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Abstract

Multiresolution analysis (MRA) over graph representation of EEG data has proved to be a promising
method for off-line brain computer interfacing (BCI) data analysis. For the first time we aim to prove the
feasibility of the graph lifting transform in an online BCI system. Instead of developing a pointer device
or a wheel-chair controller as test bed for human-machine interaction, we have designed and developed an
engaging game which can be controlled by means of imaginary limb movements. Some modifications to the
existing MRA analysis over graphs for BCI have also been proposed, such as the use of common spatial
patterns for feature extraction at the different levels of decomposition, and sequential floating forward
search as a best basis selection technique. In the online game experiment we obtained for three classes an
average classification rate of 63.0% for fourteen naive subjects. The application of a best basis selection
method helps significantly decrease the computing resources needed. The present study allows us to further
understand and assess the benefits of the use of tailored wavelet analysis for processing motor imagery data
and contributes to the further development of BCI for gaming purposes.

Keywords: BCI Game, EEG Graph Representation, Motor Imagery, Wavelet Lifting

1. Introduction

During the recent years many studies have focused on the use of electroencephalographic data (EEG)
for human machine interaction. This paradigm, known as brain-computer interfacing (BCI), is grounded on
a diverse range of disciplines such as neuroscience, machine learning and digital signal processing among
others.

The classification of imaginary limb movements has proven to be an adequate approach for augmenting
motor functions for disabled and healthy subjects [1][2][3][4]. The physical basis of motor imagery (MI)
BCIs comes from the changes on the p rhythm during the performance of MI tasks, which is known as
event related desynchronisation (ERD) and event related synchronisation (ERS) [5].

These changes on the EEG data occur in different locations on the scalp, at different time instants and
on different frequencies. EEG data is also known to be highly noisy, and the patterns arisen during the MI
process drastically change among different subjects. These characteristics make the analysis of MI data a
remarkable complex task.

Wavelet analysis has been profusely applied for the analysis of EEG data [6][7][8]. The characteristics
of this orthogonal system presents important benefits as it offers temporal-spectral analysis along different
resolution levels. The introduction of the second generation wavelets has leveraged the design of new
wavelet families that can adapt better to the domain of study [9].

In the present work we aim to explore the feasibility of applying multiresolution analysis over EEG
data graph representation for an online real-time BCI system. The graph representation allows to embed
the spatial information during the multiresolution analysis process covering the three dimensions involved
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in the ERS/ERD development (temporal, spectral and spatial dimensions). The method, fully described
in [10], introduces the concept of tailored wavelet lifting for brain-computer interfaces.

The proposed online system is an endless running game where the subject has to control a character
while it is constantly running forwards. During the game play the subject will have to decide which
command to send to the game (either jump, stride left or stride right) depending on the game state at a
given time. Video games have been recently used in the BCI field as they are easier to implement than
other direct applications such as BCI controlled wheelchairs or robotic arms, and more engaging than
spellers or pointing devices [11] [12]. A detailed state of the art of the use of games in the BCI field is
given in [13].

This paper is structured as follows. The data acquisition and preprocessing are detailed in Section 2.1.1.
In Section 2.1.2 wavelet lifting on graphs is described. Section 2.1.3 describes the feature extraction tech-
nique applied and the classification method is detailed in Section 2.2. The game design along with the
acquisition protocol are presented in Section 2.3. The results and discussions are detailed in Section 3 and
conclusions are drawn in Section 4.

2. Methods

2.1. Data Analysis and Feature Extraction

2.1.1. Data Acquisition and Preprocessing

Three different imaginary movements (right hand, left hand and feet) were recorded from fourteen
healthy subjects, all of them naive on the use of online BCI. The subjects aged from 24 to 32 and 50% were
female. All the participants, recruited from different schools and faculties at University of Essex, signed a
consent form where the details of the experiment and the use of the acquired data were explained.

The data was recorded with a sampling frequency of 256 H z. The monopolar electrodes covered the
major part of the cortex area, specifically the following 15 locations: Fc3, Fcl, FcZ, Fc2, Fc4, C3, Cl,
CZ, C2, C4, Fp3, Fpl, FpZ, Fp2 and Fp4. Two reference electrodes were placed under the subjects’ ears.
The data from these two electrodes were averaged and subtracted from the rest of the electrodes at every
sampling point.

Eight seconds of data were recorded for each trial and filtered using an elliptic band pass filter between
8 and 30 Hz. The signals were then cropped from ¢ = 2 s to the instant ¢ = 7 s as this period of
the trial provides adequate information for motor imagery classification. Finally a sliding window of one
second with 50 samples of overlap was applied until the signal was divided into 20 segments. No extra
preprocessing step was carried out in terms of artifact removal in order to assure a more dynamic feedback
to the subject. In Section 2.3 a detailed explanation of the acquisition protocol is given.

The recording hardware used was the BioSemi’s ActiveTwo which reads the EEG signals using active
electrodes.

2.1.2. Lifting Transform over Graphs

The data analysis is based on a graph lifting transform [14][15] over EEG data graph representation.
Each MI segment of T' samples and C' channels X7*¢ is embedded in a graph G = (V, E), where V is
the vertex set (a flattened version of X) and F represents the graph edges.

The edges of G are arranged such that they capture the temporal and spatial relationships present in the
data segment X and they are represented by using an adjacency matrix Adj. As shown in Figure 1, the
node v, ¢, located on channel c3 at instant ¢, is linked to v, —1 and v, ¢4+1 which are the closest temporal
neighbours in the same channel. With the graph representation we also provide spatial information by
including the four neighbouring electrodes of Ve, ¢—1: V¢, t—15 Vey,t—15 Vey,t—1 and v, —1; and four more
neighbours of Ve, 141! Vey t4+15 Ve t+1> Vey,t+1 and Ve, ¢41. It is noteworthy that the proposed graph
architecture makes the application of a graph lifting transform straight forward.

As in any lifting transform we need to define the split, predict and update steps.

The split step is defined over the node set by using the parity of ¢. The even vertex set V, corresponds to
the elements in segment X at even values of ¢, and analogously, the odd set V,, corresponds to the elements
at odd values of ¢.
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Figure 1: Details of the graph after the even/odd split. Even nodes (black circles) are used to compute the detail coefficients,
approximating the odd nodes (red circles). The number of channels depicted has been reduced for clarity, during the experiments 15
channels were used [10].

Prior to the definition of the predict and update functions the vertex set V of size N = N, + N, has
to be rearranged. The odd vertices V,, of size N, x 1 are relocated preceding the even vertices V. of size
N, x 1 obtaining the following graph definition:

- v,
Vo= ()

~ FNOXN,, JNO><N€
Adj = (KNexNo I Nex N, (1)

The submatrices F' and L in A~dj in Equation (1) link the elements within the same node sets and
are empty, so they are discarded. The block matrix J contains only edges linking odd elements to even
elements and, analogously, K only links even elements to odd elements.

The lifting analysis function is then defined as:

D=V,—JxV,
A=V.+K“xD 2)

In Equation (2) the prediction and update functions are defined as the matrix product P = J“ x V,
and Y = K“ x D, where J¥ and K“ are the weighted adjacency block matrices. The predict matrix J is

weighted row-wise applying the equation J;*; = W for each row ¢ and column 7, 5’ is the index used

to iterate through the columns. The weighted version of K is analogously computed as K%, = W
k] j/ i 1]./

The weighting is performed in order to maintain the spatio-temporal properties of the original graph and
has been designed based on the linear wavelet lifting [10].

As a result of the lifting transform we obtain the detail coefficient set D and the approximation coef-
ficient set A. The process described by Equation(2) is repeated in each level. For level [ 4+ 1, V is set
as A obtained in level /. For the present study the transform was calculated for the first five levels of
decomposition, obtaining ten coefficient sets { D!, A'}, I € 1,2,3,4,5.

2.1.3. Common Spatial Patterns

The coefficient sets resulted from the transform in each level I, A and D', belong to R(T/2)%C with
T = 256 and C' = 15. Therefore, given the size of the data, a feature extraction step is needed before the
classification process. For this task we chose to apply common spatial patterns (CSP) [16] as it has been
successfully applied in other studies with a similar design [17][18].

For ease of understanding, we refer to the detail D' and approximation A’ sets at different levels as X.
Each coefficient set is projected onto its own CSP space Y = W7 x X where W7 is the transposed CSP
projection matrix.

CSP is a supervised spatial filtering technique which maximises the variance ratio between two different
classes. It is computed as the generalised eigenvector decomposition of the estimated covariance matrix
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() of the trials belonging to class (+), and the estimated covariance matrix for the trials belonging to
class (-), »();

2 = wABHWT
) =wAOwT 3)

In Equation (3) A" and A(-) are diagonal matrices with the eigenvalues corresponding to decompo-
sition of ©(+) and ¥(-). A large eigenvalue Ag-;r) implies that the corresponding eigenvector from matrix
W, w;, leads to high variance in the projected signal in the positive class and low variance in the negative
one (and vice-versa).

As indicated in [16], we computed the variances of the first m rows and last m rows from Y as fi =
var(y,) with k = {1,2,...,m,C — (m — 1),...,C}. The final features for the classification are scaled

using the logarithm .7 = log( E{kl 7 )

2.2. Classification and Best Basis Selection

Due to the large amount of features produced during the signal analysis step (20 segments and 10
coefficient sets per segment) we have to restrict the possible classification techniques to one that is fast
enough and does not need extra tuning to achieve competitive results. For this purpose we should not
take into consideration artificial neural networks as they would require a considerable amount of time to
train. Support vector machines, although they have proved to obtain high classification performance in the
field, usually need some form of parameter adjustment via cross-validation. For these reasons the most
appropriate classification method would be linear discriminant analysis (LDA) [19], as it is fast, there is no
need to temper any parameters, and has proved to achieve good classification rates in the field.

The features from each level, each coefficient set (detail or approximation), and each temporal segment
were classified with a separate linear discriminant model. Therefore, for every trial to be classified, we
obtained a total of N4, = Ny *[*2 LDA outputs, with N being the number of segments and ! the number
of levels.

In [10] it is discussed how in a similar setup the classification accuracy could be enhanced by choos-
ing appropriate segments and levels when computing the majority voting prior to the final classification
decision for a trial. For this goal we applied sequential floating forward search (SFFS) [20] over the cross
validation LDA outputs from the training data. Although SFFS is commonly applied for feature selection
this approach would slow down considerably the training process, the philosophy of the algorithm allows us
to use it as a best bases selection of the classification outputs, which takes less time than feature selection.

SFFS is a bottom-up procedure which dynamically changes the number of selected features (in our case
bases) by discarding those which do not contribute to maximise a given cost function, and adding those
which improve the output.

Let us assume that we have a total of N;4, LDA outputs O = {oj}ﬁ\gj’“ and we have already selected a
subset of them Pj with the corresponding cost function J(Py). For this study the cost function is defined
as the median of the Kappa values over the five cross validation folds using P for the majority voting.
The Kappa value was computed as k = pf—_;i < where p, is the proportion of units on which the judgement
agrees (based on the output from the classifier and the actual label), and p,. is the proportion of units on
which the agreement is expected by chance.

The SFES algorithm steps are:

1. Inclusion Select the next feature py4; to include in the feature set from the remaining candidates
O — Py, based on the cost function J( Py 1) value where Py11 = Px + pra1-

2. Condition exclusion Exclude the least meaningful feature from Py 1

e Find the least significant feature p, by J(Pry1 — pr) < J(Py), ¥r € 1,2,... k and set

/

P, = P11 — pr. If k=2 set P, = P, and return to /; otherwise go to 3;
3. Continuation of conditional exclusion Find the least significant feature p, in P,;.

o If J(P, — ps) > J(Py_1) then set P, = P, and return to 1.
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/

e Else J(P, — ps) < J(Py_1),If k = 2 update P, = P, — p, and return to I; else repeat 3 with
P, =P, —p,.

The algorithm is initialised with £ = 0, Py = O and no restriction of maximum number of features to
select was imposed.

2.3. Game and Protocol Design

In order to evaluate the lifting scheme over graphs as the signal processing method for online brain
computer interfaces a simple game called brainz! was developed. The goal of this game is to help the
main character to catch as many coins as possible and to avoid being bitten by the snakes. The game play
used is known as running game, where the player character is seen from a distance and keeps moving
forwards during the playing time. The game view consists of three lanes and the player character is placed
in the middle one as shown in Figure 2. At the beginning of each trial either one coin or three snakes start
to approach from the horizon towards the player character. By the end of the trial and depending on the
classifier decision, one of the following actions is performed: moving towards the right or left lane, by
performing right hand or left hand imagery movements, in order to fetch the coin (and then coming back
to the central lane), or jumping over the snakes by performing feet imagery movements. At the end trial
the character comes back to the central lane automatically. If the classifier decision is coherent with the
interface state (coin approaching from one of the sides or snakes coming down from the three lanes) the
subject scores 100 points. In each run the three classes were evenly distributed and the order in which each
class appeared was randomised.

Complementing the game interface, there is also an MI state interface at the bottom of the screen (See
Figure 3). The trial duration is 8 seconds. At¢ = 0 s a fixation cross is displayed, after two seconds
(t = 2 s) the fixation cross disappears and three arrows are shown (pointing left, right and up ) at the same
time when an aural cue is played. One of the arrows is highlighted by a blue border indicating which MI
to perform (left hand, right hand and feet). Att = 8 s the arrow with the blue border turns green indicating
the end of the trial. A resting period of two seconds was given to the subject after which the fixation cross
was displayed again. Both interfaces, the game and the BCI state are fully synchronised.

During the experiment each subject performed four runs of 30 trials each, in order to gather data for
calibration, obtaining a total of 40 trials per class. During the calibration stage the game played by itself
letting the subject familiarise with the game interface while recording the MI data.

After the calibration phase the BCI system was trained, this calibration was performed for each of the
subjects separately. The number of CSP features to use (one, two or three) and the best bases were set by
applying a 5-fold crossvalidation in order to speedup the training process.

The online game play was identical to the calibration phase except for two major changes. Firstly, the
character reacted driven by the classifier’s output to the subjects’ signals, and secondly, every fourth of a
second one of the arrows was coloured in red, giving feedback of the intermediate classifier output. Each
subject performed three runs, 30 trials in each run, using the online BCI game with feedback. After each
run the system was recalibrated so that the classifier could cope with the changes derived from the online
feedback.

The subject was given resting periods of five to ten minutes between runs (or longer if the subject
wished so). The whole experiment was performed in under two hours, taking into account the electrode set
up time.

3. Results and Discussions

3.1. Classification Accuracy

The results in terms of classification accuracies and Kappa values of the different runs are shown in
Table 1, Table 2 and Table 3. From the results we can observe how the Kappa values (and the classification
accuracy) increases run by run. This is due to two different factors. Firstly, the number of trials available
for training the model increases after each run, helping to generate better LDA models. Secondly, the data
gathered during the online game play may contain features not present during the offline data analysis as
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Figure 2: Three screen shots of the game interface showing the three different target types. a) Shows a coin coming down from the
left lane. The subject is supposed to perform left-hand MI in order to catch it. b) Shows the playing character moving towards the
right lane to grab the coin. ¢) Shows the three snakes, one per lane, coming down towards the playing character. The subject has to
perform the feet MI in order to trigger the jump action.

the subject’s EEG patterns could change due to the frustration and stress derived from the real-time BCI
control.

This improvement proves to be statistically significant between the first and third runs when using
Wilcoxon’s ranksum test (used due to the small size of the population and its paired nature), by comparing
both Kappa value (p = 0.021) and classification accuracy (p = 0.020). This difference is not significant
if we compare the results between the first and second runs ( Kappa value p = 0.090, classification rate
p = 0.094); and the second and third runs (Kappa value p = 0.178, classification rate p = 0.177). There
were some subjects though, such as Subject 1, who actually obtained lower performance during the last
game play.

3.2. Best Basis Selection Outcomes

The use of a best basis selection method prior to the game play has two different motivations. On one
hand, best basis selection methods often help to improve the classification accuracy. On the other hand,
they reduce the amount of data to process during the online analysis.

In Figure 5 different classification rates and Kappa values for the online game play are compared with-
out applying SFFS against applying SFFS. It is noteworthy that the classification accuracies and Kappa
values in the first two runs are not improved by using SFFS, although this difference is not statistically sig-
nificant. We believe that this is because the use of SFFS introduces a slight overfitting in the classification
process.
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Table 1: First online run: Kappa values and classification accuracies. Training Acc. and Training Kappa stand for the crossvalidation
classification rate and Kappa values, Online Acc. and Online Kappa stand for the online classification rate and Kappa values.The
mean values and standard deviation are provided at the bottom of the table.

Subject Training Training Online Online Game
Acc. Kappa Acc. Kappa Score
1 0.82 0.72 0.60 0.40 1800
2 0.92 0.87 0.73 0.59 2200
3 0.94 0.91 0.87 0.80 2600
4 0.78 0.66 0.50 0.26 1500
5 0.76 0.64 0.50 0.25 1500
6 0.56 0.34 0.47 0.20 1400
7 0.57 0.34 0.40 0.10 1200
8 0.63 0.45 0.60 0.40 1800
9 0.76 0.65 0.63 0.45 2000
10 0.66 0.47 0.40 0.10 1200
11 0.82 0.72 0.47 0.20 1400
12 0.62 0.45 0.53 0.30 1600
13 0.40 0.11 0.33 0.00 1000
14 0.70 0.55 0.40 0.10 1200
mean 0.71 0.56 0.53 0.30 1600
+0.15 +0.22 +0.15 +0.22  £44.20

Table 2: Second online run: Kappa values and classification accuracies. Training Acc. and Training Kappa stand for the crossvalida-
tion classification rate and Kappa values, Online Acc. and Online Kappa stand for the online classification rate and Kappa values.The
mean values and standard deviation are provided at the bottom of the table.

Subject Training Training Online Online Game

Acc. Kappa Acc. Kappa Score

1 0.76 0.64 0.70 0.55 2100

2 0.83 0.75 0.80 0.70 2400

3 0.92 0.88 0.87 0.80 2600

4 0.65 0.49 0.53 0.34 1600

5 0.69 0.54 0.50 0.25 1500

6 0.55 0.33 0.43 0.15 1300

7 0.47 0.21 0.47 0.20 1400

8 0.59 0.38 0.67 0.50 2000

9 0.76 0.64 0.60 0.40 1800

10 0.55 0.32 0.57 0.35 1700

11 0.73 0.59 0.53 0.30 1600

12 0.64 0.46 0.43 0.15 1300

13 0.49 0.23 0.57 0.35 1700

14 0.65 0.48 0.63 0.45 2000
mean 0.66 0.50 0.59 0.39 1785.70
+0.13 +0.19  +0.13 +£0.19 £394.00
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Figure 3: Details of the MI state interface. a) Fixation cross alerting the subject that an MI should be performed in two seconds. b)
The arrow marked with the blue border indicates the expected movement to imagine. The inter-trial partial classifications are show to
the user by a read arrow. ¢) The green arrow indicates the final classifier’s decision and the end of the trial.

- u

Figure 4: Subject during the online game play

In terms of reducing the amount of data to be processed SFFS proves to be an efficient method. The
initial 200 coefficient sets were reduced on average (including the standard deviation) per run to: 81.35 £
10.81 (first run), 92.85 % 7.70 (second run), and 78.07 & 12.56 (third run). After applying SFFS we
would decrease the number of CSP and LDA evaluations to a half in the worst case and to 84.09 4 12.12
on average. The process of sequentially preprocessing, computing the multiresolution analysis, feature
extraction, classification and majority voting adds up to 1.66 + 0.026 s. Taking into account that applying
CSP and classifying the features takes 0.004 £ 0.0004 s for each of the 200 coefficient sets, the total time
spent in this task per trial is 0.8403 4 0.006 s. Therefore, when applying SFFS we obtained an average
speed-up factor of 1.41.

Although it is an implementation detail, we need to point out that the online system was completely
paralellised based on segments. Thus each segment was processed and its classification output computed
as soon as there was enough data to do so, which means that the latency that we had once the trial was
finished was approximately 80ms for the worst case. Therefore the response time we got from the online
system is low enough in order to achieve a real-time response.

The overfitting issue in applying SFFS is more notorious in the first online run, where the SFFS ap-
proach resulted in an average Kappa value of 0.29 + 0.21 and the non-SFFS approach 0.37 £ 0.23. The
reason for this difference is that, as we already pointed out, the features from the dataset acquired dur-
ing the calibration process may have some differences with the features produced during the game play,
provoked mainly by changes in the subject’s mental state, namely frustration and stress. SFFS selects the
theoretically optimal coefficient sets (according to the heuristic provided) to take into account for the trial
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Table 3: Third online run: Kappa values and classification accuracies. Training Acc. and Training Kappa stand for the crossvalidation
classification rate and Kappa values, Online Acc. and Online Kappa stand for the online classification rate and Kappa values.The
mean values and standard deviation are provided at the bottom of the table.

Subject Training Training Online Online  Game

Acc. Kappa Acc. Kappa Score

1 0.77 0.65 0.57 0.35 1700

2 0.89 0.83 0.63 0.49 2000

3 0.89 0.83 0.83 0.75 2500

4 0.66 0.50 0.77 0.65 2300

5 0.70 0.55 0.57 0.35 1700

6 0.63 0.45 0.50 0.25 1500

7 0.56 0.34 0.43 0.15 1300

8 0.72 0.58 0.77 0.65 2300

9 0.80 0.69 0.70 0.55 2100

10 0.62 0.42 0.53 0.30 1600

11 0.76 0.63 0.70 0.55 2100

12 0.61 0.41 0.67 0.50 2000

13 0.56 0.34 0.50 0.25 1500

14 0.76 0.64 0.70 0.55 2100

mean 0.71 0.56 0.63 0.45 1900
+0.11 +0.16  +0.12 £0.18 =+358.30

classification which, specially in the first run, differ from the real optimal set. Therefore taking into account
more coefficient sets may lead to better Kappa values when there are big differences in the training and the
evaluation sets. This notion was validated by the fact that there exists a correlation (p = 0.053) between
the number of coefficient sets used by SFFS and the Kappa value achieved only in the results of the first
run. In the following runs, as the data gathered during the game play was added to the training pool, this
correlation vanished.

0.9 [l No SFFS Acc.
SFFS Acc

081 [__INo SFFS Kappa

0.7¢

Il SFFS Kappa

o
)

Classfication Accuracy / Kappa Value
o
o

0.4
0.3
0.2
0.1
° 2 3
Run

Figure 5: Classification accuracies and Kappa values for three game play runs without SFFS against using SFFS for best basis
selection

4. Conclusions

In this study we have applied a tailored wavelet transform over graphs for a real time BCI for the first
time. One of the most important issues to overcome when designing an online BCI application is the need
of a real-time response from the system. The wavelet lifting transform is less resource consuming in terms
of memory and computation than first generation wavelets [10], and has proven to meet the requirements
for this study.
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The proposed methodology achieved a classification accuracy of 0.63 + 0.12 and a Kappa value of
0.45 + 0.18, which is satisfactory for a 3-class BCI online system with 14 naive subjects, specially for
the relative small training set. If we applied the proposed method to a similar offline data set, with a
similar protocol [21] we obtained a classification rate of 0.72 4 0.14 and a Kappa value of 0.58 £0.21. We
observed that there was a drop 0.09 in the classification accuracy from offline to online, which is a common
difference between offline and online BCI systems.

The use of SFFS in the current configuration has helped us to significantly reduce the number of coeffi-
cient sets to be projected onto their CSP spaces and to calculate their LDA outputs, reducing the computer
power needed when using our system in a real time context, offering an average speed up of 1.41 times
for each trial evaluated during the game play. Anyhow, it is convenient to remember that we should design
BCI online systems able to cope with the theoretical worst case, the one where all the coefficient sets are
selected by the SFES algorithm. It was observed that in the practical worst case the number of segments to
be processed was reduced to a half by SFFS. In terms of classification rate, applying majority voting over
the basis selected by SFFS fails to outperform the simple majority voting.

The game paradigm utilised has proved to be convenient for developing and testing BCI online sys-
tems. One one hand, in endless running games it is easy to determine which is the next appropriate move
depending on the state of the game (in contrast with other game paradigms that this would be more difficult
to know), and therefore, measure the classification performance of the system. On the other hand, the game
play has been utilised for many years in the game industry and it has proven to be engaging enough for our
study. The tendency of slightly improving the score after each run made many of the subjects to express
the will to improve their score of the previous runs, and some of them even asked to play extra runs once
the experiment was through. A study of the correlation between the subject stress and frustration levels
with the classification rate would also give insights of the possible enhancements to BCI gaming systems.

In conclusion, the use of multiresolution analysis over EEG data graph representation produces promis-
ing results to online BCI systems. The results presented hereby encourage us to improve the proposed
method and to explore the possibilities offered by the lifting transform and the graph representation.
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