of the transition that

is observed most clearly in its phase diagram, as opposed to the lower level crossing

features. Fig. 6.23 is the phase diagram for the octagon for values taken at S(0), with

additional information given by the break down of the neutron scattering function in

Figs. 6.24 to 6.26.

The phase diagram does show some indication of all four level crossings for a N = 8

ring at low in-plane anisotropy, with the factorisation field being the most dominating

feature. Ferromagnetism appears at the level crossing before the factorisation field as

was observed with the hexagon model. The scattering function can be split up to better

understand where the di↵erent features come from.

Starting with the zero field calculation for a ring with � = 0.4 the system is mostly

antiferromagnetically entangled. As plotted in Fig. 6.24 each panel contributes to some
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Figure 6.23: Ground-state value at q = 0 of the magnetic neutron scattering function,
S(q), as a function of the anisotropy parameter � and the applied field h

z

for N = 8.
There is some indication of all four level crossings at lower in-plane anisotropy range.

Sxx(q) Syy(q) Sxy(q)Szz(q)

Figure 6.24: Field dependence of the spin-resolved correlators across the entanglement
transition for a cluster with N = 6 spins and anisotropy parameter � = 0.4. The panels

show the correlators S
xx

(q), S
yy

(q), S
zz

(q), and S
xy

(q) at zero field.

complex arrangement of entanglement dominated by antiferromagnetic interactions. The

next Fig. 6.25 shows before and after the entanglement transition.

The results are very similar to the hexagon; there is very little apparent shift in the

spectral weight in its structure across the transition: the S
zz

(q) panel shows that the fer-

romagnetic peaks have already been established. The spectral weight is shifted though,
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Figure 6.25: Field dependence of the spin-resolved correlators across the entanglement
transition for a cluster with N = 6 spins and anisotropy parameter � = 0.4. The panels
show the correlators S

xx

(q), S
yy

(q), S
zz

(q), and S
xy

(q) at around the factorisation
field.

as it is reduced from the antiferromagnetic peaks in S
xx

(q) and S
yy

(q) and there is a

significant increase in S
zz

(q) ferromagnetic arrangement in favour of the applied field.

The concurrence plots from the previous chapter indicate that the whole states are still

quite strongly entangled and they also remind us that the behaviour of the thermody-

namic limit can be mimicked by fairly small systems, even as small as N = 10. This is

encouraging for these slightly larger systems as the amount of entanglement is reduced

when distributed over more that one neighbour for an interacting site [21].

Syy(q) Sxy(q)Szz(q)Sxx(q)

Figure 6.26: Field dependence of the spin-resolved correlators across the entanglement
transition for a cluster with N = 6 spins and anisotropy parameter � = 0.4. The panels
show the correlators S

xx

(q), S
yy

(q), S
zz

(q), and S
xy

(q) at saturated field h
z

= 10.

It is by saturating the field where Fig. 6.21 (right) can be recreated in a classical

configuration of spins aligned with the field. Fig. 6.26 shows how S
xx

(q) and S
yy

(q)

evolve in this limit, where their sum leads to a flat background scattering.
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As these small clustered ring systems get larger, though there is evidence to suggest

an entanglement transition, its experimental signature becomes more of a challenge to

detect. There is an unusual balance between very small systems, where the complex ar-

rangement of entangled states above and below the entanglement transition can be better

understood, and a slightly larger ring systems. Their individual states are too large to

fully study but they appear to tend towards some thermodynamic limit behaviour, which

would suggest that the two ground states, as they slowly become degenerate average out

to parallel and antiparallel entangled states [3]. As the level crossings get closer together

it is only the e↵ect of the factorisation field level crossing that remains as a detectable

change of behaviour in the entanglement.

It is this balance of system size that finds a signature of the entanglement transition

that can be picked up using the neutron scattering cross-section. Where the very small

systems give a very clear change in scattering function that is robust to finite tempera-

tures and the larger systems that mimic the thermodynamic limit which show a distinct

feature in the concurrence but a better way of detecting it is needed.
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Figure 6.27: Dependence of an entanglement transition signature on cluster size, N .
The plot shows the size of the jump in the quantity shown in the phase diagrams for the
anisotropic XY-model for system sizes N = 4, 6 and 8 (and numerically calculated for
larger systems) as the entanglement transition boundary is crossed, �S(q = 0). The

in-plane anisotropy is fixed at � = 0.4.

Fig. 6.27 shows the relative size of the jump in S(0) when compared to the value before

and after the transition. The trend is that as the rings get larger their respective ‘jump’

at the transition gets smaller and harder to detect. For the smallest system N = 4 the

jump is approximately 80% to the central peak where for the largest system calculated
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N = 12 it was less than 50%. There are not enough data points to determine whether

at the thermodynamic limit this signature tends to zero of some finite, albeit very low,

temperature.

The best chances in experimentally detecting the entanglement transition using neutron

scattering techniques would be to use either the plaquette or hexagon model where

the signature of the transition is most clear and the temperatures potentially the most

reasonable.

It is important to not completely discount the slightly larger systems as they clearly ex-

perience the entanglement transition as the thermodynamic limit does but may require

a di↵erent technique to detect it clearly [97]. These rings would still hold an advantage

over the real thermodynamic limit as it seems likely that they would have a more acces-

sible temperature range than the infinite 1D chain systems, along with the flexibility of

their synthesis as discussed in Chapter 3.

There is potential for this area to be expanded with specific materials in mind. The most

natural progression of this work would be to directly model a real plaquette or hexagon

based-material, but larger systems would benefit from an analysis of real anisotropic

rings systems that can be modeled using the anisotropic XY-model or XYZ-model.

6.6 Additional Discussion

The previous chapter discussed a paper that was published by Campbell et al during

the time spent working on this project [9]. Another pivotal paper was published during

this time by Marty et al. with calculations towards neutron scattering experiments [12].

This paper is discussed in this section.

Marty et al. aim is to take the theoretical measures of entanglement in these types of

systems and form some scattering based experimental predictions [12]. Their concept is

to provide a lower bound estimation of entanglement of a general system using quantities

found in the scattering function. They state that for a value of the scattering vector q̄

(that relates to the change in momentum from a neutron scattered o↵ the sample) then

a Fourier Transform of the magnetic scattering cross section for q̄ is a lower bound pre-

diction on the amount of entanglement. This is a simplification of the process they have
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developed but outlines the key objective of the paper, which was to use experimentally

measurable quantities to comment on the amount of entanglement in a general system.

Figure 6.28: The lowest bound entanglement estimate for the anisotropic XY-model
in the thermodynamic limit calculated with chain lengths L = 200 for a range of tem-
peratures from lowest to highest from left to right. The lowest temperature plot shows
the entanglement transition as the narrow dark blue region that indicates zero entan-
glement whilst above and below this value the entanglement in non-zero. This plot also
indicates criticality at h

c

= 1.0 for the thermodynamic limit for the applied transverse
field. As the temperature increase the entanglement transition spreads out but would
still be detectable at suitably low temperatures using this lower bound quantity [12].

Figure.6.6 shows the lower bound entanglement approximation for the anisotropic XY -

model where h is the external transverse field and � is the anisotropy parameter. From

left to right the figures increase in temperature, starting e↵ectively in the ground state

and then a variety of low temperature states. The plots show that the amount of

entanglement in the system is non-monotonic and that in the ground state there is an

obvious blue trend dependent on h and � where there is no entanglement. This non-

entangled region spreads at higher temperature but the criteria for an entanglement

transition is still apparent, i.e the system is entangled and using an applied field this

can be tuned to zero at a particular point, after which it recovers. The point at which

their entanglement measure goes to zero is the factorisation field and not the critical field,

this is supported by Campbell et al. and our results [9]. Also in the finite temperature

calculations, a feature indicating any criticaility for these system sizes does not appear

in Fig.6.6.

This thesis explores many similar themes to Campbell et al. and Marty et al. but

the work has found a unique niche in the literature by directly modeling the neutron

scattering cross section for a range of magnetic molecules. With the very singular goal

of finding a neutron signature of the entanglement transition at achievable temperatures

it has lead the project through extensive study of finite-sized systems and the types of

new and exciting spin clusters that could apply to them.
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6.7 Axial Model

This entire project has been based around the use of 1D antiferromagnetic chains and

their inherently entangled states. The focus of Chapter 6 has been to apply our 1D

Hamiltonians to make 2D molecular magnets in the xy plane to explore the entanglement

transition using neutron scattering predictions. This approach has been very successful.

Using periodic boundary conditions in a 1D system to model small magnetic clusters,

though a valid approach, is a simplistic method and avoids any cross term interactions

that may arise in the geometry of the molecule. Another way of modeling the N = 4

plaquette and N = 6 hexagon is approached in this section that does consider cross-term

interactions.1

The anisotropic XY-model and its continuation into the XYZ-model have been the

foundation models for exploring the entanglement transition. One of the reasons being

the well-understood nature of the factorisation field phenomena in these models. This

has been discussed thoroughly in this thesis as the ET has been defined through this

process. Adding periodic boundary conditions and forming a family of ring systems to

model clustered quantum materials has allowed us to identify an ET signature using

neutron scattering data to a relatively high temperature scale.

Taking the Hamiltonian for a 1D system and using it to predict the behaviour of a

2D molecule has been discussed as a valid method, however, it ignores any cross-term

interactions in the xy-plane that the new geometry of the system might enforce. The

cross-terms could be a result of some spin orbital overlap as the chain is ‘bent’ round a

small circumference.

Some possible orientations of the orbitals is presented in Fig. 6.29 for a N = 4 sys-

tem, starting with a simple chain then giving two speculative examples of a plaquette

arrangement. Fig. 6.29 (b) has its interactions in the radial and tangential orientations

for a molecule as would be fitting to our model in Fig. 6.2 for the plaquette, with the

similar principle employed for the hexagon. Fig. 6.29 (c) is an equally valid approach

to modeling a plaquette but with the additional contribution to the interactions from

1
A third possible model to explore magnetic nano-structures would be to use Dzyaloshinskii-Moriya

interactions to include cross terms is documented in relation to a factorising magnetic field for a trimer,

seen in Florez et al. [101]
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1 2

34

1 2

34

(a) possible chain

(b) no cross-terms (c) possible cross-terms

1 2 3 4
SxSy

Figure 6.29: Our models when applied to real materials can form their interactions
in many di↵erent ways. This figure is a collection of possible orientations of the spin
interaction axis of our magnetic ions in a N = 4 system the green bubbles show an
interaction orbital for the S

y

spin interaction and the magenta bubbles indicate the
interaction for the S

x

spin direction. (a) shows a simple chain where arrangement
of the spin orbitals are the same for every ion. This is a representation of the 1D
spin Hamiltonians used throughout this project. (b) shows the possible arrangement
of orbitals that have tangential and radial components with regards to the plaquette
geometry as speculated for the results in the above sections for Chapter 6 and depicted
in Fig. 6.2. (c) is an equally valid arrangement of the orbitals on a plaquette that
contributes additional cross-terms to the interactions in the Hamiltonian, we will call
his model the axial model. These allow for a scenario where the spin component S

x

from one ion and interact with the S
y

from its nearest neighbour, dependent on the
angle between neighbouring pairs for larger rings

cross-terms between Ŝx and ŝy, we will refer to this model as the axial model as the

interaction act along the axial bonds between ions.

These cross-terms would depend on the type of material and when included in the

Hamiltonian, provide a di↵erent approach to modeling small nano-magnets. For the

particularly small molecules, i.e N = 4 and 6 it is an interesting avenue to explore

the e↵ect that these additional interaction terms would give to the entanglement in the

models. It is noted that the work presented in this section is not completed to the level

that the previous anisotropic XY -model and XYZ-model work was. The analysis that

was started shows this to be an interesting vein of work.
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Unlike the XY -model it is not possible to write a new Hamiltonian that can be used

for any small system size. Instead, the molecule, dependent on size, is considered as a

whole mapped onto a Hamiltonian with all the interactions listed. The plaquette model

becomes unique in this sense, that it can be entirely written in the global axis and

include all possible interactions. Whereas for the hexagon and any molecule larger, each

site has two axial arrangements for describing interactions: one for each neighbour as

the direction of the bond between neighbours changes.

Fig. 6.30 describes how the plaquette is built in the global axis.

3

1 2

4

X

Y

Figure 6.30: How to build the axial plaquette model for the global plane interactions.

The terms are taken and rotated into the local axes that matches the local axes from

Fig.6.2 for the plaquette because the 4-fold symmetry of the plaquette allows for the

each site to use the same interaction plane by rotating the axis on the site by ⇡

4 . The

interactions on each site are defined as follows, where the prime notation indicates a
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common local axis:
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Ŝx

0
1 � 1p

2
Ŝy
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(6.14)

These terms for the local axes from Eq. 6.14 can then be substituted into the global

definition from Fig. 6.30 and this is where the cross-terms for S↵
i

S�
i+1 for ↵ = x0, y0 and

� = y0, x0 , come from. The terms are collected to form the following Hamiltonian for

the plaquette:

H
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Ŝy

0

i+1 � Ŝy
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Let the anisotropy for this model be called �
g

where:

J
a

= J (1 + �
g

)

J
b

= J (1� �
g

) . (6.16)

The Hamiltonian can be written in its simplest form using the Pauli matrices:

H
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J
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. (6.17)
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The hexagon model can not be simplified in the same way as each site needs two axis

along the interaction direction for each neighbour. These are written in full for each

pair of interactions between sites where the xy are also the global plane:
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x

6 +
3

4
Ŝy

5 Ŝ
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For the hexagon, the Hamiltonian will remain in the global plane as the cross-terms are

already apparent. The interactions given in Eq. 6.18 can then be collected into the

following Hamiltonian:
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y

4 + Ŝy
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y

1 +

p
3

4
Ŝx
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Unfortunately this does not simply further, though as before J
a

and J
b

can be substituted

for �
g

using Eq. 6.16. It is the Hamiltonian for the axial model plaquette from Eq. 6.17

and the above Hamiltonian from Eq. 6.19 for the axial model Hexagon, that are solved

for this section of results.
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Figure 6.31: The energy spectra for the axial model plaquette (left) and the hexagon
(right) for the fixed parameter �

g

= 0.4. For the hexagon we give the lowest 16 energy
levels, as we are only interested in the behaviour of the lowest-lying energy states.

Using the same approach that was used with the anisotropic XY-model the initial step

in understanding the new axial model is to look at the energy spectra for both the axial

plaquette and the axial hexagon. These are shown in Fig. 6.31 for �
g

= 0.4. The whole

spectrum is given for the plaquette (left) and the lowest 16 energy states for the hexagon

(right) as it is only the lowest few states that are of interest.

The plaquette has two level crossings in the ground state between three di↵erent energy

levels. If the states associated with these energy levels are numbered from |1i to |16i

from lowest energy to highest energy from zero field then it is seen, that at the first level

crossing state |1i is crossed by state |2i, which, in turn at the second level crossing is

crossed by state |4i. Looking directly at these states, it quickly became obvious that

any combination of these states at a degenerate crossing point would not make them

factorisable. There are a few components of states that have zero amplitude for all

three states involved, for example |###"i = 0 for any field for |1i, |2i and |4i. Thus

for any combination of the states there would be no linear combination that would

allow the states to be separated at either of the level crossings. The states on their

own are entangled and have no common overlap so are orthogonal to each other, thus

are di↵erently entangled but without a factorisation point they can not break their

entanglement. In the beginning of this chapter it was said that our definition of the ET
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requires the states to completely break entanglement at the transition. Unfortunately,

for the axial plaquette the two lowest ground states will never fully decouple.

The energy spectrum for the axial hexagon resembles the spectrum for the anisotropic

XY-model in the way that it is only the two lowest states that cross each other and

they do this three times. It is not known whether they factorise at these level crossings,

though the concurrence for these models is calculated at the end of this section. Before

this, the gap for both the plaquette and hexagon are plotted in Fig.6.32 for a range of

anisotropy �
g

.
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Figure 6.32: The energy gap between the two lowest states in the energy spectrum
for the axial model plaquette (left) and hexagon (right) for a range of anisotropies.

The plaquette (left) shows two level crossings where the gap closes until the anisotropy

becomes greater than �
g

= 0.8. The first level crossing appears to be stationary and the

second level crossing appears to follow a familiar trend of h
LC2 =

q

1� �2
g

so decreasing

with higher anisotropy. As the second level crossing reaches the first the states do not

cross. For �
g

= 1 the two states above the ground states cross causing an inflection

in the gap as they cross over. Even though the states cross at the same value as the

factorisation field for the anisotropic XY-model, this value is not a factorisation field

for this model as it is based on assumptions for 1D antiferromagnetic chains. The same

reasoning can not be applied to the axial model but it is an interesting similarity even if

it’s origins are unknown. As stated above, it is known that these states in the plaquette

will not factorise.

The hexagon (right) has three level crossings, unlike the axial plaquette they do not

converge on each other at higher anisotropies. It seems that none of the level crossings

follow a known pattern or the factorisation field. As it di�cult to discuss much more
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about the axial hexagon. The concurrence was plotted using the same reduced density

matrix methods outline in the previous chapter.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

C
o
n
cc

u
re

n
ce

Field hz

γg=0.0
γg=0.2
γg=0.4
γg=0.6
γg=0.8
γg=1.0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.5  1  1.5  2

C
o
n
cc

u
re

n
ce

Field hz

γg=0.0
γg=0.2
γg=0.4
γg=0.6

Figure 6.33: The ground state concurrence calculated for the axial model plaquette
(left) and hexagon (right) for a range of anisotropy values.

Fig.6.33 shows the concurrence for a range of anisotropy values for the axial plaquette

(left) and the axial hexagon (right). These ground state calculations show that the

models experience a change over their level crossings though without studying thermal

concurrence it is not possible to ascertain much about the nature of that change. By

already being able to look at the states for the plaquette it is known that this model

does not factorise and thermal calculations will not change this. With the anisotropic

XY-model it was possible to see similarities and trends as the system size was increase,

and it was a trivial matter (once coded) to calculate the Hamiltonian for a range of

system sizes. In order to see any trends for the axial model we would need to calculate

the Hamiltonian for at least N = 8 and N = 10, which would be interesting further work

related to this project. As it stands, they are very little similarities between the axial

plaquette and the axial hexagon. As speculation, we would predict that as system size

increased the angle in which causes the cross-terms to appear from orbital overlap would

get shallower, this could lead to a common trend in behaviour for larger molecules.

The next steps in exploring this model would be to produce neutron scattering predic-

tions to see whether a greater understanding of the type of entanglement involved in

the model can be found. Similarities to the anisotropic XY-model are still possible as

the interactions in the Hamiltonian are still antiferromagnetic and at high enough fields

the spins will align ferromagnetically. At the very least, the concurrence shows these

systems to be quite strongly entangled. Further analysis into thermal concurrence would

help to see if the hexagon model would factorise if concurrence tends to zero near a level



Chapter 6. Experimental Implications for Molecular Magnets 157

crossing. It would be constructive to calculate thermal concurrence for all the models

for comparison including open boundary conditions.

This section of the project details preliminary work and it o↵ers an interesting alternative

to interpreting small clustered quantum objects of N = 4 and N = 6, that with a full

analysis would mean that in addition to the anisotropic XY-model/ XYZ-model would

cover a wide range of clustered materials. The project has successfully demonstrated the

experimental implication of identifying the entanglement transition in a range molecular

magnets to a respectable temperature range. It should be noted that when searching

for a real material to compare with, care should be taken to confirm which model best

suits the material.



Chapter 7

Conclusions

7.1 Summary

The work presented in this thesis follows the logical journey made towards being able

to identify the entanglement transition in small quantum spin clusters using neutron

scattering techniques. The project draws from many areas of physics including Quantum

Information, condensed matter theory and molecular magnets using new approaches

developed in QI and applying it to small exactly solvable ring systems. By understanding

the di�culties in detecting quantum phenomena like entanglement, discussed in Chapter

2 and being able to identify the potential in molecular molecules as reviewed in Chapter

3, it has lead to the foundations of this project. The entanglement transition has a

strict definition that not only requires the change in the type of entanglement present

in the system but the transition point to be synonymous with factorisation, such that

the system becomes semi-classical and entanglement is broken.

We started our investigation by using the dimer model taking advantage of it’s small

Hilbert’s space, documented in Chapter 4. The dimer allowed us to look at its individual

eigen states and its whole energy spectrum, it was proven that the factorisation field

introduced by Kurmann et al. was the product of a level crossing in the ground state for

the dimer [18]. For this two-site model the entanglement transition is a simple process of

an entangled singlet state being crossed by a ferromagnetically entangled state [2]. De-

spite the anisotropy e↵ecting the proportions of the |""i to |##i in the ferromagnetically

entangled state a calculation of concurrence shows that after the transition this state is

158
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still significantly entangled. At the factorisation field any linear combination of the two

ground states are valid but a linear combination that cause the state to be separable at

this point can be easily found. This means that the requirements for an entanglement

transition are satisfied, where the dimer exhibits strong antiferromagnetic entanglement,

factorises at the transition then recovers an amount of entanglement that is now ferro-

magnetically aligned with the applied field. The project progresses naturally by studying

small finite-sized systems using exact diagonalisation to solve the anisotropic XY-model

and it’s � = 0 and � = 1 parameter counterparts for the isotropic and Ising model

respectively. As the finite-sized calculations are exactly solvable we were also able to

further explore the XYZ-model that also exhibits factorisation dependent on anisotropy

parameters � and � and an applied field. The flexibility of the calculations meant that

the model could be adjustable boundary conditions that could relate to di↵erent type

of models. Periodic boundary conditions have been used to describe bulk properties

around factorisation and criticality [9] and form the core of the results in this thesis

though with the purpose of modeling small molecular magnets. The calculations were

kept to even number of spins in a system to avoid frustration where the boundary spins

connected and where kept even for comparisons between open boundary conditions. The

open boundary chains are related to doped systems, either a doped crystal of di↵erent

chain lengths following a Poisson distribution, or carefully doped magnetic ring systems

where a non magnetic doped ion within the ring breaks the connection but keeps the

structure.

The finite-sized calculations, documented in Chapter 5 follows the same approach taken

with the dimer, exploring the energy spectra of the models with di↵erent parameters

and studying the level crossings in the ground state. It was found that the two lowest

states cross multiple times with the relation N

2 where N is the system size. The last

level crossing for systems with periodic boundary conditions always coincided with the

factorisation field. It was shown, using the N = 4 spin system that only the level

crossing that coincided with the factorisation field was factorisable and that the other

level crossing was not [31]. This was done in the same way as the dimer by looking at

the individual eigen states that make up the two lowest energy levels and calculating

the conditions to find a linear combination of the two states that were separable. For

larger systems the Hilbert space becomes unmanageable growing such as 2N , thus for

systems of N = 6 and above the absolute value correlation functions and the concurrence
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were calculated to assess the e↵ects of factorisation in these systems. The nature of the

calculations also allowed for finite-temperature calculation to study the e↵ects of low

temperatures on the correlation function before Chapter 6 builds on them to construct

the neutron scattering function.

Chapter 6 gives the results for the main objective of the project which are the neutron

scattering predictions for a range of small molecular magnets that give a clear signal of

the entanglement transition at finite temperatures. Focusing mostly on the plaquette and

hexagon models this chapter maps out the neutron scattering function for the orientation

that the molecular lie in the 2D xy plane with the applied field perpendicular to the plane

of the molecule in the z direction. The scattering function is calculated for steps in the

applied field showing a significant change in the spectral weight across the entanglement

transition with a break down of the function showing a mixture of the antiferro and

ferromagnetic peaks originating form di↵erent interaction between the ions. For the

anisotropic XY-model the transition was found to be robust to up to 10% the interaction

energy J and the XYZ-model to be up to 15% the interaction energy, for the plaquette

and hexagon. Using a common point in the scattering function graphs phase diagrams

were plotted showing the curve of the factorisation field as a jump in the ferromagnetic

peaks aligned with the field. This particular feature of the entanglement transition

becomes less apparent with larger system sizes and it is thought that the behaviour of

the thermodynamic limit can be commented upon with relatively small system sizes up

to 12 spins.

Lastly, an alternative approach to modeling the plaquette and hexagon was proposed,

that took potential cross-term interactions into consideration. This section of work was

not completed to the same thorough level as the 1D Hamiltonian models were, but some

interesting features were raised. This version of the plaquette, though similar in some

ways to the anisotropic XY-model, was shown that because of the component parts of

its eigen states that did cross in the energy spectrum, this system would never be able

to truly factorise. The individual states that each in their turn occupy the ground state

are strongly entangled in di↵erent ways as the concurrence calculations show, but with

a factorised point to indicate the transition it is not thought that the entanglement

transition could occur in this particular model. The same definitive conclusion can not

be said about the hexagon, and further work would be required into an axial model

approach to fully appreciate the potential of this approach to molecular magnets.
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7.2 Achievements

The core objective of the collaboration is to experimentally detect the entanglement

transition in a real material.This objective is yet to be fulfilled but this project makes

substantial theoretical progress into the information needed before heading into an ex-

periment. This work was tailored to explore finite-sized systems with the initial predic-

tion that finite-sized chains might mimic ground state behaviour of the thermodynamic

limit but at finite temperatures. The concept behind this was with the understanding

that there could be a balance between the correlation length and the actual length of

the chain that would allow the system to be more robust against thermal fluctuations.

What was discovered was much more interesting. It was found that it was the di↵erences

between finite-sized systems and the thermodynamic limit, which made them better at

detecting the entanglement transition above zero temperature. In the thermodynamic

limit the ground state is doubly degenerate up to the critical field for the anisotropic

XY-model: finite-sized systems are only degenerate at certain points where the two low-

est energy levels cross. Therefore, the definition of the energy gap between the ground

state and the first excited state has slightly di↵erent connotations. It is this definition of

the gap that allows finite-sized system ground state behaviour apparent at higher finite

temperatures than the thermodynamic limit.

The di↵erences between open boundary conditions and periodic boundary conditions

directed the project towards modeling molecular magnets. Initial analysis of the energy

spectra showed that it was only the systems with periodic boundary conditions that

had the correct conditions for a factorisation field. Further study using the four spin

systems proved that it was only the level crossing that coincided with the factorisation

field that could factorise and therefore be the best candidate to detect the entanglement

transition with. Small open chains were too sensitive to boundary e↵ects with some

additional fluctuations destroying any long range order even in small chains. Despite

the initial failings of the open chains there is some interesting observations to be had in

respect to the thermodynamic limit that could be further explored.

Overall, the worked achieved here was able to to find a correct balance of parameters

that provide the platform into find the entanglement transition in small quantum spin

clusters using neutron scattering techniques.
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7.3 Future Work

There are three main fractions of theoretical work that would warrant further investi-

gation, and the identification of a real material that would be a suitable candidate for

an experiment to be considered as future work.

For the collaboration to progress forward a deeper study into molecular magnets is re-

quired, with particular focus on molecules whose magnetic ions form a plaquette struc-

ture. These plaquettes would need to be isolated from each other to avoid any interaction

between molecules and it would need to be determined that the 1D Hamiltonians would

be a su�cient analogy to them. The key idea would be to avoid any cross-terms resulting

from the overlap of di↵erent respect parts of the ion’s orbitals. If a suitable material

is found it could then be theoretically modeled with the correct parameters and with a

known value of the interaction energy J then it could be determined whether a suitable

temperature could be reached that would detect the entanglement transition and at the

same time not change the phase of the material.

Continuing on with the theory side of the collaboration there are two more direct av-

enues of further work, which are the completion of some of the tangents around the main

objectives of the work. Firstly, the concurrence calculations for the open boundary con-

ditions were unexpected and could hold some interesting boundary e↵ects, these were in

Fig. 5.31. For the same parameters as the finite-sized calculations with periodic bound-

ary conditions the open chains also found a common trend towards the thermodynamic

limit with the plots for N = 10 and N = 12 converging on a common behaviour. For

these slightly larger calculations the concurrence tends to zero at some common value

of the field that does not coincide with the factorisation field for this model. When

calculating concurrence the reduced density matrix was used to take sites 1 and 2 as a

subsystem to indicate behaviour of the whole system. For periodic boundary conditions

site 1 and 2 have no meaning with in the molecule, they are completely arbitrary, but

for an open chain sites 1 and 2 mean an edge ion and its only neighbour. It could be

interesting to calculate the concurrence for other pairs of sites with in a chain, including

two sites in the middle of the chain and a center site to the edge of the chain. With this

information calculated up to systems of 12 spins as before, it could be interesting to see
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whether di↵erent pairs are entangled di↵erently and brings the concurrence towards zero

at di↵erent values of the field or as the systems get bigger they find a common trend.

Concurrence proved a useful tool in understanding the entanglement in these systems

but it was also one of the last calculations that was completed. Ideally calculations for

thermal concurrence would have been completed also, this would be a natural progression

for future work in this project [26].

Quite a substantial piece of further work would be to complete the analysis of the axial

model started in section 6.7. This would involve the same processes employed to study

the anisotropic XY-model, including studying the correlation functions and calculating

the scattering function for zero temperature and finite temperatures. It would not be

enough to complete this for just the plaquette and hexagon, but to extend it into larger

molecules up to 10 or 12 spins to determine if any common behaviour becomes apparent.

Also, it is speculated that as the molecules can larger and the angles that would cause

the orbitals to overlap becomes less e↵ective then they may tend towards the anisotropic

XY or XYZ-model.
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