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Abstract 

The present study aims to develop an estimation model for the ground resistance 

fluctuation. The need of engineers to have in their disposal a flexible and reliable tool, 

for estimating and predicting grounding systems behavior, is what actually motivated 

this workscope. It is well-known that grounding systems are a key of high importance 

for the safe operation of electrical facilities, substations, transmission lines and, 

generally, electric power systems. Yet, in most cases, electrical engineers and 

researchers have few data about the soil resistivity variation at the terrain of interest in 

design phase and, even more, the periodic measurement of ground resistance is 

hindered very often by the residence and building infrastructure, after the installation. 

Thus, the proposed model aspires to offer a reliable solution to estimation problems of 
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ground resistance. It consists of a Wavelet Neural Network (WNN), which has been 

trained by field measurements of soil resistivity and rainfall height, gathered/observed 

the last four years. Grounding rods encased in ground enhancing compounds and in 

natural soil have been tested, so that a wide dataset for the training of the network can 

be obtained, covering various soil conditions. Furthermore, the proposed estimation 

model can be used for the estimation of the behavior of several ground enhancing 

compounds, frequently used in grounding practice. The nature of this problem and the 

data structure favor the proposed WNN methodology, due to high accuracy and 

performance it presents in solving such problems. Therefore, this paper introduces the 

wavelet analysis in the field of ground resistance estimation and endeavors to take 

advantage of the benefits of computational intelligence. 

Keywords: grounding systems; ground enhancing compounds; ground resistance; 

wavelet neural networks; forecasting; computational intelligence. 

1. Introduction 

Grounding systems are an integral part of the protection system for electrical 

facilities and electric power systems against lightning and power frequency fault 

currents, as they are designed to dissipate high magnitude fault currents into the earth 

through a safe passage in the shortest possible time. Their purpose is to keep at 

minimum the ground potential rise (GPR), consequence of a discharging fault current, 

so as to ensure the safety of people and equipment from electric shock. Nevertheless, 

the assumption that any grounded object can be safely touched is not always correct. 

Under fault conditions, the ground potential rise could reach hazardous levels that may 

well lead to human losses and equipment destruction. Thus, for a well-designed 

grounding system in order to provide constant and full protection, technical measures 
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are necessary to ensure a good and consistent behavior of the system throughout its 

lifecycle. 

As far as the power frequency resistance is concerned, a grounding system must 

maintain a low resistance in respect to remote earth during its service. In this way, the 

decline in potential rise can restrain the high values of step and touch voltages in the 

facility and its vicinity, which are able to jeopardize human lives. International 

standards [1–3] highlight the variation of ground resistance value under the effect of 

soil structure and soil moisture. Therefore, for safety reason, regular measurement of 

grounding systems is recommended, [1-3]. 

However, in most of the cases, an electrical engineer has to deal with confined 

spaces for the construction of an effective grounding system, or with the huge cost 

which often may be inhibitive for the construction. Furthermore, soil resistivity of the 

upper layer is subjected to seasonal variation due to weather conditions, such as rainfall, 

ice and air temperature, which mainly effect on soil humidity, while the dissolved salts 

percentage and the soil structure play a major role in soil resistivity value [4–6]. In the 

last decades the usage of ground enhancing compounds for soil alleviation and 

decreasing the ground resistance value becomes more and more popular in engineering 

field. 

Despite the recommendations of the standards, the periodic measurement of ground 

resistance is hindered very often by the residence and building infrastructure. Moreover, 

many times it is essential for engineers to have an estimation of the behavior of 

constructed or, in design phase, grounding systems over time. This work endeavors to 

develop a novel tool for estimating and forecasting the ground resistance values of 

several grounding systems, based on soil resistivity measurements at the location of 

interest and on local rainfall data, using WNN. 
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2. Wavelet Neural Networks 

2.1 General description 

Wavelet neural networks or, simply wavelet networks (WNs), are a new class of 

networks that combine the classic sigmoid neural networks (NNs) and the wavelet 

analysis (WA). WNNs have been used with great success in a wide range of 

applications. Wavelet analysis has proved to be a valuable tool for analyzing a wide 

range of time-series and has already been used with success in image processing, signal 

de-noising, density estimation, signal and image compression and time-scale 

decomposition. It is often regarded as a “microscope” in mathematics [7] and it is a 

powerful tool for representing nonlinearities [8]. However, WA is suitable for 

applications of small input dimension, since the construction of a wavelet basis is 

computationally expensive when the dimensionality of the input vector is relatively 

high [9]. 

Wavelet analysis decomposes a general function or signal into a series of 

(orthogonal) basis functions called wavelets, which have different frequency and time 

locations. More precisely, wavelet analysis decomposes time-series and images into 

component waves of varying durations called wavelets, which are localized variations 

of a signal [10,11]. As illustrated by Donoho and Johnstone [12], the wavelet approach 

is very flexible in handling very irregular data series. Ramsey [13] also comments that 

wavelet analysis has the ability to represent highly complex structures without knowing 

the underlying functional form, which is of great benefit in economic and financial 

research. A particular feature of the signal analyzed can be identified with the positions 

of the wavelets into which it is decomposed. 

WNNs were proposed by Zhang and Benveniste [14] as an alternative to 

feedforward neural networks. The wavelet networks are a generalization of radial basis 



5 

 

function networks. They are one hidden-layer networks that use a wavelet as an 

activation function, instead of the classic sigmoidal family. It is important to mention 

here that the multidimensional wavelets preserve the “universal approximation” 

property that characterizes neural networks. The nodes (or wavelons) of the hidden 

layer are the wavelet coefficients of the function expansion that have a significant value. 

In Bernard et al. [15] various reasons were presented explaining why wavelets should 

be used instead of other transfer functions. In particular, firstly, wavelets have high 

compression abilities and, secondly, computing the value at a single point or updating 

the function estimate from a new local measure, involves only a small subset of 

coefficients. 

2.2 Proposed WNN methodology and architecture for the estimation of ground 

resistance 

In this study, a multidimensional WNN with a linear connection between the hidden 

units (wavelons) and the output is implemented. Moreover, in order for the model to 

perform well in the presence of linearity, direct connections from the input layer to the 

output layer are established. The structure of a single hidden-layer feedforward wavelet 

network is given in Fig. 1. The network output is given by the following expression: 
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In the above expression, Ψj(x) is a multidimensional wavelet which is constructed 

by the product of m scalar wavelets, x is the input vector, m is the number of network 

inputs, λ is the number of hidden units (HUs) and w stands for a network weight. The 

multidimensional wavelets are computed as follows: 
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where ψ  is the mother wavelet and 
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In the above expression, i=1,…m, j=1,…λ+1 and the weights w correspond to the 

translation 
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the training phase. Furthermore, the second derivative of the Gaussian, the so-called 

“Mexican Hat” wavelet is used which proved to be useful and to work satisfactorily in 

various applications [18–20]: 
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Fig.1 

A wavelet is a waveform of effectively limited duration that has an average value 

of zero and localized properties. Hence, a random initialization may lead to wavelons 

with a value of zero, affect the speed of training and lead to a local minimum of the loss 

function. Utilizing the information that can be extracted by the WA from the input 
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dataset, the initial values of the parameters w of the network can be selected in an 

efficient way. Efficient initialization will result in less iterations in the training phase 

of the network and in training algorithms that will avoid local minima of the loss 

function in the training phase. In the present network the Backward Elimination (BE) 

method [9,20] is used for the initialization of the network parameters. The BE starts the 

regression by selecting all the available wavelets from the wavelet library. Then, the 

wavelet that contributes the least in the fitting of the training data is repeatedly 

eliminated. The drawback of BE is that it is computationally expensive but it is 

considered to have good efficiency. 

After the initialization phase, the network is further trained in order to obtain the 

vector of the parameters ˆ
nw  w  which minimizes the loss function. The ordinary back-

propagation algorithm (BP) is used for the training of the WNN, as it is probably the 

most popular algorithm used for training of WNNs. BP is less fast but also less prone 

to sensitivity to initial conditions than higher order alternatives. According to this 

algorithm the weights of the network are trained to minimize the mean squared error 

function (or loss function), which is given by the following formula: 

  
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2 2
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p p p
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where yp is the target value, ŷp the network output and n the number of the patterns in 

the training set. 

Thus, the weights wi
[0], wj

[2] and the parameters 
[1]
( )ijw   and 

[1]
( )ijw   are trained during 

the learning phase for approximating the target function. A key decision related to the 

training of a WNN is the time the weight adjustment should end. Under the assumption 

that the WNN contains the number of wavelets that minimizes the prediction risk, the 

training stops when one of the following criteria is met: the cost function reaches a fixed 
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lower bound, or the variations of the gradient or the variations of the parameters reaches 

a lower bound. These stopping criteria can be mathematically expressed as: 

 1( ) ( 1) limitn nL ep L ep    (6) 

 2
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w w

  
 

 
 (7) 

where Ln is the loss function, ep is the epoch and limit1 and limit2 are the predefined 

lower bounds. 

Afterwards, one of the most crucial steps is to identify the correct topology of the 

network. A desired WNN architecture should contain as few HUs as necessary while at 

the same time it should explain as much variability of the training data as possible. The 

Minimum Prediction Risk (MPR) principle can be applied as the most suitable measure 

of the generalization ability of the network. The idea behind MPR is to estimate the 

out-of-sample performance of incrementally growing networks. More precisely, the 

prediction risk of a network gλ(x;ŵn) is the expected performance of the network on new 

data that have not been introduced during the training phase and is given by: 
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In order to estimate the prediction risk and to find the network with the best 

predicting ability, a series of information criteria has developed. In this case, the 

Bayesian Information Criterion (BIC) is considered to be the most appropriate among 

the other criteria for the WNN construction, as its little computational burden doesn’t 

affect the precision on estimations. First the WNN is constructed with zero HUs. Then, 

the corresponding information criterion is estimated. Next, one HU is added to the 

network and the procedure is repeated until the network contains a predefined 

maximum number of HUs. The number of HUs that produces the minimum prediction 
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risk is the number of the appropriate wavelets for the construction of WNN. The BIC 

is expressed as: 

 
2
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( )ˆ ln1
ˆ( )
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k n
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n n
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where k is the number of the parameters of the network, n the number of the training 

patterns and σ2 the noise variance estimator. 

Finally, a variable selection algorithm is applied during the WNN construction, 

aiming to determine the most significant input variables for the network output. In real 

problems it is important to determine correctly the explanatory variables. In most 

problems there is a little information about the relationship of any explanatory variable 

with the dependent variable. As a result, unnecessary explanatory variables are included 

in the model reducing its predictive power. Among various sensitivity criteria and 

model fitness criteria the Sensitivity Based Pruning (SBP) [11] is chosen for the 

variable selection of the examined architecture. The SBP method quantifies a variable’s 

relevance to the model by the effect on the empirical loss of the replacement of that 

variable by its mean and is given by: 

       ˆ ˆSBP ; ;
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The proposed methodology for the estimation of ground resistance value of each 

rod can be concisely illustrated in the flowchart of Fig. 2. 
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3. Experimental settings and results 

3.1 Experimental set-up and measurements 

The necessary dataset for the training of the developed WN has been obtained from 

the measurements of a full scale field test. 

In the present work, five grounding rods, 

St/e-Cu type A, dimensioned 17x1500mm, 

with a minimum copper thickness 254μm, 

have been evaluated in field conditions [16]. 

The rod G1 has been driven into natural soil, 

while G2 has been encased in conductive 

concrete, G3 in slurry bentonite, G4 and G5 

in commercial chemical ground enhancing 

compounds, tagged as compound A and 

compound B respectively. A schematic representation of each rod encased in ground 

enhancing compound for this experiment is given in Fig. 3. The cylinder of Fig. 3 

contains a different enhancing compound each time and, therefore, this results in four 

grounding systems with different behavior and time variation of their ground resistance. 

The soil in the testing terrain is composed of cobbles and gravel in the percentage of 

54.8%, sand in 39.5% and silt clay in 5.7%. 

The measurements performed at the experimental field, for a period of 44 months, 

concern soil resistivity (ρ) in the depths of 1m, 2m, 4m, 6m and 8m, ground resistance 

(Rg) of the five tested rods and rainfall height (r). The ground resistance of each rod has 

been measured using the fall of potential method and the soil resistivity according to 

the Wenner method. For this purpose, a Megger / DET2/2 auto earth tester has been 

used. The experimental process is fully complied with the specifications of the relative 

surfaceGround

soilNatural

compound
enhancingGround

rodGrounding

Air

soilNatural

rod
Grounding

G.E.C.

mmd 17
mmD 250

l

D

Fig.3 
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standard [3]. The rainfall data have been collected from the database of a 

meteorological station which is installed near the testing field, inside the university 

campus, and it is in the service of the Hydrological Observatory of Athens [17]. The 

results of the field measurements used for the construction of the WNN estimation 

model are illustrated in Figs. 4 and 5. 

 

Fig. 4 

 

Fig. 5 

3.2 Application of WNN and results 

In previous work [21], a non-linear non-parametric WNN model has developed 

using a smaller dataset which contained the measurements from three tested rods of the 

same type in natural soil, conductive concrete and chemical compound. In the present 

0
10
20
30
40
50
60
70
80
90
100

0

100

200

300

400

500

R
ai

n
fa

ll
 h

ei
g

h
t 

(m
m

)

S
o
il

 r
es

is
ti

v
it

y
 (

Ω
m

)

1m 2m 4m 6m 8m Rainfall

0
10
20
30
40
50
60
70
80
90
100

0

100

200

300

400

500

600

700

R
ai

n
fa

ll
 h

ei
g
h
t 

(m
m

)

G
ro

u
n
d
 r

es
is

ta
n
ce

 (
Ω

)

Rg1 Rg2 Rg3 Rg4 Rg5 Rainfall



13 

 

work for the problem of ground resistance estimation a multidimensional WNN with a 

linear connection between the HUs and the output is applied. 

The set of independent variables consists of: a) soil resistivity, ρid, in 1m, 2m, 4m, 

6m and 8m depth, i, on the day, d.  (Fig. 4), b) the mean weekly soil resistivity, ρiw, in 

the same depths which is the average of the last seven days c) the mean monthly soil 

resistivity, ρim, in depths of 1m and 2m which is the average of the last month, d) the 

total rainfall height of the measurement day, rd, e) the weekly total rainfall height, rw, 

which is the total rainfall height in the last seven days and f) the total rainfall height for 

the last month, rm. It is noted that i = 1, 2, 4, 6, 8m in depth. The dependent or output 

variable is the ground resistance Rg of each tested grounding system the next day (Fig. 

5). Hence, we use the measurements that are available today in order to forecast the 

ground resistance, Rg, tomorrow. For each rod a separate network is constructed.  

The initialization of the network parameters is performed by the BE method, 

starting the regression by selecting all the available wavelets from the wavelet library. 

Then, the wavelet that contributes the least in the fitting of the training data is repeatedly 

eliminated. 

The experimental dataset comprises 337 input/output patterns, ranging from 

February 2011 to November 2014. It is composed of the values illustrated, in detail, in 

Figs. 4 and 5 and it is split randomly into two sets: 

 The training set (or in-sample set) consists of 237 patterns (i.e. 70% of the 

original dataset) and is used for the training of the network. In other words, the 

construction of the architecture of the network, i.e. find the optimal number of 

hidden units, the variable selection as well as to learn the relationship between 

the input and the output variables. 
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 The forecasting set (or out-of-sample set) consists of 100 patterns (i.e. 30% of 

the original dataset) and is used for the evaluation of the predicting ability of 

the network. Note that the out-of-sample set was not used during the training of 

the network. 

A common approach is to further divide the in-sample set into a training set and a 

validation set. Instead, one of the advantages of the Model Identification algorithm, 

[10], outlined in Fig. 2, is that a validation set is not needed. As a result, a better training 

of the WNN is obtained since the whole available in-sample dataset is used for training. 

The WNN is trained with the use of the Batch mode with constant learning rate η=0.1 

and zero momentum term. The second derivative of the Gaussian, i.e. the “Mexican 

Hat” wavelet, given by (4), is used as an activation function. For the model and the 

variable selection, the BIC and the SBP criteria were used respectively.  

In [21], the proposed algorithm has been carried out for two scenarios. In the first 

one, the variable selection algorithm with the SBP criterion was applied in order to find 

the statistical significant variables. Hence, only a subset of the available variables were 

used for the network training. In the second one, no variable selection was applied and 

all available input variables of the dataset were used. The preliminary results in [21] 

indicate that, applying the variable selection algorithm (SBP), the network performed 

much better, yielding very high correlation values. As it is presented in [10-11] the 

variable selection algorithm can reduce the complexity of the network, reduce training 

time and improve the network’s predicting ability. 

Hence, the authors, propelled by the results of the previous study, decided to apply 

the SBP as a variable selection method for all the electrodes. In Table 1 the selected 

variables as well as the optimal number of HUs for each network are presented. In 

addition various error criteria, such as the normalised mean square error (NMSE) and 
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the symmetrical mean absolute percentage error as well as the 
2R  and the 

2R  are 

presented. 

The fitting results of the out-of-sample set for the five electrodes are illustrated in 

Figs. 6–10. The horizontal axis is calibrated according to the serial number of the out-

of-sample patterns. It is clear that, when the variable selection framework is applied, 

the WNN can accurately approximate the real data. 

 

Fig. 6 

 

Fig. 7 
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Fig. 8 

 

Fig. 9 

 

Fig. 10 
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    In-sample Out-of-sample 

Rg1   
Variables: rd, rw, ρ1d, ρ4d, ρ1w, ρ6w, ρ8w, ρ1m, ρ2m 

HU: 13 

  NMSE 0.0035 0.0768 

  SMAPE %  1.17 4.04 

  R2 0.9983 0.9644 

  R2 adjusted 0.9965 0.9232 

Rg2   
Variables: ρ2d, ρ4d, ρ8d, ρ4w, ρ1m, ρ2m               

HU: 16 

  NMSE 0.0188 0.0674 

  SMAPE %  1.17 2.86 

  R2 0.9905 0.9665 

  R2 adjusted 0.9812 0.9326 

Rg3   
Variables: rd, rw, rm, ρ1d, ρ2d, ρ4d, ρ6d, ρ1w, ρ6w, 

ρ8w, ρ1m             HU: 12 

  NMSE 0.0037 0.0205 

  SMAPE %  2.25 4.63 

  R2 0.9981 0.9898 

  R2 adjusted 0.9963 0.9795 

Rg4   
Variables: ρ1d, ρ8d, ρ4w, ρ1m, ρ2m                      

HU: 15 

  NMSE 0.0105 0.0371 

  SMAPE %  1.33 2.79 

  R2 0.9948 0.9844 

  R2 adjusted 0.9895 0.9629 

Rg5   
Variables: ρ4d, ρ6d, ρ8d, ρ2w, ρ1m                                 

HU: 12 

  NMSE 0.0031 0.2536 

  SMAPE %  2.35 7.57 

  R2 0.9985 0.8788 

  R2 adjusted 0.9969 0.7464 

    
 NMSE: normalized mean squared error 

 SMAPE: symmetric mean absolute percentage error 

 R2: coefficient of determination  

4. Analysis 

The results show that employing the proposed WNN methodology, developed in 

this study, the estimation and forecast of ground resistance can be performed with great 

accuracy. Employing a WNN, a good fit on the data was obtained and the dynamics 

between the input and the output variables were discovered. This allowed the 

production of accurate out-of-sample forecast. In addition, it seems to constitute a 

useful and powerful tool for the disclosure of crucial data about the effect of rainfall 
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and soil humidity on the behavior and the performance of ground enhancing 

compounds. 

According to the results of Table 1, the SMAPE values of the WNN forecasts for 

the out-of-sample set lie on good levels, with the wavelet networks of the rods G2 

(conductive concrete) and G4 (chemical compound A) yielding the lowest values 

(2.86% and 2.79% respectively). This fact could be attributed to the more stable and, 

consequently, more predictable ground resistance these two grounding systems present 

throughout the forty four-month experiment (see Fig. 3). In addition, the WN for G3 

(slurry bentonite) yields the best correlation results with the highest R2 and adjusted R2 

coefficients, 0.9898 and 0.9795  respectively. This is also evident in Fig. 8 where, the 

almost real and forecasted values of the ground resistance are presented. The good 

performance of the WNN for the rod G4 is also shown in Fig. 9, while Figs. 6–7 

illustrate a slightly worse forecast (almost 2% lower) for the rods G1 and G2 than the 

corresponding one of G4. 

On the contrary, for rod G5  the WNN produce slightly worse forecasts (Fig. 10). 

The values of 7.57%, 0.8788 and 0.7464 for SMAPE, R2 and adjusted R2 are at a 

disadvantage against the corresponding values of the other materials despite the fact 

that, the chemical compound B presents the lowest ground resistance values for the 

biggest part of the experimental cycle. 

The variable selection method has proved to be a valuable tool for the assessment 

and the characterization of each enhancing compound, based on the effect of rainfall 

and soil humidity on their behavior. More precisely, it is indicated that the rainfall 

variables are statistically significant for the prediction of ground resistance for the 

grounding systems G1 and G3 in contrast to the other systems. These results point out 

that the rainfall variables are too significant for the determination of the ground 
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resistance for these two rods that cannot be removed. Hence, the soil in the testing field 

and the slurry bentonite are presented to be quite water-absorbent materials, whose 

resistance behavior is greatly affected by the presence of large amounts of moisture. 

Besides, this suggestion is verified by the graphs of Fig. 3 where one could observe the 

sharp fluctuation of ground resistance for the rods G1 and G3 in relation to rainfall 

height. Thus, the WNN methodology seems to be able to model the particular 

relationship ground resistance-rainfall for the assessment of various grounding systems. 

Additionally, the presence of each type of the rainfall variables, i.e. rd, rw or rm, can 

give valuable information about the: a) material “memory” (humidity-wise) and b) 

extent of the rainfall records affecting its attitude. 

Furthermore, an overview of the input variables in Table 1 leads to the conclusion 

that the significance of each variable on ground resistance is strongly dependent on the 

nature of the tested material. For example, the soil resistivity values on the day of 

measurement in the deeper soil layers (ρ4d, ρ6d, ρ8d) are more important parameters to 

Rg5 than to Rg4 which, in turn, is most affected by the mean monthly value of soil 

resistivity (ρim) of the upper layers. Of course, the absence of the rainfall variables from 

the input layer of the WNN for G2, G3 and G4 doesn’t necessarily mean that there is no 

influence of rainfall on the resistance of these grounding systems. The rainfall 

parameters are simply less significant to the determination of ground resistance of these 

rods than to the others’; hence their effect is encompassed in soil resistivity variables. 

Our results indicate that the WNN methodology is also able to adapt to material 

composition and to estimate the ground resistance in a flexible and adaptive way. 

5. Conclusions 

A WNN based on back-propagation algorithm with batch training method and 

learning rate has developed, trained in order to forecast the variation of ground 
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resistance. The present paper endeavors to construct WNN models applicable on 

ground resistance estimation, as an alternative to previous methodology developed in 

[17]. The developed WNN is a useful and reliable tool for assessing the performance 

and behavior of several ground enhancing compounds in grounding systems, which is 

the ultimate goal of this work. The presented results, in this study, show that the WNN 

was able to forecast with great accuracy the ground resistance for all rods.  

IEC 60364-41 recommend the national standards to determine particular maximum 

values of ground resistance for building electrical installations. Thus, electrical 

engineers need to have a reliable and firm tool for the estimation of ground resistance 

during the whole year, since ground resistance variations may be significant with 

respect to time and rainfall (Fig. 3). This is very important, particularly, in the design 

of a grounding system. Therefore, the significance and the practical value of ground 

resistance estimation become indisputable and, from the results of this study, it seems 

that the proposed WNN methodology offers a valuable tool for this purpose. 

The convergence results between the target and the estimated values as well the low 

SMAPE values show that the network performance is quite high. Moreover, the 

proposed WNN methodology is able to model the relationship among parameters such 

as rainfall, soil resistivity and compound composition, aiming the best ground 

resistance estimation. 

Further work on variable selection methods could yield better results for the 

network. More particularly, a careful study of ground resistance in function of rainfall 

may lead to the determination of suitable time windows of rainfall as input vector to 

networks. Perhaps this will result in a simpler WNN architecture, smaller training times 

and more precise forecasts. 
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Appendix A 

For the best consideration and assessment of the training and forecasting sets, 

descriptive statistics of the in-sample and out-of-sample values are presented in Tables 

A1 and A2. 

Table A1 

In-sample           

Var Mean St.Dev Max Median Min Skewness Kurtosis KS p-value LBQ p-value 

rd 0.57 3.02 37.80 0.00 0.00 9.34 105.13 7.70 0.0000 7.16 0.9961 

rw 9.16 17.81 116.60 1.00 0.00 3.17 15.22 7.70 0.0000 28.29 0.1027 

rm 42.50 44.03 188.00 29.20 0.00 1.31 4.08 12.87 0.0000 18.76 0.5376 

ρ1d 231.98 68.26 458.67 205.59 133.83 1.28 4.04 15.40 0.0000 12.06 0.9141 

ρ2d 181.11 44.30 326.47 170.40 126.67 0.97 3.27 15.40 0.0000 11.60 0.9291 

ρ4d 129.36 15.37 193.52 126.17 106.56 0.93 3.76 15.40 0.0000 14.41 0.8089 

ρ6d 154.51 14.54 267.66 153.06 134.81 2.36 17.21 15.40 0.0000 12.33 0.9043 

ρ8d 187.96 18.40 241.94 185.98 150.19 0.04 2.32 15.40 0.0000 28.67 0.0945 

ρ1w 230.53 68.06 456.16 203.39 133.83 1.30 4.04 15.40 0.0000 10.81 0.9511 

ρ2w 180.42 44.14 326.47 170.23 126.92 0.98 3.27 15.40 0.0000 11.30 0.9379 

ρ4w 129.23 15.21 193.52 126.00 106.56 0.93 3.78 15.40 0.0000 15.06 0.7729 

ρ6w 154.42 14.49 267.66 153.25 135.57 2.36 17.43 15.40 0.0000 12.57 0.8950 

ρ8w 187.44 18.13 220.16 185.68 150.19 -0.02 2.16 15.40 0.0000 24.39 0.2258 

ρ1m 225.60 64.25 425.76 196.46 157.21 1.37 4.01 15.40 0.0000 13.54 0.8532 

ρ2m 177.93 42.46 297.99 168.35 130.05 1.00 3.16 15.40 0.0000 13.85 0.8381 

Rg1 268.30 127.14 676.00 235.00 93.60 0.75 3.01 15.40 0.0000 28.583 0.0963 

Rg2 91.55 29.45 166.30 87.50 36.20 -0.01 2.64 15.40 0.0000 18.883 0.5295 

Rg3 83.82 61.16 281.00 60.80 29.10 1.49 4.39 15.40 0.0000 11.582 0.9297 

Rg4 122.65 47.04 276.60 118.70 46.90 0.4 2.85 15.40 0.0000 28.759 0.0926 

Rg5 74.93 72.80 376.00 44.60 26.20 2.5 8.56 15.40 0.0000 11.987 0.9165 

 

Table A2 

Out-of-sample           

Var Mean St.Dev Max Median Min Skewness Kurtosis KS p-value LBQ p-value 

rd 0.48 1.42 8.20 0.00 0.00 3.78 17.12 5.00 0.0000 15.00 0.7762 

rw 9.37 16.90 91.80 1.40 0.00 2.81 11.62 5.00 0.0000 22.96 0.2906 

rm 46.33 44.76 188.00 35.40 0.00 1.25 4.11 8.67 0.0000 26.04 0.1645 

ρ1d 220.12 63.38 447.36 191.89 156.33 1.56 4.96 10.00 0.0000 17.96 0.5901 

ρ2d 173.82 42.35 306.62 163.62 127.17 1.09 3.57 10.00 0.0000 18.08 0.5821 

ρ4d 127.85 13.75 165.88 124.41 112.09 0.76 2.67 10.00 0.0000 17.74 0.6045 
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ρ6d 153.07 15.23 248.06 151.89 135.26 2.54 16.20 10.00 0.0000 20.68 0.4165 

ρ8d 185.19 18.84 220.16 184.12 151.20 0.15 1.85 10.00 0.0000 17.70 0.6075 

ρ1w 219.51 63.23 448.62 192.06 156.33 1.57 5.07 10.00 0.0000 18.82 0.5335 

ρ2w 173.42 41.97 310.39 164.53 127.49 1.13 3.74 10.00 0.0000 21.16 0.3881 

ρ4w 127.87 13.92 168.39 123.74 111.92 0.79 2.73 10.00 0.0000 18.54 0.5521 

ρ6w 153.03 15.27 248.06 150.77 135.98 2.52 16.07 10.00 0.0000 20.65 0.4181 

ρ8w 184.68 18.78 220.16 183.90 151.15 0.17 1.88 10.00 0.0000 18.20 0.5741 

ρ1m 215.95 59.13 420.00 191.27 157.72 1.55 4.76 10.00 0.0000 21.95 0.3432 

ρ2m 171.52 41.02 293.45 163.03 130.06 1.06 3.31 10.00 0.0000 25.98 0.1666 

Rg1 242.32 125.10 527.00 198.25 92.40 0.76 2.26 10.00 0.0000 2.80 0.8859 

Rg2 85.08 31.48 161.40 84.50 34.00 0.03 2.22 10.00 0.0000 10.51 0.9580 

Rg3 77.60 62.23 268.00 47.65 29.20 1.58 4.44 10.00 0.0000 16.82 0.6646 

Rg4 113.91 48.26 240.00 107.90 46.50 0.59 2.94 10.00 0.0000 15.53 0.7452 

Rg5 59.92 50.38 332.90 41.60 25.90 3.2 14.33 10.00 0.0000 26.20 0.1592 

where 

 KS: Kolmogorov Smirnof distance is a measure of the distance between the data 

distribution and the normal distribution. 

 LBQ: Ljung-Box Q statistic is a measure of the possible autocorrelation among the 

data. 

 p-value: the p-value for each of the descriptive statistics KS and LBQ 
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Table and Figure Captions 

Table 1. Results of the WNN performance for the in-sample and out-of-sample sets. 

Fig. 1. Structure of a feedforward Wavelet Neural Network [21].  

Fig. 2. Flowchart of the proposed WNN methodology [21]. 
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Fig. 3. Schematic representation of a grounding rod encased in ground enhancing 

compound. 

Fig. 4. Soil resistivity as a function of time and rainfall. 

Fig. 5. Ground resistance of the tested grounding rods as a function of time and rainfall. 

Fig. 6. Target and estimated values of ground resistance for grounding system G1. 

Fig. 7. Target and estimated values of ground resistance for grounding system G2. 

Fig. 8. Target and estimated values of ground resistance for grounding system G3. 

Fig. 9. Target and estimated values of ground resistance for grounding system G4. 

Fig. 10. Target and estimated values of ground resistance for grounding system G5. 

 


