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Abstract 
 

 Changes in foot bone morphology within the hominin clade are crucial for reconstructing the 

evolution of bipedalism and a modern human-like gait. Studies of the external morphology of 

the first metatarsal in humans, non-human apes and fossil hominins, have documented 

changes in its robusticity, epiphyseal shape and its articulation with the medial cuneiform. 

Trabecular bone structure has been shown to reflect habitual joint positioning, and as a 

result offers a promising method of interpreting first metatarsal loading in extant and fossil 

apes. In this study, microtomography is used to quantify the trabecular structure throughout 

the head and base of the first metatarsal, of a comparative sample of Homo sapiens (n=11), 

Pan troglodytes (n=10), Gorilla gorilla (n=10), and Pongo pygmaeus (n=6). Results from 

these analyses are then applied to two fossil hominin first metatarsals (SKX 5017 and SK 

1813), the former being attributed to Paranthropus robustus, and the latter being of 

unassigned taxonomic status. Results show that within the comparative sample, bone 

volume fraction (BV/TV) and degree of anisotropy (DA) effectively separate bipedalism from 

all other forms of locomotion. Specific patterns in anisotropy and trabecular bone density 

distribution support the hypothesis that higher BV/TV in the dorsal regions of the bone and 

overall higher DA are reflective of a foot adapted for bipedalism. SKX 5017 shows patterns 

that are different from all modern taxa, indicating a unique form of bipedalism characterized 

by a habitually hyperdorsiflexing metatarsophalangeal joint and retained arboreal 

adaptations. SK 1813 shows a trabecular distribution in the head that is different from SKX 

5017 and intermediate between modern human and non-human primates, indicating habitual 

but less frequent bipedalism than modern Homo sapiens and greater arboreal adaptations 

than SKX 5017. These results suggest that Swartkrans hominins employed habitual 

bipedalism, but also displayed a wider range of locomotor behaviour than modern humans.  
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Chapter 1. Introduction 

 

1.1 Objectives 

 

The goal of this study is to quantify trabecular bone properties within the first metatarsal 

(MT1) of a range of non-human great apes and modern humans. By analyzing various 

trabecular parameters, I will determine if they correspond to known modes of locomotion 

within each taxon. Furthermore, I will compare these results to two fossil hominin MT1s from 

Swartkrans to draw inferences about Paranthropus robusts and/or early Homo locomotor 

behaviour. The objectives of the study are as follows: 

1. Analyze trabecular parameters within the head and base of the MT1 to see if they 

correspond to known differences in habitual joint positioning at the 

metatarsophalangeal and tarsometatarsal joints.  

2. Compare these results to fossil hominin MT1s with the ultimate goal of inferring their 

locomotor repertoire.  

 

1.2 Thesis outline 

 

This thesis is presented as a two-part work: a literature review of relevant research, and the 

original research, presented as a manuscript. 

Chapter 2 – Outlines current literature and research into forefoot structure and positioning in 

the study sample during locomotion, and the application of trabecular bone morphology in 

inferring locomotion. It also details research on Plio-Pleistocene hominin locomotor 

adaptations. 

Chapter 3 – This chapter presents a manuscript that includes the methods, results, and the 

discussion of the project. 
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Chapter 4 – Conclusion: Summarizes the study’s findings.  
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Chapter 2. Literature Review 

 

2.1 Introduction 

 

The following chapter will detail relevant literature regarding the locomotor behaviour of the 

taxa within the research sample, and describe the corresponding morphology of their feet 

with an emphasis on the first metatarsal. Because the emphasis of this dissertation is on the 

locomotor behaviour of extinct hominin taxa, a broad description of the evolution of 

bipedalism is also covered. This dissertation focuses on trabecular structure as a method of 

interpreting locomotor behaviour, and for this reason this chapter will also review what is 

known about trabecular bone functional adaptation.  

 

2.2 Descriptive morphology 

2.2.1 Homo sapiens 

 

The human foot is a rigid structure that reflects adaptations for a strictly bipedal mode of 

locomotion. The forefoot in particular highlights its specialization for bipedality. Features that 

emphasize this adaptation include an adducted first metatarsal that is larger and more robust 

relative to the laterals metatarsals, metatarsal heads that are oriented perpendicular to the 

ground to allow greater metatarsophalangeal joint excursion in the dorsoplantar plane, and 

relatively short and stout phalanges (Morton, 1964; Susman, 1983; Rolian, 2009). Beyond 

the forefoot, the orientation and shape of the human tarsals within the midfoot contributes 

towards the presence of a longitudinal arch. The longitudinal arch is maintained by the 

plantar aponeurosis, a ligamentous band that originates from the calcaneal tuberosity and 

inserts distally on the proximal phalangeal bases. Together, the two act as a stable push-off 

lever during bipedal walking (Elftman and Manter, 1935; Hicks, 1954; Bojsen-Møller, 1979; 
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Bojsen-Moller and Lamoreaux, 1979; Susman, 1983; Alexander et al. 1987; Alexander 1991; 

Caravaggi et al., 2009; DeSilva, 2010), but see (Holowka et al. 2017). 

Forefoot kinematics have long been studied from clinical perspectives (Bojsen-Møller and 

Lamoreux, 1979; Kidder et al., 1996; Leardini et al., 2007; Nawoczenski et al., 1999; 

MacWilliams et al., 2003; Halstead et al., 2005; Simon et al., 2006; Scott et al., 2007; 

Caravaggi et al., 2009). In order to understand which parts of the foot experience the highest 

strain during locomotion, ground reactions forces have been studied (Hutton and 

Dhanendran, 1981; Katoh et al., 1983; Soames, 1985; Munro, 1987; Lee and Farley, 1998; 

Hunt et al., 2001; Vereecke et al., 2003; Nester et al., 2007; Griffin et al., 2010a). The latter 

show the magnitude and direction of loading applied to the foot and measure the pressure 

path throughout the entire gait cycle. It is thought that bone remodels most strongly to 

dynamic elevated loads (Rubin and Lanyon, 1982; Griffin and Richmond, 2005), therefore 

knowing where the foot experiences the highest loads would help explain internal bone 

morphology. 

The gait cycle is comprised of two major phases: the swing and the stance phase. The 

stance phase begins when the heel makes contact with the substrate, and ends with toe-off 

when the foot is no longer in contact with the ground, marking the beginning of the swing 

phase (Novachek, 1998; Perry et al., 1992; Vaughan et al., 1999). During heel strike, when 

the stance phase begins, peak plantar pressure is located under the posterior lateral aspect 

of the foot, under the calcaneus. As the midfoot reaches the ground, the longitudinal arch of 

the foot maintains a pressure distribution under the lateral side of the foot, under the cuboid 

and proximal ends of the lateral metatarsals. Weight is then transferred to the metatarsal 

heads, and to the medial side of the foot. The heel then rises, placing all of the body weight 

on the forefoot, and forcing the metatarsal heads into dorsiflexion during which each 

proximal phalanx moves onto the dorsum of its respective MT head (Soames, 1985; 

Vereecke et al., 2003; DeSilva, 2010; Griffin et al., 2015; Fernandez et al. 2016). 

Dorsiflexion, which occurs towards the end of the stance phase, causes tightening of the 
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plantar aponeurosis. It stabilizes the foot during the stance phase and elevates the 

longitudinal arch, changing its conformation to a stiff propulsive lever for propulsion and 

ultimately toe-off (Hicks, 1954; Bojsen-Moller, 1979; Susman, 1983; Griffin and Richmond, 

2010; Caravaggi et al. 2010; Griffin et al., 2015). As shown by in vivo studies of plantar 

pressure distribution within the human foot, it is during dorsiflexion that the medial forefoot 

shows a spike in loading (Hutton and Dhanendran, 1981; Katoh et al., 1983; Soames, 1985; 

Munro, 1987; Lee and Farley, 1998; Hunt et al., 2001; Nester et al., 2007; Griffin et al., 

2010). The phalanges are the last elements to leave the ground, at which point the centre of 

pressure lies under the first and second toes. (Veerecke et al., 2003; Griffin et al. 2010a).  

In terms of which metatarsals incur the most pressure, there is general agreement that the 

medial ones are more active in propulsion, and by default incur the highest peak pressures 

(Rodgers, 1995; Veerecke et al., 2003; Griffin et al., 2010a) (see Figure 1). The first 

metatarsal (MT1) bears a large portion of this compressive load, which is evident in its 

external morphology. However, based on methodology and forefoot proportions, there are 

variable loading patterns between the first and second digits. This can be caused by relative 

protrusion of the metatarsal segments and the length of the metatarsals in relation to each 

other (Cavanagh and Rodgers, 1985; Rodgers, 1995; Rodgers and Cavanagh, 1989), as 

well as variables like speed, shod vs. unshod walking, and structural characteristics of the 

foot (high vs. low arch) (Rodgers, 1995). 

It is also largely related to the method used in measuring plantar pressure distribution. Most 

of these methods separate the foot into discrete segments, mainly to reduce the complexity 

of the foot for experimental (Hunt et al., 2001; Simon et al., 2006; Leardini et al., 2006; 

Kitaoka et al., 2006) and clinical studies (Woodburn et al., 2004; Khazzam et al., 2006; 

Tome et al., 2006). The ways in which these segments are determined usually vary, and for 

this reason, studies often yield mixed results in regards to specific details about foot 

kinematics. Additionally, the method used to record pressure affects the results (bone-

mounted marker, skin markers, floor mounted transducers) (Hutton and Dhanendran, 1981; 
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Soames, 1985; Nester et al., 2007). Despite the variability of the data obtained using these 

methods, peak pressure values are often found to be highest in the medial metatarsals and 

lowest in the fifth (Donahue and Sharkey, 1999).  

 

Figure 1. Example of footscan image, showing maximal pressures under a left human 
foot during ground contact in a bipedal walking sequence. Dotted line in foot 
illustrates displacement of center of pressure (dot interspace, 4 msec). 

 

Nonetheless, the external structure of the MT1 is reflective of the high compressive forces it 

incurs and of its active role in propulsion. The proximal articular surface of the MT1 is 

mediolaterally wide, likely related to the bending stresses experienced near the base. 

Because the plantar ligaments are exposed to high tensile forces, and the basal joint 

surfaces to high compressive forces, the bone within the metatarsal responds by increasing 

in cross-sectional area proximally, thus providing greater moments of resistance in the 

proximal section of the shaft (Stokes et al., 1979a; Griffin and Richmond, 2005). The MT1 

head is generally larger than that of other great apes, and the superior aspect of the articular 

surface of the head expands to the dorsum of the bone, resulting in a raised appearance in 

relation to its shaft, which is thought to increase the range of dorsiflexion at the 

metatarsophalangeal joint (MTPJ) (Stokes et al., 1979; Susman and Brain, 1988; Susman 

and de Ruiter, 2004; Griffin and Richmond, 2005; Griffin et al., 2010). The human MT1 head 
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is also unique in its wide medio-lateral breadth on the dorsal aspect. This shape enhances 

joint stability during push-off and facilitates close-packing of the MTPJ by tightening the 

collateral MTP ligaments when the joints are in dorsiflexed position. Furthermore, this 

tightening limits joint motion outside the sagittal plane and increases joint stability when 

maximum joint congruency is achieved (Susman and Brain, 1988; Hetherington et al., 1989; 

Susman and de Ruiter, 2004; Pontzer et al., 2010). The MT head possesses a large 

metatarsophalangeal articular surface, sesamoid bones that give the flexor tendons a good 

mechanical advantage to minimize joint forces, a large inclination to the horizontal to 

minimize its shear and bending forces, and low axial torsion at the head relative to the base 

because it is loaded mainly in the sagittal plane. (Morton, 1922; Elftman and Manter, 1935; 

Aiello and Dean, 1990; Berillon, 1999; Susman and de Ruiter 2004; Drapeau and Harmon, 

2013).  

The other four metatarsals (especially the second and third) are generally longer and less 

robust, and tend to be loaded out of proportion to their sizes (Stokes et al. 1979; Christensen 

and Jennings 2009). When gait is accelerated, the centre of pressure in the foot follows an 

even more medial trajectory, at which point the MT1 plays an even more significant role in 

propulsion and balance (Bojsen-Moller, 1979). Its short, straight, and stout shaft is 

considered more efficient for bipedalism because it reduces the torque of the ground 

reaction force and the required balancing contraction of the toe flexors. This shortness also 

decreases the work required by the digital flexor muscle during the stance phase, and in 

theory decreases the amount of energy needed to swing the leg forward (Preuschoft, 1971; 

Rolian et al., 2009; Myers and Steudel, 1985).  

The structure of the tarsometatarsal joint of the first ray (MT1-first cuneiform) reflects the 

range of motion, in particular prehension and hallucal abduction that would be possible in the 

foot. The proximal end of the human MT1 is characterized by a relatively flat articular surface 

when compared to other non-human primates, with a saddle or crescent-shaped profile. This 

articular shape corresponds with a stable tarso-metatarsal joint complex that reduces 
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mediolateral mobility of the hallux, and keeps it in line with the other metatarsals. (Morton, 

1924; Susman and Brain, 1988; Proctor et al. 2008; Gill et al. 2015).  

 

2.2.2 Non-human primates 

 

Analyzing foot kinematics in extant non-human apes is less straight-forward compared to 

modern humans because they employ a wider range of locomotion, from terrestrial to 

arboreal quadrupedalism, vertical climbing, suspension, and occasional terrestrial 

bipedalism. Kinematic information about non-human primate locomotion is also less 

abundant mainly because of ethical concerns. Classically, foot structure in non-human 

primates is associated with a more mobile overall foot, capable of a wide range of grasping 

for both climbing and dorsiflexion during quadrupedalism. This increased mobility is partially 

attributed to the mid-tarsal break, an area of great mid-foot joint mobility that presumably 

reflects greater conformity of the foot to arboreal substrates (Elftman and Manter, 1935; 

Susman, 1983; D’Aout et al., 2002; DeSilva, 2010), but see Holowka (2017). It is likely 

attributed to the articular surface features between the calcaneus and cuboid (Susman, 

1983), the rounded cuboid-metatarsal joints (DeSilva 2010; Proctor 2013), and the lack of a 

well-developed plantar aponeurosis (Susman, 1983). Combined with a lack of arching in the 

sagittal plane of the foot, the result is an overall different footfall pattern within all non-human 

primates (Elftman and Manter 1935; Hicks, 1954; Susman 1983; Crompton et al. 2008; 

DeSilva 2010). 
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Knuckle-walkers 

 

Gorillas (Gorilla gorilla) and chimpanzees (Pan troglodytes) can both be broadly considered 

knuckle-walkers, though they vary in frequency of arboreal vs. terrestrial locomotion. Though 

both gorillas and chimpanzees exhibit arboreal behaviour, gorillas spend more time using 

terrestrial locomotion. Amongst Pan, Gorilla, and Pongo, adult gorillas (Gorilla gorilla) exhibit 

the least climbing behaviour, with <1% of total locomotor behaviour in mountain gorillas 

(Gorilla gorilla beringei) and 8% in lowland gorillas (Gorilla gorilla gorilla) (Remis, 1998). 

Adult chimpanzees exhibit an intermediate and variable level of climbing that is influenced 

both by body size and seasonality, with their proportion of arboreal locomotion ranging from 

7.5% during the dry season and 62.9% during the wet season, when not foraging 

(Wrangham, 1977; Gebo 1996; Takemoto 2004). Interspecific differences also occur due to 

their disparate sizes, and partly due to different overall body morphology (Jungers, 1984; 

Cant, 1992; Doran, 1993a,b; Hunt, 1992, 1994). 

Gorillas and chimpanzees of similar sizes but differing ontogenetic stages overlap 

considerably in locomotor behaviour, despite the fact that throughout ontogeny, gorillas have 

relatively shorter and straighter phalanges and metacarpals than chimpanzees (Susman, 

1979; Shea, 1981; Inouye, 1992; Doran 1997). Differences in pedal structure are amplified in 

later stages of life, with ontogenetically decreasing phalangeal curvature among Pan 

(Congdon, 2012) and Gorilla (Richmond, 1998), reflecting a decrease in climbing frequency. 

Relatively long and curved digits are associated with gripping during arboreal climbing, and 

shorter, straight digits are associated with less suspensory or climbing behaviour (Tuttle 

1969; Marzke 1971; Susman 1979; Gebo 1985; Hunt 1991; Stern et al. 1995; Richmond 

1998; Richmond 2007; Congdon 2012). However, between the two taxa, Pan retains more 

curved digits than Gorilla, reflective of its more frequent arboreal locomotion (Stern and 

Susman 1983; Richmond 1998; Congdon 2012). Although gorillas can locomote arborearly, 

their size restricts them to supports of larger diameters, and they typically do not use their 
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feet for suspension. Their feet are instead used for vertical climbing or walking, and because 

the supports they use for climbing are usually large relative to their foot size, there is little 

flexion of the metatarsophalangeal and interphalangeal joints (Sarmiento, 1994; Remis, 

1995). 

Hallmark forefoot features for both chimpanzees and gorillas include a highly abducted and 

everted MT1 and an inverted MT2, causing the plantar surfaces of the heads to face each 

other (Morton, 1922; Elftman and Manter, 1935; Susman, 1983; Drapeau and Harmon, 

2008). The orientation of the MT heads in relation to their bases reflects the positioning of 

the phalanges and their range of motion (Wunderlich,1999). In this regard, Pan and Gorilla 

are very similar, with statistically indistinguishable metatarsal torsion values (Pontzer et al. 

2010; Drapeau and Harmon, 2008, 2013). This pattern of inversion and eversion has been 

shown to be a strong signal of prehensile capabilities (Harcourt-Smith and Aiello, 2004; 

Pontzer et al., 2010; Drapeau and Harmon, 2013). The metatarso-cuneiform joint also 

reflects the potential range of hallucal mobility. Both Pan and Gorilla possess a concave 

MT1 proximal articular surface and a convex distal articular surface of the medial cuneiform, 

allowing for multiaxial movement of the hallux. This allows for more effective grasping 

abilities and a more flexible forefoot during climbing (Berillon, 1999; Latimer and Lovejoy, 

1990; McHenry and Jones, 2006; Tocheri et al., 2011; Drapeau and Harmon, 2013). Despite 

this similarity in tarsometatarsal joint structure, the gorilla foot nonetheless reflects more 

terrestrial behaviour. Interspecific analysis of this joint’s morphology in Gorilla and Pan has 

shown that gorillas have a relatively flatter facet, reflective of lessened hallucal mobility and 

a more stable joint (Gebo 1992; Tocheri et al., 2011; Gill et al. 2015). Gorillas also possess 

broader and flatter calcaneocuboid and subtalar joints, a flattened talar body, and a 

proximally wider calcaneus, all features indicative of more plantigrade foot positioning 

(Gebo, 1992). In contrast, Pan has a rounder and more medially oriented facet for the MT1 

(Latimer and Lovejoy 1990, McHenry and Jones, 2006), indicative of a more abducted 

hallux.  
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Locomotion in chimpanzees and gorillas varies from modern humans in that it is less 

stereotyped in the dorsoplantar direction, and there is variation in hallucal position and 

centre of pressure during the stance phase (Veerecke et al., 2003). The cortical bone of the 

MT1 diaphysis reflects this difference in loading; human MT1s are reinforced in the distal 

midshaft region to resist bending in a dorsoplantar orientation. They also vary less in 

orientation of high stiffness, suggesting relatively stereotyped dorsoplantar load orientations. 

Chimpanzee and gorilla MT1s exhibit greater obliquely-oriented stiffness, likely related to the 

wider range of motion involved within their locomotor regimes (Jashashvili et al. 2015). 

 

Recent studies on plantar pressure distribution within Pan paniscus (Aerts et al., 2000; 

D’Aout et al., 2004; Vereecke et al., 2003) have shown that the centre of pressure remains 

more laterally positioned throughout the stance phase, and that it tends to fluctuate more in 

the mediolateral direction than what is observed in humans (De Cock et al., 2008; Nagel et 

al., 2008). The heel and lateral midfoot touch down simultaneously at the beginning of the 

stance phase, followed by a shift in pressure to the anterior portion of the foot, and a medial 

pressure transfer across the metatarsal heads during heel-off (see Figure 2). However, the 

hallux occasionally makes contact with the substrate before the lateral toes (Veerecke et al., 

2003). There is also variation during midstance, at which point the first ray may be adducted 

or abducted, and the lateral rays may be plantigrade or curled (Elftman and Manter, 1935; 

Susman, 1983). The lateral and medial toes vary in terms of which ones leave the ground 

last, with the highest pressure being located under the lateral midfoot, near the fifth 

metatarsal (Veerecke et al., 2003; Griffin et al., 2010a). Susman (1983) observed that toe-off 

in P. troglodytes occurs at the second or third digits, while Wunderlich (1999) found that it 

occurs most often between the first and second digits and less frequently at the first or third 

ones. 

During bipedal walking, the impact on the heel is lower than in terrestrial quadrupedalism 

(D’Aout et al., 2004) and there is a more variable course of the centre of pressure, 
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characterized by shorter contact time attributed to smaller steps at higher frequencies (Aerts 

et al., 2000). This plantar pressure distribution is further shifted during climbing. Wunderlich 

and Ischinger (2017) examined the plantar pressure distribution within the feet of P. 

troglodytes during vertical climbing, and found that during vertical climbing, chimpanzees 

exhibit the highest peak pressures on metatarsals 2/3 and the lowest pressures on the 

metatarsals 4/5. This corresponds with the external morphology of their metatarsals, with the 

medial ones being more robust and strongly inverted (Marchi, 2005). This pattern of 

inversion allows for the plantar surface of the toes to make better contact with the substrate, 

which increases the propulsive capacity of the foot on vertical supports (Drapeau and 

Harmon, 2013). Furthermore, these peak pressures are relatively higher than during ground 

locomotion or locomotion on a horizontal pole, meaning the medial metatarsals play the 

most active role during vertical climbing (Wunderlich and Ischinger, 2017). The importance 

of the medial digits for climbing is further displayed in the physiological cross-sectional area 

(PCSA) of the digital extensor muscles in the feet. The muscles within the medial digits, and 

particularly within the hallux, show a higher PCSA than the lateral digits, indicating hallux-

assisted power gripping in arboreal locomotion (Oishi et al., 2012). 

 

It is important to note that there are considerable differences in locomotion and morphology 

between bonobos and chimpanzees: chimpanzees are generally larger and possess 

different limb to body proportions (Shea, 1981; Doran 1993). Data on plantar pressure 

distribution within gorillas is scarce, but limited available data displays a directly-forwards 

path of centre of pressure (Crompton et al., 2008). In contrast to chimpanzees and bonobos, 

gorillas possess a flatter, more plantigrade foot. Specifically, they lack the curled under toe 

postures characteristic of chimpanzees, lack a longitudinal arch, and show little dorsiflexion 

at the distal tarsal joints or at the tarsometatarsal joints (Sarmiento, 1994). Consequently, it 

is very likely that the gorilla foot incurs pressure under different areas than chimpanzees. In 
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general, the structure of chimpanzee MT1s reflects a more arboreal locomotor mode, and 

gorilla MT1s reflect a more terrestrial locomotor mode. 

 

Figure 2. Examples of footscan images during quadrupedal (a–c) and bipedal walking 

(d) of bonobos. Plantar pressure profiles in a and d are from a left bonobo foot, those 

in b and c from a right bonobo foot. During quadrupedal locomotion (a–c), initial 

contact is made by the heel. Then the center of pressure moves anteriorly towards the 

metatarsal heads and lateral toes, and eventually bends towards the hallux. During 

bipedalism (d), initial contact is made by the lateral midfoot and the center of pressure 

moves eventually towards the hallux. Note the variability in plantar pressure 

distributions, with a V-curved pattern in b and an almost straight course of center of 

pressure (indicated by dotted line) in c, in contrast with the general pattern with a 

curved course of center of pressure, shown in a. From Vereecke et al., 2003.  
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Suspension 

 

Though orangutans (Pongo pygmaeus) are capable of a wide range of locomotion including 

terrestrial quadrupedalism, they differ from African apes in that they exhibit the highest 

frequency of climbing behaviour. Brachiation can be attributed to 11% of locomotion, 

quadrupedalism for 12%, vertical climbing for 18%, tree-swaying for 7%, and clambering for 

51% (Cant, 1987; Gebo, 1996; Thorpe and Crompton, 2006). Differences in phalangeal and 

metatarsal length and proportions reflect adaptations to suspension from a horizontal or 

oblique support, through power and hook grasping (Morton, 1924; Tuttle, 1970, Cant, 1987). 

Their feet are more inverted than the African apes, and the lateral digits are elongated 

whereas the hallux is relatively shortened (Gebo, 1992). The curvature of the metatarsals 

and phalanges is thought to be related to highly arboreal locomotion (Jouffroy and 

Lessertisseur, 1960; Preuschoft, 1970; Marzke, 1971; Susman, 1979; Rose, 1988; Hunt, 

1991; Stern et al., 1995; Richmond, 1998). According to Preuschoft (1970, 2004), curved 

digits experience lower bending moments than straight digits, and are thus adaptations to 

large bending stresses. Oxnard (1973) argued that orangutan digits are “more efficient” than 

chimpanzee digits in suspension by using photoelastic stress models to show that a more 

curved phalanx experienced lower stress during suspensory grasping. Theoretical models by 

Preuschoft (1970) and Oxnard (1973) are further validated by biomechanical studies of 

phalangeal curvature in siamangs and gibbons (Richmond, 2007; Nguyen et al., 2014). 

Though the lateral metatarsals are elongated and curved, the hallux is relatively short and 

reflects different habitual positioning of the foot during locomotion from African apes (Morton, 

1924; Gebo, 1992). As mentioned earlier, chimpanzees locomote arboreally through the use 

of the hallux for gripping. The same authors (Oishi et al. 2012) also analysed the PCSA 

values within orangutans and found a higher value within the lateral digits, indicating a 

specialization for hook-like gripping without the involvement of the hallux in arboreal 

locomotion. This relatively low degree of movement and compressive load upon the MT1 
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head during locomotion is also reflected within its smaller proportions when compared to 

chimpanzees and gorillas (Rose, 1988; Marchi, 2010). However, just as in chimpanzees and 

gorillas, the plantar aspect of the orangutan MT1 head is mediolaterally expanded to allow 

for close-packing during dorsiflexion. (Stern and Susman, 1983; Susman, 1983; Latimer and 

Lovejoy, 1990; Griffin and Richmond, 2010; Marchi 2010; Fernandez et al., 2016). As well, 

torsion patterns within the metatarsals of orangutan MT1s shows a similar, but more 

pronounced condition to African apes wherein the MT1 is strongly everted and the MT2 is 

strongly inverted (Drapeau and Harmon 2013). This difference in torsion is partially attributed 

to the shape of the metatarsal shaft, and to the more medial orientation of the hallucal 

tarsometatarsal joint (Gomberg, 1981; Gill et al., 2015). 

 

Overall, the subtalar, transverse tarsal, and MTP joints, and the ligaments of the 

corresponding joints in orangutans are specialized for inversion-eversion movements for 

locomotion in arboreal substrates (Kanamoto et al., 2011), which results in a much more 

inverted foot position on the ground when compared to the flattened foot of African apes 

(Tuttle, 1970; Tuttle & Beck, 1972; Susman, 1983; D’Aout et al., 2002; Griffin et al., 2010a). 

According to Oxnard (1980), orangutan feet have a high transverse arch, similar to modern 

humans, in contrast to gorillas and chimpanzees, which possess flatter transverse arches, 

related to the positioning of the intermediate and lateral cuneiforms and the cuboid. On 

account of this difference in foot positioning, orangutans distribute weight differently from 

African apes, and should not be viewed as equivalent to the plantigrade foot positions 

utilized by chimps and gorillas. When locomoting terrestrially, orangutans place the entire 

lateral side of their feet in contact with the ground, similar to bonobos (Tuttle, 1970, 1972; 

Vereecke et al., 2003; Crompton et al., 2008; 2012). However, because plantar pressure 

distribution data within orangutans is lacking, subtle differences in their locomotion 

compared to other great apes using this method are not known. 
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Much of this data is relative in that it looks at the entire foot; the medial metatarsals of 

chimpanzees are only loaded more highly in relation to the lateral ones. Because this 

research focuses on the first metatarsal alone, much of this information simply serves to 

understand the general biomechanics of each locomotor type. Therefore, this research will 

not be able to confirm or deny if in fact known pressure distributions are reflected within the 

trabecular bone of the entire foot. However, knowing that the dorsal aspect of the human first 

metatarsal experiences relatively higher peak pressures than other non-human apes 

remains useful in interpreting potential relative differences in bone volume distribution across 

taxa.  

 

2.3 Biomechanical adaptations of bone 

 

Gathering accurate information about locomotor behaviour based on external morphology 

alone can be challenging. Bone is influenced by genetic and nongenetic factors, which are 

differentially reflective of functional adaptations, and highly difficult to isolate (Lieberman, 

1997). Additionally, in vivo studies that have been used to measure foot kinematics in 

humans and non-human apes cannot be applied to fossil hominins. Furthermore, while 

articular surfaces indicate the joint positions an individual was able to adopt, internal bone is 

more likely to show how the joint was actually loaded (Ruff and Runestad, 1992; Kivell, 

2016). Cortical bone has been shown to respond to mechanical stress (Ruff, 1982; Cowin et 

al., 1985; Doden, 1993; Ruff et al., 2006), and is known to respond to tension and 

compression in the shaft (Ruff, 1983; Cowin et al., 1985; Doden, 1993; Carlson, 2005; Ruff 

et al., 2006). It is less effective in inferring joint positioning at the epiphyses, which is where 

analysis of trabecular bone can become more useful. Trabecular bone remodels at a faster 

rate than cortical bone (Eriksen, 2010), and can therefore provide evidence of in vivo loading 

that is not seen in the cortical structure (Rubin et al., 2002; Pontzer et al., 2006; Barak et al., 

2011; but see Bertram and Swartz, 1991). 
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2.3.1 Trabecular bone 

 

The idea that bone adapts to its mechanical environment has been first credited to Julius 

Wolff (Wolff, 1892). What is today called Wolff’s law has been modified throughout the 19th 

century, and incorporates three central tenets (Martin et al., 2015: pg. 276): 

1. Optimization of strength with respect to weight 

2. Alignment of trabeculae with principal stress directions 

3. Self-regulation of bone structure by cells responding to a mechanical stimulus.  

Wolff’s law is fairly vague, and much what is currently considered part of it was not initially 

postulated by Wolff himself (Martin et al., 2015). Martin et al. (1998) instead proposed an 

alternative name for bone’s adaptability to mechanical loading: the mechanical adaptability 

hypothesis. It states that, “bone structure is regulated to find the optimum solution to 

minimize both fracture risk and bone mass for the loadings that the bone experiences.” 

(Martin et al., 1998: pg. 302). 

 

Trabecular bone is quantified through two main parameters: bone volume fraction (BV/TV), 

which is affected by both trabecular thickness and spacing, and degree of anisotropy (DA), 

which measures the degree to which the trabecular struts are oriented in the same direction. 

A high DA value would be reflective of stereotypically oriented trabeculae (along the same 

axis), whereas a low DA value would reflect less stereotypically oriented struts. Anisotropy is 

obtained by factoring in mean intercept length (average distance from one trabecular surface 

to another through the marrow), and the measurement direction. This produces a three- 

dimensional ellipse, the eccentricity of which is a measure of anisotropy (Whitehouse, 1974; 

Odgaard, 1997). Combined, BV/TV and DA account for 70-80% of variation in Young’s 

modulus of elasticity, which is a measure of material properties calculated as the ratio of 

stress strain which represents the stiffness of a material (Turner, 1992; Biewener, 1996; 
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Stauber et al., 2006; Macquer et al., 2015). Though BV/TV and DA are the most quantified 

parameters within trabecular bone studies, there is a wide range of additional structural 

properties that affect overall trabecular architecture. These include trabecular thickness, 

spacing, and number (Tb.Th, Tb.Sp, Tb.N), as well as the interconnectedness and structure 

of the trabeculae (plate-like vs. rod-like). The number of trabeculae is thought to not have a 

significant effect on the overall mechanical properties of the bone (Gibson, 1985), whereas 

the interconnectedness and structure do (Hodgskinson & Currey, 1990; Liu et al. 2008; 

Maquer et al. 2015). Liu et al., (2008) have shown a heterogeneity in the function of plate-

like and rod-like trabeculae: the majority of trabecular plates are oriented in line with the 

principal direction of loading, whereas the rods serve as transverse connections between 

longitudinal plates. Additionally, their structure changes over time, with rod-like trabecular 

bone being associated with older age (Ding and Hvid, 2000; Wehril, 2007; Shi et al., 2010). 

Mittra et al. (2005, 2008) used a sheep sample to show that there are strong relationships 

between BV/TV and trabecular connectivity, spacing, and structure model index (SMI), a 

measure of the relative proportion of plate-like and rod-like trabeculae. Cotter et al. (2009) 

studied the vertebral bodies of apes and humans and found similar results, with the 

exception of trabecular thickness and DA, neither of which were significantly correlated to 

BV/TV within their sample. These studies suggest that as BV/TV increases, so does 

trabecular number; trabeculae become more plate-like, less widely-spaced, and more 

interconnected (Ryan & Shaw 2012). Whereas BV/TV is influenced by both trabecular 

thickness and spacing, the optimization of anisotropy has been hypothesized to be caused 

by the reduction of trabecular number by preferentially removing unnecessary trabeculae 

(Saparin et al. 2011; Skedros et al. 2012).  

Some of the first experiments on trabecular orientation adaptability were conducted on 

sheep calcanei (Lanyon, 1973,1974; Skerry and Lanyon, 1995), which showed a correlation 

between the principal orientations of trabeculae and the principal compressive and tensile 

strain directions. Since then, a multitude of studies on trabecular bone structure have 
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emphasized its adaptability to biomechanical stressors (Biewener et al., 1996; Rubin et al., 

2002; Mittra et al., 2005; Pontzer et al., 2006; Barak et al. 2011). Many studies have also 

shown that there is a difference in how trabecular bone models vs. remodels (Cunningham & 

Black 2009a,b; Partiff et al. 2000; Tanck et al. 2001; Raichlen et al. 2015). There is evidence 

that trabecular bone modelling follows an initial template, which has been demonstrated 

using human neonatal ilia (non-weight bearing bones). Trabecular bone within these 

elements has shown values of BV/TV, thickness, spacing, and number similar to adult ilia, 

meaning there is a strong genetic component to its structure (Cunningham & Black, 

2009a,b). Support for a genetic blueprint which controls trabecular architecture is further 

supported by Skedros et al. (2004), based on evidence that the characteristic structure of 

trabecular bone within deer calcanei is already present in foetal deer. Parfitt et al. (2000) 

investigated the ontogeny of trabecular bone within the human ilium, and showed that 

between the ages of 1.5 and 23 years, there was an increase in BV/TV and trabecular 

thickness, but that the trabecular number stayed the same. In an ontogenetic study of 

trabecular bone in pigs, Tanck et al. (2001) found that BV/TV and trabecular thickness 

increased first, corresponding with a rapid increase in body size during growth. DA was 

shown to adapt later in their development (Tanck et al., 2001). Raichlen et al. (2015) confirm 

this with a human sample, showing that the degree of anisotropy within the distal tibia 

converges on higher values and becomes less variable at a later age. This result has also 

been repeated in the investigation of trabecular bone structure within the proximal femur 

(Ryan & Krovitz 2006). There is general agreement that the same ontogenetic pattern is 

present across elements, and that only once the adult trabecular bone architecture is 

finalized, does it begin to optimize based on biomechanical stressors. Later in life, trabecular 

architecture adapts in a more variable way; some studies show an increase in thickness in 

response to increased loading, and some show a reduction in trabecular number in areas of 

lower loading (Saparin et al. 2011). Despite these studies that show a specific ontogenetic 

pattern in trabecular bone modelling, and by extension a significant genetic component to 

the architecture of trabeculae, [genetics in baboons (Havill et al. 2010) and rodents (Alam et 
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al. 2005)] there is still substantial evidence that external loads cause remodelling that results 

in a trabecular architecture that differs from its original template (Rubin et al., 2002; Pontzer 

et al., 2006; Barak et al., 2011; but see Bertram and Swartz, 1991). 

 

Biewener et al. (1996) studied the trabecular bone within the calcaneus of potoroos (small 

marsupials) to specifically see how it would adapt to principal strains, and how it changes 

during disuse. Their results supported predictions that trabeculae would be oriented with the 

principal strain direction in the cortical surface. After eight weeks of disuse, BV/TV was lower 

as a result of reduced trabecular thickness and increased spacing, but the orientation of the 

bone remained the same. They inferred that trabeculae may be formed and aligned in 

response to principal strain magnitudes and directions during growth, and that the resulting 

trabecular alignment prevents the realignment of trabecular bone during different loading 

once a specific trabecular architecture has been laid out (Biewener et al. 1996).  

 

Several in vivo studies have been performed which show that trabecular bone structure and 

orientation can be changed based on changes in habitual positional behaviour and 

mechanical loading (Barak et al. 2011, Biewener et al., 1996; Guldberg et al., 1997; Mittra et 

al., 2005; Pontzer et al., 2006; Chang et al. 2008). Barak et al. (2011) measured the 

trabecular reorientation in the ankle joints of a sample of sheep after subjecting them to daily 

exercise on inclined treadmills. After one month, they found that the trabeculae within the 

distal tibia were reoriented to match the angle of the external load applied at the ankle 

(Barak et al. 2011). This is further supported by computational models (Huiskes et al., 2000), 

which show that the rotation of an applied load changes the orientation of trabeculae to a 

corresponding degree. When mechanical loading remains stable, remodelling continues 

without affecting the architecture of the overall bone (Huiskes et al. 2000). 
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Despite many studies proving the adaptability of trabecular bone to biomechanical stressors, 

it is still difficult to measure how it might vary differentially to frequency or magnitude of the 

external load (Kivell, 2016). Is trabecular bone more likely to adapt to low-frequency but 

high-magnitude forces, or vice versa? Frost’s (1987) ‘mechanostat’ hypothesis addresses 

this question by presenting the strain thresholds required to elicit a remodelling in bone: 

strains below 100-300 με trigger a response in trabecular bone, whereas much higher levels 

are needed to trigger a response in cortical bone mass (1500-3000 με) (Frost, 1987). The 

effect of frequency on trabecular remodelling has been investigated by Skerry & Lanyon 

(1995) and Barak et al. (2011). Both used sheep to study the effect of stress frequency on 

trabecular bone architecture, and found that brief periods of loading were not sufficient to 

elicit a noticeable response in trabecular remodelling, and that the individuals that did show 

trabecular reorientation were those that were constantly subjected to the loading pressures. 

Lambers et al. (2013) investigated the trabecular structure within the vertebrae of mice, and 

found that it required 10 weeks for any noticeable change to appear within the trabeculae, 

when inflicted with a high frequency external load for 5 minutes, 3 times a week. This would 

suggest that trabecular bone requires a minimum duration of loading to show any true 

difference, and that the sheeps’ trabecular bone would have simply required more time to 

remodel. Rubin et al. (2001, 2002) exposed sheep to low-level, high-magnitude stress via 

oscillation plates, and found that after a year, the sheep showed a 34.2% increase in 

trabecular bone density, suggesting a low level external load can contribute to trabecular 

architecture. Other studies have shown that dramatic but brief changes in external loading 

can also contribute to changes in trabecular structure (Simkin et al. 1989; Bassey & 

Ramsdale, 1994; Pontzer et al. 2006; Barak et al. 2011; Lambers et al. 2013). In general, the 

minimum duration is likely variable across species, and it is difficult to assess how much time 

and how much magnitude would be required for species of different body sizes to reach an 

equivalent level of trabecular remodelling (Lambers et al. 2013).  
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Studies using non-primates usually involve sheep and mice, animals which are on opposite 

ends of the size spectrum, and which could potentially affect interpretations. A relationship 

has been found between larger body size and trabecular architecture: larger mammals have 

absolutely thicker and wider spaced trabeculae, but relative to their body mass, the struts 

are thinner and more closely-packed (Swartz et al. 1998; Doube et al. 2011; Barak et al. 

2013; Ryan and Shaw, 2013). This could in turn affect how trabecular bone responds to 

external forces. This pattern is also not taxon specific; it is consistent among primates and 

mammals. Anisotropy, on the other hand, does not appear to scale with body mass. Specific 

trabecular parameters vary depending on the element and taxonomic group (Cotter et al. 

2009; Fajardo et al. 2013; Ryan & Shaw, 2013). The reason for this negative allometry could 

be attributed to metabolic and biomechanical factors than govern trabecular architecture. 

Kerschnitzki et al. (2013) suggested that this pattern may be caused by requirements to 

maintain an adequate surface area for the release and deposition of calcium. Additionally, 

trabecular thickness can be affected by the size of the lacunae, which are about 30-60 μ in 

depth (Kivell et al., 2016). Christen et al. (2015) emphasized the role of osteocyte constraints 

on trabecular structure – namely osteocyte density and the distance an osteocyte signal can 

travel towards osteoblasts at the bone surface. There are other ways in which large animals 

respond to higher external forces than smaller animals: different locomotor kinematics, and 

adaptation of the cortical bone (Kivell et al. 2016). For this reason, in order to gain complete 

understanding of an animal’s biomechanical adaptations, a holistic method of analysing 

cortical, trabecular, and external morphology would be most effective.  

 

2.3.2 Cortical bone 

 

As mentioned earlier, cortical bone has been shown to adapt in response to external forces 

(Ruff, 1982; Cowin et al., 1985; Doden, 1993; Ruff et al., 2006). Ideally, a comprehensive 

interpretation of trabecular structure should combine an analysis of the cortical bone. Studies 
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of cortical cross-sectional geometry of the long bones have consistently shown that cortical 

bone responds to principal directions of stress by aligning its orientation to corresponding 

directions, and adding more bone to areas that experience higher strain (Goodship et al., 

1979; Ruff, 1983; Cowin et al., 1985; Demes, 1993; Carter et al., 1996; Sumner and 

Andriacchi, 1996; Lieberman et al., 2004). Interpretations based on cortical bone are not 

always straight forward though, since it has been shown to display systemic (as opposed to 

localized) patterns within the skeleton in response to biomechanical differences. Lieberman 

(1996) exercised young pigs on a treadmill, and compared their cortical structure with a 

control group that had not undergone strenuous exercise. The exercised pigs displayed a 

higher cortical thickness in their limb bones. However, other, non-weight bearing elements 

also showed a corresponding increase in cortical thickness (cranial vault bones, caudal 

vertebrae, and penultimate ribs). Systemic changes in cortical bone were also recorded in 

rats in zero-gravity conditions, showing lower cortical bone volume in the mandible, an 

element which does not bear loads regardless of environment (Simmons et al., 1983). 

 

Trabecular bone has been shown to be more functionally adaptive, and more localized to the 

elements that experience external forces (Lanyon, 1974; Hodgskinson and Currey, 1990; 

Biewener et al., 1996; Rubin et al., 2001, 2002; Mittra et al., 2005; Pontzer et al., 2006; 

Barak et al. 2011). The sheep that were studied by Rubin et al. (2001, 2002) and Barak et al. 

(2001) showed an increase in the trabecular bone mass in the hindlimbs but not in the radii 

(which were not exposed to the same external loads), and a change in anisotropy in the 

elements that were exposed to changes in direction. Some examples from primate studies, 

however, show that despite its more localized nature compared to cortical bone, there are 

still examples in which trabecular bone shows systematic, possibly genetic patterns (Alam et 

al., 2005; Havill et al., 2010), including overall higher BV/TV within non human primates than 

modern humans (Tsegai et al. 2013; Maga et al. 2006; Cotter et al. 2009; Ryan & Shaw 

2012; Scherf et al. 2013). When trying to quantify the relationship between activity patterns 
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and trabecular and cortical bone shape and size, both genetic and behavioural factors must 

be considered. Both structures are undoubtedly influenced by a genetic blueprint, but a vast 

swath of literature also clearly demonstrates how they adapt in response to behavioural 

differences.  

 

2.4 Trabecular bone studies in hominoids 

 

Trabecular bone studies on human samples have most often been applied to clinical 

contexts, investigating osteopenia and osteoporosis (Eriksen, 1986; Simkin et al. 1987; 

Smith et al. 1989; Dempster, 2000), and sports related contexts, often focusing on 

differences caused by highly different joint loading (Harrison et al. 2011; Modlesky et al. 

2008; Chang et al. 2008a). Applications on live primates pose ethical concerns, and for this 

reason are fairly sparse.  

 

Before 3D analyses of trabecular bone became technologically possible, most analyses 

were done by 2D analyses which provide a single image within an entire bone or epiphysis. 

Some of these first applications of 2D analysis on anthropoids included studies on the femur 

and vertebrae of a rhesus macaque (Beddoe, 1978), and the talus and calcaneus of two 

sympatric species of lemur (Ward & Susman, 1979). These studies were fairly limited in 

scope, and it was only until the 90s that the first extensive 2D trabecular analyses of the 

humerus and femur in prosimians and anthropoids were conducted (Rafferty & Ruff, 1994). 

The most precise technology now available for the analysis of trabecular bone is 3D high 

resolution μ-CT (voxel size of approximately 30 μm). Fajardo and Muller (2001) conducted 

one of the first analyses of non-human anthropoid trabecular bone using 3D μ-CT. They 

examined the proximal humerus and femur, with the goal of linking structure to type of 

lomocotion (terrestrial vs. arboreal) (Fajardo and Muller, 2001), and found that suspensory 
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taxa (more prone to loading in multiple directions) had more isotropic bone, whereas 

terrestrial taxa had more stereotypical trabecular orientation. However, Fajardo et al. (2007) 

later contradicted these findings when they expanded their sample size and found a large 

degree of overlap between suspensory and terrestrial species within the proximal femur, and 

that there was no clear correlation between trabecular structure and locomotor behaviour 

(Fajardo et al. 2007). They suggested that the hip joint in general might show higher degrees 

of similarity across taxa, or that current methods may be too simplistic (Fajardo et al. 2007). 

Similar studies have been conducted on the proximal femur, supporting the Fajardo et al. 

(2007) conclusions. Ryan and Walker (2010) investigated the trabecular bone of the 

proximal femur and humerus across five anthropoid taxa with the same purpose as the 

above study. Contrary to their predictions, they found that all taxa had significantly higher 

BV/TV in the femur and greater isotropy in the humerus. Many additional studies which have 

focused on the proximal femur and humerus have reached similar conclusions (Rafferty & 

Ruff, 1994; MacLatchy & Muller, 2002; Ryan & Ketcham, 2002).  

 

Several other studies on extant primates have supported the lack of clear relationship 

between trabecular bone structure and locomotor type (Maga et al., 2006; Cotter et al. 2009; 

Ryan et al. 2010; Ryan and Walker, 2010; DeSilva and Devlin, 2012; Shaw and Ryan, 2012; 

Schilling et al. 2014). Instead, there seems to be support for certain similarities across many 

anthropoid taxa. Ryan and Walker (2010) found that despite their variable locomotor types, 

suspensory primates, climbing primates, and quadrupedal terrestrial ones showed a similar 

pattern of BV/TV distribution between the humeral heads and proximal femurs (Ryan and 

Walker, 2010). On the other hand, strepsirrhines have shown much clearer functional signals 

within their trabecular bone structure than hominoids and anthropoids. Leaping taxa 

(galagines, indriids, and tarsiers) have more anistropic trabeculae than non-leaping taxa 

(Cheirogaleus, Loris, Perodictius, Otolemur) (Ryan & Ketcham, 2002; 2005). These 
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conclusions have been repeated numerous times in extant and fossil strepsirrhines 

(MacLatchy & Muller, 2002; Ryan & Ketcham, 2002).  

 

Given the fact that trabecular bone has undoubtedly been shown to adapt to biomechanical 

loading (Barak et al. 2011; Rubin et al. 2002), the fact that these studies show such 

equivocal results could be attributed to a multitude of factors. Even among taxa that are 

grouped in the same general locomotor category (knuckle-walker, suspensory, and bipedal) 

there is still variation in locomotor behaviour among individuals of the same group. Within 

chimpanzees (broadly considered terrestrial knuckle-walkers), there is variation in the 

degree of arboreal locomotion between males and females (potentially related to body size), 

with females consistently displaying more arboreal behaviour than males (Doran 1993). 

Matters are further complicated when social rank is added to the equation. Hunt (1992) 

found that chimpanzee positional behaviour within males was largely affected by social rank; 

social rank more consistently predicted branch diameter choice than body size (Hunt, 1992). 

A comparative study of the ontogeny of positional behaviour of gorillas and chimpanzees 

found that when the two taxa are at similar sizes (although widely disparate ages), they 

perform similar locomotor activities, with the exception of less suspensory behaviour in 

gorillas (Doran 1997). Given that we still don’t know for sure what kind of external forces 

trabecular bone most likely responds to (frequent low magnitude, infrequent high 

magnitude), it is possible that certain dynamic forces (suspension, brachiation), which vary 

considerably, may affect the trabecular bone structure, hide the habitual locomotor patterns, 

and create a wider range of variability within taxa (Kivell, 2016).  

 

Additionally, many of the studies that have reached equivocal results about the inefficiency 

about trabecular bone in locomotor reconstructions have focused on the proximal humerus 

and femur (Rafferty & Ruff, 1994; MacLatchy & Muller, 2002; Ryan & Ketcham, 2002). 
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These are both located within complex joints loaded in multiple directions and affected by 

soft tissues in addition to reaction forces. This makes understanding their kinematics much 

more complicated than studying simpler, uniaxial elements. For this reason, studying a 

relatively simple element like the first metatarsal, which experiences relatively consistent 

compressive loads, would make interpretations more secure.  

 

Another reason why trabecular bone studies have yielded such mixed results could be 

because of the relatively simplistic biomechanical models that are relied upon to draw 

conclusions. According to Ryan and Shaw (2012), many studies tend to isolate individual 

trabecular parameters, and by doing so, fail to show clear functional differences across 

locomotor modes. By combining multiple trabecular bone variables, they found that a 

locomotor signal may be detectable in the anthropoid femoral head, and less obviously in the 

humeral head.  Based on their analysis, they found unique trabecular bone characteristics. 

Within bipeds (Homo sapiens), trabecular architecture included a low number of thin, 

concave plate-like trabeculae that are highly anisotropic. Terrestrial quadruped-climbers 

(Pan) showed relatively numerous, thick, highly concave trabeculae that formed a dense 

isotropic structure. The other locomotor groups fell between these two ends of the spectrum, 

with Pongo showing fewer, relatively isotropic trabeculae (Ryan and Shaw, 2012). Studies 

that have combined comparative with experimental methods have also shown some more 

optimistic results. Barak et al. (2013) used data on kinematic and ground reaction forces 

from chimpanzees during terrestrial knuckle-walking and human bipedalism. They combined 

this information with the data they obtained from the trabecular bone structure within the 

distal tibia, and found that the trabeculae in chimpanzees were more obliquely oriented than 

in humans. This was interpreted as being reflective of a more dorsiflexed tibio-talar joint 

during midstance as opposed to an extended ankle human during human bipedal walking.  
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Recently, research has been released on the trabecular bone structure within the hand 

bones of modern humans, and a wide range of non-human primate taxa (Tsegai et al. 2013; 

Skinner et al. 2015), using a novel whole-epiphysis approach. Research by Tsegai (2013) on 

the third metacarpal has shown that the regions of greatest BV/TV and trabecular stiffness fit 

predictions based on the habitual behaviour displayed by the taxa within the study. Pan and 

Gorilla show a more dorsal concentration of trabecular bone on the metacarpal head, which 

is consistent with the joint’s position during knuckle-walking. Pongo show a more palmar 

concentration, which is consistent with the power grasping associated during suspension. 

Though this new methodology has not yet been applied to the foot bones, there already 

exists research on the trabecular bone structure within the foot bones, notably the first 

metatarsal of human and non-human apes. Griffin et al. (2010b), demonstrated a correlation 

between trabecular bone structure within the first two metatarsals, and the locomotor 

behaviour of a sample of humans and non-human primates. They examined BV/TV and DA, 

and hypothesized that the dorsal regions of the human metatarsals would display higher 

BV/TV and DA values. This was based upon kinematic data on the metatarsals, which 

emphasize pronounced stress on the dorsal aspect of the metatarsophalangeal joints during 

dorsiflexion, and a more uniaxial direction of the human MT1s. While they found no 

significant difference in the BV/TV values between humans and non-human apes, human 

metatarsal heads showed more anisotropic trabecular bone organization in the dorsal 

regions compared to the corresponding areas of the great ape metatarsal heads. 

Functionally, this is important, because a higher degree of anisotropy is reflective of 

stereotypical loading along a specific axis (Ryan and Ketcham, 2002), and could indicate a 

rigid foot, built for unidirectional movement. According to Griffin et al. (2010b), these 

differences suggest that within trabecular bone properties, the degree of anisotropy is the 

most indicative feature of a forefoot habitually used for propulsion during gait (Griffin et al. 

2010b). These findings support the idea that trabecular bone within the metatarsals is in fact 

responsive to biomechanical stressors, and that this method could be applied to fossil 

hominins to reconstruct locomotor behaviour in the past.  
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2.5 Evolution of bipedalism 

 

Ultimately, the reason why we’re interested in studying trabecular bone morphology is 

because of its potential utility in palaeoanthropology. If trabecular bone structure can be 

correlated to locomotor behaviour, this can then be used to reconstruct fossil hominin 

behaviour. As will be shown in this section, based on the analysis of external bony 

morphology of fossil hominins, there is a vast array of interpretations regarding the 

locomotor adaptations of fossil hominins. Among more recent hominin taxa (Homo 

antecessor, Homo heidelbergensis, Homo neanderthalensis), there is general agreement 

that they were fully adapted to obligate bipedalism (Trinkaus 1983; Lorenzo et al. 1999). 

Despite known differences in lower limb proportion in these taxa, most of the debate 

revolves around earlier specimens, including pre-Australopiths, Australopiths, and early 

Homo.  

 

There are two main theories for how obligate bipedalism evolved. One major theory is of a 

knuckle-walking ancestor similar to modern African apes, originally proposed by Washburn 

(1967) which has been supported by others (Richmond & Strait, 2000; Richmond et al. 2001; 

Orr, 2005) based on the wrist morphology of Australopithecus afarensis. Many key 

adaptations to knuckle walking are observed in the distal radius, carpals, tarsals, and 

phalanges of African apes as well as Australopithecus and Homo sapiens, although others 

argue that these features are not unique to knuckle walking and are not observed in early 

hominins (Tuttle and Basmajian, 1974). Instead, it has been proposed that the locomotor 

behaviour immediately antecedent to the evolution of bipedalism involved vertical climbing 

and orthograde clambering, but no significant terrestrial locomotion (Fleagle et al., 1981). 

This ancestor is described as a small-bodied climber and arboreal biped by some (Tuttle and 

Basmajian, 1974; Tuttle, 1975, 1981), and as a larger-bodied ancestor that used all four 

limbs for grasping during vertical climbing and suspension by others (Stern, 1975; Prost, 
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1980; Hunt, 1996). It has also been proposed that the antecedent locomotor type would 

have been similar to pronograde clambering as seen in orangutans (Crompton et al., 2003; 

Thorpe and Crompton, 2005). 

 

The earliest evidence of bipedalism comes from early hominins such as Sahelanthropus 

(Brunet et al., 2002; Guy et al., 2005), Orrorin (Pickford et al., 2002), and Ardipithecus 

(Haile-Selassie, 2001). Though these individuals all display adaptations to a bipedal mode of 

locomotion, there has been disagreement over the extent and importance of continued 

arboreality that they display (Ward, 2002). This is largely due to the problematic 

interpretation of symplesiomorphic and synapomorphic character statues within their 

postcrania (Ward, 2002). With the large fossil record in Eastern Africa, research has largely 

focused on A. afarensis remains from Hadar. Ethiopia, dated between 3.0 and 3.6 Ma, as 

well as footprints from Laetoli, Tanzania (c. 3.6-3.7 Ma). Additional postcranial remains have 

contributed to discussion about early bipedalism, including Homo habilis remains (e.g. OH 

62 and OH 8) (Leakey, 1960; Johanson et al., 1987), Aaustralopithecus garhi (Asfaw et al., 

1999), and Australopithecus anamensis (Leakey et al., 1995, 1998).  

 

Australopith remains attributed to A. afarensis have been the subject of many debates 

because of the mosaic nature of the postcranial remains and attract two opposing 

interpretations of their locomotor behaviour. On one hand, they are said to be fully compliant 

with bipedal locomotion (Latimer & Lovejoy, 1989, 1990; Latimer et al. 1987). Others 

emphasize that they display a mosaic of terrestrial and arboreal locomotion (Susman & 

Stern 1982; Stern & Susman 1983; Susman 1983; Duncan et al. 1994; Berillon, 1999). The 

former perspective would argue for an erect, modern human-like posture, whereas the latter 

would argue for a “bent-hip, bent-knee” posture seen in the bipedal gait of chimpanzees. The 

mosaic nature of Australopithecus morphological features can be clearly seen in the ‘Lucy’ 
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skeleton (AI288-1, c. 3.2 Ma), which shows adaptations for bipedalism (human-like pelvis 

with a short iliac blade and wide sacrum, a human-like bicondylar angle of the femora, and a 

human-like talo-crural joint) (Stern & Susman, 1983). It also shows adaptations for arboreal 

locomotion (cranially-oriented glenoid, a funnel-shaped thorax, and long and curved pedal 

and manual phalanges) (Stern, 2000; Ward, 2002). The functional interpretations of these 

features can be placed in two camps. Stern, Susman, and Jungers (Junger 1982; Jungers 

and Stern, 1983; Stern & Susman, 1983; Rose, 1984; Susman et al. 1984; Stern, 1999) 

emphasize that the primitive, ape-like features within the skeleton are indicative of habitual 

arboreal locomotion. Latimer, Lovejoy, and Ohman (Latimer et al. 1987; Latimer & Lovejoy 

1989; Latimer, 1991) argue that A. afarensis was an obligate biped based on the fact that 

certain features that are essential for arboreal locomotion were not preserved (a grasping 

foot and long and curved toe and finger bones). They argue that the anatomical features 

associated with arboreal locomotion are merely evolutionary remnants, and that A. afarensis 

was a committed biped (Lovejoy, 1988). Combined with the rest of the A. afarensis 

postcranial collection, it has been suggested that there is more than one form of locomotor 

behaviour represented within the species (Senut, 1981; 1983; Stern and Susman, 1983; 

Senut and Tardieu, 1985). It has been shown that A. afarensis is highly sexually size-

dimorphic (Richmond & Jungers, 1995; Johanson & White, 1979; Kimbel & White, 1988; 

McHenry, 1991; Lockwood et al., 1996), and the smaller individuals retained features that 

would allow for more efficient climbing, whereas the larger individuals showed features more 

efficient in bipedal walking. Recently discovered footprints at Laetoli (Masao et al. 2016) 

corroborate the original (Johanson et al., 1979) description of the species as highly 

dimorphic in size. This dimorphism could indicate multiple locomotor patterns within a single 

taxon, and emphasize intraspecies variability.  

 

This variation in locomotor repertoire has alternatively been interpreted as there being two 

separate species of hominins with two different sets of behaviour (Deloison, 1999). It has 
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been proposed that postcranial features could be clear phylogenetic indicators, and that the 

differences seen in the A. afarensis material represent a deep dichotomy in their locomotion 

(Senut, 1996; Senut et al., 2001). The smaller A. afarensis, along with Paranthropus 

aethiopicus, Paranthripus robustus, and Paranthropus boisei specimens comprise a lineage 

of climbers/bipeds, whereas the larger A. afarensis, A. anamensis, Orrorin tugenensis, and 

early Homo comprise obligate bipeds (Senut, 1996; Senut et al., 2001). Discounting which 

theory is more plausible, most evidence points to a scenario in which more than one 

locomotor repertoire was present at the same time. There was A. africanus with inferred 

ape-like intermembral proportions, overlapping with the Bouri skeleton with human-like 

intermembral proportions, H. habilis with ape-like intermembral proportions overlapping with 

Homo ergaster with human-like intermembral proportions (Richmond et al. 2001).   

 

Of particular relevance to this study are the postcranial remains of South African robust 

australopiths attributed to P. robustus. This taxon is mainly represented by cranial remains 

(Grine, 1993; Constantino and Wood, 2007), and postcranial remains are sparse. Until 1988, 

very little postcrania had been attributed to Paranthropus, making inferences about their 

body size and proportions very difficult. Based on the material found up until 1988, which 

included 57 specimens from various postcranial elements, McHenry (1991) concluded that 

Paranthropus had a very small body in relation to modern humans, and that it may have 

displayed as high level of sexual dimorphism. Some research has been done to define the 

type of locomotion they exhibited (Napier, 1964; Robinson, 1974; Grine et al., 1991; 

McHenry et al., 2007). Two notable works can be attributed to Napier (1964), and Robinson 

(1974), who compared Paranthropus to A. africanus postcrania. Both agreed that P. 

robustus and A. africanus had considerable adaptations to bipedalism, but that there were 

nonetheless differences in postcranial morphology between them. Napier (1964) argued 

based on the pelves and proximal femora of the two taxa, that P. robustus had a less 

efficient form of bipedalism than A. africanus, with a ‘waddling gait’ and an inability to 
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transfer body weight from one foot to the other during walking. He attributed this difference 

to different ecological preferences of the two taxa. P. robustus was said to have spent more 

time in woodland savannah settings, whereas A. africanus spent more time in open 

savannah settings. However, any substantial interpretations of their behaviour are hindered 

by a paucity of material and by overt generalizations of simplistic ecological models. 

 

The most recent large-scale discovery of postcrania attributed to Paranthropus from 

Swartkrans comes from a mixed assemblage that also includes early Homo remains, 

bringing the total number of hominin postcranial remains from Swartkrans to about 70 

(Susman et al., 2001). Recent research has shed light on Paranthropus gait through the 

inner structural morphology of pedal elements from Swartkrans (Su and Carlson, 2017; 

Dowdeswell et al., 2017). Trabecular analysis of the talus (Su and Carlson, 2017) and 

diaphyseal cortical bone properties within the fifth metatarsal (Dowdeswell et al., 2017) 

indicate a medial weight transfer of the foot during push-off, and loading of the lateral column 

in a human-like way. 

 

2.5.1 Feet in the fossil record 

 

The fossil record is already fairly scarce in terms of complete foot remains from Plio-

Pleistocene taxa, and it is even further reduced if taking into consideration complete, or 

partially complete feet. The most complete hominin pedal remains from the Plio-Pleistocene 

are attributed to Ar. ramidus (White et al., 1994; Lovejoy et al., 2009), A. afarensis 

(Johanson et al., 1989), A. africanus (Clarke and Tobias, 1995), and H. habilis (Leakey et 

al., 1964), all of which possess complete or partial MT1s. 
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The earliest of the aforementioned species, Ar. ramidus (~4.5 mya) possessed a foot with a 

range of primitive and derived features, likely capable of hallucal grasping due to its 

abducted MT1 and a lateral foot that potentially acted as an effective lever for toe-off during 

bipedalism (Lovejoy et al., 2009; White et al., 2015). Later australopiths show clearer 

adaptations for habitual bipedalism. Most of what we know about A. afarensis foot 

morphology comes from fossils recovered from Hadar, in particular the A.L.333 collection, 

which is composed of tarsals, metatarsals, and phalanges (Latimer et al., 1982). 

Cumulatively, these elements suggest that the foot was close in morphology and function to 

modern great apes (Stern and Susman, 1983; Susman et al., 1984, McHenry and Coffing, 

2000). The first metatarsal from this collection (A.L.333-54) preserves only the proximal 

portion, consequently most interpretations centred around this specimen have focused on 

the proximal articular surface (Latimer et al., 1982; Proctor et al., 2008; Proctor, 2010). It is 

described as more similar to non-human primates because it lacks the facet which would 

indicate contact with the second metatarsal, and because of the relatively curved proximal 

articular surface that is more similar to extant apes (Proctor et al., 2008; Proctor et al., 2010). 

The remaining pedal elements have shown adaptations for bipedality and arboreal 

locomotion, including longer and ventrally curved phalanges and well-developed insertions 

for the flexor sheaths, but also human-like expansion of the dorsal articular surface of the 

head of the proximal phalanges that indicates an enhanced range of dorsiflexion at the joints 

(Tuttle, 1981; Stern and Susman, 1983; Susman et al., 1984). A limited amount of 

information can also be drawn about locomotor behaviour in fossil hominins based on 

footprint patterns. Based on footprint patterns from Laetoli, dated to 3.66 Ma and attributed 

to A. afarensis (Bennett et al. 2009; Raichlen et al. 2010; White & Suwa 1987; Leakey & 

Hay, 1979), it has been argued that A afarensis lacked a medial weight transfer and retained 

an ability to abduct the hallux. However, Stern and Susman (1983) emphasize a marked 

adduction of the hallux, a deep impression of the ball of the foot, as well as a uniformity of 

the toes, features that are seen in obligate bipeds.  
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Little Foot (Stw 573), which was found at Sterkfontein, South Africa, is currently attributed to 

A. africanus, and has preserved the talus, navicular, medial cuneiform, and first metatarsal 

(Clarke and Tobias, 1995; Clarke, 2008). Interpretations of the first metatarsal have been 

fairly varied, with some authors suggesting it was divergent (Clarke and Tobias, 1995). This 

was based largely on the medial orientation of distal articular surface of the medial 

cuneiform. However, more recently, studies have observed the degree of divergence of the 

hallux within the great apes and fossils by examining the relationship between the medial 

cuneiform and the first metatarsal (Berillon, 1999; McHenry and Jones, 2006). By examining 

the corresponding articular facets of the MT1 and the medial cuneiform, they concluded that 

the specimen did not have an abducted hallux, and falls within the range of modern Homo 

sapiens (McHenry and Jones, 2006; Proctor et al., 2008; Proctor, 2010). Additionally, 

multivariate analyses of the Stw 573 tarsal bones using geometric morphometrics have 

demonstrated that the foot shows a more ape-like talus, an ‘intermediate’ navicular, and a 

human-like medial cuneiform that suggests a lack of abduction (Harcourt-Smith, 2002).  

 

Locomotor diversity within Plio-Pleistocene hominins is further emphasized by pedal remains 

from Ethiopia dated to 3.4 mya. The Burtele foot (Haile-Selassie et al., 2012) is described as 

similar to Ar. ramidus in its abducted hallux, and degree of MT2 torsion, with a lateral foot 

that was capable of bipedalism. Despite the fact that it is contemporaneous to A. afarensis, 

the two taxa do not share many similarities, and they are interpreted as having highly 

different modes of locomotion. This has been suggested as indicating the presence of more 

than one hominin species during the Late Pliocene of eastern Africa, and of the persistence 

of species with a similar mode of locomotion to Ar. ramidus. 

 

Of the pedal elements attributed to early Homo, the Olduvai foot (OH 8), attributed to Homo 

habilis, has been crucial in our understanding of hominin foot evolution (Leakey, Tobias, and 
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Napier, 1964). It consists of a talus, metatarsals lacking their heads, and a damaged 

calcaneus (Day and Napier, 1965). It possesses features which have been said to resemble 

a talus assigned to Paranthropus robustus (Susman and Stern, 1982), and features more 

similar to modern Homo. These include bases of the MT1 and MT2 that indicate no hallucial 

abduction, a short MT1, and a strong longitudinal arch. However, the overall morphology of 

the metatarsals indicates a more robust overall structure than Homo sapiens. (Day and 

Napier, 1964; Day and Wood, 1968; Susman and Stern, 1982; Wood, 1992). Wood (1973, 

1974) compared the OH8 talus to a talus from Koobi Fora (KNM-ER 813), which is similar in 

age to OH 8, and was interpreted as have a more human-like morphology.  

 

2.5.2 SKX 5017 and SK 1813 

 

The fossils used for this study (SKX 5017 and SK 1813) were both found in isolation, 

meaning they cannot be attributed to a specific taxon, however they have been most closely 

aligned to Paranthropus robustus (Brain, 1984; Susman and Brain, 1988).  

Specimen SKX 5017 is an isolated left MT1 recovered from the lower layer of Swartkrans 

Member 1, which is dated to approximately 1.5-1.8 Ma (Susman and Brain, 1988; Susman 

and de Ruiter, 2004). Along with the other fossils found within this level, SKX 5017 is 

attributed to Paranthropus robustus. If this dating is accurate, the specimen could be 

contemporaneous to OH 8 (1.8 Ma), and potentially Stw573 from Sterkfontain (Zipfel & Kidd 

2006). The specimen is described as short, and closely resembling OH 8 in overall size, and 

similar in length to female bonobos (Susman and Brain, 1988). The base of the metatarsal 

resembles human morphology in that it is relatively flat, as opposed to the concave surface 

characteristic of great ape basal metatarsal shape (Berillon, 1999; Latimer and Lovejoy, 

1990; McHenry and Jones, 2006; Tocheri et al., 2011; Drapeau and Harmon, 2013). This 

would indicate a limited range of motion within the tarsal-metatarsal joint and increased 
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stability. In general, there is no indication that the hallux of Paranthropus was abducted to an 

ape-like degree (Susman and Brain, 1988; Susman and de Ruiter, 2004). The overall 

proportions of the shaft and robusticity are similar to humans, while the head displays a 

mosaic of primitive and derived features. The superior articular surface of the head extends 

onto the dorsum of the shaft, which is an indication of increased dorsiflexion at the MTPJ 

during bipedalism (Stokes et al., 1979; Susman and Brain, 1988; Susman and de Ruiter, 

2004; Griffin and Richmond, 2005; Griffin et al., 2010). In contrast, the dorsal medio-lateral 

breadth of the head is narrower than the plantar breadth, suggesting the joint did not close-

pack in dorsiflexion, and that Paranthropus employed a different, less efficient mode of 

bipedalism (Susman and Brain 1988; Susman and de Ruiter, 2004).  

Specimen SK 1813 is a nearly complete left first metatarsal found in a backfill hole, and is 

thought to come from Member 1 or 2, but attribution to a specific stratigraphic unit cannot be 

made with certainty (Susman and de Ruiter, 2004). Presence of an epiphyseal line near the 

base signals the subadult status of this individual, with an estimated age of approximately 15 

years (Susman and de Ruiter, 2004). It bears strong morphological affinities to SKX 5017, 

albeit the former is smaller. It has the same dorsal mediolateral narrowing on the head, and 

expansion of the dorsal articular surface onto the dorsum of the shaft (Susman and Brain, 

1988; Susman and de Ruiter, 2004). The base is also human-like in its morphology – it is 

dorsoplantarly expanded, which is more adaptive to a bipedal gait (Proctor et al. 2008, 

Proctor, 2010). The stout form of SK 1813 and its basal morphology is suggestive of 

increased tensile forces from well-developed plantar ligaments (Susman and de Ruiter, 

2004).  
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2.6 Trabecular bone studies in extinct hominids 

 

Efforts have been made to look beyond external morphology alone by examining the 

trabecular bone structure within limited fossil taxa (DeSilva and Devlin, 2012; Su et al., 2013; 

Barak et al., 2013b; Su and Carlson, 2017). DeSilva and Devlin (2012) analysed the 

trabecular bone structure of Australopithecus tali in relation to modern humans, 

chimpanzees, gorillas, and orangutans. Generally, they found that despite certain 

arrangements in the trabecular bone consistent with the compressive loads associated with 

mode of locomotion (i.e. highly anisotropic trabeculae in humans), the trabecular architecture 

showed no clear-cut intraspecies or regional differences in architecture that were unique to 

humans. All trabecular parameters (thickness, number, spacing, and connectivity density) 

had the same regional relationships across taxa. This is suggestive of a deeply conserved 

architecture in the primate talus, and limits the extent to which the talar trabeculae can be 

used to infer positional behaviour (DeSilva and Devlin, 2012). Though they found that 

Australopithecus tali were human-like in many respects, they differed in having more 

anisotropic trabeculae in the posteromedial quadrant of the talus as opposed to the 

posterolateral one in humans. However, recent analysis of the trabecular structure within the 

talus (Su and Carlson, 2017) has contradicted these results by finding clear differences in 

trabecular strut orientation and shape between taxa. Within the comparative sample of 

modern great apes and humans, Paranthropus tali resembled the human condition in the 

anterior-medial subregion, with a strut orientation positioned to distribute compressive loads 

medially and toward the talar head. In A. africanus, primary strut orientation in this region 

appears most similar to that of great apes. This indicates a medial weight shift in 

Paranthropus that Australopithecus did not possess.  

 

Relatively later Homo specimens become marginally easier to interpret. Specimens from 

Dmanisi represent some of the earliest hominins outside of Africa (1.77 Ma), and include the 
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only early Pleistocene hominin population for which a complete femur, tibia, and associated 

foot bones have been found. The hind limb is described as functionally similar to later 

members of the genus Homo, with the exception of the metatarsals, which have a more 

primitive morphology and are more similar to OH 8 and earlier hominins rather than modern 

humans (Pontzer et al., 2010). The first metatarsals associated with the Dmanisi hominins 

are robust and appear more human-like in morphology, but like the OH 8, SK 1813, and SKX 

5017 fossils, show variations that would imply a different type of bipedalism (Pontxer et al. 

2010).  

 

Ultimately, these interpretations will always suffer because many elements of external 

morphology can be subjectively interpreted. If a strong link is found between trabecular 

morphology and principal load patterns in a comparative sample of extant primates and 

humans, then this methodology can be applied to fossil hominins to obtain a more objective 

interpretation. By looking at the first metatarsal, an element which has an important 

evolutionary role, and has shown promise in trabecular bone studies, my project could shed 

light on the actual behavioural patterns of fossil hominins. 
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Chapter 3. Manuscript 

 

3.1 Introduction 

 

One of the central questions within the study of human evolution is how and when obligate 

bipedalism emerged. The forefoot is of particular importance in addressing this question 

because it directly reflects the extent to which a species is capable of terrestrial versus 

arboreal locomotion. The first metatarsal has arguably undergone the most dramatic 

transformation within the forefoot, from a digit used primarily for grasping, to a digit used 

mainly for weight-bearing, stabilization, and propulsion in modern humans. Using a 

comparative sample of modern human and non-human primates, this study will address how 

trabecular structure is reflective of locomotor mode, with the ultimate goal of comparing them 

to fossil hominins to help resolve debates about earlier forms of bipedalism. 

 

3.1.1 Bone functional adaptation  

 

Functional interpretations of fossil hominin locomotion largely vary because of a lack of 

consensus on the functional significance of various external skeletal features. Because fossil 

hominins often possess a mosaic of primitive and derived features, it remains unclear 

whether they continued to engage in arboreal locomotion, or if they used a form of 

bipedalism similar to modern humans (Stern and Susman, 1983; Latimer et al., 1987; Clarke 

and Tobias, 1995; Harcourt-Smith and Aiello, 2004; Zipfel et al., 2009, 2011; Haile-Selassie 

et al., 2012; DeSilva et al., 2013; Harcourt-Smith et al., 2015).  This problem can be 

overcome by studying aspects of bone that are more responsive to external loading. While 

articular surfaces indicate the joint positions an individual was able to adopt, internal bone is 

more likely to show how the joint was actually loaded (Ruff and Runestad, 1992; Kivell, 

2016).  Cortical bone has been shown to respond to mechanical stress, and is known to 
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respond to tension and compression in the shaft (Ruff, 1983; Cowin et al., 1985; Doden, 

1993; Carlson, 2005; Ruff et al., 2006), however, it is less evident in inferring joint positioning 

at the epiphyses. Trabecular bone remodels at a faster rate than cortical bone (Eriksen, 

2010), and can provide evidence of in vivo loading that may be more useful at reconstructing 

predominant joint position and associated behaviours (Rubin et al., 2002; Pontzer et al., 

2006; Barak et al., 2011; but see Bertram and Swartz, 1991).  

 

The current study focuses on two main structural properties of trabecular bone: bone volume 

fraction (BV/TV), which is affected by both trabecular thickness and spacing, and degree of 

anisotropy (DA), which measures the degree to which the trabecular struts are oriented in 

the same direction. These parameters account for 87-89% of the variance in a bone’s 

strength (Young’s modulus) (Maquer et al., 2015) and have been shown to change in 

relation to changes in magnitude, frequency, and direction of load within in vivo studies 

(Lanyon, 1974; Hodgskinson and Currey, 1990; Biewener et al., 1996; Rubin et al., 2002; 

Mittra et al., 2005; Pontzer et al., 2006; Barak et al. 2011) and to separate taxa that employ 

different modes of locomotion (MacLatchy and Muller, 2002; Ryan and Ketcham, 2002, 

2005; Ryan and Shaw, 2012; Scherf et al., 2013; Tsegai et al., 2013, 2017; but see Ryan 

and Ketcham, 2010). BV/TV is an informative parameter to study because it is less likely to 

scale allometrically (Barak et al., 2013), and is known to be higher in areas that experience 

greater load, and DA is known to adapt to the direction of an element’s range of movement 

(Biewener et al., 1996; Ryan and Ketcham, 2002; Pontzer et al., 2006, Barak et al., 2011; 

but see Ruff et al., 2005). It should be noted that the exact functional adaptation of 

trabecular bone is not fully understood. It is known that there is a genetic component to its 

structure (Havill et al., 2010), and that different elements might show differential trabecular 

adaptation (Räth et al. 2015). There is also uncertainty about the role of frequency vs. 

magnitude of load on trabecular remodelling (Skerry and Lanyon, 1995; Lambers et al. 

2013). 
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3.1.2 MT1 biomechanics 

 

In order to make predictions about trabecular distribution within the metatarsal, a knowledge 

of the loading regime of the foot must be understood. Modern humans are adapted for a 

uniquely bipedal mode of locomotion, and possess a forefoot structure in which each 

metatarsophalangeal joint (MTPJ) acts as a largely weight bearing and propulsive structure 

during the push-off part of the stance phase (Stokes et al.,1979; Christensen and Jennings, 

2009; Griffin et al., 2015). It is during this phase that the MTPJs dorsiflex, moving the 

proximal phalanges on to the dorsum of their respective metatarsal heads. This causes 

tightening of the plantar aponeurosis, stabilizing the foot and elevating the longitudinal arch, 

changing its conformation to a stiff lever for propulsion and ultimately toe-off (Hicks, 1954; 

Bojsen-Moller, 1979; Susman, 1983; Caravaggi et al. 2010; Griffin et al., 2015). As shown by 

in vivo studies of plantar pressure distribution within the human foot, it is during dorsiflexion 

that the medial forefoot shows a spike in loading (Hutton and Dhanendran, 1981; Katoh et 

al., 1983; Soames, 1985; Munro, 1987; Lee and Farley, 1998; Hunt et al., 2001; Nester et 

al., 2007; Griffin et al., 2010). The first metatarsal (MT1) bears a large portion of this 

compressive load, which is evident in its external morphology. The MT1 head in humans is 

generally larger than that of other great apes, due to the greater amount of loading it incurs 

during push-off. The superior aspect of the articular surface of the head expands to the 

dorsum of the bone, resulting in a raised appearance in relation to its shaft, which is thought 

to increase the range of dorsiflexion at the MTPJ (Stokes et al., 1979; Susman and Brain, 

1988; Susman and deRuiter, 2004; Griffin and Richmond, 2005; Griffin et al., 2010). Finally, 

it is medio-laterally wide on the dorsal aspect of the head, which has been argued to 

enhance joint stability during push-off and facilitate close-packing of the MTPJ (Susman & 

Brain, 1988; Hetherington et al., 1989; Susman & de Ruiter, 2004; Pontzer et al., 2010, 

Fernandez et al., 2015).  
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The non-human primate MT1 head does not experience loading in the same way as in 

modern humans, as demonstrated by in vivo studies of bonobos (Vereecke et al., 2003; 

d’Août et al., 2004; Griffin et al., 2010) and chimpanzees (Wunderlich and Ischinger, 2017). 

During terrestrial quadrupedalism, the lateral midfoot shows a higher spike in loading at 

push-off than the medial aspect, minimizing the strain inflicted upon the MT1 (Vereecke et 

al., 2003). Instead, the MT1 incurs increased loading during vertical climbing, when the 

MTPJ is plantarflexed (Wunderlich and Ischinger, 2017). This is reflected within the shape of 

the MT1 head, which is mediolaterally expanded on the plantar aspect (Susman, 1983; 

Latimer and Lovejoy, 1990; Griffin and Richmond, 2010; Marchi, 2005, 2010; Fernandez et 

al., 2015). The same mechanism that allows for close-packing of the MTPJ during 

dorsiflexion within humans allows for close-packing during plantarflexion in non-human 

primates, increasing stability during pedal grasping (Susman, 1983; Susman and de Ruiter, 

1984; Griffin et al., 2010). Within non-human primates, there is variation in how the hallux is 

used for locomotion. Though comparative plantar pressure distribution data between Gorilla, 

Pongo, and Pan does not exist, a substantial amount of information can be obtained through 

observational studies (Sarmiento, 1994; Remis, 1995), and skeletal morphology (Susman, 

1979; Shea, 1981; Inouye, 1992; Doran 1997; Richmond, 1998; Marchi, 2005; Drapeau and 

Harmon, 2008; Congdon, 2012; Jashashvili et al. 2015). Pongo generally do not use the 

hallux in suspension, whereas Pan generally does (Oishi et al., 2012). Although gorillas can 

locomote arborearly, their size restricts them to supports of larger diameters, and they 

typically do not use their feet for suspension. Their feet are instead used for vertical climbing 

or walking, and because the supports they use for climbing are usually large relative to their 

foot size, there is little flexion of the metatarsophalangeal and interphalangeal joints 

(Sarmiento, 1994; Remis, 1995).  

 

The proximal articular surface of the MT1 is equally reflective of locomotor behaviour. Within 

modern humans, it is relatively broad and flat, corresponding to a stable tarsometatarsal joint 

complex that reduces mediolateral mobility of the hallux, and keeps it in line with the other 
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metatarsals. (Morton, 1924; Susman and Brain, 1988; Proctor et al. 2008; Proctor, 2010; Gill 

et al. 2015). Its broad mediolateral width is related to the bending stresses experienced near 

the base, and its increased cross-sectional area is a response to high compressive forces at 

the joint, and high tensile forces inflicted upon the ligaments (Stokes et al., 1979; Griffin and 

Richmond, 2005). In all other living great apes, the proximal MT1 does not experience such 

high loading, resulting in a proximal surface that is dorso-plantary and medio-laterally 

narrower. The tarsometarsal joint is instead adapted for a wider range of movement 

associated with grasping. The proximal articular surface of the MT1 is concave, and the 

distal articular surface of the medial cuneiform is convex, allowing for multiaxial movement of 

the hallux that is more effective for climbing and grasping (Berillon, 1999; McHenry and 

Jones, 2006; Tocheri et al., 2011; Drapeau and Harmon, 2013). 

 

3.1.2 Previous trabecular analysis of the MT1 

 

Predictions about how mechanical loading affects the trabecular bone within the MT1 can be 

made a priori based on already known patterns within the MT1 head of modern Homo, Pan 

troglodytes, Pan paniscus, and Gorilla gorilla (Griffin et al., 2010). Using a VOI-based 

method of analysis, modern humans exhibit significantly higher DA values in the dorsal 

aspect of the metatarsal head, consistent with a more tightly constrained joint that has a 

more uniaxial direction of movement. BV/TV has been shown to be less effective at 

differentiating locomotor behaviour between species, but this may be caused by the 

methodological limitations of using VOIs in analysing trabecular structure. Overall, these 

results suggest that within trabecular bone properties, the degree of anisotropy is the most 

indicative factor of a forefoot habitually used for propulsion during gait (Griffin et al. 2010).  

 

 



52 
 

3.1.3 Fossil MT1s 

 

Among more recent hominin taxa (H. antecessor, H. heidelbergensis, H. neanderthalensis), 

there is general agreement that they were fully adapted to obligate bipedalism (Trinkaus 

1983; Lorenzo et al. 1999). Despite known differences in lower limb proportions in these 

taxa, most of the debate concerning the evolution of bipedalism revolves around earlier taxa, 

including pre-australopiths, australopiths, and early Homo. The most complete hominin 

pedal remains from the Pliocene and Pleistocene are attributed to Ardipithecus ramidus 

(White et al., 1994; Lovejoy et al., 2009), Australopithecus afarensis (Johanson et al., 1989), 

Australopithecus africanus (Clarke and Tobias, 1995), and Homo habilis (Leakey et al., 

1964), all of which possess complete or partial MT1s.  

The earliest of the aforementioned species, Ar. ramidus (~4.5 mya) possessed a foot with a 

range of primitive and derived features, likely capable of hallucal grasping due to its 

abducted MT1 and a lateral foot that potentially acted as an effective lever for toe-off during 

bipedalism (Lovejoy et al., 2009; White et al., 2015). Later australopiths show clearer 

adaptations for habitual bipedalism. Though retaining some features for arboreal locomotion 

(Stern, 200; Ward, 2002), The A. afarensis MT1 is adducted and shows dorsal doming of the 

head (Tuttle, 1981), and maintains ape-like features (Stern and Susman, 1983; Susman et 

al., 1984, McHenry and Coffing, 2000). Like A. afarensis, A. africanus shows a range of 

features adapted for bipedal and arboreal locomotion, but the two show different 

combinations of morphologies within the foot (see Harcourt-Smith, 2002). Locomotor 

diversity within Plio-Pleistocene hominins is further emphasized by pedal remains from 

Ethiopia dated to 3.4 mya. The Burtele foot (Haile-Selassie et al., 2012) is described as 

similar to Ar. ramidus in its abducted hallux and degree of MT2 torsion, with a lateral foot 

that was efficient in bipedalism. Despite the fact that it is contemporaneous to A. afarensis, 

the two taxa do not share many similarities, and they are interpreted as having highly 

different modes of locomotion. This has been suggested as indicating the presence of more 
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than one hominin species during the Late Pliocene of eastern Africa, and of the persistence 

of species with a similar mode of locomotion to Ar. ramidus.  

Given its more recent age (2.4-1.4 mya), The OH 8 foot, attributed to Homo habilis, has 

been crucial in our understanding of the evolution of bipedalism in the Pleistocene (Leakey, 

Tobias, and Napier, 1964). The MT1 is short, and its base shows no indication of abduction, 

but the overall morphology of the metatarsals indicates a more robust overall structure than 

Homo sapiens. (Day and Napier, 1964; Day and Wood, 1968; Susman and Stern, 1982; 

Wood, 1992). Its ankle morphology is described as similar to contemporaneous P. robustus, 

and different from KNM-ER 813 (Homo ergaster), which has a more modern overall 

structure. This implies that there were different hominin pedal morphologies at the same time 

(Harcourt-Smith, 2002). 

Of particular relevance to this study are the postcranial remains of South African robust 

australopiths attributed to Paranthropus robustus. Paranthropus is mainly represented by 

cranial remains (Grine, 1993; Grine and Daegling, 1993; Wood and Constantino, 2007), and 

postcranial remains are sparse. Based on available elements, the gait of P. robustus has 

been described as adapted to bipedalism, but with a ‘waddling gait’ and an inability to 

transfer body weight from one foot to another when walking (Napier, 1964; Robinson, 1974). 

However, recent research has shed light on P. robustus gait through the inner structural 

morphology of pedal elements from Swartkrans (Su and Carlson, 2017; Dowdeswell et al., 

2017). Trabecular analysis of the talus (Su and Carlson, 2017) and diaphyseal cortical bone 

properties within the fifth metatarsal (Dowdeswell et al., 2017) indicate a medial weight 

transfer of the foot during push-off, and loading of the lateral column in a human-like way. 

Two complete metatarsals from Swartkrans contribute to our understanding of P. robustus 

locomotion. 

Specimen SKX 5017 is an isolated left MT1 recovered from the lower bank deposit of 

Swartkrans Member 1, which is dated to approximately 1.5-1.8 Ma (Susman & Brain, 1988; 

Susman & de Ruiter, 2004). Along with the other fossils found within this level, SKX 5017 is 



54 
 

attributed to Paranthropus robustus. The specimen is described as short, and closely 

resembling OH 8 in overall size, and similar in length to female bonobos (Susman and Brain, 

1988). The base of the metatarsal has a mildly concave and ovoid shape, similar to modern 

great apes (Susman and Brain, 1988), though the morphology of the base and proximal 

shaft provide evidence that human-like plantar ligaments (and perhaps an aponeurosis) 

were present. The head displays a mosaic of primitive and derived features. The superior 

articular surface of the head extends onto the dorsum of the shaft, which is seen in humans, 

and is an indication of increased dorsiflexion at the MTPJ. In contrast, the dorsal medio-

lateral breadth of the head is narrower than the plantar breadth, suggesting the joint did not 

close-pack in dorsiflexion, and thus was less stable during push-off (Susman & Brain 1988). 

Based on the degree of torsion between the head and base, and the shape of the proximal 

articular facet, there is no indication that the hallux of SKX 5017 was abducted to an ape-like 

degree (Susman and Brain, 1988).  

 

Specimen SK 1813 is a nearly complete right MT1 found in a backfill hole of Swartkrans, and 

is thought to come from Member 1 or 2, but attribution to a specific stratigraphic unit or taxon 

cannot be made with certainty (Susman and de Ruiter, 2004). Presence of an epiphyseal 

line near the base signals the subadult status of this individual, with an estimated age of 

approximately 15 years (Susman and de Ruiter, 2004). It bears strong morphological 

affinities to SKX 5017, albeit the former is smaller. It has the same dorsal mediolateral 

narrowing on the head, and expansion of the dorsal articular surface onto the dorsum of the 

shaft. The base is also dorsoplantarly expanded, which is more reflective of increased 

tensile forces from well-developed plantar ligaments in response to a bipedal gait (Susman 

and de Ruiter, 2004; Proctor et al. 2008, Proctor, 2010). The shape of the proximal articular 

surface is difficult to discern due to post-mortem damage, but it is nonetheless described as 

concave and ovoid, typical of non-human primates (Susman and de Ruiter, 2004). Studying 

trabecular bone structure within extant primates has a direct utility in reconstructing 

locomotion within fossil taxa that have been described as ‘intermediate’ and ‘mosaic-like’ in 
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their external morphology. If specific trabecular parameters within the comparative sample 

can separate modes of locomotion, inferences about the locomotion of SKX 5017 and SK 

1813 can be made with reasonable confidence.  

 

3.1.4 Aims and predictions 

 

Based on what we know about loading patterns within the forefoot of comparative modern 

taxa and the adaptation of BV/TV and DA in response, the following hypotheses can be 

made about the comparative sample:  

 

1. Modern humans will have a higher BV/TV within the dorsal aspect of the MT1 head 

and base, and non-human primates will display the opposite pattern. This 

corresponds to the position in which the joint close-packs and incurs the highest 

loads.  

2. DA within non-human primates will be lower because of a multiaxial range of motion 

within the joint, whereas modern humans will show higher DA because of the tightly 

constrained nature of the joint and its uniaxial range of motion.  

3. Based on previous studies on P. robustus pedal elements and on the external 

morphology of SKX 5017 and SK1813, which bear strong affinities to modern 

humans, it is hypothesized that the two specimens will show similar BV/TV 

distribution to modern Homo. Based on the relatively more concave proximal articular 

facet it is predicted that DA will be lower in this region compared to modern humans.  
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3.2 Methods 

3.2.1 Sample 

 

The comparative sample consists of thirty-nine MT1s from modern non-human great apes 

and modern humans: six Pongo pygmaeus, ten Gorilla gorilla, ten Pan troglodytes, and 

eleven Homo sapiens (Table 1). All non-human apes were wild-caught, with the exception of 

one captive male Pongo pygmaeus (for additional information see Supplementary 

Information, Table 1). The modern human sample is composed of 19th – 20th century, likely 

sedentary and shod individuals from a single archaeological collection (see SI, Table 1). 

Specimens were chosen if they were adult, free from signs of pathology, and if the trabecular 

bone was well-preserved. Adult status was determined based on external morphology of the 

associated postcrania and dental eruption (as well as examination of the internal structure 

and absence of epiphyseal lines). Additional information on individual specimens is provided 

within the Supplementary Information. Two fossil metatarsals were obtained from 

Swartkrans, South Africa, one of which is attributed to Paranthropus robustus (SKX 5017), 

and the other being of unassigned taxonomic status (SK 1813). Both preserve the entire 

bone morphology, but because of extensive cortical and trabecular damage to the base of 

SK 1813, only its head was analysed.  
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Table 1. Study sample composition 

Taxon Side (R/L) Sex 

(M/F/?) 

Locomotor mode 

Pongo pygmaeus 6 (3/3) 1/4/1 Suspensory (torso-orthogrady) 

Gorilla gorilla 10 (6/4) 5/5/0 Knuckle-walker 

Pan troglodytes 10 (5/5) 6/4/0 Knuckle-walker 

Homo sapiens 11 (9/2) 6/5/0 Bipedal 

Paranthropus robustus (?) 

SKX 5017 

(0/1)  Bipedal/arboreal (?) 

SK 1813 (Hominin indet.) (1/0)  Bipedal/arboreal (?) 

 

3.2.2 Image Acquisition 

 

Specimens were scanned at the Max Plank Institute for Evolutionary Anthropology in Leipzig 

and at Cambridge University. The modern Homo and Pongo specimens were scanned using 

the Diondo d3 high-resolution micro-CT system in Leipzig with an acceleration voltage of 

140 kV, 120 mA and 140 µA respectively, using a 0.5 mm brass filter. The images were 

reconstructed as 3000 x 3000 16 bit tiff image stacks from 2400 projections with two frame 

averaging. The Tai Forest Pan troglodytes sample was scanned using a Skyscan 1173 with 

an acceleration voltage of 100 kV and 62 µA using a 1.0 mm aluminium filter. The images 

were reconstructed from 2240 x 2240 16 bit tiff image stacks from 2400 projections with two 

frame averaging. Gorilla gorilla and Pan troglodytes specimens from the Powell-Cotton 

Museum were scanned using a Nikon Metrology XT H 225 ST High resolution CT scanner in 

Cambridge University. They were scanned at an acceleration voltage of 135 kV and 135 µA 

with no filter. The images were reconstructed as 2000 x 2000 16 bit tiff image stacks from 

1080 projections with one frame averaging. All specimens were scanned with an isometric 

voxel resolution of between 27 and 42 µm.  
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3.2.3 Specimen segmentation 

 

Scans were segmented into binary format using the Ray Casting Algorithm (Scherf and 

Tilgner, 2009). This method is most effective where there is clear separation between bone 

and air, and where there is little matrix within the epiphysis. All extant taxa, along with SKX 

5017 were segmented using this method. Due to a large amount of matrix within the 

epiphysis of SK 1813, it was segmented using a machine learning clustering algorithm that is 

most effective where there is matrix that falls within the greyscale range of trabecular bone. 

This algorithm assigns voxels in an image to one three predefined classes, based on the 

probability that its greyscale value would be in each class. Therefore, it allows for 

segmentation of problematic areas that the RCA does not handle effectively.  

 

3.2.4 Medtool 

 

The segmented images were processed through a customised script within medtool, a 

python-based script manager (Pahr and Zysset, 2009). Each step of this method has been 

described by Pahr and Zysset (2009) and tested by Gross et al. (2014). Using the 

segmented image (Fig. 3.a), the outer surface (Fig. 3.b), and inner surface (Fig. 3.c) were 

defined and subtracted from one another to create an image of the cortex only (Fig. 3.d). An 

image of the trabecular bone (Fig. 3.e) only was obtained by subtracting the cortex image 

from the original segmented image. A series of mask overlays were created to separate the 

cortical and trabecular bone, and ‘inside air’ from ‘outside air’ by assigning them to different 

grey values (Fig. 4).  
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Figure 3. Masking procedure. From left to right: (a) segmented image; (b) outer mask; (c) inner mask; (d) 
cortical mask; (e) trabecular only image. 
 

 

 
Figure 4. Mask overlays. From left to right: (a) MaskSeg In; (b) MaskSeg Out; (c) MaskSeg 

 

 



60 
 

A 3D mesh of the specimens was obtained using the computation geometry algorithms 

library (CGAL), a mesher that creates a 3D finite element model using 3D Delauney 

triangulation (Delaunay, 1934). Trabecular bone was analysed through the placement of 

multiple spherical volumes of interest (VOI) onto a rectangular background grid of 2.5 mm 

grid spacing over the MaskSegIn image (Fig. 4a). VOIs are placed at each node with a set 

diameter of 5 mm to ensure overlap. Trabecular parameters were measured within each 

VOI, and then assigned values to each node, which were interpolated to the tetrahedral 

elements, resulting in BV/TV and DA colour maps that were visualized using Paraview 

3.14.1 (Sandia Corporation, Kitware. Inc).  

Within each VOI, bone volume fraction (BV/TV) was calculated as the ratio of bone voxels to 

bone and air voxels. The trabecular orientation (second rank fabric tensor) is calculated 

using the Mean Intercept Length (MIL) method (Whitehouse, 1974; Odgaard, 1997). This 

gave results for first, second, and third eigenvectors and eigenvalues. The values within 

each VOI were averaged to obtain results for the entire section. Using these mean values, 

fabric degree of anisotropy (DA) was calculated as 1 minus (eigenvalue 3/eigenvalue 1), 

which describes the degree of trabecular orientation. In addition to BV/TV and DA, trabecular 

thickness (Tb.th., mm), trabecular number (Tb.N, mm-1), and trabecular spacing (Tb.S, mm) 

were calculated within each VOI using the method described by Lazenby et al. (2011).  

 

3.2.5 Statistical analysis 

 

Because the focus was on the base and head of the metatarsals, these sections were 

separated from the shaft, which would skew overall results because of its lack of trabecular 

bone. For each scan, the head was separated where the articular surfaces on the plantar 

aspect terminated, as they are clearly delimitated from the shaft. When viewing the plantar 

surface of the element, each metatarsal possesses a pronounced curvature on the medial 

aspect of the shaft towards the base. Where this curvature is most pronounced is where the 
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cut for the base was made. The base and the head were further split into dorsal and plantar 

regions by diving in half their maximum dorso-plantar widths. 

 

All trabecular variables were tested for allometry in R using reduced major axis regression. 

Data for body size was unavailable for the study sample, and instead the geometric mean for 

each specimen was calculated using five linear measurements of the metatarsal as 

proposed by De Groote and Humphrey (2011) and used as a proxy for body size. 

Measurements included maximum MT1 length, and dorsoplantar and mediolateral length of 

the proximal and distal articular surfaces. 

 

Pair-wise comparisons using Mann-Whitney U tests were conducted to investigate 

differences between the dorsal and plantar sections within the head and base of each taxon. 

To compare differences between taxa, the ratio of dorsal to plantar BV/TV and DA within the 

head and base was analysed using a pairwise Wilcoxon rank sum test with a Bonferroni 

correction. Additionally, the dorsal and plantar BV/TV and DA values were compared 

between species to measure absolute differences in values. In addition to traditional non-

parametric tests, differences between the BV/TV ratios of each species were evaluated for 

statistical significance using a standard resampling method (i.e., bootstrapping), which is 

well-suited to examine differences between means of groups with varying and small sample 

sizes (Efron and Tibshirani, 1993). Within each taxon, ten thousand means for the BV/TV 

ratios were generated after sampling with replacement from the original sample. A pairwise 

comparison was conducted between the differences of the means between each possible 

species combination. For each pairwise comparison, the ten thousand means from one 

taxon were aligned with the ten thousand means from the other taxon, and the ten thousand 

differences between the two sets of means were calculated. These differences were then 

compared with the difference between the means of the original samples. The number of 

times the difference between the bootstrapped means exceeded the difference between the 

original sample means represents a proportion that is analogous to a p-value of a one-tailed 
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test. The bootstrap analysis was applied to the fossil sample to determine the likelihood that 

their BV/TV ratios fell within the resampled and replaced BV/TV ratio means of the extant 

taxa. In this case, the fossil mean was included within the extant taxon’s sample which was 

then resampled and replaced. Just as with the pairwise extant comparisons, the number of 

times the fossil’s absolute BV/TV ratio fell within the range of bootstrapped mean BV/TV 

ratios represented the likelihood that this value would be part of the comparative sample.  
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3.3 Results 

3.3.1 Whole bone BV/TV distribution 

 

 

Figure 5. Representative specimens from each taxon. From top to bottom: BV/TV colour maps of bone 
cross-section, segmentation images, isosurfaces of external bone, and BV/TV colour maps of proximal 
articular surfaces. BV/TV colour maps are scaled to individual specimen ranges. First three rows are 
scaled to size. 



64 
 

Figure 5 shows BV/TV colour maps of a representative specimen from each taxon within the 

sample (images of the full sample are shown within the Supplementary information). Modern 

humans consistently show a greater distribution of trabecular bone within the distodorsal 

aspect of the head; although the extent to which BV/TV is higher in the dorsal region varies 

between individuals, as does the exact position of the highest distribution. Some individuals 

show higher BV/TV values closer to the centre of the epiphysis, whereas others show higher 

values near the cortical/trabecular boundary. BV/TV tends to be higher on the lateral side of 

the dorsal aspect, corresponding with the slightly valgus orientation of the phalanges in 

relation to the metatarsal shaft. Additionally, specimens show a consistent pattern on the 

plantar surface of the head whereby the trabecular bone directly below the articular surface 

for the sesamoid bones shows lower BV/TV. The ventral keel between the articular surfaces 

has generally higher BV/TV. All modern humans show an area of higher BV/TV on the dorsal 

half of the MT1 base to varying degrees. The plantar aspect has relatively little trabecular 

bone, with the exception of increased BV/TV near the insertion site of the peroneus longus 

tendon, which is more pronounced in modern humans than in non-human primates. 

 

All non-human primates within the sample tend to exhibit a higher concentration of 

trabecular bone within the plantar region of the head. Pongo shows the most plantar 

concentration, with Pan and Gorilla showing relatively similar distributions to each other. Like 

within the modern human sample, the extent to which the trabecular bone extends into the 

centre of the epiphysis varies: some individuals show fairly localized concentration near the 

subchondral bone, but other show a much deeper distribution within the entire epiphysis (for 

e.g., see SI: fig 1. Pp_ZSM_0203, fig. 2 Gg_PC_MER_372, fig. 3 Ptv_MPITC_11800). The 

pattern of trabecular bone distribution within the base is variable, but overall it is evenly 

distributed across the dorsal and plantar regions. Pongo shows a pattern in which the edges 

of the articular surface show higher BV/TV (see fig. 5), with relatively less trabecular bone 

within the centre of the epiphysis. The trabecular bone follows an oblique plane in relation to 
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the shaft (concentrated within the lateral-plantar and medio-dorsal aspects), and 

corresponding to the plane in which the metatarsal dorsiflexes and plantarflexes.  

 

Within all taxa, there is variation in how far the trabecular bone from the epiphyses extends 

into the shaft (see Supplementary Information, figures 1-4). In each taxon, there are 

individuals with a higher distribution within the shaft. However, modern humans generally 

show higher a distribution within the dorsal aspect of the shaft, meaning BV/TV is not only 

higher in the dorsal regions of the head and base, but that it is a widespread trend in the 

entire element.  

 

Figures 6 and 7 illustrate the external morphology and BV/TV distribution in SKX 5017 and 

SK 1813, respectively.  Like modern humans, the dorsal region of the metatarsal head in 

SKX 5017 exhibits a higher distribution of trabecular bone than the plantar region; although it 

is located more dorsally than is generally found within humans. This region of high BV/TV is 

lateralized and corresponds to a slightly valgus orientation of the phalanges in relation to the 

shaft. The remainder of the head shows an even distribution of trabecular bone, with an area 

of slightly higher BV/TV on the plantar aspect on the ventral keel between the articular 

surfaces for the sesamoid bones (this is also seen in some modern humans). The base of 

SKX 5017 shows a pattern that appears more like what is seen in non-human primates. The 

area of highest BV/TV is near the dorso-medial border of the articular surface, similar to 

where it is seen in several non-human apes, but without a corresponding area of high BV/TV 

on the plantar-lateral aspect. Both plantar and dorsal regions show high BV/TV, in contrast 

to modern humans that show a markedly higher and more localized trabecular bone 

distribution within the dorsal region.  
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Figure 6. SKX 5017. View of BV/TV colour maps beside cortical isosurface (yellow), and segmentation 

 

SK 1813 (see Figure 7) also shows higher trabecular bone distribution within the dorsal aspect 

of the head, though it is more centralized within the epiphysis than in SKX 5017 or the 

modern human specimens. Additionally, the area immediately below the cortical/trabecular 

boundary shows a sharp decrease in BV/TV. On the plantar aspect, where the shaft meets 

the head, there is another area of high BV/TV. When comparing the colour map to the 
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original CT scan, it becomes apparent that this area of high BV/TV is the result of cortical 

bone from the shaft extending into thick trabecular struts within the head, similar to Pan and 

Gorilla. However, SK 1813 shows relatively less trabecular bone within the plantar surface, 

resulting in a different overall distribution.   

 

 

Figure 7. SK 1813. View of BV/TV colour maps beside cortical isosurface (yellow), segmentation, and the 
original scan.  
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3.3.2 Allometry 

 

Most parameters showed no significant within species allometric scaling (see Table 2). 

Gorilla showed positive allometric scaling of trabecular thickness, a positive correlation 

between spacing and body size, along with a negative correlation with trabecular number. 

However, of these parameters, only trabecular thickness showed significant scaling (p<0.05) 

and the confidence intervals of the slope contained the isometric scaling value. The same 

pattern is seen in Homo, though none of the scaling is significant, and in Pan, which shows 

significant positive and negative allometric scaling of trabecular spacing and number, 

respectively. BV/TV and DA both show a positive relationship with increased body size, 

although without any significant positive allometric scaling, allowing for the conclusion that 

BV/TV and DA are ultimately unaffected by body size. Given the fact that BV/TV does not 

scale allometrically in any taxon, it can be concluded that body size, and by extension sex do 

not affect patterns of trabecular distribution to a significant degree.  

Table 2. Results from reduced major axis regression analysis.  
 

variable Isometric 
slope 
value 

slope CL - CL + y-int r2 p-value result 

Pongo                  
 

BV/TV 0 1.94 0.66 5.69 -6.61 0.13 0.48 + 
 

Tb.Th 1 1.27 0.44 3.62 -4.97 0.18 0.39 + 
 

Tb.Sp 1 -1.28 -3.81 -0.43 3.14 0.09 0.56 - 
 

Tb.N 0 0.54 0.18 1.68 -1.39 0.01 0.88 + 
 

DA 0 1.40 0.45 4.31 -5.28 0.01 0.84 + 

Gorilla                  
 

BV/TV 0 0.89 0.43 1.81 -3.96 0.09 0.40 + 
 

Tb.Th 1 1.18 0.70 1.98 -5.05 0.56 0.01 + 
 

Tb.Sp 1 1.43 0.69 2.98 -4.89 0.03 0.62 + 
 

Tb.N 0 -0.99 -1.91 -0.51 3.17 0.24 0.16 - 
 

DA 0 1.15 0.63 2.11 -4.89 0.37 0.06 + 

Pan                  
 

BV/TV 0 -1.42 -2.90 -0.69 3.35 0.08 0.42 - 
 

Tb.Th 1 1.87 0.92 3.79 -7.13 0.12 0.33 + 
 

Tb.Sp 1 3.21 1.90 5.41 -10.39 0.55 0.01 + 
 

Tb.N 0 -2.10 -3.74 -1.18 6.66 0.44 0.04 - 
 

DA 0 1.25 0.59 2.63 -4.90 <0.01 0.94 + 

Homo                  
 

BV/TV 0 2.74 1.37 5.49 -10.42 <0.01 0.82 + 
 

Tb.Th 1 1.41 0.72 2.75 -6.17 0.08 0.39 + 
 

Tb.Sp 1 2.56 1.28 5.13 -8.92 <0.01 0.85 + 
 

Tb.N 0 -1.84 -3.67 -0.92 6.23 0.01 0.78 - 
 

DA 0 1.26 0.65 2.41 -5.07 0.14 0.26 + 
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3.3.3 Regional trabecular distribution 

 

Mean species values for all parameters are show in Table 3. Within extant taxa, BV/TV 

tends to be highest in Pan and lowest in modern humans. Modern humans show the highest 

overall DA values, and Pongo shows the lowest. Within modern humans, DA is similar in the 

head and base, whereas non-human apes show higher DA in the base. Trabecular thickness 

is highest within Gorilla and lowest within modern humans. The highest number of 

trabeculae is exhibited within modern humans, and the lowest is seen in Gorilla. Within all 

extant non-human apes, there is a higher number and smaller spacing of trabeculae within 

the base than the head. Modern humans show a relatively equal distribution between the 

head and the base. Gorilla shows the highest overall trabecular spacing, which corresponds 

with its lowest number of trabeculae. Additionally, coefficients of variation (CV) for all means 

show that Pongo has the most variable BV/TV and DA values (except for modern human 

base BV/TV). CV values for all other parameters vary. 

 

The two fossils show a different trabecular bone structure from each other and the extant 

sample. SKX 5017 shows the highest overall BV/TV as a result of a higher number of thicker 

and closely spaced trabeculae. SK 1813 has a BV/TV value between Gorilla and Pan, with 

the highest number of trabeculae that are more closely spaced, and are similar in thickness 

to Pongo (i.e. thinner than Gorilla and Pan). Disregarding their absolutely thicker trabeculae 

than modern humans, the two fossils have relatively a relatively higher number of closely 

spaced trabeculae, a pattern seen in Pongo and modern humans. Additionally, though 

BV/TV is generally equal in the head and base of all taxa, non-human apes exhibit a higher 

number of thinner and closely spaced trabeculae within the base, and a lower number of 

thicker, more widely trabeculae in the head. This pattern is not seen in modern humans, 

which have consistent values between the head and base. SKX 5017 shows a unique 

trabecular pattern wherein spacing and thickness are lower in the base than the head, but 
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contrary to the non-human apes, trabecular bone is also thicker in the base. Like in modern 

non-human apes, DA is higher in its base than in its head. 

 
Table 3. Summary statistics for all analyzed parameters and taxa.   

Pongo 
pygmaeus 

Gorilla gorilla Pan 
troglodytes 

SKX 
5017 

SK 1813 Homo sapiens 

BV/TV  
 

            

Head Mean 0.324 ± 0.07 0.346 ± 0.05 0.376 ± 0.02 0.410 0.360 0.285 ± 0.04 
 

Range 0.186 - 0.234 0.279 - 0.421 0.288 - 0.439 
  

0.225 - 0.340 
 

CV 22.7 13.1 13.4 
  

15.5 

Base Mean 0.318 ± 0.09 0.330 ± 0.02 0.350 ± 0.03 0.383 
 

0.237 ± 0.05 
 

Range 0.252 - 0.470 0.283 - 0.368 0.313 - 0.395 
  

0.163 - 0.329 
 

CV 26.8 7.00 7.8 
  

30.0 

        

  DA             

Head Mean 0.243 ± 0.03 0.299 ± 0.04 0.331 ± 0.04 0.265 0.202 0.401 ± 0.04 
 

Range 0.188 - 0.280 0.246 - 0.350 0.269 - 0.390 
  

0.334 - 0.460 
 

CV 13.1 12.8 12.6 
  

9.00 

Base Mean 0.282 0.328 ± 0.04 0.373 ± 0.02 0.365 
 

0.395 ± 0.04 
 

Range 0.188 - 0.338 0.250 - 0.395 0.347 - 0.408 
  

0.337 - 0.454 
 

CV 18.5 13.0 5.30 
  

8.90 

        

  Trabecular 
thickness (mm) 

            

Head Mean 0.256 ± 0.04 0.311 ± 0.04 0.286 ± 0.04 0.302 0.262 0.237 ± 0.02 
 

Range 0.204 - 0.309 0.262 - 0.372 0.217 - 0.341 
  

0.203 - 0.286 
 

CV 16.9 12.0 14.0 
  

10.5 

Base Mean 0.244 ± 0.04 0.276 ± 0.04 0.231 ± 0.02 0.252 
 

0.199 ± 0.02 
 

Range 0.213 - 0.310 0.215 - 0.337 0.192 - 0.261 
  

0.166 - 0.241 
 

CV 14.6 14.0 10.1 
  

9.8 

        

  Trabecular 
number (mm-1) 

            

Head Mean 1.0817 ± 0.07 0.876 ± 0.12 1.045 ± 0.20 1.147 1.320 1.126 ± 0.13 
 

Range 1.019 - 1.206 0.717 - 1.026 0.804 - 1.436 
  

0.971 - 1.386 
 

CV 6.3 14.0 19.7 
  

11.4 

Base Mean 1.214 ± 0.09 1.107 ± 0.11 1.393 ± 0.12 1.324 
 

1.241 ± 0.17 
 

Range 1.108 - 1.337 0.986 - 1.338 1.229 - 1.579 
  

0.914 - 1.511 
 

CV 7.6 9.7 8.9 
  

13.6 

        

  Trabecular 
spacing (mm) 

            

Head Mean 0.696 ± 0.11 0.905 ± 0.200 0.751 ± 0.21 0.571 0.495 0.662 ± 0.10 
 

Range 0.526 0.691 - 1.193 0.481 - 1.116 
  

0.494 - 0.819 
 

CV 15.8 22.0 28.1 
  

14.9 

Base Mean 0.583 ± 0.09 0.6334 ± 0.05 0.492 ± 0.05 0.504 
 

0.626 ± 0.14 
 

Range 0.451 - 0.657 0.532 - 0.705 0.427 - 0.569 
  

0.483 - 0.928 
 

CV 15.0 8.20 9.40 
  

21.8 

 
 

Regional summary statistics for all analyzed trabecular parameters can be seen in the 

supplementary information. Figure 8 presents results from Mann-Whitney U tests that reveal 

significant differences in raw BV/TV values between the dorsal and plantar regions of the 
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MT1 heads of all studied taxa. Non-human apes show a higher BV/TV within the plantar 

region, whereas modern humans show the opposite pattern. Within the base of the 

metatarsal, only modern humans show significant differences in BV/TV between the dorsal 

and plantar regions, with higher absolute values in the dorsal region.  SKX 5017 shows 

higher BV/TV in the dorsal regions of the head and base, similar to modern humans, but with 

overall higher BV/TV. The SK 1813 head displays this pattern as well, though it has 

absolutely lower BV/TV than SKX 5017.  

 

 

 

Figure 8. Boxplot showing raw BV/TV values within each analysed region and each taxon and significant 
differences in pairwise comparisons. (*) = p<0.05; (**) = p<0.005; (***) = p<0.001).  

 

 

Figure 9 presents differences in raw DA values between the dorsal and plantar regions 

within the head and the base. Each taxon shows significant differences between DA in the 

plantar and dorsal regions, with modern humans showing the absolute highest values, and 

Pongo the lowest. There is no statistically significant interspecies difference in the ratio of 
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DA between the dorsal and plantar regions. All show a pattern of higher DA in the dorsal 

regions, as well as values in the dorsal regions of the head and base, and plantar regions of 

the head and base showing similar values. SKX 5017 conforms to the pattern of higher DA 

in the dorsal regions, though DA in the dorsal region of the base is absolutely higher than DA 

in the dorsal region of the base, and DA in the plantar region of the base is absolutely higher 

than the plantar region of the head. The plantar region of the base and the dorsal region of 

the head show very similar values, a pattern not seen in the extant sample. SK 1813 shows 

a similar DA pattern to the extant taxa, with higher values in the dorsal region than in the 

plantar region, though it has the absolute lowest values. All modern taxa display DA values 

that are significantly higher in the dorsal aspect than the plantar aspect.  

 

 

Figure 9. Boxplot showing raw DA values within each analysed region and each taxon and significant 
differences in pairwise comparisons. (*) = p<0.05; (**) = p<0.005; (***) = p<0.001).  
 
 

Figure 10 presents ratios of dorsal-to-plantar BV/TV within the heads and bases of all taxa. 

Within all non-human apes, the base of the metatarsal shows a BV/TV ratio approximating a 

value of one, indicating relatively equal BV/TV between the dorsal and plantar regions. In 
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contrast, modern humans show a much higher value, indicating relatively higher BV/TV 

within the dorsal section of the base. Within the head of the metatarsal, all extant non-human 

apes show a ratio below one, indicating relatively higher BV/TV within the plantar region, 

whereas modern humans retain a higher proportion of trabecular bone within the dorsal 

region. Results from post-hoc pairwise Wilcoxon rank sum tests from the head show 

significant differences between the BV/TV ratio of modern humans and all extant non-human 

apes (p<0.0005), and between Gorilla and Pongo (p<0.01) (see Table 4). No statistically 

significant differences were found between Pongo and Pan, or between Gorilla and Pan. 

Within the base, no statistically significant differences were found in BV/TV ratio between the 

non-human primates, but all showed significant differences from modern humans 

(p<0.0005). Bootstrap analyses support these results, showing a similar distribution of 

trabecular bone within the base of all non-human primates (see Supplementary information).   

 

Both the head and base of SKX 5017 show a BV/TV ratio over one, indicating a higher 

distribution of trabecular bone within the dorsal regions. The head falls within the range of 

modern humans, but the value from the base is lower, indicating an overall higher 

distribution within the dorsal region, but not to the same extent as modern humans. SK 1813 

also shows a higher distribution of trabecular bone within the dorsal region of the head, 

although the value is lower than in modern humans. 

 

 

 

 

 

.  
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Figure 10. Boxplot of BV/TV ratio within the base and head of each taxon. Red dotted line represents an 
equal dorso-plantar distribution of trabecular bone. 
 
 

 
Table 4. Results from Kruskal-Wallis post hoc tests in interspecies BV/TV and DA ratio. Boxes on top 
rows represent the head and boxes on bottom rows represent the base. (*) Indicates insignificant p-
values.    

Pongo Gorilla Pan Homo 

BV/TV 

Pongo 
 

0.0285 * <0.001 

Gorilla * 
 

* <0.001 

Pan * * 
 

<0.001 

Homo <0.001 <0.001 <0.001 
 

DA 

Pongo 
 

* * * 

Gorilla 0.045 
 

* * 

Pan * * 
 

* 

Homo * * * 
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Figure 11 shows results from bootstrap analyses that compare the extant taxon BV/TV ratio 

means of the base to the BV/TV ratio of SKX 5017. Results confirm significant differences 

between the BV/TV ratio between SKX 5017 and all extant taxa (p<0.001), with a value 

lower than modern Homo (p<0.01), and higher than Pongo (p<0.01), Gorilla (p<0.01), and 

Pan (p<0.01). In contrast, the metatarsal head falls within the range of modern Homo 

(p>0.05). The BV/TV ratio within the head of SK 1813 falls outside the range of all extant 

taxa (p<0.01) (see Figure 12). The distribution, though more dorsal than plantar, falls below 

the range seen in modern Homo, and above the range seen Pongo, Gorilla, and Pan.  
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Figure 11. Bootstrap plots showing the resampled and redistributed sample means of BV/TV ratio within 
the base of each taxon. Red line represents the original BV/TV ratio of SKX 5017. 
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Figure 12. Bootstrap plots showing the sample means of BV/TV ratio within the head of each taxon. Pink 
bars represent the modern samples resampled and redistributed with SKX 5017; blue bars represent 
modern samples resampled and redistributed with SK 1813; purple bars represent overlap between the 
two samples. Red line represents the original BV/TV ratio of SKX 5017; black line represents the original 
BV/TV ratio of SK1813. 
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Figure 13 presents a bi-variate plot of BV/TV and DA values of the combined head and base 

in the study sample. General patterns include lower BV/TV and higher DA within modern 

humans, and overlapping BV/TV values within all non-human apes. Within the non-human 

apes, Pan shows overall higher DA, followed by Gorilla and Pongo, respectively. As 

mentioned earlier, Pongo shows the widest range of BV/TV values.  BV/TV values in both 

SKX 5017 and SK1813 are well above modern humans, and within the range of the non-

human apes. DA values are lower in SK 1813 and SKX 5017 than in modern humans, with 

the former showing the absolute lowest values, within the range of Pongo. 

 

Figure 13. Scatterplot showing the DA vs. BV/TV of all specimens. DA and BV/TV values 
represent both the head and the base. 

 

Overall, modern humans are characterized by dorsal distribution of trabecular bone within 

the head and base, whereas non-human apes show a plantar distribution within the head, 

and a relatively even distribution within the base. Modern humans show the absolute highest 
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DA and lowest BV/TV, as well as a suite of trabecular parameters that differentiate them 

from non-human apes. There is considerable overlap within the non-human apes, though 

BV/TV colour maps show subtle differences that are not apparent from analyses of dorsal 

and plantar regions. SKX 5017 and SK 1813 show certain modern-human like features. 

Trabecular bone is distributed more dorsally in the head and base, though statistical analysis 

shows that the bases fall outside the range of all extant taxa. DA in both fossils is lower than 

in modern humans, but both show Tb.Sp. and Tb.N values that are within the range of 

modern humans (see Table 3).  

 

3.4 Discussion 

 

3.4.1 Effect of body size on trabecular bone structure 

 

Most trabecular parameters were found not to scale allometrically with a correlate of size. 

Like other studies (Ryan and Shaw, 2013), results from this analysis show positive scaling of 

BV/TV, but no allometric scaling. The only taxon to show positive allometric scaling of 

trabecular thickness is Gorilla, supporting previous findings (Doube et al., 201). However, 

the confidence intervals of the slope contained the isometric scaling value. All other taxa 

show no allometric scaling of trabecular thickness, supporting other studies (Mullender et al., 

1996; Swartz et al., 1998). The only other trabecular parameters to show allometric scaling 

were spacing and number in Pan, with positive and negative allometry, respectively. This is 

contrary to other findings of negative allometry of spacing (Ryan and Shaw, 2013), which 

also show negative allometry of thickness. Results from this study may be different from 

others because it observes intraspecies allometry, rather than comparing different species to 

each other. Therefore, results reflect sex-variation as well as body-size variation. Given the 

overall insignificant results, it would imply that within species, body size does not play in 
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important role in trabecular structure, and that perhaps trabecular bone between different 

species responds to changes in body size differentially. 

 

3.4.2 Trabecular distribution within humans and non-human primates 

 

Within the extant sample, the trabecular parameters that most effectively separate each 

locomotor mode are relative BV/TV and absolute DA. The first hypothesis is that modern 

humans show higher BV/TV within the dorsal aspect of the base. This is supported here 

based on significantly higher BV/TV ratio within modern humans than all other extant taxa. 

Since the modern human forefoot mainly experiences high compressive loads as it 

dorsiflexes, a higher proportion of trabecular bone within the base and head is distributed 

within the dorsal aspect. The human tarsometatarsal joint, which is more limited in mobility 

than the MTPJ, is stable and experiences one range of motion (Morton, 1924; Susman and 

Brain, 1988; Proctor et al. 2008; Gill et al. 2015). Therefore, it consistently shows one tightly 

constrained pattern within the base of the MT1. Taxa that have a more mobile 

tarsometatarsal joint (i.e., Pongo, Gorilla, and Pan) show evenly distributed BV/TV within the 

entire base which provides trabecular support for loading in multiple directions, though 

Pongo has a slightly more plantar distribution of trabecular bone. BV/TV is known to 

increase where there is higher loading (Rubin et al., 2002; Barak et al., 2011), therefore 

trabecular bone that is located in the plantar region offers support for high compressive 

loading during plantarflexion, and dorsally located trabecular bone offers support for loading 

during dorsiflexion. The fact that there is no clear distinction in the BV/TV ratio between the 

non-human primates could be reflective of the variable way in which each species loads the 

forefoot, resulting in a generalized trabecular structure adapted for a wide range of motion 

and loading. BV/TV colour maps show differences in the distribution of trabecular bone 

within the base of Pongo and Gorilla and Pan. As mentioned earlier, trabecular bone within 

the base of the Pongo MT1 shows a higher distribution near the edges of the articular 
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surface, whereas Gorilla and Pan show an equal distribution throughout the epiphysis. This 

could be related to relatively low compressive or tensile forces inflicted upon the Pongo MT1 

base, resulting in trabecular bone that does not extended as far into the centre of the bone. 

The equal distribution within Pan and Gorilla could be an indication that the base 

experiences higher loading in these two taxa compared to Pongo. This is suggestive of the 

fact that BV/TV ratio is better at differentiating broad locomotor patterns (i.e., between 

bipedalism and vertical climbing), whereas BV/TV colour maps better capture subtle 

differences in joint positioning and loading between types of terrestrial quadrupedalism or 

arboreal locomotion.  

Within the head, non-human apes show a plantar distribution of trabecular bone associated 

with high compressive loading during plantar flexion. Since the joint does not have the same 

range of dorsal excursion as modern humans, it is limited in its potential degree of 

dorsiflexion. Therefore, even during terrestrial locomotion, when the MTPJ dorsiflexes, the 

trabecular bone would not be concentrated as dorsally as in modern humans. Based on 

studies of plantar pressure distribution in Pan troglodytes, peaks occur on the plantar aspect 

during vertical climbing (Wunderlich and Ischinger, 2017), which is consistent with the results 

that the plantar aspect of the head displays significantly higher BV/TV. Pongo is considered 

the most arboreal taxon (Cant, 1987; Gebo, 1996; Thorpe and Crompton, 2005) and shows 

the most marked plantar concentration of trabecular bone compared to Gorilla and Homo. 

The opposite condition is found in modern humans. The dorsal region of the MT1 head 

shows significantly higher BV/TV, corresponding to the position in which the joint incurs 

maximum loading. These results contradict previous analysis of MT1 trabecular bone 

structure, which showed no significant difference in the distribution of trabecular bone within 

the dorsal and plantar regions of the metatarsal head between species (Griffin et al., 2010). 

This could be based on the different methodologies used for the studies. Oftentimes the area 

of highest BV/TV is seen at the cortical/trabecular boundary, and VOIs fail to encompass this 

region.   
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The second hypothesis is that modern humans show higher absolute DA within the dorsal 

aspect of the head than other non-human primates. This is the case, however, all taxa show 

the same pattern of relatively higher DA in the dorsal aspect of the head. Nevertheless, the 

higher absolute DA within modern humans corresponds with the hypothesis that a more 

uniaxial range of movement will results in stereotypically oriented trabeculae. Similarly, the 

base of humans shows the highest DA, though the difference between modern humans and 

Pan is not statistically significant. Because all taxa show the same pattern of DA, where the 

dorsal aspect of the head is more anisotropic, DA ratio is not particularly effective at 

differentiating between modes of locomotion. The absolute DA values within the head can 

clearly separate modern humans from non-human apes, but with the apes only distinguish 

between Pan and Pongo. Similarities in trabecular patterning between non-human primates 

are emphasized when plotting DA against BV/TV. Humans show no overlap with the non-

human primate pattern, with the latter showing considerable overlap between each other 

(within the non-human primates, Gorilla and Pan are more similar to each other than to 

Pongo. Similarities are also seen when comparing trabecular parameters between the two 

epiphyses. Non-human apes all show more anisotropic bone within the base than the head, 

which is reflective of multiaxial movement of the MTPJ, and a more tightly constrained 

tarsometatarsal joint. In contrast, modern humans, which have a limited range of mobility at 

both joints, show relatively consistent DA values between the two epiphyses.  

Although BV/TV is generally equal within the head and base of all taxa, the base exhibits a 

higher number of thinner and closely spaced trabeculae, and the head exhibits a lower 

number of thicker, more widely trabeculae. This pattern is not seen in modern humans, 

which have consistent values between the head and base. Again, this could be reflective of 

the relatively consistent range of movement experienced within the modern human MT1, 

resulting in homogeneous trabecular structure between the epiphyses. The different types of 

load experienced within the heads and bases of non-human apes could contribute to a 

different type of trabecular configuration between their epiphyses. Despite broad similarities 
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in BV/TV and DA between non-human apes, differences can be observed between them 

when comparing overall trabecular parameters (Tb.Th., Tb.Sp., Tb.N.). Gorilla combines 

relatively few thick, and widely spaced trabeculae. Pongo is characterized by relatively more, 

thinner, and closely spaced trabeculae. Pan is intermediate between Pongo and Gorilla. Of 

the non-human apes, the overall pattern in Pongo is most similar to modern humans, which 

have the thinnest trabeculae, but are similar in number and spacing. Because most 

trabecular parameters did not show significant allometric scaling, with the exception of Tb.sp 

and Tb.N in Pan and Tb.th in Gorilla, these differences likely represent interspecies variation 

as opposed to allometry related variation.    

It is also worth noting that BV/TV ratio is likely better at differentiating between locomotor 

modes because absolute BV/TV does not necessarily reflect the magnitude of load applied 

to an element. Modern humans show systematically lower BV/TV than all other taxa, despite 

their medial forefoot experiencing higher loading during push-off than non-human apes 

(Vereecke et al., 2003). Lower overall BV/TV has been previously observed in other studies 

of cortical and trabecular bone (Ruff et al., 1993; Lieberman, 1996; Chirchir et al., 2015; 

Tsegai et al., 2017) and has been suggested to be linked to higher sedentism in relation to 

early hominins and recent hunter-gatherers. Because the sample represented in this study is 

of likely shod and sedentary modern humans, it is also worth noting that the low overall 

BV/TV values seen here may not reflect the entire range of human variation. For this reason, 

in this study, BV/TV is mainly relevant when its relative distribution is analysed. Further 

studies including shod and unshod populations, as well as hunter-gatherers may contribute 

to our understanding of overall BV/TV within modern humans.  

 

3.4.3 Trabecular distribution within fossils 

 

The third hypothesis is that the two fossil specimens will show similar BV/TV distribution to 

modern humans, and that based on the relatively more concave proximal articular facet, DA 
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will be lower in this region compared to the latter. This is partially supported: BV/TV ratio 

within the head of SKX 5017 is similar to modern humans, but the base shows a lower ratio, 

outside the range of modern humans. As predicted, DA within the base of SKX 5017 is lower 

than in modern humans. Like modern humans, SK 1813 shows a dorsal distribution of 

trabecular bone, but below the range seen in the former.  

SKX 5017 shows a trabecular architecture within its head that in certain aspects shows clear 

similarities to modern humans. As shown by the bootstrapping analysis, the trabecular bone 

follows a pattern of distribution that is within the range of modern humans, indicative of a 

metatarsal that was habitually loaded on its dorsal aspect. The external morphology of the 

head, specifically its raised superior aspect in relation to the dorsum of the shaft, indicates it 

was capable of a wide range of dorsiflexion at the MTPJ, comparable to modern humans 

(Susman and Brain, 1988). There is no consensus is on how the joint was loaded; given that 

it is also mediolaterally narrower on the dorsal aspect, it has been suggested that the joint 

did not close-pack in dorsiflexion, and as a result was less stable during bipedal locomotion 

(Susman and Brain, 1988; Susman and de Ruiter, 2004). When compared to modern 

humans, SKX 5017 shows a distribution of trabecular bone that is much more dorsally 

distributed. Though modern humans show a higher distribution of bone within the dorsal 

aspect of the head, most specimens do not show the hyper-dorsal distribution seen in SKX 

5017. This could suggest a habitually hyperdorsiflexed and less stable MTPJ, and an 

increase of BV/TV in this area as a compensatory mechanism. Given the fact that the MT1 

possesses low DA within the range of Gorilla and Pan, it is also possible that the foot could 

have still been efficient in a form of arboreal locomotion different from that of non-human 

apes. The hyperdorsal concentration of trabecular bone could be caused by habitual 

hyperdorsiflexion at the MTPJ from foot placement that is directly against a vertical 

substrate. This form of arboreal locomotion has been noted in modern human populations 

that collect resources from trees, and is directly associated with extreme dorsiflexion of the 

ankle and forefoot (Kraft et al., 2014). 
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Results from the trabecular structure of the base of the MT1 combined with its external 

morphology emphasize this different loading pattern from modern humans. The articular 

surface is more concave than in modern humans (Susman and Brain, 1988; Susman and de 

Ruiter, 2004), similar to the shape seen in Pan and western gorillas (Proctor et al., 2008; 

Vernon, 2013), and more ovoid in its outline, which contributes to a more mobile 

tarsometatarsal joint complex. The hallux is nonetheless adducted and the base has been 

described as human-like overall (Susman and Brain, 1988). However, the base does not 

adhere to a completely modern human-like trabecular structure. Though it shows a higher 

ratio of trabecular bone within the dorsal aspect, there is relatively more trabecular bone 

within the plantar region than is observed in modern humans. As a result, the BV/TV ratio 

within the base of SKX 5017 is lower than within the observed human range, but higher than 

is observed in all other non-human primates, resulting in an intermediate proportion of 

dorsal-to-plantar trabecular bone. This could be reflective of a joint that has retained 

adaptations for grasping, or trabecular bone distributed plantarly to compensate for a less 

stable MTPJ during toe-off. DA within the base is within the range of Gorilla, Pan, and Homo, 

and like these taxa, is higher within the base than the head. This implies that the two 

epiphyses were capable of differential movement, and that unlike in modern humans, the 

element was not tightly constrained at both joints. These results could confirm a joint that 

was habitually loaded in dorsiflexion, but that did not move in a strictly uniaxial direction. 

Additional trabecular parameters emphasize the unique nature of its trabecular architecture. 

SKX 5017 has a relatively higher number of closely spaced trabeculae, a pattern seen in 

Pongo and modern humans, but much higher trabecular thickness, though the functional 

implication of this is not certain. When comparing BV/TV and DA, the element does not fall 

within the range of any modern taxon. 

It is worth noting that there is a prominent osteophyte on the dorsal aspect of the shaft, 

proximal to the articular surface of the head. This could be the result of a traumatic injury 

sustained in life, or a condition called hallux rigidus, which produces exostoses on the head 
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of the first metatarsal (Susman and Brain, 1988). However, this condition is accompanied 

with flexed phalangeal joints, which is in contrast to the distribution of trabecular bone within 

the metatarsal head that indicates a dorsiflexed rather than plantar flexed MTPJ. 

SK 1813 shows a trabecular structure which, though similar in overall distribution to modern 

humans, shows certain unique aspects. The higher BV/TV within the dorsal aspect of the 

head is reflective of a joint that was habitually loaded in dorsiflexion. It has been described 

by Suman and de Ruiter (2004) as similar in morphology and function to SKX 5017. The 

trabecular structure reveals considerable differences between the two specimens. SK 1813 

displays BV/TV that is absolutely lower than SKX 5017, within the range of Pongo, Gorilla, 

and Pan, and a lower DA, closer to the range of Pongo. The distribution of trabecular bone, 

though more dorsal than plantar, falls equally between the ranges of modern non-human 

primates and modern humans, meaning it does not conform to any modern pattern. 

Additionally, the trabecular bone extending from the plantar aspect of the shaft into the head 

is very thick, resulting in an area of high BV/TV near the plantar surface of the head.  It is 

difficult to interpret the behaviour of SK 1813 accurately because only the head was 

analysed, and because it is a subadult. Though modern humans retain a relatively consistent 

locomotor mode throughout ontogeny (Sutherland et al., 1980; Beck et al., 1981; Raichlen et 

al., 2015), juvenile and subadult gorillas, chimpanzees, and bonobos display much more 

arboreal behaviour than adults (Doran, 1997; Sarringhaus et al., 2014). Trabecular structure 

is known to change throughout ontogeny (Ryan and Krovitz, 2006; Gosman and Ketcham, 

2009; Raichlen et al., 2015) especially in regards to DA (Gosman and Ketcham, 2009; Abel 

and Macho, 2011). Because this specimen does not represent a strictly modern human or 

ape-like trabecular structure, it is not known whether its locomotor repertoire was as variable 

throughout ontogeny as modern apes, or as constrained as modern humans. The trabecular 

evidence shows a predominantly dorsal distribution of bone, indicative of a habitual biped. 

However, the distribution is outside the range of modern adult humans, meaning it might 

have used its feet in more variable positions. This is supported by the low DA within the 
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head, indicative of a joint that experiences variable and multiaxial loading. Based on the 

head, SK 1813 reflects a truly ‘intermediate’ specimen between modern humans and great 

apes, be this related to its young age or not.  

 

3.4.4 Interpretation of fossil locomotion 

 

Debates about australopith and Paranthropus locomotion have generally argued for ‘mosaic’ 

locomotion based on conflicting morphological evidence that shows derived features 

adapted for bipedalism, and primitive features indicative of climbing and pedal grasping 

(Stern and Susman, 1983; Susman et al., 1984; Susman and Brain, 1988; Susman and de 

Ruiter, 2004). Research on Paranthropus locomotion is fairly limited because postcranial 

fossils are scarce and often not securely attributed to the taxon (but see: Dominguez-

Rodrigo et al., 2013). Its postcranial morphology is generally described as gracile and small 

and of small stature (McHenry, 1991), and its locomotion has been described as bipedal with 

a ‘waddling gait’ and an inability to transfer body weight from one foot to another during 

walking (Napier, 1964; Robinson, 1974). The original descriptions of SKX 5017 and SK 1813 

(Susman and Brain, 1988; Susman and de Ruiter, 2004) suggested that both have a 

combination of primitive and derived features, and that based on multivariate analysis of 

various linear measurements, both were most similar to modern humans. Research on the 

proximal articular surface of both specimens has differentiated them from modern humans 

(Proctor et al., 2010) and from one another (Vernon, 2013). Proctor et al. (2010) measured 

the curvature of the surface using 3D geometric morphometric analysis, and found that SK 

1813 did not group with modern humans but showed affinity to SKX 5017, both of which had 

‘ape-like’ curvature, which were then interpreted as both belonging to Paranthropus. Other 

analyses group SKX 5017 with Pan and western gorillas in terms of mediolateral articular 

surface curvature, and SK 1813 with modern humans and Papio (Vernon, 2013). Based on 
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these conflicting results, it is difficult to determine how ‘human-like’ or ‘ape-like’ the proximal 

articular surface is, and even less so the locomotor behaviour associated with its shape.  

 

Studies of trabecular bone structure have provided mixed results in its utility in inferring 

habitual joint positioning (Ryan and Ketcham, 2002; Fajardo et al., 2007; DeSilva and Devlin, 

2012). However, it is possible that elements in closer contact to the substrate may be more 

reflective of locomotor behaviour because they directly absorb compressive loads 

associated with ground reaction forces (Maga et al., 2006; Kivell, 2016). The MT1 shows 

particular promise because it is a relatively simple element that shows a consistent range of 

motion. Results from this study strengthen its application in inferring fossil hominin 

locomotion by providing evidence that its trabecular structure can be linked to habitual joint 

positioning and loading of the forefoot within an extant sample. BV/TV reflects the position in 

which the joint experiences the highest load, and DA reflects its range of motion. Though 

these parameters do not accurately differentiate variation in non-human primate locomotion, 

obligate bipedalism presents very clear signals.  

 

Based on patterns of BV/TV and DA within the metatarsal, there is evidence that the 

Paranthropus foot (associated with SKX 5017) possessed a habitually dorsiflexing MTPJ 

that was capable of a relatively multiaxial range of movement. The head has a similar 

distribution of trabecular bone to modern humans, but is more dorsally oriented and 

isotropic, indicating it was loaded in dorsiflexion. This may have been caused by a less 

stable MTPJ due to its inability to close-pack in dorsiflexion, or it could be reflective of a 

different type of arboreal locomotion than what is seen in non-human apes. The base is 

intermediate between humans and non-human primates, showing relatively more trabecular 

bone within the dorsal aspect, but also retaining isotropic bone within the plantar region, 

suggesting retained grasping abilities. SK 1813 is not attributed to a specific taxon, and 

shows an intermediate condition between modern humans and non-human primates, 

indicating it may have had a varied locomotor repertoire including habitual bipedalism and 
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arboreal locomotion. Though previous analysis of its proximal articular surface describes it 

as more modern human-like than SKX 5017 (Vernon, 2013), its lower BV/TV ratio and more 

isotropic trabecular bone indicate it adopted more arboreal locomotion than the former 

individual. Beyond BV/TV ratio, trabecular structure in both specimens maintains ape-like 

and human-like properties. SKX 5017 shows the highest BV/TV of all taxa, with a trabecular 

structure characterized by a high number of tightly spaced and thicker trabeculae. SK 1813 

shows a high number of relatively thinner (compared to SKX 5017), and more tightly spaced 

trabeculae.  

 

Thick trabecular bone is a pattern seen in modern great apes, but the high number and tight 

spacing is a pattern seen in modern humans (Ryan and Shaw, 2015). When comparing the 

two fossils, both show comparable values for spacing and number, but disparate values of 

thickness. It would appear that although the fossils show absolutely higher BV/TV than 

modern humans, it is mainly the result of thicker trabecular bone, and that the other 

trabecular parameters (number and spacing) correspond with those of modern humans. 

Without proper taxonomic attribution for SK 1813, any firm links between the two specimens 

cannot be made. However, if the two represent the same species, as suggested by Proctor 

et al., (2008), these differences would correspond with what we know about ontogenetic 

changes in trabecular bone: BV/TV increases in life as a result of increasing thickness, but 

spacing and number stays the same (Partiff et al., 2000; Tanck et al., 2001).  

 

The taxonomic status of SKX 5017 is reasonably-well established. The layer in which it was 

found (Member 1), is represented by more than 95% Paranthropus remains (Susman, 1988), 

and its external morphology separates it from early Homo (Susman, 1988; Proctor, 2008; 

Vernon, 2013). Therefore, these interpretations of locomotor behaviour can be applied to 

Paranthropus robustus with confidence. Given the partial results from SK 1813, and its 

subadult status, it is not certain whether this element represents P. robustus as well. 

Trabecular structure within the two specimens is different in BV/TV ratio, DA, and BV/TV 
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distribution, indicating different habitual joint loading, and two forms of locomotion. If the 

trabecular structure of SK 1813 represents its final adult structure, it could indicate two 

different species (P. robustus and Homo sp.). However, if this structure reflects a subadult 

mode of locomotion that differs from the adult mode of locomotion, it could indicate the same 

species at different ontogenetic stages.  

 

Recently, the trabecular structure of tali associated with Paranthropus have been studied 

and shown to display increased DA in parts of the element associated with a medial weight 

shift, and by extension a human-like bipedal gait (Su and Carlson, 2017). They also showed 

higher BV/TV in the lateral region, indicating a degree of lateral loading intermediate in 

magnitude between modern human and anthropoid tali. Cumulatively, analyses of 

Paranthropus locomotion based on trabecular structure and external morphology show 

hallmark features characteristic of habitual bipedalism, with an indication that the overall 

structure of the foot was less stable, allowing for multiaxial movement at the MTPJ and 

metatarsocuneiform joint. These results are in line with the current study, and support the 

idea that Paranthropus was adapted for bipedalism, but nonetheless possessed a unique 

forefoot structure.  
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Chapter 4. Conclusions 
 

This study has demonstrated that trabecular bone structure within the first metatarsal can 

effectively reflect habitual joint loading within the MT1, and by extension general locomotor 

repertoire within extant apes. The most apparent differences are seen between modern 

humans and all other extant taxa, indicating that the relatively constrained and stable 

structure of the human foot results in a very specific trabecular patterning. It also highlights 

the importance of trabecular bone analysis in the context of palaeoanthropology. The two 

fossil specimens, which have been described as highly similar in external morphology, 

present very different trabecular bone structure that would imply two different modes of 

locomotion. Though studies have used the proximal articular surface to differentiate the two 

specimens, others have grouped the two together based on the structure of the head. 

Results from trabecular analysis suggest that the MTPJ was loaded differently in the two 

specimens: one in hyperdorsiflexion, and the other in a manner intermediate between 

modern humans and non-human primates. Trabecular structure within the two metatarsals 

suggests a push-off mechanism within the foot that was neither distinctly human-like or ape-

like. The observed variability in trabecular parameters – BV/TV corresponding with a human-

like push-off mechanism and DA corresponding with a more mobile joint, emphasizes its 

unique form of locomotion, and the variability in early Pleistocene hominin locomotion. 
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(cont.) 

 

 

Figure 1. Pongo pygmaeus BV/TV colour maps and segmentations. From left to right: 

Dorsal view, plantar view, parasagittal cross-section, segmentation, (top) distal 

articular surface, (bottom) proximal articular surface. From top to bottom: 

Pp_ZSM_1909_0801_MT1R; Pp_ZSM_1907_0660_MT1L; Pp_ZSM_0203_MT1L; 

Pp_ZSM_1907_0483_MT1L; Pp_ZSM_1907_0633b_MT1R; Pp_ZSM_1982_0092_MT1R. 
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(cont.) 
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(cont.) 

 

Figure 2. Gorilla gorilla BV/TV colour maps and segmentations. From left to right: 

Dorsal view, plantar view, parasagittal cross-section, segmentation, (top) distal 

articular surface, (bottom) proximal articular surface. From top to bottom: 

Gg_PC_MER_95_MT1L; Gg_PC_MER_129_MT1R; Gg_PC_MER_135_MT1R; 

Gg_PC_MER_136_MT1R; Gg_PC_MER_138_MT1L; Gg_PC_MER_372_MT1R; 

Gg_PC_MER_696_MT1L; Gg_PC_ZII_64_MT1R. 
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(cont.) 
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(cont.) 

 

Figure 3. Pan troglodytes BV/TV colour maps and segmentations.  From left to right: 

Dorsal view, plantar view, parasagittal cross-section, segmentation, (top) distal 

articular surface, (bottom) proximal articular surface. From top to bottom: 

Ptv_MPITC_11781_MT1R; Ptv_MPITC_11800_MT1L; Ptv_MPITC_11903_MT1R; 

Pt_PC_MER_172_MT1L; Pt_PC_MER_712_MT1R; Pt_PC_ZVI_34_MT1L; 

Pt_PC_ZVII_24_MT1R; Pt_PC_ZVII_25_MT1L; Pt_PC_ZVIII_10_MT1R; 

Pt_PC_ZIX_52_MT1R. (Ptv = Pan troglodytes verus; Pt = Pan troglodytes troglodytes) 
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(cont.) 

 

 

Figure 4. Homo sapiens BV/TV colour maps and segmentations. From left to right: 

Dorsal view, plantar view, parasagittal cross-section, segmentation, (top) distal 

articular surface, (bottom) proximal articular surface. From top to bottom: 

Hs_Inden_131_MT1R; Hs_Inden_164_MT1R; Hs_Inden_342_MT1L; 

Hs_Inden_438_MT1L; Hs_Campus_8_MT1R; Hs_Campus_43_MT1R; 

Hs_Campus_45_MT1R; Hs_Campus_57_MT1R; Hs_Campus_62_MT1R; 

Hs_Campus_64_MT1R; Hs_Campus_65_MT1R. 
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Figure 5. Plots of all extant taxa pairwise bootstrap analyses of BV/TV ratio within the 
head. Red line represents the actual mean difference between the two samples.  
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Figure 6. Plots of all extant taxa pairwise bootstrap analyses of BV/TV ratio within the 

base. Red line represents the actual mean difference between the two samples.  
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Appendix B 

 
 

Side 
(L/R) 

Sex 
(M/F/?) 

Resolution BV/TV DA 

Base Head Base Head 

dorsal plantar dorsal plantar dorsal plantar dorsal plantar 

Pongo pygmaeus 

1907_0483 L F 0.028389 0.253 0.299 0.263 0.343 0.351 0.288 0.308 0.157 

1907_0633b R F 0.028384 0.361 0.370 0.302 0.358 0.332 0.228 0.320 0.211 

1907_0660 L F 0.028382 0.234 0.270 0.198 0.270 0.278 0.274 0.318 0.242 

1909_0801 R M(?) 0.029301 0.234 0.279 0.236 0.288 0.312 0.275 0.328 0.175 

1966_0203 L M 0.028385 0.293 0.280 0.347 0.449 0.377 0.299 0.276 0.203 

1982_0092 R F 0.028376 0.487 0.454 0.387 0.452 0.190 0.185 0.209 0.167 

Gorilla gorilla 

MER_95 L F 0.039137 0.330 0.314 0.263 0.297 0.364 0.243 0.323 0.208 

MER_129 R F 0.042340 0.312 0.332 0.350 0.414 0.424 0.323 0.355 0.287 

MER_135 R M 0.039137 0.355 0.315 0.354 0.421 0.381 0.290 0.395 0.327 

MER_136 R F 0.029658 0.340 0.334 0.347 0.392 0.330 0.198 0.301 0.219 

MER_138 L F 0.032181 0.281 0.286 0.277 0.293 0.346 0.229 0.316 0.236 

MER_372 R M 0.039137 0.323 0.341 0.324 0.322 0.393 0.308 0.298 0.257 

MER_696 L F 0.032749 0.312 0.306 0.337 0.390 0.403 0.266 0.325 0.253 

ZII_64 R M 0.037462 0.354 0.383 0.411 0.431 0.490 0.301 0.391 0.274 

ZVI_32 R M 0.035033 0.360 0.357 0.305 0.358 0.384 0.318 0.409 0.232 

FC_123 L M 0.034671 0.310 0.360 0.297 0.348 0.424 0.244 0.436 0.261 

Pan troglodytes 

MPITC_11781 R M 0.030024 0.372 0.335 0.239 0.338 0.434 0.315 0.368 0.244 

MPITC_11800 L F 0.030024 0.327 0.332 0.402 0.421 0.401 0.309 0.401 0.262 

MPITC_11903 R M 0.030024 0.325 0.319 0.274 0.339 0.440 0.300 0.318 0.221 
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MER_172 L F 0.026680 0.318 0.307 0.382 0.461 0.464 0.338 0.396 0.286 

MER_712 R M 0.027041 0.353 0.389 0.326 0.386 0.395 0.300 0.419 0.292 

ZVI_34 L M 0.029628 0.384 0.371 0.333 0.371 0.423 0.332 0.407 0.283 

ZVII_24 R M 0.032139 0.357 0.365 0.359 0.437 0.420 0.313 0.423 0.357 

ZVII_25 L M 0.034088 0.350 0.365 0.414 0.464 0.451 0.340 0.435 0.260 

ZVIII_10 R F 0.032139 0.399 0.391 0.399 0.440 0.448 0.368 0.432 0.334 

ZIX_52 R F 0.029189 0.330 0.316 0.354 0.399 0.405 0.298 0.351 0.194 

Fossil specimens 

SKX 5017 L 
 

0.025 0.405 0.362 0.434 0.386 0.422 0.308 0.311 0.219 

SK 1813 R 
 

0.013547 
  

0.370 0.350 
  

0.235 0.169 

Homo sapiens 

Inden_131 R M 0.030877 0.298 0.201 0.313 0.273 0.502 0.347 0.508 0.412 

Inden_164 R F 0.030877 0.207 0.146 0.289 0.246 0.441 0.310 0.384 0.330 

Inden_342 L F 0.030877 0.201 0.157 0.251 0.212 0.479 0.390 0.472 0.395 

Inden_438 L F 0.031975 0.188 0.132 0.249 0.219 0.527 0.388 0.498 0.337 

Campus_8 R M 0.031060 0.381 0.276 0.347 0.314 0.438 0.389 0.478 0.352 

Campus_43 R M 0.031060 0.270 0.214 0.360 0.313 0.382 0.292 0.444 0.333 

Campus_45 R F 0.031059 0.287 0.197 0.319 0.268 0.423 0.335 0.477 0.333 

Campus_57 R F 0.030694 0.362 0.252 0.364 0.316 0.429 0.301 0.454 0.257 

Campus_62 R M 0.030694 0.325 0.244 0.345 0.298 0.436 0.377 0.482 0.342 

Campus_64 R M 0.030694 0.230 0.165 0.267 0.249 0.436 0.361 0.476 0.342 

Campus_65 R M 0.0306943 0.291 0.190 0.235 0.214 0.469 0.341 0.497 0.389 

 

Table 1. Details of each specimen, including scan resolution and mean BV/TV and DA values for each section. P. pygmaeus - 

Zoologische Staatsammlung Munich, Germany (ZSM); P. troglodytes - Tai Collection of Max Planck Institute for Evolutionary 

Anthropology, Leipzig, Germany (MPITC), Merfield (MER) and Zenker (Z) Collection from the Powell-Cotton Museum, England; G. 

gorilla – Merfield (MER), Zenker (Z), and French Congo (FC) Collections from the Powell-Cotton Museum, England; H. sapiens – 

Campus and Inden Collections from the Anthropologie der Georg-August-Universität Göttingen, Germany.   
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Specimen Tb. N. Tb. Sp. Tb. Th. 

 Base Head base Head Base Head 

dorsal plantar dorsal plantar Dorsal Plantar Dorsal plantar Dorsal Plantar Dorsal plantar 

Pongo pygmaeus 

1907_0483 1.163 1.143 0.762 1.276 0.636 0.627 1.071 0.535 0.224 0.248 0.241 0.249 

1907_0633b 1.360 1.314 0.940 1.250 0.495 0.510 0.813 0.556 0.240 0.250 0.251 0.244 

1907_0660 1.148 1.186 0.849 1.195 0.662 0.627 0.976 0.631 0.209 0.216 0.203 0.206 

1909_0801 1.184 1.233 0.903 1.221 0.636 0.590 0.887 0.595 0.208 0.221 0.221 0.223 

1966_0203 1.101 1.115 1.003 1.170 0.661 0.654 0.703 0.531 0.248 0.243 0.293 0.324 

1982_0092 1.348 1.282 1.113 1.298 0.434 0.467 0.601 0.456 0.308 0.313 0.297 0.314 

Gorilla gorilla 

MER_95 1.125 1.044 0.561 0.873 0.623 0.681 1.485 0.847 0.266 0.277 0.296 0.299 

MER_129 1.170 1.188 0.922 1.103 0.618 0.592 0.798 0.608 0.237 0.250 0.287 0.298 

MER_135 1.030 0.946 0.535 0.966 0.667 0.742 1.511 0.671 0.304 0.315 0.357 0.365 

MER_136 1.191 1.200 0.882 1.097 0.584 0.581 0.845 0.617 0.256 0.252 0.289 0.295 

MER_138 1.150 1.133 0.679 0.985 0.639 0.641 1.205 0.758 0.231 0.242 0.268 0.257 

MER_372 1.015 1.004 0.694 0.873 0.691 0.685 1.114 0.825 0.294 0.311 0.327 0.321 

MER_696 1.332 1.345 0.763 1.164 0.535 0.529 1.034 0.578 0.216 0.214 0.277 0.281 

ZII_64 1.099 1.074 0.823 1.057 0.621 0.607 0.823 0.593 0.289 0.324 0.392 0.353 

ZVI_32 1.030 1.008 0.573 0.913 0.635 0.653 1.388 0.759 0.335 0.339 0.356 0.336 

FC_123 1.077 1.007 1.057 0.994 0.662 0.680 0.686 0.696 0.267 0.313 0.260 0.310 

Pan troglodytes 

MPITC_11781 1.232 1.252 0.548 1.060 0.540 0.548 1.563 0.669 0.272 0.251 0.260 0.274 

MPITC_11800 1.613 1.545 0.875 1.344 0.422 0.432 0.818 0.456 0.198 0.215 0.326 0.288 

MPITC_11903 1.499 1.380 0.542 1.126 0.459 0.491 1.553 0.623 0.208 0.234 0.293 0.265 

MER_172 1.472 1.526 1.153 1.457 0.486 0.465 0.632 0.431 0.193 0.190 0.235 0.255 

MER_712 1.520 1.516 1.375 1.498 0.451 0.434 0.520 0.442 0.207 0.225 0.207 0.226 

ZVI_34 1.341 1.275 0.973 1.088 0.496 0.528 0.751 0.631 0.249 0.256 0.276 0.288 

ZVII_24 1.217 1.241 0.876 1.039 0.578 0.560 0.838 0.621 0.244 0.246 0.304 0.342 

ZVII_25 1.266 1.293 0.712 1.125 0.551 0.523 1.064 0.557 0.239 0.251 0.340 0.332 

ZVIII_10 1.375 1.366 0.777 1.157 0.479 0.474 0.929 0.541 0.250 0.259 0.358 0.324 

ZIX_52 1.469 1.463 1.062 1.250 0.463 0.465 0.679 0.523 0.217 0.218 0.262 0.277 

Fossil specimens 

SKX 5017 1.349 1.298 1.191 1.102 0.486 0.522 0.538 0.605 0.256 0.248 0.301 0.303 

SK 1813   1.316 1.324   0.503 0.487   0.256 0.268 

Homo sapiens 

Inden_131 1.365 1.213 1.149 1.132 0.528 0.647 0.625 0.649 0.205 0.179 0.245 0.236 

Inden_164 1.385 0.998 1.245 1.142 0.553 0.841 0.593 0.682 0.169 0.162 0.210 0.194 
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Inden_342 1.041 0.788 0.967 0.976 0.762 1.094 0.823 0.816 0.198 0.176 0.211 0.209 

Inden_438 1.123 0.862 1.044 0.958 0.687 0.971 0.723 0.814 0.203 0.189 0.234 0.230 

Campus_8 1.374 1.213 1.111 1.088 0.477 0.597 0.628 0.657 0.252 0.229 0.275 0.263 

Campus_43 1.349 1.264 1.078 1.052 0.526 0.598 0.633 0.673 0.216 0.193 0.294 0.277 

Campus_45 1.490 1.228 1.250 1.145 0.454 0.623 0.561 0.639 0.217 0.191 0.239 0.234 

Campus_57 1.698 1.511 1.381 1.392 0.385 0.483 0.489 0.499 0.204 0.179 0.235 0.220 

Campus_62 1.469 1.288 1.325 1.224 0.456 0.572 0.510 0.581 0.225 0.205 0.245 0.236 

Campus_64 1.322 1.115 1.026 1.064 0.557 0.708 0.721 0.686 0.200 0.189 0.254 0.254 

Campus_65 1.423 1.146 1.018 1.001 0.493 0.681 0.769 0.787 0.210 0.192 0.214 0.213 

 

Table 2. Raw Tb.N., Tb.Sp., and Tb.Th. values for each region of each specimen.  


