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Abstract

Theoretical models applied to option pricing should take into account the

empirical characteristics of financial time series. In this paper, we show how

to price basket options when the underlying asset prices follow a displaced

log-normal process with jumps, capable of accommodating negative skewness

and excess kurtosis. Our technique involves Hermite polynomial expansion

that can match exactly the first m moments of the model-implied basket

return. This method is shown to provide superior results for basket options

not only with respect to pricing but also for hedging.
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Pricing and Hedging Basket Options with Exact Moment Matching

1. Introduction

Basket options are contingent claims on a group of assets such as equi-

ties, commodities, currencies and even other vanilla derivatives. They are

a subclass of exotic options and commonly traded over-the-counter in or-

der to hedge away exposure to correlation or contagion risk. Additionally,

they are also employed by hedge-funds for investment purposes, to combine

diversification with leverage.

Baskets consist of several assets and, consequently, any modelling ought

to be multidimensional. Many pricing models that seem to work well for

single assets cannot be easily extended to a multidimensional set-up, mainly

due to computational difficulties. The major problem is that in many cases

the probability density function of the basket values at expiration is not

known. Hence, practitioners usually resort to classic multidimensional Ge-

ometric Brownian motion type models to keep the modelling framework as

simple as possible. However, by doing so, the computational problems are

not completely solved because the probability density function of the sum

of log-normal variables is not known and additionally the empirical charac-

teristics of the assets in the basket are simply overlooked. In particular, the

negative skewness and excess kurtosis, which are well known to characterize

equities, cannot be captured properly by these simple models because they

can produce a limited range of values for these statistics.

Ideally, one would like the best of both worlds, realistic modelling and pre-

cise calculations. In this paper, we present a general computational solution
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to the problem of multidimensional models lacking closed-form formulae or

requiring burdensome numerical procedures. The purpose of this paper is to

provide a robust and precise methodology for pricing and hedging basket op-

tions when the price of each of the assets in the basket follows a model able to

accommodate the empirical characteristics. One such model is the displaced

jump-diffusion which will be used as test subject to show the superiority of

the presented methodology. This model is very useful for the dynamics of

one asset, but expanding the set-up to a basket of assets leads to compu-

tational problems related to the calculation of the probability distribution

of the basket price. Therefore, we circumvent this problem by employing a

Hermite polynomial expansion matching exactly the first m moments of the

model-implied basket return.

The pricing and hedging methodology we propose consists of quasi–analytical

formulae: they are Black and Scholes type formulae and some of their inputs

are given as the solution of a system of m equations in m unknowns. The

main advantages of the new methodology are: low computational cost com-

pared to numerical methods, especially when one prices a portfolio of options

written on the same basket with different strikes and/or payoffs, since the

matching procedure needs to be carried out only once; precise calculations

and the availability of formulae for the Greeks. Additionally, the only pre-

requisite of our method is the existence of the moments of the basket and,

consequently, it is applicable to the situation when some assets in the basket

follow one diffusion model and other assets follow a different diffusion model.

The remaining of the article is structured as follows. Section 2 reviews

the existing literature on pricing and hedging basket options. Section 3

3
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describes the continuous-time models employed here. The new methodology

is discussed in Section 4 and a numerical comparison is presented in Section 5.

The final section concludes.

2. Existing contributions

The number of papers covering basket options has increased considerably

in the last three decades. The available methods can be classified into analyt-

ical, purely numerical and a hybrid quasi-analytical class which is based on

various expansions and moment matching techniques. Our method belongs

to the last category.

By analogy to early papers on pricing Asian options, Gentle (1993) pro-

posed pricing basket options by approximating the arithmetic weighted av-

erage with its geometrical-average counterpart so that a Black-Scholes type

formula could be applied. Korn and Zeytun (2013) improved this approx-

imation using the fact that, if the spot prices of assets in the basket are

shifted by a large scalar constant C, their arithmetic and geometric means

converge asymptotically. They consider log-normally distributed assets and

approximate the C-shifted distribution by standard log-normal distributions.

Kirk (1995) developed a technique for pricing a spread option by coupling

the asset with negative weight with the strike price, considering their com-

bination as one asset having a shifted distribution and then employing the

Margrabe (1978) formula for exchanging two assets. The methods in Li et al.

(2008) and Li et al. (2010) extended the procedure proposed in Kirk (1995)

to the case of multi-asset spread options. Curran (1994) priced basket op-

tions with only positive weights by conditioning on the geometric basket

4
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value: the resulting formula is given as an exact term plus an approximated

term. Deelstra et al. (2004, 2010) extended on Curran (1994) and obtained

lower and upper bounds for the prices of basket options and Asian basket

options, respectively. Similarly, Xu and Zheng (2009) derived bounds for

basket options on assets following a jump-diffusion model with idiosyncratic

and systematic jumps. A completely different approach has been proposed

by Laurence and Wang (2004, 2005), and Hobson et al. (2005b,a). They de-

rived model-free upper and lower bounds for basket option prices based on

the prices of the European options, each on a single-asset. While the lit-

erature on pricing basket options is large, there is sparse research on cal-

culating the hedging parameters for basket options. A notable exception

is Hurd and Zhou (2010) who priced spread options and derived the Greek

parameters by using fast Fourier transform under different models.

When analytical formulae are difficult to be derived under a particular

model, it is common, in the finance industry, to resort to Monte Carlo meth-

ods. Control variate techniques for pricing basket options are described in

Pellizzari (2001) and Korn and Zeytun (2013). While Monte Carlo methods

offer a feasible solution, the computational cost may be too high even for

standard-size baskets commonly traded on the financial markets. Hence, the

majority of the literature on basket option pricing gravitates around approx-

imation methods that circumvent the numerical problems generated by the

high-dimensionality of basket models. Levy (1992) approximated the distri-

bution of a basket by matching its first two moments with the moments of a

log-normal density function, and then derived a Black-Scholes type pricing

formula. Other works modified the log-normal approximation allowing for

5
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improved skewness and kurtosis calibration. Borovkova et al. (2007) have

proposed a new methodology that can incorporate negative skewness while

still retaining analytical tractability, under a shifted log-normal distribution,

by considering the entire basket as one single asset.1 This strong assumption

allows the derivation of closed-form formulae for basket option pricing. On

the other hand, some other research has priced basket options whose asset

dynamics are more appropriate to accommodate the empirical characteristics

of the asset returns. Flamouris and Giamouridis (2007) priced basket options

on assets following a Bernoulli jump-diffusion process using the Edgeworth

expansion; Wu et al. (2009) assumed that asset prices follow the multivariate

normal inverse Gaussian model (mNIG) and employed the fast Fourier trans-

form together with the methodology outlined by Milevsky and Posner (1998)

to approximate the sum of assets following the mNIGs model as a mNIG;

Xu and Zheng (2009) priced correlated local volatility jump-diffusion model

deriving the Partial Integro Differential Equation (PIDE) driving the bas-

ket and approximating it via the asymptotic expansion method. Bae et al.

(2011) priced basket options (with positive weights) on assets following a

jump-diffusion process by using the Taylor expansion method of Ju (2002).

The technique we propose in this paper approximates the basket return

at the option maturity by an Hermite polynomial expansion of a standard

normal variable. This aims to solve the problems encountered by existing

pricing approaches that employ polynomial expansions to approximate the

probability density function of the basket values (Dionne et al., 2006, among

1Brigo et al. (2004) proposed a similar method to that of Borovkova et al. (2007) but

their method can cope only with positive-value baskets.

6

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



others). In particular, these methods provide valid approximations only for

a limited set of skewness-kurtosis pairs. The main advantage of our new

methodology over these previous approaches is that the matching of the

moments is exact for a wider set of skewness-kurtosis set.

3. The Modeling Framework

From a modeling point of view, it would be more appropriate for the

assets in the basket to follow models that are capable of generating nega-

tive skewness and excess kurtosis reflecting the empirical evidence in equity

markets. One such flexible model is the displaced (or shifted) jump diffu-

sion, that is a jump diffusion process for the displaced or shifted asset value,

similar to the model discussed by Câmara et al. (2009). In the following, we

define the modeling framework.

Consider the filtered probability space2 (Ω,F , (Ft)0≤t≤T ,P). Let us de-

fine, on this space, the financial market consisting of the asset price processes

S(i), i = 1, · · · ,Υ and the bank account Mt = ert that can be used to bor-

row and deposit money with continuously compounded interest rate r ≥ 0,

assumed constant over time. The asset price processes S(i) are assumed to

follow the correlated displaced jump diffusions, defined by their dynamics

d
(
S
(i)
t − δ

(i)
t

)
= (αi − βiλi)

(
S
(i)
t − δ

(i)
t

)
dt+

(
S
(i)
t − δ

(i)
t

) nw∑

j=1

γijdW
(j)
t

+
(
S
(i)
t−

− δ
(i)
t

)
dQ

(i)
t (3.1)

2The results in this section are proved both in Câmara et al. (2009) and in Shreve

(2004), chap. 11.5. In the latter, the standard multidimensional jump-diffusion model is

described and the theory can be adapted to deal with shifted assets.
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for i = 1, . . . ,Υ , where αi is the expected rate of return on the shifted asset

i,
{
W

(j)
t

}
t≥0

are nw mutually independent Wiener processes, so that Z
(i)
t =

∑nw

j=1 γijW
(j)
t are dependent Wiener processes with V ar[Z

(i)
t ] = t

∑nw

j=1 γ
2
ij

and Cov[Z
(i)
t , Z

(j)
t ] = t

∑nw

k=1 γikγjk.
{
Q

(i)
t

}
t≥0

are independent compound

Poisson processes formed from some underlying Poisson processes
{
N

(i)
t

}
t≥0

with intensity λi ≥ 0. In addition, Y
(i)
j represents the amplitude of the j-

th jump (of the shifted process) of N
(i)
t for any i = 1, · · · ,Υ , the jumps

being i.i.d. random variables with probability density function f (i)(y) :

[−1,+∞) → R+ having the expected value3 under the physical measure

βi = E[Y (i)] =
∫∞

−1
yf (i)(y)dy. Moreover, jumps sizes for different assets are

assumed to be independent. Finally, δ
(i)
t = δ

(i)
0 ert is the shift applied to S

(i)
t

at time t with non-negative initial shift.

Câmara (1999) studied the relationship between the shift δ0 and proba-

bility density function of the displaced log-normal process (without jumps,

as in Rubinstein (1981)): a positive (negative) value of δ0 is associated with

a more positively (negatively) skewed and leptokurtic (mesokurtic) distribu-

tion. A drawback of this process is that negative values of δ0 may imply

negative stock prices with positive probability. However, introducing jumps

as in (3.1), see also Câmara et al. (2009), allows to capture the empirical

properties of stocks even for δ0 ≥ 0. For this reason, in the following we

assume δ
(i)
0 ≥ 0, for any i = 1, . . . ,Υ .

3Henceforth, E and Ẽ are used to indicate the expectation operator under the physical

measure P and the risk-neutral measure P̃, respectively.
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The solution of SDE (3.1), under the risk-neutral pricing measure P̃, is

S
(i)
t =

(
S
(i)
0 − δ

(i)
0

)
e(r−β̃iλ̃i−

1
2

∑nw
j=1 γ

2
ij )t+

∑nw
j=1 γij W̃

(j)
t

N
(i)
t∏

l=1

(
Y

(i)
l + 1

)
+ δ

(i)
0 ert

(3.2)

where the intensity of the Poisson process
{
N

(i)
t

}
t≥0

is λ̃i, β̃ is the expected

value of Y (i), and all the remaining quantities are defined in similar way

as those under P. For (3.2) not to introduce arbitrage, the parameters

β̃1, · · · , β̃Υ , λ̃1, · · · , λ̃Υ , and θ1, · · · , θnw
need to satisfy the system of equa-

tions

αi − βiλi − r =

nw∑

j=1

γijθj − β̃iλ̃i, i = 1, · · · ,Υ . (3.3)

Solution to (3.3) is, in general, not unique, so we are in incomplete markets.

Nevertheless, we assume that one solution of the system (3.3) is selected4

and a pricing measure P̃ is fixed.

For each asset, jumps are taken i.i.d. log-normally distributed such that

Ẽ[log(Y
(i)
j + 1)] = ηi and Ṽ ar[log(Y

(i)
j + 1)] = υ2

i . This assumption cor-

4There is a large literature devoted to the issue of selecting a pricing measure. For a

review, see Frittelli (2000) and references within. General principles about the martin-

gale approach of pricing contingent claims are provided in Chapter 15 of Bjork (2009).

More specific techniques for pricing and hedging in incomplete markets are described in

Chapter 10 of the excellent book by Cont and Tankov (2004). Secondly, standard market

practice is to calibrates the volatility parameters to volatility surfaces, in general using

vanilla products for each asset in the basket, where models are more robust and market

data is available. What are very difficult to calibrate are the correlations between assets,

particularly in markets that operate mainly OTC. Some traders estimate their correlations

from historical data, others use some copula functions and so on. Any approach has pros

and cons, as documented in the literature.
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responds to the displaced jump diffusion with unsystematic jump risk in

Câmara et al. (2009). We remark that when in addition δ
(i)
0 = 0, the model

corresponds to that of Merton (1976). In order to simplify the notation,

we denote V
(i)
t =

∑nw

j=1

γij
σi
W̃

(j)
t where σ2

i =
∑nw

j=1 γ
2
ij . Thus

{
V

(i)
t

}
t≥0

are

dependent standard Brownian motions with

ρl1l2 = corr(V
(l1)
t , V

(l2)
t ) =

1

σl1σl2

nw∑

j=1

γl1 jγl2 j ,

and, consequently, (3.2) can be rewritten as

S
(i)
t =

(
S
(i)
0 − δ

(i)
0

)
e(r−β̃iλ̃i−

1
2
σ2
i )t+σiV

(i)
t

N
(i)
t∏

l=1

(
Y

(i)
l + 1

)
+ δ

(i)
0 ert. (3.4)

Finally, we point out that the shifted jump-diffusion model will encompass

three sub-cases: the geometric Brownian motion (GBM) when δ
(i)
0 = 0 and

λ̃i = 0 for each asset i, the shifted GBM when λ̃i = 0 for each asset i, and

the standard jump-diffusion model when δ
(i)
0 = 0 for each asset i.

4. Pricing and hedging methodology

The aim of this section is to price European basket options. The method

we introduce here is general and works for any choice of price models for the

assets in the basket under the assumption that we can calculate the moments

of the basket at maturity. However, in order to simplify the description of the

methodology, we consider the modelling framework in the previous section5

5Any change in the price dynamics will impact exclusively on the calculation of the

moments of the basket returns (i.e. the results in Proposition 4.1).
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and price a basket call option expiring at time T , whose payoff at maturity

is (B∗
T −K ∗)+. The variable underlying the option is the basket

B∗
t =

Υ∑

i=1

aiS
(i)
t , (4.1)

where Υ is the number of assets in the basket, K ∗ is the strike price, and

ai ∈ R is the quantity invested in asset i, i = 1, . . . ,Υ .

Under the majority of models applied in practice, including the shifted

jump-diffusion model, the probability density of the basket B∗
t —required for

pricing and hedging—cannot be obtained in closed-form. The methodology

proposed here circumvents this problem by approximating the standardized

return of the basket by a polynomial transformation of a standard normal

random variable. The approximation derived in this paper is constructed in

such a way to match up exactly6 the first m moments of the model implied

risk-neutral return. While the methodology may work for any required m,

from an investment finance perspective only the first four moments have been

identified in the asset pricing literature as having a clear significance.

For practical purposes, since the assets follow a shifted process, we shall

work with shifted quantities defined as: ‘shifted strike price’

K = K ∗ −

Υ∑

i=1

aiδ
(i)
0 erT (4.2)

6A different approach using different Hermite polynomials, called the “physicists” Her-

mite polynomials, has been exploited elegantly for option pricing by Necula et al. (2015).

The main advantage of their approach is that convergence for fat-tailed distributions is

guaranteed when using the full infinite polynomial Hermite expansion. Our approach

is focused on matching the first four moments exactly, using the “probabilists” Hermite

polynomials.
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and ‘shifted basket’

BT = B∗
T −

Υ∑

i=1

aiδ
(i)
0 erT . (4.3)

Our methodology uses the random variable

J(Z) =

m−1∑

k=0

ϕkHk(Z), (4.4)

to approximate the standardized basket return quantity7

XT =
BT

B0erT
− h1 . (4.5)

To explain how the approximation works, denote by Φt = Bte
−rt be the

discounted basket payoff at time t. We use J(Z) to approximate ΦT /Φ0

when h1 = 0 and to approximate the gross return of Φ over the interval

[0, T ] when h1 = 1. There are only two values for the coefficient h1 , 0 and 1

respectively. Furthermore, Hk(x) denotes the kth-order Hermite polynomial

Hk(x) =
(−1)k

φ(x)
∂kφ(x)
∂xk , φ(·) is the standard normal density function and Z is a

standard normal random variable.

The coefficients ϕk are calculated by matching the first m moments of

(4.5), i.e. as the solution of the system of equations





Ẽ[J ] = Ẽ[XT ]

Ẽ[J2] = Ẽ[X2
T ]

. . .

Ẽ[Jm] = Ẽ[Xm
T ]

(4.6)

7B0 is assumed to be different from 0 and h1 can take only the values 0 and 1 to indicate

what type of returns are used for calculations.
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In order to solve this system we need to calculate the first m moments of

J , i.e. we need Ẽ[Jk] for k = 1, . . . , m. In particular, the k-th moment of

m-degree polynomial J is given by

Ẽ[Jk] = Ẽ





[
m−1∑

i=0

ϕiHi(Z)

]k
 =

Ẽ

{[
m−1∑

i1=0

ϕi1Hi1(Z)

]
×

[
m−1∑

i2=0

ϕi2Hi2(Z)

]
· · · ×

[
m−1∑

ik=0

ϕikHik(Z)

]}
=

m−1∑

i1=0

· · ·

m−1∑

ik=0

ϕi1 × · · · × ϕikẼ[Hi1(Z)× · · · ×Hik(Z)]

In Appendix A.1, we provide the analytic formulae for the first 4 mo-

ments of J(Z). Following Leccadito et al. (2014), p. 79-80, it is possible to

determine all the possible values of skewness (in absolute value) and kurtosis

of XT for which the proposed method can be employed when m = 4, see

Figure 1. We refer the reader to Headrick (2009), p. 23, for a discussion

regarding the feasible skewness-kurtosis pairs for larger values of m, where

the author states that the region associated to m = 6 is larger than the one

represented in Figure 1.

The three variants of our moment-matching method that will be analyzed

in Section 5 are:

1. mGA indicates a moment matching procedure that matches the first

m moments of XT with h1 = 0;

2. mGB indicates a moment matching procedure that matches the first

m moments of XT with h1 = 1;

3. mGAB is a hybrid methodology spanned by the two methods mGA

and mGB. It returns the solution of the method that correctly matches

13
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Figure 1: The locus of skewness-kurtosis pairs of XT , eq. (4.5), for which the

proposed approximation (4.4) is feasible when m = 4.
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the moments if one ofmGA andmGB works properly and takes into ac-

count the worst error between the two variants if both correctly match

the moments.

For the three variants above, the mnemonics driven by m stands for the

number of moments matched and G highlights that a transformation of the

Gaussian distribution is considered.

This moment-matching procedure is an extension of the method presented

in Leccadito et al. (2012). They proposed the Hermite tree method for pric-

ing financial derivatives and, in a nutshell, the idea is to match the moments

of the log-returns of the underlying asset with the moments of a discrete ran-

dom variable. Our methodology extends Leccadito et al. (2012) to deal with

baskets that may take on negative values and replaces the binomial distri-

bution they employed with the asymptotically equivalent Gaussian distribu-

tion. Consequently, our new methodology consists of quasi-analytic pricing
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and hedging formula, which do not employ a tree or lattice method.

Proposition 4.1 shows how to calculate the moments of the standard-

ized basket return quantity for assets that follow the shifted jump-diffusion

process (SDE (3.4)).

Proposition 4.1. The k-moment of the standardized return XT in for-

mula (4.5), under P̃, is given by

Ẽ[Xk
T ] = Ẽ

[(
BT

B0erT
− h1

)k
]
=

k∑

i=0

(
k

i

)
(−h1 )

i

(B0erT )k−i
Ẽ[Bk−i

T ]. (4.7)

where

Ẽ[Bk
T ] =

Υ∑

i1=1

· · ·
Υ∑

ik=1

ai1

(
S
(i1)
0 − δ

(i1)
0

)
e(r+ωi1

)T · · · aik

(
S
(ik)
0 − δ

(ik)
0

)
e(r+ωik

)T mgf(ei1+. . .+eik),

(4.8)

ωj = −β̃jλ̃j −
1
2
σ2
j , ej ∈ ℜΥ is the vector having 1 in position j and 0 else-

where. Furthermore, the moment generation function of σiV
(i)
T +

∑N
(i)
T

l=1 log (Y
(i)
l + 1)

is given by

mgf(u) = exp {Tu′Σu/2}

Υ∏

i=1

mgf
N

(i)
T

(
ηiui + υ2

i u
2
i /2
)

(4.9)

where Σ denotes the covariance matrix of V =
(
V

(1)
T , · · · , V

(Υ)
T

)′
, and

mgf
N

(i)
T

(u) = exp(T λ̃i(e
u − 1)). (4.10)

Proof. Formulae (4.7) and (4.8) are derived by exponentiation of formu-

lae (4.5) and (4.3), respectively and the linear property of the expecta-

tion operator. Additionally, the moment generation function of σiV
(i)
T +

∑N
(i)
T

l=1 log (Y
(i)
l + 1) in (4.9) is calculated by conditioning with respect to

N
(i)
T .
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Once the parameters ϕ are calculated by solving the moment-matching

system (4.6), the two propositions in the next sections are our main results for

pricing and hedging basket options. The solution of this system of equations

is done numerically and the moment matching requires little computational

effort.

4.1. Pricing and hedging methods

Following standard non arbitrage principles, the price of a European bas-

ket call option is calculated by discounting the expected value of the option

payoff at maturity. The mechanism of shifting the basket and strike price, in

equations (4.2) and (4.3), allows rewriting the pricing formula in two equiv-

alent ways:

c0(B
∗
0 , T,K

∗) = e−rT
Ẽ[(B∗

T −K ∗)+] = e−rT
Ẽ[(BT −K )+] = c0(B0, T,K ).

(4.11)

The next proposition provides a formula for the European call basket option

price under the Hermite polynomial approximations considered in this paper.

Proposition 4.2. The price of a European call basket option with the Her-

mite expansion variant mGA or mGB is given by:

c0(B0, T,K ) = B0 [(ϕ0 + h1 )Φ(−h2 z̃) + h2g(z̃)]− K e−rTΦ(−h2 z̃) (4.12)

where

g(z̃) = φ(z̃)
m−2∑

k=0

ϕk+1Hk(z̃), (4.13)

K is the shifted strike price, h1 = 0 for the variant mGA and h1 = 1 for

the variants mGB, h2 = sgn(B0), z̃ is the solution of [J(z̃) + h1 ]B0e
rT = K,
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φ(·) is the standard normal density function, Φ(·) is the standard normal

cumulative distribution function and ϕ1, . . . , ϕm−1 are calculated by matching

the first m moments of the standardized return quantity XT .

Proof. Let us consider the approximation ofXT by the random variable J(Z)

via the solution of the moment-matching procedure. Consequently,

BT ≈ B0e
rT (J(Z) + h1 ) (4.14)

and substituting it into the equality (4.11) leads to:

c0(B0, T,K ) = e−rT
Ẽ[(BT − K )+] ≈ e−rT

∫ l2

l1

[
B0e

rT (J(z) + h1 )− K
]
φ(z)dz

= B0

∫ l2

l1

J(z)φ(z)dz + (h1B0 − K e−rT )Φ(−h2 z̃) (4.15)

where, for B0 > 0, l1 = z̃ and l2 = +∞ and, for B0 < 0, l1 = −∞ and l2 = z̃.

For the calculation of the integral
∫ l2

l1
J(z)φ(z)dz, the results in formu-

lae (A.1) and (A.2) (see Appendix A.2) are employed for B0 > 0 and B0 < 0,

respectively. Formula (4.12) is then proved by rearranging the terms.

The next proposition reports the formula for the hedging parameter8 with

respect to the variable u, which can be any of the quantities S
(i)
0 , B∗

0 , σi, r,

T , ai, λ̃i, δ
(i)
0 , β̃i, ηi or υi.

8One may remark that this formula is an approximation of the theoretical Greek pa-

rameter, that is not analytically available for our model. On their own, the hedging values

for delta parameter for example will indeed not give the exact analytical option price

under the assumed model but it will help with faster hedging calculations. We thank an

anonymous referee for indicating this point.
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Proposition 4.3. For c0, h1 , h2 , z̃, g(·), φ(·) and Φ(·) defined in Proposition

4.2, the hedging parameter of a European call basket option, with respect to

the variable u, under the Hermite expansion variant mGA or mGB, is given

by

∂c0
∂u

= c0e
rT ∂e

−rT

∂u
+ B0

[
h2g

′(z̃) +
∂ϕ0

∂u
φ(−h2 z̃)

]
+ h2e

−rTΦ(z̃)
∂K

∂u

+ e−rT ∂(B0e
rT )

∂u

[
h2g(z̃) + ϕ0φ(−h2 z̃) + h1

(
−h2Φ(z̃) +

h2 + 1

2

)]

(4.16)

where

g ′(z̃) = φ(z̃)
m−2∑

k=0

∂ϕk+1

∂u
Hk(z̃) (4.17)

and c0 is the short for c0(B0, T,K ).

Proof. The calculation of the hedging parameter can be achieved by direct

differentiation using Leibniz’ rule of the pricing formula (4.11) considered

together with approximation (4.14), as follows:

∂c0
∂u

=
∂e−rT

∂u

∫ l2

l1

[
B0e

rT (J(z) + h1 )−K
]
φ(z)dz

+e−rT

∫ l2

l1

∂
[
B0e

rT (J(z) + h1 )− K
]

∂u
φ(z)dz

= c0e
rT ∂e

−rT

∂u
+ e−rT

∫ l2

l1

∂
[
B0e

rT (J(z) + h1 )− K
]

∂u
φ(z)dz.

Additionally, since the Hermite polynomials do not depend on u, ∂J(z)
∂u

=
∑m−1

k=0
∂ϕk

∂u
Hk(z), and, consequently, formulae (A.1) and (A.2) in Appendix A.2

can also be used for the integral
∫ l2

l1

∂J(z)
∂u

φ(z)dz where l1 and l2 are as defined

for function (4.15). Formula (4.16) is then proved by rearranging the terms.

The calculation of ∂ϕk

∂u
is shown in Appendix A.3.
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In Section 5.3, a comparison of our method with other methods in the

literature is carried out using the Delta-hedging performances as a yardstick.

For that exercise, we calculate the delta parameter as:

∂c0
∂B∗

0

=
∂c0

∂S
(i)
0

∂S
(i)
0

∂B∗
0

=
∂c0

∂S
(i)
0

1

a1
, (4.18)

where ∂c0

∂S
(i)
0

is calculated by using formula (4.16) for u = S
(i)
0 :

∂c0

∂S
(i)
0

= B0

[
h2 g

′(z̃) +
∂ϕ0

∂S
(i)
0

φ(−h2 z̃)

]
+

+a1

[
h2 g(z̃) + ϕ0φ(−h2 z̃) + h1

(
−h2Φ(z̃) +

h2 + 1

2

)]
.(4.19)

The calculation of ∂ϕk

∂S
(i)
0

is shown in Appendix A.3.

The same methodology can be applied to other payoff structures. Addi-

tionally, we note that for pricing basket put options, defining p0 as the put

price, one can employ the put-call parity relationship:

p0(B
∗
0 , T,K

∗) = c0(B
∗
0 , T,K

∗) +K ∗e−rT − B∗
0 (4.20)

that can equivalently be written for any hedging parameter w.r.t. u as:

∂p0
∂u

=
∂c0
∂u

+
∂(K ∗e−rT − B∗

0 )

∂u
. (4.21)

5. Numerical Comparisons

In this section we first provide a short example of how the model is cali-

brated and show how the resulting approximated densities compare with the

true ones. We then investigate the performance of the proposed approxima-

tion both in a pricing and in a delta-hedging context.
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Figure 2: Calibration of single-stock European options.
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5.1. Model Calibration

All parameters (including δ0) excluding correlations are calibrated from

single-stock European options. All the correlations are estimated from his-

torical data. As an example, we consider a basket with two assets, IBM

and Microsoft. The calibration exercise is performed on European options

quotes available on 14/12/2012. Among the options available, we select

the ones with maturity closes to 1 year, the maturity of the basket op-

tions considered. The calibrated parameters are σ = 0.1552, λ̃ = 0.3151,

η = −0.3541, υ = 0.2403 and δ0 = 38.3615 for IBM and σ = 0.2785,

λ̃ = 0.0955, η = 0.0186, υ = 0.03 and δ0 = 5.3491 for Microsoft. Fig-

ure 2 reports, for the two companies, market option prices vs. model prices

for various strike levels.

The correlation estimated using the time series of daily returns equals

0.4274. We consider two baskets comprising these two stocks (aIBM =

1, aMicrosoft = −1 and aIBM = −3, aMicrosoft = 0.5) with maturity 1 year
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Figure 3: Approximated vs. true densities.
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and using the calibrated parameters we compare in Figure 3 the densities

resulting from the approximations 4GA, 4GB, 6GA, and 6GB with the true

ones (obtained by simulation). Moreover, the risk-free rate is r = 0.0526 and

the spot prices are $191.76 and $26.81 for IBM and for Microsoft, respec-

tively.

5.2. Pricing performances

The usefulness of a newly proposed method can be gauged by compar-

ing it with other established methods in the literature. The variants mGA,

mGB and mGAB—introduced in Section 4—of our Hermite approximation

approach are compared on a large set of simulated option-scenarios with the

method in Borovkova et al. (2007), (BPW) from now on, which is capable

of matching quite large ranges of skewness and kurtosis, is also supported
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by a Black-and-Scholes type pricing formula, is shown to be one of the best

available method, has a similar running time as our methodology and is,

consequently, our main competitor. In addition, the benchmark option price

is taken as the Monte Carlo with control variate methodology outlined in

Pellizzari (2001), henceforth MC, adapted to deal with assets having the dy-

namics specified by equation (3.4). The pricing performance of each method

is determined considering two measures of error: C1 and C2. C1 is the

percentage of ‘good prices’, defined as number of times the absolute percent-

age error under the specified method is lower than 2% over total number of

options:

C1j =
1

|O|

∑

i∈O

1APEi,j<2%

where O is the set of the option scenarios, |O| its cardinality, 1{·} the indicator

function, APEi,j =
∣∣∣Pi,j−MCi

MCi

∣∣∣ and Pi,j and MCi are the price of option

scenario i under method j and the benchmark price, respectively. C2 is the

mean absolute percentage error, calculated only relative to the options for

which the method was able to find a numerical solution, i.e.,

C2j =
1

|Oj|

∑

i∈Oj

APEi,j

where Oj ⊆ O represents the only option in O for which method j could

find a numerical solution for the moment matching procedure. In partic-

ular, a numerical solution is not found whenever the system of m equa-

tions for the moment matching procedure does not admit a solution, i.e.

the moments of the basket return are outside the moments’ domain of the

Hermite polynomial expansions (for mGA or mGB) and/or the log-normal

density (for the method of Borovkova et al. (2007)). For more details see
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Jondeau and Rockinger (2001). For the considered scenarios, the percent-

age of numerical solution found by the BPW method , mGA and mGB are

above 90%. We perform two separate pricing performance studies. The first

is based on the option scenarios described in Borovkova et al. (2007) and the

second based on 2,000 simulated options scenarios.

5.2.1. Comparison under the scenarios in Borovkova et al. (2007)

This section is a direct comparison with the method in Borovkova et al.

(2007) on the six basket options they considered. It is assumed that the i-th

asset in the basket follows the process described by SDE (3.4) with λ̃i = 0

and δ
(i)
0 = 0 and the other parameters as in Table 1 (i.e. the asset prices are

assumed to follow a geometric Brownian motion). The results are depicted

in Table 2: the BPW prices in the table had to be adjusted from the ones

in their paper because, to be consistent with the other models considered

in this paper, we are pricing basket options on equities and not on forward

contracts.

The numerical results indicate that 4GA and 4GB give, for these six bas-

ket options, exactly the same prices, and the two methods appear to be as

good as the BPW method according to the C1 criterion and to outperform

it according to the C2 criterion. The methods 6GA and 6GB underper-

form the other three methods and, consequently, for the baskets analysed

here, there is very little advantage in matching all six moments, the Hermite

approximation method working overall better when only the first four mo-

ments are matched. To further stress the superiority of our approximation

over competing methods, we remark that there are baskets for which the

BPW method cannot be used (because moments are not matched) while our
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method is still valid. One such case is easily obtained by changing a1 to -4

in the first basket of Table 1.

[Table 1 about here.]

[Table 2 about here.]

5.2.2. Comparison under a set of simulated scenarios

A general comparison is performed considering 2,000 generated options

scenarios. In the first 1,000 scenarios (henceforth, the first 1,000 scenarios

will be called ‘Set 1’) each asset in the baskets follows the shifted jump-

diffusion model with dynamics given by SDE (3.4) where the parameters

are drawn based on the following specifications: all σi are independently

uniformly distributed between 0.1 and 0.6; S
(i)
0 are uniformly distributed

between 70 and 130; the shifts δ
(i)
0 range uniformly between 0 and 20; the

intensities of the Poisson processes λ̃i are uniformly distributed between 0

and 0.2; the average jump size (ηi) is uniformly distributed between −0.3

and 0; and the volatility (υi) is uniformly distributed between 0 and 0.3.

Furthermore, the number of assets in the basket in each scenario is uniformly

distributed between 2 and 15, r is uniformly distributed between 0.0 and 0.1,

T is uniformly distributed between 0.1 and 1 years, the weights ai of the

assets in the basket are uniformly distributed between −1 and 1, the ratios

K ∗/B∗
0 are uniformly distributed between 0.8 and 1.2, and the correlation

matrix among assets is randomly generated satisfying the semi-positiveness

condition. The second 1,000 scenarios (henceforth ‘Set 2’) are identical to

the scenarios in Set 1 except for the average jump size (ηi) which is uniformly

distributed between −0.3 and 0.3.
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The number of simulations used when applying the Monte Carlo method

are between 105 and 106, depending on the number of assets in the baskets.

The methods we compare are 4GA, 4GB, 4GAB, 6GA, 6GB and BPW

methodology.

The results in relation to Set 1 and Set 2 are summarized in Tables 3

and 4, respectively. The two tables show similar results. Overall methods

4GA and 4GB have analogous performance in terms of C1 and C2 criteria,

with 4GB slightly better than 4GA. 4GA outperforms 4GB only for longer

maturities (greater than 0.5 years) scenarios under C1 measure and for near-

the-money scenarios under C2. Both 4GA and 4GB are robust to a change

in the risk-free rate. However, the performances of both methods improve

for longer maturities under C1 and worsen under C2. Comparing our two

Hermite approximations with the BPW method, it is clear that the latter

is not as good as the former at matching the model-implied characteristics

and that the fourth moment is necessary for pricing basket options. Both

4GA and 4GB show greater improvements on the BPW method the greater

the basket size. Finally, the method 4GAB outperforms the two methods

under C1, performing almost as well under C2. Consequently, one can use

this hybrid method for practical purposes.

A cross analysis of Table 3 and Table 4 shows that changes in the expected

jump intensity impact on the performances of the Hermite-approximate meth-

ods that are slightly better for ηi ∈ [−0.3, 0]. Additionally, the two tables

show the pricing performances when the methods mGA and mGB are used

for m = 6 moments. The method 6GB outperforms all the other while 6GA

also outperforms the other methods under C1 but underperforms 4GA and
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4GB under C2. While results may improve for this exercise when using more

moments matching, it is difficult to interpret moments larger than four.

[Table 3 about here.]

[Table 4 about here.]

Our numerical results reveal that our methodology improves the perfor-

mance of the approach described in Borovkova et al. (2007). Furthermore,

under our method, models that match the first six moments seem to pro-

duce some marginal performance improvement over models matching four

moments. In theory, one could use any number of moments m, a higher

m being associated with improved performance. However, since only the

first four moments have a clear association with known features of empirical

series– the mean, variance, skewness and kurtosis–, we recommend work-

ing with Hermite polynomials determined by matching only the first four

moments.

5.3. Delta-hedging performances

A comparison of Delta-hedging performance between our formula (4.19)

and the formula proposed in Borovkova et al. (2007) is illustrated in this

section. A sample of nS = 1, 000 simulated paths with a 1-week-interval

hedging rolling frequency is generated for six basket option scenarios. All

the scenarios have: Υ = 2, σ1 = 0.3, σ2 = 0.2, T = 0.5 years, S
(1)
0 = 110,

S
(2)
0 = 90, a1 = 0.7, a2 = 0.3, δ

(1)
0 = δ

(2)
0 = 20, λ̃1 = λ̃2 = 0.2, and

υ1 = υ2 = 0.2. Additionally, we consider for three of the scenarios r = 2%

and η1 = η2 = −0.3 and for the other three r = 5% and η1 = η2 = 0.3. The

strikes considered are K ∗ = {100, 104, 110}.

26

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



For each path, the option delta are calculated at each time step by the

three methods 4GA, 4GB and the BPW method. The evaluation of the

performances for the Delta-hedged portfolios is performed via two measures:

C3, i.e. the average hedging error among all the simulations

C3 =
1

nS

∑

i∈nS

HEi

and C4, i.e. the average quadratic hedging error, where the hedging error is

defined as the difference in values between hedging portfolio at the maturity

date and option’s payoff,

C4 =
1

nS

∑

i∈nS

HE2
i .

The results for the hedging performances are reported in Table 5. The

methods 4GA and 4GB produce good results and their performances are

almost identical on the six scenarios considered. For ηi = −0.3, the two Her-

mite expansion methods tend to super-hedge, as the measure C3 indicates,

although the average errors are almost negligible. However, when ηi = 0.3 on

average the hedging error is negative showing a sub-hedge and this is caused

by the high average jump size.

The BPW method also performs fairly well for the three scenarios with

ηi = −0.3 with virtually the same performances of 4GA and 4GB under the

measure C4. However, under these three scenarios, the new methods have

much better performances than the BPW method under the C3 measures (a

remarkable reduction of more than 25% is reached). When one considers the

positive average jump size (ηi = 0.3), also the method of Borovkova et al.

(2007) sub-hedges under each scenarios and both its C3 and C4 measures

of error are worse than the 4GA and 4GB ones.
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[Table 5 about here.]

5.4. A real-world example

Here we apply the delta-hedging formula to hedge a position in a Jun-

expire WTI-Brent futures spread option with strike price 6.5$ (Bloomberg

ticker BYM6P).9

The underlying assets are consider to follow two correlated displaced jump

diffusion. These are calibrated to single asset vanilla options on the futures.

The correlation between the two assets was estimated as the historical cor-

relation of log returns based on daily observations. The plot 4 illustrates

the comparison of the delta parameters calculated via our method A with

4 moments and the BPW method. We run the exercise from 20th January

2016 when the option price is 0.81$ to 11th February 2016 when the option

price is 0.95$.

9Please note that the WTI-Brent futures spread is directly quoted in the market but

for the sake of this exercise we consider the option driven by the two underlyings: WTI

crude futures (CLM6) and Brent futures (BZAM6). The weights of the the two futures

are 1 and -1, respectively
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Figure 4: Delta-Hedging comparison for a June-expire WTI-Brent futures spread

option from 20th January 2016 when the option price is 0.81$ to 11th February

2016 when the option price is 0.95$. Market data from Bloomberg. The underlying

spread price is described in the lower graph.
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6. Conclusions

One can account for the empirical characteristics of historical prices by

considering a shift into the jump-diffusion process underlying the assets of

a basket. However, recent techniques imposed strong assumptions on the

overall evolution dynamics of the basket, searching for closed-form solution

and repackaging of log-normal Black-Scholes type pricing formulae.

In this paper, we have highlighted a methodology that can handle bas-
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kets of assets following correlated shifted log-normal diffusions with jumps

and that is applicable whenever the spot price of the basket is not zero. We

demonstrated with numerical comparisons that our Hermite expansion ap-

proach provides pricing and hedging results for basket options that are as

good as competing methods, and in many cases superior.

The improved results emphasized in the paper are not surprising since the

technique is fundamentally based on matching the first four moments under

model specification. Thus, we allow granular specification of dynamics for

each asset but then we only need to determine the moments of the basket.

While our paper was focused on equity baskets, it is clear that the same

methodology can be applied for mixtures of assets and models, as long as

moments can be calculated easily.

Disclaimer : The views expressed are those of the authors and do not neces-

sarily reflect those of ING Bank.
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Appendix A. Computational Tools

Appendix A.1. Moments of the approximating variable J(Z)

The k-th moment of J(Z) =
∑m−1

k=0 ϕkHk(Z) (formula (4.4)) can be cal-

culated in closed form as a weighted sum of the moments of the standard
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normal variable Z. For m = 4, the moments of J are

Ẽ[J ] = ϕ0

Ẽ[J2] =

m−1∑

i=0

i!ϕ2
i

Ẽ[J3] = ϕ3
0 + (3ϕ2

1 + 6ϕ2
2 + 18ϕ2

3)ϕ0 + 6ϕ2
1ϕ2 + 36ϕ1ϕ2ϕ3 + 8ϕ3

2 + 108ϕ2ϕ
2
3

Ẽ[J4] = ϕ4
0 + (6ϕ2

1 + 12ϕ2
2 + 36ϕ2

3)ϕ
2
0 + (24ϕ2

1ϕ2 + 144ϕ1ϕ2ϕ3 + 32ϕ3
2 + 432ϕ2

ϕ2
3)ϕ0 + 3ϕ4

1 + 24ϕ3
1ϕ3 + 60ϕ2

1ϕ
2
2 + 252ϕ2

1ϕ
2
3 + 576ϕ1ϕ

2
2ϕ3 + 1296ϕ1ϕ

3
3

+60ϕ4
2 + 2232ϕ2

2ϕ
2
3 + 3348ϕ4

3.

Appendix A.2. Tools for the pricing formula (Proposition 4.2)

The Hermite polynomials satisfy the recursive relation

Hk(z) = zHk−1(z)−H ′
k−1(z) k = 1, 2, . . .

with H0(z) = 1 and where H ′
k(·) is the first derivative of Hk(·) with respect

to z. Since
∫ +∞

z̃
H0(z)φ(z)dz = Φ(−z̃), for k ≥ 1

∫ +∞

z̃

Hk(z)φ(z)dz =

∫ +∞

z̃

zHk−1(z)φ(z)dz −

∫ +∞

z̃

H ′
k−1(z)φ(z)dz.

Solving the second integral by parts and using φ′(z) = −zφ(z),

∫ +∞

z̃

Hk(z)φ(z)dz =

∫ +∞

z̃

zHk−1(z)φ(z)dz −Hk−1(z)φ(z) |
+∞
z̃ −

∫ +∞

z̃

zHk−1(z)φ(z)dz

= Hk−1(z̃)φ(z̃)

∫ +∞

z̃

J(z)φ(z)dz = g(z̃) + ϕ0Φ(−z̃). (A.1)

where g(·) is defined in formula (4.13).
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Given the orthogonality feature of the Hermite polynomials,
∫ z̃

−∞

Hk(z)φ(z)dz = −Hk−1(z̃)φ(z̃)

∫ z̃

−∞

J(z)φ(z)dz = −g(z̃) + ϕ0Φ(z̃). (A.2)

In the proof of Proposition 4.2, formula (A.1) and formula (A.2) are used for

B0 > 0 and B0 < 0, respectively.

Appendix A.3. Tools for the Hedging formula (Proposition 4.3)

In the following, we calculate ∂ϕk

∂u
using a similar technique to that in

Borovkova et al. (2007). Consider the ‘moment-matching’ system of equa-

tions in (4.6), where the formulae for the expectations are as in Appendix A.1,

and differentiate both sides of each equation with respect to u. The quanti-

ties ∂ϕk

∂u
are given by the solution of this new system of equations when the

coefficients of the Hermite polynomials ϕk are the ones used for the pricing

(solution of the first system of equations).

As an exemplification, we explicitly write the formula of the first derivative

of E[Xk
T ] wrt S

(1)
0 , being useful for the delta parameter in function (4.19):

∂Ẽ[Xk
T ]

∂S
(1)
0

=

k∑

i=0

(
k

i

)
(−h1 )

i

(B0erT )k−i

(
∂Ẽ[BT

k−i]

∂S
(1)
0

− a1
(k − i)Ẽ[BT

k−i]

B0

)
, (A.3)

where ∂Ẽ[Bt]

∂S
(1)
0

= a1 and for k > 1

∂Ẽ[Bk
t ]

∂S
(1)
0

=
∂Ẽ[Bk

t ]

∂S
(1)
0

= ka1e
(r+ω1)t

Υ∑

i1=1

· · ·

Υ∑

ik−1=1

(
ai1S

(i1)
0 e(r+ωi1

)t
)
× · · ·

· · · ×
(
aik−1

S
(ik−1)
0 e(r+ωik−1

)t
)
mgf(e1 + ei1 + . . .+ eik−1

),

and mgf(·) is defined in (4.9). Derivatives with respect to other variables u

are calculated in a similar way.
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Table 1: Specification of the basket option scenarios in Borovkova et al. (2007)

Basket 1 Basket 2 Basket 3 Basket 4 Basket 5 Basket 6

Stock Prices [100,120] [150,100] [110,90] [200,50] [95,90,105] [100,90,95]

Volatilities [0.2,0.3] [0.3,0.2] [0.3,0.2] [0.1,0.15] [0.2,0.3,0.25] [0.25,0.3,0.2]

ai [-1,1] [-1,1] [0.7,0.3] [-1,1] [1,-0.8,-0.5] [0.6,0.8,-1]

Correlations ρ1,2 = 0.9 ρ1,2 = 0.3 ρ1,2 = 0.9 ρ1,2 = 0.8

ρ1,2 = 0.9, ρ1,2 = 0.9,

ρ2,3 = 0.9 ρ2,3 = 0.9

ρ1,3 = 0.8 ρ1,3 = 0.8

Strike price 20 -50 104 -140 -30 35

Notes: Other relevant parameters are r = 3%, 1-year maturity, λ̃i = 0 and δ
(i)
0 = 0. The first

row indicates the stock prices S
(i)
0 , the second the volatilities σi, the third the weights ai of

the assets in the basket, the forth the correlation ρi,j for each couple (i, j) of assets and the

fifth the strike K ∗. The only difference compared with the scenarios in Borovkova et al.

(2007) is that they price options on basket of forward contracts, while we price options on

basket of equities.
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Table 2: Comparison over different option scenarios

# Basket
MC

BPW 4GA 4GB 6GA 6GB
(SD)

1
8.2263

8.2442 8.1977 8.1977 8.2222 8.2222
(0.0031)

2
16.47

16.6215 16.4424 16.4424 16.4631 16.3654
(0.0052)

3
12.5887

12.5911 12.5695 12.5695 12.5888 12.5888
(0.0005)

4
1.1459

1.1456 1.1453 1.1453 1.0938 1.1162
(0.0008)

5
7.4681

7.4951 7.4563 7.4563 7.4555 7.4555
(0.0027)

6
9.7767

9.7989 9.7628 9.7628 9.7856 9.7856
(0.0030)

C1 100.00% 100.00% 100.00% 83.33% 83.33%

C2 0.30% 0.17% 0.17% 0.82% 0.59%

Notes: This table reports the comparison on the six basket option scenarios in Borovkova et al.

(2007) (see Table 1). The second column shows the prices (standard deviation in bracket)

calculated using the Monte Carlo method with control variate in Pellizzari (2001) with 106

simulations that are considered as benchmark. The third column shows the prices calculated

by the method in Borovkova et al. (2007), BPW in the table. The last four columns contain

the prices under the methods mGA and mGB when m = 4 and m = 6. The last two rows

show the pricing performances: C1 is the percentage of absolute percentage errors smaller

than 2% (‘good price’), and C2 is the mean absolute percentage error.
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Table 3: Pricing performance comparison: Set 1 (negative average jump-sizes)

r T K ∗

B∗

0

≤ 0.05 > 0.05 ≤ 0.5 > 0.5 ≤ 0.98 (0.98, 1.02] > 1.02 Total

C1

BPW 58.86% 61.38% 69.72% 50.79% 64.82% 66.98% 53.62% 60.10%

4GA 76.77% 74.39% 69.51% 81.50% 74.12% 74.53% 77.38% 75.60%

4GB 77.36% 75.20% 72.97% 79.53% 74.34% 76.42% 78.28% 76.30%

4GAB 82.48% 80.89% 80.08% 83.27% 79.42% 81.13% 84.16% 81.70%

6GA 85.46% 84.75% 85.68% 84.58% 81.93% 88.30% 87.56% 85.11%

6GB 88.99% 90.58% 86.37% 92.93% 89.60% 86.17% 90.80% 89.78%

C2

BPW 1.44% 1.29% 1.00% 1.73% 1.15% 1.35% 1.59% 1.37%

4GA 0.42% 0.39% 0.29% 0.50% 0.46% 0.43% 0.34% 0.40%

4GB 0.41% 0.39% 0.29% 0.50% 0.44% 0.45% 0.35% 0.40%

4GAB 0.43% 0.38% 0.30% 0.50% 0.44% 0.44% 0.36% 0.41%

6GA 0.58% 0.58% 0.54% 0.61% 0.56% 0.55% 0.60% 0.58%

6GB 0.36% 0.38% 0.42% 0.32% 0.34% 0.64% 0.33% 0.37%

Scenarios 508 492 492 508 452 106 442 1,000

Notes: This table contains the summary of the performances of several methods for pricing options in Set 1. The assets

follow equation (3.4) where the parameters are randomly generated and uniformly distributed in the following ranges:

Υ ∈ [2, 15], r ∈ (0; 0.1], σi ∈ [0.1; 0.6], T ∈ [0.1; 1], S
(i)
0 = [70; 130], ai ∈ [−1; 1], K∗

B∗
∈ [0.8; 1.2], δ

(i)
0 ∈ [0; 20],

λ̃i ∈ [0; 0.2], ηi ∈ [−0.3; 0] and υi ∈ [0; 0.3] for all i = 2, · · · ,Υ . In each row the results per method are shown:

BPW stands for the method in Borovkova et al. (2007), mGA and mGB are the Hermite approximation methods

matching the first m moments of XT with m ∈ {4, 6}. Furthermore, 4GAB is a mixture of 4GA and 4GB and returns

the solution of the method that correctly matches the moments if only one of 4GA and 4GB works properly, or the

solution of the method that is the worst out of the two. The Monte Carlo with control variate in Pellizzari (2001) is

the benchmark price.
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Table 4: Pricing performance comparison: Set 2 (positive and negative average jump-sizes)

r T K∗

B∗

0

≤ 0.05 > 0.05 ≤ 0.5 > 0.5 ≤ 0.98 (0.98, 1.02] > 1.02 Total

C1

BPW 52.95% 57.72% 65.04% 45.87% 59.73% 57.55% 50.23% 55.30%

4GA 72.24% 72.56% 65.65% 78.94% 70.80% 68.87% 74.89% 72.40%

4GB 74.02% 71.75% 68.70% 76.97% 71.46% 70.75% 74.89% 72.90%

4GAB 78.15% 77.24% 74.80% 80.51% 75.88% 73.58% 80.54% 77.70%

6GA 82.68% 84.96% 80.08% 87.40% 82.74% 83.96% 84.84% 83.80%

6GB 88.19% 90.04% 83.33% 94.69% 87.83% 88.68% 90.50% 89.10%

C2

BPW 1.59% 1.42% 1.18% 1.84% 1.26% 1.55% 1.74% 1.51%

4GA 0.59% 0.54% 0.46% 0.65% 0.64% 0.61% 0.49% 0.57%

4GB 0.57% 0.55% 0.46% 0.65% 0.62% 0.66% 0.48% 0.56%

4GAB 0.59% 0.55% 0.48% 0.66% 0.62% 0.68% 0.49% 0.57%

6GA 0.76% 0.70% 0.71% 0.75% 0.67% 0.82% 0.77% 0.73%

6GB 0.50% 0.52% 0.53% 0.49% 0.46% 0.62% 0.53% 0.51%

Scenarios 508 492 492 508 452 106 442 1,000

Notes: This table contains the summary of the performances of several methods for pricing options in Set 2. The assets

follow equation (3.4) where the parameters are randomly generated and uniformly distributed in the following ranges:

Υ ∈ [2, 15], r ∈ (0; 0.1], σi ∈ [0.1; 0.6], T ∈ [0.1; 1], S
(i)
0 = [70; 130], ai ∈ [−1; 1], K∗

B∗
∈ [0.8; 1.2], δ

(i)
0 ∈ [0; 20],

λ̃i ∈ [0; 0.2], ηi ∈ [−0.3; 0.3] and υi ∈ [0; 0.3] for all i = 2, · · · ,Υ . For other information see Table 3.
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Table 5: Delta-hedging performance comparison

Scenario C3 C4 Scenario C3 C4 Scenario C3 C4

1

r = 2% 0.02 0.10

2

r = 2% 0.04 0.11

3

r = 2% 0.07 0.12 BPW

ηi = −0.3 0.01 0.10 ηi = −0.3 0.03 0.11 ηi = −0.3 0.06 0.12 4GA

K ∗ = 100 0.01 0.10 K ∗ = 104 0.03 0.11 K ∗ = 110 0.059 0.12 4GB

4

r = 5% -0.66 0.59

5

r = 5% -0.64 0.56

6

r = 5% -0.62 0.52 BPW

ηi = 0.3 -0.34 0.46 ηi = 0.3 -0.32 0.45 ηi = 0.3 -0.29 0.45 4GA

K ∗ = 100 -0.34 0.46 K ∗ = 104 -0.32 0.45 K ∗ = 110 -0.29 0.45 4GB

Notes: This table contains the summary of the Delta-hedging performances of three methods: BPW stands for the method

in Borovkova et al. (2007) and 4GA and 4GB are the Hermite approximation methods matching the first 4 moments of

XT . The measures of error considered are: C3– average error, C4– the average quadratic hedging error. The six scenarios

considered are: Υ = 2, σ1 = 0.3, σ2 = 0.2, T = 0.5 years, S
(1)
0 = 110, S

(2)
0 = 90, a1 = 0.7, a2 = 0.3, δ

(1)
0 = δ

(2)
0 = 20,

λ̃i = 0.2, and υ1 = υ2 = 0.2 and the other parameter values are under the ‘Scenario’ columns.
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