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Abstract

The main driver of longevity risk is uncertainty in old-age mortality, espe-
cially surrounding potential dependence structures. We investigate a multivariate
Pareto distribution that allows for the exploration of a variety of applications,
from portfolios of standard annuities to joint-life annuity products for couples.
Given the anticipated continued increase of supercentenarians, the heavy-tailed
nature of the Pareto distribution is appropriate for this application. In past work,
it has been shown that even a little dependence between lives can lead to much
higher uncertainty. Therefore, the ability to assess and incorporate the appropri-
ate dependence structure, whilst allowing for extreme observations, significantly
improves the pricing and risk management of life-benefit products.
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1 Introduction

The study of lifetime dependence is highly important in actuarial science. A positive
pattern of dependence may range from exposure to similar risk-factors among a small
group of individuals (say, a couple) all the way to systematic mortality improvements
experienced by a population, and hence, the link with longevity risk is noteworthy.
Rather than modelling mortality rates, we investigate the lifetime (age at death) dis-
tribution directly. We consider a pool of lives where the individual lifetimes follow a
type II Pareto distribution, also known as the Lomax distribution, see Lomax (1954).
The dependence among the lives is determined by the nature of the multivariate dis-
tribution. We consider a multivariate construction of the type II Pareto distribution
such that the correlation between lives is governed by the Pareto shape parameter α.
This particular construction of the multivariate distribution is analytically convenient,
allowing us to derive closed-form expressions for various quantities of interest. However,
the parameter α is responsible for both the shape of the marginal distribution as well
as the dependence structure, which imposes some restrictions on the model.

The nature of the problem is determined by the size of the pool under consideration.
For example, for a pool of size two, an application of this model is useful to assess the
pricing and risk management of joint-life annuity products, an extremely relevant subset
of insurance products. In fact, pools of arbitrary size could be investigated so long as
each pool contains roughly the same number of individuals. This restriction may make
practical applications difficult for large n, but we hope, still of interest to both private
insurance and public policy. We believe the ability to investigate joint-life behaviour is
sufficient to justify the exploration of this unique dependence structure.

In the work of Alai et al. (2013, 2015, 2016), lifetime dependence modelling was
considered for members of the exponential dispersion family, specifically for the Tweedie
subclass. Dependence was induced via a common stochastic component, rather than
governed parametrically. Lifetime dependence has also been studied in Denuit et al.
(2001) and Denuit (2008) and within the mortality rate modelling framework in Dhaene
and Denuit (2007) and D’Amato et al. (2012).

The Pareto distribution represents an interesting and relevant distribution for mod-
elling heavy-tailed data; for more about Pareto distributions, see Arnold (1985) and for
the modelling of extreme events in insurance, Embrechts et al. (1997). The Pareto is
applied here to address the non-standard pattern of old-age mortality; see e.g. Pitacco
et al. (2009). The issues surrounding old-age mortality are long-standing. With respect
to the survival curve, both compression and expansion have been postulated and ob-
served to varying degrees; see e.g. Myers and Manton (1984) and Fries (1980) as well
as Olivieri (2001) and Pitacco (2004). It is not our aim to make claims on old-age
mortality, but to provide a framework in which the matter may be further investigated.

Since the focus is on old-age mortality, lifetimes are necessarily left-truncated. This
represents a non-trivial issue with respect to parameter calibration; one that we inves-
tigate on multiple fronts. Not only are we able to derive important characteristics of
the multivariate distribution, but we are also able to derive distributional results on
survivorship. The former is critical to model calibration and the latter to the pricing
and risk management of multi-life insurance products.

Organization of the paper: In Section 2 we introduce basic notation and provide
relevant results for the univariate Pareto distribution. The multivariate Pareto distribu-
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tion is introduced in Section 3, where we derive results necessary to formulate parameter
estimators. In Section 4 we outline various parameter estimation techniques, which we
test via numerical analysis in Section 5. In Section 6 we apply the model to price a
bulk annuity and contrast our results against the assumption of independent lifetimes.
Section 7 concludes the paper.

2 Notation and the Type II Pareto Distribution

In the following two sections, we derive some relevant properties of the truncated Pareto
distribution; first, for the univariate case, followed by a multivariate version. The results
are required to develop the parameter estimation procedures of Section 4.

2.1 Notation

We begin by providing some notation concerning moments. We denote with αk(X) and
µk(X) the kth, k ∈ Z+, raw and central (theoretical) moments of random variable X,
respectively.

αk(X) = E[Xk],

µk(X) = E[(X − α1(X))k].

The raw sample moments for random sample X = (X1, . . . , Xn)′ are given by

ak(X) =
1

n

n∑
i=1

Xk
i , k ∈ Z+.

Finally, adjusted second central sample moments are denoted

m̃2(X) =
1

n− 1

n∑
i=1

(Xi − a1(X))2.

Note that the adjusted central sample moment of an independent and identically dis-
tributed sample is an unbiased and consistent estimator of the corresponding central
moment of X1.

2.2 The Type II Pareto Distribution

We consider the type II Pareto distribution with shape and scale parameters α and
σ > 0 , respectively. The density function is given by

f(y) =
α

σ

(
1 +

y

σ

)−(α+1)

, y > 0.

The survival function is given by

F (y) =
(

1 +
y

σ

)−α
, y > 0.

The raw moments of interest are given by

α1(Y ) =
σ

α− 1
, α > 1,

α2(Y ) =
2σ2

(α− 1)(α− 2)
, α > 2.

3

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



or, generally, for k ∈ Z+ and α > k,

αk(Y ) = Γ(k + 1)σk
Γ(α− k)

Γ(α)
.

The variance is given by

µ2(Y ) =
σ2α

(α− 1)2(α− 2)
, α > 2.

2.3 Mean and Variance for the Truncated Pareto

Theorem 1 Consider Y distributed type II Pareto(α, σ). Define the associated trun-
cated random variable τY = Y |Y > τ . The mean and variance of τY are given by

α1(τY ) =
σ + τα

α− 1
,

µ2(τY ) =
(σ + τ)2α

(α− 1)2(α− 2)
.

Proof. F (y;α) denotes the survival function of a type II Pareto distribution with shape
parameter α.

α1(τY ) =
α

F (τ)

∫ ∞
τ

y
σ

(1 + y
σ
)α+1

dy.

Applying partial fractions produces

α1(τY ) =
α

F (τ)

∫ ∞
τ

{
1

(1 + y
σ
)α
− 1

(1 + y
σ
)α+1

}
dy

=
α

F (τ)

σ

α− 1

∫ ∞
τ

α−1
σ

(1 + y
σ
)α
dy − σ

F (τ)

∫ ∞
τ

α
σ

(1 + y
σ
)α+1

dy

=
α

F (τ)

σ

α− 1
F (τ ;α− 1)− σ

F (τ)
F (τ ;α)

=
σα

α− 1

F (τ ;α− 1)

F (τ)
− σ =

σα

α− 1

(
1 +

τ

σ

)
− α− 1

α− 1
σ

=
σ + τα

α− 1
.
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α2(τY ) =
α

F (τ)

∫ ∞
τ

y2

σ

(1 + y
σ
)α+1

dy

=
σα

F (τ)

∫ ∞
τ

{
1

(1 + y
σ
)α−1

− 2

(1 + y
σ
)α

+
1

(1 + y
σ
)α+1

}
dy

=
σα

F (τ)

σ

α− 2

∫ ∞
τ

α−2
σ

(1 + y
σ
)α−1

dy − 2σα

F (τ)

σ

α− 1

∫ ∞
τ

α−1
σ

(1 + y
σ
)α
dy

+
σ2

F (τ)

∫ ∞
τ

α
σ

(1 + y
σ
)α+1

dy

=
σ2α

α− 2

F (τ ;α− 2)

F (τ)
− 2σ2α

α− 1

F (τ ;α− 1)

F (τ)
+ σ2F (τ)

F (τ)

=
σ2α

α− 2

(
1 +

τ

σ

)2
− 2σ2α

α− 1

(
1 +

τ

σ

)
+ σ2

=
α(α− 1)

(α− 1)(α− 2)

(
σ2 + 2τσ + τ 2

)
− 2α(α− 2)

(α− 1)(α− 2)

(
σ2 + τσ

)
+

(α− 1)(α− 2)

(α− 1)(α− 2)
σ2

= σ2 (α2 − α− 2α2 + 4α + α2 − 3α + 2)

(α− 1)(α− 2)
+ τσ

(2α2 − 2α− 2α2 + 4α)

(α− 1)(α− 2)

+τ 2
α(α− 1)

(α− 1)(α− 2)

=
2σ2

(α− 1)(α− 2)
+

2τσα

(α− 1)(α− 2)
+

τ 2α(α− 1)

(α− 1)(α− 2)
.

Here, we use the fact that µ2(τY ) = α2(τY )− α1(τY )2.

µ2(τY )(α− 1)2(α− 2) = (2σ2 + 2τσα + τ 2α(α− 1))(α− 1)− (σ + τα)2(α− 2)

= σ2(2α− 2− α + 2) + 2τσ(α2 − α− α2 + 2α)

+ τ 2α(α2 − 2α + 1− α2 + 2α)

= (σ2 + 2τσ + τ 2)α = (σ + τ)2α.

2.4 Quantiles for the Truncated Pareto

Lemma 1 Consider Y distributed type II Pareto(α, σ). Define the associated truncated
random variable τY = Y |Y > τ . The quantile of level λ for τY , 0 < λ < 1, is given by

qτY (λ) =

((
1− λ

)− 1
α
(

1 +
τ

σ

)
− 1

)
σ.

Proof. Consider the distribution function of τY ,

FτY (y) =
P (τ < Y ≤ y)

P (Y > τ)
=
P (Y > τ)− P (Y > y)

P (Y > τ)
= 1− P (Y > y)

P (Y > τ)
= 1−

(
1 + y

σ

1 + τ
σ

)−α
.

Inverting this function produces the desired result.
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3 A Multivariate Pareto Distribution

We now consider a multivariate construction of the type II Pareto distribution. Shape
and scale parameters are given by α and σ > 0, respectively. Let Y = (Y1, . . . , Yn) be
an n-dimensional multivariate Pareto distribution; the survival function is given by

FY(y) =
(

1 +

∑n
i=1 yi
σ

)−α
,

where y = (y1, . . . , yn). It is known that the marginal distribution of Yi, i = 1, . . . , n
follows a univariate type II Pareto distribution with parameters α and σ. Furthermore,
the dependence structure of the marginals is characterized by the parameter α; that is,
the correlation between Yi and Yj, for i 6= j is given by 1/α.

We provide some details: for Y = (Y1, . . . , Yn) multivariate Pareto, the covariance
of Y1 and Y2 is given by

Cov(Y1, Y2) = E[Y1Y2]− E[Y1]E[Y2]

=
σ2

(α− 1)(α− 2)
− σ2

(α− 1)2

=
σ2(α− 1)− σ2(α− 2)

(α− 1)2(α− 2)
=

σ2α

(α− 1)2(α− 2)
× 1

α
.

3.1 Mean, Variance and Covariance Results

We consider mean, variance, and covariance results for the marginal distributions after
applying truncation to the multivariate distribution. Note that this is different from
considering truncation on a subset of the multivariate distribution only. For example,
one may consider mean and variance results on the marginal distribution when it alone is
truncated, or even covariance results when the two marginals in question are truncated.
Incidentally, we achieve the latter results as a by-product of multivariate truncation by
trivially allowing n = 1 and n = 2.

To avoid confusion, we introduce some further notation. Let Y = (Y1, . . . , Yn) be
the multivariate distribution of interest. Let τ = τ · 1n be an n-dimensional vector
where each entry takes value τ . Then, let τYi = Yi|Y > τ .

Theorem 2 Consider Y = (Y1, . . . , Yn) ∼ Multivariate Pareto(α, σ) with survival
function denoted FY(y;α, σ). Define the associated truncated multivariate distribution

τY = {Y|Y > τ}. The mean and variance of τYi are given by

α1(τYi) =
σ + τ(n+ α− 1)

α− 1
,

µ2(τYi) =
(σ + τn)2α

(α− 1)2(α− 2)
.

The covariance between τYi and τYj, i 6= j remains

Cov(τYi, τYj) =
σ2

(α− 1)2(α− 2)
,

but the correlation between τYi and τYj, i 6= j is now given by

Corr(τYi, τYj) =
σ2

(σ + τn)2
1

α
.
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Proof. The density of the multivariate distribution is found by appropriately differen-
tiating the joint survival function.

fY(y) = (−1)n
∂nFY(y)

∂y1∂y2∂y3 · · · ∂yn
.

The (truncated) marginal density is found by, first, integrating this joint density; since
we are dealing with a truncated multivariate distribution, lower integration indices are
set to τ . And second, by normalizing with constant FY(τ ).

Note that the survival function of the n-dimensional joint Pareto evaluated at point
τ , FY(τ ), is equivalent to the survival function of a univariate Pareto evaluated at
point τn, F (τn).

We consequently have that

α1(τY1) =
1

F (τn)

∫ ∞
τ

y1α

σ

dy1(
1 + y1+τ(n−1)

σ

)α+1 .

Apply partial fractions to obtain

α1(τY1) =
α

F (τn)

∫ ∞
τ

{
1(

1 + y1+τ(n−1)
σ

)α − 1 + τ
σ
(n− 1)(

1 + y1+τ(n−1)
σ

)α+1

}
dy1.

Finally, apply substitution z = y1 + τ(n − 1) and recognize that integrals are scaled
survival functions of Pareto distributions.

α1(τY1) =
α

F (τn)

∫ ∞
τn

{
1(

1 + z
σ

)α − 1 + τ
σ
(n− 1)(

1 + z
σ

)α+1

}
dz

=
α

F (τn)

{
σ

α− 1
F (τn;α− 1)− σ

α

(
1 +

τ(n− 1)

σ

)
F (τn)

}

=
σα

α− 1

(
1 +

τn

σ

)
− σ

(
1 +

τ(n− 1)

σ

)
=

σ
(

1 + τn
σ

)
α− σ

(
1 + τn

σ

)
(α− 1) + τ(α− 1)

α− 1
=

σ + τ(n+ α− 1)

α− 1
.

Apply a similar approach to obtain the second raw moment α2(τY1).

α2(τY1) =
1

F (τn)

∫ ∞
τ

y21α

σ

dy1(
1 + y1+τ(n−1)

σ

)α+1 .

Apply partial fractions and substitution z = y1 + τ(n− 1).

α2(τY1) =
σα

F (τn)

∫ ∞
τn

{
1(

1 + z
σ

)α−1 − 2(1 + τ
σ
(n− 1))(

1 + z
σ

)α +
(1 + τ

σ
(n− 1))2(

1 + z
σ

)α+1

}
dz

=
σα

F (τn)

{
σ

α− 2
F (τn;α− 2)− 2σ

α− 1

(
1 +

τ(n− 1)

σ

)
F (τn;α− 1)

+
σ

α

(
1 +

τ(n− 1)

σ

)2
F (τn)

}
.
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This implies

α2(τY1)(α− 1)(α− 2)/σ2 =
(

1 +
τn

σ

)2
α(α− 1)

− 2
(

1 +
τn

σ
− τ

σ

)(
1 +

τn

σ

)
α(α− 2) +

(
1 +

τn

σ
− τ

σ

)2
(α− 1)(α− 2)

=
(

1 +
τn

σ

)2[
α(α− 1)− 2α(α− 2) + (α− 1)(α− 2)

]
+ 2
(

1 +
τn

σ

) τ
σ

[
α(α− 2)− (α− 1)(α− 2)

]
+
τ 2

σ2

[
(α− 1)(α− 2)

]
= 2

(
1 +

τn

σ

)2
+ 2
(

1 +
τn

σ

) τ
σ

(α− 2) +
τ 2

σ2
(α− 1)(α− 2).

Rewrite the above as a quadratic of τ to obtain

α2(τY1) =
2σ2 + 2τσ(2n+ α− 2) + τ 2(2n2 + 2n(α− 2) + (α− 1)(α− 2))

(α− 1)(α− 2)
.

To derive the variance, we use the fact that µ2(τY1) = α2(τY1)− α1(τY1)
2. Applying a

common denominator of (α− 1)2(α− 2), the expression reduces very nicely to the one
given above.

To derive the covariance, we require E[τY1τY2]. Again, we take expectation with
respect to the the joint density. After integrating out the remaining n− 2 variables, we
have

E[τY1τY2] =
1

F (τn)

∫ ∞
τ

∫ ∞
τ

y1y2(α + 1)α

σ2

dy1dy2(
1 + y1+y2+τ(n−2)

σ

)α+2 .

Although finding an expression for this term is more complicated, it is based on the
same principles as before; we provide some details. Let z1 = y1 + y2 + τ(n − 2) and
z2 = y2 + τ(n− 1).

E[τY1τY2] =
(α + 1)α

F (τn)

∫ ∞
τ

y2
σ

∫ ∞
τ

y1
σ

dy1(
1 + y1+y2+τ(n−2)

σ

)α+2dy2

=
(α + 1)α

F (τn)

∫ ∞
τ

y2
σ

∫ ∞
y2+τ(n−1)

{
1(

1 + z1
σ

)α+1 −
(
1 + y2+τ(n−2)

σ

)(
1 + z1

σ

)α+2

}
dz1dy2

=
(α + 1)α

F (τn)

∫ ∞
τ

y2
σ

[
σ

α

1(
1 + y2+τ(n−1)

σ

)α − σ

α + 1

(
1 + y2+τ(n−2)

σ

)(
1 + y2+τ(n−1)

σ

)α+1

]
dy2.

Having dealt with y1, collect the y2 terms, noting the presence of y22.

E[τY1τY2] =
(α + 1)α

F (τn)

∫ ∞
τ

[
σ

α

y2
σ(

1 + y2+τ(n−1)
σ

)α − σ

α + 1

y2
σ

(
1 + τ(n−2)

σ

)(
1 + y2+τ(n−1)

σ

)α+1

− σ

α + 1

(
y2
σ

)2(
1 + y2+τ(n−1)

σ

)α+1

]
dy2.
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Apply partial fractions and pull out scaled Pareto survival functions.

E[τY1τY2] = σ
(α + 1)α

F (τn)

∫ ∞
τn

[
1

α

(
1(

1 + z2
σ

)α−1 − 1 + τ(n−1)
σ(

1 + z2
σ

)α
)

−
(
1 + τ(n−2)

σ

)
α + 1

(
1(

1 + z2
σ

)α − (1 + τ(n−1)
σ

)(
1 + z2

σ

)α+1

)

− 1

α + 1

(
1(

1 + z2
σ

)α−1 − 2
(
1 + τ(n−1)

σ

)(
1 + z2

σ

)α +

(
1 + τ(n−1)

σ

)2(
1 + z2

σ

)α+1

)]
dz2

= σ2 (α + 1)α

F (τn)

[
1

α

(
1

α− 2
F (τn;α− 2)−

1 + τ(n−1)
σ

α− 1
F (τn;α− 1)

)

−
(
1 + τ(n−2)

σ

)
α + 1

(
1

α− 1
F (τn;α− 1)−

(
1 + τ(n−1)

σ

)
α

F (τn)

)

− 1

α + 1

(
1

α− 2
F (τn;α− 2)−

2
(
1 + τ(n−1)

σ

)
α− 1

F (τn;α− 1)

+

(
1 + τ(n−1)

σ

)2
α

F (τn)

)]
.

The ratio of two Pareto survival functions reduces depending on the difference in shape
parameters. Collect terms based on these ratios, using common denominator (α−1)(α−
2).

E[τY1τY2] = σ2(α + 1)α

[(
1 + τn

σ

)2
α− 2

(
1

α
− 1

α + 1

)

−
(
1 + τn

σ

)
α− 1

((
1 + τ(n−1)

σ

)
α

+

(
1 + τ(n−2)

σ

)
α + 1

−
2
(
1 + τ(n−1)

σ

)
α + 1

)

+

((
1 + τ(n−1)

σ

)(
1 + τ(n−2)

σ

)
−
(
1 + τ(n−1)

σ

)2)
(α + 1)α

]
.

=
σ2

(α− 1)(α− 2)

[(
1 +

τn

σ

)2
+ 2
(

1 +
τn

σ

) τ
σ

(α− 2) +
τ 2

σ2
(α− 1)(α− 2)

]
.

Rewrite as a quadratic in τ to obtain

E[τY1τY2] =
σ2 + 2τσ(n+ α− 2) + τ 2(n2 + 2n(α− 2) + (α− 1)(α− 2))

(α− 1)(α− 2)
.

Notice the similarity of this expression with that of α2(τY1). In order to derive the
covariance, we now take E[τY1τY2], rather than α2(τY1), and subtract α1(τY1)

2.

Cov(τY1, τY2) = E[τY1τY2]− α1(τY1)
2

=
σ2

(α− 1)2(α− 2)
= Cov(Y1, Y2).
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Clearly the variance of the marginal from the truncated multivariate distribution differs
from the variance of the marginal from the un-truncated distribution. Hence, we obtain
a different correlation coefficient, one that goes to zero as τn increases.

Corr(τY1, τY2) =
σ2

(σ + τn)2
1

α
.

Remark 1 It is convenient to note that

α2(τY1)− E[τY1τY2] =
(σ + τn)2

(α− 1)(α− 2)
,

which is used to derive E[m̃2(τY)] in Section 4.1.

3.2 Minimum and Maximum Results

We consider the minimum and maximum element of our n-dimensional truncated mul-
tivariate Pareto distribution with shape and scale parameters α and σ.

Theorem 3 Consider Y = (Y1, . . . , Yn) ∼ Multivariate Pareto(α, σ) with survival
function denoted FY(y;α, σ). Define the associated truncated multivariate distribution

τY = {Y|Y > τ}. Let τY(1) = min(τY) and τY(n) = max(τY).

α1(τY(1)) =
σ/n+ τα

α− 1
,

µ2(τY(1)) =
(σ/n+ τ)2α

(α− 1)2(α− 2)
.

Furthermore,

α1(τY(n)) =
n∑
i=1

(−1)i+1

(
n

i

){
σ + τ(n+ i(α− 1))

i(α− 1)

}
,

µ2(τY(n)) =
n∑
i=1

(−1)i+1

(
n

i

)
1

i2
2(σ + τ(n− i))2 + 2α(σ + τn)τi+ τ 2i2α(α− 3)

(α− 1)(α− 2)

−
( n∑

i=1

(−1)i+1

(
n

i

){
σ + τ(n+ i(α− 1))

i(α− 1)

})2

.

Proof. It is easy to demonstrate that Y(1) follows a Pareto distribution with shape α
and scale σ/n, and hence that τY(1) follows a truncated Pareto distribution with the
same parameters. In some detail, we have

P (Y(1) > y) = P (Y1 > y, . . . , Yn > y) = FY(y, . . . , y) = F (ny) =
1

(1 + ny
σ

)α
.

Therefore, adjusting the scale parameter by 1/n results in a Pareto survival function.
Furthermore, it is irrelevant whether you either: find the minimum of a truncated
multivariate Pareto, or truncate the minimum of an un-truncated multivariate Pareto.
Both lead to the same result, the latter being more convenient.

10
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We may apply Theorem 1 to obtain the mean and variance of τY(1).

α1(τY(1)) =
σ/n+ τα

α− 1
,

µ2(τY(1)) =
(σ/n+ τ)2α

(α− 1)2(α− 2)
.

For the maximum, we have a less straight-forward result. We start with the distri-
bution function of the maximum of the truncated multivariate Pareto.

P (τY(n) ≤ y) = P (Y(n) ≤ y|Y > τ ) =
P (τ < Y ≤ y)

P (Y > τ )

=

∑n
i=0(−1)i

(
n
i

)
F (yi+ τ(n− i))

F (τn)

=
n∑
i=0

(−1)i
(
n

i

)
F (yi+ τ(n− i))

F (τn)
.

Differentiate to find the density.

fτY(n)(y) =
1

F (τn)

n∑
i=1

(−1)i
(
n

i

)
−αi
σ

1

(1 + yi+τ(n−i)
σ

)α+1
, y > τ.

The expectation is given by

α1(τY(n)) =
α

F (τn)

n∑
i=1

(−1)i+1

(
n

i

)∫ ∞
τ

yi

σ

dy

(1 + yi+τ(n−i)
σ

)α+1

=
α

F (τn)

n∑
i=1

(−1)i+1

(
n

i

)∫ ∞
τ

{
1

(1 + yi+τ(n−i)
σ

)α
−

1 + τ
σ
(n− i)

(1 + yi+τ(n−i)
σ

)α+1

}
dy.

We now apply the substitution z = yi+ τ(n− i). We obtain

α1(τY(n)) =
α

F (τn)

n∑
i=1

(−1)i+1

(
n

i

)∫ ∞
τn

{
1

(1 + z
σ
)α
−

1 + τ
σ
(n− i)

(1 + z
σ
)α+1

}
dz

i

=
α

F (τn)

n∑
i=1

(−1)i+1

(
n

i

)
σ

i

{
F (τn;α− 1)

α− 1
−

(1 + τ
σ
(n− i))F (τn)

α

}
=

n∑
i=1

(−1)i+1

(
n

i

)
σ

i

{
α(1 + τn

σ
)

α− 1
−

(α− 1)(1 + τ
σ
(n− i))

α− 1

}
=

n∑
i=1

(−1)i+1

(
n

i

){
σ + τ(n+ i(α− 1))

i(α− 1)

}
.

In order to determine the variance of the truncated maximum we begin with the second

11
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raw moment.

α2(τY(n)) =
α

F (τn)

n∑
i=1

(−1)i+1

(
n

i

)∫ ∞
τ

y2i

σ

dy

(1 + yi+τ(n−i)
σ )α+1

=
α

F (τn)

n∑
i=1

(−1)i+1

(
n

i

)
σ

i

∫ ∞
τn

{
1

(1 + z
σ )α−1

−
2(1 + τ

σ (n− i))
(1 + z

σ )α
+

(1 + τ
σ (n− i))2

(1 + z
σ )α+1

}
dz

i

=
α

F (τn)

n∑
i=1

(−1)i+1

(
n

i

)
σ2

i2

{
F (τn;α− 2)

α− 2
−

2(1 + τ
σ (n− i))F (τn;α− 1)

α− 1

+
(1 + τ

σ (n− i))2F (τn)

α

}
=

n∑
i=1

(−1)i+1

(
n

i

)
σ2

i2

{
(1 + τn

σ )2α(α− 1)

(α− 1)(α− 2)
−

2(1 + τn
σ )(1 + τ

σ (n− i))α(α− 2)

(α− 1)(α− 2)

+
(1 + τ

σ (n− i))2(α− 1)(α− 2)

(α− 1)(α− 2)

}
=

n∑
i=1

(−1)i+1

(
n

i

)
1

i2
2(σ + τn)2 + 2(σ + τn)τi(α− 2) + τ2i2(α− 1)(α− 2)

(α− 1)(α− 2)

=
n∑
i=1

(−1)i+1

(
n

i

)
1

i2
2(σ + τ(n− i))2 + 2α(σ + τn)τi+ τ2i2α(α− 3)

(α− 1)(α− 2)
.

Consequently, we have that

µ2(τY(n)) =
n∑
i=1

(−1)i+1

(
n

i

)
1

i2
2(σ + τ(n− i))2 + 2α(σ + τn)τi+ τ 2i2α(α− 3)

(α− 1)(α− 2)

−
( n∑

i=1

(−1)i+1

(
n

i

){
σ + τ(n+ i(α− 1))

i(α− 1)

})2

.

Remark 2 From a purely theoretical standpoint, it is interesting to note that when
τ = 0, we obtain the following

α1(Y(n)) =
n∑
i=1

(−1)i+1

(
n

i

)
σ/i

α− 1
=

σ

α− 1

n∑
i=1

(−1)i+1

(
n

i

)
i−1

=
σ

α− 1
(ψ(n+ 1) + γ),

where ψ is the digamma function and γ is Euler’s constant.

3.3 Relationship Between Minimum and Maximum

A direct consequence of Theorem 3 yields an interesting relationship, in expectation,
between the minimum and maximum observations of a multivariate Pareto distribution.
Recall that

α1(τY(1)) =
σ/n+ τα

α− 1
,

α1(τY(n)) =
n∑
i=1

(−1)i+1

(
n

i

){
σ + τ(n+ i(α− 1))

i(α− 1)

}
.

12

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



We solve for σ using the first equation, which, when substituted into the second results
in a cancellation of α.

α1(τY(n)) =
n∑
i=1

(−1)i+1

(
n

i

){
{α1(τY(1))(α− 1)− τα}n+ τ(n+ i(α− 1))

i(α− 1)

}
=

n∑
i=1

(−1)i+1

(
n

i

){
α1(τY(1))n− τ(n− i)

i

}
.

In other words, the expected maximum is a function of the expected minimum and
the truncation point τ . For the special case of n = 2 and τ = 0 we obtain

α1(Y(2)) = 3α1(Y(1)).

4 Estimators

We now apply the results of the previous section in order to facilitate estimation using
sample statistics. We consider a situation in which we have multiple, say m, realizations
of pools of size n, each with truncation point τ . As the results of the previous section
have shown, both τ and n play prominent roles in determining various theoretical quan-
tities of interest. It is for this reason that estimation requires each pool to have not only
the same truncation point, but also be of similar size. As alluded to in the Introduction,
this may make practical use of the model difficult for large n.

4.1 Mean-Variance Estimator

Consider, again, Y = (Y1, . . . , Yn) ∼ Multivariate Pareto(α, σ) with survival function
denoted FY(y;α, σ). Define the associated truncated multivariate distribution τY =
{Y|Y > τ}. Denote with a1(τY) and m̃2(τY) the sample (or pool) mean and variance.
That is,

a1(τY) =
1

n

n∑
i=1

τYi,

m̃2(τY) =
1

n− 1

n∑
i=1

(τYi − a1(τY))2.

Trivially, the expectation of a1(τY) is given by α1(τY1). The expectation of m̃2(τY)
may easily be determined.

E[a1(τY)] = α1(τY1) =
σ + τ(n+ α− 1)

α− 1
,

E[m̃2(τY)] =
1

n− 1
E

[ n∑
i=1

τY
2
i − na1(τY)2

]
=

1

n− 1

(
(n− 1)E[τY

2
1 ]− (n− 1)E[τY1τY2]

)
= α2(τY1)− E[τY1τY2] =

(σ + τn)2

(α− 1)(α− 2)
.
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Solving this system for α and σ yields the following:

α =
2E[m̃2(τY)]− (E[a1(τY)]− τ)2

E[m̃2(τY)]− (E[a1(τY)]− τ)2
,

σ =
E[m̃2(τY)](E[a1(τY)]− τ)

E[m̃2(τY)]− (E[a1(τY)]− τ)2
− τn.

Parameter estimates α̂ and σ̂ are obtained by replacing E[a1(τY)] and E[m̃2(τY)] with
the average a1(τY) and m̃2(τY) over the pools, respectively.

4.2 Minimum-Mean-Variance Estimator

We develop an estimation technique based solely on the minimum. Recall from Theorem
3

α1(τY(1)) =
σ/n+ τα

α− 1
,

µ2(τY(1)) =
(σ/n+ τ)2α

(α− 1)2(α− 2)
.

Let τY(1) be the collection of minima from each pool. Since pools are independent,
a1(τY(1)) and m̃2(τY(1)) are unbiased estimators of α1(τY(1)) and µ2(τY(1)), respectively.
Consequently, we have that

α =
2E[m̃2(τY(1))]

E[m̃2(τY(1))]− (E[a1(τY(1))]− τ)2
,

σ =
E[m̃2(τY(1))](E[a1(τY(1))]− 2τ) + E[a1(τY(1))](E[a1(τY(1))]− τ)2

E[m̃2(τY(1))]− (E[a1(τY(1))]− τ)2
n.

Parameter estimates α̂ and σ̂ are obtained by replacing E[a1(τY(1))] and E[m̃2(τY(1))]
with the average a1(τY(1)) and m̃2(τY(1)) over the pools, respectively.

4.3 Minimum-Quantile Estimator

The estimation procedures of the above two subsections make use of mean and variance
results. This implies α must be greater than two. In order to provide a calibration
procedure for any α, we consider using quantiles of the pool minima.

Recall that τY(1) is the collection of minima from each pool. Consider two quantiles
λ1 and λ2. Using Lemma 1 we formulate the following system of equations

qλ1 = qλ1(α, σ
?) =

((
1− λ1

)− 1
α
(

1 +
τ

σ?

)
− 1

)
σ?,

qλ2 = qλ2(α, σ
?) =

((
1− λ2

)− 1
α
(

1 +
τ

σ?

)
− 1

)
σ?,

Noting that the scale parameter of the minimum is σ? = σ/n. Solving for σ? yields

σ? =
qλi − (1− λi)−

1
α τ

(1− λi)−
1
α − 1

, i = 1, 2.
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This produces the following equation

qλ1 − (1− λ1)−
1
α τ

(1− λ1)−
1
α − 1

=
qλ2 − (1− λ2)−

1
α τ

(1− λ2)−
1
α − 1

. (1)

The estimate α̂ is obtained by replacing theoretical quantiles, qλi , with sample quantiles,
q̂λi , and solving numerically. Finally, σ? is estimated using α̂ and a third quantile λ3 as
follows:

σ̂? =
q̂λ3 − (1− λ3)−

1
α̂ τ

(1− λ3)−
1
α̂ − 1

. (2)

This estimation procedure requires three quantiles λ1, λ2 and λ3. A natural question is
how they can be selected optimally.

Optimal Quantile Level Selection

We briefly recall some knowledge from statistical estimation theory; please see Lands-
man (1996) for more details. We present some important statistical objects necessary
for our further investigation. Let X1, . . . , Xn be a sample of independent and identi-
cally distributed random variables with density function f(x, θ), depending on some
unknown parameter θ ∈ Θ ⊂ R. Let density f(x, θ) be differentiable with respect to θ
for almost all x ∈ R. An important role in statistical estimation is played by the Fisher
information about parameter θ contained in observation X1; it is defined as

IX1(θ) =

∫
R

(
∂ ln f(x, θ)

∂θ

)2

f(x, θ)dx. (3)

The importance of the Fisher information can be explained by the fact that it represents
the main part in the well-known Rao-Cramér lower bound. In fact, for any unbiased
statistic θn = θn(X1, . . . , Xn) and under some regularity conditions, we have

E(θn − θ)2 ≥
1

nIX1(θ)
. (4)

A higher Fisher information corresponds to a lower bound, and consequently, more
precise estimation. The same happens if we estimate the parameter θ using some
statistic Tn(X1, . . . , Xn). Then, the lower bound is defined by Equation (4), where
instead of IX1(θ), one should take the Fisher information ITn(θ) contained in statistic
Tn. The latter is defined by Equation (3), where instead of density f(x, θ), one should
take fTn(x, θ), the density of statistic Tn.

Suppose q̂λ1 , . . . , q̂λk are sample quantiles corresponding to levels 0 < λ1 ≤ . . . ≤
λk < 1. In Landsman (1996), Theorem 1, it was shown that the Fisher information con-
tained in the sample quantiles, Iq̂λ1 ,...,q̂λk (θ), is asymptotically equal to nI

k
(λ1, . . . , λk),

where

I
k
(λ1, . . . , λk) =

k∑
i=0

(βi+1 − βi)2

λi+1 − λi
, (5)

0 < λ1 ≤ . . . ≤ λk < 1, λ0 = 0, λk+1 = 1, βi = f(qλi , θ)∂qλi(θ)/∂θ, for i = 1, . . . , k and
β0 = βk+1 = 0. Then it is natural to find λ?1, . . . , λ

?
k, such that

Ik(λ1, . . . , λk)→ max .
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We use exactly this criterion to determine optimal quantile levels. In fact, we want to
estimate α (with σ unknown) using two quantiles. Then k = 2 and we obtain from
Equation (5) the following objective function:

I2(λ1, λ2) =
β2
1

λ1
+

(β2 − β1)2

λ2 − λ1
+

β2
1− λ2

,

where λ1 < λ2,

βi = f(qλi)
∂qλi
∂α

,

and f and q are the density and quantile function of the truncated Pareto (α, σ) distri-
bution, respectively. We have

f(y) =
α

σ

(
1 + y

σ

)−(α+1)(
1 + τ

σ

)−α ,

qλ =

(
(1− λ)−

1
α

(
1 +

τ

σ

)
− 1

)
σ,

f(qλ) =
α

σ

(1− λ)1+
1
α

(1 + τ
σ
)
,

∂qλ
∂α

=
σ

α2

(
1 +

τ

σ

)
(1− λ)−

1
α ln(1− λ),

∂qλ
∂σ

= (1− λ)−
1
α − 1.

Consequently, we obtain

βi =
1− λi
α

ln(1− λi).

The objective function may be rewritten as follows

I2(λ1, λ2) =
1

α2

(
λ̌21 ln2(λ̌1)

λ1
+

(
λ̌1 ln(λ̌1)− λ̌2 ln(λ̌2)

)2
λ2 − λ1

+ λ̌2 ln2(λ̌2)

)
.

where λ̌ = 1− λ.
This expression may be maximized with respect to λ1 and λ2 numerically. Of critical

importance is that σ plays no role in this optimization. The fact that σ is not required to
determine the optimal quantiles to estimate α is a mathematical consequence; however,
given that σ is a scale parameter, and therefore has no impact on ranking observations,
it is intuitive that the optimal quantile estimation of α does not depend on it. The
optimal solution, to four decimal places, is given by (λ?1, λ

?
2) = (0.6385, 0.9265).

Figure 1 shows the one-dimensional plots over λ1 for select values of λ2 of 0.2, 0.5,
0.75, 0.9, 0.95, and 0.99. A break is present in each graph due to the restriction λ1 6= λ2.
Horizontal and vertical lines are added to indicate the maximum value of the objective
function and optimal λ1, respectively. It may be noticed that as λ2 increases, so does the
optimal value of λ1. However, the maximum value of the objective function increases
until λ2 = 0.9265, after which it decreases.

It is also of interest to determine the optimal (single) quantile level to estimate α if
σ is known. In this case, k = 1 and the objective function is

I1(λ) =
β2

λ(1− λ)
=

(
f(qλ)

∂qλ
∂α

)2
1

λ(1− λ)
=

1

α2

1− λ
λ

ln2(1− λ);
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Figure 1: Objective function versus λ1 for select values of λ2.

(a) λ2=0.25. (b) λ2=0.5.

(c) λ2=0.75. (d) λ2=0.90.

(e) λ2=0.95. (f) λ2=0.99.
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see Equation (5). Consequently, optimal λ is found by maximizing

1− λ
λ

ln2(1− λ).

This objective function may be optimized numerically. Alternatively, taking logarithms
and differentiating with respect to λ produces the following equation for optimal λ?:

2λ? + ln(1− λ?) = 0. (6)

The optimal solution, to four decimal places, is given by λ? = 0.7968; see Figure 2,
which shows the objective function as well as Equation (6) plotted over λ. Although α̂
depends on σ, it is interesting to note that λ? does not.

Figure 2: Optimal λ for estimating α for known σ.

(a) Objective function versus λ. (b) Equation (6) versus λ.

We return to the case of unknown σ. Armed with an estimate of α, we consider the
optimal quantile level λ3, used in Equation (2), to estimate σ. To achieve this end, we
optimize the following objective function

I1(λ) =

(
f(qλ)

∂qλ
∂σ

)2
1

λ(1− λ)
=
α2

σ2

(
1 +

τ

σ

)−2(
1− (1− λ3)

1
α

)21− λ3
λ3

;

see Equation (5). Consequently, optimal λ3 is found by maximizing(
1− (1− λ3)

1
α

)21− λ3
λ3

,

which may be numerically optimized directly. Alternatively, taking logarithms and
differentiating with respect to λ3 produces the following equation for optimal λ?3:

α
(

(1− λ?3)−
1
α − 1

)
= 2λ?3. (7)

It is clear that λ?3 depends on α. In Figure 3, the objective function is plotted versus
λ3 for select values of α of 0.5, 1, and 5; for the case α = 5, the plot of Equation (7)
versus λ3 is also provided.

Therefore, in the case of unknown α and σ, we apply the following estimation pro-
cedure using optimal quantile levels.
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Figure 3: Optimal λ3 for estimating σ for known α.

(a) Objective function versus λ3 for α = 0.5. (b) Objective function versus λ3 for α = 1.

(c) Objective function versus λ3 for α = 5. (d) Equation (7) versus λ3 for α = 5.
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Algorithm 1

1. Estimate α using Equation (1) and quantile levels (λ?1, λ
?
2) = (0.6385, 0.9265).

2. Using α̂, determine λ?3 via Equation (7).

3. Obtain σ̂ using λ?3 in Equation (2).

5 Numerical Results

We provide a numerical comparison using simulated data in order to demonstrate the
performance of the various estimation procedures. Although the simulation of mul-
tivariate Pareto observations does not introduce any difficulties, simulating truncated
observations does. Namely, observations will have to be discarded in the generation pro-
cess, which may considerably lengthen simulation times. The truncation point τ and
the dimension n of the distribution increase the time required to obtain an observation
of a truncated multivariate observation. In conjunction with τ and n, the parameters
α and σ also play a role.

The impact of the truncation point may be minimized by including translation. In
fact, given that the Pareto distribution is expressly applied to investigate tail behaviour,
translation is natural and accounted for in the generalized, three parameter, Pareto
distribution. However, rather than estimate the translation point (location parameter),
we set it to 60. This is done for illustrative purposes; it would be of interest to model
the generalized Pareto distribution and rigorously determine the location parameter.

The impact of n, unfortunately, is not so easy to overcome. Simulation times increase
drastically for n > 3 with the magnitude of τ playing an ever increasing role. We produce
various samples of bivariate data with τ = 5 as well as some 20-variate samples with
τ = 2.5 (and a corresponding increase of the translation point to 62.5). In other words,
all the samples are of lifetimes with 65 serving as the effective truncation point. It
is important to highlight that, although simulating from a high-dimensional truncated
multivariate Pareto distribution produces computational difficulties, this does not imply
that fitting such a sample (if it were available) would incur any difficulties. As alluded
to above, the present theory imposes some conditions on any such sample data.

The plot of a generated bivariate Pareto distribution with α = 4, σ = 3 is provided
in Figure 4. Parameter values were chosen to roughly resemble real joint-lives data
truncated at 65; one data-point was censored at 120.

Estimation results for a bivariate Pareto distribution with α = 4, σ = 3 are provided
in Table 1. The table shows results for m = 1, 000, 10, 000, and 100, 000. In addition
to the mean-variance estimation procedure of Section 4.1 (labelled MV), the minimum-
mean-variance procedure of Section 4.2 (labelled Min), and the minimum-quantile with
optimal quantile levels λ?1 = 0.6385, λ?2 = 0.9265, and λ?3 of Section 4.3, we also provide
the minimum-quantile estimation procedures for various other combinations of quantile
levels. In these latter cases, α is estimated using λ1 and λ2, and σ is estimated using
α̂ and λ1. We selected these combinations of λ1 and λ2 to illustrate the importance of
choosing the quantile levels, especially when faced with a relatively small sample.

It can be seen in Table 1 that the minimum-quantile procedure with optimal quantile
levels performs consistently well. It may also be noted that the optimal quantile levels do
not always produce estimates closest to the true values. This is not alarming given the
manner in which we define optimal, which is related to the variability of the estimator.
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Figure 4: 1,000 simulated joint lives with α = 4, σ = 3.

Table 1: Estimation results for various samples of a bivariate distribution.

n=2, m=1,000 Minimum-quantile
λ?3 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2

MV Min .6945 .25 .75 .30 .70 .40 .60 .50 .75 .50 .95 .5 .995
α 4 5.38 3.79 3.85 3.01 4.07 5.12 3.38 3.44 4.01
σ 3 8.82 2.38 2.51 -0.53 3.29 7.48 0.91 1.14 3.19

n=2, m=10,000 Minimum-quantile
MV Min .6947 .25 .75 .30 .70 .40 .60 .50 .75 .50 .95 .5 .995

α 4 4.64 4.33 3.86 5.21 4.70 5.97 4.58 4.10 4.42
σ 3 5.47 4.28 2.37 7.38 5.50 10.02 5.00 3.30 4.41

n=2, m=100,000 Minimum-quantile
MV Min .7001 .25 .75 .30 .70 .40 .60 .50 .75 .50 .95 .5 .995

α 4 3.89 3.75 4.10 4.24 4.35 4.49 3.92 4.00 3.95
σ 3 2.54 1.90 3.40 3.93 4.34 4.77 2.68 3.00 2.80
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Estimation results for a 20-variate Pareto distribution with α = 4, σ = 3 are pro-
vided in Table 2. The table shows results for m = 100, 1, 000, and 10, 000. Note that for
this set of results (only), the translation and truncation points were 62.5 and 2.5, respec-
tively. The first thing to notice is that the minimum-quantile estimation procedure is
unable to provide estimates for many of the quantile level pairs when m = 100, which is
to be expected. In these cases, Equation (1), which must be solved numerically, has no
solution. Even with m = 1, 000, the results are still quite variable, as can be seen by the
estimate of σ for the minimum-mean-variance procedure. However, with m = 10, 000
the minimum-quantile estimation with optimal quantile levels performs exceptionally
well. It is also noteworthy to remark on the sensitivity of the minimum-quantile pro-
cedure with respect to the chosen quantile levels; for example, taking λ1 = 0.40 and
λ2 = 0.60 produces a rather undesirable result.

Although unable to verify with simulation, the results from Tables 1 and 2 do seem
to indicate that fitting pools with large n can yield desirable results. Furthermore, in
this scenario, we anticipate that the mean-variance estimators will perform better than
the quantile estimators.

Table 2: Estimation results for various samples of a 20-variate distribution.

n=20, m=100 Minimum-quantile
λ?3 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2

MV Min .7365 .25 .75 .30 .70 .40 .60 .50 .75 .50 .95 .5 .995
α 4 4.92 5.48 6.83 NA NA NA 8.21 NA 6.04
σ 3 14.8 7.43 19.82 NA NA NA 39.01 NA 14.52

n=20, m=1,000 Minimum-quantile
MV Min .7106 .25 .75 .30 .70 .40 .60 .50 .75 .50 .95 .5 .995

α 4 4.27 6.04 4.64 4.61 5.06 7.56 5.66 5.71 4.90
σ 3 9.19 43.31 19.19 17.35 26.66 68.03 35.19 35.95 23.68

n=20, m=10,000 Minimum-quantile
MV Min .6962 .25 .75 .30 .70 .40 .60 .50 .75 .50 .95 .5 .995

α 4 4.1 4.15 3.92 4.08 4.58 11.38 4.52 3.95 3.97
σ 3 5.46 7.43 2.92 5.77 13.4 117.17 12.92 4.4 4.72

Finally, we provide a comparison for different values of the model parameters α and
σ; see Table 3. Recall that the mean-variance and minimum-mean-variance estimation
procedures are not valid for α ≤ 2. We include the results of these estimation procedures
to provide insight in the consequences of misapplied calibration techniques. Fortunately,
these two procedures essentially identify their inappropriateness by estimating α very
close to two and σ very large; approximately one million in the case of α = 0.5. The
minimum-quantile procedure performs well, arguably better as α decreases.

6 Bulk Annuity Pricing

We focus on one pool and begin by considering the case with no truncation.
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Table 3: Estimation results for various samples of a bivariate distribution.

n=2, m=10,000 Minimum-quantile
λ?3 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2 λ1, λ2

MV Min .6947 .25 .75 .30 .70 .40 .60 .50 .75 .50 .95 .5 .995
α 4 4.64 4.33 3.86 5.21 4.70 5.97 4.58 4.10 4.42
σ 3 5.47 4.28 2.37 7.38 5.50 10.02 5.00 3.30 4.41

n=2, m=10,000 Minimum-quantile
MV Min .5729 .25 .75 .30 .70 .40 .60 .50 .75 .50 .95 .5 .995

α 1.5 2.14 2.17 1.50 1.52 1.43 1.58 1.48 1.53 1.54
σ 2 14.96 15.37 1.84 2.35 1.38 2.63 1.77 2.26 2.36

n=2, m=10,000 Minimum-quantile
MV Min .3594 .25 .75 .30 .70 .40 .60 .50 .75 .50 .95 .5 .995

α 0.5 2.00 2.00 0.50 0.53 0.54 0.50 0.51 0.50 0.48
σ 5 ≈ 1M ≈ 1M 4.51 4.51 6.64 4.37 4.65 4.27 3.14

6.1 The Distribution of Survivors

Theorem 4 Consider Y = (Y1, . . . , Yn) ∼ Multivariate Pareto(α, σ) and let F (y)
denote the survival function of the univariate Pareto distribution with parameters α
and σ. Let St denote the number of remaining survivors in the pool at time t > 0;

St =
n∑
i=1

1{Yi>t}.

The probability mass function of St is given by

P (St = x) =

(
n

x

) n−x∑
i=0

(−1)i
(
n− x
i

)
F (t(x+ i)), x ∈ {0, . . . , n},

and the joint probability of St and Ss for s > t is given by

P (St = x, Ss = y)

=

(
n

y

)(
n− y
x− y

) n−x∑
i=0

x−y∑
j=0

(−1)i+j
(
n− x
i

)(
x− y
j

)
F (s(y + j) + t((x+ i)− (y + j))),

for x, y ∈ {0, . . . , n}, x ≥ y.

Proof. Since the marginal distributions are identical, we consider one particular joint
probability and apply the appropriate binomial coefficient.

P (St = x) =

(
n

x

)
P (Y1 > t, . . . , Yx > t, Yx+1 ≤ t, . . . Yn ≤ t),

which, for simplicity, we write for x ∈ {0, . . . , n}, with x = 0 and x = n corresponding
to P (Y1 ≤ t, . . . , Yn ≤ t) and P (Y1 > t, . . . , Yn > t), respectively. In other words,
we require that strictly x individuals survive until time t. Let Bi = {Yi > t} for
i ∈ {1, . . . , n} and let Bc denote the complement of B. We focus on the probability

P (Y1 > t, . . . , Yx > t, Yx+1 ≤ t, . . . , Yn ≤ t) = P (∩xk=1Bk,∩nk=x+1B
c
k),
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and again, x = 0 and x = n correspond to P (∩nk=1B
c
k) and P (∩nk=1Bk), respectively.

The survivors do not pose any difficulty since working with the joint survival function
is convenient. We address the remaining n − x lives using the well-known inclusion-
exclusion result for probability, which states that for index set I = {1, . . . , n},

P (∩k∈IBc
k) =

∑
J⊆I

(−1)|J |P (∩k∈JBk),

where |J | denotes the cardinality of set J . Since the marginal distributions are iden-
tical, we can simplify this result. Rather than considering every subset J of I, we let
our summation index represent the cardinality (or size) of the subsets and apply the
appropriate binomial coefficient.

P (∩k∈IBc
k) =

n∑
i=0

(−1)i
(
n

i

)
P (∩ik=1Bk).

Putting these two elements together, we have that

P (∩xk=1Bk,∩nk=x+1B
c
k) =

n−x∑
i=0

(−1)i
(
n− x
i

)
P (∩xk=1Bk,∩x+ik=x+1Bk)

=
n−x∑
i=0

(−1)i
(
n− x
i

)
P (∩x+ik=1Bk)

=
n−x∑
i=0

(−1)i
(
n− x
i

)
F (t(x+ i)).

We have, for x, y ∈ {0, . . . , n}, x ≥ y,

P (St = x, Ss = y)

=

(
n

y

)(
n− y
x− y

)
P (Y1 > s, . . . , Yy > s, t < Yy+1 ≤ s, . . . , t < Yx ≤ s, Yx+1 ≤ t, . . . , Yn ≤ t).

The coefficient is due to the fact that we have identical marginal distributions; we choose
strictly y individuals to survive until time s, and from the remaining n− y, we choose
strictly x− y to survive until time t. Let Ci = {Yi > s} for i ∈ {1, . . . , n}. We focus on
the probability

P (Y1 > s, . . . , Yy > s, t < Yy+1 ≤ s, . . . , t < Yx ≤ s, Yx+1 ≤ t, . . . , Yn ≤ t)

= P (∩yk=1Ck,∩
x
k=y+1C

c
k,∩xk=y+1Bk,∩nk=x+1B

c
k)

=
n−x∑
i=0

(−1)i
(
n− x
i

)
P (∩yk=1Ck,∩

x
k=y+1C

c
k,∩xk=y+1Bk,∩x+ik=x+1Bk)

=
n−x∑
i=0

(−1)i
(
n− x
i

) x−y∑
j=0

(−1)j
(
x− y
j

)
P (∩yk=1Ck,∩

y+j
k=y+1Ck,∩

x+i
k=y+1Bk)

=
n−x∑
i=0

x−y∑
j=0

(−1)i+j
(
n− x
i

)(
x− y
j

)
P (∩y+jk=1Ck,∩

x+i
k=y+j+1Bk)

=
n−x∑
i=0

x−y∑
j=0

(−1)i+j
(
n− x
i

)(
x− y
j

)
F (s(y + j) + t((x+ i)− (y + j))).

24

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



In the first step of this derivation, we rewrite our probability in terms of sets B and C. In
the second, we rewrite the Bc in terms of B via an application of the inclusion-exclusion
result for probability. Next, we rewrite the Cc in the same way and simultaneously
combine the B. Thereafter, we combine the C and adjust the indexation of the B; the
event Bk = {Yk > t} is redundant since we already have Ck = {Yk > s}, s > t, for
k ∈ {y + 1, . . . , y + j}. Finally, since only survival conditions remain, we can rewrite
the probability using the joint survival function, which is equivalent to the univariate
survival function with the appropriate argument.

6.2 The Bulk Annuity

Consider selling a bulk annuity to this pool Y. The product pays 1 to each survivor of
the pool at the end of each year. Let A denote the value of this annuity at inception
(t = 0).

A =
∞∑
t=1

Stv
t,

where v is the discount factor, for example, with constant force of interest δ, v = e−δ.
We also have that

A2 =
∞∑
t=1

S2
t v

2t + 2
∞∑
t=1

∞∑
s=t+1

StSsv
t+s.

With our knowledge of P (St = x) and P (St = x, Ss = y), we can calculate the expec-
tation and variance of the annuity value at inception.

E[A] =
∞∑
t=1

n∑
x=0

xP (St = x)vt,

E[A2] =
∞∑
t=1

n∑
x=0

x2P (St = x)v2t + 2
∞∑
t=1

∞∑
s=t+1

n∑
y=0

n∑
x=y

xyP (St = x, Ss = y)vt+s,

V ar(A) = E[A2]− E[A]2.

Furthermore, we can contrast the results with the assumption of independent lives. For
independent lives, we need only adjust the distribution of St, trivially, we have that
under independence,

P (St = x) =

(
n

x

)
F (t)x

(
1− F (t)

)n−x
, x ∈ {0, . . . , n},

P (St = x, Ss = y) =

(
n

y

)(
n− y
x− y

)
F (s)y

(
F (t)− F (s)

)x−y(
1− F (t)

)n−x
,

for x, y ∈ {0, . . . , n}, x ≥ y. Matters are slightly complicated once we allow for trunca-
tion.

6.3 Allowing for Truncation

We generalize Theorem 4 to allow for truncation.
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Theorem 5 Consider Y = (Y1, . . . , Yn) ∼ Multivariate Pareto(α, σ) with associated
truncated multivariate distribution τY = {Y|Y > τ}. Let F (y) denote the survival
function of the univariate Pareto distribution with parameters α and σ. Let τSt denote
the number of survivors in the pool at time t ≥ τ ;

τSt =
n∑
i=1

1{τYi>t}.

The probability mass function of τSt is given by

P (τSt = x) =

(
n

x

) n−x∑
i=0

(−1)i
(
n− x
i

)
F (t(x+ i) + τ(n− (x+ i)))

F (τn)
,

for x ∈ {0, . . . , n}, and the joint probability of τSt and τSs for s > t is given by

P (τSt = x, τSs = y)

=

(
n

y

)(
n− y
x− y

) n−x∑
i=0

x−y∑
j=0

(−1)i+j
(
n− x
i

)(
x− y
j

)
F (s(y + j) + t((x+ i)− (y + j)) + τ(n− (x+ i)))

F (τn)
,

for x, y ∈ {0, . . . , n}, x ≥ y.

Proof. In addition to the notation introduced in the proof of Theorem 4, let Ai =
{Yi > τ} for i ∈ {1, . . . , n}. For x ∈ {0, . . . , n},

P (τSt = x) =

(
n

x

)
P (Y1 > t, . . . , Yx > t, τ < Yx+1 ≤ t, . . . , τ < Yn ≤ t)

P (Y1 > τ, . . . , Yn > τ)

=

(
n

x

)
P (∩xk=1Bk,∩nk=x+1B

c
k,∩nk=x+1Ak)

P (∩nk=1Ak)

=

(
n

x

) n−x∑
i=0

(−1)i
(
n− x
i

)
P (∩xk=1Bk,∩x+ik=x+1Bk,∩nk=x+1Ak)

P (∩nk=1Ak)

=

(
n

x

) n−x∑
i=0

(−1)i
(
n− x
i

)
P (∩x+ik=1Bk,∩nk=x+i+1Ak)

P (∩nk=1Ak)

=

(
n

x

) n−x∑
i=0

(−1)i
(
n− x
i

)
F (t(x+ i) + τ(n− (x+ i)))

F (τn)
.
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We have, for x, y ∈ {0, . . . , n}, x ≥ y,

P (τSt = x, τSs = y)

((
n

y

)(
n− y
x− y

))−1
=

P (Y1 > s, . . . , Yy > s, t < Yy+1 ≤ s, . . . , t < Yx ≤ s, τ < Yx+1 ≤ t, . . . , τ < Yn ≤ t)
P (Y1 > τ, . . . , Yn > τ)

=
P (∩yk=1Ck,∩

x
k=y+1C

c
k,∩xk=y+1Bk,∩nk=x+1B

c
k,∩nk=x+1Ak)

P (∩nk=1Ak)

=
n−x∑
i=0

(−1)i
(
n− x
i

)
P (∩yk=1Ck,∩

x
k=y+1C

c
k,∩xk=y+1Bk,∩

x+i
k=x+1Bk,∩

n
k=x+1Ak)

P (∩nk=1Ak)

=
n−x∑
i=0

(−1)i
(
n− x
i

) x−y∑
j=0

(−1)j
(
x− y
j

)
P (∩yk=1Ck,∩

y+j
k=y+1Ck,∩

x+i
k=y+1Bk,∩

n
k=x+i+1Ak)

P (∩nk=1Ak)

=

n−x∑
i=0

x−y∑
j=0

(−1)i+j
(
n− x
i

)(
x− y
j

)
P (∩y+jk=1Ck,∩

x+i
k=y+j+1Bk,∩

n
k=x+i+1Ak)

P (∩nk=1Ak)

=
n−x∑
i=0

x−y∑
j=0

(−1)i+j
(
n− x
i

)(
x− y
j

)
F (s(y + j) + t((x+ i)− (y + j)) + τ(n− (x+ i)))

F (τn)
.

Now, consider selling a bulk annuity to the pool τY. This product is sold at time
τ , and we let τA denote its value at inception.

τA =
∞∑

t=τ+1

τStv
t−τ , τA

2 =
∞∑

t=τ+1

τS
2
t v

2(t−τ) + 2
∞∑

t=τ+1

∞∑
s=t+1

τStτSsv
t+s−2τ .

The expectation and variance of τA can be determined using the dependence structure
given by the multivariate Pareto distribution, or using the assumption of independent
lives. These can be contrasted to highlight the importance of considering dependence.
For completeness, with truncation, the distribution of τSt under the assumption of
independent lives is

P (τSt = x) =

(
n

x

)(
F (t)

F (τ)

)x(
1− F (t)

F (τ)

)n−x
, x ∈ {0, . . . , n},

P (τSt = x, τSs = y) =

(
n

y

)(
n− y
x− y

)(
F (s)

F (τ)

)y(
F (t)

F (τ)
− F (s)

F (τ)

)x−y(
1− F (t)

F (τ)

)n−x
,

for x, y ∈ {0, . . . , n}, x ≥ y.

6.4 Examples

We provide two numerical examples. For each of these examples, we contrast the multi-
variate Pareto dependence structure with the assumption of independent lifetimes. It is
noteworthy to remind the reader that the marginal distribution of the truncated multi-
variate Pareto depends on n, the number of people in the pool; under the assumption of
independence, this is no longer the case. Hence, for a proper comparison, we adjust the
parameter σ in order to match the first moment of τY1. As a consequence of matching
the first moment, we also match E[τA] under the two approaches (multivariate versus
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independent Pareto). The difference will be seen in the variance (or standard deviation)
of τA.

The first example is of a bivariate distribution. We set δ, the force of interest, to 2%.
Let ρ denote the translation point, as before, we set it to 60. We set τ , the truncation
point, to 5. Under the multivariate Pareto approach, α and σ are set to 3 and 10,
respectively. This means the average lifetime of an individual is 75 with a standard
deviation of 17.32. To attain the same lifetime distribution under the independent
Pareto approach, we set σ to 15. Under these two scenarios, we find that E[τA] = 14.38.
For the independent Pareto approach, the corresponding standard deviation is 11.50,
for the multivariate Pareto approach, it is 13.11; this represents an approximate 15%
increase in the risk; please refer to Table 4.

Similarly, we compare a 20-variate distribution. As before, we let ρ and τ equal 60
and 5, respectively, and set δ equal to 2%. Under the multivariate Pareto approach, we
set α and σ to 12 and 10, respectively, and attain a marginal lifetime distribution with
mean 75 and standard deviation 10.95. Under the independent Pareto approach, we set
σ to 105 to recover the same marginal distribution. Under these two scenarios, we find
that E[τA] = 154.70. For the independent Pareto approach, the corresponding standard
deviation is 32.79, for the multivariate Pareto approach, it is 52.07; this represents an
approximate 60% increase in the risk; please refer to Table 4.

Table 4: Bulk annuity pricing.

n 2 2 20 20
δ 0.02 0.02 0.02 0.02
α 3 3 12 12
σ 10 15 10 105
ρ 60 60 60 60
τ 5 5 5 5

Multivariate Pareto
α1(τY1) 75.00 77.50 75.00 83.64

µ2(τY1)
1
2 17.32 21.65 10.95 20.42

Independent Pareto
α1(τY1) 72.50 75.00 66.36 75.00

µ2(τY1)
1
2 12.99 17.32 1.49 10.95

Multivariate Pareto
E[τA] 14.38 17.29 154.70 256.72

V ar(τA)
1
2 13.11 14.77 52.07 73.52

Independent Pareto
E[τA] 11.19 14.38 17.83 154.70

V ar(τA)
1
2 9.69 11.50 6.11 32.79

7 Conclusion

We derive properties of a multivariate type II Pareto distribution in order to facilitate
parameter estimation procedures and investigate the implications on pricing bulk annu-
ities. This model is of primary interest to investigate old-age mortality, specifically for
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joint-life annuities and portfolios of deferred annuity products. Given the nature of the
data, parameter estimation techniques need to incorporate left-truncation. We derive
the necessary results for various estimation procedures. These differ significantly, and
their respective performance is situational, producing a robust framework under which
to operate. We test the performance of these procedures using simulation. Because of
both computational and practical constraints, working with a high-dimensional sample
(i.e. with large n) is problematic and hence we focus our numerical results on bivariate
and 20-variate distributions. The former refers to joint-lifetimes, an important subset
of insurance products worthy of further exploration. The results, although providing
no conclusive ‘best estimator’, provide insight into the nature of this particular multi-
variate distribution and also highlight the importance of considering dependence when
assessing the risk of bulk annuity-type products.
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