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ABSTRACT

Frame-based editing is a novel way to edit programs, which
claims to combine the benefits of textual and block-based
programming. It combines structured ‘frames’ of prefor-
matted code, designed to reduce the burden of syntax, with
‘slots’ that allow for efficient textual entry of expressions.
We present an empirical evaluation of Stride, a frame-based
language used in the Greenfoot IDE. We compare two groups
of middle school students who worked on a short program-
ming activity in Greenfoot, one using the original Java edi-
tor, and one using the Stride editor. We found that the two
groups reported similarly low levels of frustration and high
levels of satisfaction, but students using Stride progressed
through the activity more quickly and completed more ob-
jectives. The Stride group also spent significantly less time
making purely syntactic edits to their code and significantly
less time with non-compilable code.

Keywords

Frame-based editing, Syntax, Evaluation, Greenfoot, Novice
programming

1. INTRODUCTION
Programming syntax and syntax errors represent a fun-

damental, common and difficult challenge for novices learn-
ing to program [5, 10, 30]. Programming environments and
courses designed for novices often feature innovations to
ease the burden of syntax, such as improved error messages
[9, 11], more intuitive programming languages [23, 30] and
block-based editors which avoid syntax errors altogether [8,
12, 29]. However, improved error messages are not always
effective [9, 26], and block-based editors may have unfore-
seen consequences on programming behavior [25] and be per-
ceived as less authentic by students [27, 33].

Frame-based editing is a novel way to edit code, which
attempts to reduce the burden of syntax, while maintain-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICER ’16, September 8–12, 2016, Melbourne, VIC, Australia.

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4449-4/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2960310.2960319

ing useful elements of textual programming [6]. It combines
structured ‘frames’ of preformatted code, similar to code
blocks, with ‘slots’ that allow for efficient textual entry of
expressions. Previous work argues that frame-based editing
can ease the transition from blocks to text [18] while lever-
aging the benefits of both [6] to reduce syntax errors and
increase efficiency [3]. This paper seeks to evaluate some of
these claims empirically by comparing two groups of novices
working on a short programming activity in Greenfoot, an
IDE designed to teach programming [17]. One group used
Java with Greenfoot’s original text editor, and the other
used Stride, a new frame-based language offered by Green-
foot. All other aspects of the environment were identical for
the two groups, allowing us to directly measure the impact
of using the Stride editor. We investigated the following re-
search questions: Compared with the original Java editor,
how will the use of the Stride editor affect students’:

RQ1 Frustration and satisfaction with the activity?

RQ2 Performance on the activity?

RQ3 Programming behavior during the activity?

RQ4 Incidence of syntax errors?

2. RELATED WORK

2.1 Syntax Errors
Syntax errors can be a very challenging [19] and time con-

suming [3] aspect of programming for novices. Programming
syntax can be quite obtuse, and, as others have noted [26],
programming languages and compilers are largely designed
for professionals, not novices. Stefik and Siebert [30] com-
pared novices’ ability to comprehend and then reproduce
a program in a variety of languages and found that some
languages, such as Java, fared no better than one that used
random ASCII characters as keywords. Researchers have at-
tempted to identify the most problematic syntax errors made
by novices in common programming languages such as Java
[2, 10, 13, 14]. Though results only agree partially across
data sources, some of the most common syntax errors in Java
are missing semicolons; mismatched parentheses, quotes or
brackets; and references to unidentified variables.

Difficulties with syntax may also impact students’ ability
to learn other, more fundamental principles of Computer
Science. Lahtinen et al. [20] analyzed a survey of students’
perceived difficulty with various aspects of computing and
found that reported difficulty with syntax errors correlated



with other, more complex tasks, such as understanding how
to design a program and decomposing it into classes and
procedures. Ahadi et al. [1] found that students’ incidence
of syntax errors was predictive of their overall success on a
programming assignment. Jadud [14] defined the Error Quo-
tient (EQ) as a measure of students’ struggles with syntax
errors, based on the incidence of repeated errors in consec-
utive compiles. Jadud found a weak but significant correla-
tion between the EQ and both assignment and exam grades.
Interestingly, Jadud and Dorn [15] later calculated the EQ
for a much larger dataset of student work and found that
a student’s EQ only weakly correlated with the number of
days that the student had spent programming.

Some systems have tried to reduce the challenges of syntax
errors by providing better compiler messages. For example,
Denny et al. identified common syntax errors [10] and then
designed a system to enhance error messages with explana-
tions and examples of correct code [9]. However, the authors
found that these enhanced messages had no impact on stu-
dents’ ability to avoid or resolve errors, which is supported
by other findings that more detailed messages are no bet-
ter than shorter ones [26]. Traver [31] suggests a number of
guiding principles for compiler messages, including clarity
and brevity, specificity and locality, which also support this
notion. Lee and Ko [21] found that personifying compiler
feedback using a robot agent improved novices’ completion
of levels in a programming game, suggesting that some im-
provement of error messages is possible.

2.2 Comparing Blocks and Text
Block-based programming environments, including Alice

[8], Scratch [29] and Snap! [12], address the challenges of
syntax errors by attempting to reduce or eliminate them
altogether. The effectiveness of block editors has been eval-
uated in a number of comparative studies. Lewis [22] com-
pared Scratch and Logo in a 5th grade summer camp and
found that students perceived exercises to be equally diffi-
cult with both languages. On assessment questions, Scratch
students performed significantly better with conditionals,
but not with loops. Booth and Stumpf [4] compared text
and block interfaces for adults learning to program Arduino
boards and found that the block group perceived the inter-
face to be more friendly and experienced lower perceived
workload. McKay and Kölling [24] used a cognitive mod-
elling tool to predict the execution time of programming
tasks in a variety of editors, including block, text and an
early prototype of the Stride editor. They found that block
and text editors were each more efficient at certain tasks,
but the Stride editor outperformed both on most tasks.

Others have directly compared blocks and text within the
same programming environment or assessment, similar to
the work we present here. Price and Barnes [28] compared
novices using a block-based and textual programming inter-
face and found that the block group completed significantly
more objectives in less time and spent significantly less time
idle compared to the text group. Weintrop and Wilensky
[33] compared the performance of students mostly familiar
with both blocks and text on two versions of an assessment
that presented questions using block and text modalities re-
spectively. They found that while the block modality pro-
duced increased scores on most CS topics, the exact reasons
for this are complex and merit further study. The authors
also found that students perceived programming with blocks

Figure 1: The Stride editor. Each large, yellow rect-
angle is a method declaration frame. Each method
call (e.g. move(5)) is a separate frame, even though
it does not have an explicitly drawn border. The
frame cursor is the thin blue bar between the sec-
ond and third method calls in the act method.

to be easier, in part due to their being easier to read, with
better natural layout, but students also perceived blocks to
be less powerful, authentic and efficient to work with [32].

2.3 Greenfoot and Stride
Greenfoot [17] is an integrated development environment

(IDE) designed to allow beginners aged 14 and upwards to
easily program games and simulations. Originally Greenfoot
only allowed programming in Java, but since the release of
Greenfoot 3 in late 2015, the Stride language is also provided
(see Figure 1). Semantically, Stride is identical to Java: it
is only the editing interactions and some syntax that differs.
Specifically: Stride uses frame-based editing, which tries to
merge block-based and text-based editing [6].

Stride frames are first-class interface elements which can
be dragged, selected, created or deleted as a whole item. A
frame cursor can be placed between frames (see Figure 1),
much as a text cursor is placed between characters. The
cursor can be moved via keys or placed with a mouse click.
Frames can be created at the current frame cursor position
by clicking in the sidebar (right-hand side of Figure 1), or
more commonly by pressing the indicated command key. For
example, pressing ‘i’ will create an if-frame.

Frames have unalterable structure and labels (e.g. the
“while” of a while-loop), with editable slots where the user
will enter code. There are two types of slots, as shown in
Figure 2. Frame slots, like the body of a method or loop, are
places where new frames can be entered. Like blocks, but un-
like text, it is not possible to have an unterminated body of
a method or if-statement. This enforces well-defined scopes,
which are drawn as rectangles (see Figure 2). Indentation is
drawn automatically according to the frame hierarchy and
need not (indeed, cannot) be managed manually.

Text slots, such as the name of a variable declaration or



Figure 2: Slot types: text slots and frame slots.

the condition of a while loop, have a text cursor which al-
lows names and expressions to be entered like in text-based
editing. Unlike in block-based editing, expressions are text:
it is not “frames all the way down.”However, the expression
editor also helps students, for example by balancing paren-
theses: adding an opening ‘(’ always also inserts the closing
’),’ and they are always deleted together.

Greenfoot automatically compiles student code whenever
the user stops editing for more than one second. Errors are
highlighted with a red underline similar to spell-checking
errors in other software. If the user hovers over the error
with the mouse or places the text cursor in the region, the
error message will be shown with a pop-up. Java errors
only originate from the Java compiler, whereas Stride errors
can have two distinct sources. One is very similar to Java:
syntactically valid Stride code is trivially transformed into
Java and sent to the Java compiler, with any compilation
errors shown on the original frames. However, Stride also
performs syntax checking before generating Java code, which
shows more targeted error messages. Most commonly, if a
slot is left blank (e.g. an if condition, or the parameter in a
method call) then an error is shown indicating that the slot
“cannot be blank,” rather than the consequent Java error
“Illegal start of expression”.

Stride offers a number of additional navigational features
(e.g. a fold-out display of inherited superclass methods), as
well as better context for code completion. However, the
programming activity used in this study did not emphasize
these features, so we focus here on the aspects of Stride
which scaffold students’ interaction with program syntax.

3. METHODS
To evaluate our research questions regarding the effective-

ness of Stride’s frame-based editor, we designed a controlled
experiment in which we compared students working with
Greenfoot’s original Java editor to those working with the
new Stride editor. All other aspects of programming activity
and environment were kept constant, allowing us to directly
measure Stride’s impact.

3.1 Materials
We designed a Greenfoot tutorial and activity in which

students create the Asteroids video game, adapted from a
lesson in the Greenfoot textbook [16]. The core mechanics
of the game were already implemented in a separate Java
class file, and the students were tasked with responding to
user input and calling existing methods to create game func-
tionality. The activity was broken up into 9 steps, which in-
troduced method calls, conditionals, parameters, variables,
numeric comparisons and while-loops. We intentionally in-

cluded a broad range of programming concepts with varying
difficulty in the activity to avoid ceiling or floor effects.

Instructions for each step included an explanation of any
new programming concepts and explicit objectives for the
student. The instructions included pictures and analogous
example code but never any code which could be directly
used in a student’s program. We created two versions of the
activity and instructions, written in Java and Stride respec-
tively. The instructions were identical across versions except
for the programming language used in the example code
and occasional language-specific explanations. For example,
the Stride instructions identified which keyboard shortcuts
would insert certain frames, and the Java instructions ex-
plained semicolons.

The instructions for the activity were provided on a web-
site, and the website was instrumented to keep logs of how
students progressed through the instructions. When stu-
dents finished a step, they were required to click a button
acknowledging its completion to proceed, which was logged
to a database. Additionally, we instrumented the Greenfoot
environment using the Blackbox logging framework [7] to
keep detailed logs of student work over time, including reg-
ular snapshots of student source code and records of compi-
lation errors.

Additionally, we designed a pre- and post-survey to give
to students. The pre-survey contained four 5-point Likert
items to assess students’ self-efficacy and three to assess their
interest with respect to computing, as well as a number of
questions on past computing experience and demographic
information. The post-survey repeated the self-efficacy and
interest questions and additionally asked students to rate
how much they enjoyed various aspects of the activity on
a 5-point Likert-type scale. Additionally, it asked students
to rate on a 5-point Likert-type scale how satisfying and
frustrating they found four parts of the activity: creating
the Asteroids game, figuring out what to do next, writing
code in Greenfoot and figuring out what was wrong with
their code when it had an error.

3.2 Procedure
The study took place during a middle school CS outreach

program, which students attend voluntarily on Saturdays
for 2-4 hours. We worked with three classes of students.
The first two classes consisted of underserved students in a
pre-college program. The first class (n = 13) was randomly
assigned to the Java condition and the second was assigned
to the Stride condition (n = 9). The third class consisted of
students from local middle schools, and students were each
randomly assigned to either the Java condition (n = 5) or
the Stride condition (n = 5). Students in all three classes
had been exposed to some block-based programming in 1
or 2 previous workshops but not textual programming. In
total, we worked with 32 students (27 male; 5 female), with
18 in the Java condition and 14 in the Stride condition.

The Asteroids activity was led by the first author, though
there was an unaffiliated graduate student in charge of each
class as a whole. The whole activity lasted approximately
100 minutes. Students first took a pre-survey (5m), and
then the instructor led them through setting up Greenfoot,
loading the instructions and first two steps of the activity
together (25m). During this time, students were encouraged
not to work ahead, though a few did. Afterwards, students
worked independently, using the instructions to complete as
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Figure 3: Post-survey ratings compared between the Java (J) and Stride (S) groups. The horizontal bars are
aligned by the neutral “Somewhat” rating. Students rated how frustrating/satisfying they found “Creating
the Asteroids game” (Activity), “Figuring out what to do next” (Do Next), “Writing code in Greenfoot”
(Edit) and “Figuring out what was wrong with my code when it had an error” (Debug).

much of the activity as possible. Students worked for 60-70
minutes on the activity, with times varying among classes
due to one class starting late (though the same amount of
time is used from each class in the analysis). While students
were not encouraged to work together, they were in close
proximity and did discuss the activity. Afterwards, students
stopped the activity and took a post-survey (5m).

The instructor led students through the first 2 of the
activity’s 9 steps because we wanted to provide adequate
support for the challenging activity, while reducing possi-
ble bias from the instructor and allowing students to work
independently as much as possible. For the Java-only and
Stride-only classes, this introduction showed only that lan-
guage during instruction. For the mixed class, the instructor
demonstrated code using both Java and Stride. The first
two steps, which were done together, are not included in
our analysis, and all times are reported from the start of
independent student work.

Along with the instructor, there were 3-4 additional stu-
dent volunteers who were available to help students through-
out the activity. Volunteers received training beforehand on
how to handle student requests for help. When a student
asked for help, volunteers directed them to look for an an-
swer in the instructions. If the student was still confused,
the volunteer then explained the relevant concept or prob-
lem with the student’s code. Volunteers were instructed to
avoid spending too much time with a given student, to avoid
giving direct commands (“Now type X”) and to never touch
the mouse or keyboard. Volunteers were given a log sheet
and instructed to record each interaction with a student, in-
cluding that student’s ID (to link to log files), the time and
duration of help, and what type of help was given (explain-
ing instructions, general programming concepts, language-
specific concepts or debugging).

3.3 Data
We collected 4 sources of data for analysis:

1. Pre- and post-survey data

2. Log data from the instructions website

3. Log data from Greenfoot

4. Instructor logs of help requests

The Greenfoot logs contained the most verbose data. From
these logs we extracted complete program traces for each
student, showing how their code progressed over time. We
also identified successful and unsuccessful compiles for each
student and any resulting compiler messages. We used these
program traces to determine when students successfully com-
pleted each of the objectives outlined in the 9 activity steps.
Some steps had multiple objectives (e.g. an if statement
with an else statement), and we evaluated these separately
for a total of 13 objectives. Most objectives were indepen-
dent, meaning a student could fail to complete one objec-
tive but succeed at the next. Two graders determined the
time of completion for each student and each objective. The
graders had an initial agreement of 87.8%, and after clarify-
ing objective criteria and independently re-grading this rose
to 94.5%. The remaining objectives were discussed to pro-
duce final times of completion for each student and each
objective.

Due to technical problems, a number of students lost con-
nection to the Greenfoot logging server during the activity.
As a result, we only have complete Greenfoot log data for 24
of the 32 students for 50 minutes of programming (measured
from the start of independent work), including 13 in the Java
condition and 11 in the Stride condition. Of the 8 students
with missing data, 3 came from the all-Java class, 1 from the
all-Stride class and 2 from each condition of the mixed class.
For analyses that involve the Greenfoot logs, we used only
data from the first 50 minutes of the 24 students for whom
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Figure 4: The mean percentage of instructions viewed (left) and activity objectives completed (right) by
students in the Java and Stride conditions from the beginning of independent work (time = 0s) to the end
of analyzed time (time = 3000s), with shading to indicate standard error.

we have full data. However, for other analyses we used all
32 students’ data. Additionally, three students arrived 5-
7 late minutes to the all-Stride class. All students arrived
at least 10 minutes before independent work started, and
the instructor waited for these students to catch up while
working together. However, these students may have been
slightly disadvantaged. All classes had between 24 and 26
minutes of group instruction before individual work.

4. ANALYSIS

4.1 Surveys
While student self-efficacy and interest with respect to CS

are not directly addressed by our research questions, we in-
cluded these questions in the pre- and post-surveys to assess
the appropriateness of the Asteroids activity for CS out-
reach with our population. For both self-efficacy and inter-
est questions, we averaged students’ responses to each of the
3-4 questions in the category to produce a numerical value
for both pre- and post-surveys. We performed a Wilcoxon
signed-rank test1 to compare pre- and post-survey response
values. There was an improvement from pre to post, and this
difference was significant2 for both self-efficacy (W = 28.5;
p < 0.001) and interest (W = 22.5; p = 0.031). This sug-
gests that the activity was appropriate for our population
and therefore an appropriate context in which to compare
Stride and Java.

We also used pre-survey responses to look for potential
differences between the Stride and Java groups before the
activity. We tested for a difference in the groups’ pre-survey
self-efficacy and interest scores using a Mann-Whitney U

test1 and found no significant differences for self-efficacy
(U = 154; p = 0.293) or interest (U = 147.5; p = 0.413).
We asked students if they had had previous computing ex-
periences, such as writing a computer program, creating a

1The use of nonparametric tests, including the Wilcoxon
signed-rank test and Mann-Whitney U test, indicates that
data was either ordinal or not normally distributed as de-
termined by a Shapiro-Wilk test.
2All tests were made at a 5% significance level.

website or make a video game. We summed the positive
responses for each student to produce an experience score
and found the difference between groups was not signifi-
cant (U = 84.5, p = 0.109). There were more females in
the Java group (4 out of 18) than the Stride group (1 out
of 14), though there was an equal proportion of underrep-
resented minority students in the Java (9 out of 18) and
Stride (7 of 14) groups. Given these similarities, we deter-
mined the two groups came from comparable populations.
Additionally, there was no significant difference in the num-
ber of minutes volunteers spent helping students in the Java
(M=12.4; SD=8.3) and Stride (M=14.0; SD=8.1) groups
(t(28.3) = −0.53; p = 0.599; d3 = −0.189).
To address RQ1, we compared students’ post-survey re-

sponses to questions regarding their perceived frustration
and satisfaction with specific parts of the Asteroids activity.
Their responses are shown in Figure 3. The distributions are
quite similar for both conditions and show evidence of floor
and ceiling effects, with students generally showing low frus-
tration and high satisfaction. Mann-Whitney U tests con-
firmed that there was no significant difference in frustration
or satisfaction ratings between the two conditions.

4.2 Performance
To answer RQ2, we used a number of measures of perfor-

mance. The most straightforward way to assess how stu-
dents performed on the Asteroids activity is to compare
how far they got in a given amount of time. Because we
do not have Greenfoot log data for all 32 students, we can
use progress in the instructions as a measure of self-reported
progress on the activity. Figure 4 (left) shows the mean per-
centage of the instructions that each group had viewed, from
the start of independent work to the end of the activity. By
the end of the activity, the difference between the percent-
age of instructions viewed by the Java group (M=66.9%;
SD=14.9%) and the Stride group (M=79.9%; SD=13.3%)
was significant (t(29.3) = −2.61; p = 0.014; d = −0.92).
This self-reported progress is not as meaningful as the

completion of assignment objectives, as determined by the

3We report Cohen’s d, an effect size measured in SDs.
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Figure 5: Left, the percent of students who completed and viewed instructions for each objective in each
group during the first 50 minutes of independent work. Right, the mean time elapsed (with standard error)
before Objectives S1-S6 were completed by students in each group. The number of students who completed
the objective is shown below each bar.

graders, described in Section 3.3. Figure 4 (right) shows the
percentage of objectives completed by students over time.
This counts only objectives that were correctly completed by
the student, as some students skipped or improperly com-
pleted objectives. This and all following analysis considers
only the 24 students for whom we have complete data. Java
students completed a mean 60.4% (SD=13.3%) of the 13
objectives, while Stride students completed a mean 69.9%
(SD=14.5%). This difference was not significant (t(20.4) =
−1.66; p = 0.112; d = −0.69), with a 95% confidence in-
terval that the true difference between the Java and Stride
means is between -21.6% and 2.5%.

We also analyzed students’ performance on individual ob-
jectives, both in terms of the number of students completing
the objective and the amount of time elapsed before the ob-
jective was completed. Figure 5 (left) shows the percent of
students who completed and viewed instructions for each ob-
jective in each group. Objectives S1-S3b have almost iden-
tical completion rates for both groups, but the Stride group
had a strictly higher completion rate for the next 7 objec-
tives. The difference is especially stark for Objective S5b
(Java = 69.2%; Stride = 90.9%) and Objective S6 (Java =
53.8%; Stride = 81.8%). These two objectives came at the
end, so presumably fewer students in the Java group had
time to complete them. Figure 5 (right) compares the mean
amount of time that elapsed before students completed Ob-
jectives S1-S6 in each group. Note that some values are
negative, as Objectives S1 and S2 were completed before
independent work started (time 0). The Java group took
slightly longer on most objectives (after time 0), but these
differences were not large compared to the standard error.
It is important to note that this time comparison considers
only students who were able to complete a given objective
in the first 50 minutes, so the later objectives have a strong
selection bias to include the faster students in a group.

4.3 Programming Behavior
We used the detailed Greenfoot log data, along with the

instructions log data, to categorize how users spent their

Edit Instr. Run Idle
Java 661 (235) 1088 (474) 562 (308) 686 (360)
Stride 585 (177) 1233 (221) 634 (262) 472 (311)

Table 1: The mean amount of time (with SD) spent
on each category of action during the Asteroids ac-
tivity.

time during the activity. We categorized time as editing
code, viewing instructions, running the program or idle time.
The first three categories each have specific actions associ-
ated with them, such as editing or compiling code, changing
the instructions page or clicking the Run button. Each time
one of these actions occurred, we labeled the time span un-
til the next action occurred, or until 60 seconds elapsed,
with that action’s category. Any time beyond 60 seconds
was labeled as idle, until the next action occurred. While
this estimate is not perfect, it does give a reasonable picture
of how students used their time. Table 1 shows the mean
amount of time spent in each category for each group.

Two categories of particular interest are Edit and Idle
time. A difference in editing time would show that one group
spent longer interacting with the editor. A difference in
idle time would indicate a possible difference in engagement
between the two groups. Figure 6 shows the percentage of
students’ time spent idle and editing over 150 slices of time
from 0 to 50 minutes, compared between the Java and Stride
groups. While there is no apparent difference between the
two groups for editing time, the Java group appears to spend
much more time idle near the end of the activity, after 2000s
have elapsed. The difference in total idle time per student,
as shown in Table 1, was not significant (t(22.0) = 1.57;
p = 0.132; d = 0.63), with a 95% confidence interval that
the true difference between the Java and Stride means was
between -70s and 499s. However, a Wilcoxon signed-rank
test indicated that there was a significant difference between
the proportion of time Java students spent idle before 2000s
(Med=15.7%) and after (Med=28.6%) (W = 15; p = 0.033).
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Figure 6: For 150 20-second slices throughout the
activity, the average percent of time students in each
condition spent Idle and Editing are shown as points.
A kernel regression smoothing line is also plotted to
show a rolling average.

For the Stride group, the difference between the proportion
of time spent idle before 2000s (Med=12.5%) and after 2000s
(Med=8.7%) was not significant (W = 34; p = 0.966).

Though students spent similar amounts of time editing
their code in both conditions, we were also interested in
the types of edits students made. One of the primary pur-
ported advantages of the Stride language is that it avoids
the need for the purely syntactic elements of Java, such as
brackets, semicolons and whitespace [6]. To investigate this
claim, we analyzed each edit students made to their code
to determine whether or not that edit changed only these
purely syntactic elements (brackets, semicolons and whites-
pace). We then summed the time spent on these edits for
each student, where each edit was assumed to have taken
the time since the previous edit, to a maximum of 30s. A
Mann-Whitney U test indicated that there was a significant
difference between the amount of time spent on these syn-
tactic edits between the Java group (Med=321s) and the
Stride group (Med=94s) (U = 134, p < 0.001).

4.4 Syntax Errors
To get a basic understanding of whether the groups had

different incidences of errors, we calculated the time each
student spent with non-compilable code. This was done
by summing the time between each unsuccessful compile
and the next compile. The Java group spent a mean 1447s
(SD=672.8s) with non-compilable code, while the Stride group
spent a mean 1000s (SD=290.2s). The difference was signifi-
cant (t(16.8) = 2.16, p = 0.045; d = 0.84). The Stride group
spent on average 7.45 minutes less time with non-compilable
code than the Java group, which spent on average almost
half of the activity with non-compilable code.

We also counted the occurrences of each type of syntax

Group Message Mean

Java

‘;’ expected 13.4 (9.53)
illegal start of expression 6.31 (7.99)
( or ) expected 4.00 (2.42)
reached end of file while parsing 2.77 (3.39)
illegal start of type 2.38 (2.69)

Stride

Invalid expression 14.3 (11.3)
Undeclared variable 13.7 (8.27)
Expression cannot be empty 8.27 (5.08)
cannot find symbol - method 4.73 (2.15)
Method name cannot be blank 4.43 (4.52)

Table 2: The five most common syntax errors for
the Java and Stride groups, with the mean (and SD)
number of occurrences per student. Stride-specific
errors are given in italics.

error viewed by students. While both Stride and Java com-
pile automatically and flag errors with red underlines, we
chose to analyze only errors which were actually displayed
to the student, when their cursor or mouse enters this un-
derlined code. Since Stride code is converted to Java before
being compiled, both groups received errors from the Java
compiler; however, Stride introduces a number of new error
messages, which replace common Java errors with plain En-
glish. Table 2 gives the five most commonly viewed syntax
errors for both groups. Many of the most common Stride
errors were Stride-specific messages (denoted in italics). Ad-
ditionally, each of the most common Java errors can be at-
tributed to the presence of characters which Stride adds au-
tomatically: semicolons, brackets and parentheses. Notably,
none of these top-5 errors are the same in the two groups.
The difference between the total errors viewed by the Java
group (M=42.3; SD=27.4) and the Stride group (M=55.5;
SD=22.1) was not significant (t(22.0) = −1.30; p = 0.208;
d = −0.52).

5. DISCUSSION
RQ1 How did Stride affect frustration and satisfaction

with the activity? Students reported low frustration and
high satisfaction with each aspect of the Asteroids activity,
but there were no significant differences between the Java
and Stride groups. It is possible that a real difference was
masked by ceiling and floor effects (i.e. the activity was en-
joyed enough that it overwhelmed any differences due to the
editor). Previous comparisons between block and textual
programming have similarly found no difference in students’
perceived difficulty [22, 28], which mirrors our results with
respect to frustration. Previous work on block-based pro-
gramming has also suggested that it is perceived as less au-
thentic than their textual counterparts [32]. While we did
not assess perceived authenticity directly, if Stride was per-
ceived as less authentic than Java, we have no evidence that
it affected students’ satisfaction with the activity.

RQ2 How did Stride affect performance on the activity?

Taken together, our results suggest that Stride improved
students’ performance on the one-hour activity. The Stride
group progressed through the instructions significantly faster
and had a better completion rate than the Java group on the
last 7 objectives. While there was no significant difference
between the total number of objectives accomplished by the
two groups, the first two results suggest that this may be due



to the small sample size (24), in part as a result of data loss.
There was no significant difference in the amount of time
taken to complete a given objective between the groups;
however, it is important to remember that this compares
only students who completed a given objective within the
first 50 minutes of independent work. For example, on Ob-
jective 5b, 90.9% of Stride students completed the objective
in time, while only 69.2% of Java students completed the
objective. The time comparison on this objective possibly
excludes the slowest 30% of Java students, compared to only
10% of Stride students. While positive, these results are not
as strong overall as previous comparisons between textual
and block editors [28], supporting the notion that frame-
based editing may be best situated between learning blocks
and text [18].

RQ3 How did Stride affect programming behavior dur-

ing the activity? Students’ programming behavior in each
group offers some explanation of the improved performance
observed in the Stride group. Students in both groups spent
similar amounts of time idle for the first 30-35 minutes of the
activity, after which the Java group’s idle time significantly
increases and the Stride group’s does not. One explanation
for this trend is that there comes a point at which some stu-
dents start to lose interest in the activity (confirmed anec-
dotally by volunteers), but that this was less common in the
Stride group. Additionally, though students in both groups
spent similar amounts of time editing their code, Java stu-
dents spent a median 321s making purely syntactic edits,
compared to 94s for the Stride group. This amounts to al-
most half of the total time the Java group spent editing their
code and is twice the proportion found in previous analyses
[3]. It is also worth noting that Stride students encoun-
tered their own Stride-specific issues, such as accidentally
inserting a frame by typing its hotkey, while intending to
insert text. While the amount of time wasted as a result
of these errors is more difficult to measure, graders report
anecdotally that this was a frequent occurrence. Still, these
difficulties did not seem to be enough to make up for the
advantages that Stride offered.

RQ4 How did Stride affect incidence of syntax errors?

Taken together, our results support the notion that Stride
helps students with syntax errors, which may be another
contributing factor to their efficiency. The Stride group
spent significantly less time with non-compilable code. This
may be due in part to the fact that many of the most com-
mon Stride error messages (including four of the top five)
were custom messages designed to directly explain the prob-
lem in a novice-friendly way. These results contrast with
previous work in which enhanced error messages failed to
improve students’ resolution of syntax errors [9, 26]. The
five most common errors encountered by the Java group were
somewhat consistent with results from previous work [5, 13,
14]. Each of these errors can be caused by a missing a semi-
colon, bracket or parenthesis. The Stride editor avoids the
need for semicolons and brackets and automatically pairs
parentheses, reducing the incidence of these errors. This is
evidenced by the fact that none of these top five Java er-
rors were represented in the top five Stride errors (in part
because some were replaced by the new Stride messages).

6. CONCLUSIONS
In this paper we have presented a comparison of two groups

of novices working on a short programming activity, one us-

ing the textual Java language and one using the frame-based
Stride language. While we observed no differences between
students’ perceived frustration or satisfaction, the Stride
group did progress through the activity quicker, spending
less time with non-compilable code and less time on purely
syntactic edits. This suggests that frame-based editing is a
useful tool in reducing the burden of syntax for novice pro-
grammers and that it may lead to improved performance on
programming tasks.

6.1 Limitations
This study took place in a voluntary after school outreach

program, which is quite different from a controlled labora-
tory setting. We endeavored to control as many aspects of
the study as possible, but real classrooms come with real
confounds, such as interactions between students, possible
instructor and volunteer bias and varying student ability.
We chose to emphasize the ecological validity of the study,
ensuring that it reflected a real-world setting, rather than
a perfectly controlled laboratory. Unfortunately, our results
also suffer from the loss of data due to technical errors. A
number of the differences observed in the 24 students for
whom we have full data were sizable but not significant.
This only means the differences were not detectable, but
not necessarily that they do not exist. For example, for the
difference in the number of objectives completed by the Java
and Stride groups, reported in Section 4.2, power analysis
suggests we only had a 46.3% chance of detecting a large
effect size (Cohen’s d) of 0.8.

Additionally, this study is limited to a single population
(middle school students) and a single, hour-long activity.
Our findings with respect to programming performance and
behavior will not necessarily generalize to longer, more com-
plex activities, though it is unclear whether the differences
observed would increase or decrease in magnitude with more
time. These results are also limited to students’ performance

on the activity, which will not necessarily equate to learning
gains. Our results with respect to specific syntax errors will
likely not fully generalize to other activities, as syntax errors
are highly dependent on the programming constructs being
used. The activity was also quite popular with the students,
who reported low frustration and high satisfaction, and this
may have masked any effects that the editor had on student
affect.

6.2 Future Work
Frame-based editing has been described as a way to ease

the transition from blocks to text [18]. Our own findings sup-
port the notion that frame-based editing is more appropriate
for novices than text but may not offer the same benefits as
blocks. Future work should investigate the relationship be-
tween these three types of editors: blocks, frames and text.
We can now move beyond the short-term, direct compar-
isons of student performance that have been presented in
this and other work [28] to focus on the long-term effects
of the editors, their impact on learning gains and the tran-
sitions from blocks to frames and frames to text. Further
work on how these transitions might be mediated (e.g. [8]) is
needed, along with more in-depth investigations of students’
perceptions of these editors (e.g. [32]).
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[18] M. Kölling, N. C. C. Brown, and A. Altadmri.
Frame-Based Editing: Easing the Transition from
Blocks to Text-Based Programming. In Proceedings of

the Workshop in Primary and Secondary Computing

Education, pages 29–38, 2015.

[19] S. K. Kummerfeld and J. Kay. The neglected battle
fields of syntax errors. In Proceedings of the

Australasian Computing Education Conference, pages
105–111, 2003.

[20] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A
Study of the Difficulties of Novice Programmers. In
Proceedings of the Tenth ACM Conference on

Innovation and Technology in Computer Science

Education, volume 37, page 14, 2005.

[21] M. J. Lee and A. J. Ko. Personifying Programming
Tool Feedback Improves Novice Programmers’
Learning. In Proceedings of the Seventh International

Workshop on Computing Education Research, pages
109–116, 2011.

[22] C. Lewis. How Programming Environment Shapes
Perception, Learning and Goals: Logo vs. Scratch. In
Proceedings of the 41st ACM Technical Symposium on

Computer Science Education, pages 346–350, 2010.

[23] L. Mannila, M. Peltomäki, and T. Salakoski. What
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