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Abstract 

  A self-adaptive heuristic that incorporates a variable level of perturbation, a novel 

local search and a learning mechanism is proposed to solve the p-centre problem in the 

continuous space. Empirical results, using several large TSP-Lib data sets, some with 

over 1300 customers with various values of p, show that our proposed heuristic is both 

effective and efficient. This perturbation metaheuristic compares favourably against the 

optimal method on small size instances. For larger instances the algorithm outperforms 

both a multi-start heuristic and a discrete-based optimal approach while performing 

well against a recent powerful VNS approach. This is a self-adaptive method that can 

easily be adopted to tackle other combinatorial/global optimisation problems. For 

benchmarking purposes, the medium size instances with 575 nodes are solved 

optimally for the first time, though requiring a large amount of computational time. As 

a by-product of this research, we also report for the first time the optimal solution of 

the vertex p-centre problem for these TSP-Lib data sets. 

Keywords- p-centre problem, continuous space, perturbation search, adaptive search, 

   large instances, optimal solutions. 
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1 Introduction  

 

Continuous location problems are concerned with the location of one or more facilities in 

the plane. These are characterised by the number of possible sites being infinite and hence 

the unconstrained location of new facilities can be anywhere. In other words, any point is 

considered as a potential location for a new facility. The objective of the p-centre 

problem is to minimise the maximum distance between all customers (demand points or 

fixed points) and their nearest facilities. This problem is particularly useful in locating 

emergency facilities, such as fire stations, police stations and hospitals, where it is aimed to 

minimise the longest response time.  

For completeness, we cite a few p  centre related real life applications spanning over 

the last 25 years. One of the earliest applications considers the location of fifteen fire 

stations in the Belgian rural province of Luxembourg. This problem was investigated by 

Richard, Beguin and Peeter's [24] who used villages, sparsely populated hamlets and 

some roads in the country side as demand points, some of which also served as potential 

sites. The location of a number of health resources such as geriatric and diabetic health 

care clinics in the rural area of Burgos in Spain was examined by Pacheco & Casado [22] 

using scatter search.  A study to locate a number of bicycle stations in the city of Isfahan, 

Iran, was conducted by Kavesh and Nasr [18] using harmony search.  A real life 

application that aims to minimise the number of emergency warning sirens in Dublin 

(Ohio) was explored by Wei et al. [30] who adopted an enhanced Voronoi-based 

approach to cover the entire area with the minimum number of facilities. A humanitarian 

aid problem to locate a number of urgent relief distribution centres to help with the 

casualties due to an earthquake in Taiwan that measured at 7.3 on the Richter scale, and 

caused over 2500 deaths and 8000 injuries, was recently investigated by Lu [19] using 

simulated annealing. 

The continuous (or planar) p-centre problem has a succinct geometrical interpretation. 

For example, the single unweighted facility location problem (i.e., p =1) corresponds to 

finding the smallest circle that encloses all n points (customers), with the centre being the 

location of the new facility. Equivalently, the continuous p-centre problem (p >1) aims to 

cover a set of customers in the plane with p circles where the radius of the largest circle is 

minimised. 
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      The (weighted) p-centre problem can be formulated as follows (Drezner [6]). 

       
1 ,..., 1 1

[ ( )]
p

i j
X X i n j p

Minimize Max Min D X
   

   

where 

2( , )j j jX x y  : the coordinates of facility ( 1,..., )j j p  

( , )i ia b : the coordinates of demand point  ( 1,..., )i i n  

iw : the weight associated with demand point ( 1,..., )i i n  

2 2 1/2( ) [( ) ( ) ]i j i j i j iD X w x a y b    : the weighted Euclidean distance between the j
th 

facility 

and the i
th

 demand point ( 1,..., ; 1,..., )i n j p  .  

For variable p , the continuous p-centre problem is known to be NP-hard (see Megiddo and 

Supowit [20]), whereas for fixed p , Drezner [6] shows that the problem can be solved in 

2 4( )pO n 
 though it is computationally unattractive for large p . 

The single facility minimax location problem (1-centre) in the continuous space has a 

long history, having been posed originally in 1857 by the English mathematician James 

Joseph Sylvester (1814-1897) who also proposed in 1860 an algorithm to solve it. Elzinga 

and Hearn [12] proposed an efficient geometrical-based algorithm for solving optimally the 

problem. Other authors attempted some enhancements to speed up the search, such as Xu et 

al. [31] and Elshaikh et al. [11] and references therein. For more details on the continuous 1-

center problem including a fascinating history on this topic, the reader will find the chapter 

by Drezner [9] to be informative. 

Drezner [7] proposed two algorithms for the solution of the two-centre and two-median 

location problems with Euclidean distances on the plane. The idea is that the two customer 

sets in any solution can be separated by a straight line (i.e., 
( 1)

2

n n 
possibilities). Since 

the optimal facility location in each of the two sets ( 1p  ) can be easily found due to the 

convexity of the objective function, the problem reduces to finding an efficient way of 

defining all these straight lines and hence these corresponding subset pairs.  

There is, however, a relatively small number of authors who have studied the -p centre 

problem; see Plastria [23] and the references therein. One of the commonly used approaches 

is based on Cooper’s [5] locate-allocate procedure. In brief, the idea is to choose initially p  

facility points randomly or using a heuristic and assign each demand point to its nearest facility 
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making p subsets. In each cluster the optimal single facility location is found using Elzinga-

Hearn or an equivalent method. The allocation is then performed again followed by the 

optimal solution of p 1-centre problems. This is repeated until there is no improvement in the 

allocation.  Drezner [6] presents two methods, namely, a multi-start similar to Cooper’s locate 

allocate adapted to the p -center problem (referred to as (H1)) followed by a composite 

heuristic made up of H1 and a post optimiser that allocates the critical points between the 

clusters (called (H2)). Eiselt and Charlesworth [13] propose three constructive and 

improvement-based heuristics. Their first one resembles the locate-allocate procedure of 

Cooper, the second uses the vertex substitution of Teitz and Bart [29] with the critical points 

used for reallocation, and their third one is based on the drop method. As the latter will be 

used in our computational results section, we briefly describe it here. The idea is to start with 

all n  demand sites as potential sites and then combine the two nearest points to make up a 

new centre leading to 1n  clusters. This process of exploring the two nearest centers to 

make up a combined center continues until p  clusters with their corresponding centers are 

found. The ‘locate-allocate’ process is then activated as an optional improvement step. A 

more flexible version is to allow a certain number of pairs with their corresponding customers 

to be explored and the pair corresponding to the combined cluster with the lowest radius is 

chosen instead of selecting the pair with the closest distance. A control parameter

(0 1)   is introduced to select these pairs with a value of 0.5 empirically shown to 

produce the best results. This flexible variant, known as STEPDOWN, outperforms their 

other two methods. Very recently, Elshaikh et al. [11] devise an enhanced version of the 

Elzinga and Hearn algorithm for the 1-centre problem which is then embedded within a 

powerful VNS-based heuristic to solve the p -centre problem. The results from H1, H2 and 

STEPDOWN heuristics will be used alongside those given in [11] for comparison purposes 

in subsection 5.2.  

For the case of area coverage, which can be of interest, for example, to agriculture, 

environment and mobile phone coverage technology, a Voronoi diagram-based heuristic, 

using an iterative procedure based on the locate-allocate principle, was proposed by Suzuki 

and Okabe [28]. This was then applied by Drezner and Suzuki [8] who added a post-

optimiser using nonlinear programming to cover a square with p  circles. Wei et al. [30] 

extended the above Voronoi-based approach to account for irregular and non-convex shapes, 

including the possibility of forbidden regions where the new facilities cannot be sited. 

Though the area and the point coverage problems are related, these preceding approaches 
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should not be used directly for point coverage given that the results can be misleading as 

demonstrated by Murray and Wei [21].  

Few papers deal with exact methods for the planar p-center problem. Drezner [6] put forward 

an interesting idea of enumerating all the maximum sets given a threshold (the radius of the 

largest circle at a given iteration) to be used within a covering-based model. If the problem is 

feasible, the obtained feasible solution is then used to get a new threshold. The process is 

repeated until the covering problem has no feasible solution leading to the current threshold 

being the optimal solution. Results for small instances up to 40n  and 5p  were tested 

starting with the initial solution (threshold) found by the Drezner’s heuristic H2 [6]. This 

optimal method will be revisited in the computational results section as it is found to be not 

as slow as originally mentioned in the literature (see subsection 5.2). Excellent results for 

both the discrete and the continuous cases are found by Chen and Chen [3] who extended the 

work of Chen and Handler [4] in several interesting ways. The authors used three types of 

relaxation methods. One is to solve optimally for a small subset of the original problem, 

while gradually adding additional demand points (usually the farthest from the service points 

of the current feasible solution) until the solution becomes feasible for the original problem, 

and hence, may be considered as the optimal solution of the original problem. Two further 

relaxations were developed. These include a reverse relaxation where a lower bound is first 

found which is then gradually increased until the optimal solution is reached, and a binary 

relaxation where both upper and lower bounds are updated accordingly. The only optimal 

solutions for the planar p-centre problem reported by the authors are for the TSP data set with 

439.n  For comparison purposes, these optimal results will also be used in our 

computational results section (see subsection 5.2).  

It is worth noting that the proposed perturbation heuristic is, to our knowledge, the second 

only metaheuristic that is developed to investigate this class of location problem. This is an 

adaptive method that can easily be modified to tackle a variety of combinatorial and/or global 

optimisation problems.   In addition, this approach solves large data sets with more than 1300 

demand points with encouraging results. For benchmarking purposes, we have also 

implemented Drezner’s optimal method and report, for the first time, the optimal solutions 

for medium size instances (i.e., 575n  ) though the computational time required was 

excessively large especially for small values of p  (mostly exceeding 10 hours of CPU time 

with a few that required nearly 24 hours.   

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
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Though the p  centre problem can be seen as an old and well-established combinatorial 

problem, in our view it serves as an interesting and useful base to test innovative ideas which 

can then be extended and adapted for other related and more complex continuous location 

problems such as those with restricted non convex regions with and without capacity 

restriction, presence of fixed cost, just to cite a few.   

The contributions of the study include 

(i) The design of a powerful perturbation-based metaheuristic that uses an adaptive 

degree of perturbation and can be adapted to a variety of other combinatorial and 

global optimisation problems.  

(ii) A novel local search that is based on the concept of a ‘covering circle’ whose 

neighbourhood is dynamically adjusted.  

(iii) The incorporation of learning within the search, which we consider to be an 

invaluable ingredient in heuristic search design in general and in this new 

perturbation metaheuristic in particular.  

(iv) The generation of high quality results for large planar p-centre problems (some 

instances with more than 1300 customers) including the optimal solutions for the 

first time for 575,n   as well as all the optimal solutions for their discrete 

counterpart problems.  

The paper is organised as follows: The next section discusses the basic perturbation 

heuristic.  In section 3, the two local searches including a novel swap-based scheme using the 

concept of covering circles are first described, followed by the two new perturbation-based 

heuristics that use a dynamic level of perturbation. In section 4, learning is introduced 

within the search. Computational experiments are given in section 5 and our conclusions and 

suggestions for future research are summarised in the last section. 

 

2 A brief on the basic perturbation-based heuristic 

 

This approach guides the search by introducing some perturbations into the 

problem. For the p-centre problem these can be achieved by allowing the number of 

facilities of a solution to go over and under the required number of facilities ( p ) by a certain 

value ( q ). In other words, the solution is allowed to be infeasible in terms of the number of 

open facilities. In brief, the method works as follows: An initial solution of the p-centre 
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problem is first found, and then the number of open facilities is allowed to increase to 

( )p p p q   by adding q facilities to the current solution. The removal of q  facilities 

is then performed to reach a solution with p  facilities where an intensification of the 

search is activated. The removal of facilities continues until the problem with 

( )p p p q   facilities is reached. At this stage the addition of q facilities is performed to 

get a feasible solution with p open facilities where intensification is activated again. We 

refer to this shifting as one cycle of the perturbation procedure which is then repeated 

several times until the maximum computation time allowed )( MaxCPU  is reached, or the 

maximum number of cycles without successive improvement is met, whichever comes first. 

The reasoning behind this method is that the continual shifting between feasible and 

infeasible regions acts as a filtering process where the best facilities have the tendency to 

remain in the promising set. Salhi [25] proposed this metaheuristic for a class of discrete 

uncapacitated location problems with good results. Hanafi and Freville [15] also adapted a 

similar approach for solving a class of knapsack problems, while Zainuddin and Salhi [32] 

modified this methodology to solve the capacitated multisource Weber problem. It can also 

be noted that the idea of perturbation shares a few similarities with large neighbourhood 

search proposed by Shaw [27], where the `ruin and build’ scheme corresponds to the `drop 

and add’ counterpart, especially when the search goes from p to p q , and then back up to

.p  

3. The new perturbation-based heuristic 

In this study we extend the perturbation metaheuristic given in [25] by  

(i) introducing flexibility in the level of perturbation using a variable value of q  that 

is adaptively determined instead of being fixed throughout the search as initially 

used in the literature [25,32].  

(ii) Tailoring the swap, add and drop moves to the -p centre problem.   

(iii) Examining two new local searches. One relates to the case when the solution is 

infeasible (i.e., the number of facilities in the solution is , 1,...,p s s q  ) where 

the ‘locate-allocate’ type procedure, which we refer to as the local search of 

type1 “LS1”, is applied. The second one is used when the solution is feasible 

(i.e., the number of facilities is p ). In this case, a combined local search “LS2” 

made up of LS1 and a swap-based neighbourhood is adopted.  

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
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In (i), we propose two types of perturbation based on flexibility of the level of perturbation 

where the value of q  can be relaxed and made dynamic starting from 1q   and increasing to 

Maxq . The first one which we call a gradual perturbation “GRADPERT” aims to add one 

facility at a time and apply LS1 at , 1,..., Maxp s s q   whereas the second, which we refer to as 

the strong perturbation “STRONGPERT”, adds all the q facilities in one step, followed by 

LS1. In addition, GRADPERT uses the first covering circle ( 1CC ) as its destination cluster 

when using the add move whereas STRONGPERT adopts a covering circle with a 

dynamically changing size
1,...,( )

Maxk k qCC 
. The definition of kCC will be given next. In both 

perturbations LS2 is used whenever the number of facilities is p (i.e., the solution is 

feasible). 

The two local searches (LS1 and LS2) followed by a brief description of the three 

types of moves (drop, add, swap) are presented in the next subsection, while the 

GRADPERT and STRONGPERT heuristics will be given in subsections 3.2 and 3.3, 

respectively.  

 

3.1 The two local searches 

a) Local search LS1  

LS1 is activated when the number of open facilities is { ,...., 1, 1,..., }p p q p p p q     . This 

procedure is similar to Cooper’s `locate allocate procedure’ , and is briefly described in the 

following three mini steps: 

(i)  Given the p facility locations (or centres) ; 1,...,jC j p , allocate each customer to its 

nearest centre (breaking ties arbitrarily), and define for each centre j, the subset 
jV , as  

{ {1,..., }: ( , ) ( ( , ), 1,..., )}j j kV i n d C i Min d C i k p     

(ii) In each subset 
jV , determine the optimal centre, , 1,...,jC j p , using the Elzinga-

Hearn algorithm or its enhanced version as described in Elshaikh et al. [11]. 

(iii) Repeat steps (i) and (ii) until there is no further improvement. 

 

b) Local search LS2  

This local search is applied only when the number of facilities is .p  It is based on swapping 

an open facility chosen randomly from the current `covering circle’ with a location randomly 

selected from the same `covering circle’. The definition of a `covering circle’ is as follows: 

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
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Let  

1C : the largest circle defined by centre 1X and (largest) radius 1R ;  

jC : the j
th 

nearest circle to the largest circle measured by the distance between the two   

       centres where  and j jX R define the centre and the radius of 
jC , respectively; 1,..., .j p   

' :kCC the area encompassed by the artificial circle centered at 1X with a radius      

         
1 1 1  ( , )  if  1,   and     otherwise;    1,..., .k kR d X  X k R R k p 

      

We refer to 'kCC  as the 'thk covering circle. In other words, this is an artificial circle with a 

radius defined as the distance from the centre of the largest circle 1X  to its  ' 1
th

k   nearest 

facility defined by 'kX . The reasoning behind this idea is to concentrate the search around the 

neighbourhood of the largest circle as this constitutes the main characteristic of the p  centre 

problem.  An example of an 8-centre problem is illustrated in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

In brief, the procedure works as follows: we start from the first level ( ' 1)k   of the 

covering circle (the largest circle) by dropping the facility of the largest circle and inserting a 

facility randomly in 
1CC . If the solution is not improved after applying LS1, we move to 

2CC (i.e., the second level of the covering circle by enlarging it to contain two facilities, 

namely, the facility of the largest circle and the nearest facility to it). One of these two 

candidate facilities is then randomly selected to be dropped and replaced by a location also 

randomly chosen in the continuous space encompassed by 
2CC followed by LS1. If the new 

solution is improved we revert back to level 1, where the largest circle, which may not 

Figure 1. An example of the levels of covering circles that are dynamically 

increasing from the source region of an 8-centre problem 
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necessarily be the previous one, is identified again; its corresponding covering circle
1CC is 

then used and the process is repeated; otherwise we continue exploring the next level. This 

process continues until the last level, Maxl say, which includes all the facilities ( 1)Maxl p   is 

reached. From that point we apply a reversal move by gradually reducing the level of the 

covering circle until level one is reached. The swapping process is performed until no 

improvement is found after Maxk  successive trials (here we set 
axMk p 

 
). Note that at 

this point, we record the current level, l̂ say, and the direction whether we are in the process 

of increasing the level (Flag = 1) or decreasing the level (Flag = -1). This is important as this 

information is used when we reach p again in subsequent iterations, where the search 

continues from the next level based on whichever level is reached at this iteration (i.e., if 

Flag=1 set 1l l  , else set 1l l  ) while retaining the same direction. Initially, Flag is 

obviously set to 1 as the search starts from level 1 defining the largest circle. The steps of this 

procedure, which we call PROC-LS2, are given in Figure 2. 

Figure 2. The PROC-LS2 procedure 

A brief on the three moves 

Here, we briefly present the three moves. 

The drop move- The strategy is to remove q facilities one by one followed each time by 

LS1. This process is applied when the number of open facilities is p and going down 

to p q (infeasible case) or starting from p q (infeasible case) and going down to p . 

Here, the facility chosen is the one whose removal increases the objective function the least, 

  ˆ ˆ2( , , , , )Max MaxPROC LS l l k S Flag  

(i) Let k=0 , S=Sbest and l=𝑙  

(ii) Generate a new solution by swapping randomly one facility from S in 

level l, apply LS1 and set k=k+1. Let S  be the new solution 

(iii)   If Z(S ) < Z(S), set S=S , k=0, l=1, and go to step (ii) 

(iv)  If  FLAG=1  then if l < lMax , set l=l+1 otherwise FLAG= 1  

        Else if  l >1 , set l= l 1 , otherwise FLAG=+1                  

(v) If Maxk k , set k=k+1 and return to step (ii), else set Ŝ = S and .ˆ ll      
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which is then followed by LS1 to find a new solution with one facility less. This 

procedure is repeated until q facilities are removed. 

The add move- Here, q facilities are inserted when the number of open facilities is p  

with the aim to go over the required number of facilities to p q . Similarly, this is also 

applied when the number of open facilities reaches p q . 

The swap move- When the number of open facilities reaches p, we relocate randomly one 

open facility from the current covering circle to a point randomly chosen from the same 

covering circle based on the procedure LS2 (PROC-LS2) given earlier. 

 

3.2 The GRADPERT heuristic 

 

In [25] the added facility is chosen based on the largest cost saving among the potential 

facility sites as the problem is a discrete type location problem. Here, the q  new facilities are 

added randomly one at a time in the continuous space encompassed by
1CC  instead. This 

solution is then examined for possible improvement by “LS1” at each of the q steps. A similar 

process is applied in the drop move except the removal is not performed randomly but using 

the least extra cost rule.  The algorithm “GRADPERT” is given in Figure 3 with its main 

steps briefly described as follows.  

Step 1 

The initial solution is generated by randomly choosing p fixed points though other schemes 

could also be used. In our study, we chose the best solution of a multi-start with 100 runs as 

well as the optimal solution of the vertex p-centre problem.  

Steps 2a and 3a  

LS1 is used here and also in step 1 to improve upon the initial solution.  

Steps 2b and 3b  

When a solution with p facilities is reached, intensification is activated using LS2. Here, a 

swapping type process is used where one facility is chosen randomly from the covering circle 

(level ˆl l ) and then relocated randomly in the continuous space of the same covering circle  

whose size is dynamically adjusted as described previously by PROC_LS2 in Figure 2 .  
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Figure 3. The GRADPERT heuristic 
 

3.3 The STRONGPERT heuristic 

It can be noted that when the solution of the p-centre location problem is not optimal, the 

facility serving the customers that are encompassed by the largest circle and at least one of 

the facilities that are around it are not in the right location. This key observation is taken into 

account by introducing noises around the largest circle of the current solution. To achieve 

this, we adopt two schemes (i) the way we add these q facilities and (ii) the way we define the 

destination cluster where these facilities will be sited. In (i), whenever a solution has p 

facilities, all the q facilities are added randomly in the continuous space encompassed by the 

covering circle CCq in one step where LS1 is then activated. Similarly, q  facilities are also 

added randomly for a solution with p q facilities to reach p facilities in one step. In (ii) we 

Step 0: Set 1q , Maxq p 
 

, kMax, lMax and CPUMax and let p p , l̂ =1 and Flag=1. 

Step 1: Generate an initial feasible solution (S) and compute the objective function value Z(S).  

             Set Sbest = S and Zbest = Z(S). 

Step 2:  

Step 2a: Perturb the solution (Sbest) by adding one facility randomly in     “Perturbation via add”                                      

        1CC , apply LS1 to find the new S and set 1p p  . 

Step 2b : If p p , apply LS2 using PROC_LS2(𝑙, lMax, kMax, , Flag)      “Intensification Phase” 

        If Z )Ŝ(  Zbest set Sbest = Ŝ ,  Zbest =  Z )Ŝ( and S= Sbest
 
.  

Step 2c : If p p q  , go to Step 2a, else go to Step 3.                                                    

Step 3:  

Step 3a: Perturb the solution (Sbest) by dropping the facility that               “Perturbation via drop”                                          

        increases the objective function the least,  

        apply LS1 to find the new S and set 1p p  . 

Step 3b : If p p , apply LS2 using PROC_LS2( l̂ , lMax, kMax, , Flag).    “Intensification Phase”       

         If Z )Ŝ( Zbest set Sbest = Ŝ ,  Zbest =  Z )Ŝ( and S= Sbest.                                                             

Step 3c : If p p q  , go to Step 3a,  

              Else 

                if Maxqq   set ,1 qq  else set 1q ;  

                go to Step 4.       

Step 4: If CPU time > CPUMax record Sbest, Zbest and stop, else go to Step 2. 

 

Ŝ

Ŝ
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incorporate flexibility by dynamically increasing and/or decreasing the size of the covering 

circle, as described in PROC-LS2.  

Here, we start by adding one facility (q=1) randomly in the area encompassed by CC1 (i.e., 

the largest circle). In case q=2, two new facilities are inserted randomly in the area 

encompassed by CC2. This radius of the covering circle continues to increase with q until the 

last level is reached (i.e.,
MaxqCC ). However, in the dropping process say from p q to p  and 

from p to p q , we follow the steps of GRADPERT. The steps of STRONGPERT are 

therefore similar to those of “GRADPERT” of Figure 2 except Step 2a and Step 2c are 

modified accordingly to cater for the two schemes mentioned above.  

     Step 2a: Perturb the solution (Sbest) by adding randomly one facility in the continuous space      

                   encompassed by the covering circle CCq and set 1 pp   

    Step 2c : If p p q  , repeat Step 2a, else apply LS1 and go to Step 3.     

 

4 The Integration of Learning into the Search 

 

In this section we incorporate learning into our perturbation-based heuristics. The aim 

is to identify the most promising values of ,  Maxq q  and the depth of the covered area (i.e., the 

destination region that we insert the added facilities in).  

The learning process consists of two phases. In the first phase, the information that is 

mentioned above is recorded during a certain time period (say for instance 25% of the total 

CPU time) which we call the learning phase. In the second phase, we use the obtained 

information about ,  Maxq q  and the level of the covering circle to guide the search during the 

remaining time, see Figure 4 for an illustration. It is worth noting that STRONGPERT has 

more flexibility than GRADPERT given the size of its covering circle is dynamically 

changing.           

Phase I: Learning process  

 

In this phase, we record the number of times the solution is improved for each value of q  

(number of added/removed facilities). We also identify the minimum and the maximum q 

values where the latter relates to  Maxq . In STRONGPERT, we also record the level (radius) 

used of the covering circle whenever the solution improves. In other words, if there is an 
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improvement for a given attribute ( , Maxq q or level), the frequency of using this attribute will 

be increased by one. 

    

 

 

 

 

 

 

 

 

 

 

 

 

Phase II: Integrating the information within the search 

The information that is recorded in the first phase (the value of q  for both schemes and the 

depth of the covered area in STRONGPERT) is then used to guide the search by using the 

following frequency of occurrence-based scheme, usually known as the inverse method. For 

instance, the frequency of occurrence of the q  values when the solution is improved is used 

to compute the probabilities of occurrence of each value of q , say ( )P q . In other words, the 

higher the probability of a given value of q , the higher is the chance that such a value will be 

chosen.  

In brief, the idea is to choose [0,1]  randomly and compute 
1ˆ ( )q F    with 

1

( ) ( )
q

t

F q P t


  being the cumulative probability distribution, and ( )P t  refers to the 

probability of choosing the 
tht q value ( 1,...,  )Maxt q . The same calculations are performed 

for the other attributes. 

    Applying LS1                     
   Using LS2     

Figure 4: The GRADPERT heuristic with learning  

 p + q 

 p - q 

 p + 2 

 p - 2 

 p + 1 

 p - 1 

  p  

Total CPU Time /4 

Learning period: (recording 

information about q when 

there is improvement) 
Using the information of the learning period: in choosing q 

p 

CPU 

Time 
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5 Computational Results  

 

The perturbation-based heuristics are coded in C++ and executed on a laptop computer with 

an Intel Core 2 Duo processor, 2.0 GHz CPU and 4G memory. For the vertex p-centre 

problem, the IBM ILOG CPLEX12.5 Concert library is used. The proposed heuristics are 

tested on TSP-Lib data sets (n=439, 575, 783, 1002 and 1323) using values of p ranging from  

p=10 to 100 with an increment of 10.  

 

      To be consistent with previous results given in [11], we also used the CPU times 

corresponding to 10,000 iterations of the multi-start as our stopping criterion. The effect of 

this stopping rule on the convergence of the proposed perturbation heuristics will be briefly 

examined at the end of this section (see subsection 5.3). We compute the deviation from the 

best solution as Deviation (%) = 
( )

.100H best

best

Z Z

Z


 with ZH denoting the objective value found 

by heuristic ‘H’, and Zbest being the optimal or the best value found over all the heuristics.  

 

We propose two strategies for generating the initial solution: 

a) The solution of the multi-start procedure with 100 runs. 

b) The optimal solution of the vertex p-centre problem. 

In (b), we adopt the set covering-based approach based on Salhi and Al-Khedhairi [26] that 

uses the efficient exact method of Al-Khedhairi and Salhi [1] with tight upper and lower 

bounds at the initialisation phase of the binary search. For convenience and benchmarking 

purposes, we also report for the first time the optimal solutions of the discrete problems for 

all five data sets using 10,...,100p   including their corresponding CPU times (in secs), see 

Appendix A. 

 

5.1 Initial Observations 

 

The detailed results of GRADPERT and STRONGPERT with and without learning using 

strategies (a) and (b) as well as the optimal discrete solutions and their corresponding 

continuous solutions are given in Appendix B. In general, it was found that incorporating 

learning within the search has enhanced the efficiency of the perturbation-based heuristics. 

The continuous solution obtained from the optimal discrete solution improves the objective 

value up to approximately 10% (when n = 575 and p =80 and 100), with an average of over 
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3.5%. This result is also highlighted by Hansen and Mladenović [16] and Gamal and Salhi 

[14] for the multi-source Weber problem. It should be noted, however, that using the best 

solution of the multi-start procedure with 100 runs as an initial solution (i.e., strategy (a)), 

though not initially as competitive as the optimal discrete solution (i.e., strategy (b)), yields in 

most cases better overall results when using the perturbation heuristics (i.e., the final result). 

This is due to the excessive time used for the optimal method at the discrete phase leaving just 

a relatively small time if any for the perturbation method to improve upon the solution. For 

example when 783n   and p = 40, 50 and 60, there was no remaining time at all to run the 

perturbation-based heuristic as the CPU time corresponding to the 10,000 runs of the multi-

start was even smaller than the time used to find the optimal discrete solution (see 

Appendices A and B).    

In subsequent comparisons, we will therefore concentrate and report the results of both 

perturbation methods with learning incorporated and with strategy (a) only for the generation 

of the initial solution. 

 

 

5.2 Comparison against other methods 

 

For the smaller instances (i.e., 439 and 575),n n  we used the optimal solutions for 

comparison purposes. We also implemented the optimal method of Drezner [6] where we 

obtained the optimal solutions for both 439and 575n n  though the CPU time was 

excessively large, sometimes in excess of 24 hours, especially for 575n  and small values of 

p, see Table 1 for the summary results. It is worth noting that this is the first time that the 

optimal solutions for 575n  are reported. The optimal solutions for 439n  were previously 

found by Chen and Chen [3] using the best of their relaxation methods.  

As no optimal solutions are available for the rest of the data sets (783, 1002 and 1323), we 

have implemented in C++ those classical heuristics that were briefly reviewed in the 

introduction section. These include the composite heuristic H2 given by Drezner [6] and the 

drop-based method (STEPDOWN) of Eiselt and Charlesworth [13]. In our experiments, we 

tested the STEPDOWN method with 0.5 and 1  , but we report the results of the best 

variant namely when 0.5  with and without LS1. This observation was also noted in [13]. 

For completeness, we have also added the recently published results by the two best variants 

of VNS given in Elshaikh et al. [11].  
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Table 1: Comparison vs other heuristics (Deviation %) 

n  p  

Overall  best 

or optimal 

solutions 

 (Z) 

  Initial solution based  

on 100 restarts Multi-  

Start 

 (H2)
a
 

         STEPDOWNb  

(β = 0.5) 

Initial solution based  

on 100 restarts  

 

VNS(CN)  

VNS(FN) 

with memory 

(VNS-M) 

GRADPERT     

 

STRONGPERT         

 
 Without LS1 with LS1 

 

 

 

 

 

439 

 

10 1716.5099** 0 0 1.451 2.131 3.904 0 0 

20 1029.7148** 0 0 9.422 9.989 8.801 0 0 

30 739.1929** 0 0 31.901 0 14.054 0 0 

40 580.0054** 0 0 17.964 9.489 9.489 0 0 

50 468.5416** 0.674 0.674 32.697 21.673 16.228 0.850 1.184 

60 400.1952** 0.349 0.349 25.017 20.203 9.856 0.349 0.349 

70 357.9455** 1.272 0 34.391 12.835 9.098 1.230 0 

80 312.5000** 1.203 0.017 26.301 17.644 16.276 0.956 0.956 

90 280.9025** 0.395 0.395 35.310 16.466 12.047 0 0.395 

100 256.680194** 0.395 0.896 17.282 13.271 9.869 1.353 0.347 

 Average 614.219 0.429 0.233 23.174 12.370 10.962 0.474 0.323 

 

 

 

 

 

575 

 

10 67.9258* 0.998 0 1.910 4.121 3.266 0.998 1.910 

20 45.4750* 0.323 0.323 4.661 9.323 14.881 0.323 0.323 

30 35.5563* 0 0.156 11.527 21.139 8.607 0.670 1.724 

40 30.0633* 2.327 0.67 10.984 12.124 15.275 1.408 1.166 

50 25.8263* 1.713 2.489 15.459 13.238 14.372 3.264 3.671 

60 23.1625* 4.549 2.28 17.021 20.460 16.815 1.542 1.181 

70 20.8581* 3.105 0.961 21.382 17.558 17.684 2.406 1.731 

80 19.0263* 2.964 4.326 23.037 23.541 25.290 2.792 5.118 

90 17.4604* 3.487 2.652 26.422 17.513 16.966 3.250 4.751 

100 16.4200* 1.771 1.695 23.653 25.440 17.502 2.135 3.577 

 Average 30.1774 2.124 1.555 15.606 16.446 15.066 1.879 2.515 

 

 

 

 

 

783  

 

10 79.313 0 0 0.844 10.702 9.347 0 0 

20 53.441+ 0.466 0.037 3.892 9.959 5.217 2.652 2.171 

30 42.395 0 0.494 8.128 18.139 11.369 5.608 1.365 

40 35.962+ 1.591 0.411 10.006 9.287 8.216 0.999 1.663 

50 31.184+ 0.911 0.72 12.660 17.999 12.008 3.913 0.553 

60 28.053 0 1.098 17.599 21.093 20.369 2.871 0.334 

70 25.446 0 0.694 17.192 21.892 16.714 1.46 2.161 

80 23.560 0.845 0 18.921 11.109 21.432 2.418 0.443 

90 21.710 1.572 0 14.994 19.517 10.788 2.92 2.931 

100 20.334 1.086 0 18.259 18.259 16.508 1.086 2.335 

 Average 36.140 0.647 0.345 12.250 15.796 13.197 2.393 1.396 

 

 

 

 

 

1002  

 

10 2389.360 0 0 0 1.500 8.565 0 0 

20 1607.530 0.125 1.416 2.488 9.538 9.541 0.125 0 

30 1231.360 0.108 0 9.145 12.126 17.352 0 0 

40 1021.410 2.19 0.88 13.952 12.323 11.869 0 0 

50 901.455++ 0.529 0.724 15.050 16.412 14.110 0.185 0.216 

60 795.709 0.879 0.725 17.389 9.081 10.681 0 0.588 

70 725.431 1.216 0.238 15.864 17.070 16.613 0.144 0 

80 660.019 2.458 1.778 15.945 27.328 17.482 0 0.135 

90 604.152+ 0.057 0.802 24.141 17.041 28.346 0.802 1.022 

100 559.017+ 2.078 2.078 24.592 16.624 16.624 2.078 1.242 

 Average 1049.544 0.964 0.864 13.857 13.904 15.118 0.333 0.320 

 

 

 

 

 

1323  

 

10 2897.490+ 0.237 0.067 0.328 5.177 2.394 0.067 0.067 

20 1868.920++ 0.958 0.958 5.298 10.438 14.724 0.958 1.151 

30 1466.970+ 1.622 0.984 6.368 14.554 14.554 1.743 1.614 

40 1236.380 0 1.21 12.177 18.038 19.269 0.73 1.045 

50 1060.820 0 0.42 15.378 17.216 17.216 0.681 0.681 

60 940.691 1.354 0.125 13.719 12.415 17.655 0.102 0 

70 844.967 0.934 0 15.413 14.942 16.919 1.306 2.048 

80 774.764 1.092 0 16.897 21.416 21.416 1.092 1.823 

90 719.580 0.807 2.265 20.076 15.880 30.728 2.265 0 

100 662.936+ 2.237 5.129 23.396 23.268 17.372 0.785 0.015 

 Average 1247.352 0.924 1.116 12.905 15.334 17.225 0.973 0.844 

Overall Average 595.486 1.018 0.823 15.558 14.770 14.314 1.210 1.080 

# best  18 27 1 1 0 17 21 

a: Drezner (H2) algorithm [6].                                                           b: Eiselt and Charlesworth (STEPDOWN) algorithm [13]. 

**: Optimal solution found by Drezner (exact) algorithm [6] and Chen and Chen [3].           

*: Optimal solution found by Drezner (exact) algorithm [6].   

+: Found by other variants in Elshaikh et al. [11]. ++: Found by other variants shown in Appendix B.  
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It can be noted that the performance of STRONGPERT was slightly superior to its 

counterpart GRADPERT. The overall average deviation values from the optimal (or the best) 

solutions over all the instances is 0.844% and 0.973% respectively. In addition, both 

perturbation methods found 5 optimal solutions for 439n  . When compared against other 

heuristics, our perturbation methods perform really well especially in the two largest 

instances (n=1002; 1323) where average deviations of 0.3 and 0.8% were recorded for 

STRONGPERT and GRADPERT respectively. Also, in general, the proposed perturbation 

heuristics behave comparably well against the recent VNS based metaheuristics (Elshaikh et 

al. [11]) while producing over 40% best solutions (21 out of 50). As expected the 

constructive heuristics such as H2 and the best variant of STEPDOWN were not as 

competitive though the latter used less computational time compared to the others whose 

maximum time was set by the time of the 10,000 runs of the multi-start (H1). The CPU times 

of these methods are reported in Table 2. Note that the CPU time for H2, VNS and the 

perturbation-based methods are not given as these are the same as the ones used by H1.  

 

 

5.3 Convergence behaviour of the perturbation heuristics 

 

As mentioned earlier, we used as our stopping criterion the cpu time required to perform 10,000 

iterations of the multi-start (H1). This is pursued for consistency reasons as previous results are 

also based on the same criterion, see [11]. However, the perturbation heuristics seem to converge 

much earlier if other stopping rules were used instead, say if the search terminates when there is 

no improvement after a certain number of cycles.  For illustration purposes, we used an instance 

with ( 439)n   and GRADPERT as the perturbation method. Here, we record the number of 

improvements, the cumulative gap in % at each improvement from the final solution, and also the 

time spent in % until the last improvement is realised. We identified two classes with class I using 

60p  and class II for the rest. It was found that for class I, GRADPERT required approximately 

12-15 improvements to reach the optimal (best) solution while consuming a tiny fraction of the 

total time only (1-2%) with the exception of p=50 where 6% of the time was needed.  For class II 

(i.e., larger values of p ), approximately 30 improvements were needed accounting for only 20 to 

30% of the total time to achieve the best solution. Two graphs, representing both classes, are  

given in Figure 5 that show the patterns in terms of solution gap from the best (in %) and the % 

time required from the total time for the case of p=40 (class I) and p=80 (class II). Similar patterns 

were also observed for the other instances. This result demonstrates that the proposed perturbation 
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heuristic is rather fast at obtaining good quality solutions if other stopping rules, as mentioned 

earlier, are used instead.  

 

 

Figure 5: Typical convergence patterns of the perturbation heuristics:  

Case of GRADPERT with 439n  for class I ( 60)p  and class II ( 70)p   

 

 

6 Conclusion and Suggestions 

 

 
 

A new perturbation-based heuristic is designed to solve the continuous p-centre problem. The 

idea is to allow the number of facilities to be higher and lower than p in order to act as a 

filtering process where the promising facility locations tend to stay in the chosen set. We also 

guide the search by allowing the amount of perturbation to vary adaptively instead of being a 

constant throughout the search as originally proposed in the literature. A novel local search 

that uses the concept of covering circles that are dynamically adjusted is also developed 

and the incorporation of learning is taken into account to guide the search. The obtained 

results are encouraging when tested on several TSP-Lib data sets

( 439,575,783,1002and 1323)n  using various values of p . The proposed perturbation 

heuristic significantly outperforms some known composite heuristics and obtains comparable 

results when compared to those powerful metaheuristics recently given in Elshaikh et al. [11]. 

We also record for the first time optimal solutions for the case of 575n   for all values of p

using the optimal method of Drezner [6] though the computational burden for this data set was 

found to be relatively high. As by product of this work, we also report for the first time the 

optimal solution of the vertex p centre problem for these data sets. 
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Table 2: Total CPU time (in secs) of Multi-Start (H1), Drezner’s optimal method and the 

drop-based method (STEPDOWN) and # iterations of H2 

 

 

n 

 

 

P 

CPU time (secs) # iterations 
H1 

Total CPU time 

(10000 runs) 

Exact 

algorithm of 

Drezner [6] 

STEPDOWN
b
  

 (β = 0.5) 

 

H2
+
 

 without LS1  with LS1  

 

 

 

 

439 

10 435.058 6252.720 7.980 74.140 3784 

20 751.331 56753.000 9.375 71.977 3875 

30 1018.990 37017.100 7.956 84.859 4557 

40 1171.130 31355.000 8.034 85.985 4962 

50 1730.060 4939.250 8.064 84.002 6958 

60 1984.200 4956.450 9.976 82.079 7871 

70 2087.360 3170.890 8.886 84.791 7904 

80 1943.060 2186.270 9.003 84.269 6718 

90 1988.140 1258.220 11.174 84.901 7491 

100 1866.300 462.297 10.236 93.691 6228 

 Average 1497.563 14835.100 9.068 83.069 6034.800 

 

 

 

575 

10 541.690 83898.600 15.865 158.461 4931 

20 943.640 19087.600 15.523 157.174 5293 

30 1190.150 9743.910 15.444 156.848 5011 

40 1436.050 41733.000 15.726 162.909 4786 

50 1664.060 9612.610 20.078 168.853 4454 

60 1789.300 28344.000 18.972 162.718 3989 

70 2143.630 40256.900 15.616 162.793 3478 

80 2167.660 40181.700 19.945 148.865 3528 

90 2307.930 4260.100 20.001 151.953 3891 

100 2531.670 33694.000 16.294 153.133 3914 

 Average 1671.578 31081.242 17.346 158.371 4327.500 

 

 

 

 

783 

10 909.638 N/A 39.027 397.385 6697 

20 1555.440 N/A 40.342 404.673 6422 

30 2055.590 N/A 42.436 445.683 5534 

40 2403.090 N/A 39.673 451.611 4540 

50 2514.470 N/A 39.153 403.104 4328 

60 2842.810 N/A 40.304 412.328 4370 

70 3154.780 N/A 38.877 383.989 4555 

80 4466.130 N/A 38.719 403.217 5054 

90 3646.990 N/A 50.667 379.012 4156 

100 4075.510 N/A 39.076 377.540 4225 

 Average 2762.446 N/A 40.827 405.854 4988.100 

 

 

 

 

1002 

10 947.822 N/A 77.863 812.409 5484 

20 1627.170 N/A 77.800 887.473 4837 

30 2562.060 N/A 78.449 863.260 4938 

40 2959.210 N/A 77.440 803.861 4214 

50 3682.880 N/A 78.356 827.421 5778 

60 4520.700 N/A 98.117 798.079 6821 

70 6640.190 N/A 78.648 849.338 8506 

80 7026.190 N/A 97.464 826.794 8142 

90 6883.150 N/A 78.142 831.767 6393 

100 7131.510 N/A 79.835 900.827 6131 

 Average 4398.088 N/A 82.211 840.123 6124.400 

 

 

 

1323 

10 1584.920 N/A 175.984 1982.580 5699 

20 2439.180 N/A 174.922 1915.420 5189 

30 3454.570 N/A 178.851 1787.050 4767 

40 4093.150 N/A 177.178 1849.580 4443 

50 5677.000 N/A 169.932 1839.270 5586 

60 6527.830 N/A 217.186 2068.800 5689 

70 7515.280 N/A 169.980 1824.060 5467 

80 7905.080 N/A 175.265 2324.090 4771 

90 8417.760 N/A 174.331 2169.950 4568 

100 9015.060 N/A 187.385 2315.050 4403 

 Average 5662.983 N/A 180.101 2007.585 5058.200 

 +: CPU of H2 is not reported as it is the same as H1.     * best result found by STEPDOWN 
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        For future research, the way the q facilities are inserted or dropped could be revisited. 

For instance, when the number of facilities reaches p a stronger local search than LS2, or 

even a short meta-heuristic including variable neighbourhood descent (VND), could also be 

introduced to form a powerful hybrid.  Alternatively, a perturbation-based heuristic may be 

considered as a new local search within meta-heuristic frameworks such as variable 

neighbourhood search.  Other stopping rules could be worth exploring so as to terminate the 

search earlier if necessary as highlighted in subsection 5.3. The perturbation scheme allows 

us to generate many candidate “centres” during its up and down trajectories. These new 

centres could be used within the new reformulation local search (RLS) framework (see 

Brimberg et al. [2]) to increase the set of potential sites, and hence, improve the ability to find 

better solutions in the continuous space. Hybrid algorithms based on perturbation methods 

and RLS could be considered in future for the continuous p-centre problem in particular and 

other related continuous location problems in general. The proposed perturbation 

methodology can be extended to very large continuous problems where little work has been 

done as highlighted in Irawan and Salhi [17]. We also believe that the optimal method of 

Drezner [6] and the relaxation-based technique of Chen and Chen [3], both have scope for 

improving their implementations, and hence, could be worth revisiting. 
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Appendix A: Optimal solutions and CPU times (secs) for the vertex p-centre problem (n=439,…,1323) 

 

Appendix B: Deviation (%)  from best of Multi-Start, GRADPERT and STRONGPERT (with and without learning) 

n       p  

 
Overall  

Best  

(Z) 

 
Multi- 

   Start 

(10 000 
Runs) 

Initial solution with the multi-start  
algorithm with 100 runs 

 
Optimal 

Discrete 

solutions 

Optimal 
Discrete 

Solutions 

 + 
Continuous 

Initial solution using optimal discrete 

solutions 

GRADPERT  STRONGPERT GRADPERT  STRONGPERT 

No   

Learning 

With  

Learning 

No   

Learning 

With   

Learning 

No  

 Learning 

With   

Learning 

No   

Learning 

With   

Learning 

575  
 

10 67.926 1.910 0.998 0.998 0.998 1.910 6.984 4.984 0 0 0.998 0 

20 45.622 3.097 0 0 0.882 0 7.939 3.745 0 1.025 1.025 0 

30 35.556 9.050 1.523 0.670 1.534 1.724 10.833 5.813 0.503 0.959 0.503 0 

40 30.414 13.946 1.954 0.240 0.036 0 9.493 5.792 1.462 1.617 1.617 0.942 

50 26.319 17.185 2.413 1.332 1.829 1.731 11.810 7.911 1.332 1.189 0.919 0 

60 23.436 19.645 0.544 0.357 2.095 0 15.207 11.339 4.365 3.596 3.309 4.561 

70 21.219 13.888 1.020 0.664 1.020 0 16.678 11.641 0.195 0.818 1.939 1.939 

80 19.266 26.850 1.761 1.515 4.344 3.811 21.173 11.485 2.580 0 1.515 3.266 
90 17.805 24.391 2.107 1.254 1.487 2.726 23.177 15.377 0 2.292 1.487 0.913 

100 16.711 27.822 0.948 0.357 0.580 1.775 23.363 13.861 0.580 0.028 0 2.214 

Average 30.427 15.778 1.327 0.739 1.481 1.368 14.666 9.1946 1.102 1.152 1.331 1.384 

783  
 

10 79.313 0 0 0 0 0 5.262 4.557 0 0 0 0 

20 53.690 2.2749 2.38 2.176 0.582 1.697 5.886 5.665 0 0.424 0.582 0.977 
30 42.801 10.776 1.038 4.606 3.398 0.404 7.627 3.181 0 1.951 0.125 1.009 

40 36.321 9.656 0.586 0 0.417 0.657 10.264+ 10.264+ 10.264+ 10.264+ 10.264+ 10.264+ 
50 31.357 15.361 0 3.341 2.102 0 11.253+ 11.253+ 11.253+ 11.253+ 11.253+ 11.253+ 

60 28.128 17.871 0.866 2.597 0 0.066 23.218+ 23.218+ 23.218+ 23.218+ 23.218+ 23.218+ 

70 25.446 20.885 0 1.46 1.667 2.161 13.356 9.633 4.218 4.391 5.034 3.145 
80 23.665 22.127 0.646 1.967 0.800 0 13.778 10.234 1.109 0.800 0.893 0.797 

90 21.759 24.426 0 2.688 0.898 2.698 17.169 11.465 1.576 1.114 2.382 3.813 

100 20.334 26.014 1.086 1.086 0.470 2.335 18.231 17.129 0 0.058 1.056 1.276 

Average 36.281 14.939 0.66 1.992 1.033 1.002 11.279 10.6599 5.164 5.347 5.481 5.575 

1002  

 

10 2389.360 0.889 0 0 0 0 6.312 4.031 1.102 0 1.102 0 

20 1607.530 4.792 0.125 0.125 0.125 0 7.386 4.325 1.588 1.588 1.588 1.176 

30 1231.360 8.418 0.494 0 1.485 0 9.334 5.368 1.092 1.180 0.658 0.658 

40 1021.410 18.095 2.244 0 2.244 0 14.698 6.813 2.244 2.044 2.244 2.044 

50 901.455 17.005 1.822 0.185 1.753 0.216 14.211 11.537 0.529 0 1.244 0.529 

60 795.709 22.007 2.571 0 0.725 0.588 14.667 12.406 4.622 2.479 2.936 3.661 

70 725.431 17.980 1.827 0.144 0.238 0 17.172 11.351 1.216 0.223 0.178 0.178 

80 660.019 22.913 0.135 0 1.989 0.135 15.387 9.845 0.644 0.135 1.778 1.778 

90 604.494 28.273 0.745 0.745 0.745 0.965 18.428 12.503 0.154 0.745 0.745 0 

100 559.061 29.415 1.026 2.07 2.948 1.234 19.990 14.097 1.026 3.722 2.070 0 

Average 1049.583 16.979 1.099 0.327 1.225 0.314 13.759 9.228 1.422 1.212 1.454 1.002 

1323  
 

10 2899.420 0.260 0.084 0 0.170 0 6.135 1.737 0.170 0.414 0.170 0.414 
20 1868.920 5.414 0 0.958 0.958 1.151 7.891 5.604 0.958 0.958 0.958 0.958 

30 1477.590 7.514 0 1.012 1.463 0.883 10.416 6.850 0.869 1.192 1.192 1.192 
40 1240.620 12.021 1.793 0.386 0.386 0.700 9.007 4.627 0 0 0 0 

50 1061.660 15.897 0.601 0.601 1.444 0.601 11.831 7.930 0 0 0.621 0 

60 940.691 12.804 0.102 0.102 0.104 0 13.004 11.561 1.532 0.198 1.734 0.403 
70 849.782 18.706 0.858 0.732 2.965 1.469 14.373 10.698 0 0 0.732 0.444 

80 776.401 15.092 1.512 0.879 0.879 1.608 15.283 11.510 1.608 2.189 3.675 0 

90 719.580 24.180 1.631 2.265 0.380 0 15.623 14.425 0.486 1.643 0.373 1.631 
100 663.035 28.614 2.189 0.770 1.975 0 18.711 12.908 1.564 2.517 1.992 2.221 

Average 1249.770 14.05 0.877 0.77 1.072 0.641 12.227 8.785 0.719 0.911 1.145 0.726 

Overall Average 

# best 

591.515 

 

15.437  

1 

0.991  

8 

0.957  

9 

1.203        

3 
0.831      

16 

12.983 

0 

9.467            

0 

2.102      

10 

 2.156 

8 

  2.353      

3 

2.172     

11 

Bold: The best solutions found.                                   

+: Optimal discrete not guaranteed due to CPU time needed being larger than the maximum allowed CPU time. 

n          p 439 575 783 1002 1323 

Z CPU Z CPU Z CPU Z CPU Z CPU 

10 1971.832 3.389 72.670 15.520 83.486 10.132 2540.177 12.833 3077.297 40.498 
20 1185.59 4.239 49.244 37.954 56.850 195.212 1726.267 44.577 2016.396 75.709 

30 883.529 3.959 39.408 408.546 46.065 577.578 1346.291 22.525 1631.501 90.568 

40 671.751 4.118 33.301 224.848 39.560 7555.408 1171.537 108.316 1352.36 203.265 
50 564.025 3.863 29.427 286.438 34.785 4907.306 1029.563 44.606 1187.265 320.32 

60 500 4.494 27 165.433 31.400 8324.649 912.414 9.944 1063.014 515.759 

70 474.341 4.003 24.758 142.520 28.844 2204.851 850 11.063 971.925 110.694 
80 412.310 4.140 23.345 88.325 26.925 1470.533 761.577 5.395 895.055 83.543 

90 395.284 3.171 21.931 53.012 25.495 573.266 715.891 5.307 832 53.821 

100 350 4.444 20.615 22.490 24.041 144.354 670.82 7.291 787.095 50.091 

Average 740.866 3.982 34.170 144.507 39.745 2596.329 1172.454 27.1857 1381.391 154.427 
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