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ABSTRACT: We propose a novel data-driven approach aiming to reliably
distinguish discriminatory metabolites from nondiscriminatory metabolites for a
given spectroscopic data set containing two biological phenotypic subclasses. The
automatic spectroscopic data categorization by clustering analysis (ASCLAN)
algorithm aims to categorize spectral variables within a data set into three clusters
corresponding to noise, nondiscriminatory and discriminatory metabolites regions.
This is achieved by clustering each spectral variable based on the r2 value
representing the loading weight of each spectral variable as extracted from a
orthogonal partial least-squares discriminant (OPLS-DA) model of the data set. The
variables are ranked according to r2 values and a series of principal component
analysis (PCA) models are then built for subsets of these spectral data corresponding
to ranges of r2 values. The Q2X value for each PCA model is extracted. K-means
clustering is then applied to the Q2X values to generate two clusters based on
minimum Euclidean distance criterion. The cluster consisting of lower Q2X values is
deemed devoid of metabolic information (noise), while the cluster consists of higher Q2X values is then further subclustered into
two groups based on the r2 values. We considered the cluster with high Q2X but low r2 values as nondiscriminatory, while the
cluster with high Q2X and r2 values as discriminatory variables. The boundaries between these three clusters of spectral variables,
on the basis of the r2 values were considered as the cut off values for defining the noise, nondiscriminatory and discriminatory
variables. We evaluated the ASCLAN algorithm using six simulated 1H NMR spectroscopic data sets representing small, medium
and large data sets (N = 50, 500, and 1000 samples per group, respectively), each with a reduced and full resolution set of
variables (0.005 and 0.0005 ppm, respectively). ASCLAN correctly identified all discriminatory metabolites and showed zero
false positive (100% specificity and positive predictive value) irrespective of the spectral resolution or the sample size in all six
simulated data sets. This error rate was found to be superior to existing methods for ascertaining feature significance: univariate t
test by Bonferroni correction (up to 10% false positive rate), Benjamini−Hochberg correction (up to 35% false positive rate) and
metabolome wide significance level (MWSL, up to 0.4% false positive rate), as well as by various OPLS-DA parameters: variable
importance to projection, (up to 15% false positive rate), loading coefficients (up to 35% false positive rate), and regression
coefficients (up to 39% false positive rate). The application of ASCLAN was further exemplified using a widely investigated renal
toxin, mercury II chloride (HgCl2) in rat model. ASCLAN successfully identified many of the known metabolites related to renal
toxicity such as increased excretion of urinary creatinine, and different amino acids. The ASCLAN algorithm provides a
framework for reliably differentiating discriminatory metabolites from nondiscriminatory metabolites in a biological data set
without the need to set an arbitrary cut off value as applied to some of the conventional methods. This offers significant
advantages over existing methods and the possibility for automation of high-throughput screening in “omics” data.

Metabolic profiling of biological samples using proton
nuclear magnetic resonance (1H NMR) spectroscopy

and mass spectrometry (MS) generates complex metabolic
phenotypes that can be mined to uncover important biological
information about the biological system.1,2 One of the critical
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aspects of data mining is to accurately extract the important
spectral features that contribute to metabolic distinctions
between biological classes using multivariate data analysis
techniques, such as orthogonal partial least squares-discrim-
inatory analysis (OPLS-DA).3 Typically, this involves the use of
multivariate parameters that provide a measurement of the
relative contribution of each spectral variable to the class
separation within a data set, such as loading weights,4,5 variable
importance in the projection (VIP),6−8 loading coefficients,9

and regression coefficients.1

In recent years, metabolic profiling studies have been applied
to complex data sets, such as those generated from large-scale
epidemiological cohorts investigating risk of cardiovascular
diseases1,10 and cancers11 or to investigate metabolic variation
in response to drug treatment in terms of drug toxicity,12 drug
metabolism,13 and drug effect14 in both human13,15 and
animal11 studies. Particularly in the case of human studies,
the diversity in genetic and environmental background has been
shown to make the discovery of genuine discriminatory
metabolites for disease state or response to therapeutic
intervention challenging in terms of selecting true biomarkers
from biological noise. A series of statistical spectroscopic
correlation techniques, such as statistical total correlation
spectroscopy (STOCSY),16 statisical heterospectroscopy
(SHY),17 and subset optimization by reference matching
(STORM)18 have proven useful for enhancing biomarkers
recovery from data with inherent variation. However, although
these algorithms can identify correlated structures from subsets
of samples within a model, thereby aiding structural elucidation
of biomarkers, compositional variability relating to substructure
within sample classes still proves to be problematic. More
recently, a variant of statistical spectroscopic techniques,
statistical homogeneous cluster spectroscopy (SHOCSY)19 in
combination with OPLS-DA has been developed to ensure
reliable biomarker recovery in data sets that show a high degree
of variation in response or a dichotomized response.
An increasingly common strategy for assigning significance to

metabolic features in spectral data sets is to combine univariate
approaches with multivariate approaches. For example, top
ranked spectral features extracted from discriminant analyses
are subjected to a t test analysis corrected for multiple testing
using methods, such as Bonferroni correction to control the
family wise error rate (FWER),1,24 or Benjamini−Hochberg
correction to control the false discovery rate (FDR).7 Neither
of these approaches are optimal for spectroscopic data sets;
Bonferroni correction is often deemed to be too stringent for
metabolic profiling studies due to the colinearity of the
metabolic signatures, which serves to increase the false negative
discovery rate,20 while Benjamini−Hochberg correction has
been shown to increase the false positive discovery rate.
Chadeau-Hyam et al.21 proposed the metabolome wide
significance level (MWSL) approach to control for the family
wise error rate by the use of permutation testing. Unlike the
Bonferroni and Benjamini−Hochberg methods, the MWSL
approach calculates a cutoff p-value to differentiate discrim-
inatory from nondiscriminatory spectral variables based on the
given data set. In terms of the performance, the MWSL has
been shown to generate comparable results to the Bonferroni
correction approach. However, to date, there has been no
general consensus in the data analysis strategy for defining rules
for the selection of discriminatory metabolites. Given the
increasing number of application of metabolic profiling studies
aiming to define biological or clinical phenotypes and to

identify potential discriminatory biomarkers reflecting those
phenotypes, a reliable and objective method for biomarker
selection is required.
Here, we propose automatic spectroscopic data categoriza-

tion by clustering analysis (ASCLAN), a novel data-driven
pipeline aiming to objectively extract discriminatory metabolic
signatures based on the strength of association of each variable
with the biological classes. The ASCLAN algorithm is based on
first constructing an OPLS-DA model to achieve optimal
differentiation of the biological classes and establish correlation
coefficients between each spectral variable and the OPLS-DA
model scores (r2). The r2 value thus gives the relative
contribution of a given spectral variable to the class separation
within the data set. The ASCLAN algorithm subsequently
creates an additional feature (Q2X), by building PCA models
corresponding to different subsets of spectral variables with
different r2 values each at a 0.1 increment. These metrics of
spectral features (r2 and Q2X) are then used to categorize the
spectral variables, by K-means clustering analysis in a two-step
fashion, into three groups corresponding to noise, non-
discriminatory metabolites and discriminatory metabolites/
candidate biomarkers. The cluster of spectral variables with low
Q2X and r2 are considered noise; while cluster with high Q2X
but low r2 values are considered nondiscriminatory metabolites;
and cluster with both high r2 and Q2X values are discriminatory
metabolites/biomarkers.
The ASCLAN algorithm was evaluated using six simulated

1H NMR spectra data sets with different sample sizes and
spectral variable resolutions and was subsequently exemplified
using a biological data set corresponding to a mercury II
chloride renal toxicity study in a rat model.

■ MATERIALS AND DATA ANALYSIS
Data Sets. Simulated 1H NMR Spectral Data. To evaluate

the ASCLAN algorithm for its ability to accurately differentiate
discriminatory variables from nondiscriminatory variables from
spectral data sets, six simulated data sets were generated with
different sample sizes and spectral variable resolutions designed
to emulate paraquat-induced renal toxicity as an exemplar
disease condition. These simulated spectral data sets were
designed to represent a two class problem, corresponding to
urine samples from a toxic versus control state. Within each
simulated data set, the class representing paraquat toxicity
contained higher signal intensities representing lactate (δ1.32,
doublet (d), δ 4.10, quartet (q)), and L-alanine (δ 1.46, d, δ
3.76, q) and lower signal intensities for creatinine (δ 3.05,
singlet (s), δ 4.05, s) and citrate (δ 2.53, dd, δ 2.65, dd) when
compared to the control class. Sample sizes of 50, 500, and
1000 spectra in each class were chosen to represent typical
studies of small, medium, and large metabolic profiling data
sets, respectively. For each of these data sets, we generated two
levels of spectral resolutions 0.005 and 0.0005 ppm to represent
a lower and full resolution data sets, respectively. The lower
resolution data sets consisting of 2000 spectral variables, of
which 45 spectral variables constitute the four discriminatory
metabolites (alanine, lactate, creatinine, and citrate). The
reduced resolution data sets were generated by binning the
full resolution data sets with 20 000 spectral variables (consist
of 466 discriminatory variables). The means and variances of
the signal intensities for these metabolites are shown in the
Table S-1. The concentrations of the remaining metabolites
were simulated using the software default parameters for the
whole data set introducing nonsystematic variance across the
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data set. The simulated spectra covered a chemical shift region
from δ 0 to δ 10 and the software default parameters were

employed to generate random peak shift between spectra (with
a standard deviation set to 0.05 ppm at pH 7.4) to mimic true

Figure 1. Schematic diagram of the ASCLAN algorithm for a data set consisting of two biological classes.
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natural variation in the data set. These data set were simulated
by MetAssimulo software22 using 1H NMR metabolite signals
information from the Human Metabolome DataBase
(HMDB).23

Renal Toxicity Model.Mercury II chloride (HgCl2) is widely
used model of acute renal proximal tubular toxicity.24 The
accumulation of Hg2+ in the renal tubules can lead to extensive
damage to the proximal tubular epithelium and renal failure
associated with low molecular weight proteinuria, calciuria,
phosphaturia, and general amino aciduria.24−26 A data set
consisting of 1H NMR urine spectra acquired at 600 MHz from
Sprague−Dawley rats (N = 10) 24 h after treatment with a dose
of HgCl2 at 0.75 mg/kg in 0.9% saline and the predose were
used. Previous studies have shown that HgCl2 toxicity is
characterized by lower urinary excretion of citrate, hippurrate,
succinate and 2-oxoglutarate and increased excretion of glucose,
organic acids (3-D hydroxybutyrate, lactate) and amino acids
(e.g., valine, alanine).24,27−29 The animal husbandry and
spectral acquisition parameters have been detailed in previous
publications.24 In this study, we compared the urine samples
collected predose and 24 h post administration of HgCl2.
NMR Spectroscopy. An aliquot of 400 μL from each urine

sample was added to 200 μL of sodium phosphate buffer (0.2
M Na2HPO4 in H2O and 0.2 M NaH2PO4 in 80:20 H2O:D2O,
pH 7.4) containing 1 mM sodium 3-trimethylsilyl-
[2,2,3,3-2H4]-propionate (TSP) and 3 mM sodium azide.
Samples were centrifuged at ∼1800 g for 5 min to remove any
solid debris. 1H NMR spectra of urine were acquired using a
Bruker AVANCE 600 MHz spectrometer and were measured
at 300 K using a Bruker flow-injection system. A standard pulse
sequence using the first increment of a NOE sequence to
achieve irradiation of the water frequency during the mixing
time and relaxation delay was employed. The total spectral
acquisition time was ∼4 min per urine sample.
Pretreatment of NMR Spectra. 1H NMR urine spectra were

phased and baseline corrected and referenced to the chemical
shift of TSP at δ 0.0. The region between water and urea
resonances δ 4.5−δ 7.0 was excluded, leaving chemical shift
regions between δ 0.7−4.5 and δ 7.0−9.0, giving a total of 9494
variables and a resolution of 0.0006 ppm. Spectra with poor
water suppression and distorted baselines were identified
visually and subsequently excluded from subsequent analysis.
The resulting numbers of samples involved in the analysis were
N = 7 for baseline (t0) and N = 8 for 24 h postdose (t24).
Automatic Spectroscopic Data Categorization by

Clustering Analysis (ASCLAN). Algorithm Developed
Consisted of Three Steps. Step 1: OPLS-DA Modeling. An
OPLS-DA model was calculated for each data set and the
model was considered to be valid when the 7-fold cross
validation (CV) Q2Y statistic, providing a measure of
predictivity of the model, was significantly higher than the
Q2Y obtained by a permutation test based on 100 iterations (p
< 0.05). For models returning a valid Q2Y statistic, the loading
weights, r2, was calculated for each spectral variable. The r2 was
calculated as

=
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t X
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where st and sXi
are the standard deviations of score vector t and

spectral variable Xi, respectively. T indicates the transpose of
the vector. The r2 values of all spectral variables were then

normalized giving values of zero to one, where one represents
maximal contribution of the variable relating to the class of the
samples.
The spectral data were then sorted according to the r2 values

for each spectral variable and ranked from lowest to highest in
0.1 increments giving a total of 10 spectral variable subsets.
Thus, groups of variables within the subsets corresponding to
the higher r2 values were more likely to be associated with class
of toxicity.

Step 2: PCA Modeling. A separate PCA model was
constructed for each of the spectral variable subsets previously
sorted according to the r2 values. For each PCA model
(corresponding to r2 increments of 0.1), a 7-fold cross
validation statistic, Q2X value was calculated. Typically, the
PCA models consist of subset of spectral variables with low r2

values, tend to generate a low Q2X value as these spectral
variables usually consist of random noise or variables that lack
metabolic information. Conversely, the calculated Q2X values
for the PCA models tend to improved when the PCA models
are generated using spectral variables that are rich in metabolic
information relating to a systemic perturbation. Thus, after step
1 and 2 described above, each spectral variable is effectively
characterized by an r2 value, corresponding to the loading
weight as obtained from the OPLS-DA model, and a Q2X value
representing the 7-fold cross validation statistics as extracted
from the PCA model.

Step 3: Assignment of Discriminatory Metabolites by K-
Means Clustering. K-means clustering30 of the “proxy” spectral
features (in terms of Q2X and r2 values) was performed by
minimum Euclidean distance criterion in a two-step approach.
Initially, the spectral variables were clustered into two groups
based on the Q2X values. The cluster that consists of spectral
variables showing lower Q2X (and typically low r2) was deemed
to be devoid of any metabolic information relating to the class
of sample. These spectral variables were considered to
correspond to noise regions within the spectra and were
excluded from further analysis. The cluster that consists of
spectral variables showing higher Q2X values was then further
subclustered into two groups based on the r2 value of each
variable. The application of this K-means clustering approach
thus enabled the grouping of spectral variables based on the
inherent metabolic features of the spectral variable, rather than
relying on the user to arbitrary defining a cutoff value, into
three clusters: (i) noise regions of the spectra showing low Q2X
and r2 values; (ii) nondiscriminatory metabolites, consisting of
spectral variables corresponding to structured signals that do
not contribute to the differentiation between classes, these
variables often show high Q2X but low r2 values; and (iii)
discriminatory metabolites, these spectral variables consist of
structured signals, which contribute to the differentiation
between classes. These discriminatory metabolites tend to
show high Q2X and r2 values. The boundaries of these three
clusters, based on the r2 values, were considered as the inherent
cut off values for noise, nondiscriminatory and nondiscrimina-
tory metabolites regions.
A schematic diagram describing the ASCLAN algorithm is

shown in Figure 1. All calculations and the ASCLAN algorithm
were written in MATLAB (R2012a, Mathworks, Natick, USA)
environment. The ASCLAN encrypted matlab code is available
in Supporting Information. The authors will also illustrate how
to use the ASCALN code in more details in author’s webpage.

Data Analysis. All spectral data from both the simulated
data sets and the HgCl2 data set were normalized by the
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probabilistic quotient normalization (PQN)31 method using
the median spectrum as a reference. The spectroscopic data
were mean centered and scaled to unit variance prior to any

data analysis. The ASCLAN algorithm was applied to
distinguish nondiscriminatory and discriminatory spectral
variables in each simulated 1H NMR data set. The ability for

Figure 2. Distribution of loading coefficients, r2, indicating noise, nondiscriminatory and discriminatory metabolites for simulated data sets with
reduced spectral resolution (panel on the left) and full spectral resolution (panel on the right) and for data set sizes of 50 samples per group (a and
b), 500 per group (c and d), and 1000 per group (e and f).
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the algorithm to correctly identify discriminatory metabolites
was compared to the existing methods using various parameters
commonly used to show the importance of a variable within the
OPLS-DA model. This includes the VIP, loading coefficient
and regression coefficient. The VIP for each spectral variable is
calculated by

∑=
∑ = =

J
Y

r Y
SS

SSVIP
( )

( )
p

pj
p
P

p

P

pj
1 1

2

where J is the number of spectral variables, P is the number of
correlated variables in spectral data, rpj

2 is the loading weight of
the pth latent variable of the jth spectral variable, SSp is the
percentage of dummy matrix Y explained by the pth latent
variable. Here, we considered a spectral variable as discrim-
inatory when the VIP value was greater than one.32 For
methods based on the OPLS-DA loading coefficients and
regression coefficients, the significance of a spectral variable was
estimated by jack-knifing resampling method as described in
Wiklund et al.9 A spectral variable was considered to be
discriminatory if the confidence interval of the loading
coefficient and regression coefficient did not include zero. In
addition, we also compared the accuracy in differentiating
discriminatory metabolites using univariate t test analysis
adjusting for multiple comparisons by Bonferroni correction,
Benjamini−Hochberg correction and metabolome wide sig-
nificance level (MWSL) methods. The Bonferroni correction
considered a spectral variable as a discriminatory metabolite
when the p-value <0.05/total number of spectral variables. For
Benjamini−Hochberg correction, the spectral variables were
sorted according to their p-values in an ascending order. The p-
value for each spectral variable was adjusted by (0.05× rank of
the variable)/total number of spectral variables. The p-value for
MWSL was obtained by permutation and was calculated by
(0.05 × M)th smallest value in Q, where M is the number of

permutations, and Q = (q1, q2, ...qM), where q corresponds to
the smallest p-value of all spectral variables obtained by a
permutation.
The ability of the ASCLAN approach in reliably extracting

and differentiating the four discriminatory metabolites (lactate,
alanine, citrate, and creatinine) from noise or nondiscrimina-
tory metabolites was initially assessed using six simulated data
sets. The accuracy of the ASCLAN method was then compared
to the six conventional approaches mentioned above. In
addition, the overall performance was also evaluated by the
percentage of sensitivity, specificity and the positive prediction
value (PPV), and these were calculated using the equations as
shown below

= ×
P

sensitivity
TP

100%

= −
−

×
N P

specificity 1
FP

100%

=
+

×PPV
TP

TP FP
100%

where true positive (TP) corresponds to the spectral variables
correctly identified as discriminatory metabolites and false
positive (FP) indicates spectral variables incorrectly identified
as discriminatory metabolites. P is the number of spectral
variables for the discriminatory metabolites and N the total
number of spectral variables within the data set. In the
simulated data sets with reduced resolution, where N = 2000
and P = 45 (consisting of 16 spectral variables for lactate, 9 for
alanine, 10 each for citrate and creatinine) and, for full
resolution, N = 20 000 and P = 466 (consisting of 156 spectral
variables for lactate, 96 for alanine, 108 for citrate and 106 for
creatinine). PPV indicates the probability of correctly

Table 1. Performance Metrics for Sensitivity, Specificity, and Positive Predictive Value (PPV), Expressed in %, Comparing
ASCLAN Method to Conventional Methods Based on OPLS-DA Parameters and Univariate t-Testing Adjusting for Multiple
Correction Testing

reduced resolution (0.005 ppm) full resolution (0.0005 ppm)

method performance N = 50 per group N = 500 per group N = 1000 per group N = 50 per group N = 500 per group N = 1000 per group

ASCLAN sensitivity 93.3 82.2 77.8 72.3 56.7 57.3
specificity 100 100 100 100 100 100
PPV 100 100 100 100 100 100

VIP sensitivity 100 100 100 99.8 99.8 99.4
specificity 87.2 95.4 95.7 83.7 93.6 94.3
PPV 27.0 50.6 52.3 12.8 27.0 29.6

loading coefficient sensitivity 100 100 100 99.8 1 99.8
specificity 84.6 65.8 56.3 87.3 71.1 62.2
PPV 23.4 12.1 9.7 15.8 7.4 6.0

regression coefficient sensitivity 100 100 100 99.8 1 99.8
specificity 83.9 64.9 55.6 86.1 70.0 61.1
PPV 22.6 11.8 9.6 14.6 7.4 5.8

Benjamini−Hochberg sensitivity 100 100 100 99.8 100 99.8
specificity 87.9 73.2 65.5 87.6 72.7 64.6
PPV 16.0 7.9 6.3 16.1 8.0 6.3

Bonferroni sensitivity 100 100 100 94.9 99.8 99.6
specificity 98.6 92.9 88.0 99.2 94.4 89.6
PPV 61.6 24.5 16.7 74.2 29.8 18.6

MWSL sensitivity 100 93.3 97.8 86.7 97.1 88.9
specificity 99.5 99.7 99.7 100 100 99.9
PPV 83.3 87.5 89.8 93.3 92.3 93.5
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identifying the spectral variables that are discriminatory
metabolites for the data sets.

■ RESULTS AND DISCUSSION
Performance of ASCLAN for Identifying Discrimina-

tory Metabolites Compared to Standard Methods Using
Simulated Data Sets. Six simulated data sets with different
sample sizes and spectral resolutions were used to assess the
ability of ASCLAN to correctly identify spectral variables as
discriminatory metabolites. The OPLS-DA models constructed
for all simulated data sets showed all the models were valid with
Q2Y statistics >0.85, and permutation test p-value <10−5 (Table
S-2). Using the boundaries between each K-means cluster for
noise, nondiscriminatory metabolites and discriminatory
metabolites, we found the r2 cutoff values for discriminatory
metabolites varied from data set to data set and were affected
by the resolution of the data set, particularly for small data sets
(N = 50), where the r2 cut off values for discriminatory
metabolites was 0.60 for reduced resolution and 0.49 for full
resolution, Figure 2. As the sample size in each group increased,
the r2 cutoff values for discriminatory metabolites remained
stable, with r2 cutoff values of 0.60, for data sets with reduced
resolution. However, for full resolution data sets the r2 cutoff
values slightly increased to 0.66 for the medium and large data
sets. This demonstrates that the ASCLAN approach is versatile
and capable of defining optimal cut off values based on inherent
features within the data sets Based on the results from the six
simulated data sets, we found the ASCLAN approach were able
to differentiate discriminatory signals from nondiscriminatory
signals, Table S-3. It can be seen that the ASCLAN method
correctly considered the majority of the signal variables

associated with the four discriminatory metabolites from the
data sets with reduced resolution: for lactate (N = 16),
ASCLAN correctly identified all 16 variables for the small data
set; 11 variables for the medium size data set and 12 variables
for the large data set; for alanine (N = 9), all 9 variables for the
small data set; 8 variables for the medium size data set and 6
variables for the large data set; for citrate (N = 10), 9, 8, and 8
variables for the small, medium and large data sets respectively;
and for creatinine (N = 10), 9 variables were correctly identified
irrespective of the sample size. This gave an overall sensitivity
of 93.3%, 82.2%, and 77.8% for the small, medium and large
data set, respectively, Table 1. A similar trend was observed for
full resolution data sets although the larger data sets show
slightly lower sensitivity (between 56.7% to 72.3%) compared
to the small data set (between 77.8% to 93.3%). The sensitivity
of ASCLAN was generally lower than all of the other six
methods, Table 1. The lower sensitivity of ASCLAN was
attributed to the tails of the discriminatory metabolites being
considered as nondiscriminatory because of their lower r2

values in comparison to the peaks of the discriminatory
metabolites with higher r2 values. The summary results for the
data set with full resolution and N = 50 in each group is shown
in Figure 3. Despite the relatively lower sensitivity of ASCLAN
compared to the six existing methods, the ASCLAN algorithm,
which is based on a data driven approach, was reliable in
correctly identifying all four discriminatory metabolites in all six
simulated data sets. Although ASCLAN (Figure 3a) considered
some signal variables (tail ends of “real” signals) as noise
regions, we considered this to be noncritical as the
determination of noise or nondiscriminatory metabolites can
be easily verified visually. Moreover, the ASCLAN approach did

Figure 3. Spectra color coded by the ability of (a) ASCLAN, (b) VIP, (c) loading coefficient, (d) regression coefficient, (e) Benjamini−Hochberg,
(f) Bonferroni, and (g) metabolome wide significance level, MWSL methods to correctly distinguish discriminatory metabolites from
nondiscriminatory metabolites based on N = 50 spectral in each group. These full-resolution median spectra are color coded as follows: red for
discriminatory metabolites, brown for false positive, and gray for nondiscriminatory variables including noise for all methods, except for ASCLAN
where the noise regions (gray) are distinguished from signals representing nondiscriminatory metabolites (blue). In the simulated data sets, the
discriminatory metabolites show increased signal intensities of lactate and L-alanine and a reduced creatinine and citrate in the paraquat toxicity
group. Key: 1, lactate; 2, L-alanine; 3, acetate; 4, phenylactylglutamine; 5, p-cresol sulfate; 6, succinate; 7, citrate; 8, dimethylamine; 9,
trimethylamine; 10, creatinine; 11, trimethylamine-N-oxide; 12, L-histidine, 13, hippurate; 14, taurine; 15, glycine; 16, creatine; 17, glycolic acid.
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not consider any of the noise or nondiscriminatory variables as
discriminatory, giving a zero false positive for all six simulated
data sets, irrespective of the sample sizes or spectral resolutions,
Table S-3, and therefore specificity (true negative rate) and
PPV (accuracy) of 100%, Table 1. This zero false positive
results outperformed all the methods based on OPLS-DA
parameters: VIP (ranges from 2.1% to 15.4%), loading
coefficient (from 7.5% to 35.1%), and regression coefficient
(from 7.9% to 39.0%), as well as by multiple correction
methods, Benjamini−Hochberg (from 7.1% to 35.4%),
Bonferroni (from 0.8% to 10.4%), and MWSL corrections
(between 0.1% and 0.4%). We considered this zero false
positive result from ASCLAN is particularly important for
metabolic profiling studies as the goal for these studies is
typically to identify potential diagnostic biomarkers of disease
or response to a therapeutic intervention, thus the focus is on
clinical robustness and reliability rather than sensitivity,
although high sensitivity is desirable. Furthermore, the zero
false positive of ASCLAN was unaffected by the resolution of
the spectral variables and the sample size, again reflecting the
robustness of the method. This was not the case for the other
methods except for MWSL where the level of false positive
selection remained low for all data sets. Despite the lower false
positive rates of MWSL, the dimethylamine at δ 2.73 was

considered as discriminatory variables when in reality incorrect.
Other methods, showed considerably larger number of spectral
signals that have been incorrectly considered as discriminatory
variables (Figure 3b−f), Tables 1 and S-3.

Application of ASCLAN to a Rat Renal Toxicity Study.
Having applied the ASCLAN algorithm to simulated data sets,
we then validated the algorithm using real data to identify the
discriminatory metabolites characterizing HgCl2 toxicity in a rat
model comparing the predose urine samples versus 24 h
postdose HgCl2 administration when overt renal tubular
toxicity was present as verified by histology data. The validity
of the OPLS-DA model was indicated by high Q2Y values (Q2Y
= 0.96) and permutation testing p = 0.026. The ASCLAN
algorithm considered 1096 spectral variables with r2 ≥ 0.68 as
discriminatory metabolites. The number of spectral variables
identified by ASCLAN was considerably higher than Bonferroni
(114 spectral variables) and MWSL (216 spectral variables);
but much lower than Benjamini-Hochberg (4161 spectral
variables), VIP (4368 spectral variables), loading coefficient
(4705 spectral variables), and regression coefficient (5855
spectral variables). The ASCLAN algorithm successfully
identified metabolites that are known to be associated with
HgCl2 toxicity. These include increased excretion of valine (δ
0.92 (d), δ 1.06(d)), glucose (δ 3.4−4.1), and creatinine (δ

Figure 4. Median spectrum summarizing the discriminatory metabolites identified by the ASCLAN method for (a) valine and an unknown
discriminatory metabolite at δ 0.94 d, (b) 2-oxoglutarate and succinate, (c) unknown metabolite at δ 2.61 s, (d) dimethylamine, (e) dimethylglycine,
(f) creatinine, (g) glucose, and (h) hippurate. The median spectrum represents the results for (1) ASCLAN, (2) VIP, (3) loading coefficient, (4)
regression coefficient, (5) Benjamini−Hochberg, (6) Bonferroni, and (7) metabolome wide significance level, MWSL methods. The median
spectrum was color coded as follows: red for discriminatory metabolites and gray for nondiscriminatory metabolites for all other methods except for
ASCLAN where gray is used for noise and blue is used for nondiscriminatory metabolites.
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3.05 (s), δ 4.05 (s)), with decreased excretion of hippurrate (δ
3.97 (d), δ 7.55, triplet (t), δ 7.64 (t), δ 7.73 (d)), succinate (δ
2.41 (s)), 2-oxoglutarate (δ 2.44 (t)), dimethylglycine (δ 2.93
(s)), and dimethylamine (δ 2.73 (s)).28,29 ASCLAN also
considered δ 2.61 (s) (an unknown metabolite which is highly
correlated with δ 0.94 (d)) as a discriminatory metabolite. This
unknown metabolite has been previously identified as being
characteristic of HgCl2 induced toxicity.24 Chadeau-Hyam et
al.21 have previously reported the performance of MWSL to be
similar to that of Bonferroni correction method. Here, we also
reported comparable outcomes between Bonferroni corrections
and MWSL. Both the Bonferroni and MWSL methods have
considered the unknown metabolites at δ 2.61 s, 2-oxoglutarate
and dimethylamine as discriminatory metabolites but were
unable to consider the other known metabolites related to renal
toxicity (Figure 4).24 The Benjamini−Hochberg, VIP, loading
coefficient and regression coefficient methods identified all
discriminatory metabolites identified by ASCLAN. However,
these methods also indicated a considerably large number of
spectral variables that deem lacking any metabolic features as
discriminatory metabolites. In view of this, we consider
ASCLAN to be a good platform for distinguishing discrim-
inatory metabolites from the data set, without the necessity of
allocation of an arbitrary cutoff point. The whole procedure can
be applied automatically and without the input of the
investigator allowing for a less subjective and more transferrable
means of identification of biomarkers. The ASCLAN approach
is not as conservative as Bonferroni and MWSL approaches,
which potentially increases false negative rate; but more
stringent than Benjamini−Hochberg, VIP, loading coefficient
and regression coefficient methods, which is often used in
metabolic profiling studies and has been shown to generate
large number of false positive signals.
The ASCLAN algorithm, which we have developed here,

may be applied on its own for data analysis of highly
homogeneous data sets, as demonstrated in the simulated
data sets and the rat renal toxicity study. However, for highly
heterogeneous data sets, as it has been increasingly reported,33

we envisage that the ASCLAN may be applied in conjunction
with some of the newer data analysis frameworks such as
SHOCSY.19 In this instance, SHOCSY is first applied as a
“cleaning up” step to identify samples with similar features
(homogeneous group) and indifferent features (heterogeneous
group). Then, an OPLS-DA model is constructed using the
homogeneous group before ASCLAN is applied to the “clean”
OPLS-DA model to categorize the spectral variables into noise,
nondiscriminatory or discriminatory variables. In doing so, this
removes the need to rely on the application of an arbitrary
cutoff value using loading regression and adjusting by
Bonferroni corrections, as it was done in the SHOCSY
algorithm. The advantage of applying SHOCSY and ASCLAN
sequentially in this way would enable genuine discriminatory
metabolites, particularly those with low intensity, to be more
easily discovered as these are not obscured by the
heterogeneous group. This concept is based on a similar
concept to that demonstrated by Posam et al.18 Nonetheless, to
ensure feasibility of such a strategy, this would need to be
further validated using appropriate simulated data sets.

■ CONCLUSION
The ability to robustly distinguish discriminatory metabolites in
metabolic profiling studies is critical to ensure correct biological
interpretation. ASCLAN offers an alternative and reliable data-

driven approach for extracting discriminatory metabolites
without requiring the investigators to define an arbitrary
selection criterion but instead make a cut-point decision based
on the inherent spectral features. This ability is not affected by
the sample size or the spectral resolution of the data sets as
demonstrated using the simulated data sets. Moreover, the
application of ASCLAN delivered zero false positive results,
which outperformed the existing methods including Benjami-
ni−Hochberg, Bonferrroni, MWSL, OPLS-DA VIP, OPLS-DA
loading coefficient, and OPLS-DA regression coefficient
methods. The ASCLAN approach was successfully applied to
a renal toxicity study in a rat model and the metabolites known
to be attributed to the renal toxicity were identified. We have
demonstrated that this data-driven approach, ASCLAN, offers
an attractive data analysis framework that can be applied to
biological data sets for reliable extraction of discriminatory
metabolites. We propose its further validation and use in high-
throughput screening for discriminatory metabolites in
metabolic profiling studies.
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