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Abstract

The paper deals with the estimation of monthly indicators of economic activity for the Euro area and
its largest member countries that possess the following attributes: relevance, representativeness and
timeliness. Relevance is determined by comparing our monthly indicators to the gross domestic product
at chained volumes, as the most important measure of the level of economic activity. Representativeness
is achieved by considering a very large number of (timely) time series of monthly indicators relating to
the level of economic activity, providing a more or less complete coverage. The indicators are modelled
using a large-scale parametric factor model. We discuss its specification and provide details of the
statistical treatment. Computational efficiency is crucial for the estimation of large-scale parametric
factor models of the dimension used in our application (considering about 170 series). To achieve it,
we apply state-of-the-art state space methods that can handle temporal aggregation, and any pattern of
missing values.

Keywords: Index of coincident indicators; Temporal disaggregation; Multivariate state space models;
Dynamic factor models; Quarterly national accounts.

J.E.L. Classification: E32, E37, C53



1 Introduction

Large-scale factor models aim to extract the main economic signals from a very large number of time
series. The underlying idea is that the comovements among economic time series can be ascribed to a
small number of common factors. Their two most prominent areas of application relate to the construc-
tion of synthetic indicators, such as coincident indicators of real economic activity (?, ?, ?) and core
inflation (?), and forecasting macroeconomic variables (?, ?); see ? for a survey.

Most of the factor-based studies use non-parametric techniques, which make estimation feasible even
with a large dataset. Parametric large scale factor models have been recently entertained by ?, ?, and
?. Most of these studies rely on the Kalman filter and smoothing algorithms to enable them to handle
mixed data frequencies and generic patterns of missing observations.

In this paper, we present a generalization of EuroMInd (see ?) known as EuroMInd-C, which allows for
the simultaneous calculation of monthly indicators of economic activity for the Euro area and its largest
member states. EuroMInd-C is based on a large-scale parametric factor model for handling very large
sets of time series, with mixed frequencies, and subject to missing values, due chiefly to ragged-edged
data structures, which depend in turn on the publication and dissemination schedules of those producing
the data.

EuroMInd-C is constructed based on more than 100 monthly time series and 55 quarterly national ac-
counts series. The latter concern the decomposition of the gross domestic product according to the output
and expenditure approaches, for the Euro area as a whole and for its four largest countries (Germany,
France, Italy and Spain). Indeed, a distinctive trait of our approach is the consideration of the quarterly
national accounts estimates.1 As a matter of fact, our dataset features a total of 11 GDP components,
seven of which are drawn from the following decomposition of GDP from the output side:

Label Value added by branch
A–B Agriculture, hunting, forestry and fishing +
C–D–E Industry, incl. energy +
F Construction +
G–H–I Trade, transport and communication services +
J–K Financial services and business activities +
L–P Other services =

Total gross value added +
TlS Taxes less subsidies on products =

GDP at market prices

The breakdown of total GDP from the expenditure side is as follows:
1Typically, the information set used for the estimation of factor models is strongly unbalanced towards the series collected

from the supply side of the economy, namely establishments surveys (e.g., industrial production and turnover, retail sales, finan-
cial statistics), and from administrative records (e.g., building permits and car registrations). However, important information
from other institutional units and economic agents, such as households, is missed, just because the underlying measurement
process is more complex, with the consequence that the information becomes available with longer delays. Notable examples
are the Labor Force Survey and the Consumer Expenditure Survey, which are carried out by the Euro area member states and
represent essential sources of data on the labor market and consumption. On the other hand, this information is incorporated
in the national accounts estimates of gross domestic product (GDP) and its components.
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Label Component
FCE Final consumption expenditure +
GCF Gross capital formation +
EXP Exports of goods and services −
IMP Imports of goods and services =

GDP at market prices

With respect to methodology, we propose a large scale factor model such that the comovements among
the series are synthesized by a set of 16 common factors, representing the Euro area common trend,
four country-specific factors and 11 component-specific factors. The statistical treatment is based on
likelihood inferences for a suitable state space model that is able to accommodate temporal aggregation
and any pattern of missing data that arises, also taking into consideration the ragged-edge structure of
the dataset and the release schedule of the economic indicators. Computationally efficient algorithms
have been implemented to avoid the curse of dimensionality and to address specific issues related to the
available data. For instance, for the extraction of the common factors, we adopt a reduction technique
that reduces the dimension of the model to be equal to the number of common factors.

Our model is an extension of the single index model originally proposed by ?, and generalized by ?,
jointly modelling quarterly GDP and monthly indicators, see also ? and ?. Our model also extends that
of ?, who use a state space framework to link up a set of parametric mixed frequency factor models, one
for each GDP demand and supply component of Euro area GDP, providing an indicator called EuroMInd.
Unlike the original EuroMInd, the estimation of the monthly indicators of GDP and its components here
is not carried out one component at a time, but simultaneously. In fact, the model includes all of the
components of the breakdown of GDP, rather than performing a separate estimation for each different
component (sector or expenditure type). Moreover, not only Euro area but country information is used,
and country indicators of economic conditions are also produced. Unlike the model of ?, where a large
scale factor model for the Euro area is estimated with an ex post identification of the factors, the factors
in this model are identified a priori and ascribed to a particular effect (country-specific factors, factors
pertaining to a specific GDP component).

The model is specified at the monthly frequency and for the logarithms of the original series. The
presence of national account aggregates, which are observed only quarterly, imposes constraints in rela-
tion to temporal aggregation. Furthermore, due to the logarithmic specification, a nonlinear smoothing
algorithm has to be applied for the disaggregation of the quarterly national account aggregates. The
corresponding state space representation is modified according to the observational constraints so as to
handle the temporal aggregation and the ragged-edged data structure and missing values at the beginning
of the sample period.

Maximum likelihood estimation is carried out using the EM algorithm. As the number of time series
being handled simultaneously is very large (around 170), we implement efficient methods of inference,
focusing on the treatment of missing values and maximum likelihood estimation, as is documented in
the following sections. Furthermore, the reduction technique proposed by ? and ? is applied to the
temporal disaggregation case. This further extends the work of ? and ?.

The plan of the paper is as follows: Section 2 illustrates the specification of the dynamic factor model,
and in particular the definition and identification of the common factors; and Section 3 describes the
state space representation of the model. The statistical treatment of temporal aggregation is dealt with
in Section 4, while Section 5 considers the missing values problem. Next, Section 6 discusses the esti-
mation of common factors, and Section 7 the estimation of the other model parameters. The empirical
application starts in Section 8, which provides a description of the dataset, with Section 9 then present-
ing the estimation results and the resulting EuroMInd-C estimates. Section 10 provides a comparative
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assessment of EuroMInd-C in terms of its predictive accuracy for quarterly GDP and its components,
by means of a recursive forecasting experiment. Finally, Section 11 summarizes our main findings and
concludes.

2 Model specification

This section outlines the basic structure of the dynamic factor model used for estimating EuroMInd-C.
The specification can be considered as an extension of the single index model proposed by ?, introducing
multiple indices relating to the countries and the sectors.

For illustrative purposes, we assume that a complete set of monthly time series is available. Let c =
1, . . . , C index a country, with c = 1 indexing the Euro area, and let s = 1, . . . , S denote a particular
component (e.g., the construction sector, or an expenditure component such as exports); in our particular
application, C = 5 and S = 11. Denoting the monthly series (usually transformed into logarithms) by
ycs,t, t = 0, . . . , n, for an indicator referring to country c and component s, we write:

ycs,t = θcs,0µt + θcs,1µct + θcs,2µst + µ∗cs,t, (1)

where µt is the common Euro area factor, specified as an ARIMA(1,1,0) process:

∆µt = φ∆µt−1 + ηt, ηt ∼ NID(0, 1).

The factor µct is specific to country c, whereas µst is a factor that is specific to sector s. Both are
specified as ARIMA(1,1,0) processes:

∆µct = φc∆µc,t−1 + ηct, ηct ∼ NID(0, 1),
∆µst = φs∆µs,t−1 + ηst, ηst ∼ NID(0, 1).

(2)

Finally, the idiosyncratic component is formulated as follows:

∆µ∗cs,t = (1− ψcs)δcs + ψcs∆µ
∗
cs,t−1 + εcs,t, εcs,t ∼ NID(0, σ2

ε,cs). (3)

The model assumes that each individual time series is made stationary by the transformation ∆ycs,t =
ycs,t − ycs,t−1 for t = 1, . . . , n. If ycs,t is a survey series, then the specification refers to the cumulated
values of the series (which are by construction integrated of order 1). Note that the drift δcs is assigned
to the idiosyncratic component, and is thus a series-specific feature.

For the Euro area as a whole (c = 1), the jth series results from the aggregation of the series for all of
the member countries. Thus, it will load on the global factor, the sector-specific factor, and the country-
specific factors of the individual member states under evaluation (the four largest economies). The
specific factors of the countries not included in the model will contribute to the idiosyncratic component
of the Euro area. However, the latter can be correlated with the idiosyncratic components of the countries
included in the model. Thus, the equation for the Euro area series is specified as follows:

y1s,t = θ1s,0µt +

C∑
c=2

θ1c,1µct + θ1s,2µst + µ∗1s,t. (4)

In general, to show the identification restrictions imposed on the loadings matrix, we report an example
for five countries (EA, G, S, F and I, referring to the Euro area, Germany, Spain, France and Italy,
respectively) and two sectors (a and b); note that our study includes a total of five countries and 11
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sectors). The value added series for the two sectors are listed first, and three monthly indicators are
available: one refers to both sectors (Ind1a,b), while the other two refer to the first (Ind2a) and second
(Ind3b) sectors, respectively.



EAa
Ga
Sa
Fa
Ia
EAb
Gb
Sb
Fb
Ib

EA− Ind1a,b
G− Ind1a,b
S − Ind1a,b
F − Ind1a,b
I − Ind1a,b
EA− Ind2a
G− Ind2a
S − Ind2a
F − Ind2a
I − Ind2a
EA− Ind3b
G− Ind3b
S − Ind3b
F − Ind3b
I − Ind3b



=



x x x x x x 0
x x 0 0 0 x 0
x 0 x 0 0 x 0
x 0 0 x 0 x 0
x 0 0 0 x x 0
x x x x x 0 x
x x 0 0 0 0 x
x 0 x 0 0 0 x
x 0 0 x 0 0 x
x 0 0 0 x 0 x

x x x x x x x
x x 0 0 0 x x
x 0 x 0 0 x x
x 0 0 x 0 x x
x 0 0 0 x x x

x x x x x x 0
x x 0 0 0 x 0
x 0 x 0 0 x 0
x 0 0 x 0 x 0
x 0 0 0 x x 0

x x x x x 0 x
x x 0 0 0 0 x
x 0 x 0 0 0 x
x 0 0 x 0 0 x
x 0 0 0 x 0 x





µt
µG,t
µS,t
µF,t
µI,t
µa,t
µb,t


+ µ∗t (5)

Here, µ∗t is a vector of idiosyncratic components. The first factor, µt, is interpreted as the Euro area
common factor. The factors µG,t, µS,t, µF,t, µI,t are country-specific, and, finally, the factors µa,t and
µb,t are sector-specific. All of the time series load on the Euro area factor and on the factor of the
component to which they refer. Hence, for instance, the German value added for sector b, Gb, as well
as G − Ind3b, load on the common Euro area factor, the German factor and the industry b factor. The
German and French sector a indicators are related only via the sector-specific factor µa,t and the common
Euro area factor µt. All of the series are related via the latter.

The Euro area is treated as a separate country; its treatment is similar to that assigned to the U.S. by ?
and ?. It would also be possible to model the rest of the Euro area as an additional entity and obtain
the Euro area aggregates by summing the five series pertaining to the four countries and the residual
unit. While this is feasible technically, the main issue is to find a representative set of indicators for the
remaining Euro area countries.

Finally, the model is specified at the monthly frequency. However, the national accounts series, and the
quarterly series more generally, are not observed at that frequency. Sections 3–7 deal with the more
technical aspects of the model’s specification and estimation, and can be skipped by readers who are not
interested in these details.
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3 The dynamic factor model

First of all, we present the specification of the model as a dynamic factor model in the first log-differences
of the series, assuming that a complete data set of monthly observations is available at time t = 1, . . . , n.

We start by denoting the stack of theN individual monthly time series Ycs,t, c = 1, . . . , C, s = 1, . . . , S,
in their original scale of measurement by Yt, t = 0, . . . , n. Further, let us denote a transformation of
Yt by yt. We assume throughout that ycs,t = lnYcs,t (log transformation) for all of the series measured
on a ratio scale, such as the components of GDP, the index of industrial production, etc. For the survey
variables (which can take on negative values), we always set ycs,t = Ycs,t (no transformation).

For ease of notation, henceforth we will adopt a single index i to refer to the ith element of the N × 1
vector Yt. Stacking the individual equations for ∆yit, the model is formulated as follows:

∆yt = δ + Θft + ut, t = 1, . . . , n,
ft = Φft−1 + ηt, ηt ∼ NID(0,Ση),
ut = Ψut−1 + εt, εt ∼ NID(0,Σε),

(6)

where δ = {δcs} contains the drifts in Eq. (3), ft is a K × 1 vector of stationary common factors,
with zero mean, stacking the first differences [∆µt,∆µct, c = 2, . . . , C,∆µst, s = 1, . . . , S]. The total
number of common factors is denoted by K = C + S, and Θ = [θ1, . . . ,θi, . . . ,θN ]′ is the N × K
matrix of factor loadings,

Φ = diag{φ1, . . . , φk, . . . , φK},

Ση = IK , where IK is the identity matrix of order K. Hence, fkt = φkfk,t−1 + ηkt, ηkt ∼ NID(0, 1).
Finally, ut is the N × 1 vector of stationary idiosyncratic components, which arises from the decompo-
sition

∆µ∗t = δ + ut.

Therefore, the components of the vector ut follow scalar independent AR(1) processes, uit = ψiui,t−1+
εit, εit ∼ NID(0, σ2

i ), according to Eq. (3), so that

Ψ = diag{ψ1, . . . , ψi, . . . , ψN}, Σε = diag{σ2
1, . . . , σ

2
i , . . . , σ

2
N}.

For later use, we also define the covariance matrix of the factors, Σf , which is given by Σf = diag{(1−
φ2
k)
−1}, k = 1, . . . ,K.

The model in Eq. (6) is identified by imposing exclusion restrictions on the matrix Θ that actually
overidentify the model. The number of common factors is fixed at K = 16, since we postulate the
presence of a common global factor, as well as country- and sector-specific factors. The assumption
that the common factors and the idiosyncratic components are uncorrelated, E(εtη

′
t) = 0, completes the

specification.

Let us define the parameter vector Ξ = [ϑ′, δ′,φ′,ψ′, ς ′ε]
′, where ϑ stacks the nonzero elements of

the loadings matrix, φ = [φ1, . . . , φk]
′, Φ = diag(φ), ψ = [ψ1, . . . , ψN ]′, Ψ = diag(ψ), and ςε =

[σ2
1, . . . , σ

2
N ]′, Σε = diag(ςε). Using the above restrictions and σ2

i > 0, ∀i, the vector Ξ is globally
identified.

If ∆yt were observed fully, inference concerning the model in Eq. (6) would be straightforward, though
computationally demanding. For small values of N (less than 10, say), the parameters can be estimated
by maximum likelihood, where the likelihood is evaluated by the Kalman filter (KF) using a numerical
quasi-Newton method. For large values ofN , the high dimensionality of Ξ prevents the maximization of
the likelihood via gradient-based methods. A computationally viable alternative is to use the expectation-
maximization (EM) algorithm of ?; see ? and ?.
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Another issue is that, according to Eq. (6), ut has a first order Markovian representation. If the model is
written in state space form, the state vector should feature N elements, to account for the idiosyncratic
factors. Filtering and smoothing then becomes infeasible if N has the dimension considered in this
paper.

A transformation of the model that will be useful in what follows is the quasi-difference form:

∆yt = Ψ∆yt−1 + δ −Ψδ + Θft −ΨΘft−1 + εt. (7)

The main virtue of this representation is that the idiosyncratic VAR(1) process ut has been removed, and
only the idiosyncratic disturbances εt are present, though they are serially uncorrelated. The dimension-
ality of the unobserved components with a dynamic structure depends solely on the number of common
factors, and thus, is much smaller than N . The inclusion of ut in the state vector is necessary only for
setting up the initial conditions. The reduction is achieved at the cost of conditioning upon ∆yt−1; this
will have certain consequences for the way in which we handle missing values, as we will see later.

New, computationally efficient methods of inference need to be applied for estimating the factors and the
parameters. First and foremost, the specification of the model needs to take into consideration temporal
aggregation, the presence of missing values, and the ragged edge structure of the data. The final state
space representation will now be obtained in two stages:

• The original state space form that is suitable for Eq. (7) is modified to take into consideration tem-
poral aggregation: the observational constraints are enforced sequentially by solving a nonlinear
smoothing problem using a linearised Gaussian model, in Section 4.

• Missing values are dealt with using a time varying state space form, in Section 5.

4 Temporal aggregation

Our data set contains N1 = 55 quarterly national accounts (NA) aggregates that are subject to temporal
aggregation: the 11 GDP components for the five countries. These series represent a set of constraints
for the monthly estimates. The remaining N2 = N −N1 time series are a set of monthly coincident in-
dicators referring to either the Euro area or the individual countries (e.g., index of industrial production,
turnover, and so forth). They may be subject to isolated missing values and to a ragged edge structure,
depending on their timeliness and publishing schedules. Accordingly, we partition the vector Yt in two
blocks, Yt = [Y ′1t,Y

′
2t]
′; and yt and ∆yt will also be partitioned in two blocks correspondingly, where

the first block refers to the quarterly national accounts series and the second to the monthly coincident
indicators.

The monthly series Y1t, and thus yit = lnY1t, t = 0, 1, . . . , n, and ∆yit, for i = 1, . . . , N1, are not
observed for the first block of N1 time series belonging to the national accounts. Instead, only the
quarterly totals are observed, which are supposed to constrain the monthly estimates. This observational
constraint can be incorporated in the specification of the model, and we will derive the relevant state
space representation of the model later. The latter has two fundamental uses: first, for a given parameter
configuration, it provides the optimal (posterior mode) estimates of the disaggregate monthly time series,
the factors and the idiosyncratic components. Second, it is instrumental in performing the expectation
step of the EM algorithm for the maximum likelihood estimation of the parameters. These evaluations
are done via the nonlinear smoothing algorithm that is discussed in Section 4.1. For Yit, i = 1, . . . , N1,
subject to temporal aggregation, we observe the quarterly totals:

Yiτ =

3∑
j=1

Yi,3τ−j , τ = 1, 2, . . . , [(n+ 1)/3], (8)
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Table 1: Nonlinear temporal aggregation.

t Unobserved Yit Logarithms Cumulator Availability of Y cit
0 Yi0 yi0 Y ci0 = Yi0 = exp(yi0) missing
1 Yi1 yi1 Y ci1 = Yi0 + Yi1 = exp(yi0) + exp(yi1) missing
2 Yi2 yi2 Y ci2 = Yi0 + Yi1 + Yi2 = exp(yi0) + exp(yi1) + exp(yi2) observed
3 Yi3 yi3 Y ci3 = Yi3 = exp(yi3) missing
4 Yi4 yi4 Y ci4 = Yi3 + Yi4 = exp(yi3) + exp(yi4) missing
5 Yi5 yi5 Y ci5 = Yi3 + Yi4 + Yi5 = exp(yi3) + exp(yi4) + exp(yi5) observed
6 Yi6 yi6 Y ci6 = Yi6 = exp(yi6) missing
...

...
...

...
...

where [·] is the integer part of the argument.

For the statistical treatment, it is useful to convert temporal aggregation into a systematic sampling
problem; this can be done by constructing a cumulator variable, generated by the recursive formula (see
?, and ?):

Y c
it = ρtY

c
i,t−1 + Yit, t = 0, . . . , n

= ρtY
c
i,t−1 + exp(yit),

(9)

where ρt is the cumulator coefficient, which is equal to zero for t corresponding to the first month in the
quarter and 1 otherwise, i.e.,

ρt =

{
0, t = 3(τ − 1), τ = 1, . . . , [(n+ 1)/3],
1, otherwise.

Only a systematic sample of the cumulator variable Y c
it is available; in particular, if the sample period

starts with the first month of the quarter at t = 0, the observed end-of-quarter values occur at times
t = 3τ−1, τ = 1, 2, . . . , [(n+1)/3]. In our particular case, Y c

i0 = exp(yi0), Y c
i1 = exp(yi0)+exp(yi1),

Y c
i2 = exp(yi0) + exp(yi1) + exp(yi2), Y c

i3 = exp(yi3), Y c
i4 = exp(yi3) + exp(yi4), Y c

i5 = exp(yi3) +
exp(yi4) + exp(yi5), . . . . As is illustrated in Table 1, only the values Y c

i2, Y
c
i5, . . . are observed, with

the intermediate ones being missing. Temporal aggregation yields a nonlinear observational constraint,
since the quarterly totals are a nonlinear function of the underlying monthly values yit.

4.1 An approximating linear Gaussian model

The estimation of the common factors ft, and the missing values yit, i = 1, . . . , N1, conditional on Ξ
and the available information, which consists of Y c

it, i = 1, . . . , N1, t = 3τ−1, τ = 1, 2, . . . , [(n+1)/3],
for the quarterly time series, and yit for i = N1 + 1, . . . , N , is a nonlinear smoothing problem that can
be solved by iterating the Kalman filter and smoother (KFS) adapted to a sequentially linearized state
space model, see ?.

Let us partition the vectors Yt = [Y ′1t,Y
′

2t]
′, yt = [y′1t,y

′
2t]
′, such that Yit = exp(yit) for all of

the series measured on a ratio scale (all of the series except the business survey variables), ∆yt =
[∆y′1t,∆y

′
2t]
′, δ = [δ1, δ2]′, ut = [u1t,u2t]

′ and the matrices Θ = [Θ′1,Θ
′
2]′, Ψ = diag(Ψ1,Ψ2),

Σε = diag(Σε1,Σε2), where the subscript 1 indexes the national accounts series, and the dimensions
of the blocks are respectively N1 and N2. Also, define u = [u′1, . . . ,u

′
n]′, and f = [f ′1, . . . ,f

′
n]′.

Although ∆y2t is available, ∆y1t, t = 1, . . . , n, is not, but we observe a systematic sample of

Y c
1t = ρtY

c
1,t−1 + Y1t,

= ρtY
c

1,t−1 + exp(y1t).
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To obtain the values f and u that maximize the posterior density g(f ,u|x;Ξ), given the available
data,we linearize Y c

1t = ρtY
c

1,t−1 + exp(y1t) around a trial value y∗1t, using a first order Taylor series
expansion. This yields a linear state space model, and the corresponding KFS provides a new trial
value for the disaggregate series. This sequence of linearisations is iterated until convergence, with the
end result being a set of disaggregate monthly estimates Y1 and factor scores f which incorporate the
temporal aggregation constraints. As a by-product, disaggregate (monthly) estimates of the missing
values y1t, and thus Yit = exp(y1t), will be made available. Using the trial value y∗1t = log(Y ∗1t), the
linearisation operates as follows:

Y c
1t = ρtY

c
1,t−1 + exp(y∗1t) +U∗1t(y1t − y∗1t),

where theN1×N1 matrixU∗1t is a diagonal matrix with the derivatives of the exponential transformation
on the main diagonal, U∗1t = diag (exp(y∗1t)) . Writing

y1t = y1,t−1 + ∆y1t

= y1,t−2 + ∆y1,t−1 + ∆y1t,

and replacing ∆y1t = Ψ1∆y1t−1 + (I −Ψ1)δ1 + Θ1ft −Ψ1Θ1ft−1 + ε1t, yields

Y c
1t = ρtY

c
1t−1 + d̃∗t +U∗1t[y1t−2 + (I + Ψ1)∆y1t−1 + (Θ1Φ−Ψ1Θ1)ft−1 + ε1t + Θ1ηt], (10)

where d̃∗t = exp(y∗1t) − U∗1ty1t + U∗1t(I −ΨN1)δ1. Eq. (10) expresses Y c
1t as a time-varying linear

combination of Y c
1,t−1, y1,t−2, ∆y1,t−1 and ft−1, which will constitute the elements of the state vector

at time t− 1, denoted by αt−1, and of the disturbances of the factor model.

4.2 A convenient state space formulation under temporal aggregation constraints

The state space representation is formulated conveniently for the vector y†t , where, for t ≥ 1, and if no
element of y2t is missing,

y†t =

[
Y c

1t

∆y2t

]
, t = 1, 2, . . . , n,

whereas for t = 0, y†0 = Y c
10. The length of the observation vector varies with time and will be denoted

by Nt. When one or more elements of y2t are missing, the measurement equation will be modified
suitably, as it will be discussed later.

When ∆y2t is observed fully, the state vector for t ≥ 1 is defined as follows:

αt =



Y c
1,t

y1,t−1

∆y1t

∆y1,t−1

ft
ft−1

 .

The length of the state vector will also vary according to t and to the presence of missing values.

The measurement equation is formulated as follows:

[
Y c

1t

∆y2t

]
=

[
IN1 0 0 0 0 0

0 0 0 0 Θ2 −Ψ2Θ2

]
αt +

[
0

(I −Ψ2)δ2 + Ψ2∆y2t−1

]
+

[
0 0 0
0 0 I

]ηtε1t

ε2t

 .
(11)
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The transition equation is:

Y c
1t

y1t−1

∆y1t

∆y1t−1

ft
ft−1

 =



ρtIN1 U∗1t U∗1t(I + Ψ1) 0 U∗1t[Θ1Φ−Ψ1Θ1] 0
0 IN1 IN1 0 0 0
0 0 ΨN1 0 [Θ1Φ−Ψ1Θ1] 0
0 0 I 0 0 0
0 0 0 0 Φ 0
0 0 0 0 I 0





Y c
1t−1

y1t−2

∆y1t−1

∆y1t−2

ft−1

ft−2



+



Y ∗1t −U∗1ty∗1t +U∗1t(I −ΨN1)δ1

0
(I −ΨN1)δ1

0
0
0

+



U1tΘ1 U∗1t 0
0 0 0
Θ1 IN1 0
0 0 0
Ik 0 0
0 0 0


ηtε1t

ε2t

 .
(12)

The treatment of initial conditions is rather technical, and hence, is relegated to Appendix C.

5 The treatment of missing values

Expressing the model in quasi differences as in Eq. (7) offers the advantage of dropping the N -
dimensional vector ut from the unobserved states. However, it introduces a new difficulty when the
monthly indicator series y2t, or any element thereof, is missing at time t. As a matter of fact, a missing
value at time t implies not only that the pair (∆yt,∆yt+1) are subject to missing values, but also that
the conditioning elements on the right hand side of the Eq. (7) are missing.

To overcome this difficulty, the state space formulation needs to be adapted by augmenting the state
vector with the minimal set of components needed to preserve the dynamic structure of the system and
its Markovian structure. Our treatment is based on an adaptation of the approach recently proposed by
?. The main advantages of this formulation lies in its treatment of arbitrary patterns of missing values.

We need to discriminate between the following situations: in the case when both yt and yt−1 are ob-
served, the state space formulation considered in the previous section applies. The state space form has
to be modified in the case of missing values. The three main cases of interest are:

1. Case 1: yt (or any component series thereof) is missing at time t, but is observed at time t− 1.

2. Case 2: yt (or any component series thereof) is missing at both time t and time t− 1.

3. Case 3: yt (or any component series thereof) is observed at time t, but is missing at time t− 1.

Details of the different treatments of the three cases are provided in Appendix C.

6 A reduction technique for the estimation of the common factors

The smoothed estimates of the factors conditional on the parameter vector Ξ can be obtained efficiently
via an adaptation of a reduction technique, entailing a linear transformation of the model that operates a
projection into the space of the factors. This will be useful for the E-step of the EM algorithm.

The computational effort involved in the KFS depends on the dimensions of both the state vector and
the observation vectors. In most practical applications of the dynamic factor model, the dimension of
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yt is significantly larger than that of αt. ? demonstrated that in such circumstances, the computational
effort of KFS can be improved significantly by a transformation of the model. Recently, ? used this
computational device for the estimation of the common factors for large scale models.

We illustrate the technique with respect to a generic state space form, represented as follows:

yt = ct +Ztαt +Gtωt, ωt ∼ N(0,Σω),

αt+1 = Ttαt + dt +Htωt,
(13)

where for a p-dimensional state vector, ct and dt are suitable vectors of sizesN×1 and p×1 respectively;
and Zt,Gt,Σω, Tt andHt are suitable system matrices that are possibly time-varying.

The reduction technique is based on a linear transformation of the original model which projects the
observations onto the space spanned by the states αt and its orthogonal complement. The information
that is relevant for extracting the factors lies in the former, which is typically low-dimensional.

Define the transformation matrix

At =

(
AL
t

AH
t

)
AL
t = C−1

t Z
′
tΣ̃
−1
t , (14)

where Σ̃t = GtΣωG
′
t, Ct is an invertible matrix, AH

t is chosen such that matrix At is full rank, and
AL
t Σ̃tA

H′
t = 0, so that AH

t Zt = 0, see ? and ?. Moreover by choosing Ct such that CtC
′
t =

Z
′
tΣ
−1
ω Zt and premultiplying the measurement equation byAt, we get:(

AL
t yt

AH
t yt

)
=

(
AL
t ct

AH
t ct

)
+

(
C
′
tZt
0

)
αt +

(
AL
t Gtωt

AH
t Gtωt

)
,

(
AL
t Gtωt

AH
t Gtωt

)
∼ N

(
0
(
I 0
0 AH

t Σ̃tA
H′
t

))
.

(15)
The unobserved factors are then calculated by applying the KFS to the first block of equations that
depends on αt. It is clear that this reduction technique speeds up signal extraction quite dramatically.

This computational device can be adapted to our problem. The reduction is carried out only for the
monthly series. When there are no missing values, this leads to the following formulation: Y c

1t

AL∆yt
AH∆yt

 =

 0
ALt ct
AHt ct

+

 Z1

ALt Z2

0

αt +

 0
ALt ε2t

AHt ε2t

 . (16)

We cannot apply the reduction to observations that are missing at both time t and time t − 1; more-
over, we do not apply the reduction to case 3 in the previous section, as it does not lead to significant
computational gains.

7 Estimation of the hyperparameters using the EM algorithm

Maximum likelihood estimation of the model is carried out by the EM algorithm (?, ?). Let
yj = [y′j0, . . . ,y

′
jn]′, j = 1, 2, in accordance with the partitioning made in Section 4, and ∆yj =

[∆y′j1, . . . ,∆y
′
jn]′, j = 1, 2; only y2 is observed at the monthly frequency. In our application,

the complete data likelihood is the joint density of the observed ∆y2, the missing data ∆y1, and
f = [f ′0, . . . ,f

′
n]′

g(∆y1,∆y2,f ;Ξ) = g(∆y1|f ;Ξ)g(∆y2|f ;Ξ)g(f ;Ξ).
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Defining the quasi-differences

wit =


√

1− ψ2
i ∆yit, t = 1,

∆yit − ψi∆yi,t−1, t = 2, . . . , n,

and

xit =


√

1− ψ2
i [1,f

′
t ]
′, t = 1,[

(1− ψi), (ft − ψift−1)′
]′
, t = 2, . . . , n,

we can write

ln g(∆yj |f ;Ξ) = −1

2

Nj∑
i=1

{
n lnσ2

i +
1

σ2
i

n∑
t=1

(wit − x′itmi)
2

}
, (17)

where

mi =

[
δi
θi

]
.

This result arises because, for the ith series,

∆yit = µi + f ′tθi + uit, uit = ψiui,t−1 + εit,

with εit ∼ NID(0, σ2
i ). Hence, ∆yit, i = 1, . . . , N , are conditionally independent given ft, and are

characterised by errors that follow a first order AR model. As a result, if a Choleski orthogonalisation is
performed, we get Eq. (17). Moreover,

ln g(f ;Ξ) = −1
2

[
n ln |Ση|+ tr

{
Σ−1
η

∑n
t=1(ft −Φft−1)(ft −Φft−1)′

}]
−1

2

[
ln |P0|+ tr

{
P−1

0 f0f
′
0

}]
,

where P0 satisfies the matrix equation P0 = ΦP0Φ
′ + Ση. The restrictions imposed on the factor

structure imply:

ln g(f ;Ξ) = −1

2

K∑
k=1

{
n+

n∑
t=1

(fkt − φkfk,t−1)2 − ln(1− φ2
k) +

f2
k0

1− φ2
k

}
. (18)

Given an initial parameter value, Ξ∗, the EM algorithm maximizes the intermediate quantity (?) itera-
tively with respect to Ξ:

Q(Ξ;Ξ∗) = EΞ∗ [ln g(∆y1,∆y2,f ;Ξ)]
=

∫
ln g(∆y1,∆y2,f ;Ξ)g(∆y1,f |∆y2,Y

c
1 ;Ξ∗)d(∆y1,f),

(19)

which is interpreted as the expectation of the complete data log-likelihood with respect to g(∆y1,f |
∆y2,Y

c
1 ;Ξ∗), which is the conditional probability density function of the unobservable states, given

the observations, evaluated at Ξ∗.

? show that the parameter estimates that maximise the log-likelihood logL(Ξ) can be obtained by a
sequence of iterations, each consisting of an expectation step (E-step) and a maximization step (M-step),
that aim to locate a stationary point of Q(Ξ;Ξ∗).
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7.1 The E-step

At iteration m, given the estimate Ξ(m), the E-step deals with the evaluation of Q(Ξ;Ξ(m)); this is
carried out with the support of the KFS applied to the state space representation provided in Section 4.2
with hyperparameters Ξ(m).

As is evident from Eqs. (17)–(19) the E-step computes

EΞ(m)

(
n∑
t=1

xitx
′
it

)
, EΞ(m)

(
n∑
t=1

xitwit

)
, EΞ(m)

(
n∑
t=1

w2
it

)
,

EΞ(m)

(
n∑
t=2

f2
k,t−1

)
, EΞ(m)

(
n∑
t=1

f2
kt

)
, EΞ(m)

(
n∑
t=2

fktfk,t−1

)
,

where the expectation is taken with respect to the density g(∆y1,f |∆y2,Y
c

1 ;Ξ(m)). As a byproduct,

EΞ(m)

(
n∑
t=2

u2
i,t−1

)
, EΞ(m)

(
n∑
t=1

u2
it

)
, EΞ(m)

(
n∑
t=2

uitui,t−1

)
,

are made available. It must be remarked that for i = N1 + 1, . . . , N , wit is observed, and thus
EΞ(m)

(∑
tw

2
it

)
=
∑

tw
2
it,EΞ(m) (

∑
t xitwit) =

∑
t EΞ(m)wit (xit) .

In order to be able to evaluate the covariance between the current and past states, e.g., EΞ(∗)(
∑n

t=2

fktfk,t−1), the KFS recursion needs to be augmented as per ? and ?.

In summary, the E-step consists of evaluating the conditional expectation of cross-products of random
quantities. For instance,

EΞ(m)

(
n∑
t=1

xitx
′
it

)
=

n∑
t=1

[
x̃it|nx̃

′
it|n + Vx|n

]
,

where x̃it|n = E(xit|∆y2,Y
c

1 ; Ξ(m)) and Vx|n = Var(xit|∆y2,Y
c

1 ; Ξ(m)).

7.2 The M-step

The M-step amounts to choosing a new value Ξ(m+1) so as to maximize the criterion Q(Ξ;Ξ(m)) with
respect to Ξ, i.e., Q(Ξ(m+1);Ξ(m)) ≥ Q(Ξ(m);Ξ(m)). The maximization is in closed form if, as is

customary, we ignore the term ln(1 − φ2
k) +

f2k0
1−φ2k

in Eq. (18) and drop the component (wi1 − x′i1δi)2

for t = 1 in Eq. (17).

As a result of this simplification, the new estimates of the means and the loadings of the ith series,
i = 1, . . . , N1, are[

δ̂
(m+1)
i

θ̂
(m+1)

i

]
=

[
n∑
t=1

(
x̃it|nx̃

′
it|n + Vx|n

)]−1 n∑
t=1

(
x̃it|nw̃it|n + Vxw|n

)
,

where w̃it|n = E(wit|∆y2,Y
c

1 ; Ξ(m)) and Vxw|n = Cov(xit, wit|∆y2,Y
c

1 ; Ξ(m)).

For the series belonging to the second group, i = N1 + 1, . . . , N ,[
δ̂

(m+1)
i

θ̂
(m+1)

i

]
=

[
n∑
t=1

(
x̃it|nx̃

′
it|n + Vx|n

)]−1

(I −∆t)
n∑
t=1

x̃it|nwit + ∆t

n∑
t=1

x̃it|nVxm|n,
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where I is a unitary matrix and ∆t is a matrix with element ∆i,j = 1 when an observation is miss-
ing. Finally, Vxm|n is the smooth covariance between missing values that has to be calculated for the
maximization step.

Since wit is observed,

σ̂
(m+1)
i =

1

n

n∑
t=1

EΞ(m)

[
(wit − x′itδ

(m+1)
i )2

]
,

where, if i ≤ N1,
EΞ(m)

[
(wit − x′itδ

(m)
i )2

]
= (w̃it|n − x̃′it|nδ

(m)
i )2 + Ve|n

and Ve|n = Var(wit − x′itδ
(m)
i |∆y2,Y

c
1 ; Ξ(m)); otherwise, wit is available, and thus,

EΞ(m)

[
(wit − x′itδ

(m)
i )2

]
= (wit − x̃′it|nδ

(m)
i )2 + Ve|n.

The estimates of the factor autoregressive coefficients are

φ̂
(m+1)
k =

∑n
t=1

(
f̃kt|nf̃k,t−1|n + Vff1|n

)
∑n

t=1

(
f̃2
k,t−1|n + Vf1f1|n

) ,

where f̃kt|n = E(fkt|∆y2,Y
c

1 ; Ξ(m)), Vff1|n = Cov(fkt, fk,t−1|∆y2,Y
c

1 ; Ξ(m)), and Vf1f1|n =

Var(fk,t−1|∆y2,Y
c

1 ; Ξ(m)).

As for the parameters of the idiosyncratic components,

ψ̂
(m+1)
i =

∑n
t=2

(
ũit|nũi,t−1|n + Vuu1|n

)
∑n

t=2

(
ũ2
i,t−1|n + Vu1u1|n

) ,

where ũit|n = E(uit|∆y2,Y
c

1 ; Ξ(m)), Vuu1|n = Cov(uit, ui,t−1|∆y2,Y
c

1 ; Ξ(m)), and Vu1u1|n =

Var(ui,t−1|∆y2,Y
c

1 ; Ξ(m)).

When ∆y2t is subject to missing values, the algorithm has to be modified so as to take into account the
conditional covariances between the missing values and the latent states.

8 Description of the dataset

We now apply the methodology described in the previous sections to the construction of Euromind-C,
an indicator of economic conditions in the Euro area and its largest member states. The set of time
series making up the system has dimension N = 171. The first 55 are the quarterly national accounts
series concerning the value added chained volumes with reference year 2000 for all of the sectors and
the main expenditure components of the GDP, referring to the Euro area and the four selected countries
(see section 1 ). The remaining time series are monthly indicators.

We have carried out a systematic review of data availability by geographical entity, which has led to the
recognition of the presence of various important gaps in the information set: the production of the new
orders indicator in industry has been discontinued; the collection of new car registration data has been
discontinued by Eurostat, while the series continue to be made available by other sources; and some
labour market indicators in short term business statistics are no longer produced regularly. Nevertheless,
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since our methods allow for arbitrary patterns of missing values, we decided to retain the series in the
database, even if they are out of date, in order to support the historical disaggregation of the value added.

Table 4 provides a list of the time series that have been used in the estimation of EuroMInd-C, organized
by GDP component. The series are organized according to the reference sector or GDP component:

• Agriculture: the monthly indicators concern the production of milk, bovine meat production in
tons, pigs meat production in tons.

• Industry: the monthly indicators concern the index of industrial production, the index of turnover,
and new orders; we also include the industrial confidence indicator compiled by the European
Commission.

• Construction: the monthly indicators concern the volume index of production for construction,
employment and hours worked (Germany), and building permits.

• Trade, transport and communication: the monthly indicators concern the total turnover of the
retail sector, the index of deflated turnover, employment (Germany) and car registrations, along
with the survey-based retail confidence indicator.

• Financial services and business: the monthly indicators concern the index of industrial production
as a proxy measure of the state of the economy, the stock market indices and capitalization (when
available), a set of five monetary aggregates for the Euro area (M1-M3, loans, etc.), and financial
ones (deposits of residents held at monetary financial institutions, and credit to total residents
granted by monetary financial institutions).

• Other services: the monthly indicators concern the index of industrial production, the index of
retail turnover, and the monthly unemployment rate as proxy measures of the state of the economy.

• Taxes less subsidies on products: the monthly indicators concern the index of industrial production
and the index of retail turnover as proxy measures of the state of the economy.

• Final consumption expenditures: the monthly indicators concern the index of deflated turnover of
the retail sector, car registrations, and two survey indicators, the index of consumer confidence
and the index of major purchases at present, compiled by the European Commission.

• Gross capital formation: the monthly indicators concern the index of industrial production for
capital goods and the index of economic sentiment compiled by the European Commission.

• Exports of goods and services: the monthly indicators concern the index of industrial production
and the volume index of exports.

• Imports of goods and services: the monthly indicators concern the index of industrial production
and the volume index of imports.

For a complete list of the series in the dataset and their reference periods, see Appendix A.

9 Estimation results

The dynamic factor model is estimated for the sample period January 1995–September 2012. The com-
putational complexity of the model is quite substantial, with a convergence of the EM algorithm after
250 iterations. Conditional on the maximum likelihood estimates of the hyperparameters, we can per-
form signal extraction according to the nonlinear smoothing algorithm outlined in the previous sections.
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Figure 1: Monthly indicators of the 11 components of Euro area GDP, levels (chained 2000 volumes).

This yields the monthly estimates of the components of GDP (disaggregated also by country) by eco-
nomic activity and expenditure components, from which the estimates of total GDP at market prices are
compiled, according to the contemporaneous aggregation procedure outlined in Appendix C.

EuroMInd-C makes available the monthly estimates of the 11 GDP components for the Euro area and its
four largest economies; these are relevant for the assessment of the state of the economy from the point
of view of sectorial value added and by expenditure component.

Figure 1 displays the levels in millions of chained euros, whereas Figure 2 presents the growth rates
for the Euro area as a whole. It is noticeable that the real effects of the global financial crisis hit the
manufacturing sector quite dramatically, although the recovery was sustained. The effects of the fall on
the output of the construction sector have been prolonged, and, by the end of 2012, there had been no
exit from the recession for this sector.

9.1 The reconciliation of the estimates of GDP from the output and the expenditure
approach

As was stated in Section 4, the dataset for each of the four countries and the Euro area consists of the
11 quarterly GDP components. Our model produces disaggregate estimates of the monthly components
conditional on the information available, and the estimates can then be combined to produce the final
estimate of monthly GDP. Two issues are posed by the contemporaneous aggregation of the output and
expenditure components of GDP. First and foremost, the quarterly national account series are subject to
the accounting deterministic constraints

GDPO at market prices =
∑

value added of the six branches (A-B, C-D-E, F, G-H-I, J-K, L-P)
+ Taxes less subsidies

GDPE at market prices = FCE + GCF + EXP − IMP
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Figure 2: Monthly indicators of the 11 components of Euro area GDP, yearly growth rates (chained 2000 volumes).

only when the aggregates are expressed at current prices and at the average prices of the previous year.
Secondly, the values of GDP at market prices from the output and expenditure approaches do not neces-
sarily coincide, and therefore have to be reconciled.

The first issue is a consequence of the current method of producing chained linked national accounts
estimates. Chaining, which is a multiplicative operation, prevents the national accounts constraints from
being additive, so that a nonzero discrepancy arises. GDP and its main components are expressed in
chain-linked volumes (millions of euros), with a reference year of 2000, which implies that the con-
straints only hold exactly for the four quarters of the year 2001.

Interestingly, due to the application of the annual overlap technique for the compilation of the quarterly
national accounts volume data, constraints are not lost entirely, but continue to hold after a transfor-
mation of the data, which we refer to as “dechaining” and which aims to express the chained values at
the previous year’s prices. According to the annual overlap technique (see ?, Ch. IX), the estimates for
each quarter are compiled using the weighted annual average prices of the previous year; this produces
quarterly volume estimates that sum to exactly the corresponding annual aggregate. As a result, the
disaggregated (monthly and quarterly) volume measures expressed at the previous year’s prices preserve
both the temporal and cross-sectional additivity.

The cross-sectional constraints can be enforced by a multistep procedure that de-chains the estimated
monthly values, expressing them at the average prices of the previous year, and projects the estimates on
the subspace of the constraints. The procedure is described in detail by ? and reproduced in Appendix
D.

The monthly GDP estimates for the Euro area and the four largest economies that arise from the output
approach are displayed in Figure 3, together with their approximate 95% confidence limits.

The confidence intervals take into account what is often referred to as filtering uncertainty, i.e., they
reflect the estimation error variance of the unobserved monthly time series, conditional on the full avail-
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Figure 3: EuroMInd-C estimates: Monthly indicator of GDP at market prices (chained 2000 volumes). Estimates from
the output approach.

able observed sample and the maximum likelihood estimates of the parameters. Hence, the confidence
regions do not reflect the parameter uncertainty.

It should be noted that the mean square estimation error of the unobserved monthly series is higher for
Germany and Italy; this is because the two countries have higher shares of value added of the manufac-
turing sector (branch C-D-E), which is more volatile than the other sectors (excluding agriculture). The
bottom right panel displays the underlying yearly growth rates.

The estimates from the expenditure approach are obtained from the sum of consumption, investment
and net exports (FCE + GCF + EXP − IMP). They are displayed in Figure 4 along with their 95%
confidence intervals and the underlying yearly growth rates (bottom right panel).

As is well known, the estimates arising from the output and expenditure approaches are not coincident;
however, they differ only slightly and can be reconciled by a suitable combination, which is carried
out as follows. Denoting the GDP estimates obtained using the output approach by Y o

t , those from the
expenditure side by Y e

t , and the estimation error variance of the output and expenditure estimates by S2o
t

and S2e
t , we use a set of weights proportional to the relative precision of the output estimates, that is

wot =
1/S2o

t

1/S2o
t + 1/S2e

t

.

The combined estimates are then balanced according to the procedure outlined in Appendix C. The
combined estimates of the yearly and monthly growth rates are displayed in Figure 5. Obviously, it
turns out that the combined estimate is more precise than either Y o

t or Y e
t . The last panel illustrates

quite effectively the average and differential pace at which the recovery took place after the global
financial crisis, and the depth of the recessionary movement.

Figure 6 provides a comparison of the estimates of the yearly growth rates that arise from the expenditure
and output approaches, and also superimposes the final Euromind-C estimates of the growth rates. The
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Figure 4: EuroMInd-C estimates: Monthly indicator of GDP at market prices (chained 2000 volumes). Estimates from
the expenditure approach.
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Figure 5: EuroMInd-C: GDP at market prices (chained 2000 volumes). Combined estimates.
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Figure 6: EuroMInd-C estimates: Comparison of the estimates of the yearly growth rates that arise from the expenditure
and output approaches.

most sizable differences concern the growth rates for Spain, and relate to the statistical discrepancy
between the quarterly estimates of GDP at market prices obtained from the output and expenditure
approaches. As such, the differences are due to the characteristics of the raw data, rather than of our
methodology. In general, the estimates arising from the expenditure approach are more volatile.

9.2 Variance decompositions

The monthly indicator of GDP draws information from the latent factors. Each variable (monthly in-
dicators and national account series) contributes to the definition of the factors, according to the model
specification. Ceteris paribus, it is desirable that the individual variables load significantly on the
common factors and that the latter contribute significantly to the national account series. For coun-
try c = 2, . . . , C, the relative contributions of the factors in explaining the variability of the series can
be obtained from the following variance decomposition:

Var(∆ycs,t) = θ2
cs,0Var(∆µt) + θ2

cs,1Var(∆µct) + θ2
cs,2Var(∆µst) + Var(∆µ∗cs,t).

For the Euro area,

Var(∆y1s,t) = θ2
1s,0Var(∆µt) +

C∑
c=2

θ2
1c,1Var(∆µct) + θ2

1s,2Var(∆µst) + Var(∆µ∗1s,t).

The four addends on the right, expressed as a percentage of the total variance on the left hand side,
are reported in Table 2, which displays the median value (middle columns) and the 33th (1/3) and 66
(2/3) percentiles of the sampling distribution of the statistic. The table is divided into separate panels,
referring to the different series, with the first 11 referring to the national account series. The following
panels refer to the different groups of monthly indicators. When interpreting these numbers, it has to be
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taken into account that the larger the variance share that is absorbed by the common and sector-specific
factors, the greater the contribution of an indicator to EuroMind-C.

An interesting fact is that the value added of the sectors C-D-E (manufacturing), G-H-I (trade, transport
and communication services) and J-K (financial services and business activities) display the highest
degree of commonality, whereas construction and other services are predominantly idiosyncratic. As
far as the expenditure components are concerned, comovements play a larger role for GCF, whereas the
other components (consumption, exports and imports) are predominantly idiosyncratic. This may be the
reason why the EuroMInd-C estimates of GDP according to the expenditure approach are less reliable
than those arising from the output approach.

Another conclusion that we may draw from Table 2 is that the Spanish economy behaves more id-
iosyncratically. Of the monthly indicators, the industrial production series (sts impr msa) contribute
most sizably to the common and component-specific factors. Similar considerations hold for industrial
turnover and deflated turnover of the retail sector (sts trtu defltv).

The least significant contributions to the common factors are associated with the indicators for the con-
struction sector (sts colb and sts copr), the financial indicators (mfma m), the survey indicators for the
expenditure components (bssi FCE), and the sector G-H-I (sbs ciGHI). One possible use of this infor-
mation is the deletion of series that do not contribute significantly to the common factors.

10 A pseudo real-time comparative assessment of Euromind-C

We now provide a comparative assessment of EuroMInd-C by performing a recursive forecasting ex-
periment that focuses on its ability to predict GDP and its components for the Euro area, referring to
quarters τ = 2005.q1, 2005.q2, . . . , 2011.q4, using the information set that is available at the end of the
month preceding the end of the quarter (February 2005 for 2005.q1, May 2005 for 2005.q2, etc.). The
prediction of the 11 components of GDP arises from the aggregation of the nowcasts for the estimation
month and the previous month (e.g., February 2005 and January 2005 when predicting 2005.q1) and the
one-step-ahead forecast for the last month of the quarter (March 2005). The model is re-estimated every
time using the most recent data.

The same experiment is carried out for EuroMInd, which uses the componentwise estimation method-
ology described by Frale et al. (2010). This yields M = 28 forecasts Ŷiτ , where i indexes a particular
GDP component and τ = 2005.q1, . . . 2011.q4, for each method.

We also consider as a reference the naı̈ve (“no change” or random walk) predictor Ŷiτ = Yi,τ−1, which
will be referred to as RW henceforth. We expect the EuroMInd and EuroMInd-C predictions to be
more informative, as they exploit the monthly information made available for the first two months of the
quarter.

For the three predictors, we compare the forecasts with the observed value, Yiτ , and summarise the
distribution of the prediction errors Yiτ − Ŷiτ , τ = 2005.q1, . . . 2011.q4, by means of the mean error
(MEi, the average of the 28 prediction errors), the prediction error variance, Vi, the mean square forecast
error,

MSFEi =
1

M

M∑
τ=1

(
Yiτ − Ŷiτ

)2
= ME2

i + Vi,
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Table 2: Variance decomposition for each of the monthly indicators. The table reports the median value of the percent-
age share of the variance explained by each factor, along with the 33th and 66th percentiles of the sampling
distribution of the statistic. For variable names and definitions, see Tables 4 and 5.

Common European factor Country-specific factors Component-specific factors Idiosyncratic
1/3 Med 2/3 1/3 Med 2/3 1/3 Med 2/3 1/3 Med 2/3

Sector A-B
EA 26.69 47.66 67.31 2.36 4.22 5.97 2.05 3.66 5.17 24.89 44.44 62.77
Germany 11.68 20.86 29.46 0.49 0.89 1.25 2.16 3.85 5.45 41.66 74.38 105.06
France 1.16 2.07 2.92 0.37 0.67 0.94 6.56 11.71 16.54 47.90 85.53 120.82
Spain 21.22 37.89 53.52 1.32 2.36 3.33 5.24 9.36 13.22 28.21 50.37 71.15
Italy 27.14 48.47 68.46 0.20 0.35 0.50 0.11 0.20 0.29 28.54 50.96 71.97
Sector C-D-E
EA 32.27 57.62 81.38 8.51 15.20 21.47 0.99 1.78 2.51 14.21 25.38 35.86
Germany 29.76 53.14 75.06 14.29 25.52 36.04 0.59 1.05 1.49 11.35 20.27 28.63
France 31.22 55.75 78.74 0.56 1.01 1.42 0.36 0.65 0.92 23.85 42.58 60.15
Spain 31.02 55.38 78.22 5.33 9.53 13.46 3.74 6.69 9.45 15.90 28.39 40.10
Italy 17.90 31.96 45.14 9.27 16.56 23.39 8.13 14.51 20.5 20.69 36.95 52.19
Sector F
EA 5.33 9.53 13.46 4.29 7.66 10.82 10.68 19.07 26.94 35.69 63.73 90.01
Germany 0.2 0.36 0.52 3.45 6.16 8.70 11.36 20.29 28.67 40.98 73.16 103.34
France 8.56 15.30 21.61 7.97 14.23 20.11 0.28 0.50 0.71 39.18 69.95 98.8
Spain 0.49 0.89 1.25 14.01 25.02 35.34 1.72 3.08 4.35 39.76 71.00 100.28
Italy 4.15 7.42 10.49 6.84 12.22 17.27 2.50 4.47 6.31 42.49 75.87 107.16
Sector G-H-I
EA 31.17 55.66 78.62 6.17 11.02 15.56 0.86 1.55 2.19 17.78 31.75 44.85
Germany 25.88 46.21 65.27 5.12 9.15 12.93 1.50 2.68 3.79 23.49 41.94 59.24
France 22.35 39.9 56.36 1.23 2.20 3.11 0.91 1.64 2.31 31.50 56.24 79.44
Spain 29.14 52.04 73.50 8.68 15.51 21.91 0.27 0.48 0.68 17.90 31.96 45.14
Italy 26.64 47.56 67.18 4.59 8.19 11.57 0.51 0.92 1.30 24.25 43.31 61.17
Sector J-K
EA 38.90 69.46 98.11 4.32 7.71 10.90 0.01 0.03 0.05 12.76 22.78 32.18
Germany 38.54 68.81 97.20 0.54 0.98 1.38 0.37 0.66 0.93 16.54 29.53 41.71
France 12.90 23.04 32.54 6.38 11.40 16.10 1.64 2.92 4.13 35.07 62.62 88.46
Spain 26.00 46.43 65.58 11.32 20.21 28.55 0.12 0.22 0.31 18.55 33.12 46.79
Italy 30.71 54.84 77.46 3.76 6.71 9.48 0.13 0.23 0.33 21.39 38.20 53.95
Sector L-P
EA 4.39 7.84 11.08 9.39 16.78 23.70 0.11 0.19 0.28 42.10 75.17 106.17
Germany 7.91 14.13 19.95 4.53 8.09 11.43 0.04 0.07 0.10 43.51 77.69 109.74
France 6.47 11.56 16.33 0.18 0.33 0.46 1.30 2.33 3.29 48.03 85.76 121.14
Spain 29.81 53.23 75.19 2.61 4.66 6.58 0.20 0.37 0.52 23.37 41.72 58.93
Italy 11.72 20.94 29.57 0.38 0.69 0.97 4.62 8.24 11.65 39.27 70.11 99.04
Sector TlS
EA 18.08 32.28 45.59 4.04 7.22 10.20 15.68 28.00 39.56 18.19 32.48 45.87
Germany 3.07 5.49 7.75 3.87 6.91 9.76 18.80 33.57 47.42 30.25 54.01 76.29
France 6.43 11.49 16.23 7.11 12.70 17.94 8.18 14.61 20.63 34.27 61.19 86.43
Spain 18.73 33.45 47.25 9.99 17.83 25.19 2.94 5.25 7.42 24.33 43.45 61.37
Italy 21.00 37.50 52.96 2.88 5.14 7.27 11.68 20.86 29.46 20.43 36.49 51.54
Sector FCE
EA 3.53 6.30 8.90 9.18 16.4 23.16 0.41 0.73 1.04 42.87 76.55 108.12
Germany 0.04 0.08 0.11 0.00 0.00 0.00 7.16 12.79 18.07 48.79 87.11 123.05
France 2.53 4.53 6.40 7.71 13.77 19.45 0.10 0.18 0.25 45.65 81.51 115.13
Spain 17.20 30.71 43.38 0.39 0.70 0.99 0.14 0.25 0.36 38.26 68.32 96.50
Italy 14.96 26.71 37.72 3.86 6.89 9.73 0.00 0.00 0.00 37.18 66.39 93.77
Sector GCF
EA 31.85 56.86 80.32 5.88 10.49 14.82 0.50 0.90 1.28 17.76 31.72 44.80
Germany 9.58 17.10 24.16 0.01 0.03 0.04 1.59 2.85 4.02 44.80 80.00 113.00
France 8.55 15.27 21.56 2.85 5.10 7.20 0.08 0.15 0.21 44.51 79.47 112.25
Spain 29.38 52.45 74.09 9.64 17.22 24.32 0.52 0.93 1.31 16.45 29.38 41.50
Italy 35.43 63.26 89.35 3.17 5.66 7.99 0.44 0.79 1.12 16.95 30.27 42.76
Sector EXP
EA 0.88 1.57 2.22 2.90 5.18 7.31 14.31 25.56 36.10 37.90 67.68 95.59
Germany 0.29 0.52 0.74 0.12 0.22 0.31 14.35 25.63 36.20 41.23 73.61 103.97
France 4.37 7.81 11.04 0.33 0.59 0.83 3.89 6.95 9.82 47.40 84.63 119.54
Spain 0.00 0.00 0.00 1.61 2.88 4.07 2.00 3.58 5.06 52.38 93.52 132.10
Italy 2.75 4.92 6.95 1.55 2.77 3.92 16.13 28.80 40.68 35.56 63.50 89.69
Sector IMP
EA 0.49 0.89 1.25 12.44 22.22 31.39 6.98 12.47 17.62 36.07 64.40 90.97
Germany 3.22 5.76 8.14 13.71 24.48 34.58 3.67 6.55 9.25 35.39 63.19 89.26
France 19.31 34.47 48.70 2.48 4.43 6.25 3.07 5.48 7.74 31.14 55.60 78.54
Spain 25.01 44.66 63.09 8.09 14.46 20.42 0.13 0.23 0.33 22.75 40.63 57.39
Italy 4.99 8.91 12.59 3.18 5.69 8.03 0.32 0.57 0.81 47.50 84.82 119.80
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Table 2: Continued: Variance decomposition for each of the monthly indicators. The table reports the median value of
the percentage share of the variance explained by each factor, along with the 33th and 66th percentiles of the
sampling distribution of the statistic. For variable names and definitions, see Tables 4 and 5.

Common European factor Country-specific factors Component-specific factors Idiosyncratic
1/3 Med 2/3 1/3 Med 2/3 1/3 Med 2/3 1/3 Med 2/3

Series: sts inpr msa
EA 17.81 31.81 44.93 12.64 22.57 31.88 25.52 45.57 64.36 0.02 0.04 0.06
Germany 16.07 28.69 40.53 17.48 31.21 44.09 22.39 39.98 56.47 0.05 0.10 0.14
Spain 0.00 0.00 0.00 5.91 10.56 14.92 2.36 4.22 5.96 47.72 85.20 120.34
France 3.79 6.76 9.56 13.52 24.14 34.10 16.22 28.96 40.91 22.46 40.11 56.66
Italy 2.44 4.35 6.15 6.47 11.56 16.33 25.76 45.99 64.96 21.32 38.08 53.78
Series: sts trtu defltv
EA 8.19 14.62 20.66 0.28 0.51 0.72 47.42 84.68 119.61 0.09 0.17 0.25
Germany 5.76 10.29 14.54 0.42 0.75 1.06 27.37 48.87 69.03 22.44 40.07 56.60
Spain 0.00 0.00 0.00 1.23 2.20 3.10 9.02 16.12 22.76 45.74 81.67 115.35
France 2.85 5.10 7.20 0.87 1.55 2.19 19.75 35.27 49.81 32.52 58.07 82.02
Italy 3.55 6.34 8.96 0.01 0.02 0.03 16.87 30.13 42.56 35.56 63.49 89.68
Series: sts intv m

EA 22.31 39.83 56.26 25.74 45.96 64.92 3.58 6.39 9.03 4.37 7.80 11.02
Germany 18.25 32.58 46.02 35.74 63.81 90.13 1.27 2.27 3.21 0.73 1.32 1.86
Spain 18.98 33.90 47.88 11.79 21.06 29.75 3.67 6.55 9.25 21.55 38.47 54.35
France 1.29 2.30 3.25 46.03 82.19 116.10 1.47 2.62 3.71 7.20 12.86 18.17
Italy 7.84 13.99 19.77 33.38 59.6 84.18 2.56 4.58 6.47 12.22 21.81 30.81
Series: Isno m

EA 15.25 27.23 38.47 4.63 8.26 11.67 8.73 15.58 22.01 27.39 48.90 69.07
Germany 13.98 24.96 35.26 5.18 9.25 13.07 8.62 15.39 21.74 28.21 50.38 71.16
Spain 0.87 1.56 2.2 5.8 10.35 14.63 10.35 18.49 26.11 38.97 69.58 98.28
France 1.77 3.17 4.48 0.21 0.38 0.53 0.34 0.60 0.85 53.67 95.83 135.36
Italy 2.76 4.92 6.96 5.19 9.26 13.09 4.42 7.90 11.15 43.63 77.90 110.03
Series: bssi

EA 23.40 41.79 59.02 0.05 0.09 0.13 31.99 57.12 80.69 0.55 0.98 1.39
Germany 22.48 40.14 56.69 0.00 0.00 0.00 31.37 56.01 79.11 2.15 3.84 5.43
Spain 22.89 40.87 57.73 0.08 0.15 0.22 31.08 55.49 78.38 1.94 3.46 4.89
France 20.14 35.97 50.81 0.08 0.15 0.21 34.55 61.69 87.13 1.22 2.18 3.08
Italy 23.88 42.63 60.22 0.01 0.02 0.03 31.47 56.20 79.38 0.63 1.13 1.60
Series: bssiF

EA 55.42 98.95 139.76 0.01 0.03 0.04 0.45 0.81 1.15 0.11 0.19 0.28
Germany 51.57 92.09 130.07 0.00 0.00 0.01 0.53 0.95 1.35 3.88 6.93 9.80
Spain 53.84 96.13 135.79 0.02 0.04 0.05 0.57 1.03 1.46 1.56 2.78 3.93
France 54.52 97.35 137.50 0.00 0.00 0.00 0.43 0.77 1.09 1.04 1.87 2.64
Italy 55.33 98.80 139.55 0.01 0.03 0.04 0.45 0.81 1.14 0.19 0.35 0.50
Series: sts cobp m

Germany 1.44 2.58 3.64 0.00 0.00 0.01 0.30 0.55 0.78 54.24 96.85 136.80
Spain 0.00 0.00 0.00 0.49 0.88 1.24 0.62 1.12 1.58 54.88 97.99 138.41
Series: sts colb m

Germany 0.05 0.09 0.13 0.00 0.00 0.00 0.00 0.00 0.00 55.95 99.90 141.11
Series: sts cohb m

Germany 0.10 0.18 0.26 0.03 0.05 0.08 0.77 1.37 1.94 55.09 98.37 138.94
Series: sts copr m

EA 6.72 12.00 16.95 3.26 5.83 8.23 28.04 50.07 70.72 17.97 32.09 45.33
Germany 3.59 6.42 9.06 3.00 5.36 7.57 20.54 36.68 51.81 28.85 51.52 72.77
Spain 0.73 1.31 1.86 4.69 8.37 11.83 0.87 1.55 2.20 49.70 88.74 125.35
France 3.52 6.28 8.87 1.84 3.29 4.66 15.05 26.87 37.96 35.58 63.53 89.74
Series: ext st 27msbec

Germany 3.89 6.94 9.81 0.49 0.87 1.23 1.54 2.75 3.88 50.08 89.42 126.30
Spain 0.16 0.29 0.42 3.75 6.70 9.47 2.65 4.73 6.68 49.43 88.25 124.66
France 1.69 3.01 4.26 0.78 1.40 1.98 3.96 7.07 9.99 49.56 88.50 125.00
Italy 16.91 30.20 42.66 3.82 6.82 9.64 1.50 2.69 3.80 33.75 60.27 85.13
Series: imt st 27msbec

Germany 4.34 7.75 10.95 0.38 0.69 0.98 0.00 0.00 0.00 51.27 91.54 129.30
Spain 0.15 0.27 0.38 0.00 0.00 0.00 0.53 0.95 1.35 55.32 98.77 139.51
France 9.92 17.72 25.03 0.82 1.46 2.07 0.49 0.87 1.24 44.76 79.92 112.89
Italy 0.14 0.26 0.37 4.95 8.84 12.49 1.49 2.66 3.77 49.41 88.22 124.6
Series: mny stk spy m

EA 27.25 48.66 68.73 0.05 0.10 0.14 28.45 50.80 71.75 0.24 0.43 0.61
Germany 20.23 36.13 51.03 0.01 0.03 0.04 31.86 56.89 80.36 3.88 6.94 9.80
Spain 28.14 50.25 70.98 0.00 0.01 0.02 21.38 38.18 53.93 6.46 11.54 16.30
France 27.95 49.91 70.50 0.00 0.00 0.00 27.02 48.25 68.15 1.02 1.82 2.57
Italy 27.35 48.83 68.97 0.01 0.02 0.03 25.08 44.77 63.24 3.56 6.36 8.98
Series: mny stk mcp m

EA 24.59 43.90 62.01 5.24 9.36 13.22 21.80 38.92 54.98 4.36 7.79 11.01
Germany 18.36 32.78 46.31 0.00 0.00 0.00 19.30 34.47 48.68 18.33 32.73 46.23
Spain 17.03 30.41 42.95 2.50 4.46 6.31 16.66 29.75 42.02 19.80 35.36 49.95
France 27.98 49.96 70.57 0.59 1.06 1.50 15.73 28.09 39.67 11.69 20.87 29.49
Italy 24.21 43.24 61.07 0.94 1.68 2.38 15.34 27.40 38.70 15.49 27.66 39.07
Series: mfma m

EA 1.66 2.97 4.20 0.18 0.32 0.45 0.06 0.12 0.17 54.08 96.57 136.40
Germany 1.29 2.30 3.25 0.22 0.39 0.56 0.29 0.53 0.75 54.19 96.76 136.67
Spain 0.04 0.08 0.11 0.70 1.25 1.76 0.45 0.81 1.15 54.8 97.84 138.20
France 0.69 1.23 1.74 0.11 0.20 0.28 0.01 0.02 0.02 55.18 98.53 139.17
Italy 4.07 7.28 10.28 0.02 0.04 0.05 0.05 0.10 0.14 51.84 92.57 130.75
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Table 2: Continued: Variance decomposition for each of the monthly indicators. The table reports the median value of
the percentage share of the variance explained by each factor, along with the 33th and 66th percentiles of the
sampling distribution of the statistic. For variable names and definitions, see Tables 4 and 5.

Common European factor Country-specific factors Component-specific factors Idiosyncratic
1/3 Med 2/3 1/3 Med 2/3 1/3 Med 2/3 1/3 Med 2/3

Series: bssi GCF
EA 27.64 49.35 69.71 0.19 0.34 0.48 0.00 0.00 0.00 28.16 50.29 71.03
Germany 24.12 43.06 60.83 0.07 0.13 0.18 0.02 0.04 0.06 31.78 56.75 80.15
Spain 25.76 46.00 64.97 0.77 1.39 1.96 0.18 0.33 0.47 29.27 52.26 73.82
France 12.07 21.56 30.46 0.73 1.31 1.86 0.28 0.51 0.73 42.90 76.59 108.18
Italy 22.65 40.44 57.13 0.17 0.30 0.43 0.17 0.31 0.44 33.00 58.92 83.22
Series: sts intvd m

EA 11.00 19.64 27.75 25.21 45.02 63.58 0.12 0.22 0.32 19.66 35.10 49.58
Germany 15.15 27.06 38.23 33.10 59.10 83.48 0.30 0.54 0.77 7.43 13.27 18.75
Spain 8.52 15.21 21.48 8.70 15.53 21.94 1.02 1.83 2.58 37.75 67.41 95.22
France 0.83 1.49 2.10 42.59 76.04 107.41 0.28 0.51 0.72 12.29 21.94 30.99
Italy 0.00 0.00 0.00 26.46 47.26 66.75 0.01 0.02 0.02 29.52 52.71 74.45
Series: sts rt careg

EA 0.59 1.05 1.48 2.28 4.08 5.76 51.06 91.17 128.77 2.06 3.69 5.21
Germany 0.92 1.65 2.34 0.22 0.40 0.56 13.35 23.84 33.68 41.49 74.09 104.65
Spain 0.18 0.33 0.47 2.52 4.50 6.36 9.24 16.50 23.31 44.05 78.65 111.09
France 1.61 2.87 4.06 0.07 0.13 0.18 12.94 23.11 32.64 41.37 73.88 104.35
Italy 7.31 13.05 18.43 0.74 1.32 1.87 13.13 23.44 33.11 34.82 62.17 87.81
Series: bssi FCE

EA 15.38 27.47 38.80 1.07 1.91 2.70 1.76 3.14 4.44 37.78 67.46 95.29
Germany 8.64 15.42 21.79 0.10 0.19 0.27 0.22 0.40 0.56 47.03 83.97 118.61
Spain 6.90 12.33 17.42 0.08 0.14 0.20 4.32 7.71 10.90 44.69 79.80 112.71
France 3.24 5.79 8.18 0.46 0.82 1.17 0.55 0.99 1.40 51.74 92.38 130.48
Italy 8.78 15.68 22.15 0.26 0.46 0.66 0.24 0.44 0.62 46.71 83.40 117.80
Series: bsco FCE

EA 7.47 13.33 18.84 1.67 2.99 4.22 45.49 81.23 114.74 1.36 2.43 3.43
Germany 2.26 4.03 5.70 1.32 2.37 3.35 21.00 37.49 52.96 31.41 56.09 79.22
Spain 5.99 10.70 15.11 0.42 0.76 1.08 11.07 19.77 27.92 38.51 68.75 97.11
France 2.03 3.63 5.13 0.00 0.00 0.01 11.97 21.38 30.20 41.98 74.97 105.89
Italy 0.12 0.22 0.31 0.66 1.18 1.67 8.66 15.47 21.85 46.55 83.11 117.40
Series: sts trtu tv

EA 9.59 17.13 24.20 2.30 4.10 5.80 39.79 71.04 100.35 4.31 7.70 10.88
Germany 1.47 2.62 3.70 0.35 0.63 0.89 24.02 42.88 60.57 30.16 53.85 76.06
Spain 14.84 26.50 37.43 4.62 8.25 11.66 3.77 6.73 9.51 32.76 58.50 82.63
France 4.89 8.74 12.35 4.12 7.36 10.39 15.93 28.44 40.18 31.05 55.44 78.31
Italy 5.30 9.47 13.37 0.00 0.01 0.02 18.95 33.84 47.81 31.73 56.66 80.03
Series: sts trlb m

Germany 0.24 0.43 0.61 4.10 7.32 10.34 0.51 0.91 1.29 51.14 91.32 128.98
Series: sbs ciGHI

EA 0.92 1.64 2.32 1.57 2.81 3.97 4.51 8.06 11.39 48.99 87.47 123.54
Germany 1.60 2.87 4.05 0.19 0.35 0.49 4.41 7.87 11.12 49.78 88.89 125.56
Spain 1.63 2.91 4.11 0.03 0.05 0.08 1.41 2.53 3.57 52.92 94.49 133.47
France 0.95 1.69 2.39 2.14 3.82 5.40 0.89 1.60 2.26 52.01 92.86 131.17
Italy 1.03 1.84 2.60 0.06 0.12 0.17 0.54 0.96 1.36 54.36 97.06 137.10
Series: apro mk colm milk

EA 4.15 7.41 10.47 0.00 0.00 0.00 4.06 7.26 10.25 47.78 85.32 120.51
Germany 9.94 17.75 25.07 0.07 0.12 0.18 0.86 1.54 2.18 45.12 80.57 113.80
Spain 0.00 0.01 0.01 0.34 0.61 0.86 2.71 4.84 6.84 52.94 94.53 133.52
France 1.27 2.27 3.20 0.20 0.36 0.51 2.36 4.22 5.96 52.16 93.14 131.56
Italy 3.03 5.41 7.64 0.08 0.15 0.21 0.93 1.67 2.35 51.95 92.76 131.02
Series: apro ec pwgtm pigs

Germany 1.65 2.94 4.16 0.03 0.05 0.07 32.64 58.27 82.31 21.68 38.71 54.68
Spain 0.69 1.24 1.75 0.20 0.37 0.52 19.41 34.66 48.95 35.69 63.72 90.00
France 0.07 0.13 0.19 0.06 0.11 0.16 40.21 71.79 101.40 15.65 27.95 39.48
Italy 0.58 1.04 1.47 0.04 0.07 0.10 15.49 27.67 39.08 39.88 71.20 100.58
Series: apro ec pwgtm bov

EA 0.00 0.00 0.00 0.00 0.00 0.00 51.94 92.73 130.98 4.06 7.25 10.25
Germany 0.41 0.73 1.03 0.05 0.10 0.14 42.30 75.53 106.69 13.23 23.62 33.37
Spain 0.98 1.74 2.47 0.01 0.03 0.04 25.88 46.22 65.28 29.12 51.99 73.44
France 0.02 0.05 0.07 0.13 0.23 0.33 0.15 0.26 0.38 55.69 99.44 140.45
Italy 0.74 1.33 1.88 0.13 0.24 0.34 0.38 0.68 0.96 54.74 97.73 138.05
Series: lmhu m

EA 1.68 3.00 4.24 1.62 2.89 4.08 0.39 0.70 0.99 52.30 93.39 131.91
Germany 0.05 0.10 0.14 0.00 0.01 0.02 0.00 0.00 0.00 55.93 99.87 141.06
Spain 0.00 0.00 0.00 0.03 0.07 0.10 0.05 0.10 0.14 55.91 99.82 140.99
France 0.71 1.28 1.81 0.09 0.16 0.23 0.04 0.08 0.12 55.14 98.45 139.06
Italy 2.92 5.21 7.36 5.44 9.72 13.73 0.04 0.08 0.12 47.59 84.96 120.01
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the mean absolute error (the average of |Yiτ − Ŷiτ |), and the mean absolute percentage error,

MAPEi =
1

M

M∑
τ=1

|Yiτ − Ŷiτ |
Yiτ

.

The values of the above statistics are reported in Table 3 for RW, EuroMInd and EuroMInd-C, for the
11 GDP components, and for the combined estimate of GDP (last column). The table also reports
the MSFE ratio using EuroMInd-C as the numéraire (with values greater than one indicating that the
forecasts are less efficient than EuroMInd-C), as well as the results of the Diebold-Mariano-West test of
equal forecasting accuracy. Denoting the forecast error of predictor (k), where (k) is RW or EuroMInd,
by e(k)

iτ = Yiτ − Ŷ (k)
iτ , that of EuroMind-C by e(Ec)

iτ , and the quadratic loss differential by diτ = e
2(k)
iτ −

e
2(Ec)
iτ , the Diebold-Mariano-West test of the null hypothesis of equal forecast accuracy, H0 : E(diτ ) =

0, versus the one-sided alternative H1 : E(diτ ) > 0, is the test statistic

DMWi =
d̄i√
σ2
i

, d̄i =
1

M

M∑
τ=1

diτ , σ2
i =

1

M

[
c0 + 2

q−1∑
k=1

q − k
q

ck

]
,

where ck is the sample autocovariance of diτ at lag k and σ2
i is a consistent estimate of the variance of

the loss differential. See ? and ?. We set q = 3 and adopt the DMW statistic with the small sample
modification proposed by ?, which corrects for the bias of σ2

i as an estimator of the variance of dj(h):

DMW ∗i = DMWi

[
J + 1− 2q + q(q + 1)/J

J

]1/2

.

The null distribution of the test is Student’s t with M − 1 degrees of freedom.

The results can be summarised as follows:

• The global evidence is that EuroMInd-C produces the most accurate forecasts of the components
and GDP: in particular, the forecasts are characterised by less variability and a lower mean ab-
solute percentage error. The relative accuracy (as measured by the MSFE ratio) is greater than
one for most of the components of GDP, with the exception of the value added of agriculture
(A-B), for which the RW predictor is the most accurate, whereas EuroMInd produces more accu-
rate forecasts for the value added of the sector G-H-I, and for final consumption expenditures and
gross capital formation. For combined GDP at market prices, EuroMInd is 7% less accurate than
EuroMInd-C.

• The expenditure components, and GCF, IMP and EXP in particular, are much more difficult to
predict; this is reflected in the forecast error variances, which are very large for all of the predictors.

• The Diebold-Mariano-West tests of equal forecast accuracy are never significant as far as the
comparison of EuroMInd and EuroMInd-C is concerned.

• EuroMInd-C significantly outperforms the RW predictor: the Diebold-Mariano-West test leads to
a strong rejection for the combined GDP prediction and some GDP components.

10.1 Parameter instability

The recursive forecasting experiment enables us to assess the variability of the parameter estimates
according to the sample period considered. Let Ξ̃τ denote the parameter estimates obtained in quarter
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Table 3: Comparative assessment of the predictive performances of EuroMInd-C and EuroMInd in real time. RW refers
to the random walk or “no change” predictor.

Mean error
Models A-B C-D-E F G-H-I J-K L-P TlS FCE GCF EXP IMP GDP

RW 0.10 0.50 −0.30 0.81 1.31 2.07 0.03 3.37 −0.36 7.24 5.81 4.50
EuroMInd −0.18 0.20 −0.33 −0.55 −0.02 0.05 −0.50 −2.25 −2.02 −0.15 −1.58 −1.56
EuroMInd-C −0.16 −0.83 −0.52 −1.38 −0.29 −1.28 −0.71 −3.31 −3.38 −5.03 −5.78 −5.32

Variance
Models A-B C-D-E F G-H-I J-K L-P TlS FCE GCF EXP IMP GDP

RW 0.21 78.59 1.86 8.90 2.03 9.03 4.41 20.81 147.87 521.17 382.39 265.26
EuroMInd 0.55 40.12 1.77 5.77 1.89 9.51 4.52 16.54 109.56 308.84 264.15 129.23
EuroMInd-C 0.47 22.44 1.42 5.55 1.72 7.00 3.85 17.34 109.79 277.83 211.85 94.26

Mean square forecast error
Models A-B C-D-E F G-H-I J-K L-P TlS FCE GCF EXP IMP GDP

RW 0.22 78.84 1.95 9.55 3.73 13.34 4.41 32.18 148.00 573.58 416.14 285.53
EuroMInd 0.58 40.16 1.88 6.07 1.89 9.52 4.77 21.62 113.64 308.86 266.63 131.65
EuroMInd-C 0.49 23.13 1.69 7.45 1.81 8.64 4.35 28.29 121.20 303.18 245.30 122.61

Mean absolute error
Models A-B C-D-E F G-H-I J-K L-P TlS FCE GCF EXP IMP GDP

RW 0.34 5.97 1.22 2.57 1.41 3.01 1.51 4.66 9.27 18.43 16.29 13.37
EuroMInd 0.46 3.77 1.14 1.69 1.10 2.35 1.62 3.94 8.42 12.02 11.58 7.50
EuroMInd-C 0.41 2.73 1.04 1.83 0.97 2.00 1.46 4.08 8.44 9.98 10.77 6.90

Mean absolute percentage error
Models A-B C-D-E F G-H-I J-K L-P TlS FCE GCF EXP IMP GDP

RW 0.90 1.70 1.30 0.77 0.79 0.43 0.81 0.32 2.38 2.22 2.03 0.71
EuroMInd 1.25 1.07 1.23 0.50 0.61 0.33 0.87 0.27 2.17 1.44 1.45 0.40
EuroMInd-C 1.12 0.77 1.12 0.55 0.53 0.28 0.78 0.28 2.18 1.20 1.35 0.36

Relative MSFE (with respect to EuroMInd-C)
Models A-B C-D-E F G-H-I J-K L-P TlS FCE GCF EXP IMP GDP

RW 0.45 3.41 1.16 1.28 2.06 1.54 1.01 1.14 1.22 1.89 1.70 2.33
EuroMInd 1.18 1.74 1.11 0.82 1.04 1.10 1.10 0.76 0.94 1.02 1.09 1.07

Diebold-Mariano-West statistic (versus EuroMInd-C)
Models A-B C-D-E F G-H-I J-K L-P TlS FCE GCF EXP IMP GDP

RW 0.62 1.48 0.91 1.16 1.82 1.29 −0.20 0.44 1.33 2.80 2.88 2.38
EuroMInd 0.67 1.75 0.64 −1.54 0.24 0.92 0.97 −1.61 −0.79 0.10 0.74 0.90

25



2005.q12006.q1

2007.q1 2008.q1

2009.q1

2009.q2

2010.q1

2011.q1

Figure 7: Metric scaling analysis of recursive parameter estimates. Each point represents the parameter estimate Ξ̃τ
obtained from the release available at quarter τ = 2005.q1, . . . , 2011.q4.

τ , τ = 2005.q1, . . . , 2011.q4; a measure of parameter instability with estimation period τ ′ should be
based on the Mahalanobis distance between the vectors Ξ̃τ and Ξ̃τ ′ , for τ ′ 6= τ . The latter is a weighted
Euclidean distance, where the weighting matrix is the average precision matrix,

d(τ, τ ′) =
(
Ξ̃τ − Ξ̃τ ′

)′ [
Var(Ξ̃)

]−1 (
Ξ̃τ − Ξ̃τ ′

)
.

This measure requires the precision matrix
[
Var(Ξ̃)

]−1
, which is not made available by the EM algo-

rithm.

However, a descriptive assessment of parameter instability can be obtained from the spectral decompo-
sition of the correlation matrix of the parameter estimates Ξ̃τ , τ = 2005.q1, . . . , 2011.q4, by plotting
the first two eigenvectors scaled by the square root of the corresponding eigenvalue. This amounts to
performing a metric scaling analysis of the matrix stacking the vectors Ξ̃

′
τ (see ?).

This is done in Figure 7, where each point represents the parameter estimate at a particular point in
time and the Euclidean distance between the points is the best rank 2 approximation to the Mahalanobis
distance d(τ, τ ′). The approximation is good, as the first two eigenvalues account for 98% of the original
total variation.

The most prominent fact presented by the figure is the rather large shift in the parameter estimates that
occurs with the release τ = 2009.q2, which uses the data up to May 2009. It ought to be mentioned
the real effects of the global financial crisis hit the Euro area around the end of 2008; thus, the main
factor driving the parameter change along the vertical dimension of the graph is the strong recessionary
movement resulting from the global financial crisis. A second important fact is that a common factor
(determining the horizontal dimension of the plot and accounting for 94% of the total variation) drives
the change in the parameters.

We did not address the important issue of assessing whether or not the estimation of structural change
via the inclusion of suitable interventions helps to improve the accuracy of EuroMInd-C in forecasting
and signal extraction, along the lines indicated by ?. This represents an interesting topic for further
research in this area.
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10.2 Comparison with other coincident indicators of economic growth

We have already compared EuroMInd-C with EuroMInd in terms of predictive accuracies. Another
consideration is that EuroMInd-C provides monthly indicators of the 11 GDP components for four in-
dividual countries along with the Euro area; furthermore, within the estimation sample, the estimated
components are more informative, as they embody more information. This shows up in a higher relia-
bility of the smoothed, or historical, estimates, as is reflected by a lower estimation standard error.

Several alternative monthly indicators of economic activity have been constructed with objectives similar
to that of EuroMInd-C; this subsection provides a qualitative assessment of their different information
contents. Among these indicators, New Eurocoin (NE) and the Economic Sentiment Index (ESI) are
prominent.

New Eurocoin is a monthly coincident indicator of economic growth for the Euro area (?) that is pub-
lished monthly by CEPR (www.cepr.org) and the Bank of Italy. The indicator is a measure of the
quarterly GDP underlying growth, devoid of short run fluctuations (those with a periodicity of less than
one year), based on its linear projection on the space of the relevant dynamic principal components,
constructed on a set of about 150 transformed monthly time series.

The first panel of Figure 8 compares NE with the quarterly logarithmic changes of EuroMInd-C. There
are several differences:

1. NE is smoother than EuroMInd-C. This is because EuroMInd-C does not impose smoothness
priors.

2. NE is an estimate of the GDP underlying growth, devoid of short-run fluctuations with a period-
icity of less than one year (medium to long run growth), assuming a quarterly horizon for growth.
EuroMInd-C does not assume any particular horizon and can be used for the assessment of growth
over any horizon.

3. The amplitude of the fluctuations and the characterisation of the quarterly growth rate cycle differ:
NE ascribes a larger cyclical amplitude to the fluctuations before the global financial crisis, and
the sharpness of the trough and the subsequent recovery during 2009 are very different.

4. NE does not enforce the temporal aggregation constraints and uses a different interpolation
scheme. EuroMInd-C estimates a monthly level of GDP that is consistent with the quarterly
totals.

5. There are also other methodological differences and the elementary series considered differ in
part. For instance, the consumer and producer price series do not play any role in the construction
of EuroMInd-C.

The European Commission (Directorate-General for Economic and Financial Affairs) compiles the Eco-
nomic Sentiment Indicator (ESI), a composite coincident indicator for the timely assessment of the
socio-economic situation in the Euro area. ESI is computed by aggregating the seasonally adjusted
balances of opinions to a selection of qualitative survey questions from five sectors (industry, services,
construction, retail trade and consumers) related to reference “hard” variables, such as production in
industry.

We have found the most appropriate comparison to be with the yearly changes in EuroMInd-C, which
are displayed in the second panel of Figure 8 and compared to the rescaled ESI. Despite the apparent
similarity of the series, there are notable differences in the locations of the peaks and troughs of the
annual growth rate cycle and in the speed of the recovery occurring around the years 2009–2010. In
particular, ESI provided a much more optimistic assessment of the recovery than appeared in the monthly
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GDP estimates. While the comparison seems to establish that ESI tracks economic growth at a yearly
horizon, we should mention that EuroMInd-C embodies a supervised approach that links the indicator
to the national account series. On the other hand, the ESI methodology is ‘unsupervised’, in that only
the balances of opinions are used for the estimation of the indicator. As a result, the interpretation of the
scale of the indicator is not related to GDP growth.

This qualitative assessment, coupled with the considerations arising from the rolling forecast evaluation,
suggests that EuroMInd-C is a useful addition to the set of coincident indicators that is available for the
Euro area and its main economies.
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Figure 8: Comparison of EuroMInd with New Eurocoin and the Economic Sentiment Indicator.
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11 Conclusions

In this paper we have introduced EuroMInd-C, a set of monthly indicators of GDP for the Euro area
and its four largest economies that are relevant, representative and timely. The estimates can be used
to assess the economic stance in a timely manner, and allow an appreciation of both the broad picture
(Euro area) and the country- and sector-specific details.

The characteristic element of EuroMInd-C that distinguishes it from other economic indicators based on
dynamic factor models is the centrality of the national accounts framework, which provides the backbone
of the system, but also adds complexity to it.

We have illustrated the methodological issues that arise when estimating a large scale dynamic factor
model that is subject to both temporal aggregation constraints and generic patterns of missing observa-
tions, and documented the technical solutions that can be adopted in the state space framework.

For real time implementation, batch estimation of the resulting mixed frequency factor model is feasible,
albeit computationally demanding. Hence, we envisage a strategy that performs the estimation of the
hyperparameters once each semester or year, while filtering and smoothing can be performed in real
time each time the dataset is updated.

A pseudo real-time recursive forecasting experiment has provided evidence that EuroMInd-C can be
more accurate for predicting GDP than our previous componentwise approach, implemented in the Eu-
roMInd indicator (see ?). Moreover, the comparative assessment with other coincident indicators sug-
gests that EuroMInd-C is a useful addition to the set of coincident indicators that is available for the
Euro area and its main economies.

To conclude, we note that the methodology implemented in this paper can also be used in other contexts
that require the information in unbalanced multi-dimensional datasets that are subject to sectional and
temporal aggregation constraints to be modelled and summarized.
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Appendix A: List of series in the dataset

The time series used for the estimation of EuroMInd-C were downloaded from the Europa dataset, which
is made available electronically by Eurostat on the web site http://epp.eurostat.ec.europa.
eu/. The series of value added and GDP components are published with 65-day delays with respect to
the end of each quarter, according to a release calendar that is available at the beginning of each year.
However, a preliminary estimate of GDP at market prices, the so-called flash estimate, is released in
advance (45 days after the end of each quarter), with the aim of providing a more timely assessment
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of the level of economic activity. Of the monthly indicators, the most timely series are the business
and consumer survey data, which are made available at the end of each month, along with the financial
aggregates compiled by the ECB (around 30-day delays), whereas the data for the industry sector and
retail (such as car registrations by OECD) are published about 45 days after the end of the reference
month. Other indicators, such as those for construction (index of production and building permits),
and the series for the agricultural sector and the labour market (employment and hours worked) have
publication delays of about 70 days. Finally, due to the complexity of data collection process, the series
relating to external trade are made available with a longer delay, amounting to about 90 days for the
volume index of exports and imports.

Table 4 provides the complete list by GDP component, using the Europa dataset labels. It also reports
the time spans of the series and the numbers of countries available for each series. Finally, the Euro area
is the one defined by 17 countries.

Appendix B: Initial conditions

As was stated above, the state space formulation is modified when there are missing values that re-
quire adjustment at the beginning of the sample. The initial two observations, t = 0, 1, have a special
representation. At time t = 0, we have the following measurement equation:

Y c
10 =

[
IN1 0 0 0 0 0

]
α0, (20)

where the initial state vector is defined as

α0 =
[
Y c′

10 , y′10−1, ∆y′10, ∆y′1,−1, f ′t , f ′−1, u′10, u′20

]′
.

The specification of the model requires the specification of the distribution of the initial state vector
α0. For this purpose, the first block is rewritten as Y c

1,0 = exp(y1,0), for ρ0 = 0; its first order Taylor
approximation around the trial value y∗1,0 is

Y c
1,0 = exp(y∗1,0) +U∗1,0y1,0 −U∗1,0y∗1,0

=
(
exp(y∗1,0) +U∗1,0µ1 −U∗1,0y∗1,0

)
+U∗1,0y1,−1 +U∗1,0Θ1f0 +U∗1,0u1,0.

The first two blocks of the state vector are nonstationary and are initialised by the vector β = y1,−1,
whereas the last four blocks have stationary distributions, which depend on f0 ∼ N(0,Σf ), where Σf

solves the matrix equation Σf = ΦΣfΦ
′ + Ση, and u0 = [u′1,0,u

′
2,0]′ ∼ N(0,Σu), where Σu solves

the matrix equation Σu = ΨΣεΨ
′ + Σε.

Since y1,0 = y1,−1 + ∆y1,0, the initial state vector is thus written as:

α0 = A0,0β + a0,0 +H0ω0, ω0 =


f0

f−1

u10

u20

u1,−1

 ,
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where

a0,0 =



Y c∗
1,0 −U∗1,0y∗1,0 +U∗1,0µ1

0
µ1

µ1

0
0
0
0


, A0,0 =



U∗1,0
IN1

0
0
0
0
0
0


, P0,0 = H0Cov(ω0)H ′0.

H0 =



U∗1,0Θ1 0 U∗1,0 0 0
0 0 0 0 0
Θ1 0 IN1 0 0
0 Θ1 0 0 IN1

IK 0 0 0 0
0 IK 0 0 0
0 0 IN1 0 0
0 0 0 IN2 0


.

We assume that β is a diffuse random vector, i.e., it has an improper distribution with zero mean and an
arbitrarily large variance matrix. The diffuse case captures the nonstationarity of a particular unobserved
component, and entails marginalising the inferences with respect to the parameter vector β. As ? has
shown, the posterior mean of β under the diffuse prior is coincident with the generalised least squares
estimate of the parameter β, considered as a fixed parameter vector in the classical sense.

At time t = 1, the measurement equation becomes:

[
Y c

11

∆y21

]
=

[
IN1 0 0 0 0 0 0 0

0 0 0 0 Θ2 0 0 IN2

]
α1 +

[
0
µ2

]
+

[
0 0 0
0 0 0

]ηtε1t

ε2t

 , (21)

where α1 =
[
Y c′

11 , y′10 ∆y′11, ∆y′10, f ′1, f ′0, u′11, u′21

]′
.
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The transition equation at time t = 1 is



Y c
1t

y1t−1

∆y1t

∆y1t−1

ft
ft−1

u1t

u2t


=



ρ1IN1 U∗11 U∗11(I + Ψ1) 0 U∗11[Θ1Φ−Ψ1Θ1] 0 0 0
0 IN1 IN1 0 0 0 0 0
0 0 ΨN1 0 [Θ1Φ−Ψ1Θ1] 0 0 0
0 0 I 0 0 0 0 0
0 0 0 0 Φ 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 0 ΨN1 0
0 0 0 0 0 0 0 ΨN2





Y c
10

y1−1

∆y10

∆y1−1

f0

f−1

u10

u20



+



Y ∗1t −U∗1ty∗1t +U∗1t(I −ΨN1)δ1

0
(I −ΨN1)δ1

0
0
0
0
0


+



U1tΘ1 U∗1t 0
0 0 0
Θ1 IN1 0
0 0 0
Ik 0 0
0 0 0
0 IN1 0
0 0 IN2



ηtε1t

ε2t

 .

(22)

Appendix C: The treatment of missing values

Case 1: Missing at time t but observed at time t− 1

The state vector needs to be augmented by two components for each missing value affecting yt at time
t becoming αt = [Y c′

1t ,y
′
1t−1,∆y

′
1t,∆y

′
1t−1,f

′
t ,f
′
t−1,α

+′

1t ,α
+′

2t ]′, where the α+′

1t ,α
+′

2t are latent states
that are used to take the missing values into account. The measurement equation is modified as follows:

[
Y c

1t

∆y2t

]
=

[
IN1 0 0 0 0 0 0 0

0 0 0 0 Θ2 −Ψ2Θ2 0 0

]
αt +

[
0

(I −Ψ2)δ2

]
+

[
0 0 0
0 0 I

]ηtε1t

ε2t

 , (23)
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and the state equation becomes:

Y c
1t

y1t−1

∆y1t

∆y1t−1

ft
ft−1

α+
1t

α+
2t


=



ρtIN1 U∗1t U∗1t(I + Ψ1) 0 U∗1t[Θ1Φ−Ψ1Θ1] 0
0 IN1 IN1 0 0 0
0 0 ΨN1 0 [Θ1Φ−Ψ1Θ1] 0
0 0 I 0 0 0
0 0 0 0 Φ 0
0 0 0 0 I 0
0 0 0 0 [Θ2Φ−Ψ2Θ2] 0
0 0 0 0 [Θ2Φ−Ψ2Θ2] 0





Y c
1t−1

y1t−2

∆y1t−1

∆y1t−2

ft−1

ft−2



+



Y ∗1t −U∗1ty∗1t +U∗1t(I −ΨN1)δ1

0
(I −ΨN1)δ1

0
0
0

y2t−1 + Ψ2∆y2t−1 + (I −Ψ2)δ2

Ψ2∆y2t−1 + (I −Ψ2)δ2


+



U1tΘ1 U∗1t 0
0 0 0
Θ1 IN1 0
0 0 0
Ik 0 0
0 0 0
Θ2 0 IN2

Θ2 0 IN2



ηtε1t

ε2t

 .

(24)

∆y2t corresponds to the series that are available at times t and t− 1. The missing series do not enter the
calculation of the likelihood, but they are propagated in the latent states using α+′

1t ,α
+′

2t . The available
observations for the series that are missing at time t but observed at time t− 1 are inserted in the latent
states using the relationship y2t−1 + Ψ2∆y2t−1 + (I −Ψ2)δ2, where y2t−1 represents series in levels
observed at time t− 1 and ∆y2t−1 represents series in first differences at time t− 1.

Case 2: Missing at time t and time t− 1

As before, ∆y2t corresponds to the available observations at time t and t − 1. The observations that
are still missing are propagated using the α+′

1t ,α
+′

2t created in Case 1. The measurement equation is
modified as follows:[

Y c
1t

∆y2t

]
=

[
IN1 0 0 0 0 0 0 0

0 0 0 0 Θ2 −Ψ2Θ2 0 0

]
αt +

[
0

(I −Ψ2)δ2

]
+

[
0 0 0
0 0 I

]ηtε1t

ε2t

 , (25)
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and the state equation becomes:

Y c
1t

y1t−1

∆y1t

∆y1t−1

ft
ft−1

α+
1t

α+
2t


=



ρtIN1 U∗1t U∗1t(I + Ψ1) 0 U∗1t[Θ1Φ−Ψ1Θ1] 0 0 0
0 IN1 IN1 0 0 0 0 0
0 0 ΨN1 0 [Θ1Φ−Ψ1Θ1] 0 0 0
0 0 I 0 0 0 0 0
0 0 0 0 Φ 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 [Θ2Φ−Ψ2Θ2] 0 I Ψ2

0 0 0 0 [Θ2Φ−Ψ2Θ2] 0 0 Ψ2





Y c
1t−1

y1t−2

∆y1t−1

∆y1t−2

ft−1

ft−2

α+
1t−1

α+
2t−1



+



Y ∗1t −U∗1ty∗1t +U∗1t(I −ΨN1)µ1

0
(I −ΨN1)µ1

0
0
0

(I −Ψ2)δ2

(I −Ψ2)δ2


+



U1tΘ1 U∗1t 0
0 0 0
Θ1 IN1 0
0 0 0
Ik 0 0
0 0 0
Θ2 0 IN2

Θ2 0 IN2



ηtε1t

ε2t

 .

(26)

Case 3. Observed at time t but missing at time t− 1

When the observations of y2t are available but the first differences are not, due to a missing value at time
t − 1, two additional latent states are introduced, α+′

1t ,α
+′

2t . The measurement equation is modified as
follows: Y c

1t

∆y2t

y2t

 =

IN1 0 0 0 0 0 0 0
0 0 0 0 Θ2 −Ψ2Θ2 0 0
0 0 0 0 0 0 I Ψ2

αt +

 0
(I −Ψ2)δ2

0

+

0 0 0
0 0 I
0 0 0

ηtε1t

ε2t

 ,
(27)

whereas the state equation becomes:

Y c
1t

y1t−1

∆y1t

∆y1t−1

ft
ft−1

α+
1t

α+
2t


=



ρtIN1 U∗1t U∗1t(I + Ψ1) 0 U∗1t[Θ1Φ−Ψ1Θ1] 0 0 0
0 IN1 IN1 0 0 0 0 0
0 0 ΨN1 0 [Θ1Φ−Ψ1Θ1] 0 0 0
0 0 I 0 0 0 0 0
0 0 0 0 Φ 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 Θ2 −Ψ2Θ2 0 0
0 0 0 0 0 0 I Ψ2





Y c
1t−1

y1t−2

∆y1t−1

∆y1t−2

ft−1

ft−2

α+
1t−1

α+
2t−1



+



Y ∗1t −U∗1ty∗1t +U∗1t(I −ΨN1)δ1

0
(I −ΨN1)δ1

0
0
0

(I −Ψ2)δ2

(I −Ψ2)δ2


+



U1tΘ1 U∗1t 0
0 0 0
Θ1 IN1 0
0 0 0
Ik 0 0
0 0 0
Θ2 0 IN2

Θ2 0 IN2



ηtε1t

ε2t

 .

(28)
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When there are no further missing values, the components α+
1t and α+

2t are removed and the state space
formulation collapses to Eqs. (11)–(12).

Appendix D: Chained GDP estimates

We start by indexing the month of the year by j, j = 0, . . . , 11, and the year by m, m = 1, . . . ,M =
[(n+ 1)/12], so that the time index is written t = j + 12m, t = 0, . . . , n.

For a particular estimated monthly time series, let us denote the value at current prices of month j in
year m by Yjm, the annual total by Y.m =

∑
j Yjm, and the annual average (the annual and quarterly

figures are available from the national accounts, compiled by Eurostat) by Ȳm = Y.m/12. The chain-
linked volume estimate with reference year b (the year 2000 in our case) will be denoted Ŷ (b)

jm . The
temporal disaggregation methods described in the paper are applied to the quarterly chained-linked
volume series with reference year b and yield estimates that add up to the quarterly and annual totals
(temporal consistency), but are not additive in a horizontal (that is, cross-sectional) sense.

The following multi-step procedure enables the computation of volume measures expressed at the prices
of the previous year that are additive, also horizontally.

1. Dechaining:

(a) Transform the monthly estimates into Laspeyres-type quantity indices with reference year b
(volumes are evaluated at year b average prices), by computing

I
(b)
jm =

Ŷ
(b)
jm

Ȳ.b
, j = 0, . . . , 11, m = 0, . . . ,M,

where the denominator is the annual average of year b at current prices. In our case, b = 5
(year 5 is the calendar year 2000).

(b) Change the reference year to m = 1, the second year of the series (1996 in our case), by
computing:

I
(1)
jm =

I
(b)
jm

Ī
(b)
1

, j = 1, . . . , 11, m = 0, . . . ,M,

where Ī(b)
1 =

∑
j I

(b)
j1 /12 is the average quantity index for the second year of the the sample.

(c) Transform the quantity indices for year m = 1, 2, . . . ,M into indices with reference year
m− 1 (the previous year), by rescaling I(1)

jm as follows:

I
(m−1)
jm =

I
(1)
jm

Ī
(1)
m−1

, j = 0, . . . , 11, m = 1, . . . ,M,

where
Ī

(1)
m−1 =

1

12

∑
j

I
(1)
j,m−1, m = 1, . . . ,M.

(d) Compute the series at the average prices of the previous year as:

Ŷ
(m−1)
jm = I

(m−1)
jm Ȳm−1, j = 0, . . . , 11, m = 1, . . . ,M.
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2. Aggregation step: Let Y (m−1)
t denote the disaggregate time series expressed at the average prices

of the previous year. Using the original estimates and the dechaining procedure, we can assume
that, at least approximately,

Y
(m−1)
t ∼ N

(
Ŷt

(m−1)
, V̂t

(m−1)
)
, t = 0, 1, . . . , n,

where the first and second moments are given by the sequential constrained estimates produced by
the Kalman filter and smoother outlined in the previous section, modified to take the dechaining
procedure into account. If the r cross-sectional constraints are expressed as

QYt = q,

where Q is an r × N1 matrix, and q is r × 1, the modified estimates that comply with those
constraints and their MSE matrix are given respectively by

Ỹ
(m−1)
t = Ŷt

(m−1)
+ V̂t

(m−1)
Q′(QV̂t

(m−1)
Q′−1(q −QŶt

(m−1)
)

Ṽ
(m−1)
t = V̂t

(m−1) − V̂t
(m−1)

Q′(QV̂t
(m−1)

Q′−1QV̂t
(m−1)

,

see for example ?. In our case, for each country and the Euro area, r = 2, q = 0, and

Q =

[
1 1 1 1 1 1 1 0 0 0 0 −1
0 0 0 0 0 0 0 1 1 1 −1 −1

]
,

if the GDP components are arranged as in Section 4 and the last element represents GDP at
market prices. The new balanced estimates are now ready to be expressed at the average prices of
reference year b.

3. Chain-linking (annual overlap):

(a) Convert the aggregated volume measures into Laspeyres-type quantity indices with respect
to the previous year:

I(m−1)
jm =

Ỹ
(m−1)
jm

Ȳm−1
, j = 0, . . . , 11, m = 1, . . . ,M,

where Ȳm−1 =
∑

j Yj,m−1/12 is the average of the previous year at current prices. The
annual and quarterly totals are available from the national accounts compiled by Eurostat.

(b) Chain-link the indices using the recursive formula (the first year is the reference year):

I(0)
jm = I(m−1)

jm Ī(0)
m−1, j = 0, . . . , 11, m = 1, . . . ,M,

where Ī(0)
0 = 1 and

Ī(0)
m−1 =

1

12

∑
j

I(0)
j,m−1.

(c) If b > 0, then change the reference year to year b:

I(b)
jm =

I(0)
jm

Ī(0)
b

, j = 0, . . . , 11, m = 1, . . . ,M.
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(d) Compute the chain-linked volume series with reference year b:

Ỹ
(b)
jm = I(b)

jmȲb, j = 1, . . . , 12, m = 2, . . . ,M,

where Ȳb = 1
12

∑
j Yjb is the value of GDP (at basic or market prices) at current prices of

the reference year.

The multi-step procedure just described enables monthly estimates in volume to be obtained such that
the values Ỹ (m−1)

jm expressed at the average prices of the previous year add up to their quarterly and
annual totals published by Eurostat and are consistent with the contemporaneous aggregation constraints.
On the other hand, as a result of the chaining procedure, the chain-linked volumes Ỹ (b)

jm expressed at
the prices of the common reference year b (2000) are consistent only with the temporal aggregation
constraints; however, their estimates are more reliable following combination with the estimates of other
related variables.
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