
Bouzid, Mouaouia Cherif, Ait Haddadene, Hacene and Salhi, Said (2017)
An Integration of Lagrangian Split and VNS: The case of the Capacitated
Vehicle Routing Problem. Computers and Operations Research, 78 . pp.
513-525. ISSN 0305-0548.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/55070/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.cor.2016.02.009

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/55070/
https://doi.org/10.1016/j.cor.2016.02.009
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

An Integration of Lagrangian Split and VNS: The
case of the Capacitated Vehicle Routing Problem

Mouaouia Cherif Bouzid1,2, Hacene Aı̈t Haddadene2, and Said Salhi3

1Department of Logistic and Transportation Engineering, ENST, Dergana, Algiers, Algeria.
2LaROMaD-Laboratory, Department of Operations Research, Faculty of Mathematics,

USTHB-University, BP 32 El-Alia, Bab-Ezzouar 16111, Algiers, Algeria.
3Centre for Logistics & Heuristic Optimisation, Kent Business School, The University of

Kent, Canterbury, Kent CT2 7PE, UK.

December 12, 2015

Abstract

In this paper, we propose an efficient and novel Lagrangian relaxation method

which incorporates a new integer linear programming (ILP) formulation to opti-

mally partition a giant tour in the context of a capacitated vehicle routing problem

(CVRP). This approach, which we call Lagrangian split (Ls), is more versatile than

the ILP which, in most cases, can be intractable using a conventional solver. An

effective repair mechanism followed by a local search are also embedded into the

process. The mathematical validity of the repair mechanism and its time com-

plexity are also provided. An integration of Ls into a powerful variable neighbour-

hood search (VNS) is also presented. Computational experiments are conducted

to demonstrate that Ls provides encouraging results when applied on benchmark

instances and that the integration of Ls into a metaheuristic scheme produces good

results when compared to those found by state-of-the-art methods.

Keywords: Routing problems, route-first cluster-second, Lagrangian relaxation, sub-

gradient method, variable neighbourhood search, hybridisation.

1 Introduction

Routing problems consist in optimizing the visit of a set of customers by a fleet of vehicles

based at a single or multiple depots with possible side constraints. The most studied

1

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

problem is the travelling salesman problem (TSP) when one vehicle visits all customers

in one single trip (see Laporte [1] and Applegate et al. [2]). A more practical problem

known as the vehicle routing problem (VRP) is when a fleet of vehicles with a limited

load capacity needs to deliver quantities of goods to a set of customers so that every one’s

demand is met (see Toth and Vigo [3]).

One of the type of constructive heuristics proposed for the VRP is the route-first

cluster-second heuristics. This principle, also known as the order-first split-second prin-

ciple (see Prins et al. [4]), was formalised in 1983 by Beasley [5]. It consists in generating

a giant tour, building a cost network then finding a shortest path to partition optimally

the giant tour. Variations on the way the cost network is built permitted to partition a

giant tour with regard to several routing variants. Golden et al. [6] proposed a similar

approach to tackle the fleet size and mix VRP while Ulusoy [7] applied it to the fleet size

and mix arc routing problem. More recently, the route-first cluster-second principle has

been embedded into various heuristic schemes (see Prins [8], Imran et al. [9] and Villegas

et al. [10]) and applied successfully to multi-attribute routing problems (see Vidal et al.

[11]). An interesting and informative recent review on route-first cluster-second methods

can be found in Prins et al. [4].

These methods perform efficiently in many cases but can be limited due to the presence

of basic constraints such as fixing (not limiting) the number of vehicles or by considering

further resources such as a heterogeneous fleet. A discussion about the efficiency and

limitations of the existing route-first cluster-second methods can also be found in Prins

et al. [4].

Recently, the partitioning of a giant tour for the multiple traveling salesman problem

(mTSP) was formulated as an integer linear program (ILP) (see [12]). It was proven that

the obtained formulation is solvable in polynomial time. An extension to the mTSP with

limitations on the number of customers visited per vehicle was then presented and an

integration to the variable neighbourhood search (VNS) provided interesting results.

In this study, we extend this idea to the case of the capacitated vehicle routing problem

(CVRP) with a fixed number of vehicles following the route-first cluster-second principle.

As the obtained ILP formulation reveals intractable on experiments for a conventional

solver, we propose a Lagrangian relaxation method called Lagrangian split (Ls) to tackle

the problem. As we will show later, the proposed ILP formulation is flexible and thus,

2

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Ls could be extended to deal with a variety of routing problems. Ls is a subgradient

method which consists of a repair and a local search algorithms designed to repair and

improve an infeasible partitioning of a giant tour. The mathematical validity of the

repair mechanism and its time complexity are also provided. An integration of Ls into

a VNS scheme is presented as an illustration of the use of Ls within a metaheuristic.

Computational experiments are conducted to demonstrate that Ls provides encouraging

results when applied on benchmark instances. In addition, the integration of Ls into a

metaheuristic scheme, though it is still in its infancy, has shown to yield good results

when compared to the state-of-the-art methods.

The remainder of the paper is organised as follows: the next section is devoted to the

description of the split problem and its ILP formulation. In Section 3, the Lagrangian

split method and its main components are presented with an illustrative example. In

Section 4, Ls is embedded into a VNS scheme followed by experiments in Section 5.

Finally, conclusions and suggestions are given in Section 6.

2 An ILP formulation for the splitting of a giant tour

2.1 Definitions

Consider a single-depot routing problem with V ′ = {1, . . . , n} being the set of customers,

0 the depot and V = {0} ∪ V ′ the set of nodes. Let c(i, j) be the travel cost from node i

to node j. Let m be the number of vehicles located at the depot each having a resource

capacity Q. Let q(u) be the demand of customer u with 0 ≤ q(u) ≤ Q.

Given a positive integer a, we denote the term [a] as the set {1, . . . , a}, and a position

as an element of [n]. A giant tour is a Hamiltonian circuit over the elements of V ′. A

giant tour T can be denoted as a permutation (T1, . . . , Tn) where Ti belongs to V ′ for

all positions i. Note that in our definition, the depot is not assumed to belong to T .

Therefore, there is neither a first nor a last customer in T . The length of T is given by

L(T) =
∑n−1

k=1 c(Tk, Tk+1) + c(Tn, T1).

We define a summation operator which takes into account the circular nature of T .

Given an array w = (w1, . . . , wn) of values indexed on the set [n], the n-circular sum of

the elements of w is defined by

3

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

j

©n
k=i

wk =

 wi + . . .+ wj =
∑j

k=iwk if i ≤ j

wi + . . .+ wn + w1 + . . .+ wj =
∑n

k=iwk +
∑j

k=1 wk if i > j
, i, j ∈ [n]

For example,©10
5

k=3wk = w3 + w4 + w5 while©7 2

k=5wk = w5 + w6 + w7 + w1 + w2.

Moreover, we consider the indexing to be circular throughout the paper (i.e., the next

value after wn is w1 and the value before w1 is wn).

Let qk be the demand of the customer Tk, k ∈ [n] (i.e., qk = q(Tk)). The cumulated

demand over a subsequence (Ti, . . . , Tj) of T is defined by Qj
i =©n j

k=i qk.

A route r = (0, r1, r2, . . . , r|r|, 0) is a Hamiltonian circuit which covers the depot and

a subset of customers where |r| is the number of customers in r and rk ∈ V ′,∀k ∈ [|r|].

The cost of the route r is defined by L(r) = c(0, r1) +
∑|r|−1

k=1 c(rk, rk+1) + c(r|r|, 0). The

cumulated demand of the customers belonging to the route r equals Q(r) =
∑|r|

k=1 q(rk).

The route r is feasible if Q(r) ≤ Q. A routing x = (r1, r2, . . . , rm) is a set of m routes that

cover all the customers exactly once. The cost of x is given by L(x) =
∑m

k=1 L(rk). The

routing x is feasible if all its routes are feasible. The capacitated vehicle routing problem

(CVRP) consists in finding a feasible routing x∗ with a minimum total cost L(x∗).

2.2 Formulation of the split problem associated with the CVRP

Let δi = c(Ti, 0) + c(0, Ti+1)− c(Ti, Ti+1) be the cost of inserting the depot after the node

Ti into the giant tour T . In other words, T is split at the node Ti. Let yi be a binary

variable which equals 1 if T is split at the node Ti and 0 otherwise, i ∈ [n]. A split

position is a position i ∈ [n] for which yi = 1. In Fig. 1, the descending arrow means that

the depot is inserted into T after the position i.

a b

Fig. 1. (a) i is a split position, (b) i is not a split position.

Given a split position i, a position j is said to be compatible with i if Qj
i+1 ≤ Q. In

other words, if a split occurs at position i, the subsequence (Ti+1, . . . , Tj) has a total

4

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

demand not larger than Q. Thus, performing a split at position j would produce a

feasible route (0, Ti+1, . . . , Tj, 0). We call the set of all positions compatible with i, the

compatibility set of i. This is defined by C(i) = {j ∈ [n] : Qj
i+1 ≤ Q}.

We also define for every position i ∈ [n], the set C−1(i) = {j ∈ [n] : i ∈ C(j)}. This

set corresponds to the positions of [n] for which i is a compatible position.

The split problem can then be formulated as follows:

Split(T) z∗ = min
∑
i∈[n]

δi yi (1)

s.t.∑
i∈[n]

yi = m (2)

∑
j∈C(i)

yj ≥ yi,∀i ∈ [n] (3)

yi ∈ {0, 1} ,∀i ∈ [n] (4)

The objective is to minimize the sum of the insertion costs. The value z∗ + L(T) is

the cost of the routing obtained by optimally partitioning T . The constraint (2) ensures

that exactly m routes are used. The constraints (3) guarantee that in case a split occurs

at a position i then at least one split must occur in one of the positions compatible with

i. Indeed, if yi = 1 then
∑

j∈C(i) yj ≥ 1, otherwise the constraint is redundant. The

constraints (4) refer to the binary nature of the decision variables.

In case the number of vehicles is not limited but a fixed charge F is associated with

the use of a vehicle, the objective becomes min
∑

i∈[n](δi + F)yi and constraint (2) is

exchanged with
∑n

i=1 yi ≥ 1 to ensure that there is at least one route. In this latter

formulation, the number of vehicles can be minimized simply by setting the objective to∑
i∈[n] yi.

Depending on the definition of the compatibility set C(i), Split(T) can be extended

to consider other constraints such as:

(i) Distance restriction Let D be the route length limit and Dj
i+1 = c(0, Ti+1) +

©n j−1

k=i+1 c(Tk, Tk+1) + c(Tj, 0) be the length of the route (0, Ti+1, . . . , Tj, 0). Then,

C(i) = {j ∈ [n] : Dj
i+1 ≤ D} for all positions i,

(ii) Time windows Let t(u, v), [aj, bj] and sj be the travel time from the customer

u to the customer v (u, v ∈ V ′), the visiting period and the service time of the

customer Tj (j ∈ [n]) respectively. The visiting time of the customer Tj on the route

5

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

containing the sequence (0, Ti+1, . . . , Tj) is given by T ji+1 = t(0, Ti+1) if j = i + 1

and T ji+1 = max{T j−1
i+1 , aj−1} + sj−1 + t(Tj−1, Tj) when j ∈ [n] r {i + 1}. Thus,

C(i) = {j ∈ [n] : T ji+1 ≤ bj} for all positions i.

An illustrative example

Fig. 2 illustrates an instance of Split(T) with 8 customers and 3 vehicles having a load

capacity Q = 5. The traveling cost between two nodes is given by the Euclidean distance.

Note that the considered instance is Euclidean for an illustrative purpose only and that

the proposed approach does not make any assumption on the cost matrix c. The length

of the giant tour T = (1, 3, 5, 6, 4, 8, 2, 7) is L(T) = 10.06. The problem is to split T into

3 feasible routes while minimizing the cost of inserting the depot into the giant tour. The

compatibility set C(3) is equal to {4, 5}. This means that if a split occurs at position 3

(which is occupied by customer 5), then a split must occur at one of the positions 4 or

5 in order to keep the route starting from position 4 feasible. The optimal solution of

Split(T), found using the GLPK solver [13], is given by y∗ = (1, 0, 1, 0, 1, 0, 0, 0) with a

value of z∗ = 4.82. The obtained routing has a cost of L(T) + z∗ = 14.88.

a b

n=8, m=3, Q=5 and L(T)=10.06.

i Ti qi δi C(i) C−1(i)

1 1 1 1.41 2,3 5,6,7,8
2 3 2 1.41 3,4 7,8,1
3 5 3 2.00 4,5 1,2
4 6 2 0.76 5,6,7 2,3
5 4 3 1.41 6,7,8,1 3,4
6 8 1 2.65 7,8,1 4,5
7 2 1 3.24 8,1,2 4,5,6
8 7 2 2.00 1,2 5,6,7

c

Fig. 2. Example of a Split(T) instance. (a) The giant tour, (b) instance description and the

corresponding Split(T) parameters, (c) the routing corresponding to the optimal solution of

Split(T).

Note that as Split(T) does not assume the presence of the depot in the giant tour T ,

the optimality of the splitting obtained is not subjected to the order in which T is taken.

In addition, Split(T) permits to fix (not just limiting) the number of vehicles used in the

routing. To the best of our knowledge, the existing split procedures permit only to limit

the number of vehicles used in the routing (not fixing that number). This is achieved

6

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

using a general form of Bellman’s algorithm by limiting the number of arcs used during

the building of the shortest path (see Prins et al. [4]).

3 Lagrangian split of a giant tour T

Split(T) can be solved for small size instances by a standard ILP software such as GLPK

[13], however, its resolution becomes impractical for relatively larger instances.

The Lagrangian relaxation (LR) is a powerful technique for solving ILPs. Given a

minimisation ILP with a set of constraints partitionable into ”easily” satisfiable con-

straints and harder ones, LR consists in relaxing the hard constraints into the objective

by multiplying them with a penalty factor called the Lagrangian multiplier. The resulting

model is thus easier to solve than the original problem. The solution of the relaxed model,

called the lower-bound program, gives a valuable data as it corresponds to a lower bound

for the original ILP. If the relaxed constraints are suitably chosen, the optimal value to

the lower-bound program provides a tight lower bound for the original ILP which can

then be used for pruning the search tree in a branch and bound procedure. A feasible

solution for the ILP can also be derived from the solution of the lower-bound program

in a process called Lagrangian heuristic. Several techniques have been proposed in the

literature to determine the Lagrangian multipliers which maximizes the lower bound pro-

gram, among them the sub-gradient method which makes use of the convexity of the

lower-bound program objective. An old but still topical overview of Lagrangian relax-

ation can be found in Fisher [14]. Lagrangian relaxation has been widely used for solving

combinatorial optimisation problems, see for instance Cornuejols et al. [15], Kohl and

Madsen [16] and more recently Nezhad et al. [17]. To the best of our knowledge, LR

has never been applied to solve the problem of partitioning a giant tour in the context of

routing problems.

In this section, we present a LR method for the resolution of Split(T) which we call

Lagrangian split (Ls).

3.1 Overview of the Lagrangian split

Ls is a subgradient method that solves Split(T) based on a Lagrangian relaxation LB(λ)

of this model where λ is a Lagrangian multiplier (see Section 3.2). In a previous con-

tribution (see [12]), LB(λ) was proved to be solvable in polynomial time. Initially, the

7

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Lagrangian multiplier is set to a value λ0. For each iteration t, LB(λt) is solved result-

ing in a solution to Split(T). If that solution is not feasible for Split(T), it is repaired

using a polynomial algorithm (see Section 3.3.1). If that solution is still not feasible then

Ls returns that T is unsplittable using m vehicles (see Theorem 1). Otherwise, a local

search is applied to improve the repaired solution (see Section 3.3.2). The combination

of the repair mechanism with the local search is a Lagrangian heuristic (see Section 3.3).

Once the Lagrangian heuristic is performed, the Lagrangian multiplier is updated and

t is incremented. The overall process terminates whenever a number of non-improving

iterations passed or when Split(T) is proven infeasible (see Section 3.4).

We now describe the main components of Ls which are the Lagrangian relaxation of

Split(T), the Lagrangian heuristic and the subgradient method.

3.2 Lagrangian relaxation of Split(T)

We define a split solution as a vector y ∈ {0, 1}n which satisfies the constraint (2) in

Split(T). A split solution y is feasible if it satisfies the constraints (3) which are harder

to tackle than (2). Therefore, we propose to attach Lagrangian multipliers λj ≥ 0 to

(3) and to relax them into the objective function to obtain the following lower bound

program:

LB(λ) zLB(λ) = min
∑

i∈[n] δi yi +
∑

i∈[n] λi(yi −
∑

j∈C(i) yj)

s.t.

(2), (4)

zLB(λ) is a lower bound for z∗. Indeed, z∗ is greater or equal to the optimal value of

LB(λ) subject to (3) as λi(yi −
∑

j∈C(i) yj) ≤ 0, ∀i ∈ [n], which is greater or equal to

zLB(λ) as we are relaxing (3) in a minimization problem.

It follows that:∑
i∈[n]

δi yi +
∑
i∈[n]

λi(yi −
∑
j∈C(i)

yj) =
∑
i∈[n]

(δi + λi) yi −
∑
i∈[n]

∑
j∈C(i)

λiyj

=
∑
i∈[n]

(δi + λi) yi −
∑
j∈[n]

∑
i∈C−1(j)

λiyj

=
∑
i∈[n]

(δi + λi) yi −
∑
i∈[n]

∑
j∈C−1(i)

λjyi

=
∑
i∈[n]

(δi + λi −
∑

j∈C−1(i)

λj) yi

8

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Let ∆i = δi + λi −
∑

j∈C−1(i) λj then LB(λ) becomes:

LB(λ) zLB(λ) = min
∑

i∈[n] ∆i yi

s.t.

(2), (4)

which is a polynomially solvable 0-1 knapsack problem. Indeed, an optimal solution to

LB(λ) can be found simply by selecting the m smallest ∆i, assigning 1 to the correspond-

ing yi and 0 to the remaining ones. This can be performed in O(nm) (see [12]).

Note that LB(λ) has the integral property, which means that the optimal value of

LB(λ) is not altered by dropping the integrality conditions on its variables (see Proposi-

tion 2.2 in [12]). Therefore, the maximum value attainable by zLB(λ) equals the optimal

value of the LP relaxation of Split(T) when it is feasible (see Theorem 2 in Geoffrion

[18]). Thus, we do not solve LB(λ) to bound z∗ but to build a split solution (possibly

feasible) then to repair it to deduce an expected good feasible split solution for Split(T).

This Lagrangian heuristic is described in the next section.

3.3 Lagrangian heuristic

Let ȳ be an optimal solution of LB(λ̄) w.r.t. λ̄ ≥ 0 and assume that ȳ does not satisfy (3)

i.e. ȳ is an infeasible split solution. Then, there exists a split position i ∈ [n] such that

yi >
∑

j∈C(i) yj. As the decision variables are binary and yi = 1 then yj = 0,∀j ∈ C(i).

In other words, a split occurred at node Ti but no split occurred sufficiently early after

that (i.e., not in the set C(i)).

Fig. 3 represents an infeasible split solution with three consecutive split positions v1,

v2 and v3. The problem is that v2 is too far from v1 (i.e., v2 6∈ C(v1)). The idea is to

roll back v2 until it takes a position belonging to C(v1) while ensuring that v3 remains

in C(v2). We call the set of positions which fulfil that condition a fixing region and we

define it by R(v1, v3) = {j ∈ [n] : j ∈ C(v1) and v3 ∈ C(j)} = C(v1) ∩ C−1(v3). In other

words, R(v1, v3) is the set of positions compatible for v1 and for which v3 is compatible.

In the next two subsections, we describe a repair algorithm which uses the fixing

region to fix an infeasible split solution followed by a local search algorithm to improve

a feasible split solution.

9

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 3. An infeasible split with three consecutive split positions v1, v2 and v3 and the fixing
region R(v1, v3)

3.3.1 The repair algorithm

In brief, the repair algorithm consists in moving the split positions around an infeasible

giant tour T until every split position is compatible with the previous one. If it is not

possible then Split(T) is infeasible. In order to present and justify this algorithm, we

first introduce some additional concepts.

A split vector v is a circularly sorted vector of m components in [n] without any

duplicate value. Every component of v represents a split position. Formally, we define v

as a vector of m components in [n] such that there exists an index p in [m] which satisfies

vp−1 > vp and vi < vi+1,∀i ∈ [m] r {p − 1}. The element vp is called a pivot and p

refers to its position. For example, (5, 9, 15, 1, 3) is a split vector with a pivot equal to 1

ranked at p = 4 but (9, 3, 4, 1, 5, 2) is not a split vector as it has no pivot. To every split

vector v, we can associate a split solution y defined by yi = 1 if i ∈ {v1, . . . , vm}, 0 if

i ∈ [n]r {v1, . . . , vm}. Similarly, to any split solution y, we can associate a split vector v

defined by v1 = min {j ∈ [n] : yj = 1} and vi = min {j ∈ [n] r {v1, . . . , vi−1} : yj = 1} for

i ∈ [m] r {1}. A split vector v is feasible if its associated split solution y is feasible. The

cost of a split vector v is given by c(v) =
∑

i∈[m] δvi . Hence, we can describe a split of T

using either a split solution or a split vector.

Proposition 1 characterizes a feasible split vector using the compatibility sets.

Proposition 1. Let v be a split vector. v is feasible if and only if vi+1 ∈ C(vi) for all

i ∈ [m].

Proof. Let v be a split vector and y be its associated split solution. On one hand, assume

that v is feasible but there exists an i ∈ [m] such that vi+1 6∈ C(vi). Then, yj = 0 for all j

10

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

in C(vi) and yvi = 1 >
∑

j∈C(vi) yj = 0 which is absurd. On the other hand, assume that

vi+1 ∈ C(vi) for all i ∈ [m]. By the definition of v and y,
∑

i∈[n] yi = m. Given a k ∈ [m],

the following inequality holds yvk ≤ yvk+1
+
∑

j∈C(vk)r{vk+1} yj as the left term equals 1

and the right term equals at least 1. Also, yi = 0 for all i ∈ [n] r {v1, . . . , vm}. Hence,

yi ≤
∑

j∈C(i) yj holds for all i ∈ [n] and y is feasible likewise v.

We now define a function which measures the distance between two positions in a

giant tour. Let ηn(i, j) be the number of elements from the position i+ 1 to the position

j on a giant tour of size n. For simplicity, ηn(i, j) will be simply denoted η(i, j) as there

is no ambiguity on the size of the giant tours. Proposition 2 provides a way to calculate

η(i, j) and an injectivity-like property for this function. Let a and n be two integers with

n 6= 0. The common residue of the division of a by n is given by mod(a, n) = a − b a
n
cn

where b a
n
c is the greatest integer less or equal to a

n
. It is known that 0 ≤ mod(a, n) < n.

Proposition 2. (i) ∀(i, j) ∈ [n]2 : η(i, j) = mod(j − i, n)

(ii) ∀(i, j, k) ∈ [n]3: η(i, j) = η(i, k) if and only if j = k

Proof. (i) It is clear that |j − i| < n. If j ≥ i then 0 ≤ j−i
n

< 1 and mod(j −

i, n) = j − i = η(i, j) as b j−i
n
c = 0. Otherwise, if j < i then −1 < j−i

n
< 0 and

mod(j − i, n) = (n− i) + j = η(i, j) as b j−i
n
c = −1.

(ii) If mod(j − i, n) = mod(k − i, n) then j − k =
(
b j−i
n
c − bk−i

n
c
)
n. The second term

of this equation depends on the order of i, j and k. In any case, the second term

is either equal to 0 providing the desired result or ±n which is absurd given the

domain of j and k. The reciprocal is trivial.

Let η̄ and η be two functions defined on the set [n] by η̄(i) = argmaxj∈C(i) η(i, j)

and η(i) = argmaxj∈C−1(i) η(j, i). Literally, η̄(i) is the furthest position compatible with

the position i while η(i) is the furthest position for which i is compatible. Tightening

a split vector v means to set vi+1 := η̄(vi) for all i in [m] r {p − 1}. In that case, v is

said to be tight. Given a split vector v̄, a split vector u is induced by v̄ if up = v̄p and

η(up, up−1) ≤ η(v̄p, v̄p−1). Note that any split vector induces itself.

Proposition 3 states that no feasible split vector can be induced by an infeasible tight

split vector.

Proposition 3. Let v̄ be a tight split vector. If v̄p 6∈ C(v̄p−1) then no feasible split vector

can be induced by v̄.

11

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Proof. Let v̄ be a tight split vector such that v̄p 6∈ C(v̄p−1). Assume v is a feasible split

vector induced by v̄ then vp = v̄p, η(vp, vp−1) ≤ η(vp, v̄p−1) and vp ∈ C(vp−1). Assume

that η(vp, vp−1) < η(vp, v̄p−1) then

qvp−1+1 + . . . +qv̄p−1 +qv̄p−1+1 + . . . +qvp ≤ Q as η(vp, vp−1) < η(vp, v̄p−1) and

vp ∈ C(vp−1)

qv̄p−1+1 + . . . +qvp > Q as vp = v̄p and v̄p 6∈ C(v̄p−1)

Subtracting the second inequality from the first one implies that©n v̄p−1

k=vp−1+1 qk < 0 which

is absurd as qk ≥ 0 for all k in [n].

By Proposition 2, the case where η(vp, vp−1) = η(vp, v̄p−1) implies that vp−1 = v̄p−1.

Therefore, vp ∈ C(vp−1) as v is feasible and vp 6∈ C(vp−1) because v̄p 6∈ C(v̄p−1), vp = v̄p

and vp−1 = v̄p−1, contradiction.

Lemma 1 provides a sufficient condition for Split(T) to be infeasible. It states that if

no tight split vector is feasible then the problem has no feasible solution.

Lemma 1. Let v̄1, v̄2, . . ., v̄n be n tight split vectors such that v̄jp = j, j ∈ [n]. If

v̄jp 6∈ C(v̄
j
p−1) for all j in [n] then Split(T) is infeasible.

Proof. Assume that v̄jp 6∈ C(v̄
j
p−1), j ∈ [n] and that Split(T) is feasible. Let v be a feasible

split vector then v is not induced by v̄j for any j (see Proposition 3). However, there

exists a k in [n] equal to vp such that vp = v̄kp otherwise vp 6∈ [n] which is absurd. Assume

without loss of generality that k = p = 1 and denote v̄1 by v̄. In summary, v1 = v̄1 = 1,

v is feasible but not induced by v̄ which is tight and infeasible. As v is not induced by

v̄ then η(v1, vm) > η(v1, v̄m). By Proposition 2, v̄m 6= vm. If η(v1, vm−1) ≤ η(v1, v̄m−1)

then qvm−1+1 + . . .+ qv̄m−1+1 + . . .+ qv̄m + . . .+ qvm ≤ Q as vm ∈ C(vm−1). In particular,

qv̄m−1+1 + . . . + qv̄m + . . . + qvm ≤ Q which contradicts the fact that v̄m = η̄(v̄m−1).

Thus, η(v1, vm−1) > η(v1, v̄m−1) and v̄m−1 6= vm−1 by Proposition 2. Following a similar

reasoning leads to η(v1, v3) > η(v1, v̄3) and v̄3 6= v3. By the definition of η̄(.), we have

η(v1, v2) ≤ η(v1, v̄2). It follows from v3 ∈ C(v2) that qv2+1+. . .+qv̄2+1+. . .+qv̄3+. . .+qv3 ≤

Q. In particular, qv̄2+1+. . .+qv̄3 +. . .+qv3 ≤ Q which contradicts the fact that v̄3 = η̄(v̄2).

Therefore, v can not exist and Split(T) admits no feasible solution.

12

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

The algorithm

This enables us to present a repair algorithm (see Algorithm 1) which either produces

a feasible split vector starting from an infeasible one or determines the infeasibility of

Split(T). Algorithm 1 requires initially a split vector v, the desired number of routes m

and the Split(T) parameters namely δi, C(i) and C−1(i) for all i in [n]. The algorithm

returns a split vector v and a boolean feas which equals true when v has been repaired

or false if Split(T) is proven infeasible. Initially, feas equals false, a split vector’s index

k is set to 1 and a counter t which equals m− 1 when v is tight is set to 0 (line 1). In a

first loop, the algorithm iterates until v is feasible or it is tight and infeasible (repeat-loop

2-10). Starting from the split position j = k, detectIncompatibility(v, k) returns the

first index j in [m] such that vj+1 6∈ C(vj) which means that v is infeasible because of

an incompatibility of vj+1 toward vj. If such an index does not exist then v is feasible

and the algorithm stops (line 4). Otherwise, the problematic index is stored in k and

the algorithm tests the fixing region R(vk, vk+2). If it is not empty then it splits at the

fixing position having a minimum δj, the tightness counter t is reset to 0 and the fixing

continues from vk+2 as no more incompatibility exists between the split positions vk, vk+1

and vk+2 (line 6). If there is no fixing position for vk+1 (line 7) then the algorithm splits

at the furthest position compatible with vk and the tightness is incremented. In that

case, vk+1 is present in C(vk) but vk+2 is still outside C(vk+1). This is why the algorithm

seeks an incompatibility from vk+1 at the next iteration (line 8). After the first loop, if

t equals m then v is tight and infeasible. In that case, v satisfies vi+1 = η̄(vi) for all

i in [m] r {k}. In order to find a feasible split vector, the algorithm generates all the

remaining tight split vectors by varying the initial split position v1. This value is set

initially to the position coming immediately after vk+1 (line 12). The routine tighten(v)

sets vj+1 := η̄(vj) for all j in [m − 1]. At each iteration of the second repeat-loop (lines

13-20), if a feasible tight split vector is produced then the algorithm terminates (lines

14-16), otherwise, it generates the next tight split vector. The loop stops either when

a feasible split vector is reached or when all the tight split vectors have been examined

without fixing the infeasibility (line 20) in which case the split problem is infeasible (see

Lemma 1).

13

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 1. Repair algorithm

Input : split vector v; integer m and Split(T) parameters.

Output: split vector v and a boolean feas.

1 feas := false, k := 1 and t := 0;

2 repeat

3 k := detectIncompatibility(v, k) ;

4 if k does not exist then feas := true;

5 else if R(vk, vk+2) 6= ∅ then

6 vk+1 := argmin {δj : j ∈ R(vk, vk+2)}, t := 0 and k := k + 2;

7 else

8 vk+1:=η̄(vk), t := t+ 1 and k := k + 1;

9 end if

10 until feas = true or t = m;

11 if t = m then

12 α := vk+1 and i := α + 1;

13 repeat

14 v1 := i and tighten(v);

15 if R(vm, v2) 6= ∅ then

16 v1 := argmin {δj : j ∈ R(vm, v2)} and set feas := true;

17 else

18 i := i+1;

19 end if

20 until feas = true or j = α;

21 end if

22 return v and feas ;

Theorem 1. Algorithm 1 returns a feasible split vector or determines the infeasibility of

Split(T) in O(n(m+ h)) where h =

⌈
Q

mini∈[n] qi

⌉
.

Proof. Assume without loss of generality that the first incompatibility detected at line

3 is for k = 1 which means that v2 6∈ C(v1). The algorithm iterates on the first repeat-

loop and fixes the incompatibilities until reaching a situation where vj+1 ∈ C(vj) for all

j ∈ [m − 1]. If R(vm, v2) 6= ∅ then setting v1 to any position in R(vm, v2) produces a

feasible split vector and terminates the algorithm. Otherwise, v1 is set to η̄(vm). Idem

for v2 and so on. If the algorithm reaches a position vk such that R(vk, vk+2) 6= ∅ then

setting vk+1 to any position in R(vk, vk+2) fixes the infeasibility and the algorithm stops.

If no such vk is reached then the algorithm keeps iterating until v becomes tight and t

equals m− 1. On the next iteration, if R(vm, v2) is still empty then t is set to m and the

14

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

first repeat-loop terminates. In that situation, the split vector v has been explored twice,

it became an infeasible tight split vector and the algorithm enters the second repeat-loop

as t equals m. All the remaining tight split vectors are generated until reaching a feasible

one (lines 12-20). If no feasible tight split vector exists then the split problem is infeasible

(see Lemma 1). This is the worst case and we now consider the induced complexity. The

first loop ends after two examinations of v which is in O(m). The worst case for detecting

an incompatibility is to find one incompatibility after obtaining m−1 compatibilities then

line 3 is in O(m). The sizes of C(i) and C−1(i) are the order of O(h) for any position i

as h corresponds to the maximum route size. Therefore, R(vk, vk+2) is the order of O(h)

which is also the complexity of finding the j which minimizes δj for that set (line 6).

Thus, the first repeat-loop (lines 2-10) is in O(m(m+ h)). Regarding the second repeat-

loop, there are n possible tight split vectors, one for every starting position. It takes

O(m) operations to tighten one split vector and O(h) operations to find the minimizing

split position in the fixing region. Therefore, the second repeat-loop (lines 12-20) takes

O(n(m+h)). Finally, the overall complexity of the algorithm is O(m(m+h) +n(m+h))

which reduces to O(n(m+ h)) as m ≤ n.

3.3.2 The local search algorithm

We now propose a first improvement-based local search which uses the above ideas to

improve a given feasible split vector v. Algorithm 2 requires a feasible split vector v,

the desired number of routes m and the Split(T) parameters. It returns a feasible split

vector of a quality equal or better than the initial split vector. The algorithm starts by

setting a split vector’s index k to 1 (line 1). Then, it iterates over v in a cyclic fashion

while the split is improved. For every split position vi, the algorithm tests whether there

exists a better position for the next split position vi+1 by analysing the set R(vi, vi+2)

of candidates positions for vi+1 (lines 5-7). If so, the move is performed and the search

restarts from vi+1 (line 8). The cost of v never increases in the algorithm. The process

terminates whenever a complete examination of v is performed without any improvement.

A best improvement version was also tested but provided the same solution quality

while requiring a slightly greater CPU time. Therefore, we decided to present only the

first improvement version.

15

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 2. Local search for a feasible split vector

Input : feasible split vector v; integer m and Split(T) parameters.
Output: feasible split vector v.

1 k := 1, improv := true ;
2 while improv do
3 improv := false, i := k;
4 repeat
5 l := argmin {δj : j ∈ R(vi, vi+2)};
6 improv := δl < δvi+1

;
7 if improv then
8 vi+1 := l and k := i+ 1;

9 end if
10 i := i+ 1 ;

11 until i = k or improv ;

12 end while
13 return v;

An illustrative example for the Lagrangian heuristic

Consider the Split(T) instance depicted in the top of Fig. 4. For simplicity, the positions

corresponding to the customers are given by Ti = i for all i in [n]. The traveling cost

between two nodes is given by the Euclidean distance. Assume we are given an infeasible

split vector v0 = (2, 5, 7) (see Fig. 4c). Applying Algorithm 1 on v0 permits to detect

that 5 6∈ C(2) = {3, 4}. Hence, k is set to 1 and a fixing position is searched for v0
k+1. The

fixing region is R(v0
1, v

0
3) = C(2) ∩ C−1(7) = {3, 4} ∩ {4, 5, 6} = {4}. Thus, v2 is set to 4.

Algorithm 1 terminates as the obtained split vector v1 = (2, 4, 7) is feasible. The value

of v1 is δ2 + δ4 + δ7 = 5.89. Algorithm 2 is applied on v1 to find a better split vector.

Starting from k = 1, no improvement is possible at i = 1 but more choices are available for

i = 2. Indeed, R(v1
i , v

1
i+2) = R(v1

2, v
1
1) = C(4)∩C−1(2) = {5, 6, 7, 1}∩{6, 7, 1} = {6, 7, 1}.

As mentioned in Section 2.1, the indexing is circular, therefore, the element v1
i+2 is v1

1

for i = 2. The split position l which minimizes δj for j ∈ R(4, 2) is 6. As δ6 < δ7,

an improvement is possible and v1
i+1 = v1

3 is set to 6. The new feasible split vector

v2 = (2, 4, 6) has a value of 3.41. Algorithm 2 starts a new loop from k = 3. An

improvement is possible for i = 1. Indeed, in the region R(v2
1, v

2
3) which is given by

{3, 4}, δ3 < δ4 = δvi+1
. Hence, v2

2 is set to 3. The split vector becomes v∗ = (2, 3, 6) with

a value of 2.99 which is optimal in this case. The routing corresponding to the split of T

according to v∗ is represented in the lower-right part of Fig. 4. The cost of this routing

is given by L(T) +
∑m

i=1 δv∗i = 10.65 + 2.99 = 13.64.

16

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

a b

n=7, m=3, Q=5 and L(T)=10.65.

Ti qi δi C(i) C−1(i)

1 2 2.65 2,3 4,5,6,7
2 2 0.82 3,4 6,7,1
3 2 1.41 4,5,6 1,2
4 3 1.83 5,6,7,1 2,3
5 1 1.24 6,7,1 3,4
6 1 0.76 7,1,2 3,4,5
7 1 3.24 1,2 4,5,6

c d

Fig. 4. Illustration of the Lagrangian heuristic on an infeasible split for a giant tour of 7 cus-
tomers. (a) The giant tour, (b) instance description and the corresponding Split(T) parameters,
(c) the infeasible split, (d) the repaired and improved split.

3.4 The subgradient method

Algorithm 3 is a subgradient method designed to solve Split(T). It requires the desired

number of routes m, an integer p and the Split(T) parameters. It returns a split vector v

and a boolean feas which equals true if v is feasible and false if Split(T) is proven infeasible

for the fleet size m. During the initialisation (line 1), the values z and z corresponding

to the values of the best feasible split vector and the best lower bound for z∗ are set to

+∞ and −∞ respectively. The boolean feas, a counter t and a scalar π are set to true,

0 and 2 respectively. The Lagrangian multiplier λt corresponding to the tth iteration of

the method is initialized to a value λ0. At each iteration of the repeat-loop, LB(λt) is

solved based on λt and the lower bound z is updated (lines 4-5). If z has not increased

after p iterations then π is halved (line 6). If the optimal split vector vt is infeasible,

a reparation is attempted (line 7). If vt is unrepairable then Split(T) is infeasible and

the algorithm stops (line 13). Otherwise (line 8), a local search is applied on vt, the

upper bound is updated and the next Lagrangian multiplier vector is calculated using

17

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

the commonly used update formula

λt+1
i := max

{
λti + π

z − zLB(λt)

‖s(λt)‖2
si(λ

t), 0

}
,∀i ∈ [n], t ≥ 0

where s(λt) ∈ Rn is the subgradient vector associated with λt defined by:

si(λ
t) = yti −

∑
j∈C(i)

ytj, ∀i ∈ [n]

‖s(λt)‖ is the euclidean norm of s(λt). The algorithm terminates either when π is suffi-

ciently small in which case the best feasible split vector v∗ is returned, or, when the split

problem is proven infeasible.

Algorithm 3: Lagrangian split (Ls)

Input : integers m, p; Split(T) parameters.

Output: split vector v and a boolean feas.

1 z := +∞, z := −∞, feas := true, t := 0, π := 2, ε := 0.01 and initialize λ0;

2 repeat

3 Calculate ∆i for all i ∈ [n];

4 Solve LB(λt) with m vehicles. Let vt be the optimal split vector;

5 if zLB(λt) > z then z := zLB(λt);

6 if z has not increased after p iterations then π:=π
2
;

7 if vt is not feasible then repair vt using Algorithm 1;

8 if vt is feasible then

9 Improve vt using Algorithm 2;

10 if c(vt) < z then v∗ := vt and z := c(v∗);

11 Calculate λt+1;

12 else

13 feas := false;

14 end if

15 t := t+ 1;

16 until π ≤ ε or not feas ;

17 return v and feas

For every iteration of Algorithm 3, the two arrays ∆ and s need to be recalculated

(see lines 3 and 11). The following proposition provides two recurrence relations that

speed-up this task.

18

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Proposition 4. The following assertions hold

(i)

 s1 = y1 −
∑

j∈C(1) yj

si+1 = si − yi + 2 yi+1 −©n η̄(i+1)

j=η̄(i)+1 yj, ∀i ∈ [n− 1]

(ii)

 ∆n = δn + λn −
∑

j∈C−1(n) λj

∆i = ∆i+1 − δi+1 − λi+1 + δi + 2λi −©n η(i+1)−1

j=η(i) λj, ∀i ∈ [n− 1]

Proof.

(i) si − yi + 2 yi+1 −
η̄(i+1)

©n
j=η̄(i)+1

yj

= yi −
∑
j∈C(i)

yj − yi + 2 yi+1 −
η̄(i+1)

©n
j=η̄(i)+1

yj (by the definition of si)

= 2 yi+1 −

(
η̄(i)

©n
j=i+1

yj +
η̄(i+1)

©n
j=η̄(i)+1

yj

)
(by the definition of C(i) and η̄(i))

= yi+1 −
η̄(i+1)

©n
j=i+2

yj = yi+1 −
∑

j∈C(i+1)

yj = si+1

(ii) ∆i+1 − δi+1 − λi+1 + δi + 2λi −
η(i+1)−1

©n
j=η(i)

λj

= δi + 2λi −
∑

j∈C−1(i+1)

λj −
η(i+1)−1

©n
j=η(i)

λj (by the definition of ∆i)

= δi + 2λi −

(
η(i+1)−1

©n
j=η(i)

λj +
i

©n
j=η(i+1)

λj

)
(by the definition of C−1(i) and η(i))

= δi + 2λi −
i

©n
j=η(i)

λj

= δi + λi −
i−1

©n
j=η(i)

λj = δi + λi −
∑

j∈C−1(i)

λj = ∆i

Furthermore, we introduce a relaxed version of the Lagrangian split (see Algorithm 4)

which allows the variation of m between a lower bound mmin and n. Algorithm 4 starts

by setting m to mmin then attempts to split the giant tour T . If the partitioning is

impossible for this fleet size, m is incremented. The algorithm terminates whenever a

split is found, the extreme case being when a single vehicle is used for every customer

(m = n).

19

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 4: Relaxed Lagrangian split (rxLs)

Input : giant tour T ; integer p.

Output: split vector v.

1 Calculate the Split(T) parameters: δi, C(i) and C−1(i) for all i ∈ [n];

2 feas := false;

3 m := mmin;

4 while not feas and m ≤ n do

5 v, feas := Ls(m, p, δ, C, C−1);

6 m := m+ 1;

7 end while

8 return v

4 Integration of Ls into a VNS

As a single split may provide poor results, split procedures are usually embedded into

metaheuristics where several giant tours are partitioned during the search (see Prins [8]

and Vidal et al. [19]). In this section, we present the main components of our integration

of Ls into a variable neighbourhood search (VNS).

VNS is a powerful metaheuristic proposed by Mladenović and Hansen [20]. It consists

in exploring gradually the neighbourhoods of an incumbent solution while applying a local

search at each step. If an improving solution is found, it is assigned to the incumbent

solution and the search restarts. The process terminates when all the neighbourhoods

have been explored. A comprehensive and informative review of the VNS methods and

their applications can be found in Hansen et al. [21].

4.1 Capacitated Randomised Nearest Neighbour (CRNN)

Initially, giant tours are built using a capacitated randomised version of the nearest

neighbour algorithm for the TSP (see Algorithm 5). This version is used to favour the

production of giant tours with an easily splittable structure. Initially, a customer u

is chosen and a variable C which represents a cumulated demand is set to q(u). The

following operations are then repeated while a customer remains unassigned to T :

Build a restricted candidate list (RCL) of maximum size rn which contains the nearest

unrouted customers to u such that their demand added to C does not exceed the capacity

Q. If RCL is not empty then a customer v∗ is chosen randomly from RCL, it is added at

the end of T and u set to v∗. Otherwise C is reset to 0 and the process restarts.

20

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

In Algorithm 5, nearestNeighbor(u, RCL) is a function which returns the nearest

unrouted neighbour of u not present in RCL. The function add(RCL, v) inserts the

customer v at the back of RCL while remove(RCL, i) removes the i-th element of RCL.

rand(a,b) returns a pseudo-randomly generated number in {a, . . . , b} with a ≤ b.

Algorithm 5: Capacitated Randomised Nearest Neighbour (CRNN)

Input : integer rn.

Output: giant tour T .

1 Build an empty giant tour T ;

2 cnt := 1, u := rand(1, n) and Tcnt := u;

3 S := V ′ r {u}, C := q(u) and cnt := cnt+ 1;

4 while cnt ≤ n do

5 RCL := ∅, sl := min(rn, n− cnt);
6 for k := 1 to sl do

7 v := nearestNeighbor(u, RCL);

8 add(RCL, v);

9 end for

10 i := 1;

11 while i < |RCL| do

12 if q(RCL(i)) + C > Q then

13 remove(RCL, i), i :=1;

14 else

15 i := i+ 1;

16 end if

17 end while

18 if RCL 6= ∅ then

19 v∗ := RCL(rand(0, |RCL|));

20 Tcnt := v∗, cnt := cnt+ 1, u := v∗ and C := C + q(v∗);

21 else

22 C := 0;

23 end if

24 end while

25 return T

4.2 Shaking procedure

Our shaking procedure, prototyped shake(T , k, r, TL), aims to perturb a giant tour T

locally. It consists in choosing randomly a position j then swapping k pairs of customers

in the subsequence (Tj−r, . . . , Tj, . . . , Tj+r) where r is an integer which represents the

21

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

radius in which the pairs are swapped around the position j. Also, the procedure ensures

that the returned giant tour does not belong to a list TL of giant tours. This list is a

long term memory which contains the giant tours that have already been considered for

partitioning during the search. We use it as a tabu mechanism to avoid re-examining the

same giant tour unnecessarily.

4.3 Concatenation procedure

The concatenation procedure, prototyped concat(x), consists in disconnecting the depot

from the routes of a routing x then reconnecting the resulting sequences in a nearest-

neighbour fashion. The terminal endpoint u of a sequence is connected to the nearest

endpoint u′ of another sequence. If u′ is a terminal endpoint then its sequence is reversed

and concatenated to the sequence of u. This is to favour the appearing of new, and

possibly better, split solutions. Indeed, reconcatenating a routing without taking into

consideration the distances may produce undesirable links between the sequences that

would lead an eventual split procedure to produce a nearly similar routing.

4.4 Split search

In order to fully exploit the potential of a giant tour T , we present the intensification

mechanism called split search (see Algorithm 6). This alternates between the giant tours’

space and the routings’ space using the relaxed Lagrangian split (see Algorithm 4), the

concatenation procedure (see Section 4.3), a variable neighbourhood descent (VND) and

a gradual large neighbourhood search (LNS) described below. Note that similar searches

were proposed in the literature (see Fig. 2 in Prins et al. [4]), however, to the best of our

knowledge, no one used LNS in an attempt to escape from local optima.

The VND permits to intensify the search by exploring the descent neighbourhoods of

a routing solution in a specified order restarting the search every time an improvement

is made. The resulting solution is thus a local optimum with respect to all the descent

neighbourhoods (see Hansen et al. [21]). Our VND explores successively the following de-

scent neighbourhoods: 2-opt intra-route (see Croes [22]), cross-exchange (see Savelsbergh

and Goetschalckx [23]), (1,0) node-relocation inter-route, (1,1) node-exchange inter-route

and (1,0) node-relocation intra-route (see Van Breedam [24]).

Given a routing x, the gradual LNS, prototyped gLNS(x, l, ρ), consists in partitioning

the set V ′ into l levels V1, . . . , Vl such that the customers in the level Vk are closer to the

22

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

depot than those in the level Vk+1, k = 1, . . . , l− 1. Starting from k = 1, ρ|Vk| customers

are removed from each level Vk of the routing x with ρ being a parameter in]0, 1[. The

customers of the level Vk are then reinserted to x using a cheapest insertion procedure

before moving to the level Vk+1. The search stops when all the levels have been considered

for removal and reinsertion.

Initially, Algorithm 6 assigns to x the routing obtained by splitting T using rxLs (see

Algorithm 4) and the function toSol(T , v) which returns the routing obtained by splitting

the giant tour T according to the split vector v. The routing x is improved using VND,

the giant tour T is added to the list TL (see Section 4.2) and T receives the concatenation

of x using concat(x) (see Section 4.3). The following operations are then performed while

there is an improvement: Split a copy T ′ of T using rxLs, apply a VND on the obtained

routing x′ and add T ′ to TL. If x′ improves x, the routine update(x, x′, T) assigns x′

to x and the concatenation of x to T , then it returns true and the search restarts with

the new giant tour T . Otherwise, update(x, x′, T) returns false and a gradual LNS is

applied on x′ followed by another VND in an attempt to unblock the search.

Algorithm 6: Split search (splitSearch)

Input : giant tour T ; integers k′max, p, l; real ρ; list of giant tours TL.

Output: solution x.

1 x := toSol(T , rxLs(T , p));

2 x := VND(x, k′max);

3 TL := TL ∪ {T};
4 T := concat(x);

5 repeat

6 T ′ := T ;

7 x′ := toSol(T ′, rxLs(T ′, p));

8 x′ := VND(x′, k′max);

9 TL := TL ∪ T ′;
10 if not update(x, x′, T) then

11 x′ := gLNS(x′, l, ρ);

12 x′ := VND(x′, k′max);

13 update(x, x′, T);

14 end if

15 until no improvement ;

16 TL := TL ∪ T ;

17 return x

23

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

4.5 Reduction tests

Salhi and Sari [25] proposed a mechanism called reduction tests which reduces the size of

a routing problem instance by eliminating edges which would be unlikely present in the

optimal routing. It consists in defining a boolean pos(i, j) which equals true if inserting

the node j next to the node i is allowed in the search, false otherwise, i and j being two

elements of V . In our method, this boolean is calculated initially as pos(i, j) = true if

c(i, j) < β c̄(i), false otherwise, where i and j are two customers, β is a positive number

and c̄(i) is the average cost of travelling from customer i to other customers in the graph.

pos(i, j) is set to false if j equals i and set to true if i or j is the depot.

4.6 Starter

In order to obtain a good initial routing quickly, we use a starter algorithm (see Algo-

rithm 7) which generates a giant tour using the CRNN algorithm (see Section 4.1) then

examines the obtained giant tour using the split search (see Section 4.4). The split search

used does not include yet the tabu list TL (see line 4). This process is performed ns times

and the best routing obtained is returned.

Algorithm 7: Starter (starter)

Input : integers k′max, p, l, ns, rn; real ρ.

Output: solution xbest.

1 c(x) := M ;

2 for i := 1 to ns do

3 T := CRNN(rn);

4 x := splitSearch(T , k′max, p, l, ρ);

5 if c(x) < c(xbest) then xbest := x;

6 end for

7 return xbest

4.7 Main algorithm (Ls×VNS)

The main algorithm consists of two main parts (see Algorithm 8). The first one initialises

the tabu list TL to the empty set (see Section 4.2), performs the reduction tests (see

Section 4.5) using a function reduction(β) then attempts to build quickly a good initial

routing using the starter algorithm (see Section 4.6). The second part consists of an

inner-loop, which is a classical VNS, controlled by an outer loop. The outer-loop starts

by concatenating the best routing xbest, initially found in the first part of the algorithm,

24

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

into a giant tour T and setting k to 1. The inner loop copies T into a giant tour T ′

which is perturbed using the shaking procedure (see Section 4.2). T ′ is then added to TL

before being examined using the split search (see Section 4.4). If the obtained routing

improves the current best one, T is set to T ′, the best routing is updated and k is reset

to 1. Otherwise, k is incremented. The inner-loop terminates when k exceeds kmax. The

stopping criterion for the outer-loop is reached whenever ni non-improving iterations

passed or when a time limit tmax has been exceeded.

Algorithm 8: Integration of Ls into VNS (Ls×VNS)

Input : integers kmax, k′max, p, r, l, ns, rn, ni, tmax; reals β, ρ

Output: solution xbest.

1 TL := ∅;
2 reduction(β);

3 xbest := starter(k′max, p, l, ns, rn, ρ);

4 repeat

5 T := concat(xbest);

6 k := 1;

7 repeat

8 T ′ := T ;

9 T ′ := shake(T ′, k, r, TL);

10 TL := TL ∪ T ′;
11 x := splitSearch(T ′, k′max, p, l, ρ, TL);

12 if c(x) < c(xbest) then

13 T := T ′;

14 xbest := x;

15 k := 1;

16 else

17 k := k + 1;

18 end if

19 until k > kmax;

20 until stopping criterion;

21 return xbest

In Ls×VNS (see Algorithm 8), if kmax is set to 1 then the algorithm becomes an

iterated local search (see Algorithm 2 in Prins [26]). Also, Ls×VNS resembles an evolu-

tionary local search (ELS) but it is slightly different as our shaking procedure depends

on the counter k which is not the case in ELS (see Algorithm 3 in Prins [26]).

25

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

5 Computational experiments

The experiments were conducted on an Intel Core i3 with 2.20GHz×4 speed and 3.9

Gbytes RAM running Linux. The algorithms are coded in C++. Two sets of experiments

are performed. The first set assesses the ability of the Lagrangian split (see Algorithm 3)

in producing good split solutions quickly (see Section 5.1), whereas, the second assesses

the performance of our integration of Ls into a VNS in comparison with state-of-the-art

methods (see Section 5.2).

5.1 Results for the Lagrangian split

The Lagrangian split (Ls) is a key algorithm in our approach for solving the CVRP. It

is called several times and impacts highly on the final routing solution. In this set of

experiments, we assess the performance of Ls both in terms of split quality and CPU

time. To this end, we propose to conduct the experiments as follows: Given a CVRP

instance for which we know a best routing xbest, a giant tour T is built by concatenating

xbest using the concat(xbest) procedure (see Section 4.3). Using Ls, the giant tour T

is then split into the same number of routes present in xbest. The cost of the obtained

routing is then compared with c(xbest) and the computing time is recorded.

The dataset proposed recently by Uchoa et al. [27] consists of 100 instances ranging

from 100 to 1000 customers generated by varying the following four attributes: the depot

positioning, the customer positioning, the demand distribution and the average route

size. Furthermore, the best solutions obtained by Uchoa et al. [27] are also available in

[28] making this dataset easily accessible.

After preliminary tests, we observed that the two parameters λ0 and p were the most

impacting on the performance of Ls. Therefore, we decided to test several combinations

using these two parameters. Table 1 summarizes the results for the most representative

tunings each corresponding to a version of Ls which will be denoted by Ls-k for k =

1, . . . , 4. The first three columns correspond to the tuning number, the initial value of

λ0
i and the value of p respectively. Columns 4, 5, 6 and 7 are the minimum, the average,

the maximum and the median deviations of the routing value corresponding to the split

produced by Ls in comparison with the best routing of Uchoa et al. [27]. Columns 8,

9, 10 and 11 provide the same statistics for the CPU times. A contact means that Ls

could produce a routing with a value equal to the value of the best routing found by

26

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Uchoa et al. [27]. Column 10 indicates the number of contacts obtained out of 100.

Results for Ls-1 are presented to demonstrate the sensitivity of Ls towards the choice

of λ0 and p. In terms of split quality, the average deviation is found to be always less

than 0.32 % and the median deviation null for all settings. The best tuning corresponds

to Ls-4 with an average and maximum deviations of 0.02 % and 0.53 % respectively, and

92 contacts made out of 100. Regarding the CPU times, on average, all the settings can

split a giant tour within 0.10 secs except in some special cases for Ls-4.

Table 1
Results for various combinations of Lagrangian split parameters.

Tuning Deviation (%) CPU (secs) # of

λ0
i p Min. Avg. Max. Med. Min. Avg. Max. Med. contacts

1 0 30 0.00 0.32 8.31 0.00 0.02 0.10 0.40 0.08 79

2 10×max
j∈[n]

δj 20 0.00 0.03 0.85 0.00 0.01 0.10 0.71 0.07 90

3 |C(i)| max
j∈C(i)

δj 15 0.00 0.03 1.23 0.00 0.01 0.09 1.24 0.06 91

4 |C(i)|max
j∈[n]

δj 15 0.00 0.02 0.53 0.00 0.00 0.10 3.32 0.05 92

Table 2 presents the characteristics of the instances for which Ls-4 provides the worst

CPU times. Columns 1 and 2 are the instance name and the number of routes present in

the best routing obtained by Uchoa et al. [27]. Column 3 is the percentage deviation of the

routing obtained using Ls with m vehicles and Column 4 is the CPU time spent for that

partitioning. The remaining columns are the instance characteristics as described in [27].

The considered dataset does not contain any instance with the same characteristics as

X-n573-k30. Thus, we can not conclude that Ls performs slowly on that type of instances.

Furthermore, this behaviour may be sporadic given the gap between the largest and the

second largest CPU times. Regarding the split quality, a relatively slow splitting does

not imply a poor splitting given the null deviation obtained on X-n573-k30.

We observe from these experiments that, on average, Ls is able to provide quickly

good split solutions in a wide range of situations. Furthermore, the fact that Ls provides

sometimes a suboptimal split solution allows a soft diversification of the search when Ls is

integrated into an intensification mechanism. Indeed, we observed during the experiments

that small deteriorations of the objective induced by Ls during the split search (see

Algorithm 6) followed by the VND help the search to escape from local optima.

27

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 2
Characteristics of the three instances for which Ls-4 provides the worst CPU times (see [27]).

Instance* m Dev Ls CPU Depot Customers Demandsx Q Max. route

(%) (secs) positioning** positioning+ size

X-n573-k30 30 0.00 3.32 E C SL 210 19.1
X-n957-k87 87 0.00 0.27 R RC U 11 11.0
X-n936-k151 159 0.31 0.24 C R SL 138 6.2

*
X-nA-kB: Instance with A nodes (including the depot) and a minimum of B vehicles.

**
R: Random, C: Central, E: Eccentric.

+
C: Clustered, R: Random, RC: Random-Clustered.

x
SL (Many small values, few large values): Most demands are generated uniformly in [1,10],
the remaining from [50,100], U: Unitary.

5.2 Results for the Ls×VNS

In this section, we assess the performance of Ls×VNS in comparison with state-of-the-art

CVRP solution methods.

5.2.1 Test datasets

We consider two traditional CVRP datasets: the one of Christofides et al. [29] and the

one of Golden et al. [30] referred as CMT and G datasets respectively. Experiments are

conducted on instances which do not have distance restrictions. Part of the considered

CMT instances have their customers positioned randomly on a grid (CMT1, ..., CMT5)

whereas, in the other part (CMT11 and CMT12), the customers are clustered. Customers

in the G dataset are positioned following geometrical patterns. The sizes range from 50 to

199 customers and from 240 to 483 for the considered CMT and G instances respectively.

Our method is compared with the four best existing heuristic methods we are aware

of: the edge assembly based memetic algorithm of Nagata and Bräysy [31], the hybrid

genetic search with adaptive diversity control of Vidal et al. [19] and the two cooperative

parallel algorithms of Groër et al. [32] and Jin et al. [33] which are referred as EAMA,

HGSADC, CPG and CPMs respectively. Euclidean distances are calculated following the

formula presented in Cordeau et al. [34] that is cij = 10−db10dcij + 0.5c with d equal to

7. The cost of the returned solutions are then recalculated with double-precision before

being reported.

28

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

5.2.2 Parameter calibration

Preliminary experiments were conducted on the instances CMT5, G12 and G20 for cali-

bration. Those instances were selected mainly because of their representativity and their

relative difficulty. After calibration, we selected the following parameter setting:

(kmax, k
′
max, p, r, l, ns, rn, ni, tmax, β, ρ) = (5, 5, 20, 20, 8, 5, 2, 300, 10800, 1.25, 0.3)

with λ0
i being set to |C(i)|maxj∈C(i) δj and tmax measured in seconds. This parameter

setting appeared to provide the best trade-off between solution quality and computing

times.

5.2.3 Computational results

The results are presented in Table 3. The first two columns indicate the instance, the

number of customers and the minimum number of vehicles used in the relaxed Lagrangian

split (see Algorithm 4). The third column indicates the best known solution values (BKS)

and proven optimal ones (underlined values) according to [27] and [28]. Columns 4,

5, 6 and 7 indicate the best results presented for EAMA, CPG, HGSADC and CPMs

respectively. CPMs has not been tested on the CMT dataset. The two last columns

present the best results obtained after 10 runs of Ls x VNS and the average CPU time

per run in minutes respectively. In the bottom part of Table 3, the first three rows

indicate the average deviation for the CMT dataset, for the G dataset and for all the

instances respectively. The three last rows indicate the computing resource on which the

methods have been tested, the number of runs per instance and the computing time.

Note that CPG and CPMs have been tested on computer clusters involving several nodes

each having a number of processors.

The results indicate that Ls×VNS has an average deviation of 0.22 % for the CMT

dataset, 1.23 % for the G dataset and 0.85 % overall. It could find only two best known

values among seventeen on these two extensively studied datasets. Our machine was

not find in Dongarra [35], however, its performance is estimated to 4.55 MFlop/s in

another source [36]. Based on this data, Ls×VNS performs relatively longer than the

other serial algorithms (EAMA and HGSADC) as we use a computer which is almost

2.89 times faster than the Pentium IV 3.0 Ghz (see EC.3 in Vidal et al. [19]). As EAMA,

CPG and HGSADC find better results for the CMT dataset than for the G dataset, the

best method in terms of average deviations seems to be CPMs even though it was not

29

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

tested on the CMT dataset. Nonetheless, given its overall average deviation, HGSADC

remains a leading method as it is a serial method and it was not designed particularly

for the CVRP as the CPMs. Furthermore, although EAMA is the oldest method, it is

not dominated as it provides the best result for CMT5, a value which is not obtained by

the other considered methods.

Table 3
Results of Ls x VNS on the Christofides et al. (1979) and Golden et al. (1998) datasets.

Instance (n,mmin) BKS EAMA CPG HGSADC CPMs Ls×VNS

Value CPU
(mins)

CMT1 (50,5) 524.61 524.61 524.61 524.61 - 524.61 0.55
CMT2 (75,10) 835.26 835.26 835.26 835.26 - 835.77 1.81
CMT3 (100,8) 826.14 826.14 826.14 826.14 - 827.39 1.74
CMT4 (150,12) 1028.42 1028.42 1028.42 1028.42 - 1031.96 6.10
CMT5 (199,16) 1291.29 1291.29 1291.45 1291.74 - 1303.79 14.88
CMT11 (120,7) 1042.11 1042.11 1042.11 1042.11 - 1042.12 3.51
CMT12 (100,10) 819.56 819.56 819.56 819.56 - 819.56 1.52
G9 (255,14) 579.71 580.60 579.71 579.71 579.71 586.79 23.05
G10 (323,16) 735.66 738.92 737.28 736.26 735.66 749.92 33.67
G11 (399,17) 912.03 917.17 913.35 912.84 912.03 924.22 74.04
G12 (483,19) 1101.50 1108.48 1102.76 1102.69 1101.50 1119.39 170.64
G13 (252,26) 857.19 857.19 857.19 857.19 857.19 861.27 25.95
G14 (320,29) 1080.55 1080.55 1080.55 1080.55 1080.55 1093.41 37.40
G15 (396,33) 1337.87 1340.24 1338.19 1337.92 1337.87 1357.25 67.36
G16 (480,36) 1611.56 1620.56 1613.66 1612.50 1611.56 1636.82 159.37
G17 (240,22) 707.76 707.76 707.76 707.76 707.76 708.53 23.00
G18 (300,27) 995.13 995.39 995.13 995.13 997.58 1012.79 48.32
G19 (360,33) 1365.60 1366.14 1365.60 1365.60 1365.60 1376.12 80.34
G20 (420,38) 1817.59 1820.54 1818.32 1818.25 1817.89 1840.45 137.99

Avg. dev (CMT) 0.00 0.00 0.00 - 0.22
Avg. dev (G) 0.23 0.06 0.03 0.02 1.23
Avg. dev (overall) 0.15 0.04 0.02 - 0.85
Computing Xeon Cluster AMD Cluster Core i3
resource 3.2 GHz Opt. 250 2.20 GHz×4

2.4 GHz
Runs per instance 10 5 10 10 10
Avg. Time* 26.86 - 59.59 32.62 47.96
*

Time for HGSADC is scaled to a Pentium IV 3.0 GHz as reported by Vidal et al. [19].
Computing times were not reported for CPG by Groër et al. [32] but a time limit of 5
minutes were fixed. Time for CPMs is calculated for the G set only.

30

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Overall, Ls×VNS is able to find relatively good solutions on the CMT and G datasets

which have been extensively studied in the literature. In addition, our approach is novel

and flexible enough to cater for related routing problems by redefining suitably the com-

patibility sets (see Section 2.2).

6 Conclusion

In this paper, a Lagrangian relaxation method named Lagrangian split (Ls) is proposed

to solve the giant tour partitioning problem. This procedure consists of a repair and

a local search algorithms embedded into a subgradient method. The mathematical va-

lidity and the complexity of the repair algorithm are also provided. The Ls procedure

is then integrated into a variable neighbourhood search (VNS) alternating between the

spaces of giant tours and routing solutions, using innovative shaking and concatenat-

ing procedures, variable neighbourhood descent, large neighbourhood search and tabu

search mechanisms. Experiments were conducted to assess the performance of the Ls

procedure alone and its integration into the VNS. According to our results, Ls is able to

find quickly good split solutions in a wide range of situations and its integration to VNS

provides relatively good solutions to extensively studied instances of the literature. This

study offers interesting perspectives which are the extension of the Lagrangian split to

tackle additional aspects such as the presence of time windows, distance restrictions and

heterogeneous fleets producing a novel and efficient methodology for the resolution of a

variety of vehicle routing problems.

Acknowledgements

The authors would like to thank both referees for their constructive comments that im-

proved the presentation as well as the content of the paper.

References

[1] G. Laporte, The traveling salesman problem: An overview of exact and approximate

algorithms, European Journal of Operational Research 59 (1992) 231 – 247.

31

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

[2] D. Applegate, R. Bixby, V. Chvátal, W. Cook, The traveling salesman problem: a

computational study Princeton series in applied mathematics, Princeton University

Press, 2006.

[3] P. Toth, D. Vigo, Vehicle Routing: Problems, Methods, and Applications, Vol. 18,

SIAM, 2014.

[4] C. Prins, P. Lacomme, C. Prodhon, Order-first split-second methods for vehicle

routing problems: A review, Transportation Research Part C 40 (2014) 179–200.

[5] J. E. Beasley, Route first-cluster second methods for vehicle routing, Omega 11

(1983) 403 – 408.

[6] B. L. Golden, A. Assad, L. Levy, F. Gheysens, The fleet size and mix vehicle routing

problem, Computers & Operations Research 11 (1984) 49 – 66.

[7] G. Ulusoy, The fleet size and mix problem for capacitated arc routing, European

Journal of Operational Research 22 (1985) 329–337.

[8] C. Prins, A simple and effective evolutionary algorithm for the vehicle routing prob-

lem, Computers & Operations Research 31 (2004) 1985 – 2002.

[9] A. Imran, S. Salhi, N. A. Wassan, A variable neighborhood-based heuristic for the

heterogeneous fleet vehicle routing problem, European Journal of Operational Re-

search 197 (2009) 509 – 518.

[10] J. G. Villegas, C. Prins, C. Prodhon, A. Medaglia, N. Velasco, A GRASP with

evolutionary path relinking for the truck and trailer routing problem, Computers &

Operations Research 38 (2011) 1319 – 1334.

[11] T. Vidal, T. G. Crainic, M. Gendreau, C. Prins, A unified solution framework for

multi-attribute vehicle routing problems, European Journal of Operational Research

234 (2014) 658–673.

[12] M. C. Bouzid, H. Aı̈t Haddadene, S. Salhi, Splitting a giant tour using integer linear

programming, Electronic Notes in Discrete Mathematics 47 (2015) 245 – 252, the

3rd International Conference on Variable Neighborhood Search (VNS’14).

[13] A. Makhorin, Gnu linear programming kit version 4.52, available at:

http://www.gnu.org/software/glpk/glpk.html.

[14] M. L. Fisher, The lagrangian relaxation method for solving integer programming

problems, Management Science 50 (2004) 1861–1871.

32

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

[15] G. Cornuejols, M. L. Fisher, G. L. Nemhauser, Location of bank accounts to optimize

float: An analytic study of exact and approximate algorithms, Management Science

23 (1977) 789–810.

[16] N. Kohl, O. B. G. Madsen, An optimization algorithm for the vehicle routing problem

with time windows based on lagrangian relaxation, Operations Research 45 (1997)

395–406.

[17] A. M. Nezhad, H. Manzour, S. Salhi, Lagrangean relaxation heuristics for the unca-

pacitated single-source multi-product facility location problem, International Journal

of Production Economics 145 (2013) 713– 723.

[18] A. M. Geoffrion, Lagrangian relaxation for integer programming, in: Jünger et al.

(Ed.), 50 Years of Integer Programming 1958-2008, Springer, 2010, pp. 243–281.

[19] T. Vidal, T. Crainic, M. Gendreau, N. Lahrichi, W. Rei, A hybrid genetic algorithm

for multidepot and periodic vehicle routing problems, Operations Research 60 (2012)

611–624.

[20] N. Mladenović, P. Hansen, Variable neighborhood search, Computers & Operations

Research 24 (1997) 1097 – 1100.

[21] P. Hansen, N. Mladenović, J. A. Moreno Pérez, Variable neighbourhood search:

methods and applications, Annals of Operations Research 175 (2010) 367–407.

[22] G. A. Croes, A method for solving traveling-salesman problems, Operations Research

6 (1958) 791–812.

[23] M. W. P. Savelsbergh, M. Goetschalckx, An efficient approximation algorithm for

the fixed routes problem, Research Report, University of Georgia, Atlanta (1992).

[24] A. Van Breedam, Improvement heuristics for the vehicle routing problem based on

simulated annealing, European Journal of Operational Research 86 (1995) 480–490.

[25] S. Salhi, M. Sari, A multi-level composite heuristic for the multi-depot vehicle fleet

mix problem, European Journal of Operational Research 103 (1997) 95 – 112.

[26] C. Prins, A GRASP×Evolutionary local search hybrid for the vehicle routing prob-

lem, in: F. Pereira, J. Tavares (Eds.), Bio-inspired Algorithms for the Vehicle Rout-

ing Problem, Vol. 161 of Studies in Computational Intelligence, Springer, 2009, pp.

35–53.

[27] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, A. Subramanian, T. Vidal, New benchmark

instances for the capacitated vehicle routing problem, Research Report Engenharia

de Produção, Universidade Federal Fluminense (2014).

33

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

[28] CVRPLIB, http://vrp.galgos.inf.puc-rio.br/ (Accessed 16.10.2015).

[29] N. Chrisofides, A. Mingozzi, P. Toth, The vehicle routing problem, in: N. Chrisofides,

A. Mingozzi, P. Toth, C. Sandi (Eds.), Combinatorial Optimization, Wiley, 1979, pp.

315–338.

[30] B. L. Golden, E. A. Wasil, , J. P. Kelly, I.-M. Chao, The impact of metaheuristics on

solving the vehicle routing problem: Algorithms, problem sets, and computational

results, in: T. Crainic, G. Laporte (Eds.), Fleet Management and Logistics, Centre

for Research on Transportation, Springer, 1998, pp. 33–56.

[31] Y. Nagata, O. Brysy, Edge assembly-based memetic algorithm for the capacitated

vehicle routing problem, Networks 54 (2009) 205–215.

[32] C. Groër, B. L. Golden, E. A. Wasil, A parallel algorithm for the vehicle routing

problem, INFORMS Journal on Computing 23 (2011) 315–330.

[33] J. Jin, T. Crainic, A. Løkketangen, A cooperative parallel metaheuristic for the

capacitated vehicle routing problem, Computers & Operations Research 44 (2014)

33 – 41.

[34] J. Cordeau, M. Gendreau, G. Laporte, J. Potvin, F. Semet, A guide to vehicle routing

heuristics, The Journal of the Operational Research Society 53 (2002) 512–522.

[35] J. J. Dongarra, Performance of various computers using standard linear equations

software, (Linpack benchmark report), Computer Science Technical Report CS-89-

85, University of Tennessee (2014).

[36] Milkyway: CPU Performance, http://milkyway.cs.rpi.edu/milkyway/cpu list.php

(Accessed 05.12.2015).

34

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

