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Transformation of Input Space using Statistical Moments:
EA-Based Approach

Ahmed Kattan, Michael Kampouridis, Yew-Soon Ong, and Khalid Mehamdi

Abstract— Reliable regression models in the field of Machine
Learning (ML) revolve around the fundamental property of
generalisation. This ensures that the induced model is a concise
approximation of a data-generating process and performs
correctly when presented with data that have not been utilised
during the learning process. Normally, the regression model
is presented with n samples from an input space χ that is
composed of observational data of the form (xi, y(xi)), i =
1...n where each xi denotes a k-dimensional input vector of
design variables and y is the response. When k � n, high
variance and over-fitting become a major concern. In this
paper we propose a novel approach to mitigate this problem by
transforming the input vectors into new smaller vectors (called
Z set) using only a set of simple statistical moments. Genetic
Algorithm (GA) has been used to evolve a transformation
procedure. GA is used to optimise an optimal sequence of
statistical moments and their input parameters. We used Linear
Regression (LR) as an example to quantify the quality of
the evolved transformation procedure. Empirical evidences,
collected from benchmark functions and real-world problems,
demonstrate that the proposed transformation approach is
able to dramatically improve LR generalisation and make it
outperform other state-of-the-art regression models such as
Genetic Programming, Kriging, and Radial Basis Functions
Networks. In addition, we present an analysis to shed light
on the most important statistical moments that are useful for
the transformation process.

I. INTRODUCTION

Regression is a common task in Machine Learning with a
variety of applications in science and engineering. Generally,
regression problems can be formalised as follows. Let χ
denote the input space that is usually viewed through a
finite set of n observational samples X = {x0, x1, ...xn}
where each xi ∈ Rk denotes a real-valued random input
vector, and Y = {y0, y1, ...yn} is the set of corresponding
outputs such that yi ∈ R is a real-valued random output
variable, with joint distribution P (X,Y ). To this end, all
regression models are expected to receive a labelled sample
S = {(x0, y0), (x1, y1), ..., (xn, yn) ∈ (X,Y )n}. Since
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the labels are real-numbers it is very difficult to expect
the regression model to predict exactly the correct output.
Therefore, it is common to tolerate a range of errors. In
order to quantify the quality of the regression model a loss
function L(Y, f(X)) = (Y −f(X)2) is required. The aim is
to construct a model f : X → Y . Hence, given a hypothesis
set H of functions to map X to Y , the regression problem
consists of using the samples in S to find a hypothesis h ∈ H
with small loss (or generalisation error) denoted by:

R̂(h) =
1

n

n∑
i=0

L(yi, f(xi))

In principle, one can make very accurate predictions if S is
large enough. For example, using nearest-neighbour methods
[1] [9] a prediction for any query point xq ∈ Rk can be made
by finding the average responses of the p closest samples.
Closeness implies a metric, which normally is assumed to
be the Euclidean distance.

Although, if reasonably large S is available, one could
always approximate the theoretically optimal expectation
by nearest-neighbor averaging. Since it is possible to find
a fairly large neighbourhood of observations close to any
xq , this approach breaks down in high dimensions, and the
phenomenon is commonly referred to as the curse of dimen-
sionality [9]. In a high-dimensional input space, the distance
metric becomes hard to quantify. For example, consider the
nearest-neighbour procedure for inputs uniformly distributed
in a k-dimensional unit hypercube. In order to extract a
hypercubical neighbourhood around a query point we need to
capture a fraction r of the observations to make a prediction.
A fraction r of the unit volume, the expected edge length
will be ep(r) = r(1/p). In ten dimensions e10(0.01) = 0.63

and e10(0.1) = 0.80, while the entire range for each input
is only 1.0. So to capture 1% to 10% of the data to form
a local average, we must cover 63% to 80% of the range
of each input variable. Such neighbourhoods are no longer
considered as local. Reducing r dramatically does not help
much either, since the fewer observations we average, the
higher is the variance of our fit [9]. Also, in many real-
world problems S is normally is limited to a small set
of observations in which the number of dimensions k is
much larger than the number of observations n, often written
k � n.



In this paper we propose a novel approach to mitigate this
problem by transforming the input vectors in X into new
smaller vectors Z = {z0, z1, ..., zn} where each zi ∈ Rg and
g > k. For the transformation procedure we use only a set
of simple statistical moments. Genetic Algorithm (GA) has
been used to evolve a transformation procedure to transform
the original input space χ into a new space ξ. GA is used
to optimise an optimal sequence of statistical moments and
their input parameters. We used Linear Regression (LR) as an
example to quantify the quality of the evolved transformation
procedure (more details in Section II). The contributions of
the paper can be formalised in threefold:

1) We propose a novel approach to transform the high-
dimensional input space of regression models using
only statistical moments.

2) We provide an analysis to understand the impact of
different statistical moments on the evolved transfor-
mation procedure.

3) We dramatically improve LR’s generalisation and make
it competitive to other state-of-the-art regression mod-
els such as Genetic Programming (GP), Kriging, and
Radial Basis Functions Networks (RBFN).

The remainder of this paper is structured as follows.
Section II provides a detailed explanation of the proposed
approach. Section III provides the experimental results and
their analysis. Section IV briefly presents some related works.
Finally, Section V provides some conclusive remarks and set
directions for future research.

II. EVOLVE TRANSFORMATION PROCEDURE

The idea is to find a transformation procedure using only a
set of primitive statistical features. Thus, we don’t only make
the transformed input smaller but also make it shares similar
statistical characteristics as the original input space and thus
relax the learners’ performance. Ideally, one would like to
find a single universal transformation procedure that works
well across different regression problems. However, this may
be extremely difficult given that each regression problem has
a unique surface. So, in this paper, we used an evolutionary
approach, namely GA, to find a suitable transformation for
the given problem. Table I illustrates the set of statistical
moments used in the proposed transformation procedure. To
this end, GA evolves a transformation procedure that receives
input variables from each xi ∈ X (note that X ⊂ Rk)
and transforms it into zi. The last result is a set Z =

{z0, z1, ..., zn} where Z ⊂ Rg and g < k.

A. GA Representation

As illustrated in Figure 1, GA individuals are encoded
as a sequence of integers to represent a set of selected
statistical moments (from the pool of moments in Table I)
and each selected statistical moment is linked with a set of

TABLE I

STATISTICAL MOMENTS USED IN THE TRANSFORMATION PROCEDURE

Function Input Output
Mean, Median, StD,
Variance, Geometric
Mean, Average Div,
Min, Max Copy,
Copy × Intercept

Randomly selected
variables from each
xi ∈ X

Real Number

*StD is Standard Deviation, and Average Div is Average Deviation
*Copy is an operator that copies selected variables without change
into the transformed vector
*Copy × Intercept is a transformation operator that multiply each
selected variable with the intercept value of LR.

selected variables from the original input space (variables
are not allowed to be duplicated within the same set). In our
representation, we allowed GA individuals to be of variable
sizes. Evaluation of individuals will result in a vector of
transformed input where each item holds a single number
that represent an abstract of some selected variables from
the original input space. For example, a GA individual may
transform each original input vector into a single number
that represents the mean of some selected variables or it
could transform each input vector into two numbers where
one represents the mean of some variables and the other
represents the variance of some other variables, or it even
could transform the each input vector into g numbers where
each number represents a statistical feature of some selected
variables.

Since we allow GA individuals to be of variable sizes,
search operators can shrink or extend individuals. We re-
stricted the maximum size of the individuals to be less than
the the number of variables in the original input space. In
other words, we do not allow the dimensionality of the
transformed space to be bigger than the original space.

The designed GA representation is able to process all data
samples in the space χ ⊂ Rk, viewed through the set X , and
transform them into a new space ξ ⊂ Rg , viewed through
the set Z.

B. GA Fitness Function

In order to measure the effectiveness of GA individuals
we need to find out whether they will improve regression
models performance. This is a challenging problem because
the fitness measure needs to be aware of the generalisation
level induced by the transformed space. We used average
prediction errors of LR as a fitness measure for GA. LR is
very simple algorithm where it considers the family of linear
hypotheses:

H = {x→ w.Φ(x) + b : w ∈ Rk, b ∈ R}

and seeks a hypothesis in H with smallest loss function.
Generally, LR is known to give accurate predictions if the
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Fig. 1. GA individuals’ representation.

sample inputs are linearly aligned with their corresponding
outputs. Moreover, LR is known to perform better when the
number of dimensions is limited. Hence, given these features
LR can push the GA’s evolutionary process to linearly align
the transformed inputs with their outputs and minimise the
dimensionality of the new space. The GA aims to minimise
the following fitness function:

fitness =

∑n
i=0(|yi − LR(xi)|)

n
(1)

C. GA Search Operators

The search operators are designed to maintain proper
syntax of the individual’s representation. Here, we consider
three operators to explore the search space. First, we used
a crossover operator in which two individuals exchange
statistical moments and their parameters, randomly. Second,
there is an aggressive mutation operator that replaces a
statistical moment and its parameters, randomly selected,
with another randomly selected moments from the pool of
statistical moments. This aggressive mutation operator allows
individuals to shrink or extend. Finally, we used a smooth
mutation operator where a parameter of a randomly selected
statistical moment is mutated into a new parameter. Note that
parameters of a single statistical moment are not allowed to
be duplicated.

D. GA Training

GA runs for a fixed number of generations where indi-
viduals are evaluated as explained in Equation 1. Before
the run starts we generate two disjoint sets: training and
validation. The training set is used to evaluate individuals
where LR uses a twofold cross-validation approach. The
best individual in each generation is further tested with the
validation set. Finally, we select the individual that yields the
best performance on the validation set across the run. For

the GA, we set the number of generations and population
size to 50, crossover, mutation and aggressive mutation rates
were set to 0.7, 0.1, and 0.2, respectively. Finally, we used
standard tournament selection of size 2.

One may argue that the proposed GA approach eventually
does a simple variable selection and especially that it uses
some selective moments such as Min and Max as well
as a copy operator (as illustrated in Table I). In order to
investigate this assumption, in preliminary experiments, we
compared the proposed approach against variable selection
approach based on standard GA (that uses a binary represen-
tation) and we found that our proposed approach achieves far
better results which verifies that it does more than a simple
variable selection.

III. EMPIRICAL TESTS AND ANALYSIS

A. Settings

A set of experiments has been conducted to evaluate the
proposed approach. We tested the effects of the transforma-
tion procedure on LR and compared the results against five
regression models, namely, RBFN, Kriging, LR, piecewise
LR [6], and GP. These models were selected because they
are some of the most important techniques in the literature.
Piecewise LR is basically dividing the input samples into
groups based on their Euclidean distance and train a single
LR model for each group, thus, in principle, it allows LR
to approximate non-linear surfaces. For the GP, we used
similar settings as the GA (see Section II-D), except that we
used standard sub-tree crossover at 0.7 and standard sub-tree
mutation at 0.3. In addition, GP was equipped with standard
arithmetic operators and 10 random constants from the range
[−1, 1]. Finally, to compare the proposed approach against
standard dimensionality reduction technique we included
Principle Component Analysis (PCA) [2] in the experiments.

Experiments included the following five benchmark func-
tions; F1 = Rastrigin, F2 = Schwefel, F3 = Michalewicz,
F4 = Sphere, and F5 = Dixon & Price [13]. For each test
function, we trained all regression models to approximate the
given function when the number of variables is 100, 500,
and 1000. The total number of benchmark test problems is
15 (i.e., 5 test functions ×3 different variables sizes). For
all test problems, we randomly generated three disjoint sets;
a training set of 100 points, a validation set of 50 points,
and a testing set of 150 points from the interval [−1, 1].
All techniques have been compared based on the average of
absolute errors on the testing set.

In addition, we included another three real-world prob-
lems. The problems we used for this set of experiments
comes from the field of financial forecasting. In this area,
traders have the belief that patterns exist in historical data
and that these patterns will repeat themselves in the future.



Consequently, it is worth identifying these patterns, so that
we can exploit them in the future and make profit. A very
common way of doing this is by using the method of
technical analysis [4]. Technical analysis uses indicators,
which are formulas that measure different aspects of a given
financial dataset, such as trend, volatility and momentum.

An example of such indicators is the Moving Average
(MA), which calculates the averages of a given dataset under
sliding windows of a fixed length L. For our experiments,
we are using 6 different indicators (Moving Average, Trade
Break Out, Volatility, Filter, Momentum, Momentum Moving
Average), with 3 different L values for each indicator:
100, 500, and 1000. Thus, each experiment has 6 × 100,
6× 500, and 6× 1000 variables, respectively. The data were
divided into three sets as follows: 40% for training, 10%

validation, and 50% testing.

B. Results

1) Benchmark Results: For the benchmark functions, Ta-
ble II shows improvements of predictions after testing our
proposed transformation procedure with LR (referred to as
LR+Z in the table) in comparison to all nine other algorithms.
Note that the transformation procedure is coming from a
stochastic evolutionary process, therefore, we run the GA 20

independent times and used the best evolved transformation
in the comparison. To assure a fair comparison, we also
run both GP and GP+PCA 20 times for each problem
and reported their best results. Each time GA evolves a
transformation procedure GP runs for 5 independent times
and returns the best results. As it can be seen from Table
II, LR+Z remarkably outperforms all competitors. The non-
parametric Friedman test in Table III ranked LR+Z first
with a rank of 1.0, while the second and third ranking
algorithms were GP and LR+PCA, with a ranking of 2.07
and 4.74, respectively. Subsequent analysis of the post-hoc
Bonferroni-Dunn test [3], [8] found that the LR+Z’s ranking
was significant at 5% level when compared to seven of the
nine algorithms from our experiments (the only exception
was the GP). This is an important result, because it confirms
our approach’s superiority, across a number of other state-
of-the-art algorithms.

Furthermore, Table IV presents a summary of the dimen-
sionality of the transformed space. Interestingly, there seems
to be no clear relation between number of dimensions in
the transformed space and the original space. For all three
dimensions in the comparison, GA managed to find a single
dimension (abstracted from several variables), using only one
statistical moment, to represent the new space. Although,
GA managed to achieve this dramatic abstraction in the
dimensions, we noted that this does not necessarily lead to
produce the best prediction results. For example, Figure 2

Fig. 2. Sample of transformed testing set using an evolved transformation
procedure. The upper figure shows a transformation of F1, D1000 and the
lower figure shows a transformation of F2, D500. LR+Z error of the upper
and lower figures are 188.404 and 5.13, respectively

depicts two instances of a 1D-transformed inputs for two
different problems.

2) Learning from Evolution: Because the performance of
the evolved transformation procedures are good, in most
cases, it would be interesting to understand what they actu-
ally do. When looking at the evolved sequence of moments,
one quickly realises that they are not easy to understand
or easy to capture a clear relation. Therefore, we visually
project statistical moments in heat maps according to their
contribution to good solutions for each problem, in Figure
3. The idea of this figure is inspired from the work of Smits
et. al. [14]. If a statistical moment is absolutely essential
to produce a good transformation procedure then it must be
present in individuals with good fitnesses. Other less essential
statistical moments may be present in both good individuals
and inferior ones, so their fitness will be closer to the average
fitness over all individuals. To this end, in order to rank the
importance of statistical moments, we equally distribute the
fitness value of each individual over all moments present
in that individual and project these values in heat maps
as presented in Figure 3. It is clear from the heat maps
that each problem has its unique characteristics. However,
interestingly, there is a consensus among all maps that the



TABLE II

SUMMARY OF RUNS ON 15 BENCHMARK PROBLEMS

Algorithm RBFN RBFN+PCA Kriging Kriging+PCA LR LR+Z Piecewise LR LR+PCA GP GP+PCA
F1, D = 100 8.1E+01 8.4E+01 8.1E+01 8.1E+01 1.5E+03 5.8E+01 1.2E+06 8.1E+01 7.8E+01 8.4E+01
F1, D = 500 1.9E+02 2.1E+02 1.9E+02 1.9E+02 1.8E+06 1.2E+02 2.5E+08 1.9E+02 1.8E+02 1.9E+02
F1, D = 1000 2.3E+02 2.3E+02 2.3E+02 2.3E+02 8.0E+06 1.7E+02 3.7E+08 2.3E+02 2.3E+02 2.3E+02
F2, D = 100 2.2E+00 2.5E+00 2.2E+00 3.1E+00 6.3E+02 2.0E+00 2.4E+03 2.2E+00 2.1E+00 2.2E+00
F2, D = 500 4.6E+00 4.6E+00 4.6E+00 4.7E+00 4.7E+04 4.4E+00 1.5E+04 4.6E+00 4.5E+00 4.6E+00
F2, D = 1000 2.4E+04 3.7E+04 2.4E+04 2.5E+04 1.9E+08 1.6E+04 5.8E+09 2.5E+04 2.4E+04 2.4E+04
F3, D = 100 3.7E+00 3.5E+00 3.7E+00 1.5E+01 2.7E+05 3.0E-01 4.7E+07 3.7E+00 3.7E+00 7.2E+00
F3, D = 500 7.5E+00 8.3E+00 7.5E+00 9.4E+00 4.2E+08 8.8E-01 5.8E+08 7.6E+00 7.4E+00 1.8E+01
F3, D = 1000 1.2E+01 1.3E+01 1.2E+01 1.3E+01 1.9E+08 9.5E-01 4.3E+09 1.2E+01 1.1E+01 4.9E+01
F4, D = 100 2.5E+00 2.9E+00 2.5E+00 2.2E+01 6.4E+01 3.2E-01 1.6E+04 2.5E+00 2.4E+00 2.4E+00
F4, D = 500 5.5E+00 6.4E+00 5.5E+00 5.6E+01 2.7E+04 3.6E-01 1.4E+06 5.5E+00 5.4E+00 5.5E+00
F4, D = 1000 8.3E+00 1.0E+01 8.3E+00 5.5E+01 2.8E+05 8.2E-01 1.4E+07 8.3E+00 8.1E+00 8.4E+00
F5, D = 100 7.7E+02 1.1E+03 7.7E+02 8.6E+02 5.6E+04 5.0E+02 4.8E+06 7.7E+02 7.7E+02 7.8E+02
F5, D = 500 9.4E+03 1.0E+04 9.4E+03 9.7E+03 1.5E+08 5.3E+03 1.0E+09 9.4E+03 9.3E+03 9.5E+03
F5, D = 1000 2.4E+04 3.7E+04 2.4E+04 2.5E+04 1.9E+08 5.5E+03 1.0E+09 2.5E+04 9.3E+03 2.4E+04
* Bold numbers are the lowest.

TABLE III

AVERAGE RANKINGS OF

THE ALGORITHMS FOR

BENCHMARK PROBLEMS

Algorithm Ranking
RBFN 4.30

RBFN+PCA 6.67
Kriging 4.57

Kriging+PCA 7.13
LR 9.07

LR+Z 1.00
LR+Cluster 9.94
LR+PCA 4.74

GP 2.07
GP+PCA 5.54

TABLE IV

SUMMARY OF DIMENSIONALITY OF TRANSFORMED SPACE

D = 100 D = 500 D = 1000
Function Mean Best Median StD Mean Best Median StD Mean Best Median StD
F1 4.25 1.00 4.00 2.19 7.95 3.00 4.50 5.95 52.10 1.00 7.50 190.73
F2 5.30 1.00 5.00 2.59 7.65 7.65 5.50 6.51 12.06 2.00 5.00 11.26
F3 16.55 5.00 16.00 7.60 10.55 1.00 11.50 5.37 64.00 9.00 10.00 214.65
F4 6.00 1.00 5.50 3.33 10.60 3.00 9.00 5.63 802.60 17.00 999.00 392.80
F5 8.25 3.00 8.50 2.98 6.90 3.00 6.00 2.90 10.70 1.00 5.00 10.90

TABLE V

SUMMARY OF RUNS ON 3 REAL-WORLD PROBLEMS

Algorithm RBFN RBFN+PCA Kriging Kriging+PCA LR LR+Z Piecewise LR LR+PCA GP GP+PCA GP+RTS
D = 100 24.41 178.91 24.50 24.59 22.65 18.88 278.39 24.48 21.09 22.18 21.15
D = 500 16.32 18.66 16.32 16.32 79.12 8.22 432.01 9.70 9.70 12.70 10.15

D = 1000 16.32 16.36 16.32 16.34 33540.40 6.04 1887.49 16.04 8.70 11.95 8.22
* Bold numbers are the lowest.

operators copy and copy × intercept do not contribute to
the construction of good transformation procedures. Also,
all maps agree that the Average Deviation, Geometric Mean,
Min and Max are important across all problems. We still do
not have a full understanding of the effect of these moments
on the transformed space. In future research we will focus
on this aspect.

3) Real-world Problems: For the three real-world prob-
lems included in the experiments, we added a new algorithm

in the comparison. Namely, GP with random training sub-
set selection (referred to as GP+RTS). Random training
sub-set selection is a common technique used in the GP
literature to overcome the over-fitting problem. The idea is
to randomly select a different sub-set of training samples in
each generation. We conducted two sets of experiments for
the real-world problems. For the first set, we eliminated non-
essential statistical moments as suggested by the heat maps
(See section III-B.2). For the second set, we included all
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Fig. 3. Heatmaps of statistical moments’ importance in terms of their contribution to individuals’ fitnesses. Each map is averaged from 60 independent runs
(20 runs for each test dimension). The statistical moments, from left to right: Mean, Median, Standard Deviation, Variance, Average Deviation, Geometric
Mean, Max, Min, Copy Same, Copy Intercept.

statistical moments. We found that the evolution has been
accelerated in the first experimental set in comparison to
the second set of experiments. However, as this was not
consistent across the three different dimensions, we decided
to report the results of the second experimental set only. We
leave it as a future work to further look into this.

Table V presents the results. Similar to the previous
experiment set, for each problem we run GA 20 times and
report the performance of the best evolved transformation
procedure. Also, each of GP, GP+PCA and GP+RTS received
the same number of runs, to assure fairness. Each time GA
evolves a transformation procedure all GP systems run 5

independent times and return the best results. It is clear from
the table that LR+Z comes in first place in all three problems.
Results of GP is little competitive.

The above findings are confirmed by the algorithm’s
ranking across the three different dimensions, according
to the Friedman test presented in Table VI. As we can
observe, LR+Z is ranked first again with a rank of 1.0,
with the GP coming second with a rank of 2.5. The post-

TABLE VI

AVERAGE RANKINGS OF THE ALGORITHMS FOR REAL-WORLD

PROBLEMS

Algorithm Ranking
RBFN 6.33

RBFN+PCA 9.33
Kriging 7.67

Kriging+PCA 7.67
LR 8.67

LR+Z 1.00
LR+Cluster 10.67
LR+PCA 4.83

GP 2.50
GP+PCA 4.33
GP+RTS 3.00

hoc test this time, however, only found LR+Z significantly
better than LR+Cluster, RBFN+PCA, and LR. The remaining
differences were not significant at 5% level. However, this is
not unexpected, as the number of problems we experimented
with in the real-world was very low, only three (a single
dataset under three different dimensions, 100, 500, and



1000). Nevertheless, the fact remains that LR+Z was ranked
first among all algorithms in the comparison, and it also
consistently outperformed its competitors in terms of Mean
and Median results, as it can be seen from Table VII.1 We
leave the investigation of more datasets from the real-world
as a future work.

TABLE VII
COMPARISON SUMMARY OF 20 INDEPENDENT LR+Z-SET, GP AND

GP+RTS.
(FOR EACH EVOLVED Z SET EACH OF GP AND GP+RTS RUNS 5 TIMES

AND REPORT THE BEST RESULT)

NOTE: IN TOTAL EACH OF GP AND GP+RTS RANS FOR 20× 5 TIMES

Algorithm LR+Z GP GP+RTS
D = 100

Average 20.30 21.69 21.93
Best 18.88 21.09 21.15

Median 20.30 21.60 21.91
StD 1.12 0.57 0.62

D = 500
Average 10.16 12.56 12.20

Best 8.22 9.70 10.15
Median 10.31 12.02 11.94

StD 1.11 2.23 1.53
D = 1000

Average 7.75 12.39 11.89
Best 6.04 8.70 8.22

Median 6.65 11.52 11.31
StD 2.30 3.20 2.17

* Bold numbers are the lowest.

Finally, Table VIII presents a statistical summary of the
dimensionality of the transformed space. As we can observe,
the GA has managed to decrease the input space significantly.

TABLE VIII

STATISTICAL MOMENTS USED IN THE TRANSFORMATION PROCEDURE

Measure
Dimensions Mean Best Median StD

100 47.65 9.00 53.00 18.04
500 46.25 1.00 28.00 61.81
1000 28.70 2.00 6.00 52.81

IV. RELATED WORKS

Dimensionality reduction techniques to mitigate the curse
of dimensionality problem is a well-explored topic. Many
techniques have been developed and used with feature selec-
tion and classification problems (e.g., [14], [5]). However,
the idea of evolving a transformation procedure to reduce
the number of design variables in the regression problems to
improve generalisation is relatively little explored thus far. In
this section we focus the review on dimensionality reduction
and transformation approaches for regression models since
these are directly relevant to the work reported in this paper.

1We only present LR+Z, GP, and GP+RTS, as these are the only
algorithms that follow a stochastic process, thus it is possible to calculate
the Mean and Median values only for these algorithms.

Sobester and Nair in [15] presented a GP approach for
generating functions in closed analytic form that map the in-
put space of a complex function approximation problem into
one where the output is more amenable to linear regression.
To achieve this, the authors used a co-evolutionary approach
where multiple populations are evolved in parallel. Each
population evolves part of the solutions. The system collects
the best individual in each evolved population to form a
new transformed input vector z. The ith element of evolved
z vector is an output of an evolved function that received
the ith input from the original input vector. The proposed
approach was evaluated with several benchmark functions
and real-world problems. However, the authors claimed that
their results are not conclusive and they are merely serve
as proof of concept. In addition, the new transformed input
vector z has the same dimensionality as the original vector.

In [7] the authors presented a GP-based approach for
symbolic regression of discontinuous functions in multivari-
ate data sets. The idea is to identify the portions of the
input space that require different approximating functions
by means of an algorithm referred to as Hyper-Volume
Error Separation (HVES). To this end, a preliminary GP
evolution run is used to partition the input space based
on the error exhibited by the best individual across the
training set. The training set is partitioned several times
into smaller groups. Although the authors claimed that their
approach, in principle, can work with multivariate data-sets,
their experiments covered problems of two variables only.

In [11] the authors proposed a technique based on latent
variables, non-linear sensitivity analysis, and GP to manage
approximation problems when the number of input variables
is high. The proposed technique was tested with 340 input
variable problems. The proposed approach was designed to
consider problems where all input variables have similar
influence on the model’s output. Thus, standard variable
pruning techniques are not applicable.

McConaghy [12] presented a deterministic technique, re-
ferred to as Fast Function Extraction (FFX), for solving a
symbolic regression problem that achieves higher approxi-
mation accuracy than standard GP and several state-of-the-art
regression techniques. FFX generates a set of basis functions
where each function can be a linear or non-linear combina-
tion of the input design variables. Once FFX generates a
set of possible basis functions it assigns the best coefficients
for each function. FFX execution takes only a few seconds
to return simpler models from a large number of design
variables. The authors verified FFX on a broad set of real-
world problems with different number of variables ranging
from 13 to 1468. Later, Icke and Bongard [10] hybridised
FFX and GP to create an improved learner for symbolic
regression problems. In this work, the authors showed that a



hybrid deterministic/GP for symbolic regression outperforms
GP alone and several state-of-the-art deterministic regression
techniques alone on a set of multivariate polynomial sym-
bolic regression tasks. The proposed approach was tested
to approximate data-sets of different dimensionality, ranging
from 1 to 25 dimensions.

Kattan and Kampouridis [?], proposed a new approach
based on GP to transform the original input space into a
new input space that has smaller input vectors and are easier
to be mapped into their corresponding responses. To achieve
this, GP is designed to evolve several non-linear transforma-
tion equations that extract different statistical features from
different intervals of the original input vectors. Each equation
is generated from a different sub-tree in an individual, thus,
each tree in the population produces multiple outputs (i.e.,
transformed output).

As can be seen, most of previous work tried to mitigate
the curse of dimensionality problem for regression models
by transforming the input space into a new input space using
linear or non-linear transformation functions. In this paper we
show that it is possible to mitigate the curse of dimensionality
problem and improve the generalisation by transforming the
input space into new space using only simple statistical
moments. This allows the transformed input not only to be
smaller but also to share similar statistical characteristics
as the original input space and thus relaxes the learners’
performance.

V. CONCLUSIONS

This paper presents a novel approach to mitigate the curse
of dimensionality for regression problems. The idea is based
on transforming the input vectors of the data samples into
new smaller vectors (called Z set). This is unlike other
existing works where transformation of input space is done
using linear or non-linear transformation functions. In this
paper we show that it is possible to transform the input
space into new space using only simple statistical moments.
GA has been used to evolve a transformation procedure.
GA is used to optimise an optimal sequence of statistical
moments and their input parameters. We used LR as an
example to quantify the quality of the evolved transformation
procedure. Empirical evidences, collected from 18 different
benchmark and real-world problems, demonstrate that the
proposed transformation approach is able to dramatically
improve LR generalisation and make it outperform other
state-of-the-art regression models such as GP, Kriging, and
RBFN.

The contributions of this paper can be formalised as
follows:

1) We propose a novel approach to transform the high-
dimensional input space of regression models using
only statistical moments.

2) We provide an analysis to understand the impact of
different statistical moments on the evolved transfor-
mation procedure.

3) We dramatically improve LR’s generalisation.

For future work, we will try to understand the effect of
different statistical moments on the transformed space. Also,
we will explore the idea of making the GA’s search space
to be adaptive by pruning non-essential statistical moments
based on their importance in terms of the contribution to
good individuals.
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