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Abstract

In this manuscript we consider the development of fast iterative solvers for Stokes control problems, an
important class of PDE-constrained optimization problems. In particular we wish to develop effective pre-
conditioners for the matrix systems arising from finite element discretizations of time-dependent variants
of such problems. To do this we consider a suitable rearrangement of the matrix systems, and exploit the
saddle point structure of many of the relevant sub-matrices involved – we may then use this to construct
representations of these sub-matrices based on good approximations of their (1, 1)-block and Schur comple-
ment. We test our recommended iterative methods on a distributed control problem with Dirichlet boundary
conditions, and on a time-periodic problem.

Keywords: PDE-constrained optimization, time-dependent Stokes control, preconditioning, saddle point
system, Schur complement, commutator argument.

1. Introduction

Of late, the efficient numerical solution of PDE-constrained optimization problems has been an active
area of research (see [30] for an introduction to PDE-constrained optimization). One of the main classes of
such problems is that of Stokes control problems (which arise from flow control), and this is the class that
we seek to examine in this paper. Many researchers have sought to develop solution strategies for the matrix
systems resulting from finite element discretizations of time-independent [20, 29, 32] and time-dependent
[7, 10, 11, 28] versions of these setups. It is a substantial challenge in particular to build solvers for the
complex matrix systems that arise in the time-dependent case, and this is the problem on which we focus
in this paper.

When discretized using finite elements, the resulting matrix systems are of very high dimension, even
in comparison to equivalent time-independent formulations, and are also sparse. It is therefore extremely
desirable to develop fast and robust iterative methods for their solution. We do this by exploiting the saddle
point structure of the relevant matrices to construct effective preconditioners for the entire system. Previous
research into this problem has also exploited the structure of the matrix systems: in [7] multigrid routines
were developed using appropriate smoothers and prolongation/restriction operators, and in [28] saddle point
preconditioners which exhibited mesh-independence were constructed and applied within Minres. In this
paper a preconditioned Minres method is also proposed, but with the goal that the solver exhibits favourable
convergence properties as both mesh-size and regularization parameter are modified.

In this paper we consider such problems with different types of conditions at initial (and final) time:
both initial conditions and time-periodic conditions. We wish our solvers for these problems to be fast
and effective for a range of parameter values, to involve the storage of small matrices compared with the
dimension of the entire system, and to be parallelizable. To do this we build on work undertaken by the
author in [20, 21] when solving matrix systems from time-independent Stokes and Navier-Stokes control
problems, to tackle the larger and more complex systems arising when a time-dependent component is
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introduced. We find that this methodology can reasonably be applied to the time-dependent set-up, and we
wish to present numerical results that validate this assertion.

This paper is structured as follows. In this section we state the problems that we wish to examine, and
introduce some basic theory of saddle point systems. In Section 2 we derive the matrix systems of which
the solution is required; in Section 3 we devise preconditioning strategies for these systems, which may be
applied within a suitable iterative method. In Section 4 we present numerical results to demonstrate the
performance of our methods, and finally in Section 5 we make some concluding comments.

1.1. Problem statement

The two problems on which we wish to focus in this paper are both time-dependent variants of the widely-
considered Stokes control problem. The first is the following distributed control problem with Dirichlet
boundary conditions:

(P1) min
~v,~u

1

2

∫ T

0

∫
Ω

‖~v − ~vd‖2 dΩdt+
β

2

∫ T

0

∫
Ω

‖~u‖2 dΩdt

s.t.
∂~v

∂t
−∇2~v +∇p = ~u, in Ω× [0, T ],

−∇ · ~v = 0, in Ω× [0, T ],

~v(x, t) = ~f(x, t), on ∂Ω× [0, T ],

~v(x, 0) = ~g(x), on Ω.

This problem is solved for spatial coordinates given by x ∈ Rd, d ∈ {2, 3}, and time t, on the space-time
domain Ω× [0, T ] with boundary ∂Ω× [0, T ]. The state variables for this problem are given by the velocity
~v (defined in d dimensions) and the pressure p. The control variable is denoted as ~u (in d dimensions), and
~vd defines the desired state. The positive parameter β denotes the regularization parameter (or Tikhonov
parameter), and indicates at what ratio one prioritizes the realization of a state variable close to the desired

state as opposed to the minimization of the control. The functions ~f and ~g are defined over the spatial
coordinates (and in the case of ~f over time as well), and correspond to boundary conditions and initial
conditions respectively. We note that it would be equally feasible to include a natural boundary condition

of the form ∂~v(x,t)
∂~n − p~n = ~f(x, t) (where ~n is the outward facing normal vector to Ω, and ∂

∂~n denotes the
normal derivative), or indeed a Neumann/mixed boundary condition, instead of a Dirichlet condition. The
methodology introduced in this paper could also be tailored to these problems; however the performance of
our preconditioner may change or degrade slightly, as has been observed for the forward problem.

The second problem is of a similar flavour to that stated above, but is a time-periodic problem. We
write this as

(P2) min
~v,~u

1

2

∫ T

0

∫
Ω

‖~v − ~vd‖2 dΩdt+
β

2

∫ T

0

∫
Ω

‖~u‖2 dΩdt

s.t.
∂~v

∂t
−∇2~v +∇p = ~u, in Ω× [0, T ],

−∇ · ~v = 0, in Ω× [0, T ],

~v(x, t) = ~f(x, t), on ∂Ω× [0, T ],

~v(x, 0) = ~v(x, T ), on Ω.

Here there is no longer an initial condition corresponding to a given function, but instead a restriction
that the velocity profile must be the same at initial and final times. This creates different features when
attempting to solve the problem at hand.

The problems, as well as the matrix systems arising from them, are of complex structure, and so finding
ways to solve these problems efficiently is a highly non-trivial task. In the next section, we discuss the form
of matrices which we may often consider when carrying out the solution process.
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1.2. Saddle point systems

When discretizing the problems (P1) and (P2) using a finite element method, the resulting matrix
systems are of saddle point form. We therefore wish to briefly introduce such systems and some widely used
approximations of them.

The general saddle point systems that we consider are of the form[
Φ ΨT

Ψ −Θ

]
︸ ︷︷ ︸

A

[
x1

x2

]
=

[
b1

b2

]
, (1)

where Φ ∈ Rm×m, Ψ ∈ Rn×m (with n ≤ m) has full row rank, and Θ ∈ Rn×n. In Section 3.1, we describe
how matrices with saddle point structure arise for the problems under consideration in this paper. For the
matrix systems that we examine, Φ and Θ are symmetric (with Φ also invertible), and all of the matrices
are large and sparse.

It is well-known (see [8, 12, 13]) that some preconditioners for the above matrix system, which are
frequently very effective, are given by

P =

[
Φ 0
0 Θ + ΨΦ−1ΨT

]
︸ ︷︷ ︸

P1

or

[
Φ 0
Ψ ±

(
Θ + ΨΦ−1ΨT

) ]︸ ︷︷ ︸
P+

2 or P−
2

. (2)

Specifically it is known that as long as the preconditioned matrix system is invertible,

λ
((
P+

2

)−1A
)
∈ {±1} , λ

((
P−2
)−1A

)
∈ {1} ,

for all suitable Φ, Ψ and Θ, and

λ
(
P−1

1 A
)
∈
{

1,
1

2
(1±

√
5)

}
,

if Θ = 0. Furthermore, if Φ and Θ are positive definite (as we will often find within this paper), the
eigenvalues of P−1

1 A can be shown to be well clustered (see [1, 19, 27]).
We note that the two common components of the preconditioners P1, P±2 are the inverses of the (1, 1)-

block Φ and the (negative) Schur complement S := Θ + ΨΦ−1ΨT . Furthermore, we note that for the
preconditioners in (2) to be applicable in practice (in part because S is typically dense even if A is sparse),
we need to consider approximations of Φ and S to create preconditioners of the form

P̂ =

[
Φ̂ 0

0 Ŝ

]
or

[
Φ̂ 0

Ψ ±Ŝ

]
. (3)

We will therefore return later to the theme of approximating the inverses of the (1, 1)-block and Schur
complement of matrices arising from time-dependent Stokes control problems. As we are preconditioning
sparse matrix systems the goal is to develop accurate representations of Φ−1 and S−1, which are themselves
cheap to apply.

2. Matrix systems

We now consider the matrix systems obtained when discretizing Problems (P1) and (P2) using a finite
element method. For this work we use the well-known Taylor-Hood element : that is we discretize the velocity
~v (and control ~u) using piecewise quadratic basis functions, and discretize the pressure p using piecewise
linear basis functions. This is far from the only option for the finite element discretization, but we point out
that the methodology introduced in this paper may also be applied to alternative discretization strategies.
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We examine a discretize-then-optimize approach, where we build a discrete Lagrangian and then differ-
entiate with respect to discrete variables to obtain optimality conditions.1 Let us first consider discretizing
the forward problem (that is the time-dependent Stokes equations) from (P1) or (P2) using a backward
Euler method in time. This means that at each time-step j = 1, ..., Nt, we obtain equations of the form

~vj − ~vj−1

τ
−∇2~vj +∇pj = ~uj , (4)

−∇ · ~vj = 0,

where ~vj , pj and ~uj denote the approximations of the velocity, pressure and control at the j-th time-step,
and τ denotes the (constant) time-step used. We also introduce the notation h to represent the mesh-size
used.

Discretizing the equations (4) using a finite element method, and compiling a matrix system at each
time-step, gives for Problem (P1):

τ−1M + K BT

B 0
−τ−1M 0 τ−1M + K BT

0 0 B 0
. . .

. . .
. . .

. . .

. . .
. . .

. . .

−τ−1M 0 τ−1M + K BT

0 0 B 0


︸ ︷︷ ︸

K1



v1

p1

v2

p2

...

...
vNt

pNt



−



M
0

M
0

. . .

M
0


︸ ︷︷ ︸

N


u1

u2

...
uNt

 =



τ−1ṽ0 + c
d
c
d
...
...
c
d


︸ ︷︷ ︸

f

. (5)

Here, the vectors vj , pj and uj relate to the values of ~v, p and ~u at the j-th time-step (we take Nt time-steps,
and so j = 1, ..., Nt). The matrices M and K are d×d block diagonal matrices containing finite element mass
and stiffness matrices on the block diagonals (these are matrices containing entries of the form

∫
Ω
φiφj dΩ

and
∫

Ω
∇φi ·∇φj dΩ respectively). The matrix B is given by [Bx1

Bx2
] when d = 2 (and x = [x1, x2]T ), and

[Bx1 Bx2 Bx3 ] when d = 3 (and x = [x1, x2, x3]T ), with Bxk
containing entries of the form

∫
Ω
ψi

∂φj

∂xk
dΩ.

Further, ṽ0 contains terms of the form
∫

Ω
~v0φi dΩ. In all of these definitions, {φi} denote the (piecewise

quadratic) Q2 finite element basis functions that we use to discretize v and u, with {ψi} representing the
(piecewise linear) Q1 finite element basis functions used to discretize p. The vectors c and d arise from the
boundary conditions imposed.

1The alternative optimize-then-discretize method, which will generate a matrix system of similar structure, involves finding
optimality conditions from a continuous Lagrangian and then discretizing these conditions.
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For Problem (P2), one obtains the same system as above, except with K1 replaced by

K2 =



τ−1M + K BT −τ−1M 0
B 0 0 0

−τ−1M 0 τ−1M + K BT

0 0 B 0
. . .

. . .
. . .

. . .

. . .
. . .

. . .

−τ−1M 0 τ−1M + K BT

0 0 B 0


,

and the right-hand side vector without the τ−1ṽ0 term, to take account of the periodic boundary condition.
Our next consideration is the cost functional

J(~v, ~u) =
1

2

∫ T

0

∫
Ω

‖~v − ~vd‖2 dΩdt+
β

2

∫ T

0

∫
Ω

‖~u‖2 dΩdt,

that we wish to minimize. We approximate this on the discrete space by

J (v,u) =
τ

2

Nt∑
j=1

vTj Mvj − τ
Nt∑
j=1

zTj vj +
βτ

2

Nt∑
j=1

uTj Muj ,

where we neglect additive constants independent of v and u. Here zj corresponds to integrals of the form∫
Ω
~vdφi dΩ at the j-th time-step. Naturally the precise structure of J (v,u) will depend on the quadrature

rule(s) employed, but we note that the methodology introduced in this paper may be tailored to any
reasonable choices made.

At this point, the discrete Lagrangian is given by

L(v,p,u,λ,µ) = J (v,u) + qT
(
K1/2y −Nu− f

)
,

where

y =
[
vT1 pT1 vT2 pT2 · · · vTNt

pTNt

]T
,

u =
[
uT1 uT2 · · · uTNt

]T
,

q =
[
λT1 µT1 λT2 µT2 · · · λTNt

µTNt

]T
,

and K1/2 denotes K1 or K2 depending on whether Problem (P1) or (P2) is being solved.
The quantities λ1, ...,λNt

and µ1, ...,µNt
denote the discretized versions of the adjoint variables λ and

µ at each time-step. Formally we state that λ is the adjoint variable to v (and we therefore discretize this
using Q2 basis functions), and that µ is the adjoint variable to p (and we therefore discretize this using Q1
basis functions).

To obtain the discrete optimality conditions, we must now differentiate with respect to the adjoint
variables λ and µ, the control variable u, and the state variables v and p. Doing so results in the following
matrix system:  τM0 0 KT1/2

0 βτM −N T

K1/2 −N 0

 y
u
q

 =

 τz
0
f

 , (6)

where

M0 = blkdiag (M, 0,M, 0, ...,M, 0) ,

M = blkdiag (M,M, ...,M) ,

z =
[
zT1 zT2 · · · zTNt

]T
.
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The first line of the matrix system (6) relates to the adjoint equations, the second line to the gradient
equation, and the third line to the state equations.

Eliminating the gradient equation from (6) enables us to reduce the system as follows:[
τM0 KT1/2
K1/2 −β−1τ−1M0

] [
y
q

]
=

[
τz
f

]
. (7)

We now consider a rearrangement of the reduced matrix system (7) (with an initial focus on Problem
(P1)) that is designed to make it easier to consider a preconditioner for the matrix system. We note that
we may reorder the system to the form

∆ ΣT

Σ ∆ ΣT

Σ ∆
.. .

. . .
. . . ΣT

Σ ∆


︸ ︷︷ ︸

A

x = b, (8)

where

∆ =


τM τ−1M + K BT 0

τ−1M + K −β−1τ−1M 0 BT

B 0 0 0
0 B 0 0

 , Σ =


0 0 0 0

−τ−1M 0 0 0
0 0 0 0
0 0 0 0

 , (9)

x =
[
vT1 ,λ

T
1 ,µ

T
1 ,p

T
1 ,v

T
2 ,λ

T
2 ,µ

T
2 ,p

T
2 , ...,v

T
Nt
,λTNt

,µTNt
,pTNt

]T
,

and b is the appropriate reordered right-hand side vector. We note that the matrix ∆ corresponds, up to
multiplicative constants, to the optimality conditions of the (generalized) time-independent Stokes control
system. To demonstrate how the structure of our rearranged matrix system changes as Nt is increased, we
present Matlab spy plots of A for various Nt in Figure 1.

At this stage, we make a very simple observation. This is that instead of minimizing J(~v, ~u) subject to
PDE constraints, we could equally minimize γJ(~v, ~u) for any chosen (positive) factor γ. This would give
the same solution as that for the original problem.

When solving Problem (P1) in this way on the discrete level, this leads to a matrix system of the form
(8), with Σ as in (9) and

∆ =


γτM τ−1M + K BT 0

τ−1M + K −γ−1β−1τ−1M 0 BT

B 0 0 0
0 B 0 0

 . (10)

It is reasonable to consider modifying the value of γ taken when solving the problem (perhaps to improve
the conditioning of the problem, or for another reason). We believe that three intuitive choices for this
selection are as follows:

• γ = 1: This is a natural choice, as it is perhaps the one that is most faithful to the original problem
formulation. This is also the choice of parameter made in [28] when the authors considered solvers for
this problem.

• γ = τ−2: This selection of γ has the effect of “balancing” the (1, 1)-entry of ∆ with the (2, 1)-entry of
Σ. As we wish the block diagonal entries of A to dominate the character of the matrix in some sense,
it is reasonable to ensure that the entries of ∆ and Σ behave in this way.
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Figure 1: Matlab spy plots of matrix systems of the form (8) for Problem (P1), with h = 2−3 and different values of Nt.

• γ = β−1/2τ−1: By constrast this choice “balances” the (1, 1)- and (2, 2)-entries of ∆, so that when we
seek effective approximations or analysis of ∆ itself we are able to exploit this property.

Making such choices leads to systems of the form (8) with

∆ =


τM τ−1M + K BT 0

τ−1M + K −β−1τ−1M 0 BT

B 0 0 0
0 B 0 0

 , for γ = 1,

∆ =


τ−1M τ−1M + K BT 0

τ−1M + K −β−1τM 0 BT

B 0 0 0
0 B 0 0

 , for γ = τ−2,

∆ =


β−1/2M τ−1M + K BT 0
τ−1M + K −β−1/2M 0 BT

B 0 0 0
0 B 0 0

 , for γ = β−1/2τ−1.

In each case Σ is as in (9).
We emphasize that, for each choice of γ, we are considering a matrix system that is of extremely high

dimension (especially for finer discretizations in space and time), and one that contains sparse matrices M,
K and B. Our aim is for the solver to be robust with respect to the value of γ chosen, as well as h, Nt and
β.

We also note at this stage that we could build a matrix system of exactly the same structure for a
distributed control problem with other boundary conditions (Neumann or mixed conditions, for example).

For the time-periodic problem (P2), applying the same working and reordering as above leads to the
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following matrix system which needs to be solved:

∆ ΣT Σ
Σ ∆ ΣT

Σ ∆
.. .

. . .
. . . ΣT

ΣT Σ ∆


︸ ︷︷ ︸

A

x = b, (11)

with the same definitions of ∆, Σ and x as for Problem (P1).
When solving either (8) or (11), relating to Problem (P1) or (P2), one is dealing with a matrix system

of very high dimension when fine discretizations in space or time are taken. This renders a direct method
inappropriate for solving such systems, and motivates the work presented in the next section, concerning
the construction of preconditioned iterative methods for these systems.

3. Preconditioning and iterative solvers

Now that we have derived the relevant matrix systems which we need to solve when examining the
problems (P1) and (P2), we wish to construct effective preconditioners for the matrices which may be
applied within a suitable iterative method. A particular focus when developing these preconditioners is the
performance of our iterative method for smaller values of β, as such values will enable the velocity ~v to
match the desired state ~vd more closely.

Observe that in the previous section we have made specific choices of γ, with the goal that the properties
of the matrix A (for either problem, (P1) or (P2)) are determined to a large extent by the matrices ∆
appearing on the block diagonal of A. That is to say, we assume that Σ makes a small contribution to the
spectral properties of the matrix systems compared with ∆.

If this is the case, it is natural to consider the following approximation of A (for either problem):

A ≈ blkdiag
(
∆,∆, ...,∆,∆

)
,

and use this to build (symmetric) preconditioners of the form

P̂ = blkdiag
(
∆̂, ∆̂, ..., ∆̂, ∆̂

)
, (12)

where ∆̂ denotes a suitable symmetric approximation of ∆.
Alternatively, if we are content to utilize nonsymmetric solvers, we may implement such a method

alongside a preconditioner of the form

P̂ =


∆̂

Σ ∆̂

Σ ∆̂
. . .

. . .

Σ ∆̂

 or


∆̂

Σ ∆̂

Σ ∆̂
. . .

. . .

ΣT Σ ∆̂

 ,

depending on whether Problem (P1) or (P2) is being solved.

3.1. Approximating ∆

Therefore our next task is to construct a suitable approximation of the matrix ∆, as defined in (10).
This approximation must take into account the parameter γ chosen, as well as β and τ .

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



9

The matrix ∆ is itself a saddle point system of the general form (1) (with Θ = 0). We first wish to
approximate the (1, 1)-block

Φ =

[
γτM τ−1M + K

τ−1M + K −γ−1β−1τ−1M

]
.

Note now that the (1, 1)-block of the matrix ∆ is itself a saddle point system. An ‘ideal’ approximation is
therefore given by

Φ̃ :=

[
γτM 0

0 γ−1τ−1(τ−1M + K)M−1(τ−1M + K) + γ−1β−1τ−1M

]
,

using a block diagonal approximation of the form (3).
However, this is not yet an approximation that we can use, as we would need to compute the matrix M−1

(which is in general dense even though M is sparse) to evaluate the exact Schur complement γ−1τ−1(τ−1M+
K)M−1(τ−1M + K) + γ−1β−1τ−1M.

We therefore need to construct an effective Schur complement approximation – we do this using a
“matching strategy” discussed in [22, 23, 24, 25] to conclude that the matrix[

γ−1τ−1
((
τ−1 + β−1/2

)
M + K

)
M−1

((
τ−1 + β−1/2

)
M + K

) ]−1

(13)[
γ−1τ−1(τ−1M + K)M−1(τ−1M + K) + γ−1β−1τ−1M

]
has eigenvalues which are clustered within a tight range. From this statement, we can say that the Schur com-
plement of Φ may be well approximated by γ−1τ−1

((
τ−1 + β−1/2

)
M + K

)
M−1

((
τ−1 + β−1/2

)
M + K

)
.

To demonstrate this, we may follow a very similar strategy as in [24]: as we work exclusively with positive
definite matrices (a well known property of finite element mass and stiffness matrices [6]), we may bound
the eigenvalues by considering the following Rayleigh quotient (for real v 6= 0):

R :=
vT
[
γ−1τ−1(τ−1M + K)M−1(τ−1M + K) + γ−1β−1τ−1M

]
v

vT
[
γ−1τ−1

((
τ−1 + β−1/2

)
M + K

)
M−1

((
τ−1 + β−1/2

)
M + K

) ]
v

=
aT1 a1 + aT2 a2

(a1 + a2)T (a1 + a2)
,

where a1 = M−1/2(τ−1M + K)v and a2 = β−1/2M1/2v. We may now use the observation that aT1 a2 > 0
to deduce that the Rayleigh quotient is less than 1 (by expanding out the terms of (a1 +a2)T (a1 +a2)). We
may also use straightforward algebraic manipulation to determine that the quotient is at least 1

2 (as clearly
aT2 a2 > 0, and it may be verified that aT1 a1 + aT2 a2 ≥ 1

2 (a1 + a2)T (a1 + a2)). Therefore the eigenvalues of
(13) are all contained in [1

2 , 1).
This leads to the following approximation of Φ:

Φ̂ =

[
γτM 0

0 γ−1τ−1
((
τ−1 + β−1/2

)
M + K

)
M−1

((
τ−1 + β−1/2

)
M + K

) ]
.

To embed this approximation into a general saddle point preconditioner of the form (3), we now need to
find an approximation of the Schur complement of ∆:

S =

[
B 0
0 B

] [
γτM τ−1M + K

τ−1M + K −γ−1β−1τ−1M

]−1 [
BT 0
0 BT

]
.

The heuristic argument used to tackle simpler time-independent Stokes and Navier-Stokes control problems
[20, 21], which was found to be very effective for a range of examples, is to approximate the Schur complement
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by

B2

[
γτM 0

0 γ−1τ−1
[
(τ−1M + K)M−1(τ−1M + K) + β−1M

] ]−1

BT
2

=

[
γ−1τ−1BM−1BT 0

0 γτB
(
KM−1K + 2τ−1K + (τ−2 + β−1)M

)−1

BT

]
,

where B2 =

[
B 0
0 B

]
. In other words, within the expression for the Schur complement we replace the

inverse of Φ by the inverse of its saddle point approximation.

The question at this point is how BM−1BT and B
(
KM−1K + 2τ−1K + (τ−2 + β−1)M

)−1
BT may be

approximated (as B is a rectangular matrix and therefore not invertible). Happily, it is well known that
BM−1BT may be well approximated by the stiffness matrix on the pressure space Kp (see [6, Chapter 8]

for instance). This leaves the representation of B
(
KM−1K + 2τ−1K + (τ−2 + β−1)M

)−1
BT as the next

main challenge.
To do this we employ a commutator argument, which has been utilized by Cahouet and Chabard [3], and

others. In more detail, we assume that the commutator

E = (L)∇−∇(L)p

is approximately zero on the continuous space for some suitable operator L, with corresponding operator
(L)p on the pressure space. Furthermore we assume that its discrete representation

Eh = (M−1L)M−1BT −M−1BT (M−1
p Lp),

is also small in some sense. Here L is the discrete representation of the continuous operator L. We observe
that making the choices L = ∇4 − 2τ−1∇2 + (τ−2 + β−1)I and L = KM−1K + 2τ−1K + (τ−2 + β−1)M
(with Lp, by which we denote the discrete representation of (L)p, therefore given by KpM

−1
p Kp+ 2τ−1Kp+

(τ−2 +β−1)Mp), may enable us to use these assumptions to approximate the matrix of interest. We do this
by writing that

Eh =
(
M−1KM−1K + 2τ−1M−1K + (τ−2 + β−1)I

)
M−1BT (14)

−M−1BT
(
M−1
p KpM

−1
p Kp + 2τ−1M−1

p Kp + (τ−2 + β−1)Ip

)
≈ 0,

where Ip denotes the identity matrix on the pressure space. Pre-multiplying (14) by BL−1M and post-
multiplying by L−1

p Mp gives that

B
(
KM−1K + 2τ−1K + (τ−2 + β−1)M

)−1

BT

≈ BM−1BT
(
KpM

−1
p Kp + 2τ−1Kp + (τ−2 + β−1)Mp

)−1

Mp

≈ Kp

(
KpM

−1
p Kp + 2τ−1Kp + (τ−2 + β−1)Mp

)−1

Mp (15)

=
(
M−1
p KpM

−1
p + 2τ−1M−1

p + (τ−2 + β−1)K−1
p

)−1

,

again using that BM−1BT ≈ Kp to obtain (15). We emphasize that a commutator argument of this form
was also applied in [20] to the time-independent Stokes control problem. The matrix under consideration

was B
(
KM−1K + β−1M

)−1
BT for the problem at hand: the added complexities that arise in the time-

dependent setting are an additional term in K within the matrix L, and the incorporation of the time-step
τ into the commutator argument. Whereas this is a heuristic argument by nature, it has been found to be
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highly effective when approximating matrices of the form BL−1BT for a range of fluid dynamics problems
(we refer to [3, 6, 9, 20, 21], for example).

We may therefore state a proposed approximation for the Schur complement S:

Ŝ =

[
γ−1τ−1Kp 0

0 γτ
(
M−1
p KpM

−1
p + 2τ−1M−1

p + (τ−2 + β−1)K−1
p

)−1

]
.

Combining the approximations for the (1, 1)-block and Schur complement of ∆, we may now write a
block diagonal preconditioner for ∆ of the form

∆̂ = blkdiag
(

Φ̂, Ŝ
)

=


γτM 0 0 0

0 P22 0 0
0 0 γ−1τ−1Kp 0
0 0 0 P44

 ,
where

P22 = γ−1τ−1
((
τ−1 + β−1/2

)
M + K

)
M−1

((
τ−1 + β−1/2

)
M + K

)
,

P44 = γτ
(
M−1
p KpM

−1
p + 2τ−1M−1

p + (τ−2 + β−1)K−1
p

)−1

.

This approximation is symmetric and positive definite, which is highly desirable from an iterative solver
point-of-view. We point out again that it is perfectly possible to construct block triangular preconditioners
of similar form.

At each step of an iterative scheme, we will need to apply ∆̂−1 a number of times equal to the number
of time-steps used in the problem formulation (see (12)).

When we apply ∆̂−1, we use Chebyshev semi-iteration [31] to approximate the inverse of a mass matrix,
and the Harwell Subroutine Library (HSL) algebraic multigrid code HSL MI20 [2] or the Aggregation-Based
Algebraic Multigrid (AGMG) code [14, 15, 16, 17] to similarly approximate the inverse of a stiffness matrix

(or a sum of stiffness and mass matrices). Each application of ∆̂−1 therefore requires three Chebyshev
semi-iteration processes (one for M and two for Mp), and four multigrid approximations (two for each of(
τ−1 + β−1/2

)
M + K and Kp).

We highlight two attractive features of the preconditioning strategy presented in this section:

1. The iterative solver used, whether a block diagonal or block triangular preconditioner is applied,
requires the storage of matrices (M, K and B) which are small in comparison to the dimension of
the matrix A. This enables the solution of much larger systems than would be possible when using a
direct method.

2. In addition, the block diagonal preconditioner has a structure which would make it possible to imple-
ment the iterative method in parallel – this opens up the possibility of solving such complex problems
over a large number of computational units.

We also wish to briefly comment on the potential for solving Stokes control problems of different form to
the distributed control problem considered in this section: for example, it would be reasonable to consider
boundary control problems, or problems where the control variable is applied only on some subdomain of Ω.
It is feasible to apply the methodology introduced in this paper to problems of these forms, although one will
face two additional challenges. Firstly, the approximation of the Schur complement of Φ using a matching
strategy becomes less rigorous in nature, i.e. an eigenvalue bound of the form [1

2 , 1) cannot be shown, due
to the different types of mass matrices in Φ. However, promising results have nonetheless been observed
using this strategy for problems of Poisson control and heat equation control form (see [19, Chapter 4] and
[23]). Secondly, the commutator argument used to approximate S will need to be adjusted to take account
of the structure of the new mass matrices arising in Φ. An additional alteration to the problem set-up would
be to introduce non-uniform time-stepping, rather than using a uniform time-step τ as considered in this
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paper. If such a modification were introduced, the matrices ∆ and Σ would change at each time-step, with
new factors τi, i = 1, ..., Nt replacing τ . However one would still be able to apply the same strategies for
constructing ∆̂ as for the uniform time-stepping routine, provided one incorporates the different scalings
that arise at each time-step.

In the next section we demonstrate the practical performance of our (block diagonal) preconditioner
when solving problems (P1) and (P2). We implement our preconditioner within the Minres algorithm
[18], as this is the method of choice when solving symmetric indefinite systems with symmetric positive
definite preconditioners.

4. Numerical results
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Figure 2: Solution plots for velocity ~v, pressure p, adjoint velocity ~λ and adjoint pressure µ for the first example of Problem
(P1), at the final time-step with β = 10−2.

Having motivated our preconditioning strategy, we now wish to verify the potency of our iterative solver
with a number of numerical experiments. These involve problems of the form (P1) (with Dirichlet boundary
conditions) and (P2) (with periodic boundary conditions). Within these problem set-ups, we consider two
examples on the domain Ω := [−1, 1]2, with zero initial conditions specified when a problem of the form
(P1) is examined (although our method is of course general and does not require such a condition). The
first example we test is of classical lid-driven cavity form (see [6, Chapters 6 & 8] for instance), with

~vd = 0, on Ω× [0, T ],

~v =

{
[1, 0]

T
on [−1, 1]× {1} × [0, T ],

[0, 0]
T

on ∂Ω\
(
[−1, 1]× {1}

)
× [0, T ].
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h

2−2 2−3 2−4 2−5 2−6

Nt

5 1, 870 6, 590 24, 670 95, 390 375,090

10 3, 740 13, 180 49, 340 190, 780 750,180

20 7, 480 26, 360 98, 680 381,560 1,500,360

40 14, 960 52, 720 197, 360 763,120 3,000,720

80 29, 920 105, 440 394,720 1,526,240 6,001,440

Table 1: Dimensions of matrix systems when solving Problems (P1) and (P2) for different values of h and Nt. Problem
dimensions in bold are those which could not be solved with a direct method on the processor used.
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Figure 3: Solution plots for velocity ~v and pressure p for the second example of Problem (P1), at the final time-step with
β = 10−2.

The second example we examine is of a similar form to that considered by the author in [21], involving a
recirculating wind close to ∂Ω. In this case, we take

~vd =

{ [
1
2x2(1− x2

1), − 1
2x1(1− x2

2)
]T

if x2
1 + x2

2 ≥ 1
2 ,

[0, 0]
T

otherwise,

~v = ~vd, on ∂Ω× [0, T ],

where x := [x1, x2]T . Plots of solutions for each of these examples are provided in Figures 2 and 3
respectively. We highlight that the entries ci, di of the vectors c, d in (5) are of the following form:

ci = −
nu+n∂∑
j=nu+1

Vj

∫
Ω

∇~φi : ∇~φj dΩ, di =

nu+n∂∑
j=nu+1

Vj

∫
Ω

ψi∇ · ~φj dΩ,

where Vnu+1, ..., Vnu+n∂
denote the values of the components of ~v at the boundary nodes, and ~φi is a d-vector

function with entries φi. So for the first test problem, c and d contain contributions from the boundary
conditions along x2 = 1; for the second test problem, the vectors are terms containing the values of ~vd along
the boundary.

We compute numerical solutions to these problems in Matlab, using the Minres algorithm with the
preconditioner derived in the previous section. The problems are solved to a preconditioned residual tolerance
of 10−5. In order to construct the relevant (stiffness, mass and divergence) matrices we make use of the
Ifiss software package [4, 5, 26]. When approximating the inverse of a mass matrix we apply 20 steps of
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(P1) h

β = 10−2 2−2 2−3 2−4 2−5 2−6

Nt

5
63 73 77 81 87

2.36 3.47 5.94 14.4 59.5

10
64 74 79 80 84

4.57 7.05 12.7 29.3 114

20
88 92 100 101 107

12.9 18.4 33.3 75.4 298

40
174 181 186 190 188

56.7 68.1 121 276 1035

80
340 347 351 353 347

206 271 453 1002 3813

(P1) h

β = 10−4 2−2 2−3 2−4 2−5 2−6

Nt

5
41 52 60 66 71

1.45 2.41 4.81 12.0 48.1

10
41 51 59 65 70

3.10 4.82 9.60 24.3 95.6

20
40 49 57 64 69

5.71 9.77 18.7 48.6 191

40
39 46 55 63 68

11.9 18.5 36.9 93.1 377

80
46 49 56 65 69

28.1 39.4 72.3 185 745

(P1) h

β = 10−6 2−2 2−3 2−4 2−5 2−6

Nt

5
29 34 39 50 58

0.533 0.845 2.83 11.5 67.8

10
29 34 39 51 58

1.07 1.66 5.60 23.3 137

20
28 33 39 50 58

2.05 3.18 11.1 46.1 280

40
28 33 37 50 56

4.04 6.13 21.1 96.2 550

80
28 31 37 49 55

8.00 11.6 42.2 181 1066

Table 2: Number of iterations and CPU times in seconds (emphasized) when applying Minres, with our block diagonal
preconditioner, to the first example for Problem (P1). Results are given for a variety of h and Nt, for β = 10−2, β = 10−4

and β = 10−6, and with γ = 1.
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(P1) β = 10−2 β = 10−4

h = 2−2 h = 2−3 h = 2−4 h = 2−5 h = 2−2 h = 2−3 h = 2−4 h = 2−5

Nt

5 32 41 47 46 20 33 37 36

10 39 44 47 46 22 32 37 36

20 62 67 65 62 23 30 37 36

40 129 132 128 123 26 32 37 36

Table 3: Number of iterations when applying Minres, with our block diagonal preconditioner, to the second example for
Problem (P1). Results are given for a variety of h and Nt, for β = 10−2 and β = 10−4. The value of γ is varied, and the same
results are observed for γ = 1, γ = τ−2, and γ = β−1/2τ−1.

the Chebyshev semi-iteration method [31]. For the algebraic multigrid routine to approximate matrices of
the form

(
τ−1 + β−1/2

)
M+K or Kp, we apply 2 V-cycles of the HSL code HSL MI20 [2] for β ≥ 10−4, and

the AGMG software [14, 15, 16, 17] for β < 10−4 (as we find that AGMG works especially well when applied
to the matrix

(
τ−1 + β−1/2

)
M + K for small β). All experiments are carried out on a quad-core 1.6 GHz

processor.
We experiment with a range of values of mesh-size h, time-steps Nt and values of β – in particular

altering the values of h and Nt changes the dimension of the matrix system. In Table 1 we present the
dimensions of the systems that we carry out our tests on, all of which are solved to the required tolerance
using our approach. In bold are the dimensions of the systems which cannot be solved using a direct method:
the large number of such systems demonstrates the value and importance of developing effective iterative
methods for these problems.

We initially consider the solution of the first (driven cavity) example above, in the form of Problem
(P1). In Table 2 we present, for a range of h, Nt and β (and with γ = 1), the number of Minres iterations
and CPU time taken to solve the problem to a tolerance of 10−5. We find that for smaller values of β the
problem is solved in very few iterations considering the high complexity of the problem. Furthermore the
iteration count exhibits only very benign dependence on problem dimension (as altered by changing h and
Nt), meaning that we are able to solve problems of very high dimension. Given that we believe that our
solver may be fully parallelized in time, this is a favourable property of our method. For larger values of β
we observe that the increase in iteration numbers is no longer benign – in fact the count can increase by a
factor of up to 2 as the problem dimension is increased by the same factor (when doubling Nt). Although
these results are much less favourable, we note that the parallelizability of our method should mitigate this
increase in iteration numbers, and leave the robustness in h unaffected. Moreover the fact that our solver
is much more effective for the (often more physically realistic) cases of decreasing β, this is again a positive
property of our method.

In Table 3 we apply our strategy to the second (recirculating wind) example of the form (P1), and
also verify the performance as γ is altered (which one may wish to do to improve the conditioning of the
system, for instance). We tested our approach for β = 10−2 and β = 10−4, with the three natural values of
γ motivated in Section 2 (that is γ = 1, γ = τ−2, and γ = β−1/2τ−1). We observe from the results that our
solver is completely robust with respect to γ, as might be expected as our preconditioner involves scaling
the blocks with suitable factors of γ to handle changes in the parameter. Furthermore the solver exhibits a
similar benign dependence on h and Nt, and hence problem dimension, as for the first example.

We also test our method on a problem of the form (P2) (with periodic boundary conditions). The
problem is in the form of the first (driven cavity) example stated above. Results are presented in Table 4
for a range of h and Nt, for β = 10−3 and β = 10−5. As before we observe mild dependence of the iteration
numbers on h and Nt, with improved performance as β decreases. As with other tests, we observe that the
CPU time scales almost linearly with problem dimension, apart from the case of large β and increasing Nt.
This is a property which could be further enhanced by exploiting the parallelizability of our preconditioner.

It is important to observe that the stopping criterion used for our numerical tests up to this point,

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



16

(P2) h

β = 10−3 2−2 2−3 2−4 2−5 2−6

Nt

5
44 57 66 72 78

0.695 1.55 3.85 12.5 54.2

10
42 55 64 70 76

1.34 2.68 7.29 24.4 105

20
42 55 64 70 76

4.45 5.28 15.0 48.4 208

40
47 58 66 77 83

10.4 12.5 30.9 106 456

80
61 80 90 99 103

25.6 32.6 83.7 270 1139

(P2) h

β = 10−5 2−2 2−3 2−4 2−5 2−6

Nt

5
34 41 53 60 64

0.629 0.822 3.28 17.1 78.8

10
33 41 51 59 62

1.21 1.59 6.30 33.1 154

20
33 40 50 57 62

2.40 3.06 12.2 64.1 320

40
31 38 48 54 61

4.45 5.76 30.6 120 617

80
29 35 44 52 59

8.46 10.6 55.4 226 1227

Table 4: Number of iterations and CPU times in seconds (emphasized) when applying Minres, with our block diagonal
preconditioner, to the first example for Problem (P2) (with periodic boundary conditions). Results are given for a variety of
h and Nt, for β = 10−3 and β = 10−5, and with γ = 1.

(P2) β = 10−3 β = 10−5

h = 2−2 h = 2−3 h = 2−4 h = 2−5 h = 2−2 h = 2−3 h = 2−4 h = 2−5

Nt

5 34 45 49 64 26 32 43 51

10 44 58 68 76 35 42 54 64

20 48 62 75 — 39 45 59 —

40 53 67 79 — 43 50 62 —

80 74 95 — — 44 51 — —

Table 5: Number of iterations when applying Minres, with our block diagonal preconditioner, to the first example for Problem
(P2). Results are given for a variety of h and Nt, for β = 10−3 and β = 10−5, and with γ = 1. The iteration is terminated
when the (scaled) vector 2-norm of the difference between the ‘iterative’ and ‘direct’ solutions for the control variable is less
than 10−5, for problems which lead to a direct solution being achieved.
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that is the reduction of the preconditioned residual norm by a factor of 10−5, is itself influenced by the
preconditioner used, and hence the values of β, h and Nt. Whereas this is a widely used method for
measuring the success of an iterative method, we also wish to carry out a numerical test using a stopping
condition that does not depend on the preconditioner itself. In Table 5 we again present numerical results
for Problem (P2) (with periodic boundary conditions) – the stopping criterion is now taken to be a measure
of how ‘closely’ the Minres solution resembles that obtained using a direct method, for such problems
where a direct solution can be obtained. In more detail, we allow the method to terminate when the vector
2-norm of the difference between the solutions obtained with direct and iterative methods, scaled by the
2-norm of the direct solution, falls below 10−5. We observe that, for smaller values of Nt in particular, this
is a less restrictive stopping condition than the reduction of the preconditioned residual norm. For larger
problems, however, we observe a more pronounced increase in the iteration counts when using this new
stopping condition. We conclude that considering a ‘P-independent’ stopping condition makes this an even
more challenging problem, however we nonetheless still observe satisfying convergence using our method.

5. Concluding remarks

In this article we have investigated the fast iterative solution of large and sparse matrix systems of
complex structure that arise from time-dependent Stokes control problems. Our preconditioning strategy
involved rearranging the matrix system to suitable form, then deriving saddle point preconditioners for the
matrices resulting from each time-step of the problem.

Our preconditioner exhibits several key advantages over direct methods for such problems. Firstly, the
storage requirements are very small, as opposed to the huge provisions required for a direct method, and
we are therefore able to solve problems of very large dimension. Secondly, the way we have constructed our
preconditioner means that we believe our solver to be fully parallelizable, further expanding the potential
of our approach. Further, numerical tests indicate that the performance of our method improves as the
regularization parameter β decreases, and appears to be robust with respect to Nt (apart from in the case
of large β) and h.

This work presents substantial scope for future research. For instance problems of boundary control
form, or more complex flow problems such as time-dependent Navier-Stokes control formulations, could be
investigated using the methodology introduced in this paper. It would also be desirable to ascertain whether
an alternative strategy can be derived for the case of large β, which is the parameter regime within which
our method performs least well at present. A further natural step would involve developing a fully parallel
implementation of our solver, to verify its effectiveness over a large number of processors.
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