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Sliding Mode Observer Based Incipient Sensor

Fault Detection with Application to

High-Speed Railway Traction Device

Kangkang Zhang1,2, Bin Jiang1,2,∗, Xing-Gang Yan3, Zehui Mao1,2

Abstract

This paper considers incipient sensor fault development detection issue for a class of nonlinear

systems with “observer unmatched” uncertainties. A particular FD (fault detection) sliding mode observer

is designed for the augmented system formed by the original system and incipient sensor faults. The

parameters are obtained using LMI and line filter techniquesto guarantee that the generated residuals

are robust to uncertainties and that sliding motion is not destroyed by faults. Then, three levels of

novel adaptive thresholds (incipient sensor fault thresholds, sensor fault thresholds and sensor failure

thresholds) are proposed based on the reduced order slidingmode dynamics, which effectively improve

the incipient sensor fault development detectability. Case study of on the traction system in CRH (China

Railway High-speed) is presented to demonstrate the effectiveness of the proposed incipient sensor fault

development and senor faults detection schemes.

Keywords: Incipient sensor fault, sliding mode observer, adaptive threshold, fault development

detection.

I. INTRODUCTION

Modern control systems have become more complex in order to meet the increasing require-

ment for high levels of performance. Control engineers are faced with increasingly complex

systems for which both the reliability and safety are very important. However, component
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incipient faults, such as electrolyte loss effectiveness of electrolytic capacitor, mechanical wears

and bears etc., may induce drastically changes and result inundesirable performance degradation,

even instability. These are life-critical for safety and actuate critical systems such as aircrafts,

spacecrafts, nuclear power plants, chemical plants processing hazardous materials and high-

speed railways. Therefore, incipient fault detection and development detection techniques are of

practical significance. And, the most important issue of reliable system operation is to detect

and isolate incipient faults as early as possible, which cangive operators enough information

and time to take proper measures to prevent any serious consequences on systems.

Typically, abrupt faults affect safety-relevant systems,which have to be detected early enough

so that catastrophic consequences can be avoided by early system reconfiguration. Such faults

normally have larger effect on detection residuals than that of modeling uncertainties, which

can be detected by choosing appropriate thresholds. At the other end, incipient faults are closely

related to maintenance problems and early detection of wornequipment is necessary. In this case,

the amplitude of incipient faults are typically small. Thusthe detection presents challenges to

model-based FDI techniques due to the inseparable mixture between incipient fault and modeling

uncertainty. Therefore, it is important to improve the residual robustness to system uncertainties

and select more proper thresholds to improve the detectability of fault detection mechanism.

There are many methods proposed in last few decades to enhance the robustness in observer

based fault detection, such as perfect unknown input decoupling [1], [2], [3], [4], optimalH2, H∞

schemes [5], [6], [7], [8], total measurable fault information residual [9], and projection method

[10]. Fault detection schemes for switching systems [11], [12] and semiconductor manufacturing

processes [13] have also been proposed. It has been recognized from general existence condition

in [2] that, for a residual generator perfectly decoupled from unknown input, it is only possible

when enough output signals are available. Different from perfect decoupling approach, the

robust residual generators are designed in the context of a trade-off between robustness against

disturbances and sensitivity to faults [5]. When perfect decoupling is not possible, the decision

functions determined by residuals will be corrupted by unknown inputs. The common practice

to evaluate the decision functions is to define appropriate thresholds, with which the decision

functions are compared [1]. Therefore, the robustness residuals and proper selected thresholds

are two important factors to improve detectability of incipient fault detection mechanism.

During the past decades, sliding mode observers have been used for FDI extensively [14],

[15], [16], [17], [18], [19], [20], [21], [22]. The reference [14] uses a sliding mode observer

to detect faults by disruption of sliding motion which is a difficult problem and motivate much
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research in the area. In [15], [16], [17], [18] and [19], the “equivalent output injection” concept

is used to explicitly construct fault signals to detect and isolate the faults, including sensor faults

and actuator faults. In [18], uncertainties and disturbances are considered, which need the so

called “matched uncertainty” in [23] assumption on the distribution matrices of the modeling

uncertainties and disturbances. Also, [17] studies the so called “unmatched uncertainty” case

based on the robustH∞ to enhance the robustness. Based on different structure of distribution

matrices of faults and uncertainties, [20] and [22] combinethe Luenberger observer with sliding

mode observer to detect faults, which needs perfect decoupling between faults and uncertainties.

Therefore, sliding mode observer based FDI framework in [17] and [21] mainly focus on robust

residual generator design to get a trade-off between robustness against disturbances and sensitivity

to faults. In reality, fault detectability can also be improved by selecting proper thresholds and

the adaptive threshold is intuitive (see, e.g. [24]). However, adaptive threshold design based on

sliding mode observers has not been available.

In this paper, a nonlinear sliding mode observer with novel designed sliding surface is proposed

for incipient sensor fault detection. The parameters of theobserver are particular designed relying

on L2 gain, guaranteeing residual robustness to uncertainties.At the same time, proper adaptive

thresholds are obtained based on the reduced order sliding motion, which effectively improves

incipient sensor fault detectability. Furthermore, different levels of detection decision schemes

for incipient sensor fault development are proposed. The main contribution of this paper is as

follows:

1) a novel FD sliding mode observer framework is proposed to get proper adaptive thresholds

to improve incipient fault detectability.

2) incipient sensor fault development detection schemes are studied and levels of detection

decisions are proposed.

The remainder of this paper is organized as follows. In Section II, preliminaries and assump-

tions are presented. In Section III, the FDE sliding mode observer is proposed with parameters of

observer being designed based on LMI and linear filter techniques. In Section IV, the sensor fault

adaptive thresholds (for incipient fault, fault and failure) are designed and the continuous and

piecewise continuous incipient sensor fault development detection decisions are made. In section

V, case study of an application to the traction system in CRH (China Railway High-speed) is

presented to demonstrate the obtained results. Section VI concludes this paper.

June 20, 2016 DRAFT
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II. PROBLEMS FORMULATION

A. System Description and incipient sensor fault Modeling

Consider a class of linear systems with sensor faults described by

ẋ = Ax+ g(x, u) + η(x, u, ω, t),

y = Cx+ Ff(x, u, t),
(1)

wherex ∈ Rn is state vector,u ∈ Rm is control,ω ∈ Rh represent external disturbance vector,

f : Rn ×Rm ×R → Rq is a nonlinear smooth vector representing the incipient sensor faults.

g(x, u) : Rn × Rm → Rn is a known nonlinear smooth vector andη(x, u, ω, t) : Rn × Rm ×

Rh × R → Rn is a nonlinear smooth vector representing the lumped disturbance, which is a

generalized concept, possibly including external disturbances, un-modelled dynamics, parameter

variations, and complex nonlinear dynamics. MatricesA ∈ Rn×n, C ∈ Rp×n andF ∈ Rp×q are

known withC being full row rank andF full column rank.

Assuming thatn ≥ p > q. Without loss of generality, it is assumed that the outputs of the

system (1) have been reordered (and scaled if necessary) so that the matrixF has the structure

F =




0

Iq



 . (2)

A lemma for piecewise continuous signals to establish differential dynamic model is given as

follows:

Lemma 1. [29] For any piecewise continuous vector functionf : R+ → Rq, and a stableq× q

matrix Af , there will exists an input vectorξ ∈ Rq such thatḟ = Aff + ξ.

Based on the continuous developing way of incipient faults analyzed in [26] and [28], this

paper considers the incipient sensor faultf(t) which is modeled by

ḟ = Aff + ξ(x, u, t), f(0) = 0, (3)

whereAf is a stable matrix with appropriate dimensions andξ = [ξT1 , · · · , ξ
T
q ]

T ∈ Rq is unknown

vector. Taking the Laplace transformation of Eq.(3), it is clear to see that in the frequency domain,

f(s) = (sI−Af )
−1ξ, which shows that the fault signalf is determined byξ(x, u, t) completely.

It should be noted thatAf is not a designed parameter. Such a class of incipient faultshas been

studied in [26] and [28].

Generally speaking, the amplitudes of the incipient faultsare small. With time going on, the

incipient faults may continuously develop to faults, and their amplitudes are bigger than that

June 20, 2016 DRAFT



5

ξ

ξ

ξ

0
T

1
T

2
T

3
T

f

t

Fig. 1. Incipient sensor faults develop process.

of incipient faults. If no actions is taken, faults may continuously evolve into failures, which

means that output signals are meaningless. The incipient sensor fault develops in a continuous

way shown as Fig.1. For the considered continuous developing fault signalsf in system (1), it

can be divided into three stages: incipient sensor fault, sensor fault and sensor failure. As seen

from Fig.1, the following terms can be given:0 < ‖ξ(x, u, t)‖ < ξ̄, called “incipient sensor

fault”; ξ̄ ≤ ‖ξ(x, u, t)‖ < ¯̄ξ, called “sensor fault”; and̄̄ξ ≤ ‖ξ(x, u, t)‖ < +∞ called “sensor

failure”. The “sensor failure” can be further divided into “light sensor failure” and “severe

sensor failure” by the bound¯̄̄ξ, that is ¯̄ξ ≤ ‖ξ(x, u, t)‖ <
¯̄̄
ξ called “light sensor failure” and

¯̄ξ ≤ ‖ξ(x, u, t)‖ < +∞ called “light sensor failure”. In addition, four time instants T0, T1,

T2 andT3 are defined, which represent incipient sensor fault occurrence time, incipient sensor

fault developing to sensor fault time (i.e., the time whenξ surpassinḡξ), incipient sensor fault

developing to sensor failure time (i.e., the time whenξ surpassinḡ̄ξ) respectively.

Remark 1. For mechanical components such as bears, wears and electrolytic capacitors,̄ξ, ¯̄ξ and
¯̄̄
ξ represent differnet damage levels which can be obtained by real experiences and/or statistical

data. To some extend,̄ξ, ¯̄ξ and ¯̄̄
ξ are determined by the requirement of system performance level.

An example of linear state feedback closed-loop system withthe only pole atδ = a is given in

Fig.2 to illustrate how to choose these bounds. Assuming that after incipient sensor faults occur,

the linear system performance will degrade and the placed pole will go to right direction in S

plane. As shown in Fig.2, when the linear system performancedegrade to a level where the pole

δ = b, the value ofξ(·) = ξ̄. Also the linear system performance degrade to a level wherethe

pole δ = d, the value ofξ(·) = ¯̄ξ. Moreover, when the linear system is marginal stable, that is

the poleδ = 0, the value ofξ(·) = ¯̄̄
ξ.

June 20, 2016 DRAFT
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Fig. 2. The sketch for the selection ofξ̄, ¯̄ξ and ¯̄̄
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B. Preliminaries and Assumptions

Consider system (1) with the outputy partitioned as

y =




y1

y2



 = Cx+ Ff(x, u, t), C =




C1

C2



 , F =




0

Iq



 , (4)

whereC1 ∈ R(p−q)×n andC2 ∈ Rq×n.

From (4), the system (1) and incipient sensor faults (3) can be represented in an augmented

form as follows:



ẋ

ḟ





︸ ︷︷ ︸

ẋa

=




A 0

0 Af





︸ ︷︷ ︸

Aa




x

f





︸ ︷︷ ︸

xa

+




g(x, u, t)

0





︸ ︷︷ ︸

ga(xa,u,t)

+




η(x, u, ω, t)

0





︸ ︷︷ ︸

ηa(xa,u,ω,t)

+




0

Iq





︸ ︷︷ ︸

Da

ξa(xa, u, t),

y = [C, F ]
︸ ︷︷ ︸

Ca




x

f



 ,

(5)

wherexa := col(x, f), Aa ∈ R(n+q)×(n+q), Ca ∈ Rp×(n+q) andDa ∈ R(n+q)×q with Ca being

full row rank andDa being full column rank. Notice that the triple(Aa, Da, Ca) is inherently

relative degree one sinceCaDa = Iq and rank(Da) = q. From [31] and relative degree one fact,

there exists a coordinate transformationT1 such that, without loss of generality that system (5)

is transformed into the following form

ẋ1 = Aa11x1 + Aa12x2 + ga1(xa, u, t) + ηa1(xa, u, ω, t),

ẋ2 = Aa21x1 + Aa22x2 + ga2(xa, u, t) + ηa2(xa, u, ω, t) +Da2ξ(x, u, t),

y = Ca2x2,

(6)

wherexa = col(x1, x2), x1 ∈ Rn+q−p, x2 ∈ Rp, Aa11, Aa12, Aa21, Aa22, Da2, Ca2, ga1(·), ga2(·)

ηa1(·) andηa2(·) can be got based on [31]. Moreover,Ca2 is nonsingular.

June 20, 2016 DRAFT
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Assumption 1. The triple(Aa, Da, Ca) is minimum phase (The invariant zeros (if any) of the

triple (Aa, Da, Ca) lie in the left half plane).

Remark 2. Assumption 1 is necessary for the sliding mode observer design for systems with

unknown inputs [15], [17], [31]. It has proved in [36] that the unobservable modes of the pair

(A,C) are the invariant zeros of the triple(Aa, Da, Ca). Therefore, in order to check Assumption

1, it is only required to find the unobservable modes of the pair (A,C) and check whether all

the unobservable modes lie in the left half plane. ∇

III. FDE SLIDING MODE OBSERVER DESIGN

In this section, the sliding mode observer with designed sliding surface as FDE (fault detection

estimator) will be designed to guarantee that theL2 gain from uncertainties to output estimation

errors are minimized. Both the healthy and faulty systems enter into the sliding surface before

the incipient sensor fault developing to severe sensor failure (i.e.,ξ >
¯̄̄
ξ).

From [18], there exist another linear transformationT described by

T =




In+q−p L

0 Iq



 (7)

with L = [L1, 0] with L1 ∈ R(n+q−p)×(p−q) such thatÂa11 = Aa11 + LAa21 is stable, and

Âa12 = (Aa11+LAa21)L+(Aa12+LAa22), ĝa1 = ga1+Lga2 = [In+q−p, L]ga, η̂a1 = ηa1+Lηa2 =

[In+q−p, L]ηa. Therefore, in the new coordinatesz = Txa, system (6) can be described by

ż1 = Âa11z1 + Âa12z2 + ĝa1(T
−1z, u, t) + η̂a1(T

−1z, u, ω, t),

ż21 = A1
a21z1 + A11

a22z21 + A12
a22z22 + g1a2(T

−1z, u, t) + η1a2(T
−1z, u, ω, t),

ż22 = A2
a21z1 + A21

a22z21 + A22
a22z22 + g2a2(T

−1z, u, t) + η2a2(T
−1z, u, ω, t) +Da22ξ (T

−1z, u, t) ,

y = Ca21z21+Ca22z22,

(8)

where z = col(z1, z2) with z1 ∈ Rn+q−p, z2 ∈ Rp, and z2 := col(z21, z22) = C−1
a2 y with

z21 ∈ Rp−q andz22 ∈ Rq. Moreover,z21 = [Ip−q, 0]C
−1
a2 y andz22 = [0, Iq]C

−1
a2 y.

Assumption 2. The modeling uncertainties, represented byηa(·) in (5), ηa1(·) andηa2(·) in (6),

satisfy that∀(xa, y, u, ω) ∈ Xa × Y × U ×W, ∀t > 0,

‖ηa(xa, u, ω, t)‖ ≤ η̄, ‖ηa1(xa, u, ω, t)‖ ≤ η̄1(y, u, t), ‖ηa2(xa, u, ω, t)‖ ≤ η̄2(y, u, t) (9)

June 20, 2016 DRAFT
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whereη̄ is known constant,̄η1(·) and η̄2(·) are known functions, andXa ⊂ Rn+q,W ⊂ Rh,U ⊂

Rm andY ⊂ Rp are compact sets.

Assumption 3. The known nonlinear termsga1 (xa, u, t) and ga2 (xa, u, t) in (6) are uniformly

Lipschitz in u ∈ U , i.e., xa, x̂a ∈ Xa,

‖ga1 (xa, u, t)− ga1 (x̂a, u, t)‖ ≤ L1 ‖xa − x̂a‖ ,

‖ga2 (xa, u, t)− ga2 (x̂a, u, t)‖ ≤ L2 ‖xa − x̂a‖
(10)

whereL1 andL2 are the known Lipschitz constants forga1 (xa, u, t) andga2 (xa, u, t), respec-

tively.

Remark 3. Assumption 2 requires that bounds on uncertainties in (5)and (6) are known, which is

important to obtain the proper adaptive thresholds [34], [35]. In this paper, there is no constraint

on the distribution matrices of uncertainties and faults. However, in some sliding mode observer

based fault diagnosis papers [20] and [22], additional conditions on the distribution matrices are

necessary to completely decouple faults and uncertainties. ∇

Sincez2 is known, thenz2 can be used to construct observers. Denoting¯̂z = col(ẑ1, C
−1
a2 y),

then the sliding mode observer for system (8) is chosen as

˙̂z1 = Âa11ẑ1 + Âa12C
−1
a2 y + ĝa1(T

−1 ¯̂z, u, t),

˙̂z21 = A1
a21ẑ1 + A11

a22ẑ21 + A12
a22ẑ22 + g1a2(T

−1 ¯̂z, u, t) +K11

(
[Ip−q, 0]C

−1
a2 y − ẑ21

)

+K12

(
[0, Iq]C

−1
a2 y − ẑ22

)
+ ν,

˙̂z22 = A2
a21ẑ1 + A21

a22ẑ21 + A22
a22ẑ22 + g2a2(T

−1 ¯̂z, u, t) +K21

(
[Ip−q, 0]C

−1
a2 y − ẑ21

)

+K22

(
[0, Iq]C

−1
a2 y − ẑ22

)
,

ŷ = Ca21ẑ21+Ca22ẑ22

(11)

whereK11 andK22 are chosen such thatA11
a22 −K11 andA22

a22 −K22 are stable, and from [18],

K21 will not effect the observer stability and can be any matrix with appropriate dimension. The

function ν is defined by

ν = M(·)sgn([Ip−q, 0]C
−1
a2 y − ẑ21) (12)

whereM(·) is a positive scalar function to be determined.

June 20, 2016 DRAFT
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Let e1 = z1− ẑ1, e21 = z21− ẑ21 ande22 = z22− ẑ22. Then from (8) and (11), before incipient

sensor faults occur (i.e., fort < T0), the state estimation error dynamics are described by

ė1 = Âa11e1 + ĝa1(T
−1z, u, t)− ĝa1(T

−1 ¯̂z, u, t) + η̂a1(T
−1z, u, ω, t), (13)

ė21 = A1
a21e1 +

(
A11

a22 −K11

)
e21 + (A12

a22 −K12)e22

+g1a2(T
−1z, u, t)− g1a2(T

−1 ¯̂z, u, t) + η1a2(T
−1z, u, ω, t)− ν, (14)

ė22 = A2
a21e1 + (A21

a22 −K21)e21 +
(
A22

a22 −K22

)
e22

+g2a2(T
−1z, u, t)− g2a2(T

−1 ¯̂z, u, t) + η2a2(T
−1z, u, ω, t), (15)

ey = Ca21e21+Ca22e22. (16)

Note that

T−1z − T−1 ¯̂z =




In+q−p L

0 Iq








z1 − ẑ1

z2 − C−1
a2 y



 =




e1

0



 . (17)

For error dynamics (13)-(16), the sliding surface is chosenas

S = {(e1, e21, e22) : e21 = 0}. (18)

Remark 4. In [34] and [35], the output estimation errorsey (including e21 ande22) are chosen

as residuals. However, from error dynamics (13)-(16), it can be seen thate22 reflects fault

information directly,e1 and e21 reflect fault information throughe22 indirectly. Therefore, only

e22 is chosen as residual can arrive the same results comparing with that choosingey as residual

in [34] and [35]. Furthermore, choosinge22 as residual facilitates to design more proper adaptive

threshold to improve detectability. ∇

Remark 5. In [15], [16], [18] and [30], the hyperplaneey = 0 is chosen as sliding surface,

in which faults are completely rejected by “equivalent output rejection function”. In this paper,

based on the chosen sliding surface (18), the faults will notbe rejected by designed discontinuous

rejection functionν in (12), which facilitates to generate residuals to detect faults. Moreover,

the designed adaptive thresholds are more proper than the adaptive thresholds in [34] and [35]

because of the reduced order sliding motion. ∇

Then the following conclusion is ready to presented.

Proposition 1. Under Assumptions 1-3, the sliding motion of system (13)-(16) without lumped

uncertaintieŝηa1 andη2a2 associated with the surface (18) is asymptotically stable if K21 = A21
a22

June 20, 2016 DRAFT
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and there exist SPD matricesP1 and P2, L defined in (7) andK22 such that for the given

positive constantsε1, ε2, ε3, γ, L1 and L2 (Lipchitz constants forga1(xa, u, t) and ga2(xa, u, t)

with respect toxa) such that the matrix inequalities

(
P̄1Ā1 + ĀT

1 P̄
T
1

)
+

1

ε1
P̄1P̄

T
1 + ε1(La)

2In+q−p + ε2(L2)
2In+q−p

+
1

γ2
P1P1 +

1

γ2
P1LL

TP1 + ε3A
2T
a21A

2
a21 < 0, (19)

(
P2Ā2 + ĀT

2 P
T
2

)
+

(
1

ε2
+

1

ε3
+

1

γ2

)

P 2
2 + CT

a22Ca22 < 0 (20)

with La = L1 + L2 is solvable, where

P̄1 := P1 [In+q−p, L] , Ā1 :=




Aa11

Aa21



 , Ā2 := A22
a22 −K22. (21)

Furthermore, with lumped uncertaintieŝηa1 andη2a2, under Assumption 2, the error systems (13)

and (15) are ISS (input-to-state stable), and theL2 gain fromηa1(·) and ηa2(·) to e22 satisfies

that ∫ t

0

eT22C
T
a22Ca22e22dτ ≤ γ2

∫ t

0

(
ηTa1ηa1 + 2η2Ta2 η

2
a2

)
dτ + ǫ (22)

whereǫ is defined later.

Proof: Consider a Lyapunov candidate function

V = eT1 P1e1 + eT22P2e22. (23)

If K21 = A21
a22, the time derivative ofV along the trajectories of the systems (13) and (15) is

given by

V̇ = eT1

(

P1 (Aa11 + LAa21) + (Aa11 + LAa21)
T
P1

)

e1

+ 2eT1 P1 [In+q−p, L]
(
ga

(
T−1z, u, t

)
− ga

(
T−1 ¯̂z, u, t

))
+ 2eT1 P1ηa1(·) + 2eT1 P1Lηa2(·)

+ eT22

(

P2

(
A22

a22 −K22

)
+
(
A22

a22 −K22

)T
P2

)

e22 + 2eT22P2A
2
a21e1

+ 2eT22P2

(
g2a2

(
T−1z, u, t

)
− g2a2

(
T−1 ¯̂z, u, t

))
+ 2eT22P2η

2
a2(·).

Note that, fromLa = L1 + L2, it can be obtained that
∥
∥ga (T

−1z, u, t)− ga
(
T−1 ¯̂z, u, t

)∥
∥ ≤

∥
∥ga1 (T

−1z, u, t)− ga1
(
T−1 ¯̂z, u, t

)∥
∥+

∥
∥ga2 (T

−1z, u, t)− ga2
(
T−1 ¯̂z, u, t

)∥
∥ ≤ L1

∥
∥T−1z − T−1 ¯̂z

∥
∥+
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L2

∥
∥T−1z − T−1 ¯̂z

∥
∥ = La

∥
∥T−1z − T−1 ¯̂z

∥
∥ = La‖e1‖, then from the well-known inequality

2XTY ≤ 1
ε
XTX + εY TY for any scalarε > 0, it follows that

V̇ + eT22C
T
a22Ca22e22 − γ2

(
ηTa1ηa1 + 2η2Ta2 η

2
a2

)

= eT1
(
P̄1Ā1 + ĀT

1 P̄
T
1

)
e1 +

1

ε1
eT1 P̄1P̄

T
1 e1 + ε1(La)

2eT1 e1 + ε2(L2)
2eT1 e1

+
1

γ2
eT1 P1P1e1 −

(

γηa1 −
1

γ
eT1 P1

)(

γηa1 −
1

γ
eT1 P1

)T

(24)

+
1

γ2
eT1 P1LL

TP1e1 −

(

γηa2 −
1

γ
eT1 P1L

)(

γηa2 −
1

γ
eT1 P1L

)T

+ eT22
(
P2Ā2 + ĀT

2 P
T
2

)
e22 +

1

ε2
eT22P2P2e22 +

1

ε3
eT22P2P2e22 + ε3e

T
1A

2T
a21A

2
a21e1

+ eT22C
T
a22Ca22e22 +

1

γ2
eT22P2P2e22 −

(

γη2a22 −
1

γ
eT22P2

)(

γη2a22 −
1

γ
eT22P2

)T

.

Then

V̇ + eT22C
T
a22Ca22e22 − γ2

(
ηTa1ηa1 + 2η2Ta2 η

2
a2

)

≤ eT1

((
P̄1Ā1 + ĀT

1 P̄
T
1

)
+ 1

ε1
P̄1P̄

T
1 + ε1(La)

2In+q−p + ε2(L2)
2In+q−p +

1
γ2P1P1

)

e1

+eT1 ε3A
2T
a21A

2
a21e1 +

1
γ2 e

T
1 P1LL

TP1e1

+eT22

((
P2Ā2 + ĀT

2 P
T
2

)
+
(

1
ε2
+ 1

ε3
+ 1

γ2

)

P 2
2 + CT

a22Ca22

)

e22 ≤ 0.

(25)

Thus the inequality (22) is satisfied withǫ = V (0) = eT1 (0)P1e1(0) + eT22(0)P2e22(0), which

only depends on the initial estimation errore1(0) ande22(0).

Hence the result follows.

Note that inequalities (19) and (20) can be transformed intothe following LMI problem: for

the given positive constantsε1, ε2, ε3, γ, L1 andL2, solvingP1, P2, Y1, Y2 such that



















Ξ1 (P1, Y1) P1 Y1 P1 Y1 (A2
a21)

T

∗ −ε1In+q−p 0 0 0 0

∗ ∗ −ε1Ip 0 0 0

∗ ∗ ∗ −γ2In+q−p 0 0

∗ ∗ ∗ ∗ −γ2Ip 0

∗ ∗ ∗ ∗ ∗ −ε3Iq



















< 0, (26)
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













Ξ2 (P2, Y2) P2 P2 P2 CT
a22

∗ −ε2Iq 0 0 0

∗ ∗ −ε3Iq 0 0

∗ ∗ ∗ −γ2Iq 0

∗ ∗ ∗ ∗ −Ip















< 0, (27)

whereΞ1 (P1, Y1) = P1Aa11 +AT
a11P1 + Y1Aa21 +AT

a21Y
T
1 + ε1(La)

2In+q−p + ε2(L2)
2In+q−p,

Y1 = P1L with P1 > 0, Ξ2 (P2, Y2) = P2A
22
a22+(A22

a22)
TP2−Y2−Y T

2 , Y2 = P2K22 with P2 > 0.

The estimation errore22 is the residual used to detect the fault occurrence. The objective here

is to choose the gainL and K22 such that minimizing the effect of the lumped disturbances

η̂a1(·) and η2a2(·) on e22, that is, to minimize theL2 gain γ > 0. Therefore an optimization

problem can be posed with regard toP1, P2, Y1, Y2 andγ2, i.e., Minimizeγ2 s.t. (26) and (27)

with P1 > 0 andP2 > 0.

Remark 6. From Proposition 1, it can be seen that the Lyapunov matrixin (23) of the error

dynamics (13) and (15) is block diagonal matrix, which implies thatÂa11 and Â22
a22 are stable

and hence the sliding motion (13) and (15) associated with sliding surface (18) is ISS with the

lumped uncertaintieŝηa1(·) andη2a2(·). ∇

To design gainM(·) in (12), the bound ofe1 in (13) with Lipchitz nonlinear term should be

calculated. Therefore, the following lemmas are introduced.

Lemma 2. (Bellman-Gronwall Lemma [33]). Lett0, c0, c1 andc2 be nonnegative constants, and

κ(t) be a nonnegative piecewise continuous function. Ifh(t) satisfies the inequality

h (t) ≤ c0e
−λ(t−t0) + c1 + c2

∫ t

t0

e−λ(t−τ)κ (τ) h (τ) dτ, ∀t ≥ t0,

then

h (t) ≤ (c0 + c1) e
−λ(t−t0)e

c2
∫ t

t0
κ(s)ds

+ c1λ

∫ t

t0

e−λ(t−τ)ec2
∫ t

τ
κ(s)dsdτ, ∀t ≥ t0.

Lemma 3. Consider the error dynamic system described by (13) withÂa11 being stable. Letk0

andλ0 be positive constants such that
∥
∥
∥eÂa11t

∥
∥
∥ ≤ k0e

−λ0t. Assume thatλ0 > k0 (1 + ‖L‖)La,

whereLa is given in Proposition 1. Then the state estimation errore1(t) satisfies:

‖e1(t)‖ ≤ χ (t) . (28)
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whereχ (t) , k0η̄
λ0−k0(1+‖L‖)La

+
(

k0ω1 −
k0η̄

λ0−k0(1+‖L‖)La

)

e−(λ0−k0(1+‖L‖)La)t andω1 is a constant

bound for‖z1(0)‖.

Proof: From (13), it is obtained that

e1 = eÂa11te1 (0) +

∫ t

0

eÂa11(t−τ)
(
[In+q−p, L]

(
ga

(
T−1z, u, t

)
− ga

(
T−1 ¯̂z, u, t

)
+ ηa

))
dτ. (29)

By using (9), (10) and (17) and applying the triangle inequality, it is got that

‖e1‖ ≤
k0η̄

λ0
+ (1 + ‖L‖)La

∫ t

0

e−λ0(t−τ) ‖e1‖ dτ + k0

(

ω1 −
η̄

λ0

)

e−λ0t, (30)

wherek0 andλ0 are positive constants satisfying that
∥
∥
∥eÂa11t

∥
∥
∥ ≤ k0e

−λ0t, andω1 is a (possibly

conservative) constant bound forz1(0), such that‖e1(0)‖ = ‖z1(0)‖ ≤ ω1, which always exist

as in [34].

Now, by applying Lemma 2 to (30) withc0 = k0

(

ω1 −
η̄
λ0

)

, c1 =
k0η̄
λ0

, c2 = k0 (1 + ‖L‖)La

andκ(t) = 1. The inequality (28) follows.

Proposition 2. Under Assumptions 1-3, before sensor fault develop to seversensor failure, i.e.,

ξ ≤
¯̄̄
ξ, the error dynamics (13)-(16) are driven to the sliding surfaceS given in (18) in finite

time and remain on it ifK11 andK12 in (14) are chosen asK11 = A11
a22 − Â11

a22 with Â11
a22 being

stable andK12 = A12
a22 respectively, and the gainM(·) in (12) satisfies

M (·) ≥
(∥
∥A1

a21

∥
∥+ L1

)
χ(t) + η̄2(·) + ‖Da22

¯̄̄
ξ‖+̟, (31)

where̟ is a positive constant,χ (t) is defined in Lemma 3.

Proof: Let V = eT21e21. From the expression of (14) andK11 = A11
a22 − Â11

a22 whereÂ11
a22 is

stable, andK12 = A12
a22, it follows after faults occur that

V̇ =eT21

(

Â11
a22 + (Â11

a22)
T
)

e21 + 2eT21Da22ξ(·)

+ 2eT21
(
A1

a21e1 + g1a2(T
−1z, u, t)− g1a2(T

−1 ¯̂z, u, t) + η1a2(T
−1z, u, ω, t)

)
− 2eT21ν.

(32)

SinceÂ11
a22 is symmetric negative definite by designing appropriateK11, it follows that Â11

a22 +

(Â11
a22)

T < 0. Then by applying (12),

V̇ ≤ 2 ‖e21‖
((∥
∥A1

a21

∥
∥+ L1

)
‖e1‖+ η̄2(·) + ‖Da22ξ(·)‖

)
− 2M(·)‖e21‖. (33)

From (31) and (33), it follows thaṫV ≤ −2̟‖e21‖ ≤ −2̟V 1/2, which means that a reachability

condition is satisfied. Hence the conclusion follows.
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f

t

Fig. 3. Linesa, b: continuous incipient fault developments; Linesc, d: piecewise continuous faults.

Remark 7. Propositions 1 and 2 show that the error dynamical systems(13)-(15) are asymptot-

ically stable. It should be noted that this paper mainly focuses on fault detection by designing

proper thresholds. The observer designed here may not be directly used to estimate/reconstruct

fault as in [15]- [18]. ∇

IV. SENSORFAULT DETECTION DECISION SCHEMES

In this paper, the faults considered are generated by differential equation (3), which represents

two types of faults: continuous faults and piecewise continuous faults, shown as Fig 3. Therefore,

the general sensor fault detection decision schemes, proposed in this paper, are divided into two

types:

1) incipient sensor fault development detection decision scheme, which is used to decide what

time the incipient sensor faults are developed into sensor faults and what time the incipient

faults are developed into sensor failures.

2) fault detection decision scheme, which is used to detect the incipient faults, faults and

failures occurrence.

Decision Principles: Corresponding to above two types fault detection schemes and from Fig.3,

there are also two decision principles:

1) Incipient Sensor Fault Development Detection Decision Principle: For incipient sensor

fault developing to sensor fault detection, if the estimation errorsey are continuous, and

there is a time instant such that there is at least one of estimation errorsey surpassing

incipient fault threshold and another time instant surpassing fault threshold. Then the

development is considered as completed, such as the curvea in Fig.3; For incipient sensor

fault developing to sensor failure detection, the estimation errorsey are also required to
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be continuous, excepting above two time instants, there is another time instant to surpass

sensor failure threshold, such as the curveb in Fig.3.

2) Fault Detection Decision Principle: If there is at least one of estimation errorey surpasses

incipient fault threshold, the incipient sensor fault is considered occurrence. The detections

on sensor fault and failure are the same with incipient sensor fault detection. Curvesc and

d in Fig.3 have provided two examples.

Remark 8. It should be pointed out that Principle 2) is for traditional fault detection scheme,

which has been discussed in, [25], [27], [28], [34], and Principle 1) is a novel development

detection decision scheme, which is mainly used to detect and decide the development of

continuous incipient fault.

A. Fault Detection Decision Schemes

1) Incipient Sensor Fault Developing Detection Decision Schemes: When sliding motion

takes place and maintains onS given by (18),e21 = ė21 = 0. Therefore, each component of

the output estimation erroreyj(t), j = 1, 2, · · · , p can be expressed aseyj(t) , Ca22je22 where

Ca22j is thejth row vector of matrixCa22.

a) Incipient Sensor Fault developing to Sensor Fault Decision Scheme: By applying

(14), it is obtained that

|eyj | ≤ kj

∫ t

0

e−λj(t−τ)
[(∥
∥A2

a21

∥
∥+ L2

)
‖e1‖+ η̄2

]
dτ + kjω2e

−λjt (34)

wherekj andλj are positive constants satisfying
∣
∣
∣Ca22je

Â22

a22t
∣
∣
∣ ≤ kje

−λjt andω2 is a bound on

‖z22(0)‖, that is‖e22(0)‖ = ‖z22(0)‖ ≤ ω2 (note thatẑ22(0) = 0).

Based on (28) and (34), it follows that

|eyj | ≤ kj

∫ t

0

e−λj(t−τ )
[(∥
∥A2

a21

∥
∥+ L2

)
χ(τ) + η̄2

]
dτ + kjω2e

−λjt (35)

whereχ (t) is defined in Lemma 3. Then incipient sensor fault thresholdδ1j is given by

δ1j (t) , kj

∫ t

0

e−λj(t−τ)
[(∥
∥A2

a21

∥
∥+ L2

)
χ(τ) + η̄2

]
dτ + kjω2e

−λjt. (36)

Based on Proposition 2, before incipient sensor fault is developed to severe sensor failure,

(i.e., ‖ξ‖ ≤
¯̄̄
ξ), the sliding motion maintains onS . In presence of incipient sensor faults, by

using similar reasoning as in (36), the sensor fault threshold δ2j is given by

δ2j (t)
∆
=kj

∫ t

0

e−λj(t−τ )
[(∥
∥A2

a21

∥
∥+ L2

)
χ(τ) + η̄2 + ‖Da22‖ξ̄

]
dτ + kjω2e

−λjt. (37)
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According to (36) and (37), the decision scheme on incipientsensor fault developing to sensor

fault is derived as follows:

I If output estimation errorsey are continuous all the time and there exists at least onej

with j ∈ {1, 2, · · · , p} such thateyj exceeds incipient sensor fault thresholdδ1j given

by (36), then the decision that there exists at least one incipient sensor fault developing

to sensor fault is made at the time wheneyj exceeds sensor fault thresholdδ2j given

in (37).

The detection time instantTditft is defined as the first time instant such that|eyj (Tditft)| >

δ2j (Tditft) for someTditft > T0 and somej ∈ {1, 2, · · · , p}, that is,

Tditft
∆
= inf

p
∪
j=1

{t ≥ T0 ||eyj (t)| > δ2j (t)} . (38)

b) Incipient Sensor Fault Developing to Sensor Failure Decision Scheme: After sensor

failures occur (i.e.,t > T2), the sliding motion on sliding surfaceS may be disrupted. Based

on Proposition 2, there exists a bound¯̄̄ξ such that when̄̄ξ < ξ ≤
¯̄̄
ξ, the sliding motion maintains

on sliding surface. In addition, whenξ >
¯̄̄
ξ, the sliding motion is destroyed, which is easy to

decide sensor failures occurrence [14].

When the sensor failure signals are not big enough to disrupted the sliding motion, that is
¯̄ξ < ξ ≤

¯̄̄
ξ, in presence of sensor faults, by using similar reasoning asin (37), the sensor failure

thresholdδ3j is given by

δ3j (t)
∆
=kj

∫ t

0

e−λj(t−τ)
[(∥
∥A2

a21

∥
∥+ L2

)
χ(τ) + η̄2 + ‖Da22‖

¯̄ξ
]

dτ + kjω2e
−λjt. (39)

According to (37) and (36), the decision scheme on incipientsensor fault developing to sensor

failure is as follows:

II If output estimation errorsey are continuous and there exists at least onej with j ∈

{1, 2, · · · , p} such thateyj exceeds incipient sensor fault thresholdδ1j given by (36)

and sensor fault thresholdδ2j given by (37), then the decision that there exists at least

one incipient sensor fault developing to sensor failure is made wheneyj exceeds sensor

failure thresholdδ3j given in (39).

It is emphasized that the sensor failure detection time instant Tditfe should be the first time

instant such that|eyj (Tditfe)| > δ3j (Tditfe) for someTditfe > T0 and somej ∈ {1, 2, · · · , p}.

Therefore,

Tditfe , inf
p
∪
j=1

{t > T0 ||eyj (t)| > δ3j (t)} . (40)

2) Fault Detection Decision Scheme:
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a) incipient sensor fault Detection Decision Scheme: According to (35), the decision

scheme on incipient sensor fault detection is derived as follows:

III The decision on the occurrence of an incipient sensor fault is made when the modulus

of at least one component of the output estimation errors (i.e., eyj) exceeds incipient

sensor fault thresholdδ1j given by (36). The incipient sensor fault detection timeTdi

is given by

Tdi
∆
= inf

p
∪
j=1

{t > T0 ||eyj (t)| > δ1j (t)} . (41)

b) Sensor Fault Detection Decision Scheme: Based on Proposition 2, after a sensor fault

occurrence and before developing to sensor severe failure,the sliding motion maintains onS .

According to (37), sensor fault detection decision scheme is given as follows:

IV The decision on the occurrence of a sensor fault is made when the modulus of at least

one component of the output estimation errors (i.e.,eyj) exceeds sensor fault threshold

δ2j given by (37). The sensor fault detection time instantTdft is given by

Tdft
∆
= inf

p
∪
j=1

{t > T1 ||eyj (t)| > δ2j (t)} . (42)

c) Sensor Failure Decision Scheme: If the sensor failure signals are not big enough to

destroy the sliding motion, that is̄̄ξ < ξ ≤
¯̄̄
ξ, the decision on sensor failure is given as follows:

V The decision on the occurrence of a sensor failure is made when the modulus of at

least one component of the output estimation errors (i.e.,eyj) exceeds sensor failure

thresholdδ3j given by (39). The sensor failure detection timeTdfe is given by

Tdfe , inf
p
∪
j=1

{t > T2 ||eyj (t)| > δ3j (t)} . (43)

Remark 9. When the sliding motion of observer (11) on sliding surfaceS is disrupted by failure

signals, the sensor failure occurrence decision can also bemade [14]. However, for incipient

sensor fault developing to sensor failure, the detection timeTdfes, whereTdfes is the time instant

that the sliding motion of observer (11) is destroyed, is bigger thanTdfe given by (43) since the

period of the continuous sensor failurē̄ξ < ξ <
¯̄̄
ξ is ahead of the period that¯̄̄ξ < ξ.

Therefore, the following theorem about fault detection is got:

Theorem 1. For the nonlinear system (8), the fault detection decision schemes (I), (II) with

adaptive thresholds (36), (37) and (39), guarantee that there is no false alarms before incipient

sensor fault developing to sensor fault and sensor failure respectively. Furthermore, the fault
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detection decision schemes (III), (IV), (V) characterizedby adaptive thresholds (36), (37) and

(39) guarantee that there is no false alarms before incipient sensor fault, sensor fault and sensor

failure occurrence respectively.

Remark 10. It should be pointed out that, all the detection decisions (I-V) are made after that

e21 = 0, that is after sliding motion takes place, which means that these decisions require that

sliding motion takes place earlier than that faults occur. However, compared with the abrupt

fault, an incipient fault (for example, the fault caused by mechanical wear) usually takes long

time to cause system failure. Moreover, the reachability constant can be adjusted to guarantee

that the sliding motion occurs at the very initial stage. Therefore, the developed results can be

applied to a majority of cases in reality. ∇

B. Fault Detectability Schemes

In presence of incipient sensor fault and sensor fault (i.e., T0 < t < T2), based on Proposition

2, the sliding motion of error dynamics (13)-(16) maintainson S defined in (18), and each

componenteyj of the output estimation error is given by

eyj(t) =

∫ t

T0

Ca22je
Â22

a22(t−τ)
[
g2a2(T

−1z, u, τ)− g2a2(T
−1 ¯̂z, u, τ)

]
dτ

+

∫ t

T0

Ca22je
Â22

a22(t−τ)
[
A2

a21e1 + η2a2(T
−1z, u, ω, τ)

]
dτ

+

∫ t

T0

Ca22je
Â22

a22(t−τ)Da22ξ
(
T−1z, u, τ

)
dτ + Ca22je

Â22

a22(t−T0)e22 (T0) . (44)

By applying the triangular inequality, it follows that

|eyj | ≥
∣
∣
∣

∫ t

T0

Ca22je
Â22

a22(t−τ)Da22ξ (T
−1z, u, τ) dτ

∣
∣
∣− kj |e22 (T0)| e

−λj(t−T0)

−kj
∫ T

T0

e−λj(t−τ ) [(‖A2
a21‖+ L2)χ (τ) + η̄2] dτ.

(45)

Corresponding to I-V fault detection decision schemes, there are five fault detectability schemes.

1) Incipient Sensor Fault Developing to Sensor Fault Detectability Scheme: The incipient

sensor fault thresholdδ1j(t) given by (35) fort > T0 can be written as

δ1j (t) ,kj

∫ t

T0

e−λj(t−τ)
[(∥
∥A2

a21

∥
∥+ L2

)
χ(τ) + η̄2

]
dτ + δ1j (T0) e

−λj(t−T0). (46)

Therefore, based on (45) and (46), if there existT0 < Tdi < T1 such that
∣
∣
∣

∫ Tdi

T0

Ca22je
Â22

a22(Tdi−τ)Da22ξ (T
−1z, u, τ) dτ

∣
∣
∣ ≥ 2kj

∫ Tdi

T0

e−λj(Tdi−τ) [(‖A2
a21‖+ L2)χ (τ) + η̄2a2] dτ

+ [kj |e22 (T0)|+ δj (T0)] e
−λj(Tdi−T0),

(47)
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then |eyj | ≥ δ1j , and the incipient sensor fault will be detected at timet = Tdi, i.e., |eyj (Tdi)| >

δ1j (Tdi) before it develops to sensor fault.

Using the similar reasoning as in (46), the sensor fault adaptive thresholdδ2j for t > T1 can

also be written as

δ2j (t) ,kj

∫ t

T1

e−λj(t−τ )
[(∥
∥A2

a21

∥
∥+ L2

)
χ(τ) + η̄2+ ‖Da22‖ ξ̄

]
dτ + δ2j (T1) e

−λj(t−T1). (48)

Based on (45) and (48), if there existsT1 ≤ Tditft < T2 such that
∣
∣
∣

∫ Tditft

T1

Ca22je
Â22

a22(t−τ )Da22ξ (T
−1z, u, τ) dτ

∣
∣
∣ ≥

kj
∫ Tditft

T1

e−λj(Tditft−τ) [2 ((‖A2
a21‖+ L2)χ (τ) + η̄2a2) + ‖Da22ξ̄‖

]
dτ

+ [kj |e22 (T1)|+ δj (T1)] e
−λj(Tditft−T1),

(49)

then|eyj | ≥ δ2j , and if incipient sensor fault has been detected at timeTdi, incipient sensor fault

developing to sensor fault is detected at timet = Tditft, i.e.,|eyj (Tditft)| > δ2j (Tditft) before it

develops to sensor failure.

Therefore, the following theorem is got:

Theorem 2. For the nonlinear system (8) with the fault decision scheme I, defined by the fault

detection estimator (11) and adaptive thresholds (36), (37), if there exist some time instants

T0 < Tdi < T1 and T1 < Tditft < T2, and somej ∈ {1, 2, · · · , q}, such that the unknown input

function ξ (T−1z, u, t) satisfies (47) and (49), then incipient sensor fault developing to sensor

fault will be detected at timeTditft.

2) Incipient Sensor Fault Developing to Sensor Failure Detectability Scheme: The sensor

failure adaptive thresholdδ3j for t > T2 can be written as

δ3j (t) ,kj

∫ t

T2

e−λj(t−τ)
[(∥
∥A2

a21

∥
∥+ L2

)
χ(τ) + η̄2+ ‖Da22‖

¯̄ξ
]

dτ + δ3j (T2) e
−λj(t−T2). (50)

Based on (45) and (50), if there existsTditfe > T2 such that
∣
∣
∣

∫ Tditfe

T2

Ca22je
Â22

a22(t−τ)Da22ξ (T
−1z, u, τ) dτ

∣
∣
∣ ≥

kj
∫ Tditfe

T2

e−λj(t−τ )
[

2((‖A2
a21‖+ L2)χ (τ) + η̄2a2) + ‖Da22‖

¯̄ξ
]

dτ

+ [kj |e22 (T2)|+ δj (T2)] e
−λj(Tditfe−T2),

(51)

then |eyj | ≥ δ3j , and if incipient sensor fault developing to sensor fault attime Tditft, the

incipient sensor fault developing to sensor failure is detected at timet = Tditfe, i.e.,|eyj (Tditfe)| >

δ3j (Tditfe).
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In addition, the sensor failure can also be detected if the sensor failure signals are big enough

(i.e., ξ >
¯̄̄
ξ) to destroy the sliding motion of observer (11) on the sliding surfaceS . Comparing

with (51), the detectability is weaker than using the adaptive threshold method since it is not

requireξ >
¯̄̄
ξ.

Theorem 3. For the nonlinear system (8) with the fault decision scheme II, defined by the

fault detection estimator (11) and adaptive thresholds (36), (37) and (39), if there exist some

time instantsT1 < Tditft < T2 and Tditfe > T2, and somej ∈ {1, 2, · · · , q}, such that the

unknown input functionξ (T−1z, u, t) satisfies (47), (49) and (51), then the incipient sensor fault

developing to sensor failure will be detected at timet = Tditfe.

Fault detection decision schemes III-V are traditional adaptive threshold decision schemes for

piecewise continuous faults. For sensor fault detection scheme, if there existsT1 < Tdft such that

(49) holds, withTditft replaced byTdft, then the sensor fault is detected at timet = Tdft. Also,

for sensor failure detection scheme, if there existsT2 < Tdfe such that (51) holds, withTditfe

replaced byTdfe, then the sensor failure is detected at timet = Tdfe. Therefore the following

result is ready to presented.

Theorem 4. For the nonlinear system (8) with the fault decision scheme III-V, defined by the

fault detection estimator (11) and adaptive thresholds (36), (37) and (39), if there exist some

time instantsT0 < Tdi, T1 < Tdft and T2 < Tdfe, and somej ∈ {1, 2, · · · , q}, such that the

unknown input functionξ (T−1z, u, t) satisfies (47), (49) withTditft replaced byTdft and (51)

with Tditfe replaced byTdfe, then the incipient sensor fault, sensor fault and sensor failure will

be detected at timet = Tdi, t = Tditft and t = Tditfe respectively.

Remark 11. It can be seen when sliding mode takes place,e21 = 0 and eyj = Ca22je22, j =

1, · · · , p, which means that the fault detection detectability of proposed FD mechanism is

improved. However, in [34] and [35],e21 will never be zero. Therefore, the proposed adaptive

thresholds (36), (37) and (39) are more proper than these in [34] and [35]. ∇

V. CASE STUDY: APPLICATION TO TRACTION SYSTEM

A typical ac/dc/ac power system, with a single phase PWM boost rectifier and a three phase

PWM inverter, used for electrical traction drives is shown in Fig.4. The topology structure of

three phase PWM voltage source inverter is shown in Fig.5. Based on the Kirchoff current and
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Fig. 5. Three phase PWM inverter topology

voltage lemma, it can be got that

v̇cd =
1

Cf
id + ω0vcq −

1

Cf
ild, (52)

v̇cq =
1

Cf

iq − ω0vcd −
1

Cf

ilq, (53)

i̇d =
1

Lf

vd + ω0iq −
1

Lf

vcd, (54)

i̇q =
1

Lf

vd − ω0iq −
1

Lf

vcq, (55)

whereLf andCf are filter inductor, capacitor respectively,vd andvq ared−q-axis inverter output

voltages,vcd and vcq are d − q-axis capacitor voltages,id and iq are d − q-axis inverter output

currents,ild and ilq ared− q-axis load currents, andω0 is operation source angle frequency.

Furthermore, an instantaneous power balance between the input and output terminals of LC
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filters, which can improve the dynamical response [32], is introduced as follows:

ild =
pfvcd+qfvcq

(v2cd+v2cq)
+ ω0Cfvcq −

ω0Lf(i2d+i2q)
(v2cd+v2cq)

vcq,

ilq =
pfvcq−qfvcd

(v2cd+v2cq)
− ω0Cfvcd +

ω0Lf(i2d+i2q)
(v2cd+v2cq)

vcd,
(56)

wherepf andqf are calculated with measured voltages and currents.

Considering the measurement noises of voltages and currents, which leads to the lumped

uncertaintiesη(·) given in (1), then Eqs. (52)-(55) can be described by

ẋ = Ax+Bu+ Eil(x, u) + η(x, u, ω, t),

y = Cx+ Ff,
(57)

wherex = [vcd, vcq, id, iq]
T , u = [vd, vq]

T , il = [ild, ilq]
T with ild and ilq given in (56),

A =












0 ω0
1
Cf

0

−ω0 0 0 1
Cf

− 1
Lf

0 − r
Lf

ω0

0 − 1
Lf

−ω0 − r
Lf












, B =












0 0

0 0

Vdc

Lf
0

0 Vdc

Lf












, E =












− 1
Cf

0

0 − 1
Cf

0 0

0 0












,

C =




1 0 0 0

0 1 0 0



 andη (x, u, ω, t) =















20 sin (vcdvcq) + [2, 5]u

cos (vcdid)

0.2 sin (10vcdiq)

2 cos
(
i2q
)

0















.

Assuming that the sensor fault occurs in the measured voltage of voq, thenF = [0, 1]T . The

incipient sensor fault considered is generated by (3) asḟ = −1000f+ξ(x, u, t), f(0) = 0. There

are many different fault modes depended onξ(x, u, t) to detect. In this simulation, three fault

modes will be considered.
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Fig. 6. Incipient sensor fault developing to sensor fault

detection ind− q-axis.
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Fig. 7. Incipient sensor fault developing to sensor fault detection

in A−B −C-axis.

A. Continuous incipient sensor fault developing to sensor fault detection

In first case, theξ(x, u, t) is given by

ξ(x, u, t) =







e(60te
−2t) + 20sin(20x(1)) + 3cos(10sin(x(3)))+

20sin(1000t) + 20cos(10x(5)x(3)) + [0.2, 20]u, t < 0.16;

e60se
−2s

+ 20sin(20x(1)) + 3cos(10sin(x(3)))

+20sin(2000t) + 20cos(10x(5)x(3)) + [0.2, 20]u, s = 0.16, 0.16 < t < 0.2.
(58)

which is continuous. Fig.6 and Fig.7 show the continuous residual (solid and red line) and

adaptive thresholds (including incipient sensor fault thresholdδ1 (dash and blue line), sensor

fault thresholdδ2 (dash and cyan line) and sensor failure thresholdδ3 (dash and black line)). It

can be seen that the incipient sensor fault is detected at time instantTdi, and its development to

sensor fault is detected at time instantTditft.
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Fig. 8. Piecewise continuous fault developing detection in

d− q-axis.
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Fig. 9. Piecewise continuous fault developing detection inA−

B − C-axis.

B. Continuous incipient sensor fault developing to sensor failure detection

In this case,ξ(x, u, t) is given by

ξ(x, u, t) =







e(65te
−2t) + 20sin(20x(1)) + 3cos(10sin(x(3)))+

20sin(1000t) + 20cos(10x(5)x(3)) + [0.2, 20]u, t < 0.16;

e65se
−2s

+ 20sin(20x(1)) + 3cos(10sin(x(3)))

+20sin(2000t) + 20cos(10x(5)x(3)) + [0.2, 20]u, s = 0.16, 0.16 < t < 0.2.
(59)

which is also continuous. Comparing with the first case, the incipient fault with input signal (59)

develops faster than the fault drove by (56) demonstrated byFig.8 and Fig.9. As can be seen,

the incipient sensor fault develops to sensor failure at time instantTditfe.
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Fig. 10. Piecewise continuous fault developing detection in

d− q-axis.
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Fig. 11. Piecewise continuous fault developing detection in

A−B − C-axis.

C. Piecewise continuous sensor fault detection

In this case, the sensor fault also expressed asḟ = −1000f + ξ(x, u, t), f(0) = 0 where

ξ(x, u, t) =







e45t + e40t + 20sin(20x(1)) + 3cos(10sin(x(3))) + 20sin(1000t)

+20cos(10x(5)x(3)) + [0.2, 20]u, t < 0.12;

e55s + exp(40t) + 20sin(20x(1)) + 3cos(10sin(x(3))) + 30sin(1000t)

+20cos(10x(5)x(3)) + [0.2, 20]u, s = 0.12, 0.12 < t < 0.16;

e60s + 200 + 20sin(20x(1)) + 3cos(10sin(x(3))) + 20sin(1000t)

+20cos(10x(5)x(3)) + [0.2, 20]u, s = 0.12, 0.16 < t < 0.2.

(60)

which is piecewise continuous and has jumps at time instantst = 0.12s and t = 0.16s. As

shown in Fig.10 and Fig.11, incipient sensor fault is detected at time instantTdi. After first jump

at time t = 0.12s, the incipient sensor fault develops to sensor fault which is detected at this

time instantTdft = 0.12s. Then the sensor fault develops to sensor failure and is detected at

time instantTdfe.

VI. CONCLUSION

This paper has proposed a sliding mode observer based FDE, which is used to generate

levels of residuals for the Lipchitz nonlinear systems and obtain levels of proper adaptive

thresholds. As shown in the paper, the levels of proper adaptive thresholds are effectively

improve incipient fault detectability. Furthermore, the incipient sensor fault detection decision
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schemes have been studied, including continuous incipientsensor faults developing to sensor

fault, continuous incipient sensor faults developing to sensor failures and piecewise continuous

sensor fault detection. At last, an application example to the traction system in CRH (China

Railway High-speed) example is presented to demonstrate the effectiveness of proposed incipient

sensor fault development detection schemes.
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