
Elshaikh, Abdella, Salhi, Said, Brimberg, Jack, Mladenovic, Nenad, Callaghan,
Becky and Nagy, Gábor (2016) An Adaptive Perturbation-Based Heuristic:
An Application to the Continuous p-Centre Problem. Computers and Operations
Research, 75 . pp. 1-11. ISSN 0305-0548.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/55688/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.cor.2016.04.018

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/55688/
https://doi.org/10.1016/j.cor.2016.04.018
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

1

An Adaptive Perturbation-Based Heuristic:

An Application to the Continuous p-Centre Problem
*

Abdalla Elshaikh
a,d

, Said Salhi
a
, Jack Brimberg

b
, Nenad Mladenović

c
, Becky Callaghan

a

and Gábor Nagy
a

a
Centre for Logistics and Heuristic Optimisation (CLHO), Kent Business School, University of Kent,

Canterbury, UK

{ae201, s.salhi, bc349, g.nagy}@kent.ac.uk
b

Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston,

ON K7K 7B4, Canada

Jack.Brimberg@rmc.ca
c
LAMIH, Universite de Valenciennes, France

nenad.mladenovic@univ-valenciennes.fr
d
Faculty of Economics, University of Misurata, Misurata, Libya.

Abstract

 A self-adaptive heuristic that incorporates a variable level of perturbation, a novel

local search and a learning mechanism is proposed to solve the p-centre problem in the

continuous space. Empirical results, using several large TSP-Lib data sets, some with

over 1300 customers with various values of p, show that our proposed heuristic is both

effective and efficient. This perturbation metaheuristic compares favourably against the

optimal method on small size instances. For larger instances the algorithm outperforms

both a multi-start heuristic and a discrete-based optimal approach while performing

well against a recent powerful VNS approach. This is a self-adaptive method that can

easily be adopted to tackle other combinatorial/global optimisation problems. For

benchmarking purposes, the medium size instances with 575 nodes are solved

optimally for the first time, though requiring a large amount of computational time. As

a by-product of this research, we also report for the first time the optimal solution of

the vertex p-centre problem for these TSP-Lib data sets.

Keywords- p-centre problem, continuous space, perturbation search, adaptive search,

 large instances, optimal solutions.

* This research has been supported in part by the UK Research Council EPSRC (EP/I009299/1), the Natural Sciences & Engineering

Research Council of Canada Discovery Grant (NSERC #20541 – 2008), the Russian Federation grant RFS 14-41-00039, the National

Council for Scientific and Technological Development - CNPq/Brazil grant number 400350/2014-9, and the Spanish Ministry of Economy

and Competitiveness, research project MTM2015-70260-P.

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:Jack.Brimberg@rmc.ca
mailto:nenad.mladenovic@univ-valenciennes.fr

2

1 Introduction

Continuous location problems are concerned with the location of one or more facilities in

the plane. These are characterised by the number of possible sites being infinite and hence

the unconstrained location of new facilities can be anywhere. In other words, any point is

considered as a potential location for a new facility. The objective of the p-centre

problem is to minimise the maximum distance between all customers (demand points or

fixed points) and their nearest facilities. This problem is particularly useful in locating

emergency facilities, such as fire stations, police stations and hospitals, where it is aimed to

minimise the longest response time.

For completeness, we cite a few p  centre related real life applications spanning over

the last 25 years. One of the earliest applications considers the location of fifteen fire

stations in the Belgian rural province of Luxembourg. This problem was investigated by

Richard, Beguin and Peeter's [24] who used villages, sparsely populated hamlets and

some roads in the country side as demand points, some of which also served as potential

sites. The location of a number of health resources such as geriatric and diabetic health

care clinics in the rural area of Burgos in Spain was examined by Pacheco & Casado [22]

using scatter search. A study to locate a number of bicycle stations in the city of Isfahan,

Iran, was conducted by Kavesh and Nasr [18] using harmony search. A real life

application that aims to minimise the number of emergency warning sirens in Dublin

(Ohio) was explored by Wei et al. [30] who adopted an enhanced Voronoi-based

approach to cover the entire area with the minimum number of facilities. A humanitarian

aid problem to locate a number of urgent relief distribution centres to help with the

casualties due to an earthquake in Taiwan that measured at 7.3 on the Richter scale, and

caused over 2500 deaths and 8000 injuries, was recently investigated by Lu [19] using

simulated annealing.

The continuous (or planar) p-centre problem has a succinct geometrical interpretation.

For example, the single unweighted facility location problem (i.e., p =1) corresponds to

finding the smallest circle that encloses all n points (customers), with the centre being the

location of the new facility. Equivalently, the continuous p-centre problem (p >1) aims to

cover a set of customers in the plane with p circles where the radius of the largest circle is

minimised.

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

 The (weighted) p-centre problem can be formulated as follows (Drezner [6]).

  
1 ,..., 1 1

[()]
p

i j
X X i n j p

Minimize Max Min D X
   

where

2(,)j j jX x y  : the coordinates of facility (1,...,)j j p

(,)i ia b : the coordinates of demand point (1,...,)i i n

iw : the weight associated with demand point (1,...,)i i n

2 2 1/2() [() ()]i j i j i j iD X w x a y b    : the weighted Euclidean distance between the j
th

facility

and the i
th

 demand point (1,..., ; 1,...,)i n j p  .

For variable p , the continuous p-centre problem is known to be NP-hard (see Megiddo and

Supowit [20]), whereas for fixed p , Drezner [6] shows that the problem can be solved in

2 4()pO n 
 though it is computationally unattractive for large p .

The single facility minimax location problem (1-centre) in the continuous space has a

long history, having been posed originally in 1857 by the English mathematician James

Joseph Sylvester (1814-1897) who also proposed in 1860 an algorithm to solve it. Elzinga

and Hearn [12] proposed an efficient geometrical-based algorithm for solving optimally the

problem. Other authors attempted some enhancements to speed up the search, such as Xu et

al. [31] and Elshaikh et al. [11] and references therein. For more details on the continuous 1-

center problem including a fascinating history on this topic, the reader will find the chapter

by Drezner [9] to be informative.

Drezner [7] proposed two algorithms for the solution of the two-centre and two-median

location problems with Euclidean distances on the plane. The idea is that the two customer

sets in any solution can be separated by a straight line (i.e.,
(1)

2

n n 
possibilities). Since

the optimal facility location in each of the two sets (1p ) can be easily found due to the

convexity of the objective function, the problem reduces to finding an efficient way of

defining all these straight lines and hence these corresponding subset pairs.

There is, however, a relatively small number of authors who have studied the -p centre

problem; see Plastria [23] and the references therein. One of the commonly used approaches

is based on Cooper’s [5] locate-allocate procedure. In brief, the idea is to choose initially p

facility points randomly or using a heuristic and assign each demand point to its nearest facility

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

making p subsets. In each cluster the optimal single facility location is found using Elzinga-

Hearn or an equivalent method. The allocation is then performed again followed by the

optimal solution of p 1-centre problems. This is repeated until there is no improvement in the

allocation. Drezner [6] presents two methods, namely, a multi-start similar to Cooper’s locate

allocate adapted to the p -center problem (referred to as (H1)) followed by a composite

heuristic made up of H1 and a post optimiser that allocates the critical points between the

clusters (called (H2)). Eiselt and Charlesworth [13] propose three constructive and

improvement-based heuristics. Their first one resembles the locate-allocate procedure of

Cooper, the second uses the vertex substitution of Teitz and Bart [29] with the critical points

used for reallocation, and their third one is based on the drop method. As the latter will be

used in our computational results section, we briefly describe it here. The idea is to start with

all n demand sites as potential sites and then combine the two nearest points to make up a

new centre leading to 1n clusters. This process of exploring the two nearest centers to

make up a combined center continues until p clusters with their corresponding centers are

found. The ‘locate-allocate’ process is then activated as an optional improvement step. A

more flexible version is to allow a certain number of pairs with their corresponding customers

to be explored and the pair corresponding to the combined cluster with the lowest radius is

chosen instead of selecting the pair with the closest distance. A control parameter

(0 1)   is introduced to select these pairs with a value of 0.5 empirically shown to

produce the best results. This flexible variant, known as STEPDOWN, outperforms their

other two methods. Very recently, Elshaikh et al. [11] devise an enhanced version of the

Elzinga and Hearn algorithm for the 1-centre problem which is then embedded within a

powerful VNS-based heuristic to solve the p -centre problem. The results from H1, H2 and

STEPDOWN heuristics will be used alongside those given in [11] for comparison purposes

in subsection 5.2.

For the case of area coverage, which can be of interest, for example, to agriculture,

environment and mobile phone coverage technology, a Voronoi diagram-based heuristic,

using an iterative procedure based on the locate-allocate principle, was proposed by Suzuki

and Okabe [28]. This was then applied by Drezner and Suzuki [8] who added a post-

optimiser using nonlinear programming to cover a square with p circles. Wei et al. [30]

extended the above Voronoi-based approach to account for irregular and non-convex shapes,

including the possibility of forbidden regions where the new facilities cannot be sited.

Though the area and the point coverage problems are related, these preceding approaches

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

should not be used directly for point coverage given that the results can be misleading as

demonstrated by Murray and Wei [21].

Few papers deal with exact methods for the planar p-center problem. Drezner [6] put forward

an interesting idea of enumerating all the maximum sets given a threshold (the radius of the

largest circle at a given iteration) to be used within a covering-based model. If the problem is

feasible, the obtained feasible solution is then used to get a new threshold. The process is

repeated until the covering problem has no feasible solution leading to the current threshold

being the optimal solution. Results for small instances up to 40n  and 5p  were tested

starting with the initial solution (threshold) found by the Drezner’s heuristic H2 [6]. This

optimal method will be revisited in the computational results section as it is found to be not

as slow as originally mentioned in the literature (see subsection 5.2). Excellent results for

both the discrete and the continuous cases are found by Chen and Chen [3] who extended the

work of Chen and Handler [4] in several interesting ways. The authors used three types of

relaxation methods. One is to solve optimally for a small subset of the original problem,

while gradually adding additional demand points (usually the farthest from the service points

of the current feasible solution) until the solution becomes feasible for the original problem,

and hence, may be considered as the optimal solution of the original problem. Two further

relaxations were developed. These include a reverse relaxation where a lower bound is first

found which is then gradually increased until the optimal solution is reached, and a binary

relaxation where both upper and lower bounds are updated accordingly. The only optimal

solutions for the planar p-centre problem reported by the authors are for the TSP data set with

439.n  For comparison purposes, these optimal results will also be used in our

computational results section (see subsection 5.2).

It is worth noting that the proposed perturbation heuristic is, to our knowledge, the second

only metaheuristic that is developed to investigate this class of location problem. This is an

adaptive method that can easily be modified to tackle a variety of combinatorial and/or global

optimisation problems. In addition, this approach solves large data sets with more than 1300

demand points with encouraging results. For benchmarking purposes, we have also

implemented Drezner’s optimal method and report, for the first time, the optimal solutions

for medium size instances (i.e., 575n ) though the computational time required was

excessively large especially for small values of p (mostly exceeding 10 hours of CPU time

with a few that required nearly 24 hours.

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

Though the p  centre problem can be seen as an old and well-established combinatorial

problem, in our view it serves as an interesting and useful base to test innovative ideas which

can then be extended and adapted for other related and more complex continuous location

problems such as those with restricted non convex regions with and without capacity

restriction, presence of fixed cost, just to cite a few.

The contributions of the study include

(i) The design of a powerful perturbation-based metaheuristic that uses an adaptive

degree of perturbation and can be adapted to a variety of other combinatorial and

global optimisation problems.

(ii) A novel local search that is based on the concept of a ‘covering circle’ whose

neighbourhood is dynamically adjusted.

(iii) The incorporation of learning within the search, which we consider to be an

invaluable ingredient in heuristic search design in general and in this new

perturbation metaheuristic in particular.

(iv) The generation of high quality results for large planar p-centre problems (some

instances with more than 1300 customers) including the optimal solutions for the

first time for 575,n  as well as all the optimal solutions for their discrete

counterpart problems.

The paper is organised as follows: The next section discusses the basic perturbation

heuristic. In section 3, the two local searches including a novel swap-based scheme using the

concept of covering circles are first described, followed by the two new perturbation-based

heuristics that use a dynamic level of perturbation. In section 4, learning is introduced

within the search. Computational experiments are given in section 5 and our conclusions and

suggestions for future research are summarised in the last section.

2 A brief on the basic perturbation-based heuristic

This approach guides the search by introducing some perturbations into the

problem. For the p-centre problem these can be achieved by allowing the number of

facilities of a solution to go over and under the required number of facilities (p) by a certain

value (q). In other words, the solution is allowed to be infeasible in terms of the number of

open facilities. In brief, the method works as follows: An initial solution of the p-centre

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

problem is first found, and then the number of open facilities is allowed to increase to

()p p p q  by adding q facilities to the current solution. The removal of q facilities

is then performed to reach a solution with p facilities where an intensification of the

search is activated. The removal of facilities continues until the problem with

()p p p q  facilities is reached. At this stage the addition of q facilities is performed to

get a feasible solution with p open facilities where intensification is activated again. We

refer to this shifting as one cycle of the perturbation procedure which is then repeated

several times until the maximum computation time allowed)(MaxCPU is reached, or the

maximum number of cycles without successive improvement is met, whichever comes first.

The reasoning behind this method is that the continual shifting between feasible and

infeasible regions acts as a filtering process where the best facilities have the tendency to

remain in the promising set. Salhi [25] proposed this metaheuristic for a class of discrete

uncapacitated location problems with good results. Hanafi and Freville [15] also adapted a

similar approach for solving a class of knapsack problems, while Zainuddin and Salhi [32]

modified this methodology to solve the capacitated multisource Weber problem. It can also

be noted that the idea of perturbation shares a few similarities with large neighbourhood

search proposed by Shaw [27], where the `ruin and build’ scheme corresponds to the `drop

and add’ counterpart, especially when the search goes from p to p q , and then back up to

.p

3. The new perturbation-based heuristic

In this study we extend the perturbation metaheuristic given in [25] by

(i) introducing flexibility in the level of perturbation using a variable value of q that

is adaptively determined instead of being fixed throughout the search as initially

used in the literature [25,32].

(ii) Tailoring the swap, add and drop moves to the -p centre problem.

(iii) Examining two new local searches. One relates to the case when the solution is

infeasible (i.e., the number of facilities in the solution is , 1,...,p s s q ) where

the ‘locate-allocate’ type procedure, which we refer to as the local search of

type1 “LS1”, is applied. The second one is used when the solution is feasible

(i.e., the number of facilities is p). In this case, a combined local search “LS2”

made up of LS1 and a swap-based neighbourhood is adopted.

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

8

In (i), we propose two types of perturbation based on flexibility of the level of perturbation

where the value of q can be relaxed and made dynamic starting from 1q  and increasing to

Maxq . The first one which we call a gradual perturbation “GRADPERT” aims to add one

facility at a time and apply LS1 at , 1,..., Maxp s s q  whereas the second, which we refer to as

the strong perturbation “STRONGPERT”, adds all the q facilities in one step, followed by

LS1. In addition, GRADPERT uses the first covering circle (1CC) as its destination cluster

when using the add move whereas STRONGPERT adopts a covering circle with a

dynamically changing size
1,...,()

Maxk k qCC 
. The definition of kCC will be given next. In both

perturbations LS2 is used whenever the number of facilities is p (i.e., the solution is

feasible).

The two local searches (LS1 and LS2) followed by a brief description of the three

types of moves (drop, add, swap) are presented in the next subsection, while the

GRADPERT and STRONGPERT heuristics will be given in subsections 3.2 and 3.3,

respectively.

3.1 The two local searches

a) Local search LS1

LS1 is activated when the number of open facilities is { ,...., 1, 1,..., }p p q p p p q     . This

procedure is similar to Cooper’s `locate allocate procedure’ , and is briefly described in the

following three mini steps:

(i) Given the p facility locations (or centres) ; 1,...,jC j p , allocate each customer to its

nearest centre (breaking ties arbitrarily), and define for each centre j, the subset
jV , as

{ {1,..., }: (,) ((,), 1,...,)}j j kV i n d C i Min d C i k p   

(ii) In each subset
jV , determine the optimal centre, , 1,...,jC j p , using the Elzinga-

Hearn algorithm or its enhanced version as described in Elshaikh et al. [11].

(iii) Repeat steps (i) and (ii) until there is no further improvement.

b) Local search LS2

This local search is applied only when the number of facilities is .p It is based on swapping

an open facility chosen randomly from the current `covering circle’ with a location randomly

selected from the same `covering circle’. The definition of a `covering circle’ is as follows:

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

Let

1C : the largest circle defined by centre 1X and (largest) radius 1R ;

jC : the j
th

nearest circle to the largest circle measured by the distance between the two

 centres where and j jX R define the centre and the radius of
jC , respectively; 1,..., .j p

' :kCC the area encompassed by the artificial circle centered at 1X with a radius

1 1 1 (,) if 1, and otherwise; 1,..., .k kR d X X k R R k p 

    

We refer to 'kCC as the 'thk covering circle. In other words, this is an artificial circle with a

radius defined as the distance from the centre of the largest circle 1X to its  ' 1
th

k  nearest

facility defined by 'kX . The reasoning behind this idea is to concentrate the search around the

neighbourhood of the largest circle as this constitutes the main characteristic of the p  centre

problem. An example of an 8-centre problem is illustrated in Figure 1.

In brief, the procedure works as follows: we start from the first level (' 1)k  of the

covering circle (the largest circle) by dropping the facility of the largest circle and inserting a

facility randomly in
1CC . If the solution is not improved after applying LS1, we move to

2CC (i.e., the second level of the covering circle by enlarging it to contain two facilities,

namely, the facility of the largest circle and the nearest facility to it). One of these two

candidate facilities is then randomly selected to be dropped and replaced by a location also

randomly chosen in the continuous space encompassed by
2CC followed by LS1. If the new

solution is improved we revert back to level 1, where the largest circle, which may not

Figure 1. An example of the levels of covering circles that are dynamically

increasing from the source region of an 8-centre problem

x

x

y

y

♦

♦

.p2

p2
♦

♦

♦

♦

.

.

p7 ♦

♦

♦

♦

♦ . p4
♦ ♦

.

.

p6

p6

♦

. p8

♦

♦

♦ ♦

.p3

p3

♦

♦ ♦

♦

♦

♦

.

.

p5

p5
♦

♦

♦

♦

.p1

p1
♦

♦
♦

♦
♦

♦

The

largest

circle

 Demand points
 New facilities
♦

 .

The first level

The second level

The third level

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

necessarily be the previous one, is identified again; its corresponding covering circle
1CC is

then used and the process is repeated; otherwise we continue exploring the next level. This

process continues until the last level, Maxl say, which includes all the facilities (1)Maxl p  is

reached. From that point we apply a reversal move by gradually reducing the level of the

covering circle until level one is reached. The swapping process is performed until no

improvement is found after Maxk successive trials (here we set
axMk p 

 
). Note that at

this point, we record the current level, l̂ say, and the direction whether we are in the process

of increasing the level (Flag = 1) or decreasing the level (Flag = -1). This is important as this

information is used when we reach p again in subsequent iterations, where the search

continues from the next level based on whichever level is reached at this iteration (i.e., if

Flag=1 set 1l l  , else set 1l l ) while retaining the same direction. Initially, Flag is

obviously set to 1 as the search starts from level 1 defining the largest circle. The steps of this

procedure, which we call PROC-LS2, are given in Figure 2.

Figure 2. The PROC-LS2 procedure

A brief on the three moves

Here, we briefly present the three moves.

The drop move- The strategy is to remove q facilities one by one followed each time by

LS1. This process is applied when the number of open facilities is p and going down

to p q (infeasible case) or starting from p q (infeasible case) and going down to p .

Here, the facility chosen is the one whose removal increases the objective function the least,

 ˆ ˆ2(, , , ,)Max MaxPROC LS l l k S Flag

(i) Let k=0 , S=Sbest and l=𝑙

(ii) Generate a new solution by swapping randomly one facility from S in

level l, apply LS1 and set k=k+1. Let S be the new solution

(iii) If Z(S) < Z(S), set S=S , k=0, l=1, and go to step (ii)

(iv) If FLAG=1 then if l < lMax , set l=l+1 otherwise FLAG= 1

 Else if l >1 , set l= l 1 , otherwise FLAG=+1

(v) If Maxk k , set k=k+1 and return to step (ii), else set Ŝ = S and .ˆ ll 

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

11

which is then followed by LS1 to find a new solution with one facility less. This

procedure is repeated until q facilities are removed.

The add move- Here, q facilities are inserted when the number of open facilities is p

with the aim to go over the required number of facilities to p q . Similarly, this is also

applied when the number of open facilities reaches p q .

The swap move- When the number of open facilities reaches p, we relocate randomly one

open facility from the current covering circle to a point randomly chosen from the same

covering circle based on the procedure LS2 (PROC-LS2) given earlier.

3.2 The GRADPERT heuristic

In [25] the added facility is chosen based on the largest cost saving among the potential

facility sites as the problem is a discrete type location problem. Here, the q new facilities are

added randomly one at a time in the continuous space encompassed by
1CC instead. This

solution is then examined for possible improvement by “LS1” at each of the q steps. A similar

process is applied in the drop move except the removal is not performed randomly but using

the least extra cost rule. The algorithm “GRADPERT” is given in Figure 3 with its main

steps briefly described as follows.

Step 1

The initial solution is generated by randomly choosing p fixed points though other schemes

could also be used. In our study, we chose the best solution of a multi-start with 100 runs as

well as the optimal solution of the vertex p-centre problem.

Steps 2a and 3a

LS1 is used here and also in step 1 to improve upon the initial solution.

Steps 2b and 3b

When a solution with p facilities is reached, intensification is activated using LS2. Here, a

swapping type process is used where one facility is chosen randomly from the covering circle

(level ˆl l) and then relocated randomly in the continuous space of the same covering circle

whose size is dynamically adjusted as described previously by PROC_LS2 in Figure 2 .

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

12

Figure 3. The GRADPERT heuristic

3.3 The STRONGPERT heuristic

It can be noted that when the solution of the p-centre location problem is not optimal, the

facility serving the customers that are encompassed by the largest circle and at least one of

the facilities that are around it are not in the right location. This key observation is taken into

account by introducing noises around the largest circle of the current solution. To achieve

this, we adopt two schemes (i) the way we add these q facilities and (ii) the way we define the

destination cluster where these facilities will be sited. In (i), whenever a solution has p

facilities, all the q facilities are added randomly in the continuous space encompassed by the

covering circle CCq in one step where LS1 is then activated. Similarly, q facilities are also

added randomly for a solution with p q facilities to reach p facilities in one step. In (ii) we

Step 0: Set 1q , Maxq p 
 

, kMax, lMax and CPUMax and let p p , l̂ =1 and Flag=1.

Step 1: Generate an initial feasible solution (S) and compute the objective function value Z(S).

 Set Sbest = S and Zbest = Z(S).

Step 2:

Step 2a: Perturb the solution (Sbest) by adding one facility randomly in “Perturbation via add”

 1CC , apply LS1 to find the new S and set 1p p  .

Step 2b : If p p , apply LS2 using PROC_LS2(𝑙, lMax, kMax, , Flag) “Intensification Phase”

 If Z )Ŝ(Zbest set Sbest = Ŝ , Zbest = Z)Ŝ(and S= Sbest

.

Step 2c : If p p q  , go to Step 2a, else go to Step 3.

Step 3:

Step 3a: Perturb the solution (Sbest) by dropping the facility that “Perturbation via drop”

 increases the objective function the least,

 apply LS1 to find the new S and set 1p p  .

Step 3b : If p p , apply LS2 using PROC_LS2(l̂ , lMax, kMax, , Flag). “Intensification Phase”

 If Z )Ŝ(Zbest set Sbest = Ŝ , Zbest = Z)Ŝ(and S= Sbest.

Step 3c : If p p q  , go to Step 3a,

 Else

 if Maxqq  set ,1 qq else set 1q ;

 go to Step 4.

Step 4: If CPU time > CPUMax record Sbest, Zbest and stop, else go to Step 2.

Ŝ

Ŝ

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

13

incorporate flexibility by dynamically increasing and/or decreasing the size of the covering

circle, as described in PROC-LS2.

Here, we start by adding one facility (q=1) randomly in the area encompassed by CC1 (i.e.,

the largest circle). In case q=2, two new facilities are inserted randomly in the area

encompassed by CC2. This radius of the covering circle continues to increase with q until the

last level is reached (i.e.,
MaxqCC). However, in the dropping process say from p q to p and

from p to p q , we follow the steps of GRADPERT. The steps of STRONGPERT are

therefore similar to those of “GRADPERT” of Figure 2 except Step 2a and Step 2c are

modified accordingly to cater for the two schemes mentioned above.

 Step 2a: Perturb the solution (Sbest) by adding randomly one facility in the continuous space

 encompassed by the covering circle CCq and set 1 pp

 Step 2c : If p p q  , repeat Step 2a, else apply LS1 and go to Step 3.

4 The Integration of Learning into the Search

In this section we incorporate learning into our perturbation-based heuristics. The aim

is to identify the most promising values of , Maxq q and the depth of the covered area (i.e., the

destination region that we insert the added facilities in).

The learning process consists of two phases. In the first phase, the information that is

mentioned above is recorded during a certain time period (say for instance 25% of the total

CPU time) which we call the learning phase. In the second phase, we use the obtained

information about , Maxq q and the level of the covering circle to guide the search during the

remaining time, see Figure 4 for an illustration. It is worth noting that STRONGPERT has

more flexibility than GRADPERT given the size of its covering circle is dynamically

changing.

Phase I: Learning process

In this phase, we record the number of times the solution is improved for each value of q

(number of added/removed facilities). We also identify the minimum and the maximum q

values where the latter relates to Maxq . In STRONGPERT, we also record the level (radius)

used of the covering circle whenever the solution improves. In other words, if there is an

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

14

improvement for a given attribute (, Maxq q or level), the frequency of using this attribute will

be increased by one.

Phase II: Integrating the information within the search

The information that is recorded in the first phase (the value of q for both schemes and the

depth of the covered area in STRONGPERT) is then used to guide the search by using the

following frequency of occurrence-based scheme, usually known as the inverse method. For

instance, the frequency of occurrence of the q values when the solution is improved is used

to compute the probabilities of occurrence of each value of q , say ()P q . In other words, the

higher the probability of a given value of q , the higher is the chance that such a value will be

chosen.

In brief, the idea is to choose [0,1] randomly and compute
1ˆ ()q F  with

1

() ()
q

t

F q P t


 being the cumulative probability distribution, and ()P t refers to the

probability of choosing the
tht q value (1,...,)Maxt q . The same calculations are performed

for the other attributes.

 Applying LS1
 Using LS2

Figure 4: The GRADPERT heuristic with learning

 p + q

 p - q

 p + 2

 p - 2

 p + 1

 p - 1

 p

Total CPU Time /4

Learning period: (recording

information about q when

there is improvement)
Using the information of the learning period: in choosing q

p

CPU

Time

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

15

5 Computational Results

The perturbation-based heuristics are coded in C++ and executed on a laptop computer with

an Intel Core 2 Duo processor, 2.0 GHz CPU and 4G memory. For the vertex p-centre

problem, the IBM ILOG CPLEX12.5 Concert library is used. The proposed heuristics are

tested on TSP-Lib data sets (n=439, 575, 783, 1002 and 1323) using values of p ranging from

p=10 to 100 with an increment of 10.

 To be consistent with previous results given in [11], we also used the CPU times

corresponding to 10,000 iterations of the multi-start as our stopping criterion. The effect of

this stopping rule on the convergence of the proposed perturbation heuristics will be briefly

examined at the end of this section (see subsection 5.3). We compute the deviation from the

best solution as Deviation (%) =
()

.100H best

best

Z Z

Z


 with ZH denoting the objective value found

by heuristic ‘H’, and Zbest being the optimal or the best value found over all the heuristics.

We propose two strategies for generating the initial solution:

a) The solution of the multi-start procedure with 100 runs.

b) The optimal solution of the vertex p-centre problem.

In (b), we adopt the set covering-based approach based on Salhi and Al-Khedhairi [26] that

uses the efficient exact method of Al-Khedhairi and Salhi [1] with tight upper and lower

bounds at the initialisation phase of the binary search. For convenience and benchmarking

purposes, we also report for the first time the optimal solutions of the discrete problems for

all five data sets using 10,...,100p  including their corresponding CPU times (in secs), see

Appendix A.

5.1 Initial Observations

The detailed results of GRADPERT and STRONGPERT with and without learning using

strategies (a) and (b) as well as the optimal discrete solutions and their corresponding

continuous solutions are given in Appendix B. In general, it was found that incorporating

learning within the search has enhanced the efficiency of the perturbation-based heuristics.

The continuous solution obtained from the optimal discrete solution improves the objective

value up to approximately 10% (when n = 575 and p =80 and 100), with an average of over

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

16

3.5%. This result is also highlighted by Hansen and Mladenović [16] and Gamal and Salhi

[14] for the multi-source Weber problem. It should be noted, however, that using the best

solution of the multi-start procedure with 100 runs as an initial solution (i.e., strategy (a)),

though not initially as competitive as the optimal discrete solution (i.e., strategy (b)), yields in

most cases better overall results when using the perturbation heuristics (i.e., the final result).

This is due to the excessive time used for the optimal method at the discrete phase leaving just

a relatively small time if any for the perturbation method to improve upon the solution. For

example when 783n  and p = 40, 50 and 60, there was no remaining time at all to run the

perturbation-based heuristic as the CPU time corresponding to the 10,000 runs of the multi-

start was even smaller than the time used to find the optimal discrete solution (see

Appendices A and B).

In subsequent comparisons, we will therefore concentrate and report the results of both

perturbation methods with learning incorporated and with strategy (a) only for the generation

of the initial solution.

5.2 Comparison against other methods

For the smaller instances (i.e., 439 and 575),n n  we used the optimal solutions for

comparison purposes. We also implemented the optimal method of Drezner [6] where we

obtained the optimal solutions for both 439and 575n n  though the CPU time was

excessively large, sometimes in excess of 24 hours, especially for 575n  and small values of

p, see Table 1 for the summary results. It is worth noting that this is the first time that the

optimal solutions for 575n  are reported. The optimal solutions for 439n  were previously

found by Chen and Chen [3] using the best of their relaxation methods.

As no optimal solutions are available for the rest of the data sets (783, 1002 and 1323), we

have implemented in C++ those classical heuristics that were briefly reviewed in the

introduction section. These include the composite heuristic H2 given by Drezner [6] and the

drop-based method (STEPDOWN) of Eiselt and Charlesworth [13]. In our experiments, we

tested the STEPDOWN method with 0.5 and 1  , but we report the results of the best

variant namely when 0.5  with and without LS1. This observation was also noted in [13].

For completeness, we have also added the recently published results by the two best variants

of VNS given in Elshaikh et al. [11].

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

17

Table 1: Comparison vs other heuristics (Deviation %)

n p

Overall best

or optimal

solutions

 (Z)

 Initial solution based

on 100 restarts Multi-

Start

 (H2)
a

 STEPDOWNb

(β = 0.5)

Initial solution based

on 100 restarts

VNS(CN)

VNS(FN)

with memory

(VNS-M)

GRADPERT

STRONGPERT

 Without LS1 with LS1

439

10 1716.5099** 0 0 1.451 2.131 3.904 0 0

20 1029.7148** 0 0 9.422 9.989 8.801 0 0

30 739.1929** 0 0 31.901 0 14.054 0 0

40 580.0054** 0 0 17.964 9.489 9.489 0 0

50 468.5416** 0.674 0.674 32.697 21.673 16.228 0.850 1.184

60 400.1952** 0.349 0.349 25.017 20.203 9.856 0.349 0.349

70 357.9455** 1.272 0 34.391 12.835 9.098 1.230 0

80 312.5000** 1.203 0.017 26.301 17.644 16.276 0.956 0.956

90 280.9025** 0.395 0.395 35.310 16.466 12.047 0 0.395

100 256.680194** 0.395 0.896 17.282 13.271 9.869 1.353 0.347

 Average 614.219 0.429 0.233 23.174 12.370 10.962 0.474 0.323

575

10 67.9258* 0.998 0 1.910 4.121 3.266 0.998 1.910

20 45.4750* 0.323 0.323 4.661 9.323 14.881 0.323 0.323

30 35.5563* 0 0.156 11.527 21.139 8.607 0.670 1.724

40 30.0633* 2.327 0.67 10.984 12.124 15.275 1.408 1.166

50 25.8263* 1.713 2.489 15.459 13.238 14.372 3.264 3.671

60 23.1625* 4.549 2.28 17.021 20.460 16.815 1.542 1.181

70 20.8581* 3.105 0.961 21.382 17.558 17.684 2.406 1.731

80 19.0263* 2.964 4.326 23.037 23.541 25.290 2.792 5.118

90 17.4604* 3.487 2.652 26.422 17.513 16.966 3.250 4.751

100 16.4200* 1.771 1.695 23.653 25.440 17.502 2.135 3.577

 Average 30.1774 2.124 1.555 15.606 16.446 15.066 1.879 2.515

783

10 79.313 0 0 0.844 10.702 9.347 0 0

20 53.441+ 0.466 0.037 3.892 9.959 5.217 2.652 2.171

30 42.395 0 0.494 8.128 18.139 11.369 5.608 1.365

40 35.962+ 1.591 0.411 10.006 9.287 8.216 0.999 1.663

50 31.184+ 0.911 0.72 12.660 17.999 12.008 3.913 0.553

60 28.053 0 1.098 17.599 21.093 20.369 2.871 0.334

70 25.446 0 0.694 17.192 21.892 16.714 1.46 2.161

80 23.560 0.845 0 18.921 11.109 21.432 2.418 0.443

90 21.710 1.572 0 14.994 19.517 10.788 2.92 2.931

100 20.334 1.086 0 18.259 18.259 16.508 1.086 2.335

 Average 36.140 0.647 0.345 12.250 15.796 13.197 2.393 1.396

1002

10 2389.360 0 0 0 1.500 8.565 0 0

20 1607.530 0.125 1.416 2.488 9.538 9.541 0.125 0

30 1231.360 0.108 0 9.145 12.126 17.352 0 0

40 1021.410 2.19 0.88 13.952 12.323 11.869 0 0

50 901.455++ 0.529 0.724 15.050 16.412 14.110 0.185 0.216

60 795.709 0.879 0.725 17.389 9.081 10.681 0 0.588

70 725.431 1.216 0.238 15.864 17.070 16.613 0.144 0

80 660.019 2.458 1.778 15.945 27.328 17.482 0 0.135

90 604.152+ 0.057 0.802 24.141 17.041 28.346 0.802 1.022

100 559.017+ 2.078 2.078 24.592 16.624 16.624 2.078 1.242

 Average 1049.544 0.964 0.864 13.857 13.904 15.118 0.333 0.320

1323

10 2897.490+ 0.237 0.067 0.328 5.177 2.394 0.067 0.067

20 1868.920++ 0.958 0.958 5.298 10.438 14.724 0.958 1.151

30 1466.970+ 1.622 0.984 6.368 14.554 14.554 1.743 1.614

40 1236.380 0 1.21 12.177 18.038 19.269 0.73 1.045

50 1060.820 0 0.42 15.378 17.216 17.216 0.681 0.681

60 940.691 1.354 0.125 13.719 12.415 17.655 0.102 0

70 844.967 0.934 0 15.413 14.942 16.919 1.306 2.048

80 774.764 1.092 0 16.897 21.416 21.416 1.092 1.823

90 719.580 0.807 2.265 20.076 15.880 30.728 2.265 0

100 662.936+ 2.237 5.129 23.396 23.268 17.372 0.785 0.015

 Average 1247.352 0.924 1.116 12.905 15.334 17.225 0.973 0.844

Overall Average 595.486 1.018 0.823 15.558 14.770 14.314 1.210 1.080

best 18 27 1 1 0 17 21

a: Drezner (H2) algorithm [6]. b: Eiselt and Charlesworth (STEPDOWN) algorithm [13].

**: Optimal solution found by Drezner (exact) algorithm [6] and Chen and Chen [3].

*: Optimal solution found by Drezner (exact) algorithm [6].

+: Found by other variants in Elshaikh et al. [11]. ++: Found by other variants shown in Appendix B.

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

18

It can be noted that the performance of STRONGPERT was slightly superior to its

counterpart GRADPERT. The overall average deviation values from the optimal (or the best)

solutions over all the instances is 0.844% and 0.973% respectively. In addition, both

perturbation methods found 5 optimal solutions for 439n  . When compared against other

heuristics, our perturbation methods perform really well especially in the two largest

instances (n=1002; 1323) where average deviations of 0.3 and 0.8% were recorded for

STRONGPERT and GRADPERT respectively. Also, in general, the proposed perturbation

heuristics behave comparably well against the recent VNS based metaheuristics (Elshaikh et

al. [11]) while producing over 40% best solutions (21 out of 50). As expected the

constructive heuristics such as H2 and the best variant of STEPDOWN were not as

competitive though the latter used less computational time compared to the others whose

maximum time was set by the time of the 10,000 runs of the multi-start (H1). The CPU times

of these methods are reported in Table 2. Note that the CPU time for H2, VNS and the

perturbation-based methods are not given as these are the same as the ones used by H1.

5.3 Convergence behaviour of the perturbation heuristics

As mentioned earlier, we used as our stopping criterion the cpu time required to perform 10,000

iterations of the multi-start (H1). This is pursued for consistency reasons as previous results are

also based on the same criterion, see [11]. However, the perturbation heuristics seem to converge

much earlier if other stopping rules were used instead, say if the search terminates when there is

no improvement after a certain number of cycles. For illustration purposes, we used an instance

with (439)n  and GRADPERT as the perturbation method. Here, we record the number of

improvements, the cumulative gap in % at each improvement from the final solution, and also the

time spent in % until the last improvement is realised. We identified two classes with class I using

60p  and class II for the rest. It was found that for class I, GRADPERT required approximately

12-15 improvements to reach the optimal (best) solution while consuming a tiny fraction of the

total time only (1-2%) with the exception of p=50 where 6% of the time was needed. For class II

(i.e., larger values of p), approximately 30 improvements were needed accounting for only 20 to

30% of the total time to achieve the best solution. Two graphs, representing both classes, are

given in Figure 5 that show the patterns in terms of solution gap from the best (in %) and the %

time required from the total time for the case of p=40 (class I) and p=80 (class II). Similar patterns

were also observed for the other instances. This result demonstrates that the proposed perturbation

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

19

heuristic is rather fast at obtaining good quality solutions if other stopping rules, as mentioned

earlier, are used instead.

Figure 5: Typical convergence patterns of the perturbation heuristics:

Case of GRADPERT with 439n  for class I (60)p  and class II (70)p 

6 Conclusion and Suggestions

A new perturbation-based heuristic is designed to solve the continuous p-centre problem. The

idea is to allow the number of facilities to be higher and lower than p in order to act as a

filtering process where the promising facility locations tend to stay in the chosen set. We also

guide the search by allowing the amount of perturbation to vary adaptively instead of being a

constant throughout the search as originally proposed in the literature. A novel local search

that uses the concept of covering circles that are dynamically adjusted is also developed

and the incorporation of learning is taken into account to guide the search. The obtained

results are encouraging when tested on several TSP-Lib data sets

(439,575,783,1002and 1323)n  using various values of p . The proposed perturbation

heuristic significantly outperforms some known composite heuristics and obtains comparable

results when compared to those powerful metaheuristics recently given in Elshaikh et al. [11].

We also record for the first time optimal solutions for the case of 575n  for all values of p

using the optimal method of Drezner [6] though the computational burden for this data set was

found to be relatively high. As by product of this work, we also report for the first time the

optimal solution of the vertex p centre problem for these data sets.

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

20

Table 2: Total CPU time (in secs) of Multi-Start (H1), Drezner’s optimal method and the

drop-based method (STEPDOWN) and # iterations of H2

n

P

CPU time (secs) # iterations
H1

Total CPU time

(10000 runs)

Exact

algorithm of

Drezner [6]

STEPDOWN
b

 (β = 0.5)

H2
+

 without LS1 with LS1

439

10 435.058 6252.720 7.980 74.140 3784

20 751.331 56753.000 9.375 71.977 3875

30 1018.990 37017.100 7.956 84.859 4557

40 1171.130 31355.000 8.034 85.985 4962

50 1730.060 4939.250 8.064 84.002 6958

60 1984.200 4956.450 9.976 82.079 7871

70 2087.360 3170.890 8.886 84.791 7904

80 1943.060 2186.270 9.003 84.269 6718

90 1988.140 1258.220 11.174 84.901 7491

100 1866.300 462.297 10.236 93.691 6228

 Average 1497.563 14835.100 9.068 83.069 6034.800

575

10 541.690 83898.600 15.865 158.461 4931

20 943.640 19087.600 15.523 157.174 5293

30 1190.150 9743.910 15.444 156.848 5011

40 1436.050 41733.000 15.726 162.909 4786

50 1664.060 9612.610 20.078 168.853 4454

60 1789.300 28344.000 18.972 162.718 3989

70 2143.630 40256.900 15.616 162.793 3478

80 2167.660 40181.700 19.945 148.865 3528

90 2307.930 4260.100 20.001 151.953 3891

100 2531.670 33694.000 16.294 153.133 3914

 Average 1671.578 31081.242 17.346 158.371 4327.500

783

10 909.638 N/A 39.027 397.385 6697

20 1555.440 N/A 40.342 404.673 6422

30 2055.590 N/A 42.436 445.683 5534

40 2403.090 N/A 39.673 451.611 4540

50 2514.470 N/A 39.153 403.104 4328

60 2842.810 N/A 40.304 412.328 4370

70 3154.780 N/A 38.877 383.989 4555

80 4466.130 N/A 38.719 403.217 5054

90 3646.990 N/A 50.667 379.012 4156

100 4075.510 N/A 39.076 377.540 4225

 Average 2762.446 N/A 40.827 405.854 4988.100

1002

10 947.822 N/A 77.863 812.409 5484

20 1627.170 N/A 77.800 887.473 4837

30 2562.060 N/A 78.449 863.260 4938

40 2959.210 N/A 77.440 803.861 4214

50 3682.880 N/A 78.356 827.421 5778

60 4520.700 N/A 98.117 798.079 6821

70 6640.190 N/A 78.648 849.338 8506

80 7026.190 N/A 97.464 826.794 8142

90 6883.150 N/A 78.142 831.767 6393

100 7131.510 N/A 79.835 900.827 6131

 Average 4398.088 N/A 82.211 840.123 6124.400

1323

10 1584.920 N/A 175.984 1982.580 5699

20 2439.180 N/A 174.922 1915.420 5189

30 3454.570 N/A 178.851 1787.050 4767

40 4093.150 N/A 177.178 1849.580 4443

50 5677.000 N/A 169.932 1839.270 5586

60 6527.830 N/A 217.186 2068.800 5689

70 7515.280 N/A 169.980 1824.060 5467

80 7905.080 N/A 175.265 2324.090 4771

90 8417.760 N/A 174.331 2169.950 4568

100 9015.060 N/A 187.385 2315.050 4403

 Average 5662.983 N/A 180.101 2007.585 5058.200

 +: CPU of H2 is not reported as it is the same as H1. * best result found by STEPDOWN

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

21

 For future research, the way the q facilities are inserted or dropped could be revisited.

For instance, when the number of facilities reaches p a stronger local search than LS2, or

even a short meta-heuristic including variable neighbourhood descent (VND), could also be

introduced to form a powerful hybrid. Alternatively, a perturbation-based heuristic may be

considered as a new local search within meta-heuristic frameworks such as variable

neighbourhood search. Other stopping rules could be worth exploring so as to terminate the

search earlier if necessary as highlighted in subsection 5.3. The perturbation scheme allows

us to generate many candidate “centres” during its up and down trajectories. These new

centres could be used within the new reformulation local search (RLS) framework (see

Brimberg et al. [2]) to increase the set of potential sites, and hence, improve the ability to find

better solutions in the continuous space. Hybrid algorithms based on perturbation methods

and RLS could be considered in future for the continuous p-centre problem in particular and

other related continuous location problems in general. The proposed perturbation

methodology can be extended to very large continuous problems where little work has been

done as highlighted in Irawan and Salhi [17]. We also believe that the optimal method of

Drezner [6] and the relaxation-based technique of Chen and Chen [3], both have scope for

improving their implementations, and hence, could be worth revisiting.

Acknowledgments- We would like to thank the referees and the area editor for their constructive

comments that improved both the content as well as the presentation of the paper. The first author is

also grateful to the University of Misurata for his PhD studentship.

References

[1] Al-Khedhairi A and Salhi S. Enhancements to two exact algorithms for solving

 the vertex p-center problem, Journal of Mathematical Modelling Algorithms

 2005; 4: 129-147.

[2] Brimberg J, Drezner Z, Mladenović N and Salhi S. A new local search for

 continuous location problems, European Journal of Operational Research;

 2014: 232: 256-265.

[3] Chen D and Chen R. New relaxation-based algorithms for the optimal solution

 of the continuous and discrete p-center problems. Computers & Operations

 Research 2009; 36: 1646-1655.

[4] Chen D and Handler GY. Relaxation method for the solution of the minimax

 location-allocation problem in Euclidean space. Naval Research Logistics

 1987; 34: 775-787.

[5] Cooper L. Heuristic methods for location-allocation problem, SIAM Review

 1964; 6: 37-53.

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

22

[6] Drezner Z. The p-center problem- heuristic and optimal algorithms. Journal of

 the Operational Research Society 1984; 35: 741-748.

[7] Drezner Z. The planar two-center and two-median problems. Transportation

 Science 1984; 18: 351-361.

[8] Drezner Z and Suzuki A. The p-Center location problem in an area. Location

 Science 1996; 4: 69-82.

[9] Drezner Z. Continuous Center Problems. In H.A. Eiselt and V. Marionov

 (eds). Foundations of Location Analysis, Springer-Verlag, pp 63-78, 2011.

[10] Elshaikh A. Adaptive heuristic methods for the continuous p-centre location

 problem, PhD Dissertation 2014; Appendix C, University of Kent,

 Canterbury, UK.

[11] Elshaikh A, Salhi S and Nagy G. The continuous p-centre problem: An

 investigation into variable neighbourhood search with memory, European

 Journal of Operational Research 2015; 241: 606-621.

[12] Elzinga J and Hearn DW. Geometrical solutions for some minimax location

 problems, Transportation Science 1972; 6: 379-394.

[13] Eiselt HA and Charlesworth GA. A note on p-center problems in the plane.

 Transportation Science 1986; 20: 130-133.

[14] Gamal MDH and Salhi S. Constructive heuristics for the uncapacitated

 continuous location-allocation problem, Journal of the Operational Research

 Society 2001; 52: 821-829.

[15] Hanafi S and Freville A. An efficient tabu search approach for the 0-1

 Multi-dimensional knapsack problem, European Journal of Operational

 Research 1998; 106: 659-675.

[16] Hansen P, Mladenović N and Taillard E. Heuristic solution of the multisource

 Weber problem as a p-median problem. Operations Research Letters 1998;

 22: 55-62.

[17] Irawan CA and Salhi S. Aggregation and non aggregation techniques for large

 facility location problems- A survey. Yugoslav Journal of Operations Research

 2015; 35:312-341.

[18] Kavah, A, and Nasr, H, (2011), Solving the conditional and unconditional p-

 centre problem with modified harmony search: A real case study, Scientia

 Iranica, 4, pp. 867-877.

[19] Lu, C., (2013), Robust weighted vertex 𝑝 −center model considering uncertain

 data: An application to emergency management, European Journal of

 Operational Research, 230, pp.113-121.

[20] Megiddo N and Supowit KJ. On the complexity of some common geometric

 location problems. SIAM Journal of Computing, 13, 182-196, 1984.

[21] Murray AT and Wei R. A computational approach for eliminating error in the

 solution of the location set covering problem. Computers & Operations

 Research 2013; 224: 52-64.

[22] Pacheco, J. A & Casado, S, (2004), Solving two location models with few

 facilities by using a hybrid heuristic: a real health resources case, Computers

 and Operations Research, 32, pp. 3075-3091.

[23] Plastria F. Continuous covering location problem, Facility location:

 applications and theory (Z. Drezner ed.), New York: Springer; 2002. p.37–79.

[24] Richard, D, Beguin, H & Peeters, D, (1990), The location of fire stations in a

 rural environment: a case study, Environment and Planning, 22, pp. 39-52.

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

23

[25] Salhi, S. A Perturbation Heuristic for a Class of Location Problems, Journal of

 the Operational Research Society 1997; 48: 1233-1240.

[26] Salhi S and Al-Khedhairi A. Integrating heuristic information into exact

 methods: The case of the vertex p-centre problem. Journal of the Operational

 Research Society 2010; 61: 1619-1631.

[27] Shaw P. Using constraint programming and local search methods to solve

 vehicle routing problems. In: Proceedings of the Fourth International

 Conference on Principles and Practice of Constraint Programming – Lecture

 Notes in Computer Science 1998; 1520: 417-431.

[28] Suzuki A and Okabe A. Using Voronoi diagrams, Facility Location: A Survey

 of Applications and Methods, (Z. Drezner ed.), New York: Springer; 1995. p.

 103–118.

[29] Teitz M and Bart P. Heuristic Methods for Estimating the General Vertex

 Median of a Weighted Graph, Operations Research. 16: 955-961, 1968.

[30] Wei H, Murray AT and Xiao N. Solving the continuous space p-centre

 problem: planning application issues, IMA Journal of Management

 Mathematics 2006; 17: 413–425.

[31] Xu S, Freund R and Sun J. Solution methodologies for the smallest enclosing

 circle problem. Computational Optimization and Applications. 25: 283–292,

 2003.

[32] Zainuddin ZM and Salhi S. A Perturbation-Based Heuristic for the

 Capacitated Multisource Weber Problem, European Journal of Operational

 Research 2007; 179: 1194-1207.

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

24

Appendix A: Optimal solutions and CPU times (secs) for the vertex p-centre problem (n=439,…,1323)

Appendix B: Deviation (%) from best of Multi-Start, GRADPERT and STRONGPERT (with and without learning)

n p

Overall

Best

(Z)

Multi-

 Start

(10 000
Runs)

Initial solution with the multi-start
algorithm with 100 runs

Optimal

Discrete

solutions

Optimal
Discrete

Solutions

 +
Continuous

Initial solution using optimal discrete

solutions

GRADPERT STRONGPERT GRADPERT STRONGPERT

No

Learning

With

Learning

No

Learning

With

Learning

No

 Learning

With

Learning

No

Learning

With

Learning

575

10 67.926 1.910 0.998 0.998 0.998 1.910 6.984 4.984 0 0 0.998 0

20 45.622 3.097 0 0 0.882 0 7.939 3.745 0 1.025 1.025 0

30 35.556 9.050 1.523 0.670 1.534 1.724 10.833 5.813 0.503 0.959 0.503 0

40 30.414 13.946 1.954 0.240 0.036 0 9.493 5.792 1.462 1.617 1.617 0.942

50 26.319 17.185 2.413 1.332 1.829 1.731 11.810 7.911 1.332 1.189 0.919 0

60 23.436 19.645 0.544 0.357 2.095 0 15.207 11.339 4.365 3.596 3.309 4.561

70 21.219 13.888 1.020 0.664 1.020 0 16.678 11.641 0.195 0.818 1.939 1.939

80 19.266 26.850 1.761 1.515 4.344 3.811 21.173 11.485 2.580 0 1.515 3.266
90 17.805 24.391 2.107 1.254 1.487 2.726 23.177 15.377 0 2.292 1.487 0.913

100 16.711 27.822 0.948 0.357 0.580 1.775 23.363 13.861 0.580 0.028 0 2.214

Average 30.427 15.778 1.327 0.739 1.481 1.368 14.666 9.1946 1.102 1.152 1.331 1.384

783

10 79.313 0 0 0 0 0 5.262 4.557 0 0 0 0

20 53.690 2.2749 2.38 2.176 0.582 1.697 5.886 5.665 0 0.424 0.582 0.977
30 42.801 10.776 1.038 4.606 3.398 0.404 7.627 3.181 0 1.951 0.125 1.009

40 36.321 9.656 0.586 0 0.417 0.657 10.264+ 10.264+ 10.264+ 10.264+ 10.264+ 10.264+
50 31.357 15.361 0 3.341 2.102 0 11.253+ 11.253+ 11.253+ 11.253+ 11.253+ 11.253+

60 28.128 17.871 0.866 2.597 0 0.066 23.218+ 23.218+ 23.218+ 23.218+ 23.218+ 23.218+

70 25.446 20.885 0 1.46 1.667 2.161 13.356 9.633 4.218 4.391 5.034 3.145
80 23.665 22.127 0.646 1.967 0.800 0 13.778 10.234 1.109 0.800 0.893 0.797

90 21.759 24.426 0 2.688 0.898 2.698 17.169 11.465 1.576 1.114 2.382 3.813

100 20.334 26.014 1.086 1.086 0.470 2.335 18.231 17.129 0 0.058 1.056 1.276

Average 36.281 14.939 0.66 1.992 1.033 1.002 11.279 10.6599 5.164 5.347 5.481 5.575

1002

10 2389.360 0.889 0 0 0 0 6.312 4.031 1.102 0 1.102 0

20 1607.530 4.792 0.125 0.125 0.125 0 7.386 4.325 1.588 1.588 1.588 1.176

30 1231.360 8.418 0.494 0 1.485 0 9.334 5.368 1.092 1.180 0.658 0.658

40 1021.410 18.095 2.244 0 2.244 0 14.698 6.813 2.244 2.044 2.244 2.044

50 901.455 17.005 1.822 0.185 1.753 0.216 14.211 11.537 0.529 0 1.244 0.529

60 795.709 22.007 2.571 0 0.725 0.588 14.667 12.406 4.622 2.479 2.936 3.661

70 725.431 17.980 1.827 0.144 0.238 0 17.172 11.351 1.216 0.223 0.178 0.178

80 660.019 22.913 0.135 0 1.989 0.135 15.387 9.845 0.644 0.135 1.778 1.778

90 604.494 28.273 0.745 0.745 0.745 0.965 18.428 12.503 0.154 0.745 0.745 0

100 559.061 29.415 1.026 2.07 2.948 1.234 19.990 14.097 1.026 3.722 2.070 0

Average 1049.583 16.979 1.099 0.327 1.225 0.314 13.759 9.228 1.422 1.212 1.454 1.002

1323

10 2899.420 0.260 0.084 0 0.170 0 6.135 1.737 0.170 0.414 0.170 0.414
20 1868.920 5.414 0 0.958 0.958 1.151 7.891 5.604 0.958 0.958 0.958 0.958

30 1477.590 7.514 0 1.012 1.463 0.883 10.416 6.850 0.869 1.192 1.192 1.192
40 1240.620 12.021 1.793 0.386 0.386 0.700 9.007 4.627 0 0 0 0

50 1061.660 15.897 0.601 0.601 1.444 0.601 11.831 7.930 0 0 0.621 0

60 940.691 12.804 0.102 0.102 0.104 0 13.004 11.561 1.532 0.198 1.734 0.403
70 849.782 18.706 0.858 0.732 2.965 1.469 14.373 10.698 0 0 0.732 0.444

80 776.401 15.092 1.512 0.879 0.879 1.608 15.283 11.510 1.608 2.189 3.675 0

90 719.580 24.180 1.631 2.265 0.380 0 15.623 14.425 0.486 1.643 0.373 1.631
100 663.035 28.614 2.189 0.770 1.975 0 18.711 12.908 1.564 2.517 1.992 2.221

Average 1249.770 14.05 0.877 0.77 1.072 0.641 12.227 8.785 0.719 0.911 1.145 0.726

Overall Average

best

591.515

15.437

1

0.991

8

0.957

9

1.203

3
0.831

16

12.983

0

9.467

0

2.102

10

 2.156

8

 2.353

3

2.172

11

Bold: The best solutions found.

+: Optimal discrete not guaranteed due to CPU time needed being larger than the maximum allowed CPU time.

n p 439 575 783 1002 1323

Z CPU Z CPU Z CPU Z CPU Z CPU

10 1971.832 3.389 72.670 15.520 83.486 10.132 2540.177 12.833 3077.297 40.498
20 1185.59 4.239 49.244 37.954 56.850 195.212 1726.267 44.577 2016.396 75.709

30 883.529 3.959 39.408 408.546 46.065 577.578 1346.291 22.525 1631.501 90.568

40 671.751 4.118 33.301 224.848 39.560 7555.408 1171.537 108.316 1352.36 203.265
50 564.025 3.863 29.427 286.438 34.785 4907.306 1029.563 44.606 1187.265 320.32

60 500 4.494 27 165.433 31.400 8324.649 912.414 9.944 1063.014 515.759

70 474.341 4.003 24.758 142.520 28.844 2204.851 850 11.063 971.925 110.694
80 412.310 4.140 23.345 88.325 26.925 1470.533 761.577 5.395 895.055 83.543

90 395.284 3.171 21.931 53.012 25.495 573.266 715.891 5.307 832 53.821

100 350 4.444 20.615 22.490 24.041 144.354 670.82 7.291 787.095 50.091

Average 740.866 3.982 34.170 144.507 39.745 2596.329 1172.454 27.1857 1381.391 154.427

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

