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§1
Introduction

In epistemology, Bayesianism is a theory of rational belief that makes use of the
mathematical theory of probability. There is disagreement amongst Bayesians, how-
ever, about which norms govern rational degrees of belief. In this chapter, we first
provide an introduction to three varieties of Bayesianism: strictly subjective Bayes-
ianism, empirically based subjective Bayesianism, and objective Bayesianism. Then
we discuss how one might appeal to information theory in order to justify the norms
of objective Bayesianism.

§2
Bayesianism

Consider the following epistemological question. Given one’s body of evidence,
should one believe a particular proposition? For example, given that one’s body of
evidence includes the proposition that the outcome of the roll of the die is three,
should one believe that the outcome is also odd? One theory says that one should
believe all and only those propositions that follow from one’s body of evidence. Call
this the classical theory of rational belief. The classical theory maintains that one
should believe that the outcome of the roll of the die is odd, if one’s body of evidence
includes that the roll of the die lands three. This is because it follows from one’s
body of evidence that the outcome of the roll of the die is odd, if one’s body of
evidence includes that the roll of the die lands three.

Formally speaking, let ω be an elementary outcome and Ω be a set of mutually
exclusive and collectively exhaustive elementary outcomes. In the case of rolling
a fair die, Ω = {1,2,3,4,5,6}. Then, propositions can be identified with subsets,
F ⊆Ω, of elementary outcomes. For example, the proposition that the die lands odd
is identified with the set of elementary outcomes at which the die lands odd, i.e.,
odd = {1,3,5}. One’s body of evidence includes a proposition only if one’s evidence
rules out possible outcomes at which that proposition is false. For instance, if one’s
body of evidence includes the proposition that the outcome of the roll of the die is
three, then one’s evidence eliminates outcomes inconsistent with that proposition,
i.e., {1,2,4,5,6}. Then, a proposition follows from one’s body of evidence if and
only if the set of elementary outcomes consistent with one’s evidence is a subset of
the proposition. To continue the example, if one’s body of evidence includes the



proposition that the outcome of the roll of the die is three= {3}, then it follows from
one’s body of evidence that the outcome is odd, since {3}⊆ {1,3,5}.

There is another distinct epistemological question. Given one’s body of evidence,
how strongly should one believe a particular proposition? For example, given that
one’s body of evidence includes that the outcome of the roll of the die is odd, how
strongly should one believe that the outcome is three?

The classical theory of rational belief is silent on questions about rational degrees
of belief. Bayesianism, however, attempts to address such questions, by making use
of the mathematical theory of probability. In particular, it introduces a function on
propositions that satisfies the axioms of the probability calculus. (See chapter two
for more on the axioms of the probability calculus.) PE is the probability function
which gives the probability of each proposition on one’s current body of evidence
E . It is called the prior probability function on one’s evidence, since it gives the
relevant probabilities before some novel piece of evidence has been learned. In the
case of rolling a fair die, one natural prior probability function gives PE (1)= PE (2)=
PE (3) = PE (4) = PE (5) = PE (6) = 1/6. Once again, one’s body of evidence works to
rule out certain basic outcomes, so that if one later learns the proposition that the
die lands odd, so that one’s new body of evidence is E ′ formed by adding odd to E ,
then one would need to update the probability function to PE ′ (1)= PE ′ (3)= PE ′ (5)=
1/3. Bayesianism says that one’s degree of belief in a proposition should match the
probability of the proposition given one’s evidence. In this case, given that one’s
body of evidence includes the proposition that the outcome of the die lands odd,
one should believe that the die lands three to degree one-third.

Bayesianism is an attractive theory of rational belief. Firstly, it is a simple and
natural generalization of the classical theory of rational full belief. To begin to see
this, note that Bayesianism preserves the classical theory: PE (F) = 1, if F follows
from one’s body of evidence; PE (F) = 0, if F is inconsistent with one’s body of
evidence. In addition, Bayesianism extends the classical theory by giving an account
of the cases in between these two extremes. Having specified a probability function, a
measure is provided of how close one’s body of evidence comes to entailing or ruling
out some proposition. Secondly, Bayesianism can help itself to all the many results
in the mathematical theory of probability. Thus it has powerful resources to call
upon in providing a theory of rational belief. Thirdly, Bayesianism accommodates
many of our intuitive judgements about rational degrees of belief. For instance,
it accommodates the judgement that hypotheses are confirmed by their successful
predictions, and that hypotheses are better confirmed if they make more surprising
successful predictions. Bayesianism can account for all these intuitions and more
(Howson and Urbach, 2006, pp. 91–130).

But why should one’s degrees of belief be probabilities? The usual answer is
to provide a Dutch book argument. Loosely speaking, if one is willing to bet the
farm in exchange for a penny if some proposition is true, then it would seem that
one has a high degree of belief in that proposition. On the other hand, if one is
only willing to bet a penny in exchange for a farm if the proposition is true, then it
seems that one has a low degree of belief in the proposition. This leads naturally to a
betting interpretation of belief, according to which one’s degree of belief in any given
proposition is identified with one’s willingness to bet on that proposition, i.e., with
one’s betting quotient for that proposition. The Dutch book argument then aims
to show that betting quotients that are not probabilities are irrational in a certain
sense. In particular, it is assumed that betting quotients susceptible to the possibility
of sure loss are irrational. It is then shown that betting quotients are probabilities if



and only if they are not susceptible to the possibility of sure loss. Thus one’s betting
quotients are rational only if they are probabilities. Given the betting interpretation
of belief, one’s degrees of belief are rational only if they are probabilities.

Thus the proponents of Bayesianism all tend to agree that degrees of belief should
be representable by a probability function. That is, in order to be rational, one’s
degrees of belief must be probabilities. This is sometimes called the probability
norm for degrees of belief. But is meeting the probability norm enough for one’s
degree of belief to be rational?

Strictly subjective Bayesians maintain that the probability norm is enough. They
allow that any choice of prior degrees of belief is rational, as long as these degrees
of belief are probabilities. One advocate of strict subjectivism is Bruno de Finetti
(1937). However, other Bayesians have argued that certain probabilistic degrees of
belief are more appropriate than others, given one’s body of evidence. For instance,
in the case of rolling a die, if one’s evidence is only that the die is fair, then arguably
one’s degrees of belief are best represented by a probability function that gives
PE (1) = PE (2) = PE (3) = PE (4) = PE (5) = PE (6) = 1/6. It looks like strictly subjective
Bayesianism cannot account for the more or less objective nature of rational belief.

This has led some proponents of Bayesianism to advocate empirically based subjec-
tive Bayesianism. Richard Jeffrey (2004) and Colin Howson (2000) may be considered
advocates of empirically based subjectivism.

Empirically based subjective Bayesians argue that meeting the probability norm
is not sufficient for one’s degrees of belief to be rational. Instead of allowing an
arbitrary selection of prior probability function, they argue that one’s prior proba-
bility function should also be calibrated to evidence of physical probabilities. This is
sometimes called the calibration norm. For instance, let P∗ be the physical probabil-
ity function. Then, if one’s evidence includes that P∗(1) = P∗(2) = P∗(3) = P∗(4) =
P∗(5) = P∗(6) = 1/6, one should choose as one’s prior the probability function that
gives PE (1) = PE (2) = PE (3) = PE (4) = PE (5) = PE (6) = 1/6. More generally, where E

is the set of probability functions constrained in this way by the empirical evidence,
one should choose PE ∈ E. Empirical constraints such as this can also be justified by
betting arguments (Williamson, 2010, pp. 39–42). But what if there is absolutely no
empirical evidence? Then, the selection of prior probability function is once again
unconstrained, and which degrees of belief are rational again looks like a matter of
personal choice.

In light of this, some proponents of Bayesianism advocate objective Bayesian-
ism. One proponent of objective Bayesianism is Jon Williamson (2010). Objective
Bayesians argue that one’s prior degrees of belief are rational if and only if they are
probabilities calibrated with the empirical evidence, that are otherwise sufficiently
non-committal with regard to elementary outcomes. What does it mean for one’s
degrees of belief to be non-committal? The standard answer is that one’s degrees
of belief commit oneself to a particular elementary outcome over another to the
extent that one believes the former to a greater degree than one believes the latter.
This means that one’s degrees of belief are fully non-committal between elemen-
tary outcomes when one believes all such outcomes to the same degree. Then one’s
degrees of belief are sufficiently non-committal only if they are as close to fully non-
committal as meeting the probability and calibration norms permits. In the case of
rolling a die when one has no evidence either way that the die is fair, the selection of
prior probability function is not a matter of personal choice according to objective
Bayesianism. Instead, the sufficiently non-committal prior probability function gives
PE (1)= PE (2)= PE (3)= PE (4)= PE (5)= PE (6)= 1/6.



To sum up, there is no consensus among proponents of Bayesianism about which
norms govern rational degrees of belief. In particular, there is disagreement regard-
ing the following core norms:

Probability: Degrees of belief should be probabilities;

Calibration: Degrees of belief should be calibrated to evidence of physical
probabilities;

Equivocation: Degrees of belief should be sufficiently non-committal.

There are three main lines of thought. Strict subjectivists advocate only the probabil-
ity norm. They hold that one’s prior degrees of belief are rational if and only if they
satisfy the axioms of the probability calculus. For the strict subjectivist, then, one’s
prior degrees of belief are a matter of personal choice, so long as they are probabil-
ities. Empirically based subjectivists go further by holding that one’s prior degrees
of belief are rational if and only if they are probabilities that are appropriately con-
strained by the empirical evidence; in particular, they hold that these degrees of
belief should be calibrated to physical probabilities, insofar as one has evidence of
them. That is, they advocate both the probability and the calibration norm, but not
the equivocation norm. Objective Bayesians go further still, holding that one’s prior
degrees of belief are rational only if they are also sufficiently non-committal.

How is this disagreement to be settled? Some have looked to information theory
to provide an answer.

§3
Information Theory and Bayesianism

The core norms of Bayesianism have been justified by appealing to information
theory. In this section we provide an introduction to this line of research.

Information theory grew out of the pioneering work of Claude Shannon. Given
finitely many elementary outcomes ω ∈Ω, Shannon (1948, §6) argued that the uncer-
tainty as to which outcome occurs is best measured by the entropy of the probabili-
ties of the outcomes. The entropy of a probability function P is defined by:

H(P)=− ∑
ω∈Ω

P(ω) logP(ω).

Entropy increases the more evenly the probability is spread out over the possible
outcomes; it is minimal when probability 1 is concentrated on one of the outcomes
and maximal when each outcome has the same probability. Shannon argued that
entropy is the only measure of uncertainty that (i) is continuous (small changes in
probability lead to small changes in entropy), (ii) increases as the number of possible
outcomes increases, and (iii) sums up in the right way when a problem is decomposed
into two sub-problems.

Edwin Jaynes applied the information theoretic notion of entropy to the problem
of choosing a prior probability function (Jaynes, 1957). Jaynes suggested that one
should choose a prior function that is maximally non-committal with respect to
missing information, i.e., a function that is compatible with what information is
available, but which is maximally uncertain with regard to questions about which
no information is available. Applying Shannon’s notion of entropy, this means that
one should choose as one’s prior a probability function, from all those functions



compatible with available evidence, that has maximum entropy. If E is the set of
probability functions that are compatible with available evidence, Jaynes’ maximum
entropy principle says that one should choose PE ∈maxentE, where

maxentE df= {P ∈ E : H(P) is maximised}.

The maximum entropy principle can be understood as an explication of the equivo-
cation norm advocated by objective Bayesians.

The question remains as to why one’s prior should be maximally non-committal.
What advantage is there to adopting a non-committal prior?

Topsøe (1979) provided an interesting line of argument. Suppose the loss in-
curred by believing ω to degree PE (ω) when ω turns out to be the true outcome is
logarithmic:

L(ω,PE )=− logPE (ω).

Thus the loss is zero when ω is fully believed, but increases exponentially as degree
of belief P(ω) decreases towards 0. Suppose P∗ is the true chance function, so that
one’s expected loss is∑

ω∈Ω
P∗(ω)L(ω,PE )=− ∑

ω∈Ω
P∗(ω) logPE (ω).

All one knows is that P∗ ∈ E. Thus one’s worst-case expected loss is

sup
P∗∈E

− ∑
ω∈Ω

P∗(ω) logPE (ω).

It turns out that, as long as E is non-pathological (e.g., if E is closed and convex), the
prior probability function which minimises worst-case expected loss is just the prob-
ability function in E that maximises entropy. Thus the maximum entropy principle is
justified on the grounds that the resulting prior minimises worst-case expected loss.
Note that the maximum entropy principle thus construed explicates the calibration
norm as well as the equivocation norm, because it says that, when evidence deter-
mines just that the chance function P∗ ∈ E, one should take PE to be a function in
E—i.e., a calibrated probability function—that has maximum entropy.

One question immediately arises: why should loss be logarithmic? Topsøe, ap-
pealing to Shannon’s work on communication and coding, suggested that loss is
logarithmic if it is the cost incurred by transmitting the results of an observation.
Grünwald and Dawid (2004) recognised that this limits the scope of the maximum
entropy principle to certain communication problems. They generalised Topsøe’s
justification to cope with other loss functions, leading to a generalised notion of
entropy which depends on the loss function in operation, and to a generalised max-
imum entropy principle which says that one should choose a prior probability func-
tion in E that maximises generalised entropy.

This approach remains rather limited to the extent that one needs to know
the true loss function in order to choose one’s prior probability function, because
one needs to know which generalised entropy function is to be maximised. Often,
however, one wants to choose a prior in advance of knowing the uses to which
one’s beliefs will be put and the losses (or gains) which might result. Thus one
needs to identify a default loss function—a loss function that encapsulates what one
might presume about one’s losses, in the absence of information about the true loss
function. Williamson (2010, pp. 64–65) put forward four principles that constrain
this default loss function:



L1 : Fully believing the true outcome may be presumed to lead to zero loss.

L2: One can presume that loss strictly increases as PE (ω) decreases from 1 towards
0.

L3 : The presumed loss L(ω,PE ) depends on PE (ω) but not on PE (ω′) for other
outcomes ω′.

L4: If one decomposes a problem into two sub-problems which are presumed to
be unrelated, then the total loss can be presumed to be the sum of the losses
incurred on each of the two sub-problems.

It turns out that the default loss function must be logarithmic if it is to satisfy these
four principles. Thus one can apply Topsøe’s original justification of the maximum
entropy principle in the (rather typical) case in which one does not know the true
loss function, and one can apply Grünwald and Dawid’s generalisation if one does
happen to know the true loss function.

A second concern arises for this kind of justification of the maximum entropy
principle. Recall that the probability norm is usually justified by means of the Dutch
book argument: degrees of belief must be probabilities if one is to avoid exposing
oneself to the possibility of sure loss, i.e., L(ω,PE ) > 0 for all ω. There are two
respects in which this argument does not cohere well with the above argument for
the maximum entropy principle. First, in the Dutch book argument the objective is
to avoid sure loss, rather than minimise worst-case expected loss. Second, the notion
of loss invoked by the Dutch book argument is not logarithmic loss. Instead,

L(ω,PE )= (PE (ω)−1)S(ω)+ ∑
ω′ 6=ω

PE (ω′)S(ω′),

where the S(ω),S(ω′) are stakes chosen by an adversary, which may be positive or
negative and which may depend on one’s belief function PE .

It is clearly less than satisfactory if the justification of one tenet of objective
Bayesianism—the probability norm—is incompatible with the justification of the oth-
ers, namely the calibration and equivocation norms, cashed out in terms of the max-
imum entropy principle. In view of this, Landes and Williamson (2013) attempted to
reconcile the Bayesian norms, by extending the justification of the maximum entropy
principle so as to justify the probability norm at the same time. The justification of
the maximum entropy principle outlined above presumes the probability norm, since
it shows that the probability function that minimises worst-case expected loss is the
probability function in E which maximises entropy. What is needed is to show that
the belief function that minimises worst-case expected loss is the function in E with
maximum entropy; that it is in E implies that the prior belief function is a probability
function, i.e., it implies the probability norm.

Thus Landes and Williamson (2013) extend the concepts of loss and expected loss
to handle losses incurred by an arbitrary belief function B, which is not necessarily a
probability function, in order to show that belief functions which are not probability
functions expose one to sub-optimal worst-case expected loss. The main issue is
that in the original notion of expected loss,∑

ω∈Ω
P∗(ω)L(ω,PE )=− ∑

ω∈Ω
P∗(ω) logPE (ω),

one considers a single partition of outcomes, namely the partition of elementary
outcomes ω ∈Ω. This is appropriate if one assumes the probability norm from the



outset, as the probability of any proposition F ⊆Ω is determined by the probability
of the elementary outcomes,

PE (F)= ∑
ω∈F

PE (ω),

i.e., the probabilities of the elementary outcomes tell us everything about the proba-
bility function. For example, if the elementary outcomes correspond to outcomes of
a roll of a die, Ω= {1,2,3,4,5,6}, then P(odd)= PE ({1,3,5})= PE (1)+PE (3)+PE (5).
However, it is no longer appropriate to consider only the partition of elementary
outcomes when we do not assume the probability norm from the outset, because the
degree of belief in F may be unrelated to the degrees of belief in the elementary
outcomes that make up F . Thus we need to consider all partitions π of Ω when
defining expected loss:∑

π

g(π)
∑
F∈π

P∗(F)L(F,B)=−∑
π

g(π)
∑
F∈π

P∗(F) logB(F).

Here g is a weighting function that provides each partition π with a weight that
determines the extent to which that partition contributes to the expectation. Entropy
may be defined similarly:

Hg(B) df=−∑
π

g(π)
∑
F∈π

B(F) logB(F).

This gives a generalised notion of entropy that depends on the weighting function.
(Note that this generalisation is different to the generalised entropies of Grünwald
and Dawid (2004).) The case of standard entropy corresponds to the weighting gΩ
which gives weight 1 to the partition {{ω} :ω ∈Ω} of elementary outcomes and weight
0 to every other partition. It turns out that, as long as the weighting function g is
inclusive in the sense that for each proposition F, g gives positive weight to some
partition that contains F, the belief function that minimises worst-case expected
loss is the probability function in E that maximises entropy. This gives an integrated
justification of the probability norm and the maximum entropy principle, albeit with
respect to a generalised notion of entropy that is defined in terms of g. It is suggested
in Landes and Williamson (2013) that the standard notion of entropy stands out
as uniquely appropriate among the generalised entropies if we impose language
invariance as a further desideratum: i.e., that one’s prior belief function should not
depend on the language in which the elementary outcomes are expressed.

§4
Conclusion

In the first half of this chapter we introduced Bayesianism as a theory of rational
belief. On the way, we noted some of the arguments in favour of Bayesianism,
but we also noted a difficulty. If probabilities are given an interpretation in terms
of rational degrees of belief, and rational degrees of belief are largely a matter
of personal choice, it begins to look as if rational belief is a matter of personal
opinion. However, this fails to do justice to the more or less objective nature of
rational belief. To resolve this difficulty, the Bayesian usually attempts to reduce the
element of personal choice by advocating further constraints on rational degrees
of belief, namely the calibration and equivocation norms. The issue then becomes



how to justify those norms. In the second half of this chapter we argued that one
can appeal to information theory in order justify the Bayesian norms. The standard
information-theoretic justification of the equivocation norm is incompatible with the
standard Dutch book justification of the probability norm. However, recent results
show that the norms of objective Bayesianism can receive a unified information-
theoretic justification.

Further reading

For more on the mathematical theory of probability see chapter two of this volume.
For an introduction to the philosophy of probability, see Gillies (2000). Gillies gives
also a clear exposition of Dutch book arguments (2000, pp. 53–65). Bayesianism is
named after the Reverend Thomas Bayes, who lived and preached in Kent (Bayes,
1764). One popular introduction and defence of Bayesianism is Howson and Urbach
(2006). For a critical evaluation of Bayesianism see Earman (1992). Edwin Jaynes’
magnum opus is Jaynes (2003). One recent defence of objective Bayesianism is
Williamson (2010).
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