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Abstract— Authorization infrastructures are an integral part of any network where resources need
to be protected. They act as the gateway for providing (or denying) subjects (users) access to
resources. As networks expand and organizations start to federate access to their resources,
authorization infrastructures become increasingly difficult to manage. In this paper, we explore the
automatic adaptation of authorization assets (policies and subject access rights) in order to manage
federated authorization infrastructures. We demonstrate adaptation through a Self-Adaptive
Authorization Framework (SAAF) controller that is capable of managing policy based federated
role/attribute access control authorization infrastructures. The SAAF controller implements a
feedback loop to monitor the authorization infrastructure in terms of its assets and subjects’
behavior, analyze potential adaptations for handling abnormal behavior, and act upon assets of an
authorization infrastructure for changing its configuration. A prototype of the SAAF controller is
evaluated in a federated authorization infrastructure (federation) built with SimpleSAMLphp, in
which a PERMIS standalone authorization server protects a service provider’s resources, and identity
providers utilize LDAP directories to store subject authentication and authorization attributes.

Keywords— self-adaptation, authorization, policy management, identity management, autonomic security,
RBAC, ABAC, SAML, PERMIS

1. Introduction

A great deal of research and time is put into securing access to, and ensuring legitimate use of
protected resources. There exist a variety of different approaches such as, role based access control
(RBAC) [1] and attribute based access control (ABAC) [2], as well as more sophisticated systems
involving detection [3], trust and reputation [4], and usage control [5] to compliment authorization.
However, once authorization has been setup (i.e., defining authorization policies) there exist few
automated mechanisms that both identify when such access is being used incorrectly, and mitigate
or prevent further misuse automatically. Traditionally organizations rely on audit trails and human
administrators to monitor these systems to identify abnormal behavior [6]. The detection of
abnormal behavior, attributed to the misuse of system resources by authorized subjects, is often not
at the forefront of concern for organizations. However, it is known that an internally authorized user
can cause far greater damage in comparison to an external attacker simply due to their access rights
[7]. For example, during July 2010 it is alleged that a US army intelligence analyst downloaded 0.25
million classified US military documents from a US Department of Defense website [8]. Assuming the
analyst was an authorized user and that access was requested and granted on a document-by-
document basis, we can say that the analyst had appropriate access rights and utilized the
authorization system correctly. Any automated monitoring of the authorization system would not
have picked up abnormal behavior as the authorization service processed the analyst’s access
requests according to its access control policies. However, to a human administrator numerous
similar requests in a short period of time would have flagged up inappropriate behavior, requiring
immediate changes to the authorization infrastructure to mitigate any further damage.

Federated authorization builds upon existing authorization models, including RBAC and ABAC. It
provides the method through which large scale distributed access can be granted. For example,
within a federated authorization infrastructure that utilizes the ABAC authorization model, a subject
is assigned attributes by one organization (e.g., an identity provider), and each attribute is assigned
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permissions by another organization (the service provider). In federated access, RBAC/ABAC is
extended to state which organizations (i.e., identity providers) are trusted to assign which attributes
to which subjects. This requires a subject to have a relationship with one or more of these trusted
organizations.

Assuming that all subjects act appropriately within their access rights is an increasingly risky
assumption to make, especially relevant as organizations work together and federate their access
control systems. As the number of subjects with federated access grows, as does the risk of insider
threat. This is made even more challenging to manage in federated access, as resource holders are
unaware of who is actually being granted access, and thus how to identify and respond to insider
threat. This may in part explain why federated access is not widely deployed today.

This paper claims that federated authorization infrastructures must be capable of identifying
abnormal behavior, and autonomously change authorization assets (authorization constraints /
subject privileges) in order to prevent and mitigate misuse of access (insider threat). In a previous
paper [9], we have introduced the conceptual design of a Self-Adaptive Authorization Framework
(SAAF) for monitoring, analyzing, planning and executing required adaptations for managing a
federated authorization infrastructure, depending on the level of misuse of access rights. The novel
aspect of this paper builds on our previous work through the detailed design and implementation of
a prototype SAAF controller, highlighting the controller’s key phases and use of models for managing
authorization infrastructures. We detail the design and generation of these models as part of the
SAAF controller’s feedback loop, along with adaptation scenarios in which the SAAF controller is
deployed. Other contributions of this paper are the effective integration of the SAAF controller with
a federated authorization infrastructure; comprising a PERMIS standalone authorization server and
SAML based service and identity providers, in order to demonstrate the overall feasibility of SAAF.

The rest of this paper is structured as follows. In Section 2, we describe the domain model of
federated authorization infrastructures, and the conceptual design of SAAF. Section 3 outlines the
SAAF controller in terms of its key components and the models used. Section 4 describes the SAAF
controller prototype, which was deployed in a self-adaptive federated authorization infrastructure.
In Section 5, we present an abnormal usage scenario and evaluate how the SAAF controller manages
and compare the results to current technology. In Section 6, we discuss current related work in
comparison to SAAF. Finally, Section 7 concludes with an evaluation of our work and indicates where
future work is still required.

2. Self-Adaptive Authorization Framework

In this paper, we refer to our Self-Adaptive Authorization Framework (SAAF) that is capable of
being attached to policy based RBAC/ABAC federated authorization infrastructures. It is designed to
integrate with current authorization infrastructures, such as PERMIS [10], Shibboleth [11], and
XACML [12] in order to make them adaptable and self-managing, rather than designing an entirely
new type of authorization infrastructure. SAAF’s objective is to autonomously monitor the usage of
an existing authorization infrastructure, make judgments on the behavior of subject interactions (in
the form of authorization requests and decisions), and adapt the authorization infrastructure
accordingly. SAAF is reactive, in the sense that it monitors the use of a target authorization
infrastructure by subjects in order to detect abnormal behavior. Abnormal behavior is defined by a
set of rules that capture conditions that exhibit insider threat in the deployment environment of
SAAF. Once abnormal behavior is detected a decision is made on whether to adapt the authorization
infrastructure or not.

The following section describes in detail the expected target domain that SAAF can manage,
along with SAAF’s conceptual design.

2.1. Target Domain: Federated Authorization Infrastructures

SAAF’s target domain identifies what services can exist, which services are configurable, what can
be monitored, and how access is requested and granted, within a federated authorization
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infrastructure. As SAAF is designed for the management of RBAC/ABAC authorization models, the
domain model is specific to these authorization models.

Role based access control (RBAC) and its more generic variant attribute based access control
(ABAC) are models of authorization, facilitating access to protected resources through the use of
roles/attributes and by assigning permissions to those roles/attributes. A set of rules exist which
state that in order for a subject to access a resource (e.g. ‘Read Database’), the subject must have a
specific set of roles or attributes (e.g. Role of Staff). The RBAC/ABAC authorization model can be
extended to include: hierarchy of roles/attributes, static separation of duties, dynamic separation of
duties and arbitrary conditions. Our work is focused initially on core RBAC/ABAC over a distributed
federated implementation.

A federated RBAC/ABAC authorization infrastructure, as implemented in [10] [11] [12], comprises
the following components:

- aset of distributed role/attribute issuing authorities (AAs), also known as Identity Providers
(IdPs), which assign digitally signed credentials to subjects in a session,

- aCredential Validation Service (CVS) at the Service Provider’s (SP) site, which validates the
roles/attributes issued to the subject as credentials [13], and

- a Policy Decision Point (PDP) also at the SP’s site, which evaluates if these roles/attributes give
the user sufficient permission to access the requested resource.

Through the use of policies, attributes and credentials, subject authorization is provided. We
refer to these as ‘assets’ of a federated RBAC/ABAC authorization infrastructure. These assets
demonstrate the parts of an authorization infrastructure that are changeable and therefore can be
modified through self-adaptation to impact future authorization decisions.

Figure 1 shows a simplified view of SAAF’s target domain model. It shows the three types of
service required for effective federated authorization, along with the assets used to define the
control and input/output of such services. Services can be categorized as Service Provider (SP)
services (Credential Validation Service and Policy Decision Point), and Identity Provider (IdP)
services.

The target domain model has six assets that are manageable. These are the attributes,
credentials, and valid attributes assigned to the subjects; and the Credential Issuing Policy,
Credential Validation Policy and Access Control Policy, collectively referred to as Authorization
Policies (AZPs). A 7" (unmanageable) asset is a log of the access requests and access decisions. This
can be observed in order to generate usage statistics and a history of access requests.

Through changing the subject’s attributes or the credential issuing policy we control what
credentials may be issued, thus potentially increasing or reducing the subject’s permissions. The
revocation of credentials allows for the termination of access sessions midway. Through the
adaptation/switching of any of the authorization policies, SAAF is able to impact a group of subjects
by controlling authorization at a higher level. The authorization infrastructure interprets these assets
in order to provide access control decisions. The modification of these assets by SAAF impacts the
access control decision thus preventing abnormal behavior.

In order for an implementation of the target domain model to be manageable by SAAF, we make
the following assumptions:

- the authorization infrastructure is capable of generating logs of its actions, e.g., failed and
successful access requests, and that these logs are available to be read by SAAF;

- the authorization infrastructure has interfaces that allow it to receive new policies or replace old
ones currently in use, and that SAAF can access these interfaces;

- identity providers are capable of allowing SAAF to modify the subject attribute assignments, but
if this is not possible then

- identity providers are capable of accepting notifications (from SAAF) about their subject
attribute mis-assignments and cases of abuse, and are willing to remove and add new attributes
to their subjects and notify SAAF when the requested changes have been effected.
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Figure 1. Domain Model for Federated RBAC/ABAC Infrastructures

2.2. SAAF Conceptual Design

SAAF is based on the Monitor-Analyze-Plan-Execute-Knowledge (MAPE-K) reference model [14]
adapting assets associated with a federated authorization infrastructure. The conceptual design
(Figure 2) identifies two major components, the SAAF controller, which utilizes a feedback loop [15],
and the authorization infrastructure (the target, which conforms to SAAF’s target domain model).

The Monitor is a simple component that retrieves assets of the federated authorization
infrastructure via system Probes, and updates the authorization infrastructure model and behavior
model. For example it captures an access request and corresponding authorization decision, and
updates the behavior statistics within the behavior model (representing knowledge of usage within
the target system), as well as subject-attribute relationships within the authorization infrastructure
model. The monitor uses triggers to identify exactly what statistics are required for the behavior
model (and trigger the need for adaptation).

The Analyzer’s objective is to assess the behavior model, in order to identify if abnormal behavior
has taken place and identify possible solutions that may prevent the abnormal behavior from
continuing. As an exception to the MAPE-K reference model, we introduce the need to analyze
possible solutions within the analyzer, as solution analysis is highly correlated to the analysis of
abnormal behavior. The set of identified solutions is then sent to the planner. These solutions
encapsulate actions that modify rules belonging to authorization policies, and individual subjects’
attributes in order to resolve abnormal behavior.

The role of the Planner is to select the most relevant solution to solve the identified abnormal
behavior. The selected solution is transformed into an executable plan that is sent to the executor,
such as, generate a new access control policy then request the authorization service to activate the
new policy.

The Executor adapts the authorization infrastructure in accordance with the plan, via Effectors.
These effectors enable the adaptation of authorization services and their assets, and provide an
interface to SAAF to execute commands on the authorization infrastructure.

The target federated authorization infrastructure is an implementation of the SAAF target
domain model (Figure 1). It conforms to the domain model in such a way that deployed services and
assets are an instantiation of the types of services and assets present in the domain model. There
can be multiple instances of authorization services and assets. For example, there may be several
Identity Providers (IdPs) within one federated authorization infrastructure. An implementation of
the target domain model does not have to conform to the domain model completely, whereby only
a subset of authorization services need exist (e.g., no configurable Credential Issuing Policy). In these
cases SAAF is still able to manage authorization, yet management decisions are restricted to the
scope of what can be controlled and monitored.
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Figure 2. SAAF Conceptual Design

3. SAAF Controller

We demonstrate SAAF as an autonomic controller (Figure 3) that conforms to the conceptual
design of SAAF. It is designed to operate in a continuous cycle, whereby the monitor (Behavior
Gauges and Asset Monitor) constantly update a model that represents the rules and access rights
assignments within the federated authorization infrastructure (authorization infrastructure model),
as well as a data model that captures statistics about the use of the authorization infrastructure
(Behavior Model). Whilst the models are being updated, the Analyzer searches for abnormal
behavior. Once abnormal behavior is identified, it attempts to solve this by producing tailored
solutions. The tailored solutions are passed to the Planner, which together with the Executor realize
the solution. In this section we discuss the operation of each component of the controller in detail

and how the SAAF controller manages a federated authorization infrastructure.
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3.1. SAAF Controller Models

The SAAF controller relies on models to facilitate the operation of the Analyzer, Planner, and
Executor components. These models breakdown into the authorization infrastructure model, which
stores information about authorization assets (Figure 1) active in the target system, and the
behavior model, which provides statistics regarding the use of authorization assets.

The Authorization Infrastructure Model (Figure 4) provides constructs of RBAC/ABAC rules, such
as attribute-permission assignments {Attribute, {Target, Action}}, identity provider-attribute
assignments {ldentity Provider, Attribute}, and subject-attribute assignments {{Subject, Attribute},
Identity Provider}. Previous research has already provided the basis for a universal construct for
RBAC/ABAC system policies [16]. These constructs represent a generic view of the managed
federated authorization infrastructure’s active authorization policies and subject-attribute
assignments. This allows SAAF to assess and validate adaptations, as well as identify what specific
constructs must be adapted in the light of abnormal behavior. A key feature of the authorization
infrastructure model is that it allows SAAF to adapt at the model level, whereby the authorization
infrastructure model is modified and then realized through the generation of new implementation
specific authorization policies. These policies can then be activated within the target authorization
services to impact future authorization decisions and prevent further abnormal behavior.

The Behavior Model is a data model of usage statistics about existing relationships within the
authorization infrastructure model that may be adapted. It is populated by the assessment of access
requests and decisions made within the target authorization infrastructure. The statistics captured
within the behavior model are directly associated to the relationships within the authorization
infrastructure model, such as {Attribute, Target, Action} or {Subject, Identity Provider, Attribute,
Target, Action}. These relationships contain statistical properties such as, the rate of access requests
that a subject from an IdP has accessed {Target, Action}. Statistical properties allow for statements
of usage to be drawn about subjects, roles/attributes, and permissions for a certain period of time.
For example, the average frequencies of requests by attribute A, or subject S to read target T per
minute during the last 30 days. This enables SAAF to identify how subjects are using the system
collectively. Note that in the current implementation we only indirectly capture the results of the
credential validation process through monitoring the access request. Consequently we do not record
all the attributes that the IdP has assigned to the subject (as credentials), only valid attributes.
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Figure 4. Authorization Infrastructure Model

3.2. Monitor

The SAAF monitor is a combination of behavior gauges and an asset monitor, responsible for
updating the SAAF controller models. The monitor relies on system probes that exist within the
target system (a federated authorization infrastructure). Authorization service ‘policy’ probes detect
when a policy has been changed or a new policy activated within a particular service. Authorization
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service ‘access’ probes detect when new access requests have been made, typically when the policy
decision point service has updated its access logs. The monitor uses a set of pre-defined triggers for
activating adaptation when abnormal behavior is identified.

3.2.1. Triggers

Each trigger describes a relationship within the authorization infrastructure model {Subject,
Identity Provider, Attribute, Target, Action}, along with a set of conditions, such as rate of access
requests that conform to this relationship, over a given time interval. There are two types of
triggers, base triggers and composite triggers. Base triggers use data within the behavior model to
trigger the need for adaptation. For example, a base trigger activates the need for adaptation when
a subject accesses a resource more than 5 times per minute interval. Composite triggers are
composed of base triggers, to detect when multiple trigger conditions have been met over a set
amount of occurrences and time. For example, a composite trigger activates the need for adaptation
when multiple subjects, from multiple identity providers, all access a resource more than 5 times per
minute interval in a 30-day period.

3.2.2. Updating the Authorization Infrastructure Model

Activated policies that have been detected by relevant system probes undergo a process of
model transformation [17] within the asset monitor. Each policy document represents a model of
rules for the desired authorization service. In order for the SAAF controller to understand a policy,
the policy must undergo model transformation. Model transformation allows the conversion of
implementation specific formats (i.e., XACML or PERMIS proprietary schema’s [10]), to the generic
RBAC/ABAC view that the SAAF controller can interrogate and use, as described in Section 3.1. The
authorization infrastructure model may hold multiple modeled active policies, requiring that each
modeled policy is labeled with meta-information to provide ownership and location data that is
required when generating new policies as part of adaptations. Whenever an active policy is changed,
the modeled policy, within the authorization infrastructure model, is remodeled.

Subject-attribute assignments are also modeled within the authorization infrastructure model.
This allows the SAAF controller to be aware of what subjects have which valid attributes, when
forming adaptations. Unlike authorization policies, the SAAF controller does not have a complete
view of all subject-attribute assignments, due to the nature of how these assignments are stored (in
multiple identity providers) and the fact that the credential validation logs are not interrogated.
Therefore only valid attribute assignments are captured through monitoring access control requests
(which provide a subject’s identifying ID, valid attributes, the target resource being accessed and the
action requested) and access decisions. In addition, identity providers can push attribute changes to
the SAAF controller; however this is only as confirmation of successful adaptations against subject-
attribute assignments.

3.2.3. Updating the Behavior Model

The behavior model is updated through the processing of logged access requests/decisions, and
generation of statistics by a set of behavior gauges. Behavior gauges present a means of collecting
specific statistics about relationships within the authorization infrastructure model. For each access
request and decision that is logged, the relevant behavior gauges update statistics about existing
relationships within the behavior model, which in turn drive adaptation (Figure 5). Gauges are based
entirely on triggers, and for each trigger there exists a set of gauges, depending on how many
observed relationships within the authorization infrastructure model match the trigger. For example,
if there are 20 subjects that meet the set of relationships defined by the trigger <any subject, from
any identity provider, accessing action ‘print’ on target ‘printer’ with attribute ‘role=staff’>, then
there are at least 20 gauges required for that trigger. If a gauge does not exist, yet the relationship
observed in the access request matches a trigger, then a new gauge is created. If gauges already
exist for the observed relationship, then the gauges are updated.
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In accordance with the two types of trigger, there are two types of gauge: a gauge that generates
statistics for base triggers, and a gauge that generates statistics for composite triggers. Both types of
gauge operate as described previously, with the only exception that composite gauges are updated
as gauges belonging to base triggers become full (indicating multiple base trigger conditions have
been met). Once either type of gauge becomes full, based on trigger conditions, abnormal behavior
has been identified and is sent as a snapshot of behavior to the analyzer.
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Figure 5. Gauge generation

3.3. Analyzer

The analyzer component fulfills two purposes, related to 1) analyzing misbehavior in order to
identify the need for adaptation, and 2) analyze what solutions are applicable to solving the
misbehavior.

3.3.1. Behavior Analysis

The analyzer identifies the problem that caused behavior gauges to meet trigger conditions,
through behavior analysis. For example, if a gauge measures the number of times a file has been
retrieved per minute and it triggers when 10 retrievals per minute have been recorded, the analyzer
needs to determine if this is the same subject retrieving the file 10 times, or 10 different subjects
doing the same thing once, since the solution to either scenario may be different. The analyzer must
therefore first determine the exact nature of the abnormal behavior that took place before finding
the relevant solution(s) and tailoring it (them) to the specific conditions of the abnormal behavior, in
order to prevent the abnormal behavior from continuing.

3.3.2. Solution Analysis

For any given abnormal behavior there can be a set of relevant parameterized solutions, which
prevent that behavior from continuing. Solutions may exist in the form of alternative rules that are
capable of preventing the identified abnormal behavior (e.g., remove subject attribute or remove
attribute permission). Solutions are further defined by a set of actions (such as ‘remove ABAC
constraint’, ‘activate policy’) and are reusable by other solutions. There are a finite number of
actions possible for a solution. These are all actions applicable to the controllable assets described in
SAAF’s target domain model.

Solution analysis interprets relevant solutions from the set of pre-defined solutions for the
identified abnormal behavior (trigger). The analysis to be performed relies on the variables defined
by the identified behavior. For example, if a permission was misused by a subject (or attribute), the
analysis would be focused around that subject, that attribute and that permission. As solutions are
parameterized, the actions stated for each applicable solution must be tailored to the identified
behavior, using modeled constructs within the authorization infrastructure model. An instance of
each relevant solution and action is created, and tailored to match. For example, a solution instance
is tailored to the subject’s behavior that caused the need for adaptation, including the attribute
used, and the identity provider that assigned the attribute. Each applicable solution is tailored in this
manner, and sent as a set to the planner component.
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3.4. Planner

The planner component fulfills two purposes, the selection of an ideal solution, in terms of a
weighted calculation of impact, from the set of solutions provided by the analyzer, and the
generation of an executable plan.

3.4.1. Solution Selection

Selecting an ideal solution is critical to ensuring only necessary adaptations take place, as
solutions vary in terms of severity and risk, from the perspective of the context the authorization
infrastructure is deployed in. Whilst each trigger specifies the condition of a particular abnormal
state, the existing triggers lack the definition of any impact or loss of utility that the abnormal
behavior might have. We recognize the need for a multi-attribute function to produce a utility [18]
or impact value for each solution, yet for implementation purposes this utility is simply calculated on
a single dimension, weight of impact. The weight of impact represents the number of subjects who
have caused the abnormal behavior having their access rights removed, against the number of
subjects who have not caused the abnormal behavior having their access rights removed as a
consequence of the solution. The former must outweigh the latter for adaptation to take place. In
other words, adaptation will only take place if more offending subjects can be impacted than non-
offending subjects.

For the set of solutions received by the planner, each solution is ordered by this weight of impact.
For example, if a subject misuses their access rights to a printer, a solution may be to modify the
policy where the attribute required to access the printer is no longer valid. However, the weight
associated with this would mean that many subjects are impacted rather than just the offending
subject. A more relevant solution might be to request the identity provider (IdP) to remove the
subject’s attribute.

3.4.2. Plan Generation

Plan generation identifies what actions need to be performed for realizing the chosen solution. It
can be viewed as an automatically generated set of step-by-step instructions with specific details on
how to execute an adaptation [19]. In the current implementation the actions are pre-defined in the
solutions policy. For each action attached to the chosen solution, the planner includes meta-
information to enable execution. If it is an action against the authorization infrastructure model, the
planner identifies the specific relationship that must change, including ownership information
regarding the actual authorization services and identity providers. Actions are ordered in stages of
execution, whereby changes to the authorization infrastructure model are made first, followed by
generation of new assets (such as policies), then instructions to system effectors (activate policy,
remove attribute assignment).

3.5. Executor

The executor component is a simple component that executes a plan generated by the planner.
Each action the executor attempts to execute is idempotent, therefore it will continue to attempt to
make a request to an external effector until the action is successful or a time out limit is met. The
outcome of a plan execution either results in a successful or failed plan. Successful plans are
characterized by the positive response from all the external system effectors. Unsuccessful plans are
characterized by either an error message or a failure to respond by at least one of the external
system effectors.

Upon completion of a plan, successful or not, system probes update the SAAF controller’s
monitor components with a new view of the authorization infrastructure, maintaining a consistent
view of what is modeled, to what is actually present in terms of rules and subject-attribute
assignments.

4. SAAF Deployment

This section describes the deployment of a self-adaptive federated authorization infrastructure,
which is shown in Figure 6. The self-adaptive federated authorization infrastructure comprises an

9
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authorization server made up of the SAAF controller and PERMIS standalone authorization service
[10], a service provider that provides resources for federated subjects to request access to, and two
identity providers that maintain subject-attribute assignments for federated subjects belonging to
two different organizations. The self-adaptive federated authorization infrastructure is deployed
across several virtual machines within a local area network. Basic system effectors and probes have
been implemented to facilitate SAAF’s controller interfaces, as shown in Figure 3 and Figure 6,
however they will not be discussed in this paper.
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Figure 6. Architecture of the Self-Adaptive Federated Authorization Infrastructure

4.1. Authorization Server

The authorization server runs on a VMware virtual machine, with Ubuntu v10.10, 1GB memory.
The virtual machine is hosted on a MacBook pro (OS X Lion) 2.4GHz, 4GB memory. The
authorization server contains a deployment of PERMIS as a standalone server, and an
implementation of the SAAF controller described in Section 3. The PERMIS standalone encapsulates
a credential validation service (CVS) and policy decision point (PDP) for generating access decisions
based on a single authorization policy. The authorization policy provides rules on credential
validation as well as RBAC constraints, which can be broken up into the credential validation policy
and access control policy described in Section 2.1. The PERMIS standalone receives Simple Object
Access Protocol (SOAP) messages that define a subject’s access request, over an SSL connection. The
contents of the SOAP message are assessed for valid attributes and whether or not the valid
attributes fulfill the conditions of the requested access. The sender of the SOAP message, a
resource’s policy enforcement point (PEP), then receives a SOAP response containing an access
decision, either: grant, deny, or not applicable. The PEP can use this value to allow the subject
requestor access to the resource. All access requests and decisions are logged, recording the actions
made by the CVS and PDP.

The deployment of the SAAF controller was implemented in Java, and installed on the same
server as the PERMIS standalone authorization server. Models within the SAAF controller are
populated as a collection of Java objects, and relational records are stored in a locally accessible
MySQL database. In particular, policies modeled within the authorization infrastructure model,
stored as Java objects, are populated through model transformation with a tool generated using the
Eclipse EMF modeling framework [20]. Behavior statistics are populated and stored as Java objects
within the SAAF controller’s run-time memory. Subject-attribute assignments are populated and
stored as a set of relational records within the MySQL database. The controller’s triggers and
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solutions are written in XML, stored on the server’s file system as XML documents. These XML
documents represent a ‘behavior policy’ and ‘solutions policy’ and are parsed when the SAAF
controller is first initialized. Communications between the SAAF controller and its managed services
are carried out in a variety of ways: through the host operating system in which the SAAF controller
is deployed when managing PERMIS standalone services, and via SOAP messages (over SSL) when
managing external system effectors and probes (in the case of federated identity providers).

4.2. Service Provider

A single service provider (SP) server is run on a VirtualBox virtual machine, with Debian 6.0.5,
512mb memory. The virtual machine is hosted on a Windows 7 machine, 2.40GHz, 3GB memory.
The service provider is deployed as a set of web resources developed in PHP, protected by a single
policy enforcement point (PEP). The SP represents an organization and the organization’s resources
we wish to protect from abnormal behavior. The PEP’s role is to facilitate a subject accessing the
SP’s resources; it acts as a guard to actions within a resource. It does not decide access, only
enforces access based on decisions made by an external authorization service (in this case, the
PERMIS standalone). The PEP is built in PHP, as part of a simpleSAMLphp [21] installation, in order to
allow the SP to communicate with simpleSAMLphp identity providers. The PEP receives access
requests from subjects and redirects them to their authenticating identity provider. The identity
provider returns SAML [22] assertions that represent the requesting subject’s credential assets
(described in Section 2.1). The PEP encapsulates this assertion into a PERMIS access request SOAP
message, and enforces the corresponding access decision that is returned as a SOAP response from
the PERMIS standalone. Based on the decision made by the PERMIS standalone, the PEP provides
the requesting subject with access to the requested resource/action.

4.3. Identity Providers

Two identity provider servers have been deployed. Each is run on a separate VirtualBox virtual
machine, with Debian 6.0.5, 512mb memory. The virtual machine is hosted on a Windows 7
machine, 2.40GHz, 3GB memory. The identity providers (IdPs) are deployed as an authenticating
SAML service, implemented using SimpleSAMLphp. The IdP authenticates a subject and then
indicates to the SP that the subject is who they say they are. This is achieved by sending a SAML
assertion containing the subject’s releasable attributes to the SP (i.e., what the IdP is willing to share
based on it’s credential issuing policy). The SAML assertion also contains a unique persistent ID in
which the service provider can identify the subject with. A Lightweight Directory Access Protocol
(LDAP) [23] with a Berkley database backend [24] is used to store an identity provider’s subject
attributes, hosted on the identity provider’s own server. The identity provider is configured to
release all authorization-based attributes, such as the ‘permisRole’ attribute that is used by PERMIS
authorization policy to denote a subject’s role, as well as a unique identifier for the subject. Identity
providers are managed by SAAF via a SimpleSAMLphp effector [25].

5. Experiments

This section describes the qualitative evaluation of the deployed self-adaptive authorization
infrastructure, described in Section 4. We simulate a case of abnormal behavior, caused by a group
of malicious subjects from one identity provider, against the resources of the service provider. We
discuss how the SAAF controller identifies and responds to this case of abnormal behavior,
conveying our results with snapshots of before and after states of an active authorization policy, and
subject-attribute assignments stored in an LDAP directory. We follow up our case study with an
evaluation of results, a comparison of the SAAF prototype to usage control techniques built into an
authorization service, ending with a discussion of current limitations of the self-adaptive
authorization infrastructure.

5.1. Case Study

A business organization shares access to its online resources with its own employees, and with
employees belonging to a separate contractor organization. The business relies on the deployed self-
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adaptive federated authorization infrastructure described in Section 4, and manages its own identity
provider (IdP) server, along with its service provider (SP) server. The contractor organization also
manages its own IdP server, along with their employees’ roles and attributes. The business shares
access to its resources with the contractor IdP in order to allow the contractor organization to
perform payroll operations on a web based payroll system. The contractor has an automated system
that runs the payroll once per month, and there are occasional manual payroll operations during the
month to deal with exceptional circumstances. The SAAF controller is used to control the number of
exceptional circumstances that are deemed to be normal.

The business’s resources are protected by a single PERMIS authorization policy (AZP), which is
activated in the PERMIS standalone authorization server. This AZP defines credential validation rules
and RBAC rules, written in PERMIS’s own proprietary policy schema, and stored as a digitally signed
X.509 policy certificate on the authorization server’s file system.

<RoleAssignment ID="ContractorIdPAssignment”>
<SubjectDomain ID="Contractor”/>
<RoleList>
<Role Type="permisRole” Value="Contractor”/>
</RolelList>
<Delegate Depth="0"/>
<SOA ID="ContractIdP”/>
<Validity/>
</RoleAssignment>
<TargetAccess ID="ContractPayrol”>
<RoleList>
<Role type="permisRole” Value="Contractor”/>
</RolelList>
<TargetList>
<TargetDomain ID="PayrollSystem”/>
<AllowedAction ID="getEmpPayslip”/>
<AllowedAction ID="runPayroll”/>
</TargetList>
</TargetAccess>

Figure 7. Excerpt from the business’s PERMIS Authorization Policy

The AZP* in Figure 7 allows members of the attribute permisRole=Contractor to access the
business payroll system, in order to perform manual operations on the payroll system and retrieve
employee pay slips (Figure 7, TargetAccess). The AZP also defines a role assignment rule (credential
validation rule) whereby the Contractor IdP is trusted to assign the permisRole=Contractor attribute
to its subjects (Figure 7, RoleAssignment).

We simulate the case where the contractor IdP has been hijacked by a malicious entity (a hacker).
Once in control, the hacker has the ability to issue the permisRole=Contractor attribute to a set of
rogue subjects so that they can access the business’s resources with legitimate access rights. Rogue
subjects abuse this access right to mine private information within the business’s resources, with a
focus on retrieving employee pay slip information. As the Contractor IdP is trusted to assign the
Contractor attribute, the rogue subjects are able to mine information from the permissible
resources. There are 10 subjects assigned to the Contractor attribute, any number of which may be
rogue subjects. These subjects are identified by their persistent ID (PID), which is provided by the
subject’s IdP when attributes are released in SAML assertions.

5.2. Anomaly detection and adaptation

The SAAF controller is initialized with a behavior policy and solution policy containing,
respectively, the triggers that identify abnormal behavior states, and the solutions that the business
trusts the SAAF controller to execute for each trigger. These two policies are defined by the service
provider, and relate to the AZP deployed in the PERMIS standalone.

The behavior policy (Figure 8) defines the conditions that activate the need for adaptation. It is
comprised of a single base trigger, and a single composite trigger. For this specific case study we

! Figure 7 only shows the subset of the rules from the deployed AZP that are relevant to the abnormal
behavior described in this case study.
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have defined the limits of normal behavior as base trigger btl, and composite trigger ctl. The base
trigger (bt1) specifies a state of abnormal behavior when any subject, from any provider, uses the
attribute permisRole=Contractor to access the get employee pay slip action on the payroll system,
greater than 5 times per minute. Should these conditions be met, adaptation may be required. The
composite trigger specifies that should conditions meet the base trigger ‘bt1’ more than 4 times
within a 1-day interval, further adaptation may be required.

<BehaviourPolicy>
<BaseTrigger ID="btl”>
<Subject/>
<Provider/>
<Attribute type="permisRole”>Contractor<Attribute>
<Target>PayrollSystem</Target>
<Action>getEmpPayslip</Action>
<Rate>
<Threshold>5</Threshold>
<Interval>1</Interval>
<TimeScale>min</TimeScale>
</Rate>
</BaseTrigger>
<CompositeTrigger ID="ctl”>
<BaseTriggerID>btl<BaseTriggerID>
<Rate>
<Threshold>4</Threshold>
<Interval>1</Interval>
<TimeScale>day</TimeScale>
</Rate>
</CompositeTrigger>
</BehaviourPolicy>

Figure 8. SAAF Behavior Policy

The SAAF controller generates behavior statistics from each successful access request that
matches the relationship and conditions described in each trigger. At first no adaptation is triggered,
as the rogue subject’s initial set of access requests will not fire any triggers within the behavior
policy. However, access requests are continually monitored by the monitor components within the
SAAF controller, building up a view of the rogue subject’s usage and their attribute assignments.

The first abnormal behavior that the SAAF controller responds to is when the conditions of the
base trigger ‘btl’ are met, identifying that one subject has accessed the get employee pay slip action
more than 5 times per minute. The SAAF controller must now analyze the identified misbehavior,
before solution selection begins, by identifying which subject from which IdP has performed the 5
access requests within a minute interval.

The solutions policy (Figure 9) specifies four solutions to solve any abnormal behavior identified
by conditions in the behavior policy. Solution one (S1) allows for the removal of a subject’s attribute
from his/her identity provider, impacting only a single individual. Solution two (S2) impacts everyone
with the permisRole=Contractor attribute, regardless of the IdP, by removing the ABAC/RBAC
permission that allows the Contractor attribute to execute the get pay slip payroll permission.
Solution three (S3) impacts all subjects from an IdP, by removing the credential validation rule
stating the IdP can assign the attribute contractor. Finally, Solution four (S4) impacts every subject
that is managed by the AZP by removing the ABAC/RBAC policy that exists within the deployed AZP.
There is also a default solution of ‘do nothing’, which applies to all instances of abnormal behavior.
The default solution is important as the realization of all defined solutions may cause a greater
negative impact on the federation, than opposed to allowing a case of malicious behavior to
continue.

’The composite trigger (ctl) builds upon base triggers. In this scenario, the composite trigger only builds
upon one base trigger, however for producing more complex conditions, several base triggers can be used.
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<SolutionPolicy>
<Solution>
<Action>
<Operation>removeSubjectAttribute</Operation>
</Action>
<TriggerID>btl</TriggerID>
<TriggerID>ctl</TriggerID>
</Solution>
<Solution>
<Action>
<Operation>removeAttributePermission</Operation>
</Action>
<Action>
<Operation>buildPolicy</Operation>
</Action>
<Action>
<Operation>activatePolicy</Operation>
</Action>
<TriggerID>ctl</TriggerID>
</Solution>
<Solution>
<Action>
<Operation>removeAttributeAssignment</Operation>
</Action>
<Action>
<Operation>buildPolicyFile</Operation>
</Action>
<Action>
<Operation>activatePolicy</Operation>
</Action>
<TriggerID>ctl</TriggerID>
</Solution>
<Solution>
<Action>
<Operation>deactivatePolicy</Operation>
</Action>
<TriggerID>ctl</TriggerID>
</Solution>
</SolutionPolicy>

Figure 9. SAAF Solutions Policy

The SAAF controller executes solution analysis for the identified abnormal behavior by evaluating
each applicable solution and tailoring it to the relationship identified by the trigger ‘bt1’. Solution
analysis tailors the first solution (S1 — removeSubjectAttribute) by identifying the unique persistent
ID (PID) associated with the subject (provided by the subject’s identity provider), along with the valid
attributes used to gain access. This results in a SOAP message (Figure 10) being generated,
requesting the contractor IdP effector to remove the contractor attribute from the rogue subject,
identified by the subject’s PID (bb85cOaalb55ade46a047bd60375ed9c872a6b58). The contractor
IdP effector is capable of identifying the subject’s location in their attribute repository by the PID
supplied in the SOAP message (in this case, mapping the PID to an LDAP distinguished name).

<soapenv:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>
<requestAdaptation soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<operation xsi:type="xsd:string">removeAttribute</operation>
<subjectID xsi:type="xsd:string">
bb85claalb55ade46a047bd60375ed9c872a6b58
</subjectID>
<serviceProviderID xsi:type="xsd:string">https://SP.localhost</serviceProviderID>
<attributeType xsi:type="xsd:string">permisRole</attributeType>
<attributeValue xsi:type="xsd:string"></attributevValue>
<reason xsi:type="xsd:string">Malicious behaviour</reason>
</requestAdaptation>
</soapenv:Body>
</soapenv:Envelope>

Figure 10. Contractor IdP effector request, remove subject-attribute assignment
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However, as the Contractor IdP has been hijacked, the abnormal behavior progresses to a state
where multiple rogue subjects are now identified as conforming to the base trigger ‘bt1’. Each time
SAAF undergoes solution analysis and solution selection, the SAAF controller removes each
offending subject’s permisRole=Contractor attribute assignment.

After four such events (within a single day interval), the trigger conditions for composite trigger
‘ctl’ are met. Now more definitive solutions are analyzed (S1, S2, S3, S4) in order to respond to this
persistent case of abnormal behavior. Solution selection eventually results in solution three (S3)
being selected, whereby the solution enforces the removal of a credential validation rule that trusts
the Contractor IdP to assign the Contractor attribute to its subjects. This is due to a greater weight of
subjects causing misbehavior from the Contractor IdP, over subjects who are not causing
misbehavior from the Contractor IdP or the Business IdP. The selected solution results in a set of
actions being generated, whereby the credential validation rule (RoleAssignment, Figure 7) of
{Contractor IdP, permisRole=Contractor} is removed from the authorization model, and a new
authorization policy is generated that can be used within the PERMIS standalone. The impact of this
solution means that all subjects from the Contractor IdP, with the Contractor attribute, will no
longer be able to execute permissions associated with the Contractor attribute.

5.3. Results

The case study resulted in two types of solutions executed within the self-adaptive authorization
infrastructure. The first (S1) refers to individual requests of subject-attribute removal, whereby
several SOAP requests were sent to the Contractor IdP effector to remove the
permisRole=Contractor attribute from abusive subjects. As the Contractor IdP effector is configured
to trust the request from the SAAF controller, these attributes are removed. Figure 11 provides a
snapshot taken prior to and after one execution of one of the adaptation requests to the contractor
IdP’s effector. The LDAP entry for Bob Doe (PID: bb85c0Oaalb55ade46a047bd60375ed9¢872a6b58 in
SAAF) has an objectClass of pmiUser®, which allows it to hold a permisRole attribute. Prior to
adaptation this attribute contains the Contractor value, post adaptation the Contractor value has
been removed as a result of the request described in Figure 10. Effectively this prevents the subject
Bob Doe from using the permisRole=Contractor attribute within future access requests, as the SAML
assertion, issued by the IdP to the service provider, does not contain the permisRole=Contractor
attribute.

attribute type value attribute type value

cn Bob Doe - cn Bob Doe -

objectClass organizationalPerson objectClass organizationalPerson

objectClass person objectClass person

objectClass pmilser objectClass pmilJser

objectClass pkilser objectClass pkiUser

objectClass uidObject = objectClass uidObject =

objectClass top objectClass top

sn Doe sn Doe

uid co04 uid co04

ou contractors ou contractors

permisRole Contractor userPassword (non string data)

userPassword (non string data) attributeCertificateAttribute

attributeCertificateAttribute description

description destinationIndicator

destinationIndicator facsimileTelephoneNumber

facsimileTelephoneNumber internationaliSDNNumber

internationaliSDNNumber |

| -
Pre-Adaptation Post-Adaptation

Figure 11. Snapshots of the Contractor IdP LDAP directory, captured in Jxplorer LDAP viewer

’>The ‘permisRole’ attribute is added manually to the LDAP schema in order to provide the PERMIS
standalone authorization server a particular type of attribute to use for authorization.
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Subject-attribute adaptations provide a fine-grained solution to solving abnormal behavior over
policy adaptations. These adaptations rely on the IdP abiding by the SAAF controller’s request.
However, IdPs are capable of reissuing a subject’s attributes allowing the conditions for abnormal
behavior to either remain or be reinstated. The abuse may escalate when the IdP reissues the
removed attributes. This results in the 2™ type of solution (s3) being realized, a modification to the
service provider’s authorization policy in regards to credential validation. Figure 12 displays a
snapshot of the PERMIS authorization policy deployed in the PERMIS standalone, pre- and post-
adaptation. The RoleAssignment rule in the policy defines the trust relationship between the service
provider and the Contractor IdP. Previous to adaptation, the service provider trusts the Contractor
IdP to issue the permisRole=Contractor attribute to any subject in the Contractor’s domain for any
validity period. Post adaptation the Contractor IdP is trusted to issue no attributes (defined by an
empty role list). This prevents any subject from the Contractor IdP being authorized by the PERMIS
standalone, regardless of whether the subject’s SAML assertion contains the permisRole=Contractor
attribute or not, as it is no longer valid. This solution provides a coarser grained and less volatile
solution to solving abnormal behavior, over subject-attribute adaptations, as the service provider’s
authorization policy overrules external factors (such as IdP issued attributes). However, there is
greater risk, as all subjects within the Contractor IdP will be affected, not just the subjects that have
misused their access.

<RoleAssignment ID="ContractorIdPAssignment"-
ectDomain ID="Contractor"/- <RoleAssignment ID="ContractorIdPAssignment">

<RolelList> <SubjectDomain ID="Contractor"/>

<Role Type="permisRole" Value="Contractor"/> <Rolel1is

</RoleList>
<Delegate Depth="80"/>
SOA ID="ContractIdP"/>
<Validity

A 1gnment

Pre-Adaptation

elegate Depth="8"/>
<S0A ID="ContractIdP"/>
<Validity/>

Post-Adaptation

Figure 12. Snapshots of the Service Provider’s PERMIS Authorization Policy

The case study was executed in six stages, whereby in each stage an additional malicious subject
was introduced to execute a high throughput of authorization requests (which would ultimately
break behavior rules). Through our simulation we captured the escalation in planning, solution
selection and execution of adaptations as shown in Table 1. At the end of each stage a successful
adaptation had occurred, preventing one or more subjects from continuing the identified abuse.
Each stage lasted 90 seconds with remaining non-malicious subjects executing authorization
requests throughout the 90-second period, in conformance to usage limits defined in behavior rules
(with a constant throughput of 3 requests per minute). Once normal subject throughput had
stabilized, the malicious subject was introduced.

In addition to solutions executed, we captured performance measures that denote the response
time of the SAAF controller, from the point of identifying a case of abnormal behavior to the point
that the behavior can no longer continue (for the subject concerned). This includes the time taken
for system effectors to carry out an adaptation successfully and respond to the SAAF controller with
confirmation. To gain a performance average, the case study was repeated 10 times, under the same
conditions with the same instance of the executing SAAF controller.

For the identification of malicious activity in stages 1 to 3 relating to trigger btl, and resulting in
the execution of solution 1 (S1), the average response time ranged from 113.5ms to 162.4ms.
However, by the forth stage the SAAF controller has now identified four rule breakages in relation to
trigger btl. As a result, trigger ctl is invoked, requiring the SAAF controller to consider additional
solutions; this causes the response time to increase to an average of 297.67ms. In the fifth stage,
despite continued non-conformance in relation to trigger ctl, solution 1 is repeatedly executed, as
solutions 2 to 4 are deemed too consequential in SAAF’s solution selection phase. Finally in the sixth
stage solution 3 is selected, resulting in the contractor credential validation rule being removed from
the authorization policy. The average response time of solution 3 is significantly higher in
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comparison to the execution of solution 1; this is due to a required restart of the PERMIS
standalone, in order to activate a newly created authorization policy.

Triggered Malicious Identified Executed Avg. Response | STDEV
Rule Subject ID Solutions Solution Time (ms)
1 btl 0f23c42b... S1 S1 1135 26.77
2 btl 36c29160... S1 S1 162.4 5291
3 btl Olafed25... S1 S1 151.3 52
4 btl+ctl bb85c0aa... S1,S2,S3,54 S1 297.67 33.8
5 btl+ctl 566f86da... S1,S2,S3,54 S1 248.67 71.77
6 btl+ctl c81cbd12... S1,S2,S3,54 S3 824.78 75.31

Table 1. Escalation of case study adaptations, and performance results

5.4. Comparison to Current Technology

Current technology is confined to authorization infrastructures that build upon authorization
models yet include further controls to implement concepts to assert whether or not subjects should
be awarded access. One such example is the use of obligations and conditions within RBAC / ABAC
policies to compliment authorization constraints (i.e., subject ‘s’ with role ‘x’ can execution
permission ‘y’). Obligations and conditions allow for specific rules that can help reduce the risk of
insider threat. For example, a subject must conform to obligations where the subject is required to
read a ‘license agreement’ before continuing, or meet the condition that they are not accessing a
resource past a particular time of day. In particular, conditions combined with conventional
authorization constraints can establish usage control rules, similar to the base triggers defined
within the SAAF controller.

The PERMIS policy schema allows such obligations and conditions within a PERMIS authorization
policy. We have used a condition to replicate the base trigger ‘bt1’ described in the case study for
comparison. Figure 13 identifies the replicated base trigger, which simply states an environment
variable labeled ‘ratePerMin’ must be less than a value of 6. The subject’s actual rate per minute is
maintained and calculated by the resource policy enforcement point (PEP) that the subject is
requesting access through. Upon each access request the subject makes, their ratePerMin
environment parameter is sent alongside the subject’s valid attributes and requested
resource/action in the access request to the PERMIS standalone. The PERMIS standalone decides
upon access whilst taking into account the condition rule defined in the given policy permission.

<TargetAccess ID="ContractPayrol”>

<RoleList>
<Role type="permisRole” Value="Contractor”/>

</RoleList>

<TargetList>
<TargetDomain ID="PayrollSystem”/>
<AllowedAction ID="getEmpPayslip”/>
<AllowedAction ID="runPayroll”/>

</TargetList>
<IF>
<AND>
<OR>
<LT>
<Environment Parameter="ratePerMin” Type=Integer”/>
<Constant Type="Integer” Value="6"/>
</LT>
</OR>
</AND>
</IF>
</TargetAccess>

Figure 13. Trigger ‘bt1’ represented in the PERMIS Authorization Policy

Usage control configured into the PERMIS authorization policy is limited to only managing
individual subject usage at a per resource level, therefore it is only possible to compare the SAAF
prototype based on base triggers and individual adaptations taken against a subject’s IdP. Composite
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triggers consider a wider range of data from multiple resources and subjects, and are therefore out
of scope of this comparison.

To compare, we repeated the first stage of the case study experiment with usage control
configured into the PERMIS standalone. We maintained the same conditions as the experiment
performed with SAAF, whereby 10 normal subjects executed a throughput of 3 requests per minute
in a period of 90 seconds. Once throughput had stabilized we introduced a single malicious subject
with a high throughput of 100 requests per minute. This was repeated 10 times to gain an average of
performance for measuring PERMIS’s response time in denying the subject access (after the
subject’s usage limit was met). We found that PERMIS was able to deny access in response to a
usage control violation with an average of 10.8ms, and standard deviation of 5.58. However, the
‘deny’ in authorization could only temporarily prevent the subject from gaining access. Once the
subject’s rate of requests dropped below 5 requests per minute, the subject began receiving grants
of access again.

In comparison to the SAAF prototype, usage control in PERMIS is predominately faster in
responding to usage violations, yet only temporarily prevents the malicious subject from continuing.
It is plausible to argue that lengthy usage control limits (such as limits defined in weeks, months,
years) will temporarily prevent the malicious subject from continuing for a greater amount of time,
making it possible for human controllers to respond in a timely manner. However, this approach
relies on the human controller to respond and would be inefficient in preventing malicious activity
carried out over a short interval of time.

5.5. Discussion and Limitations

We have demonstrated the feasibility of managing authorization, by autonomic adaptation of
authorization policies and subject-attribute assignments, in a federated authorization infrastructure
based on behavioral analysis. Model transformations have been shown to be an effective way in
adapting authorization policies, considering the fact that these policies were never intended to be
adapted autonomously. Regarding subject-attribute assignments, which are traditionally managed
by administrators, we have also shown that these can also be adapted autonomously. However, the
solution selection in the current implementation, despite solving the abnormal behavior detected,
does not represent a best choice solution for the given scenarios.

We have compared the SAAF prototype to the limits of current technology in authorization
services (PERMIS standalone). As a result we identify that although techniques such as usage control
can impact and potentially slow down malicious activity, it cannot prevent identified malicious
activity from continuing permanently. The SAAF prototype (in comparison) can be considered to
impose additional risks within the federation. This is especially the case if considering the subject
privileges removed belonged to a critical subject, as opposed to simply temporarily denying access.
However, the damage caused by a malicious subject through persistent abuse (for instance as a
result of credential stealing) could equally present as much risk in not taking permanent actions, as
the SAAF prototype has been shown to achieve. In addition, if usage control techniques were to be
deployed across multiple resources it would not be possible for an authorization service, such as the
PERMIS standalone (or similar services), to assess total usage across all subject sessions, whereas a
SAAF controller is capable of monitoring and assessing combined sessions of usage at multiple
resources.

In light of these risks, we identify that the current implementation of the SAAF prototype has a
number of limitations that we propose to address as the research continues. First and foremost we
have no metrics for describing the scale of misbehavior. Not all misbehaviors are equally disastrous.
Some may only cause a minor irritation or inconvenience to the organization, whilst some may be
serious enough to jeopardize the on-going viability of the business. Consequently we need to
introduce a scale component into the behavior policy, which we have termed impact. Related to
this, we also have no equivalent metric for describing the scale of a solution. Removing the
permissions from all role/attribute holders is clearly orders of magnitude greater in impact than
either of the previous modifications, and is dependent upon the number of role/attribute holders.
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The next limitation is that solutions are currently pre-defined for each of the misbehaviors (in the
solutions policy), and these solutions are chosen based on a calculation of the subjects that are
impacted, as described in Section 3.4.1. The dimensions used represent an artificial utility for a
solution, which alone is not enough when considering which solutions to realize. Multiple
dimensions that compute the utility or impact must be considered, such as, impact to organizations
and their subject base (e.g., through loss of functionality, ability to service customers, process orders
and invoices etc.), and the probability that the behavior is indeed abnormal. Once solutions have
appropriate impact dimensions associated with them, SAAF will have a scale by which to compare
one solution with another, and with a given misbehavior, so that the direct linking of solutions to
misbehaviors via their policies can be removed.

6. Related Work

There are few works that attempt to solve the problem of misuse of access rights during run-time
and using self-adaptive techniques, although there are some approaches that attempt to rule out
misuse completely in an attempt to reduce the risk of insider threat.

Usage control (UCON) [5] extends traditional access control methods through further definition
of rules to primarily manage a subject’s access by assessing subject usage. It uses mutable attributes
(captured by conditions and obligations) about the subject’s access usage as part of the access
control decision process. The pretext to this could arguably be that incorporating these mutable
attributes as part of the decision process can prevent abnormal behavior. Whilst the UCON model is
sophisticated in identifying and managing a subject’s usage, it only allows for short-term solutions in
managing abnormal behavior. Once a subject’s level of usage has ‘cooled down’ the subject can
continue. In comparison to the SAAF prototype if a subject repeatedly meets their usage limits, we
assume the subject to be potentially malicious, which requires persistent solutions like those that
are implemented in SAAF. An advantage UCON does provide over the SAAF prototype is the ability
to impact a subject’s access during their session of access, whereby if UCON rules are broken access
is disrupted immediately during the subject’s session. SAAF is confined by its ability to only react
post subject access requests.

Trust PDPs [26] and trust policies [27] also can improve upon traditional authorization. The use of
trust policies is a method in which either a group of users or an individual’s trust is calculated, for
example, based on the attributes they own. In some cases, the level of trust of a user is associated
with the cost of carrying out an action, e.g., associating cost to a credential. The combined cost of
those credentials will establish how trustworthy that user is. This particular method, although may
improve upon more deserved access decisions, does not cover the potential that a trusted user
could turn rogue, whereby using their gained trust to abuse their access. Trust could also be viewed
from a different perspective whereby reputation (behavior) is involved [4]. For instance, a user’s
level of trust is calculated based on how they use the different services and whether they use
services correctly. This method is better suited to preventing a subject’s ability to abuse access
rights, as abuse over time would result in the subject becoming untrustworthy. However a trust
approach is limited, as no concrete actions are taken to prevent the subject from continuing abuse
completely, meaning services with lower levels of required trust can still be abused. Logical
attestation [28] builds on authorization, yet purposed towards the reasoning of behavior exhibited
by applications, rather than human subjects. It allows for the assessment of trust of applications
within an operating system as part of the authorization process, which is successful in preventing
untrustworthy behavior. However, applications and systems are far more predictable than human
users, meaning the classification of behavior is a more concrete process and irrelevant in application
to SAAF’s own analysis requirements.

Some systems attempt to actively resolve abnormal behavior, yet not in the context of federated
authorization infrastructures. Examples include active intrusion detection systems, such as
WebStalker [29], and credit card profiling systems [30]; however both are highly tuned to their
target domain. Active IDSs work at the network level and adapt firewall rules to prevent certain
types of network traffic. Credit card profiling is aimed at preventing fraud, and is limited to nature of
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credit card actions, in comparison to multiple target resources and actions with associated different
risks and impacts. Other works attempt to resolve abnormal behavior through the dynamic
configuration of security policies [31], where adaptations are defined within security policies, in
which security constraints have alternative branches based on conditions. However, similar to logical
attestation, the work is purposed predominately for the control of access by mobile programs
(applications).

As our work builds upon self-adaptive systems, it takes inspiration from systems that have
already achieved autonomic management, yet in different contexts. The Rainbow Framework [32]
manages architectural self-adaptation, and demonstrates the management of a web based client-
server system to ensure optimal availability of web assets (e.g., by increasing the amount of
available servers). SAAF follows a similar process to Rainbow, yet rather than adapting the system
architecture it adapts the controlling assets of a system. Rainbow also utilizes a self-adaptive
language called Stitch [33]. Stitch has provided the basis for our event-response model used within
the SAAF controller, referred to as triggers and solutions.

7. Conclusion

There is an inherent need for autonomic management of authorization infrastructures given the
spread of protected resources and the existence of authorized users over multiple domains. In this
paper, we have presented a Self-Adaptive Authorization Framework (SAAF), in which the SAAF
controller is a key component, as a solution to autonomic management of federated authorization
infrastructures. The approach used is focused on managing federated role/attribute based
authorization models (RBAC/ABAC), and the MAPE-K autonomic computing reference model. We
have described SAAF’s conceptual design as well as the implementation of a prototype, focusing on
how SAAF generates adaptations based on configuration and behavioral models of the authorization
infrastructure. One advantage of SAAF, compared with more traditional approaches, is its
responsiveness when reacting to circumstances that require the authorization infrastructure to
protect itself against attacks. Although, we have demonstrated SAAF’s capabilities and benefits, in its
current form there are some limitations. First, SAAF requires a large amount of trust to be placed on
it. In particular, SAAF must play the role of trusted ROOT, and act as the Source of Authority for both
service providers and identity providers (IdP). The reason being that not all IdPs would be
comfortable to allow a third party to affect their user attribute assignments. Second, the accuracy of
SAAF adaptations is also reliant on the specification by the service provider of applicable solutions to
patterns of malicious behavior, and this is not the most appropriate solution for socio-technical
systems that are able to change in unpredictable terms.

Our future work involves the further development of SAAF, specifically, the definition a multi-
attribute decision problem to improve the utility function used to select adaptation solutions. We
will draw upon work from trust access control [27], cost associated trust access control [4], and
utility [18] in order to build a formal framework for specifying clear controls that prevent wrongful
adaptation. Further research into SAAF will also focus on the marriage of SAAF with other
technologies that aid in identifying misuse, such as intrusion detection technologies that are capable
of analyzing misuse at the resource level.
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