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Abstract

Let k be a field of characteristic p and let V' be a k-vector space. In Chapter 2 of
this thesis we classify all unipotent groups G < GL(V') consisting of bireflections
for p # 2: we show that unipotent groups consisting of bireflections are either two—
row groups, two—column groups, hook groups or one of two types of exceptional
group.

The well known theorem of Chevalley-Shephard-Todd shows the importance
of (pseudo-)reflection groups to invariant theory. Our interest in bireflection
groups is motivated by the theorem of Kemper which tells us if G < GL(V) is a
p-group and the invariant ring k[V]“ is Cohen-Macaulay then G is generated by
bireflections. We use our classification to investigate which groups consisting of
bireflections have Cohen-Macaulay or complete intersection invariant rings.

In Chapter 3 we introduce techniques and notation which we use later to find
invariant rings of groups by viewing them as subgroups of Nakajima groups. In
Chapter 4 we show that for & = [F,, there is a family of hook groups, including
all non-abelian hook groups, which have complete intersection invariant rings.

It is well known that Cohen-Macaulay invariant rings of p-groups in char-
acteristic p are Gorenstein. There has been speculation by experts in the area,
that they might in fact be complete intersections. In Chapter 5 we settle this
negatively by giving an example of a p-group which has Cohen—Macaulay but
non complete intersection invariant ring. To the best of our knowledge this is
the first example of that kind.

Finally in Chapter 6 we show that when k£ = F, both types of exceptional

group have complete intersection invariant rings.
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Chapter 1

Introduction

The results in this thesis can be divided into two sections. Chapter 2, although
motivated by invariant theory, deals only with unipotent groups consisting of
bireflections, their structure and classification. Later on we look at the invariant
rings of some of these groups. This first chapter gives an introduction to invariant
theory and why we are interested in unipotent bireflection groups. We start by

defining the objects we are interested in.

Definition 1.0.1. Let k be a field and V' an n-dimensional k-vector space. We
denote the vectors fixed (pointwise) by a group G € GL(V):

Vé={veV]|gl)=wv, forall g€ G},
and for any g € GL(V) we define:
VIi={veV]|g) =uv}
An element g € GL(V) is called a reflection (sometimes a pseudoreflection)

if
dimy(V9) =n — 1.

If
dimg(V9) > n —2



then g is called a bireflection. A subgroup G < GL(V) is called a reflection
group if it is generated by reflections. Similarly G is called a bireflection

group if it is generated by bireflections.

Let R be a commutative ring on which a group G acts. In invariant theory
we are interested in the subset of a ring R which remains invariant under the
group action

RE={fecR|g(f) =, forall g€ G}.

Let k be a field, later we shall always consider a finite field £ with positive
characteristic p, so k = F, where ¢ = p" for some r € N\0. Let V be an
n-dimensional k-vector space with basis {e1,...,e,}. We can choose a respective

dual basis for W = V* by choosing {z1,...,x,} such that

lifi=j
zi(e;) =
0 otherwise.

For any finite group G we look at a fixed representation p : G — GL(V') giving
a left action of G on V. We will use the same convention as in Campbell and
Wehlau’s book ([10]) that G also acts on the left on W by the dual representation.

The following lemma will be used to relate the two:

Lemma 1.0.2. [10, 1.1.1] For a group G let p : G — GL(V) be a fized repre-
sentation, p* : G — GL(W) the dual representation. Then for g € G the matrix
representing p(g) € GL(V') with respect to a fized basis is the transpose inverse

of the matriz representing p*(g) with respect to the dual basis.

We will see that faithful representations of the same group can have very
different invariant rings, so we will mainly view the groups we are interested in
as subgroups of GL(V') with the natural representation. If we have a matrix M
of g € GL(V') with respect to a basis ey, ..., e, for V, then we can read off the
action of ¢ on this basis by looking at the columns of M. To find the action of

g~ ! on the corresponding dual basis we can read across the rows of M.



From here we can extend the action of G on W to an action on the polynomial

ring
V] =S(W) = klzq,...,x,)].
We do this by setting:

9(f (21, wn)) = flg(x1), .. g(zn))

for all f € k[V], g € G. In invariant theory we are interested in the fixed space

of this action, the invariant ring:
KVIS ={f € S(V) | g(f) = f forall g € G}.

Ezxzample 1.0.3. Let k = R, n = 2 with {x,y} a basis for W. Let G = (g, h)

where

so X,Y € k[V], furthermore we will see later that X,Y generate the whole ring
of invariants, so k[V]% = k[X,Y].

Invariant theory of finite groups can be split into the modular case (where the
characteristic of the field & divides the order of the group) and non-modular case.
We will mainly be interested in the modular case where many of the questions

that are answered in the non-modular case are still open.



Definition 1.0.4. Let A be the k-algebra generated by fi,...,f, so A =
E[fi,..., fa]- If the f; are algebraically independent then we say that A is

a regular or polynomial ring.

In the Example 1.0.3 we see that the invariant ring is polynomial, and so
k[V]¢ = k[V]. In invariant theory we are interested in when this happens, when
is the ring of invariants a polynomial ring? We will use the following hierarchy

to describe how far away a ring is from being a polynomial ring:
Regular = Complete Intersection = Gorenstien = Cohen—Macaulay.

These terms will be defined in the next section.

The groups that we will be interested in will be p-groups with k a finite field
of characteristic p. Motivated by Theorems 1.3.6 and 1.3.7 we will look at groups
which consist of bireflections, and the structure of their invariant rings. Our

main groups of interest will be:

e two—column groups which are subsets of

1 0 O
c 1 0 |labek"?cck

ab In_g
(see Section 2.3).

e two-row groups which are subsets of

I, 00
a 1 0fllabeE™)" ceck
b ¢ 1

(see Section 2.3).



e hook groups which are subsets of

1 0 0
b I,, 0|]lac(k" ), bek™ 2 cck

¢c a 1

(see Section 2.4).

o exceptional groups of type one. These are distinct from the above groups.

They are subgroups of a group consisting of bireflections which is isomorphic

to
1 m n
Syl,(SLs(¢)) =3 |0 1 1| |m,nlek
0 0 1

(see Section 2.5).

o exceptional groups of type two. These are subgroups of an elementary
abelian group of order ¢® consisting of bireflections. These are distinct

from hook groups but each pair of elements generates a hook group (see

Section 2.6).

In section 2.2 we give a full classification of finite unipotent groups consisting

of bireflections in characteristic p > 2.

Theorem 1.0.5. Let G < GL(V) be a p-group consisting of bireflections with
p # 2 then one of the following must hold:

G is a two—row group.

G is a two—column group.

G s a hook group.

G is an exceptional group of type one.



e (G is an exceptional group of type two.

The remainder of Chapter 2 is spent looking at the properties of these groups.
This allows us to draw some more general conclusions in Section 2.7, for example
showing that all unipotent groups conisisting of bireflections have class less than
or equal to two for p # 2, n > 3 (see Corollary 2.7.3).

For k =T, it turns out that a lot of these representations do have Cohen—
Macaulay rings of invariants, many of which are also complete intersection

rings.

Theorem 1.0.6. Let G < GL(V') be a unipotent group consisting of bireflections,
as above let W = V*. If k =F, and k[V]® is not a complete intersection ring

then one of the following must hold

e (G is a non-abelian two—column group.

e (G is a two—column group which cannot be generated by reflections.
e G is an abelian hook group with |G, |G, W]] # {0}.

e (G is a two-row group.

If k = F, and k[V]Y is not a Cohen—Macaulay ring then one of the following
must hold:

e G is an abelian hook group with |G, |G, W]] # {0}.
e (G is a two—row group.

In Chapter 2 we formally define these groups and prove Theorem 1.0.5. In
Chapter 4 we show that certain hook groups have complete intersection invariant
rings for k = FF,, (see Theorem 4.2.8). In Chapter 6 we show that the exceptional
groups have complete intersection invariant rings, again for £ = IF,. Combining
these with existing results about two—column groups we will prove Theorem
1.0.6.

In Chapter 5 we will find the invariant ring of a two—column group which

has Cohen—Macaulay but non complete intersection ring of invariants. This is a
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counter example to speculation by experts that if k is a field of characteristic
p, G a p-group, then k[V]% Cohen—Macaulay implies that k[V]¢ is a complete
intersection ring.

Firstly though we need more of an introduction to invariant theory.

1.1 The invariant ring k[V]¢

The ring of invariants k[V]% is a subring of k[V] and has some of the same nice
properties, for example being finitely generated. This is a classical result of
David Hilbert from 1890 ([19]) in the non-modular case and was proved later in
1915 by Emmy Noether in the modular case ([29]). One consequence of this is
that the invariant ring is Noetherian which means that any chain of ascending

ideals eventually terminates. Another nice property of k[V]% is that it is graded.

Definition 1.1.1. A ring R is called (positively) graded if we can find additive
groups R; < R for ¢ € N such that

ieN
and if r; € R;, r; € R; then mr; € R;;. We call r € R homogeneous if
r € R; for some i € N. A graded algebra R is called connected if Ry = k. An
R-module M is called a graded module if we can find additive groups M; < M

for 7 € N such that

€N

and if r; € R;, m; € M; then r;(m;) € M;;.

We say that a monomial z{'2z5*... 2% has degree d = a3 + as + ... + a,.
For a polynomial ring R = k[z1,...,x,] we let Ry be the subspace spanned by

monomials of degree d. In this way we see that polynomial rings have a natural
positive grading given by degree, as the degree zero part is the field itself they
are also connected. By the way we have defined the group action we can see

that it respects this grading, and all elements in degree zero (elements of the
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field k) are fixed. If f,g € k[V]%, so are fg and f + g so k[V]% is a graded
connected k-algebra. An ideal in a graded ring R is called homogeneous if it can
be generated by homogeneous elements. In the case of a graded connected ring
there is a unique maximal homogeneous ideal R, , generated by all elements of
positive degree. In some situations we can use this to treat the ring similarly to
a local ring and refer to it as *-local.

Let R be a ring with subring S. If for some element a € R we can find a
monic polynomial f with coefficients in .S such that f(a) = 0 then we say that a
is integral over S. If every a € R is integral we say that R is integral over S or

that R is an integral extension of S.

Theorem 1.1.2. [10, 5.0.4] Let G < GL(V) be a finite group, then k[V] is an

integral extension of k[V]¢.

Proof. For any h € k[V] we can construct the monic polynomial

Ft)= ]t —gh) =t + fig 1t + ..+ fo

geG

As at least the identity in G fixes h we must have F'(h) = 0. We can extend the
action of G on R = k[V] to an action on R[t] by letting g(t) = ¢ for all g € G.
As all elements of the group simply permute the factors of F'(¢) we find that
F(t) € R[t]°. This means that for any o € G-

9 4 o (fie )t + L o(fo) = 9+ fig T L+ it + fo

As all the f;’s are of different degrees this means that f; € k[V]“ for 0 < i <
|G| — 1, and so k[V] is integral over k[V]. O

Definition 1.1.3. Let R be a Noetherian ring and let p be a prime ideal of R.

If we can find a chain of prime ideals



1.1 The invariant ring k[V]¢ 9

which is of maximal length, 7, then we call i the height of p. The Krull

dimension of R is the maximum height of proper prime ideals in R.

For a polynomial ring R = k[zy,...,xz,] it’s Krull dimension is n: we can

find the chain of prime ideals:
(O) - (‘Tl) - (th?) ... & (‘rlv"'vxn)

and this is the maximal possible length of a chain of prime ideals in R.

As k[V] is integral over k[V]¥ we can use the Lying Over, Going-Up and
Going-Down Theorems to relate prime ideals in k[V]¢ with prime ideals in k[V]
(see [10] Theorem 2.5.2). This tells us that k[V] and k[V]¢ have the same Krull
dimension. From here on for any ring R we shall mean the Krull dimension of
R when we refer to its dimension or write dim(R) and will specifically state in
any instances when we mean the dimension of R as a k-vector space (and write
dimg(R)).

We know that k[V]¢ is finitely generated, suppose for some m € N it is
generated by homogeneous elements fi,..., f,, € k:[V]f There is a canonical
surjective homomorphism of k-algebras ¢ from the polynomial ring klyi, . . ., Ym]
onto k[V]¢, mapping v; to f; for 1 <4 < m. For a graded connected ring R the
minimal number of generators m for R, is called the embedding dimension

of R (Embdim(R)).

Definition 1.1.4. Let R be a commutative graded k-algebra of Krull dimension
n with homogeneous elements fi,..., f, of R and let A = k[f1,..., f.]. We say
that the f;’s form a homogeneous system of parameters (or HSOP) for R
if R is finitely generated as an A-module: there exists hq, ..., h,, for some m € N

such that
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In the case that R = k[V]% a HSOP is often referred to as a set of primary
invariants and the module generators (the h;’s) are the respective secondary

invariants.

As k[V]% is a graded connected k-algebra Noether’s Normalisation Lemma
(see [14, Theorem Al]) tells us that we can always find such a system for
the invariant ring k[V]“. As k[V] is integral over k[V]¢ any HSOP for k[V]¢
also forms a HSOP for k[V]. In example 1.0.3 {X,Y} can be shown to be a
homogeneous system of parameters for k[V] and in general a HSOP is not too

difficult to find.

Lemma 1.1.5. [10, 2.6.5] Let k[V]¢ have Krull dimension n and fi,..., f, €
k[V]¢. Let k be the algebraic closure of k, and let

V=VQk.

Then {fi,..., fn} forms a HSOP for k[V]% if and only if Vi(fi,. .., fa) = {0},

where

Vi(fisoo o fo) ={xeV:0=fix) = fo(x) =... = fu(x)}.

Ezample 1.1.6. Let k =F,, R = k[V] and let G = GL(V'). We can form the

following homogeneous polynomial over R|[t|:

FVY#)=T[ (t —w) = zn%di,ntqi.

weW

We can see that " (t) € RE[t], and as the d;,, all have different degrees we must
have d; , € RE for 1 < i <n. These are known as the Dickson Invariants.

The smallest non-trivial case is k =Fy and W = (x,y)r. Here we have

FY(t) =t(t+ o)t +y)(t+ o +y) =t + (@ + 2y + y")t* + (2%y + )
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0 dyp = x? + xy + 7, do2 = 2%y + y2x. We see that

doo = xy(x + Z/)

s0 if (c1,¢2) € Vir(do2) either ¢p =0, co =0 or ¢; = —cy. Substituting these into
dy o shows that
Vir(di 2, do2) = {0}

and so we have found a HSOP for k[V].

As k[V] is integral over k[V]¢ if H < G then k[V]# is integral over k[V], so
a HSOP for k[V]¢ is also a HSOP for k[V]#. The Dickson Invariants can always
be shown to form a HSOP for GL(V). As we are only interested in groups G
which are subgroups of GL(V'), this means that the Dickson Invariants always
form a HSOP for k[V]¢ (though not usually the most convenient one to work

with). They also have some other nice properties which we will make use of later.

Lemma 1.1.7. [10, 3.5.1] Let x1, ..., x, be a basis for W. For 1 <i <n define
subspaces of W by
WZ' = <$1,...,l’i>
and as above let
F(t) = FY¥() = ] (t—w).
weW;
Then
1. Fi(t) = Foq () — Fiy () T Fia (8);

2 djy = dj; g — djor 1 B ().

The following can be used to check if a HSOP generates the whole invariant

ring.

Theorem 1.1.8. [22, 16] If {fi,..., f.} are a HSOP for k[V]¢ then

[ des(f) = |G
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if and only if k[V]9 = k[f1,..., f»] so k[V]C is a polynomial ring.

In the case of the Dickson Invariants we can see that deg(d;,) = ¢" — ¢’ for

1 <4 <n and then can check that

n n—1
[1deg(din) = [[ 4" — ¢ = |IGL(V)].
i=1 i=0

So k[V]¢ = k[dyp, ... ,dns). In Example 1.0.3 we also find that
deg(X) deg(Y) = 4 = |G|,

however this is not always the case.

Example 1.1.9. Let k =R, n =2 and x,y be a basis for W. Let G be as in
Ezample 1.0.3 and H = (t) < GL(V') where

We see that H is a subgroup of G and so X,Y form a HSOP for k[V], however
they don’t generate the whole ring: xy € k[V]¥ but xy € k[X,Y]. It can be
shown that k[V]|H = k[V]%[zy] and we cannot find a HSOP, fi, fo such that
k[V]¢ = k[f1, fo] and so k[V]% is not reqular.

When we can find a HSOP fi,..., f, such that k[V]¢ = k[fi,..., f.] then
k[V]¢ = k[V] and we say k[V]¢ is a polynomial or regular ring. In the non-
modular case the well known theorem of Chevalley ([11]), Shephard and Todd([30])

tells us which groups have polynomial invariant rings.

Theorem 1.1.10 (Chevalley, Shephard-Todd). If |G| € k* then k[V]% is poly-

nomial if and only if G is generated by reflections

In the modular case Serre’s theorem (see [10, Corollary 12.2.5]) tells us that
for k[V]¢ to be polynomial, G must be generated by reflections. However the

converse is false.
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1.2 How far away is k[V]“ from being polyno-
mial?

When a ring fails to be a polynomial ring we can ask how far away it is from
being regular. In Example 1.1.9 we said that k[V]¥ = k[V]%[zy] where k[V]% is
a polynomial ring. This is an example where the invariant ring R = k[V]¥ is a

hypersurface- this means that
Embdim(R) < dim(R) + 1.

In this section we will define other ring classifications that we will use later

o1.

1.2.1 Cohen—Macaulay rings and depth

Definition 1.2.1. Let R be a ring, M an R-module, and
X=T1,T2,y..., T,

a sequence of elements in R. The sequence x is called an M-regular sequence

or M-sequence of length n if the following are satisfied:
o« M/xM #0;
e z; is not a zero divisor of M/(z1,...,z;—1)M for 1 <i <n.

When R is taken to be a module over itself this is simply called a regular

sequence.

A regular sequence is maximal if it cannot be extended to a longer regular
sequence. If R is a Noetherian ring, M an R-module and [ an ideal in R with
IM # M, then all maximal regular M-sequences in [ have the same length (see
[14] Chapter 17). For a local (or *-local) ring with maximal ideal m (or maximal

homogeneous ideal R) we call the depth of M the length of a maximal regular
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M-sequence in m (or R;). We shall denote the depth of M (as an R-module)
by depthy(M), or just depth(M) where the ring is clear. Most often we will
be interested in the depth of R as an R-module (this is the maximal length of
homogeneous regular sequences in R). A ring is called Cohen-Macaulay if depth
is equal to Krull dimension, in which case any HSOP is a regular sequence (see

10, 2.8.1]).

Theorem 1.2.2. /3, 4.3.5] If R is a graded connected Noetherian k-algebra then

the following are equivalent:

1. R is Cohen—Macaulay of dimension n;

2. R has a HSOP f1, ..., fn such that if A = k[fi,..., [n] then R is free as an
A-module;

3. for any HSOP fi,..., fn for R, A=k[f1,..., fa], R is free as an A-module.

This means that if R is Cohen—Macaulay with HSOP fi,..., f, then we can
find a set of secondary invariants hq,...,h,, € R for some m € N such that if

A=k[f1,..., fn] then
R=®", Ah;.
If we have a set of generators for R = k[V] then we have a simple way to check

if the ring is Cohen—Macaulay.

Theorem 1.2.3. [18, 3.7.1] Let G < GL(V), and let K[V have a set of primary

imvariants f1, ..., fn, and a minimal set of secondary invariants hq, ..., h,,. Then

[T deg(f,) < mic|

i=1
with equality if and only if k[V]9 is Cohen—Macaulay.

In the non-modular case k[V]¢ is always Cohen—Macaulay ([20]), however

this is not true in the modular case. We can use the Cohen-Macaulay defect to
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give a measure of how far away a ring R is from being Cohen—Macaulay:

CMdef(R) = Krull dim(R) — depth(R).

We introduce a little homological algebra which will allow us to put a lower
bound on the depth of an invariant ring.

Let R be a ring. An R-module P is called projective if it is a direct summand
of a free module or equivalently if for all maps f : P — N, and all surjections
g: N — M with M, N both R-modules there exists h such that the following

diagram commutes:

ho lf
B
MT»N‘

For a graded module M over a graded connected ring R, free and projective
are equivalent (see [14] Theorem A3.2). Suppose M is a finitely generated R-
module, with generators my, ..., m,. We can always find a surjection from the

free R-module

MQ == @::1 RTZ'

onto M by mapping r; to m;. Using this surjection we obtain the following exact

sequence:

where [ is the kernel of the map. The kernel I may not be free, but as above we
can find an M; which is free and surjects onto I, and continue in this manner to

find the exact sequence of free modules (and M):

p3 ‘]\42 b2 ]\41 P MO po M O '

The above sequence is called a free resolution for M. If we have an exact

sequence as above, but with the M; merely projective (not necessarily free) then
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this is called a projective resolution for M. If we can find some [ such that
M; # 0 but M; = 0 for ¢« > [ then we say that the resolution terminates and
has length [. A projective resolution of M is minimal if it has minimal length
[, in this case we call [ the projective dimension of M (projdimg(M)). If it is
not possible to find a projective resolution which terminates we say that M has
infinite projective dimension.

Let R be a ring with R-modules M and N. Suppose that we have a projective

resolution P for M:

p3 M2 p2 ]\4—1 p1 MO Po M O .

For 7 > 1 we can define maps
fi : Homg(M;_1, N) — Hom(M;, N)
such that for m € Hom(M;_4, N), m' € M;
film)(m') = m(p;(m")).
We can form the following complex Hom (P, N):
f1 J2 f3

0 — Hom(My, N) — Hom(M;, N) —— Hom(My, N) ——....

Unlike the projective resolution this is not necessarily an exact sequence. We

measure how far away this sequence is from being exact by defining
Ext(M, N) = H(P,N) = ker(f;)/Im(fi;1).
In the case that we have a finite group G with kG-module A we define

HY (G, A) = Extlo(Z, A).
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We call the smallest 7 > 0 such that H'(G, A) # 0 the cohomological connectivity
of A and denote it by ccg(A).

Theorem 1.2.4. [16, 1.2] Let R = k[V], G < GL(V) then
depth(R%) > min{dim(V?) + ccg(R) + 1, dimg(V)}.
The representation V' of a group G is called flat if
depth(R) = dimy(VE) + ccq(R) + 1.

For p-groups and k of characteristic p, where ccg(R) = 1, this is a particularly

useful theorem.

Theorem 1.2.5. [15, /] Let G be a group with Sylow-p-subgroup P. Let V be a
finite kG-module, R = k[V|, and m = ccq(R). Suppose that 0 # 7 € H™(G, R)

is a cohomology class such that

resh (1) = 0

for each maximal subgroup N < P. Then V is flat.

Let G be a p-group. For a maximal subgroup M of G let
where g € G\M. For some uy € N\M for N <. G let

V= [ @—uy)W"M
NdmaxG
N#M

Theorem 1.2.6. [15, 6] For a non-cyclic p-group G the following are equivalent:

-Z' ﬂMﬂmaxP ker(reS%|H1(G’W)> % 0;

2. for some M < G mazimal Xy < Yy N WM
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3. for all M < G mazimal Xy < Yy N WM,

From the above we see that homology is useful when looking at the depth
of invariant rings. Another useful tool when looking at regular sequences is the
Koszul complex. Let R be a commutative Noetherian ring with M an R-module.
Let

RQM=MeoMe..oM

i-times

so @M =R, ® M =M and ® M = M ® M. The tensor algebra of M,
® M, is defined to be

QM =BRM

i>0
where the multiplication of 11 ® ... ® z,, E Q" M and y1 ® ... Ry, € Q' M is
given by

l4+m
P®. BRI XU® ... OY=010.. Qrm O D...0yu @ M
From here we can define the exterior algebra
AM =Q M/ J

where J is the ideal of @ M generated by the elements t ® r and r Ry —y @ x
for all z,y € M.
The tensor algebra is graded by the ®’ M’s, and this naturally leads to a
grading on AM by letting
NM =R

for i > 0 where ®' M is the image of @ M in AM.
Let x = xq,...,x, be a sequence in R and let N be the free R-module of

rank m with eq,...,e,, a basis for N. We can see that
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as R-modules for 1 < i < m and AN = 0 otherwise. Let f : N — R be the map
defined by f(e;) = x; for 1 < i < m. The Koszul complex of x, K(x), is defined
to be:

dm —1 d2

00— AN D Am-1N ALY

R 0

where for 1 < i < m the map d; : AN — AN maps a; A ... A a; to

di(al VANRAY ai) = Z(—l)jf(aj)al VANIAN aj VANPIRWAN a;
j=1

where a; signifies that this term has been omitted.
Theorem 1.2.7. [14, 17.4] Let M be a finitely generated module over the ring
R and let x = x1,...,x, be a sequence in R. If
H/(M ® K(x)) =0 forj <m
while
H™"(M ® K(x)) #0

then every mazximal M-sequence in I = (x) C R has length m.

1.2.2 Gorenstein rings and free resolutions

We are always interested in R a graded connected finitely generated k-algebra,
and in this case the Hilbert Syzygy Theorem tells us that any R-module M
has finite projective dimension. The following relates projective dimension and

depth.

Theorem 1.2.8. Let R be a graded connected Noetherian k-algebra generated
by f1,..., fs and let B = kly1,...,ys] be a polynomial ring. Then

depth(R) + projdimg(R) = dim(B).
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Proof. This is contained in [3] but not stated specifically: the ring R meets the
criterion of Hypothesis 4.3.2 (of [3]) so by Theorem 4.4.3 (of [3]) depth(R) =
hcodimp(R). By Theorem 4.4.4 (of [3])

hcodimp(R) + projdimg(R) = dim(B)

and so

depth(R) + projdimg(R) = dim(B).
[

This is a graded connected version of the Auslander-Buchsbaum Theorem
which holds in the local case. Let R be a graded connected Cohen—Macaulay
k-algebra, with Krull dimension n, which can be generated by fi,..., fs and let
B = klyi,...,ys| be a polynomial ring with canonical surjection ¢ onto R.

If [ is the projective dimension of R as a B-module then using the above

[l =5s5—n. Let

0 M, 2 2 M, R 0

be a projective resolution for R. For 1 < ¢ < [ let M} = Hompg(M;, B) and
p; M, — M} such that for m € M} ;, n € M,

pi(m)(n) = m(pi(n)).

Using [3] Corollary 4.5.2
Exty (M, B) =0

for i #s—mn=1so if we let Qg(M) = M;/Im(p;) then

Ml* QB(R>4>O

is an exact sequence.
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It can be shown that Qp(R) doesn’t depend on the choice of generators
fi,..., fs: forany f] ..., f,, and regular ring B’ = k[y},...,y.] we find that
Qp(R) = Qp/(R) is a free R-module (see Section 4.5 of [3]). We call Q(R) =
Qp(R) the canonical module of R and say that the type of R is the rank of Q(R)

as a free R-module.

Definition 1.2.9. Let R be a graded connected k-algebra. Then R is a Goren-
stein ring if it is a Cohen—Macaulay ring of type one (or equivalently Cohen—

Macaulay such that Q(R) = R as R-modules).

If k[V]9 is a Gorenstein ring with HSOP fi1,..., fu, I = (f1,..., fu) then we
know a that k[V]/I has a particularly nice form, described by the definition

below.

Definition 1.2.10. Let R be a zero dimensional graded connected k-algebra
with top degree d, then R is called a Poincaré duality algebra if dimy(R;) = 1

and for all i < d/2 there exists a bilinear form

R; ®; Rqg—i — Ra,

a Qb — ab,
which is non-singular: if a € R; then a = 0 if and only if a ®; b — 0 for all
be Ry_;.

If R is a Gorenstein ring with a HSOP fi,..., f, then R/(f1,..., fn) is a
Poincaré duality algebra (see [28] Corollary 5.7.4).

1.2.3 Complete intersection rings

Definition 1.2.11. Let R be a finitely generated k-algebra such that there is a

polynomial ring A = k[yi, ..., ynts) and some homogeneous ideal I with

R=A/I =Ek[y1, ..., Yn+ts)-
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We call R a complete intersection ring if it has dimension n and we can find

a homogeneous regular sequence ay, ..., as which generates I.

This can be shown to be a ring property for R independent on the choice of

A and I. We can also show that if R = A/ is a complete intersection it must be

Cohen—Macaulay: as A is a Cohen—Macaulay ring a4, ..., as can be extended to
a regular sequence aq, ..., a,.+s which is a HSOP for A. From the definition of a
regular sequence we see agy1, ..., 0, +s must be a regular sequence of length n in

A/I. This means that the depth of R is at least n, however as depth is bounded
above by the Krull dimension, the depth of R must be equal to n and so R is a

Cohen—Macaulay ring.

Proposition 1.2.12. /32, 9.4] Let S = k[y1,...,Ynss| be a polynomial ring,
I=(ay,...,am)A an ideal of A and R = A/I. Then R is a complete intersection

ring if and only if the Koszul complex, K(ry,...,ry), is a free resolution for R.

The Koszul complex is self dual ([6, Proposition 1.6.10]) so from this we can
see that if R is a complete intersection ring then R is Gorenstein. The next

result gives us a practical way to check if a ring is a complete intersection.

Proposition 1.2.13. [25] Let G < GL(V) and let fi,..., f, be a HSOP for
K[V]S. Let A = k[f1,..., fa] and hy,... hs be a set of module generators for
k[V]¢ over A. Let J be the kernel of the map

Ay, ... ys) = Alhy, ... h] = k[V]Y,  yie by

where the degree of the y; are shifted such that deg(h;) = deg(y;). If S C J is

the set containing

e generators for the A linear relations between the h;, elements of J N

(EB:ilAy’L>7
e foreach 1l <1< j<s arelation of the form y;y; — fi ; with f; ; € &, Ay;,

then the elements of S form a generating set for the ideal J in Alyr, ..., ys)-
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Note that in the above as the HSOP is algebraically independent we do not
need to worry about relations between them. Even if we have found a set of
relations, showing that they are minimal can be difficult, so it can be useful to

move the question to a ring with smaller Krull dimension.

Proposition 1.2.14. Let R = k[fi,..., fuo+s] C k[x1,...,2,] be a complete
intersection ring of dimension n. If t = ti,..., t,, is a reqular sequence in R

then R/tR is a complete intersection ring.

Proof. We will first show that if ¢; € R is a not a zero divisor then R/(t1) is a

complete intersection ring. Let B = k[y1,. .., Ynss, then

¢o:B— R,

O(y;) = fifor 1 <i<n+s.

is a surjection. As R is a complete intersection ring we can find a regular sequence
hi, ..., hs which generate the ideal J = (hy,..., hs) such that ker(¢) = J.

Let t' € B such that ¢(t') = t;. As t; is not a zero divisor in R, ’, the image
of t in B/J, is not a zero divisor. This means that hq, ..., hs, t’ form a regular
sequence, and so

B/(hi,..., hs,t") = R/(t1)

is a complete intersection ring.

Our result is true for a regular sequence of length one, we can easily extend to
a regular sequence of length m by induction. If #1,...,t,, are a regular sequence,
by the induction hypothesis we assume that S = R/(t1,...,t,_1) is a complete
intersection ring. By the property of regular sequences t,,, the image of ¢,, in S,

is not a zero divisor in S, and so
S/t 2 R/(t1, ..., tm),

is a complete intersection ring. O
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1.3 Unipotent groups

Let k be a field of characteristic p, V' a k-vector space and G < GL(V) a finite
group. We will mainly be interested in finite p-groups, so |G| = p°® for some

s € N.

Definition 1.3.1. The lower central series of a group G, is a series of sub-

groups, Li, Lo, ..., of G, defined by L;(G) = G, and

so Ly(G) = [G,G] =G". If L,,,(G) =1 for some m, then G is called nilpotent.
If m = n+ 1 is the smallest integer such that L,,(G) = 1 then n is known as the

class of G.

Let now G be a finite p-group. We can always find a normal subgroup N of
G such that G/N is elementary abelian, the smallest such subgroup is known at

the Frattini subgroup ®(G), which can also be characterised by

oG = () M.
M<maxG
By the definition of [G, G| if g, h € G then [g,h] € [G,G] so G/[G,G] is abelian
(this also means any subgroup of G containing [G, G| is normal). To find an
elementary abelian group we need to eliminate any non identity ¢” € GG, so we
see that
o(G) = GPIG, G

A p-group is called special if it is either i)elementary abelian or ii)the Frattini
subgroup is given by
(@) = 2(G) = G, ]

in which case it is elementary abelian. A non-abelian special group such that

®(@) is cyclic is called extraspecial. The extraspecial groups of order p? for p = 2
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are the dihedral group, Dg, and the quaternions, (), where

Qs = (z,y | 2" =y =1, [z,y] = 2° = ¢*),

Dy={w,y|y'=a"=1ayz"t =y7).
For p # 2 the extraspecial groups of order p* are M(p) and N(p), where

M(p) = (v,y,z |2’ =y’ =2 =1,[x,2] = [y, 2] = 1, [z,y] = 2),

2 _
N(p) = (z,y | 2" =" = 1Lyzy " = 2"t

(see [17] Theorem 5.1). All extraspecial groups can be written as a central
product of copies of extraspecial groups of order p* (see [17] Theorem 5.2). Later
we shall see some representations of these groups consisting of bireflections.

Let B = {x1,xs,...,2,} be an ordered basis for W, and
Ug={g9g€ GL(V) | g(x;) —x; € (x1,...,m;_1)}.

We can see that Ug (and hence subgroups) are p-groups, furthermore for any
p-group G < GL(V) we can find a basis B’ such that G < Up (see [10, Lemma
4.0.2]). So we will be looking at groups which are generated by triangular matrices

with 1’s along the diagonal, we call these unipotent groups.

Definition 1.3.2. For g € GL(V), we write d, € End, (V') for the map which
takes v € V to (g — 1)(v).

For a unipotent element g € GL(V') the index of g, ind(g), is the nilpotence-
index of d,, that is ¢ € N such that o7 = 0, (55‘1 # 0. The index of a group
G < GL(V) is defined to be ind(G) := max{ind(g)|g € G}.

Let G < GL(V), w € W. We define the stabilizer (or isotropy) subgroup
of w to be

Gy ={9 € G|g(w)=w}.

The following invariants appear frequently in future sections and are especially

important for unipotent groups:
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Definition 1.3.3. The orbit product of w is defined to be

O(w) = H g(;).

For a given basis B = {z1,...,z,} for W we denote:
N¢Y = N; = O(z)

As applying any element g € G only permutes it’s factors, for any w € W
we see that Og(w) € k[V]Y. If G < Up then N, ... mathbf NS form a
homogeneous system of parameters for k[V]¢ ([10, Proposition 4.0.3]). We can
ask for which groups does this HSOP generate the whole invariant ring? These
groups are known as Nakajima groups, and we shall see more about them in
Chapter 3.

In the non-modular case Nakajima characterised the groups with hypersurface
invariant rings as subgroups of reflection groups (with polynomial rings of
invariants), see [27]. There are several papers which investigate when the
invariant ring is a hypersurface in the modular case (including [5], [21], [8]).
The following result can be used to show that all maximal subgroups of Nakajima

groups have hypersurface invariant rings:

Proposition 1.3.4. [10, 11.0.1] Let R be an integral domain of characteristic p
and suppose the finite group G acts faithfully on R. Suppose H < G is a maximal
subgroup of index less than or equal to p. Let o € G\H. If there exists f € RY
such that if v := (o0 — 1)f € R then (o — 1)(R") C Rz, then R = RE[f].

In their thesis Yinglin Wu proved the following which is useful in showing

when invariant rings are complete intersections.

Proposition 1.3.5. [33, 3.1.1] Let G < GL(V)) be a p-group such that k[V]¢ is
a complete intersection, and let H be a maximal proper subgroup of G. Then
if K[V = k[V]%[a] for some homogeneous element a € k[V]H, then k[V]" is a

complete intersection.
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Invariant rings of p-groups are always unique factorisation domains (see [10,
Theorem 3.8.1]), so if they are Cohen—Macaulay they are also Gorenstein (|6,
Corollary 3.3.19]). This has led to the speculation that maybe Cohen—Macaulay
invariant rings of p-groups (characteristic p) are complete intersection rings (we
shall see a counter example to this in Chapter 5).

A result of Gordeev, Kac and Watanabe (see [28, Proposition 5.7.7]) says
that if k[V]“ is a complete intersection then G is generated by bireflections.
The following Theorem by Kemper is stronger in our case where we restrict to

unipotent groups.

Theorem 1.3.6. [23, 3.7] If G is a p-group and k[V]% is Cohen—Macaulay then

G is generated by bireflections.

The next Theorem from the same paper can be used even for some groups

generated by reflections to show their invariant rings are not Cohen—Macaulay.

Theorem 1.3.7. [23, 3.9] Let G < GL(V) and N QG such that G/N is an
elementary abelian p-group. Suppose there ezists oo € G\N not a bireflection,

such that for all bireflections o € G\N we have

Voo g ve

Then k[V]9 is not Cohen—Macaulay.

The theorems above motivate our interest in groups consisting of bireflections.
Before we start to look at the classification of these groups we briefly review

some tools which will will want to use later to find their invariant rings.

1.3.1 Monomial orders and SAGBI basis

A monomial in a polynomial ring R = k[zy,...,2,] is a term of the form

it .. .x% where a; € N for 1 < ¢ < n. A monomial order is a total ordering
of monomials satisfying the following additional hypothesis: for monomials

my, Mo, M, My > Mo implies mm; > mmsy. There are many types of monomial
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ordering, but throughout this thesis we will only use graded reverse lexicographical

ordering with z; < x; if ¢ < j.

Definition 1.3.8. Let R = k[zy,...,z,] and order the z;: 21 <z < ... < zp,.

Let mq, mo € R be monomials with

an

— 01
my = a7 .. Ty,

my = ab .. alr

In graded reverse lexicographical ordering m; <grgvrex M2 if and only if

one of the following holds
e a1 tag+...+a,<b+...+0,.

e a1+as+...+a, =by+...4+0b, and we can find some 1 < 57 < n such that

ai:bif0r1§i<jandaj>bj.

For any non-zero polynomial f € R we can write f uniquely in the form

f:d1m1+d2m2+...+dsms

where the m;’s are monomials in R with m; >greviex mip1 for 1 <i < s—1and
for 1 <i < s we have coefficients d; € k\{0}. We call d;m; the lead term of f,
denoted LT(f), and m; the lead monomial of f, denoted LM(f).

Lemma 1.3.9. Let f € k[xy,...,x,] be homogeneous, then xy divides LT(f) if
and only if x1 divides f.

Proof. If x; divides f then it divides each non-zero term including LT(f).
Let

f:d1m1+d2m2+...+dsms

and assume z; divides LT(f) so

ai1_as
my =@y ayt L it
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with a;; > 1. For all

ar,g a2
my = axp gL e

with [ > 1 we can find some 1 < j < n such that a;; = a;; for 1 <7 < j and
a1 < aj;. Either j =1 and

ay >ay; > 1

or j > 1 and

aj; = a;1 > 1

for all 7 < 7, in particular ¢ = 1. This means that x; divides each monomial m;,

and so xy divides f. O

A Grobner basis for an ideal [ is a generating set f1,..., f,, for I such that
for any h € I the lead monomial of A can be written as a multiple of the lead
monomial of some f;. It can be shown that we can find such a generating set for
any ideal I € R using the Buchberger algorithm (see [2, 5.3]), and that this can
be used to answer the ideal membership problem.

The acronym SAGBI stands for Subalgebra Analogue of Gréobner Basis for
Ideals: we want to find a generating set f1,..., f,, for a subalgebra A C R such
that for any h € A

LM(h) = LM(f1)% ... LM(fn)*

with a; € N for 1 <7 < m. For any h € R we can perform a subduction of h

using a set f = {f1,..., fin} and the following algorithm:
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Algorithm 1 Subduction
1: function SUBDT(h, f)

2: H = h;

3: S =0

4: TEST:= true

5: while TEST = true do

6: if 3ay,...,an € Nsuch that LM(H) = LM(f1)* ...LM(f,,)*" then
7: c:=LT(H)/LT(f" ... fom);

8: H:=H—cfi"...f&m

9: Si=S+efft... fom,

10: if H =0 then

11: TEST:= false;

12: else

13: returnTE[;ST::false;

In this algorithm we find S € k[f1, ..., fiu] such that
h =S+ SuBDT(h, f),

so if SUBDT(h, £) = O then h € k[f1, ..., ful.

Lemma 1.3.10. Let f = {fi,..., f.} with f1,...,f. € R. Let
h = Zczhl
i=1
where ¢; € k\O and h; = f{*" ... fr"™" for a;; € N. If
LM(hy) # LM(J)

for i # j then SuBDT(h,f) = 0.

Proof. If
LM(hy) # LM(h;)
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for i # 7, then we can assume that the h; are ordered so that

LM(h;) <areviex LM(h;)

for i < 7.

We prove by induction on m: if m = 1 then

h=cyfihe... fors

so clearly

LM(h) = LM(ffhe ... fora).

The first stage in the subduction process then is to find

h— e ff . foa =0

so after the first iteration we find SUBDT(h, f) = 0.

Suppose m > 1 and let

m—1

We see that
LM(h) = LM(h,,)

so the first step of the subduction algorithm is to find

h—cphm =h'.

The next step of the algorithm is to reiterate the process with A’, however
by induction we can assume that SUBDT(R/,f) = 0, and so we find that

SuBDT(h, f) = 0. O
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Let f = {f1,...,fm} with f; € R as above. A téte-é-téte in f is a pair
{Fl, F2} where

— al faz a
Fl— 1 Ja T
__ f£b1 raz b
F2— 1 2 ...fmm7

for some a;,b; € N for 1 < ¢ < m, such that LM(F}) = LM(F;). A téte—4—
téte is called trivial if F} and F3 share a common factor greater than one. If
B ={fi1,..., fm} generates an algebra A C k[V], then the SAGBI algorithm
can be used to find a SAGBI basis for A.

Algorithm 2 SAGBI
1: function SAGBI(B)

2: B = B,

3: B = B:;

4: while B’ # () do

5: B =0

6: for {F, F»} a non-trivial téte—4—téte in B do

7 ¢ == LT(F) [LT(F);

8: H := SUBDT(F) — cFy);

9: if H # 0 then

10: B =B U{H};

11: B=BU{H};
return B;

This algorithm may not terminate: unlike a Grobner basis for an ideal it is
not always possible to find a finite SAGBI basis for a subalgebra. Fortunately
in the case we are interested in, where the subalgebra A is the invariant ring of
some unipotent group, we can always choose a basis and monomial order such

that the algorithm terminates.

Theorem 1.3.11. [10, 5.2.5] If G < GL(V) is triangular, then k[V]¢ has a
finite SAGBI basis.
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1.3.2 The invariant field and SAGBI/divide-by-x algo-

rithm
For G < GL(V), it is often easier to find the field of fractions, Quot(k[V]%), than
to find the ring k[V]¢. We will write

(V)9 = Quot(k[V])

and refer to k(V)“ as the invariant field.

Let G < GL(V) be a p-group which is triangular with respect to a basis
x1,...,2, for W. As in the paper by Campbell and Chuai ([7]) we define
R[m] = klxy,...,xy] for m=1,...,n, and let R[0] = k.

Theorem 1.3.12. [7, 2.4] Let G < GL(V) be a p-group. For 1 < i < n let

¢; € R[i]9 be homogeneous of smallest positive degree in x;, then

K(V)S = k(¢1,..., )

and further more we can find f € k[V]Y such that

E[V]G = k¢, ..., duls.

Once we have found a set {¢1, ..., ¢, } we view each ¢; as a polynomial in x;
with coefficients in R[i — 1] and let ¢; be the coefficient of the highest power of

x; in ¢;. We can use the ¢; to find f in the above Theorem.

Lemma 1.3.13. [7, 2.1] For any h € R[m], there exists an integer r such that
& h e Rlm —1]%¢n).

When we have the invariant field or localised invariant ring, the next Theorem

helps us to find the invariant ring, which is not generally an easy task.
Proposition 1.3.14. [10, 10.0.8] Let A == k[f1,..., fm] C k[V]¢. Suppose that

1. k[V] is integral over A,
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2. Quot(A) = k(V)¢,

3. there exists h € A such that hA is a prime ideal of A and Ay, is a unique

factorisation domain.
Then A = k[V]¢.

Proof. If hA is a prime ideal and Aj, is a unique factorisation domain then A is
a unique factorisation domain by [3, 6.3.1]. If A is integral over A and a unique
factorisation domain then A is integrally closed by [10, Proposition 3.0.2]. If
f € k[V]9 then f € Quot(A) as Quot(A) = k(V)%, as A is integrally closed this
means that f € A. O]

Finding a ring A that meets the first two conditions is not usually too difficult:
if A contains a HSOP for k[V]¢ then we know it is integral over A and we can
use Theorem 1.3.12 to find a ring such that Quot(A) = k(V)¢. Checking that
A fulfils the third condition is usually more difficult and here it helps to have a
SAGBI basis using the graded reverse lexicographical ordering. The following

theorem is proved by combining Lemma 1.3.9 and Proposition 1.3.14.

Proposition 1.3.15. [9, 1.1] Let G < GL(V), z1,...,x, a basis for W and
let fi,....f. € k[V]Y be homogeneous. Let A = klxy, f1,..., f.] such that
Ay, = k[V]S . Suppose that the following hold

o A is integral over k[V]Y;
e x1, f1,..., [ are a SAGBI basis for A;
e x1 doesn’t divide LM(f;) for 1 <i <r.
Then A = k[V]C.
Example 1.3.16. Let G = (o) where
111

c=101 2
0 01
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with respect to the natural basis B = {x1, 1y, 23} for W. As kx; = WY, we
can choose ¢1 = x1. G acts as a Nakajima group on (xq1,x2), so we can choose
¢2 = NQ. Let

d:$§ — T123

then as deg,,(d) = 1, we can choose ¢3 = d. Using Theorem 1.3.12 if A" =

k[¢1, ¢, ¢3] then
Quot(A’) = k(V)Y.

If we view the ¢; as polynomials in x; and let ¢; be the coefficient of the highest

degree term of x;, then
cp=1, c=1, c3=—x.
Using Lemma 1.5.13 this means that
Al = k[V],,.

Let A = A'[N§], then A contains a HSOP for k[V]Y and so is integral over
k[V]9. As N§ € k[V]¢

1

Ay, = Ay = k[V]a

G is a specific ezample of a symmetric square representation of (k,+) as in
Section 3 of [9]. They show that all téte-da—tétes in Ny, No, N3, d subduct to zero
and so using Theorem 1.3.14

A =k[V]°

If we find A with generating set B such that A contains a HSOP for k[V]¢
and A, = k[V]¢ then we can perform the SAGBI/divide-by-z algorithm as
introduced in Section 1 of [9] in order to get to a new ring A" with generating

set B’ which meet the criteria of Proposition 1.3.15.
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Algorithm 3 SAGBI/divide-by-z

1: function SAGBI Di1vIDE(B,z)

2:

3:

4:

@

10:

11:

12:

13:

14:

15:

16:

17:

18:

B = B;
while 3 f € B such that x divides LT(f) do
f'=1flx
B=(BU{fH)\{/}
B' = B;
while B’ # () do
B =0
for {F1, F»} a non-trivial téte-4-téte in B do
¢ = LT(F)/LT(F);
H := SUBDT(F — cFy);

if H # 0 then
if x divides LM(z) then H := H/x;
B =B U{H};
B=BU{H};
else
B =B U{H};
return B; B=BUHY

1.4 Reflection and bireflection groups

As we have seen reflection and bireflection groups are important in invariant

theory, however they are also interesting in their own right. For a reflection

g € GL(V) we call the fixed space V¢ the hyperplane of g and the one-dimensional

vector space Im(1 — g) the direction of g. There are two types of reflections:

diagonalisable reflections of order coprime to the characteristic of the field and

transvections. Transvections only have finite order when the field £ has positive

characteristic p in which case they have order p.
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A diagonalisable reflection ¢ has one as an eigenvalue with multiplicity n — 1
and another eigenvalue A\, which is a root of unity. The second eigenvalue, A, is
called the root of g. The linear transformation g is called a real reflection, in the
case that k = R, and A\; = —1. The finite groups generated by real reflections
are called Coxeter groups and were classified by Coxeter in [12] using ideas from
the theory of Lie algebras (e.g. root systems) and the theory of hyperplane
arrangements. Later similar techniques were extended to kK = C by G.C.Shephard
and J.A.Todd, who showed that these also had polynomial invariant rings ([30]).

The study of real reflection groups is important to Lie Theory and is very well
developed. Whilst we don’t have the same descriptions with roots for modular
reflection groups a classification for the irreducible representations can be found

in [24] where it is then used to prove the following.

Theorem 1.4.1. Suppose V' is an irreducible representation of the modular group
G. Then k[V]¢ is a polynomial ring if and only if G is generated by reflections
and if W is any non-trivial subspace of V', then k[V]W has a polynomial ring of

nvariants.

A classification for the irreducible bireflection groups can be found in [18] by
Guralnick and Saxl, however in the modular case we are interested in reducible
bireflection groups.

In [31, 8.2] Smith looks at the modular groups consisting entirely of reflections.

Proposition 1.4.2. [31, 8.2.18] Let k be a field of characteristic p # 0, G <
GL(V) such that every non identity element of G is a reflection. Either V¢ has

dimension n — 1 or (V)Y has dimension n — 1.

Using this it can be shown that all groups consisting of reflections have
polynomial rings of invariants. In the next chapter we will see that finding even
just the unipotent groups consisting of bireflections becomes more complicated.

From Theorems 1.3.6 and 1.3.7 we may hope that these would all have Cohen—

Macaulay rings of invariants, however this is not true in general. Let G = (g, h)
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where

10000 10000
01000 01000
g==10010 0|, h=[00100
10010 01010
01001 00101

with respect to a basis {ey,...,e,} for V. In [15] they show that k[V]% is flat
for p =2 and so

depth(k[V]%) = 4 < dim(k[V]%).

Therefore G is a group consisting of bireflections (an example of a two-row
group) which has non Cohen—Macaulay invariant ring. There is a class of
unipotent groups consisting of bireflections where the invariant ring is always

Cohen—Macaulay:

Theorem 1.4.3. [10, 3.9.1] Let G < GL(V), dimy (V') = n then:
1. if dim(VE) =n — 1, then k[V]€ is a polynomial ring.
2. if dimg(VY) = n — 2, then k[V]% is Cohen—Macaulay.

Due to the form of their matrix representations on V' we shall call a group
G with dim,(VY) > n — 2 a two—column group. In his thesis ([33]) Yinglin
Wu investigates the invariant rings of these groups, however considering the
matrices on W = V* rather than V' he calls them two-row groups. Wu studies
the conjecture that these groups always have complete intersection invariant
rings and in the modular case where k& = [F, he shows that if G is an abelian
p-group generated by reflections with dimy (V) > n—2, then k[V]¢ is a complete
intersection ring. In the non-modular case he finds the conjecture to be false,
by finding a two-column group G such that k[V] is not Gorenstein, and hence
not complete intersection. We will see in Chapter 5 that it is not true in the

modular case either. Our example G is a p-group, so k[V] is Gorenstein. This
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example also shows that Cohen—Macaulay does not imply complete intersection

for invariant rings of unipotent groups.



Chapter 2

Bireflection Groups

From here onwards we need a field of characteristic p so we set k = F, where
q =p". We will let V be a k-vector space, and later, when we start to look
for invariant rings, we will need W = V*. In this chapter we will classify all
unipotent groups consisting of bireflections for p # 2. We will look at the different
types of unipotent bireflections and their properties, but first we want to look
at the correspondence between the properties of the group action on V' and its
action on W. We start with a definition linking subspaces of V' with subspaces

of W.

Definition 2.0.4. Let V' be a vector space, U C V. We define
Ut={\eV*|Au)=0foralluc U} C V"

The next lemma will be used many times in this thesis to move between

groups and their dual representations.

Lemma 2.0.5. Let V be a finite-dimensional k-vector space and G < GL(V).
Then the following hold:

1[G, V*E =VE and [G, V] = (V¥)©.
2. dimg([G, V*]) = dimy (V) — dimg (V) = codim(VE).

3. VY <I[G,V] if and only if (V*)¢ < [G,V*].
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4. the canonical map V — V/VY induces an isomorphism

G, V]/[G,V]¢ =[G, V/VY].

Proof. 1. Ifv € [G,V*]* then forall A\ € V* g € G

(9(X) = N)(v) = 0.

If v € VY then g(v) —v=0forallge G. For \€ V*, v eV and g € G

we have

(9(A) = A)(v) = A(gv —v)
hence the claim.

2. As [G, V¥t =V¢E,
dimy, (V) = dimg (V) + dimg([G, V7).

Rearranging gives the result.
3. VO LG V] = (VL > [G,V]H = [G,V*] > (V*)©.

4. [V/VE.Gl = (V.G + Ve = [V.G]/([V.GInVE) = [V.G]/[V.G].

2.1 Bireflections

Definition 2.1.1. For v € V and 0 # v € u! we set ] € GL(V) to be the

transvection mapping s € V to s + y(s)u.

In a field of characteristic p, transvections are reflections of order p. It isn’t
hard to see that V% = ker(y) and [V,¢]] = (u). We start by proving some other

general results for transvections which will be useful later on.

Lemma 2.1.2. For uj,us €V, v, € ui, Y2 € uy:
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1. if ug € ker(7y) then

2 gqfp=2 k
| = p° ifp and uy & ker(vyz),
u1 ‘ug

p  otherwise.

2. if uy € ker(7y), then tJ11)2 = tZZtle where uwy = 7} (uz).

8. [t t2] is a power of p if and only if either y1(uz) = 0 or ya(ur) = 0.

4. if uy € ker(vyo) then t]1 )2 =172,

uy Uy

5. if ug € ker(vyy) then t1Ht1 =t

w1 “ug u1+tug

6. t; =10, forallcek.

Proof. 1. Let t = t}}132. For p # 2 we will show that if uy € ker(y;) then for
aceN welV:

ala—1)

———(w)ya(ur)ug

t*(w) = w + ay (w)uy + aye(w)ug + 5

We do this by induction, it is clear for a = 1, and then:

t"(w) =t (w)

= 4w+ (o~ Dn(w)en + (o Da(w)ua + © 0= )
=w + ay1(w)uy + aye(w)ug + a(ai—lw (w)ye(uq )ug

2

so [t| = p. If p =2 we can see that:

(w) = w + 71 (w)y2(ur)us

so either t2 = 1 or 2 is a transvection with order 2, and so (t?)? =t =1

and t has order p?.
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2. Let w eV so:

tntoz (w) = 13 (w + Yo (w)us)
= w + v (w)ur +ya(w)ug + Y2 (w)y1(uz)us
= (w + 7 (w)ur) + v (w)(uz + 71 (uz)ur)

= 347 (w)

where u), is as given above.

3. We can see using the first two parts that if 73 (ug) = 0 or Y(uy) = 0

then [¢]1#)2] is a power of p. Let t = 1]1¢;2, if || is a power of p, then

[t, V]t £ {0}. If uy € kuy then we already know that:

Y1(uz) = v2(u1) = 0

so assume g, uy linearly independent. We can see that [t, V] < (ug, us), so

we can find ay, ay € k not both zero such that aju; + aguy € [t, V)"

ajuy + agug = t(ajuy + agus)

= (a1 + axy1(u2) + arya(ur)vi(uz))ur + (az + arye(ur))ug

comparing us terms we see that a;ys(u;) = 0, so either y5(u;) = 0 or
a; = 0. If a3 = 0 then ay # 0 and comparing us terms asy;(ug) = 0 so

71(“2) = 0.

4. ForallveV

ttar(v) =6 (v + 2 (v)ur)
= v+ (n) +72(v))u
=v+4 (71 4+ 72)(v)uy

=)
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Yi4v2 — Y12
SOttty =t

5. Similarly for all v € V'

taytay (v) = 103 (v + 7 (v)ur)

= v+ v (v)ur + 71 (v)ug

=v+ ’yl(v)(ul + Ug)

_
- tu1 +u2

YL — 1
SOt =ty fus-

6. Forany ce kandv eV

ty (v) = v+ ey (v) (ur)
= v+ 71(v)(cus)

=M ]

cu

Later we will want to write bireflections as products of transvections. The

next lemma will be useful when rewriting and comparing them.

Lemma 2.1.3. Letm € N, y1,...,%m € V* and wy, . .., uy, such that v;(u;) =0
for1 <1< 73 <m. Let

— 71472 Ym
g=1tutey -t

then

1. if y1,...,vm are linearly independent and
h=tyty ...t

)

such that vi(u;) = 0 for 1 <i < j <m. Then g = h if and only if u; = u;

for1 <i<m.
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2. if uy, ..., uy, are linearly independent and

! / /
— Y v
h =ttt . . .tm

such that v} (u;) =0 for 1 <i < j<m. Then g = h if and only if v} =~

for1 <1< m.

Proof. Part 1) is equivalent to Lemma 3.0.3. Part 2) is dual to part 1), which

we can see from Lemma 2.0.5. O]

The following can be used to check the commutator and fixed spaces of

elements of GL(V) to see if they are bireflections.

Lemma 2.1.4. Let g,h € GL(V) be unipotent, w € V. Then:

Ign(w) = dg(w) + on(w) + G40 (w),

s =32 ()t

j=1 \J

If g is a bireflection then

3y (w) = idy(w) + U2 (w).

Proof. For g,h € G, w e V:

gh(w) = g(w + op(w))

= w + 0g(w) + Op(w) + 940 (w)
so the first result holds

5gh(ZU) = g(w) + (5h(w) + 59(5h(w)
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For the second result

If ¢ is a bireflection then 6§(v) =0 for any j > 2 and v € V and so we get:
Sgin(w) = idy + 5062 (w). O

From this we find the following;:

Lemma 2.1.5. Let G < GL(V). If [G,V] <V then [G,G] = 1 and G is
elementary abelian. If G is a unipotent transvection group then [G,G| = 1

implies [G, V] < VC.
Proof. By the above, for all g,h € G, w €V

dgn(w) = 046, (w) + 0g(w) + 6 (w).
If [G,V] < V¥ then §,6,(w) = 0 and so

dgn(w) = dg(w) + dp(w) = dng(w),

which means that [G, G| = 1.

Since (g —1)? = 0, for all g € G, we see that 0 = (g — 1)’ = g — 1 so all
elements of GG have order p and G is elementary abelian.

Let G = (t; |i=1,---,{) where t; = t)i for 1 <i < {. If G is unipotent then
for 1 <i,j < { either v;(v;) = 0 or v;(v;) = 0 (otherwise |¢;t;| is not a power of
p by Lemma 2.1.2(3)). Suppose that 7;(v;) = 0 then by Lemma 2.1.2(2)

YitVi — VI 4Vi
twtvj = tv;_ tvi
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where v = t;(v;). If G is abelian then v; = #;(v;). This means that
(vy,...,u) =[G, V]<Vhin.. . nVe=VC O

Definition 2.1.6. All reflections are bireflections (and so also all reflection groups

are bireflection groups), so unipotent bireflections include transvections:

Jo 0
0 In72

as well as those elements of GL(V') conjugate to one of

J3 0

index 3 bireflection,
0 In73
J, 0 O
0 J, O double transvection,
0 0 I,4

where Jo, J3 are Jordan 2 and 3 blocks respectively. If g is a unipotent bireflection
it can be written as either ¢ for some u € V with v € ul in the case of a
transvection, or as ¢71¢)2 for some uy,ug € V, 7 € ut, Yo € uy with vy (ug) = 0.
If y2(uy) # 0 it is an index 3 bireflection, if v9(u1) = 0 then it is a double

transvection.

2.2 Groups consisting of bireflections

We now look for the p-groups G' which are not only generated by bireflections,
but ¢ is a bireflection for all elements g € GG, we shall call these pure bireflection

groups. We define certain classes of group with this property.

Definition 2.2.1. Let G = (¢g1,...,q) < GL(V). Then:
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o If dimy(Ni_,V9%) > n — 2 or equivalently dim;(V®) > n — 2 then G is a
two—column group on V (if dimy, (V%) > n—1 then G is a one—column

group).

o If dimy (X, [g5, V]) < 2 or equivalently dimy([G,V]) < 2 then G is a

two—row group on V (if dimy([G, V]) <1 then G is a one—row group).

o If there exists U C V such that dimg(U) =n — 1 and [G, U] < kv for some

v € UY, then G is a hook group on V with hyperplane U and line kv.

Looking at the unipotent groups consisting of reflections (see Proposition
1.4.2) we might expect these to be the only types of unipotent pure bireflection

group, however we shall see that there are some exceptional types.

Definition 2.2.2. Let n > 5 and G < GL(V) a unipotent group. Let g,h € G
be bireflections and U = V9 + V" We call g, h a special pair if we can find
r1,79,v € V linearly independent such that the following hold:

dim,(U) =n—1, dimp(V/NV") =n -3,
v U, r,meVinv’

and:

59(U) = kv, 59(”) =T,

n(U) = k(v+ 1), On(v) = 2 + 1ro.

If g,h € G are a special pair and G is a pure bireflection group then we call G
an exceptional pure bireflection group (or exceptional group) of type one,

and g, h an exceptional pair (for a matrix example see Chapter 6.1).
Lemma 2.2.3. For g,h € GL(V) the following are equivalent:

1. g,h are a special pair;
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2. g= tglt},:’z for (i, v* € V* linearly independent, 79,0 € ker((y) such that

and we can find a,b € k, 71 € ker((;) Nker(0*) and some (o € V* linearly

independent to (1 and 0* such that
Ga(f2) = G2(P1) = (2(0) = Gi(f1) =0
and h = tcﬁlltfi g; where

f1 = b0+ (a — ab)fy + (2a + b)fy,
ﬂQZU—GfQ—Ffl,

B3 = 2F1 + Fa;
3. we can find some 7y, v2,v* € V* linearly independent, and

r1, 79,V € ker(vy;) Nker(vs)

linearly independent with

such that g = t't%, and h =t 5,

v+7r1Y2r1 4710

Proof. 1) = 2) Suppose g, h are a special pair. This means g is an index 3
bireflection so we can find (3, 0* € V* linearly independent, 75, 0 € ker(~;) such

that 0*(79) =0, 0*(0) =1 and g = tglt;’:;. Let uy € ker(*) such that ¢;(u;) = 1.
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As g, h are a special pair if U = V9 + V" then dimg(U) =n — 1. As V9 is

n — 2 dimensional and 0, u; ¢ V9 are linearly independent we can see that
V =ku +ko+ V9.

This means we can find some d’, a € k such that if u = a’u; —ad then U = ku+ V9.
As 6,(U) £ V9 and §,4(0) € V9, we see @’ # 0 and so we can assume a’ = 1.

We can now find v = §,(U), let

v ="_04(u) =d4(uy —ad) = — ary.

By the definition of a special pair we can find #; € V9 N V" such that

n(U) = k(v+ ).

Since

we know that 7, € V9N V" and
0n(V) = 6p(0 — aty) = 95 (D) = 27 + 7o.
Let uy € ker(¢;) Nker(0*) such that op(uz) = v + 7. We know
uy € U\V"

SO

U= /{ZUQ—FVh.

We know that

u=u —ad el
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so we can find some b € k such that u; — ad — buy € V" and
On(ug — ad — buy) = 0.
This means that
In(ur) = bv + (a — ab)ry + (2a + b)ry.
Let ¢, € V* such that ker(¢) = VIN V" + kuy + ko and ((us) = 1. Let

ﬁl = b+ (Cl — Gb)fQ + (2a + b)fl,
52 :U_afé“_’f’l)

B3 = 271 + Fo,
and h = ¢35t . We find

0; (u1) = uy + b0 + (a — ab)fy + (2a + b)7, = op(uy),
5;l(u2) = U9 + 0 — (lfg + fl = (5h(u2),

05 (D) = 0 4 271 + Ty = Ip(D),

and

G (VINVh =0=,(VInVh

so h = h as required.
2) = 3) Let g, h be as described in part 2). Then we see that 5; = bfs + a33
and:

C140* — tgltCI R tCIA t’l:)* — tgl t’f’*'i‘aCl

g = tf) [ —arg’arg 're V—"9 Ty ’

_ 4G G2 4% __ 4bC1yady Qo 4% 4C2+bC1 0" +aly
b= g rass it = Loy Lo tialas = iy Ups

(using Lemma 2.1.2).
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Let

Nn==C, Y=0+bG, v =0"4+al

le’f‘\l, 7“2:7/“\2, v:@—an
then we can write

g =t

v Ure?

42 v*
h = tv-H”l t2r1+r2

so they are in the form required.
3) = 1) Let g, h be as described in part 3). As v,7y and v + 71,21 + 79 are
linearly independent, V¢ = ker(7y;) Nker(v*) and V* = ker(v;) N ker(v*) so

VI Vh — ker(v*) M ker(’yl) + ker(’u*) N ker(’y?)
= ker(v*) N (ker(vy1) + ker(72))

= ker(v*) NV = ker(v")
which has dimension n — 1. We can also find
VIN V" =ker(y;) Nker(ys) Nker(v*)
and check it has the correct dimension

dimy (V9N Vh) = dimy(VY) + dimk(Vh) — dimy (V9 + Vh)

=n—-2+n—-2—-—n+1=n-—3.
We can see that

59(U) = ]{?U, 6g(v) = To,

n(U) =k(v+r), h(v) =2r) + 1o,
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so g, h are a special pair. [
We now check that exceptional groups of type one exist.

Lemma 2.2.4. If G is generated by a special pair then G is an exceptional group

of type one. Moreover, for p # 2, G = M(p) is an extraspecial group of order p.

Proof. Let g,h € GL(V) be a special pair and G = (g, h). By Lemma 2.2.3 we
can find some 71,72, v* € V* linearly independent, and 71, o, v € ker(y;) Nker(~s)

linearly independent with

such that we can write:

g =t
h=t2, ty

v+1172r1+re”

Using this and Lemma 2.1.2 we can find the commutator z = ghg=th™!:

ghg th™t = % 10t Y "

v Yro Yv+r1V2ri+re Y —ro Y —vY—=2r1 —ro Y —v—r1

14 Y2 V2 v*v* ot

- t'u t—v—2r1—r2tv+rl+r2t—v—r1 trg t2r1t72r171"2
_ M Y2

- t—27’1—7‘2t7”2

and see that z commutes with g and h. As G is a p-group

o(G) = G"[G, G-

Suppose p # 2. As g and h are index 3 bireflections g = h” = 1 and so
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Knowing this and using Lemma 2.1.2 we see that any o € G can be written as:

o= glhmzn
= (07, (8 by )™ (g 172"

471 Y2 VT
= toélzfagta3

for some 0 < [,m,n < p—1, where:

_1)—
oy = lv — 2nry 4 W=D=2n 2) LT

2 —1420)+2
vy = mu + m3ry + B2+ 5 S,

ag = 2mry + (m+ )rs.
We find that:

0 =2ma; — 2lag + (2n — Im)as

and so G is an extra special group consisting of bireflections with |G| = p3. As

all o € G have order p, we see that G = M(p).
For p = 2 we find that

— 10"
g=t) tm,

__ 472 v*
h = ZS'U-H‘l r2

are still index 3 bireflections and so

ghg 'h™' = ¢*h* =112 € Z(G).

T2 T2

Let 21 = g% and 2y = h? then 21, 2o € Z(G). This means that for any o € G can

be written as

__ a1}a2 a3 a4 __ 4Y1 472 407
o=g"h"2P 2t =t 101,
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where aq,...,a4 € Fy and

] = a1V + asra,
Qg = AoV + AoTy + A4Ta,

Q3 = (CLl —+ (12)7“2.

We see that if a; = as then a3z = 0, otherwise we must have a; = 0, for either
¢t =1 or ¢ = 2, in which case

o; € kas.

In any of these cases we see that o is a bireflection, and G is a pure bireflection

group. O

We see from the above that exceptional groups of type one look quite different
when p = 2: they are abelian groups generated by elements of order p? unlike in
the case that p is odd, where they are non abelian groups and all elements have

order p. This isn’t the case for our next type of exceptional pure bireflection

group.

Definition 2.2.5. Let G < GL(V') be a unipotent group with g1, g», g3 € G. We
call g1, g2, g3 a special triple if there exists ry, 79,73 € V., Y1, V2,73 € 7 Nra Nry-
with

dimy (71, 7o, 73) = dimy(71,72,73) = 3

and we can find f € k such that

g =02, go =S, g3 =tE 1, .
If G is a pure bireflection group then we call G an exceptional pure bireflec-
tion group (or exceptional group) of type two, and g1, g2, g3 an exceptional

triple. For a matrix example see Chapter 6.2.

We see that special triples g1, g2, g3 have the nice property that the group
generated by any pair (g;, g;) with 1 <14 < j < 3 is a hook group, so they are not
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an extension on exceptional groups of type one. Again with exceptional groups

of type two we need to check that these groups exist.

Proposition 2.2.6. If G is generated by a special triple then G is an exceptional

group of type 2, moreover G is elementary abelian of order p.
Proof. Let g1, g2, g3 be a special triple, so for some ri,ry,173 € V| v1,7,73 €
rtNryNry, f €k

g1 = T2 go = I8 g3 = t}igtzsfrl'

T1oTr2)? r3or2)

From their definitions we can see g1, g2, g3 commute, so for any o € G:

— 40,0 C 471472 473
o _919293 - taltagtag

with
ap=ary+bry, ag=ars+cfrs, ag=bro—cfry
So
cfay = bas — aasg

and for all ¢ € GG, ¢ is a bireflection. This means G is an exceptional group of

type two, which is an abelian group of order p?. O

If G < GL(V) is a pure bireflection group then the dual representation is also
a pure bireflection group. Using Lemma 1.0.2 the dual representation of a hook
group is also a hook group, and similarly for exceptional groups of types 1 and 2,
however the dual of a two-row group is a two—column group (and visa versa).

We will show that the above are the only types of pure unipotent bireflection
groups for p # 2, to do this we will make regular use of Proposition 2.1.4. First
we show that an index 3 bireflection defines a unique hyperplane and line for

any hook group containing it.
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Lemma 2.2.7. Let G < GL(V), and g € G an index three bireflection so we

can find v1,v2 € V* and uy,us € V' linearly independent such that

Y1(u1) = 7 (u2) = ya(ug) =0,

Ya(u1) # 0 and g =t t72. If G is a hook group then it has hyperplane U = ker(y;)

uyug”

and line kus = [g, [g, V]].
Proof. Let G be a hook group with hyperplane U. If v & ker(;) then 6,(v) ¢ V9
sov €U, soU <ker(y;). As
dimy(U) = n — 1 = dimy ker(y)
we see that U = ker(y1). As 6,(U) = kuy we see that the line of G must be kus.
As [g,V] = (u1,us) we see that [g, [g, V]] = kus. O
We now begin to look at pure bireflection groups generated by two elements.

Lemma 2.2.8. Let G = (g,h) be a pure unipotent bireflection group which is
not a two—column or two-row group. Then U = V9 + V" <V is a hyperplane
with codimension one, and dimy(d,(U)) = dimy(6,(U)) = 1. Furthermore G is a

hook group if and only if

Proof. As h is a bireflection dimy (V") > n — 2, however as G isn’t a two—column

group
dim (VINV") < n —2.

This means that V* £ V9N V" and so V* £ V9. As g is also a bireflection

1 < dimy(6,(V") < 2.
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Suppose dimy,(d,(V")) = 2 then §,(V") = [g,V] < [gh, V]. For any w € V
dgn(w) = 0g(w) + 0p(w) + 040, (w) € [gh, V.

As 64(w), d40,(w) € [g, V] this means that d5(w) € [gh, V] and so [h, V] < [gh, V].

However as G is not a two-row group this would mean that

and gh is not a bireflection. So dimy(d,(V")) = dimy(6,(V9)) = 1.
Let U = V9 + V" then (6,(U) + 6,(U)) <2 and so U # V. We can also see
that:

dimy, (V9 + V") = dimg (V) + dimg (V") — dimg (VI N V)

>n—2)+(n—2)—(n—2)=n—2

so dimg(U) =n — 1.

If 0,(U) = 6,(U) < U then G is a hook group with hyperplane U and line
d4(U). Suppose G is a hook group with hyperplane U’ and line kv < U’. If
V9 £ U" we can find some u € VI\U’ such that V = U’ + ku. Then

l9, V] =19, U] = kv,
[h, V] = |h, ku] + [k, U'] = kdy,(u) + kv.

This would mean that
(G, V] =g, V] + [h, V] = kdn(u) + kv

but G is not a two-row group and so we must have V9 < U’. Similarly V* < U’
and so

VIt Vh=U<U.
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As dimy(U) = dimg(U’) this means that U = U’ and

5,(U) = 6,(U) = kv < U. O

The next two lemmas look at conditions under which a group generated by
two elements is either a two-row, two—column or hook group. It is here we start

restricting to characteristic p # 2.

Lemma 2.2.9. Let G = (g, h) be a pure unipotent bireflection group, p # 2,
U=VI+ V" If6,(U) < U then G is either a hook, two—row or two—column

group.
Proof. Assume G is not a two—row or two—column group. We have shown in

Lemma 2.2.8 that U = V9 + V" < V is a hyperplane with codimension 1, and
dimy (0,(U)) = dimy(0,(U)) = 1. Let uy, us € V such that:

(59(U) == ]{ZUI, 5h(U) == ]{ZUQ

and choose some v € V\U so V = U + kv. Assume 0,(U) C U, us € U. This

means that §,(uz) = ajus for some a; € k. Since §j, is nilpotent a; = 0 and
uy € V. Similarly if 6,(v) = asv + r with as € k and r € U then ay = 0,
dn(v) € Uso [h, V] < U.

We look at gh € G. Let uw € VM\VY and v/ € V9\V" then:

Ogn(u) = 0g(u),
6gh(u') = (5g<5h(u') + 5h(u’).

We can see that d,(u), 9,0, (v') € kuy and 6,(u’) € kug. Since 04(u) and §,(u')

are non-zero

k‘ul + k?’LLQ Q [gh, V]
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Suppose that dimy,(ku; + kug) = 1. Then ku; = kus < VIN V" and G is a hook
group with hyperplane U and line ku;. Assume dimg(ku; + kug) = 2. Then:

lgh, V] = kuy + kus.
From this we know:
Ign (V) = dg(v) + 05 (v) + 640n(v) € kug + kuo.
As [h, V] < U, we must have 6,05(v) < kuy and so for some ¢4, 2 € kt

dy(v) + 9p(v) = crus + coug,

In(v) = crug + cous — dg(v).

As [G,V] = [g,V]+[h, V] = (u1, us, d4(v), 65 (v)) has dimension greater than two
{u1, us,04(v)} must be linearly independent.

Looking at the action of gh® on U for 2 <i < p — 1 we find that:

Ogni (1) = 04 (),
5ghi (u’) = zéh(u') + iégéh(u’).

We see that d,(u), 6,0(u’) € kuy and 6,(w') € kus so:
[g'h, V] = kuy + kuy
Using Lemma 2.1.4 we find
i(i — 1)

52(@) + iégéh(v) + T(%éi(?))

5o (0) = 6,(0) + 04 (v) + O - D

€ kuy + kus.
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As [h, V] < U we can see that:
6p(v) € kug,  6,04(v), 8,07 (v) € kuy.
so for some by, by € k

(Sg(’l)> + Zéh(’l)> = b1u1 + b2u2.

Substituting in 0;,(v) = cruy + coug — d4(v),
(Z — 1)5g(1}) = (bl — C1)U1 + (bg — CQ)UQ

but then d,(v), u1, us are not linearly independent and we have a contradiction.

]

Now we note what happens if our group generated by two elements is not a

two-row, two—column or hook group.

Lemma 2.2.10. Let G = (g, h) be a p-group consisting of bireflections which
is not a two-row, two—column or hook group, p # 2. Then U = VI + V" has
codimension one, 0,(U),d,(U) Z U and v € V\U, r € U such that 6,(U) = kv,
0n(U) =k(v+r). We can find ¢ € k such that either:

dg(v) = —cr+ (¢ — )op(v + 1)
n(v+71)=cr+(c—1)64(v).

Proof. Using Lemma 2.2.8 we know that if G is not a two-row or two—column
group then U has codimension one. By Lemma 2.2.9 if GG is not a hook group

then 0,(U),6,(U) Z U.
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Let v € V such that kv = §,(U). As §,(U) € U we can write V = U + kv.

As 6,(U) € U we can find some r € U such that 6,(U) = k(v + 7).
We look at gh € G. Let u € VI\VY9, ' € VI\VH

dgn(u) = d,(u) € kv,

dgn(u') = 0p(u') + 0,0n(u') € k(v + 1+ d,(v +1)).

Asr e U, d,(r) € kv so:
kv 4+ k(v+r+04(v)) C [gh, V].
Suppose
dimg (kv + k(v +7r+,4(v)) =1
then:

k(v +1+64(v)) < kv

which would mean that r + d,(v) € kv. As g is a bireflection and v € [g, V] we

know that d,(v) € 62(V) < V9. Since r,d,(v) € U this tells us d,(v) = —r, so

8g(v) = —cr+ (¢ —1)op(v + 1)

for c = 1.

Suppose

dimy (kv + k(v +r 4 6,(v)) =2
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then as gh is a bireflection

kv + k(v + 1+ 04(v)) = [gh, V]

and

dgn(v +1) =08g(v+ 1) + (v +17) 4+ dg05(v+ 1)
€ kv + k(r + 04(v)).

As h is a bireflection &, (v + 1) € V" C U and so §,6,(v + 1), 8,(r) € kv. We can
find ¢, co € k such that:

(v +71)=c1(r+94(v)) + cov — dg(v).

As v is the only term not in U, we can see ¢o = 0 and so if ¢ = ¢; we have:

n(v+71) =cr+ (c—1)d4(v).

]

Lemma 2.2.11. Let p # 2 and let G = (g, h) < GL(V) be a p-group. Then G
is a pure bireflection group if and only if one of the following holds:

e G is a hook group.

e G is a two—row group.

e (G is a two—column group.

e (G is an exceptional group of type one, and g and h are a special pair.

Proof. 1If G is a two—column, two-row or hook group then we can easily check
it consists of bireflections (see Lemmas 2.5.2, 2.4.2 and 2.3.3) and exceptional
groups consist of bireflections by definition. Suppose G = (g, h) isn’t a two-row,

two—column, hook or exceptional group. Using Lemma 2.2.10 U = V9 + V" has
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codimension one, §;(U),d,(U) € U and v € V\U, r € U such that §,(U) = kv,
0n(U) = k(v +r). We can choose g, h such that:

n(v+7r)=cr+ (c—1)J,(v).

As we are assuming our group is not a two-row group this means that v, 7, d,(v)
are linearly independent.

As r € U we can find s,t € k such that:

On(r) =s(v+r), o,(r)=tv.

We will show that either:
e c#0and s=t=0,
e c=0andt=0,or
e c=0ands=0.

We do this by looking at the descending commutator series. Firstly we find

that

G, V] = (v,1,0,(v)).

We want to find [G, [G, V], so we look at

dg(v) = d4(v),
dg(r) = tv,
0
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This gives us
G, (G, V]] = (04(v), tv, er, s(v + 7).

As G is a p-group we know that dimy([G,V]) > dim,([G, [G, V]], so two of ¢, s,t
must equal 0.

First assume c #0,s =t =0sor € VY. Welook at g¢'h € Gfor1 <i < p—1.
Let u € U\VY, v’ € U\V" then using Lemma 2.1.4:

8yn(u) = i85 (u) + 523 (u),

Syin(u') = On (') + 06,0 (u') + @535,1(1/).

We have already found d4(v), v, 7 to be linearly independent, and

id,(u) + 502 (u) € k(20 + (i — 1)3,(v)),

on(u') € k(v+r),

i, (v +7) + @53@ +7) = id,(v)

so we can see that:
(9, V] = k(20 + (i = 1)8,(1) + k(v + 1+ i8,(v)).
This means that

8gin(v) = i04(v) + G (v) + 08405 (v) + 552 (v) + L5525, (v)

€ k(2v+ (i —1)d,(v)) + k(v + 1 +idy(v)).
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We know that:

Sn(v) =cr + (¢ — 1)8,(v), 62(v) =6,(r) =0

g

so for some aq, s € k:
(i4+c—1)04(v) +cr = a1(2v 4 (i — 1)64(v)) + az(v +r +idy4(v)).

Comparing r terms as = ¢, then comparing v terms o = Looking at the

_¢
5

dg4(v) terms:

itc—1=-5(1—1)+ci,
cli —1) = 2(i — 1),

c=2.
Now we can see that:
dim(U) =n —1, dimp(VINV") =n -3,
and if we let r; = r, d4(v) = ry then:

59(U) = kv, 59(“) = T2,

on(U) = k(v +r1), On(v) = 2ry + 19,

and so g, h are a special pair and G is as described in Lemma 2.2.4 and is an
exceptional group of type one.

Now suppose ¢ = 0. If £ = 0 we have:

On(v+71)==d4(v+r).
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As above let u € U\VY, v’ € U\V" then:

Sgin(u) = idy(u) + 1162 (u),

Syin(u') = O (u') + 6,0, (u') + @535,1(1/).

We know that

i8, (1) + “062(w) € k(20 + (6 — 1)3,(v),
§h(u') € ]{7(’0 + 7'),

dg(r) = dg(v) =0
so we find:
(g7, V] = k(20 + (i — 1)8,(v)) + k(v + 1 + i, (v)).

This means

3gin(v) = 10, (v) + G4 (V) + 10,04 (v) + U2 () + L2 (0)

€k2u+ (i —1)0,(v)) + k(v +r+idy(v))

We know

52(v) =0,
dy(r) =0

so for some oy, g € k:

(1 —1—1s)04(v) —sv —sr=a1(20+ (1 — 1)dy(v)) + aa(v + 1+ id,(v)).
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Comparing V and r terms ay = —s, oy = 0, but comparing d,(v) terms

1—1—18=—1s

which only holds for ¢ = 1, so we have a contradiction.

If s = 0 then we have:

which can be dealt with using the symmetric argument to the one above where

t=0. [

We need to exclude p = 2 in the above proposition as we can find additional

groups, which don’t exist in the odd p case.

Example 2.2.12. Let H := (g1, g2) where:

g1 =

- o O O O
o o o o O

_ = O O O O
_ o O O O O

o o o O ==
o o o o = O
o O o = o O
o o = O o O
o o o o o =
o o o o = O
o O R o= O O
o o = O O O

We find that H = Cy x Cy so it is an abelian group of order four. This just

leaves one non-identity element not given explicitly. As

1 000 0O

1 10000

001000
9192 = )

001100

000010

00 0O0O0OT1
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we see that H consists of bireflections but isn’t a two—row, two—column or hook

group.
Let

100 000

01 0O0O0O0

. 001000

000100

00 0O0T1O0

00 0O0T11

The group H is a mazimal subgroup of the Nakajima group G := (g1, g2, h) (see
Chapter 8). Using Theorem 1.53.4 H has hypersurface invariant ring.

We now want to see what happens if our group has more than two generators.

First we want to find non-transvection bireflections.

Lemma 2.2.13. Let g1,...,q; be bireflections such that G = {g1,...,q) is a
p-group which isn’t a one—row or one—column group. Then we can find g € G

such that V9 has codimension two.

Proof. By Proposition 8.2.12 of [31] G consists of transvections if and only if
it is either a one-row or one—column group. This means that either g; is not a
transvection for some 1 < ¢ < [ or there exists ¢ € G not a transvection which is
a product of two transvections. Suppose for some v;,7, € V*, uj,up € V

qg= g2

ul - ug”

If either v; € ke or u; € kuy we see that g is a transvection. Otherwise V¢ has

codimension 2. ]

We want to be able to use Lemma 2.2.11 to help us with pure bireflection
groups with more than two generators. The next lemma allows us to find a useful
subgroup with two generators for groups which are not two-row or two—column

groups.
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Lemma 2.2.14. Let G be a unipotent bireflection group which isn’t a two—row
or two—column group. Then we can find g1, gs € G such that H = (g1, ¢g2) isn’t a

two—row or two—column group.

Proof. By the previous lemma we can pick g € G such that V9 has codimension
2.

As G is not a 2-column group we can find oy € G such that V9 £ V. If
also [01, V] £ [g, V] then choose g1 = g, go = 01 and we are done. Otherwise, as

G is not a 2-row group, we can find o5 € GG such that:

[027 V] ﬁ [gv V]

Either:
o V9 LV then pick g1 = g, go = 09,

o« V9 < V2 and dimg(V?) = dimg(V?) = n — 2, then V9 = V% so
Vo2 L Vo so pick g1 = 01, go = 09, oOr

o V9 <V and either dimg (V') > n — 2 or dimy (V%) > n — 2.

In the third case, as VI L V71 V9 < V72 we can find u € VI\V so:

O'102<U) = O'l(U)

so u & Vo2,
As [o1,V] < [g,V] and [o92,V] £ [g,V] we can find some v, € V such that
r &g, VI

oo(v) =v+,

0102(V) = v+ 71+ 0o, (V+ 7).

We know that 0, (v+7) € [01, V] < [g,V] and so r+ 65, (v+71) & [g, V] therefore
V9 L V192 and [0109, V] £ [g, V] so choose g1 = g, go = 0105. O
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Now we are able to move up to looking at groups with three generators.

Lemma 2.2.15. Suppose p is odd. Suppose G = (g1, g2, h) is a pure bireflection
group such that H = (g1, g2) is a hook group with hyperplane U and line kv which

wsn’t a two—row or two—column group. Then either:
e G is a hook group with hyperplane U and line kv,

e (G is an exceptional group of type one and either g1, h or gs, h are a special

pair,
e G is an exceptional group of type two and g1, g2, h are double transvections.

Proof. Let Gi = (g1, h) and G5 = (go, h). Suppose that neither g;,h or go, h are
special pairs (in which case G is an exceptional group of type one). As both Gy
and G, must consist of bireflections up to duality we only need to consider the

following four cases:
1. Gy and G5 two—column groups,
2. Gy a two—row group, G5 a two—column group,

3. G a two—column group, G5 a hook group but not a two—column or two-row

group,

4. GG1 and Gy hook groups which aren’t two—column or two-row groups.

We will use that as H is not a two—column or two-row group we can see by

Lemma 2.2.8 that U = V9 4 V9 and we can find

up € Vgl\V‘(D, Ug € VQQ\Vgl

such that

691 (u2> = 592 (ul) =v.
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As U is of codimension one there exists some w ¢ U such that

dimg (kdg, (w) + kg, (w)) = 2.

Case 1 If G; and G5 are two—column groups, then V9 < V* and V9 < V" and so

VI Ve =U <V

This means that §,(U) = {0} < kv and G is a hook group with hyperplane
U and line kv.

Case 2 If (¢; is a two—row group and Gs is a two—column group then

[hv V] S [gl,V] S U

and V9 < VP We see that

g192h(w) = w + 04, (w) + b4, (w) + 0p(w) + c1v,
g192h(ur) = u + 6p(u1) + v,

g19oh(ug) = v + v

for some ¢y, ¢y € k. As (1 is a two—row group:

On(u) € (v, 8, (w)).

Suppose that G not a hook group. Then v, §;(u;) are linearly independent,

so in order for g;goh to be a bireflection:

(91921, V] = (v, 0n(wr)) = (v, G, (W)
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Case 3

Case 4

This would mean that

09y (W) + g, (W) + 0 (w) + 10 € (v, 6, (W)

0go (W) € (v, 09, (w))

and G (and therefore H) is a two-row group, which is a contradiction.

If G4 is a hook group but not a two-row or two—column group then by
Lemma 2.2.8 it has hyperplane U’ = V92 + V. Suppose the line of G5 is

kv'. If G, is a two—column group V9 < V" and so

U=V + VR <Vh4yve=[.

As dimy(U) = dimy(U’) this means that U = U’. As 6,,(U) = kv we see
that kv' = kv and so G is a hook group with hyperplane U and line kv.

Suppose G and G5 are both hook groups which are not two—row or two—
column groups. Let U; = V9 +V* U, = V92 4+ V" be the hyperplanes of G
and G with lines kv, and kv, respectively. If there exists u € (VANU)\V%
then u € Uy so Uy = VI+ku = U, kvy = kv and (g1, g2, h) is a hook group.
Similarly if there exists u € (V"N U)\V9,

Assume this is not the case. If we take ui,us as defined above then

uy € Up\Us and uy € Uy\U;. We can see

U+U,=U4+U,=U4+Uy=V

and by definition dimy(U;) = dim(Us) = dimg(U) = n — 1. From this we
see that
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As Vi < Uy, VP < Uy and dimy,(V?) > n — 2 we see that Uy N Uy, = V.
Similarly
Vir=UnU,, V#=UnNU.

We can assume w € V"\U, and as H not a two-row or two—column group,
dg (W), g, (w), v are linearly independent. Since w € U; N Uy and we can

see that kvy = ké,, (w) € V| kvy = kd,, (w) € V. Let a1, as € k such that

On(u1) = a1dg, (W),  In(uz) = azdy, (w).

We now look at G3 = (9192, h) and see that

9192(w) = w + g (w) + 0o (w) + 0910, (w),
g192(u1) = u1 + v,

G192(u2) = ug + v.

[91927 V] = <591 (w) + 592 (w)v U) 7£ <5g1 (w)7 692 (w)> = [h‘a V]

we know that (G5 is not a two-row group. As
dimy, (V99) = dim, (V") = n — 2

and w € V9192\V" we see that G5 is not a two—column group either. By

Lemma 2.2.8 this means that Us = V" + V9192 has codimension one. As
Uy — Ug € Ve L U3
and

5h(U1 — U2) = (5h(u1) — (Sh('UQ) = CL15g1 ('U)) — a25g2 (U)) c Vh.
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by Lemma 2.2.9 we see that Gz must be a hook group with line
k(aidg, (w) — azd,, (w)).
As w € VP < U we find:
k(aidg, (w) — agdg,(w)) = k(dg, (w) + 04y (w) + g, 04, (w)).
As 4y, (w), dg, (w), v are linearly independent and d, 6,4, (w) € kv we see that
0109y (W) = 4,64, (w) =0

and a1 = —as.

Let v9,71,72 € V* such that:

Yo(w) =1, ker(y) = U,
7(u2) =1, ker(yy) = Us,

Yo(up) =1, ker(ye) = Us

Let G’ = (g1, g2, h) where
91,9

~ __ 47 Y ~ __ 47 Y: M Y2
G =15, wyles 2=t Wl = tas, w)l e, ()

then GG’ is an exceptional group of type two. We can see that for i = 1,2
Vi =UNU; =V

and

ViU, NU, = V"
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We know that
V=V9"Dkuy ®kw=V"®ku ®kw=V"d ku & ku,.
From the definition of ¢;

G1(ug) = us + v = g1 (u2)

Gi(w) = w + by, (w) = gr(w)

and so ¢; = g1, similarly ¢ = g» and h = h. This means that G = G’ is an

exceptional group of type two, and g1, g2, h are double transvections.

]

We can finally now prove our main result of this section, the full classification

of unipotent pure bireflection groups for p # 2.

Proof. (of Theorem 1.0.5) Suppose G is not a two-row, two—column group or
an exceptional group. By Lemma 2.2.14 we can find ¢1,92 € G such that
dimg (V9 NV92) < n—2 and dimg([g1, V] + [g2, V]) > 2. Let N := (g1, g92).

As G (and therefore V) consists of bireflections by Lemma 2.2.11 N must be
a hook group with hyperplane U for some U C V, and line kv for some v € UV.
As G is not an exceptional group by Lemma 2.2.15 for any g € G, (g, N) is a
hook group with hyperplane U and line kv. This means that

G, U] <kv <V

and so GG is a hook group with hyperplane U and line kv. [

2.3 Two—column and two—row groups

Now that we know the groups consisting of bireflections for p # 2 we can start

to look at them in more detail. Although we don’t have the same classification
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of pure bireflection groups, two-row, two—column and hook groups are still of
interest for p = 2, so we don’t restrict to p # 2 for these sections. We start by

looking at two—row groups.

Definition 2.3.1. Let r{,75 € V be linearly independent, ¢ € V' be such that

((r1) = 1,¢(rz) = 0. Then for all 71,7, € 7" N7y, ¢ € k define KI172¢ = 1117248

1 Tr27cre’

Let

KTzl — {KT17T27C

L s
Y1,7Y2,C V1,72 €171 N ry,CcE k}a

L = (3¢ | v e rf g

; i i 71,72,C
Where 71,19, ¢ are fixed in context we will write K, , . for 71725,

We will see that for any two—row group GG we can choose 71,7 and ¢ such

that G < K™2<¢ and that Z(K™r2<) = [rr2,

Lemma 2.3.2. Let ri,ro € V and (1,( € V* such that

Gi(r1) = G(r) =1,
C1(7“2) = C2(7’2) = 0.

Then
Krireln — frirete

Proof. Let

g = "1211:7’:/227,(81 e K2l

As ¢; and (; agree on r; and 75 we can find 43 € i N7y such that

G = G+ 3.

This means

— 12,01 T1T2,62 71,72,2
9= Fype = Fymterse © K :
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So Kmr26 < K26 - A symmetric argument tells us that K726 < K720
and so

Krrreln — rirete n

From here on we shall write K™ = K"™¢  we look at multiplication

between the elements of this set.

Lemma 2.3.3. If we fix r1,79,( then
L Ky mpe = Byl e & N1 = Y, Yo =4 and c = .
2. Ry ya,chin et = Koy o6 Where:
e i=m+M,

e Yo =1y2 4y + o,

>

o

+ .

~o

. r_
Koy yase 0N Koyt 1 o commute iff ¢y = .

-1 —
4' 'Li'ylﬂz,c = K—y1,em1—72,—c-

-1 -1 _ 1,72
J. Kot v,y v oyt vz et g o = Rerh—c/y2,0,0 € Lmr.

6. For any Ky, ,c € GL(V):
p?, ifp=2andc#0,
By e =
p,  otherwise.
Proof. 1. If Ky, 4y e = Ky 1 then:

g — S,

1 T2 Cra r1°r2c”

As rq, o are linearly independent by Lemma 2.1.3

M=%, M+ ="y+

SO0 Y2 — = (c—c)C. As v — 74 €15, ( € ry we see c = and vy, = 5.
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2. If g = Ky oc and h = Ky 1« then

gh = RS e = 1 s
T1 T2

1 T2 7era'r1 Ure ri+cre (c+c)ra

— 7 2 tre ey 46
- trl ltm 2 1t(c—i—c’)m'

3.,4..5. and 6. follow from 2..
O
We now move from looking at a set to looking at a group and its properties.
Proposition 2.3.4. Let G = (ky, ppel1,72 €1 Ny, c € k). Then G = K™
and |G| = ¢*" 3.

Proof. We know that K™ C (. By Proposition 2.3.3(2) all elements of the
group can be written as k., ,, . for some 1,72, ¢, so G = K",
By Proposition 2.3.3(1) Ky, qp.c = Kyt 4. if and only if 41 =71, 72 = 75 and

¢ = . This means that
K = ek b P = = 0

We want to see when different choices of r1,ry determine different groups.

Lemma 2.3.5. Let ry,ro,uy,us € V, G = K" and H = K"*"?. Then G = H

if and only if kry = kus and

<7‘1,T2> = <U1,U2>.

PT’OOf. Let Clu CQ € V* such that C1<T2> = CQ(U/Q) =0 and Cl('rl) = CQ(’UJ) =1.
Suppose to start with that kry = kuy and

(ri,ma) = (U1, us).

Firstly we note that this means r = aju; + asug and ro = agug with ay,as # 0.
Also

N R i
ry Nry =uy Nuy.
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For any g € G we can write g = /ﬁfyllfyzccl € K™ for some 71,72 € 11 N1y,

c € k. Using Lemma 2.1.2 this means that

— 24 Y2 3G _ parvipazvetazvi4C1
g = trl trgtcrg - ta1u1+a2u2ta3r2tcr2 - tul tug tcagug'

As kry = kuy we can see that (3(uz) = 0. Then
Ci(arur + agug) = ar1Ci(wy) = 1

and (1(u1) = 1/ay. Let b=1/ay. As (3 and b(, agree on r1, 75 we can find some

v3 € 11 Nry such that ¢; = 3 + by. Using Lemma 2.1.2

_ pa1v1pazyztazyi 41
g - tul tug tcrg

— $arv14asy2+azy1yys+bes
ul ug caszu2
__ 40171 4a372+a171 473 C2
- tu1 tu2 tca3U,2tbCCL3’LL2

— a7 pasy2taryiteasys 62
u1 ug becasusg

_ I{u},ug@ e H,

/
Y1:72 ,c!

where

% = 171,
Vo = azy2 + a1y + casys,

c = beas.

This means for any g € G, g € H. We can use the symmetric argument to show
that for any h € H, h € G and so G = H.

Suppose that
(ri,m2) # (U1, ua).

This means that

G, V] #[H, V]
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and so G # H. Suppose that
(r1,re) = (U1, ug)
but kry # kus. This means that
kry =[G, V]S # [H, VT = ku,

so G # H. m

Clearly K™ is a two-row group for any ri,7o € V. We check that any

two—row group can be written as a subgroup of K™ for some 71,75 € V.

Lemma 2.3.6. Let H be a two—row group. If
[H, V)" = [H,V]

then H < K™ for any ry,ro € V such that
[H, V] = (ry,m3).

If
kv =[H,V]" < [H,V]

then H < K™ for any ro € kv and ry € V' such that
[H, V] = (ry,m3).
Proof. Suppose H is a two—row group with
[H, V)" =[H,V].
If we choose any 71,79 € V such that

[H, V] S <7"17 7‘2>
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then any h € H can be written as

h =11

T1°T2

for some 71,72 € 7 N7y . Then for any ¢ € V* such that ((r;) = 1 and ((ry) = 0

h = 2 = t’ntwtC — /4"177"27( K2

r1T2 r17T2 Y1,72,0 <

This means that H < K"™72,

Suppose that H is a two-row group with
kv =[H,V]" < [H,V].

If we choose any 5 € kv and r; € V such that

[Hv V] = <T‘1,T2>
then we can write and h € H as
h=

for some v, € rif Nry, v € V*. If 45 € r{ N7y then h € K™ by the above

argument. If y,(r1) = ¢ # 0 then let { = %72 and write

h= 1015, = kDS

r1ravcrs 71,0,

sohe K™ and H < K™, O

Proposition 2.3.7. Forn > 3 if G = K™ then it is a special group with:

Z(G) = ®(G) = [G,G] = L™
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Proof. As G is a p-group we know that ®(G) = GP|G,G]. We have shown
in Proposition 2.3.3 that [G,G] < L™, and that G? = {e} for p odd and
GP < L™ for p even. Putting this together we find that ®(G) < L™,

For v € Tf‘ N TQL take g1 = K400 and g = Ko1 then glgggflggl = K0,,0 SO
G,G] = L"" = $(G).

If g € L™ then it commutes with all elements k., ., . so L™ < Z(G). If
we choose K, ~,c € Z(G) then for any 77, ¢ we have that ¢y; = v s0 v =0
and ¢ =0, S0 Ky, ypc € L™ and Z(G) = L™ = &(G) = [G,G]. G is a special

p-group. 0]

We can see that for any 7,7, € V*, G = (K"72)* is a two-row group.
Results for two—column groups can be obtain by dualising the results of this

section using Lemma 2.0.5.

2.4 Hook groups

We now move on to look at properties of hook groups. First we establish some

notation.
Definition 2.4.1. Let U < V* be a subspace of codimension 1 and fix 0 # v € U

and w € V*\U. For every A € vt Nw’ and u € U define b\ € GL(V') by:

b (w) = w + u,

b lo =1,

so that bi’g’v(u’) =u' +u' (N for any v’ € U.

Choose w* € V* such that w*(w) = 1 and U = ker(w*). For ¢ € k we can then
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define:

BV = (b0 h € vt Nt M) = e,
BYY .= {bﬁ]’”)\ cv-Nuw,ue U},

Roy = {t% |a € k} = {b25"|a € k}.

Note that we have chosen hyperplane U and line kv to be in the dual space
W = V*. This is to ease in calculations of invariant rings later on. As hook
groups are self dual we would achieve the same results by specifying a hyperplane
and line in V.

For ¢ # 0 the elements of B»Y* are index 3 bireflections. If w, U, v are fixed

in context we will write b, , and B, instead of bgf Y and BY:Uv,
We look at multiplication of the elements of BY".

Lemma 2.4.2. If we fix w,U,v then
1. byr=byyou=1u and \=X,
2. bubu x = by 5 where A=A+ Nand @ =u+u + Au)v,
3. byx and by y commute iff AN(u') = N (u),
4. by = b_wia@ons
5. bur xbupby s by X = bovwy—a@w)wo € Row,

6. For b, € B.

p?, ifp=2andc#0,
‘bu)\| =
p,  otherwise.

Proof. 1. If by x = by v then:

wHu=w-+u

u=1u.
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For any s € U we find

s+ As)v=s+N(s)v
A(s)v = N(s)v,

so A= \.
2. Let A= A+ X and @ = u + v/ + A(w/)v. We can look at the action of

by by » on w and on U. We start with w:

bu,,\bufj,\/(w) = bu7>\(’w + u’)
=w+ (u+u + Au)v)

= bﬁ,j\(w>‘

Let s € U then

bw)\bu/,)\/(s) = qu(s —+ )\(S)’U)
=54 (A(s) + N (s))v

= ba,x(s)

SO bu,)\bu’,A’ = ba,&-
3.,4.,5.,6. follow from 2.

]

We see that BYV is closed under multiplication, the next few propositions

look at it’s group structure.

Proposition 2.4.3. Let G = (b, |u € U, X € v* Nwt). Then G = BY" and
‘G’ — an_l-

Proof. From the definition of G,

{burlu e U X € v Nwt} CG.
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By Proposition 2.4.2(2) all elements of the group can be written as b, , for some
U, A, SO

G = {byslu € U X € vt nuwt}.
By Proposition 2.4.2(1) b, » = b, if and only if u = v’ and A = X so

{burlu € U X evtnuwY = {uec U} - [{Nevtnuwt}

— qnflqn72 — q2n73. N

Proposition 2.4.4. For n > 3, the group G = BY" is a special group with:
Z2(G)=2(G)=[G,G]l = Ryu

Proof. As G is a p-group we know that ®(G) = G?[G, G]|. We have shown in
Proposition 2.4.2 that [G, G] < R, y, and that G? = {e} for p odd and G? < R,
for p even. So we have that ®(G) < R; ¢

Let uw € V, for any d € k we can choose A € V* such that A(u) = —d. Then
bu0,bo ) € G and:

—17-1
bu,000.20, 000 x = bavo € Rou-

so |G, G| = Ry = O(G).
If t € Ry then it commutes with all elements b, so Ry < Z(G). If we
choose b, » € Z(G) then for any v, N we know A(u') = N (u). This can only

happen if uw = cv and A = 0, so b, \» € Ry and
Z(G) = Rypy = 2(G) =[G, G].

This means that G is a special p-group. [

We know that BY™ is special, for k = F,, it is extra special so we know we

can write it as a central product of copies of extraspecial groups of order p?.
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Lemma 2.4.5. Let k=F,, n >3 and G = BY". Ifp=2 then

Gng*Dg*...*Dg.

n—2 copies

Otherwise

G = M(p) « M(p) *...* M(p).

n—2 copies

Proof. Let {e1,...,e,} be a basis for V such that e; = v and (e;,...,e,_1) = U.
For1 <i¢<n-—2Ilet

H; = (bey.r 00 boer, -

The H; are groups of order p? and we can check using Lemma 2.4.2 that
[Hi, Hi] = Z(H;) = Ry .

This means that H; is extraspecial for 1 <i <mn —2. If p = 2 then as |b,o| = 2
and b, ¢ ®(H;) we see that H; = Dg. If p is odd then as all elements have
order p, H; = M (p).

Let H=HH,...H, 5. Forany 2 <1i,j <n—1,i# jwesee Z(H;) = Z(H;),

and H; centralises H; so for p even

H = Dgx Dg*...x%x Dg,

n—2 copies

and for p odd
H = M(p)* M(p)*...x M(p).

n—2 copies

Clearly H < G and |H| = p* ! = |G| so H =G. O

The next Proposition relates B, and BY?. It is useful when looking for

generators of BV,

Proposition 2.4.6. Letn > 3. Forc€ k let G, = (B.). Then G. = BY".
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Proof. We know G, < BY?. We will show that for any element b,, € BY?,
bux € G. and so BV’ < G...

Since dimg (V) = n > 3 we can choose u/, X' such that:

N = e,
N(u) =0,
Au') =0,

SO bu/’)\/, bu’+u,)\’7 bu/7,\+,\/ € B.. Then:

—1

bu’+u,/\’bu/7)\/ = bu,O € Gca
-1

bu/7,\/+>\bu/7)\/ = 507)\ € Gc,

bu,ObO,A = bu,)\ € Gc' O

We now look at some subgroups of BY"?.

Proposition 2.4.7. Let G = (by,...,b), where b; = b,, », € BY for 1 <i <

minimally generate G. Then pt < |G| < p™*r

Proof. As G is a p-group ®(G) = GP[G,G]. We know that G? < R;y and
[G,G] < Ry so ®(G) < Ry and 1 < [®(G)| < g¢.

By [1, Theorem 23.1] (X) = G if and only if (X, ®(G)) = G. As G/P(G)
is elementary abelian this means if [ is the minimal number of generators then

|G/®(G)| = p', and so p' < |G| < gp' = p't. O

Proposition 2.4.8. 1. Let G = (b1,...,b;, Ry ) where the set of b = by, 5, €
BY? for 1 < i <1, and the b;’s and Ry minimally generate G. Then
‘G’ — pl-‘,-r_

2. Let G = (b, ... b)) where the set of b; = by, 5, € BY" for 1 <i <, and
the b;’s minimally generate G. Suppose [G,[G,V]] =0, then |G| = p'.

Proof. 1. Since ®(G) < Ry v < Z(G), G/Rsp is elementary abelian of order
pland |Rypy| = ¢ =p", so |G| = p".
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2. It [G, |G, V]] = 0 it can be seen from Proposition 2.4.2 that G is elementary

abelian and if it is minimally generated by ! elements it has order p'.

2.5 Exceptional groups of type one

We now look at the exceptional groups of type one. In Lemma 2.2.4 we see that
a group generated by a exceptional pair G = (g, h) for p = 2 is quite different to
a group generated by a special pair for odd p. To start with we note that g and
h have order p? and not order p. The centre of G also has order p? rather than
p, and G is not an extra-special group. The types of bireflection we find are also
quite different:

ghg th™! =1t

T2 T2

is a transvection and not a double transvection for p = 2. We will see in the odd
case that exceptional groups do not contain any transvections (Lemma 2.5.9).
For even p the exceptional groups of type one are part of a larger family of pure
bireflection groups containing a pair of elements
9= 1818, h=1%0

for (1,05, (3 € V*, uy,us,uz3 € V. We have already seen another one of these
groups in Example 2.2.12 but we will not look at them in any detail.

We will restrict to p # 2 for this section, we also need n > 5 for our definition
of an exceptional group of type one to make sense. We start by defining some
groups containing a special pair, and then show that these are the only possible

exceptional groups of type one.

Definition 2.5.1. Define linearly independent sets

r= {Tbr?av} and Y= {7177272}*}
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with 7,79,0 € V, 71,7 € r Nry Not such that v* € 7 Nry and v*(v) = 1.

For all I, m,n € k define x;3),,, by:

TY Y2 4t
Xl,m,n - taltagtaz

where
oy = lv—2nr; + 7l(l_12)_2"7‘2,
Qo = mv + m27°1 + m(m—l;—2l)+2nr2’
az =2mry + (m + Drs.

Define:

X" = {Xf%n | l,m,n € k},
Jrry = {X00m | 1 € K}
If r,~y are fixed in context we will write X m -

Note that for all [,m,n € k
2moq — 2lag + (2n 4+ mil)ag =0

and so X;m.n is a bireflection.

Lemma 2.5.2. For fized r,~ we have:

_ 7 _ / _ !
C Xigman = Xt & L=1,m=m'n=n

~

2. Xi,mn XU m! n/ = X+l ;m4+m/ n4+n'—ml’

3. Xtmm and Xp.m o commute iff ml' = m/l,
-1 .

4' Xl,m,n = X-l,—m,—n—ml,

—1 —1 _
5' Xl:m:nxl/,m/,n/Xl,m,nXl’,m’,n’ - X0,0,lm’fl’m .
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Proof. 1. This is a direct application of Lemma 2.1.3.

2. Let [,m,n,l',m',n" € k then

Y1 472 $V° Y1 424U
XimnXU,m/ ' = tOéltOCQtadta ta ta

_ t’Yl t"/2 tv
041+a1+l/o¢3 a2+a2+m as a3+a3

where:
ap =lv—2nr; + 71(1 Y T2,
Qo = mv + m2r1 + m(m—l;—?l)-i—?nr27
az = 2mry + (m + D)ry,
ay =1l'v—2nr; + 7“1712)72"7"2,
oy = mv + (m/)r] + ml(m,fl;m/)ﬁlnr
o =2m'ry + (m' +1')ry
We find that

ar+ o) +lag=(1+1")v—-2(n+n"—ml)r

+ (l+l')(l+l’—1)2—2(n+n'—ml’)

ra,

g+ +mag =(m+m' v+ (m+m')?r

, , ’ "
+ (m+m')(m+m l+22(l+l ))+2(n+n'—ml )r2’

as+as =2(m+m)r+ (m4+m'+ 1+ 1)ry,

and so Xi,mna XU m'n' = X+ ,m+m/ nt+n’—ml’ -
3.,4..5. and 6. follow from 2..
L]

We know that X7 is closed under multiplication, we can now start to look

at it as a group.

Proposition 2.5.3. Let G = (ximn | [,m,n € k). Then G = X™ and |G| = ¢*.
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Proof. By Proposition 2.5.2(2) all elements of the group can be written as x;m.»
for some [, m,n € k, so G = {ximnll,m,n € k} = X*.

By Proposition 2.5.2(1) Ximn = Xvmw if and only if i =0',m =m/,n =n'
so | X™7| = |k]® = ¢>. O

Proposition 2.5.4. Let G = X™Y. Then G is a special group with:
Z(G) =2(G) =[G, G] = Jp .

Proof. As G is a p-group we know that ®(G) = GP[G, G]. We have shown in
Proposition 2.5.2 that [G, G] < J,.. As G is a pure bireflection group with p # 2,
G? = {e}. So we see that ®(G) < Jy.

For any [ € k if we let by = Xy,0,0,b2 = Xo0,1,0 then A= X0,0,i, and so

[G7 G] = Jr,’Y = @(G)

If t € J;., then it commutes with all elements x; ., so Jr, < Z(G). If we
choose Ximn € Z(G) then for any I',m’ we have that ml’ = m/l som =1=0

and so X;mn € Jry. This means that

and G is a special p-group. [
Using the above we see that X™” is isomorphic to a group we recognise.

Proposition 2.5.5. Let G = X™7 and

1 a b
P:< 01 ¢ |a,b,c€k>.
00 1

Then G = P for any r,~.
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Proof. We can define a map ¢ : G — P such that

1 m —n
¢(Xl,m,n) =10 1 [
0 0 1

Clearly ¢ is surjective, we check that the map is a group homomorphism. Let

Ximons Xt'.m/ v € G then

(b(Xl,m,nXl’,m’,n’) = ¢(Xl+l’,m+m’,n+n’fml’)

I m+m —n—n"+ml
=10 1 I+ )
0 0 1
and
1 m —n) (1 m —n
OXtmn)O(Xtmw) =10 1 1L |0 1 U
0 0 1 0 0 1
1 m+4+m —n—n"+ml
=10 1 L+
0 0 1

If ¢(Ximn) =1 thenl=m =mn=0and xp00 = 1, so ¢ is an isomorphism and

G=P. [l

In the above P is the Sylow p-subgroup of SL3(g). The next couple of lemmas
will help us towards our goal of showing that all exceptional groups of type one

are isomorphic to P.

Lemma 2.5.6. Let G, Gy < GL(V') be hook groups with hyperplanes Uy, Us and

lines vy, vy respectively. Let v1,7v9 € V* such that ker(y,) = Uy and ker(ys) = Us.
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If Uy # Us, kvy # kvg then for any t € G1 N Gy we can find a,b € k such that

t=1t1 t2

ava “buy *

Let v3 € V* and vs € V' such that

dimy (v, v, v3) = dimg (1,72, 73) = 3.

If G5 < GL(V) is also a hook group with hyperplane Us = ker(v3) and line v
andt € Gy NGy NG3 thent = 1.

Proof. For any u € ker(;) Nker(y2) we see that ;(u) € kro N Ek(2ry +13) = {0}
so we can find 73,74 € V such that

t =t 2

T3Tre "

As ker(7,) € ker(y1) we see that r3 € kvy and similarly r4 € kvy, so we can find
some a, b € k such that:

t=1t1 t2

avs “buy *

If t € Gy NGy N G5 as above then we see that for some ¢y, o, c3,¢4 € k

— M Y2 — M 3
t= tcl’ugtczvl - tC3’U3tC4U1

— M Y2 Y3 M Y2473
- tcll)gtcz”ulto - tC3v3tD tC4v1

so using Lemma 2.1.3 ¢; = co = c3 =c4 = 0. ]

Lemma 2.5.7. Let g1 = X100, 92 = X010 and 0 € GL(V). If G = (g1, ¢92,0)
s a pure bireflection group then either o is a double transvection and for some
a €k, 0=xXo00a 0ro is an index 3 bireflection and g,,0 or g»,0 are a special

paiT.

Proof. Let z = X001, G1 = (91, %,0) and Gy = (ga2,2,0). As Gy, G2 are not

two-row or two—column groups, by Lemma 2.2.15 each could be a hook group,
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exceptional group of type one or exceptional group of type two. As ¢; is an
index 3 bireflection (G; is not an exceptional group of type two. As z is a
double transvection if Gy is an exceptional group of type one then ¢;,c are an
exceptional pair. Similarly either G5 is a hook group or g,, ¢ are an exceptional
pair. Suppose both G; and G5 are hook groups.

As gy is an index 3 bireflection we see by Lemma 2.2.7 that G; has hyperplane
ker(v;) and line kry. Similarly G, has hyperplane ker(vs) and line k(2r; + 73).
Using Lemma 2.5.6 we can find some a,b € k such that:

0= t3%2r1+r2)t27%2-
As 11,79 € ker(y1) N ker(y2) we see o is a double transvection.

Let G3 = (g192, z,0). Using Lemma 2.2.15 again, (G5 is either a hook or an
exceptional group. As g;¢s is an index 3 bireflection it isn’t an exceptional group
of type two, and as o, z are double transvections (G5 isn’t a exceptional group of

type one. This means that G5 is a hook group. We know that

_m Y2 gt
9192 = Lyior 4ry v+r1t2r1+2r2

_ t’Y1+’Y2tQU*+’Y1
— Yw+ry Yri+re

and
9192, (9192, V]] = k(r1 + 12).
By Lemma 2.2.7 k(11 +73) is the line of G5, and U = ker(~; +72) is the hyperplane.

If uy, uy € ker(v*) such that for i,j € {1,2}

1if ¢ =7,
%’(Uj) =
0 otherwise.

We can see that u; — uy € ker(y; + v2) = U, so

do (U1 — ug) € k(ry +12)
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2ary + (a — b)ry € k(ry +19)
For this to happen we must have b = —a and then o = X904 O

We can now prove that all exceptional groups of type one are as described

above.

Proposition 2.5.8. If G < GL(V) is an exceptional group of type one then we
can find r,y such that G < X™7.

Proof. Tf GG is an exceptional group of type one then we can find r = {ry, ro, v}

and v = {71, 72, v*} such that

r?’y r?’y
X1.0,00 X010 € G-

Let g1 = X100s 92 = Xo10- If G £ X*7 then we can find 0 € G\X™. If G
consists of bireflections then (gq, g2, o) consists of bireflections so by Lemma 2.5.7
if 0 ¢ X™7 then either g;,0 or g9, 0 are an exceptional pair.

Without loss of generality we can assume g¢;, 0 are an exceptional pair. By
Lemma 2.2.3 we can find a,b € k, r3 € ker(v;) Nker(v*) and v3 € V* linearly

independent to v; and v* such that

Y3(r2) = 72(rs) = v3(v) = (r3) =0
and o = tgi tgz %3 where

f1="bv+ (a—ab)ry + (2a + b)rs,
By = v — arhy + rs,

f3 = 2r3 + 2.
Using Lemma 2.1.2 we can find

U -1 -1 _ V3
Z=0010 91 =tg byl
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As 2’ is not an index 3 bireflection it can’t be part of an exceptional pair so

because (g1, g2, 2’) must be a pure bireflection group by Lemma 2.5.7

/
Z = X0,0,c
for some ¢ € k. This means that
I __ M Y2 _ M 3
<= tc(2r1+r2)t—07“2 - 2r3+(17b)r2t—7“2'

As v, is linearly independent to 7, and 3 we can find some u; € V such that

Y1(u1) =1 and ya(ur) = y3(u1) = 0. We find

0, (uy) = 2rg + (1 — b)ry = 2¢ry + cry

71

(c—14b)r2
2 2cri1+-cra

so r3 =cry; + . By multiplying 2’ on the right by (¢ )~! and using

Lemma 2.1.2 we get:

7 Y3 M Y2
tc(2r1+7“2)t*7”2 - tc(?rl—s—rg)t*CTQ?

t'YB — t’Y2

—Tr2 —cro
Y3 __ 4672
s, =172,

Using Lemma 2.1.3 we see that 73 = ¢y,. Now we see that o = 3173 14 for

f1=bv+ (a —ab)ry + (2a + b)(cry + (C_;—H))

b(b—1) + 2ac + be

T2)7

= bv + (2ac + be)ry +

T2,

2
—1+b
P :cv—car2+02r1+c(cz+)rz,
5 c(c — 14 2b) — 2ac — be
=cv+cr+ 9 )
c—1+Db)r
B3 =2(crl+g)+rz,

2
=2cr1 + (c+ b)rs.
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If L=0b, M =cand L = -2 then o = 77, v, s0 0 € X™7. O
This allows us to say some more about exceptional groups of type one.

Corollary 2.5.9. If G is an exceptional group of type one then it contains no
transvections and any double transvections in G are contained within Jy ., which

s a two-row and two—column group.

Corollary 2.5.10. If k =F,, for fived r,7, there is only one exceptional group

of type one which is an extra special group of order p* which is isomorphic to

M(p).

Proof. If G is an exceptional group of type one then by the above proposition
G < X™7 for some r,~, however GG has no non-trivial subgroups which contain

a special pair, so G = X™7. We can see that
(P(G) = [G, G] = Z(G) - Jr,'y

so G is extraspecial, and the order of G is p3. As G has no elements of order

greater than p, G = M(p). O

2.6 Exceptional groups of type two

In this section we will treat exceptional groups of type two, as we have with
exceptional groups of type one above. Unlike exceptional groups of type one,
many of our results for exceptional groups of type two still hold for p = 2, so
we do not restrict odd characteristic when we define some groups containing
a special triple. We cannot, however, use our earlier classification results for
even characteristic and so we restrict to p # 2 when we show that these are all
possible exceptional groups of type two in Proposition 2.6.4.

To be able to find G < GL(V) an exceptional group of type two we need

n > 6.
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Definition 2.6.1. Let r = {ry, o, 73} with 1,790,735 € V, v = {71, 72,73} with

Y1,7%2,73 € i Nry Nry and

dimy (71, ra, 73) = dimy(y1, 72, 73) = 3.

For all a,b,c € k define wyj . = t1Lt12t73 where:

oy = ary + brs,
Qg = arg + Crs,
3 = b’f‘2 — CTIy,

and W*7 = {wyy |a,b,c € k}. Where r,~ are fixed in context we shall write

r?’y J—
wa,b,c - wa,b,c-

Lemma 2.6.2. For fized r,vy we have:
1. Wabe = Wo! b i = = l/, m = m’, n=n.
2. Wa,b,cWa b ¢ = Wata! b+b ,c+c -
3. Wape and Wy o commute for all a,b,c,a’ b, € k.
4 wa b ¢ = W—q,—b,—c-
Proof. 1. We can see by using Lemma 2.1.3..

2. For a,b,c,d', b, € k we see that

_ N V2
wa,b,cwa’b’,c’ - tar1+br3ta1”2+67”3tb7‘2 —crs3

Y2
ta 7°1+b’7“3ta 'ro+c! Tgtb/’r‘g —c'ry»

t'Yl t 72 t’Y3
(ata”)r1+(b+b)rs” (a+a’)re+(c+c)rs " (b+b ) ra—(c+c/)rs -

3.,4.,5.,6. follow from 2..
O

Proposition 2.6.3. Let G = (w,} |a,b,c € k). Then G = W™ is an elemen-

tary abelian group with |G| = ¢>.
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Proof. By Proposition 2.6.2(2) all elements of the group can be written as wgp..

for some a,b,c € k, so
G = {wapcla,b,c € k} = W57,

As all elements commute and have order p we see that G is elementary abelian.
By Proposition 2.6.2(1) wgpe = wa p if and only if a = a/,b=V,c= ¢ so

W] = ¢, 0

Proposition 2.6.4. Let p # 2. If G € GL(V) is an exceptional group of type

r7’y

two then there exists some v,y such that for all h € G, h = w,} .

for some

a,b,c € k.

Proof. As G is an exceptional group of type two we can find a subgroup H =

(g1, g2, g3) such that g, g, g3 are a special triple. This means that for some

r={ry,ro,r3}, ¥ = {71,723} and s € k:
_ r,y _ r,y _ r,7y
g1 = Wi00, Y2= W10, Y3 = Wopo,s-

We will show that for all i € G we can find some a,b, ¢ € k such that h = w7 .

From Proposition 2.5.9 we can see that GG is not an exceptional group of type
one: for any exceptional group of type one all elements which are not index three
bireflections are contained within the centre which is a two—column (and two-row
group). The special triple g1, g2, g3 are all double transvections which are not

contained in any single two-row or two—column group.

For all h € G the subgroups
(9i,95,h) for 1 <i<j <3

consist of bireflections so by Lemma 2.2.15 they are either hook groups or
exceptional groups of type two. Suppose (g1, g2, h) is a hook group then it has
hyperplane ker(v;) and line kry. Similarly if (gq, g3, h) is a hook group then it
has hyperplane ker(vs) and line kry, and if (g2, g3, h) is a hook group then it has
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hyperplane 3 and line r3. As 71,79, 7v3 and r1,ry, r3 are linearly independent
this means if all three groups are hook groups by Lemma 2.5.6, h = 1.

For h not the identity we know that for some 1 <1 < j < 3 that (g;, g, h) is
not a hook group, we can assume ¢ = 1 and j = 2 without loss of generality.

We can find v’ = {r}, 75,75}, v = {71, 7%, 75} such that for some n € k:

/ / / /

. o _ 'y _ 'y
g1 = Wi00, Y2 = Wo1,0; h = Wo,0,n

Then:
’Y ’y ,Y/ ,y/
1 2 1 2
tht)r = tr’l tré,
! !
Y1473 — 471473
A ASIES trétré'

As

(k1 + kv2) 0 (kv + kys) = kyi, (kry + kra) O (kra + krs) = kro
for some [,m € k

! :717 7§ =72 + Iy, 7:’3 =73+ mm

ri =11 —1lry, 1r9= T;, ré =r3 — mrs.
Using this we find that

! /

__ 472 473
h = tnrét—nr’l’

_ tl"/l tm')’l t’YQ t'YS

= "n(rg—mr2)"—n(ri—lra) “n(rs—mra)”—n(ri—lra)’

— t'Yl t'YQ t’Ys

- Y—mnri+inrgYnrs—mnr2®—nri+inrg

r?’y

- w—mn,ln,n

as required. O
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Corollary 2.6.5. If G is an exceptional group of type two then it contains no

transvections or index 3 bireflections.

Corollary 2.6.6. If k =, then for fized r,~y there is only one exceptional group

of type two which is an elementary abelian group of order p>.

2.7 Pure bireflection groups

We now know a little about each type of bireflection group for p # 2 so we can

say a bit more about them than at the end of Section 2.2.

Definition 2.7.1. A subgroup G < GL(V) is called a maximal pure bireflec-
tion group if it is a pure bireflection group, and for all G < H < GL(V) either
H = G or H is not a pure bireflection group.

Lemma 2.7.2. Let p # 2, n > 3. If G is a maximal pure unipotent bireflection

group then it is a special group and one of the following holds:
o G = BY" for some U <V of codimension 1, v € U. |G| = ¢*"3.

e G = K" or G = (K"")* for some ri,ro € V or ~v,7 € V*. Then
|G’ — q2n—3.

e G=X"7 for somer = {ry,ro,v}, v ={m,7,v*}. Then |G| = ¢’
o G =W for somer ={ry,ra,r3}, v =1{",7%,7} Then |G| = ¢
If k =T,, then G is extra special or abelian if and only if it is self-dual.

Proof. We show in Proposition 1.0.5 that if G is a pure bireflection group then
it is either a hook, two-row, two—column or exceptional group. Suppose it is a
hook group. Then we can find some U, v such that [G, V] < kv, so G < BY% | as
G is maximal G = BY?, similarly for G a two-row, two—column and exceptional
group.

Let k = IF,. By Proposition 2.3.7 if G = K™ then

[D(G) =L =p" > p



2.7 Pure bireflection groups 103

for n > 3, so G is not extra special if it is a two-row or two—column group. If
G is not a two—row or two—column group then it is either a hook group or an

exceptional group and is self dual. If G is a hook group then

12(G)| = |Roul| = p,

so G is extraspecial. If G is exceptional of type one then

[P(G)] = |

=b

so it is extra special. If it is exceptional of type two then it is abelian. [

Corollary 2.7.3. If G is a pure unipotent bireflection group, p # 2, n > 3, then
it is a subgroup of one of the groups in Lemma 2.7.2 and it has class less than or

equal to two.

Proof. If GG is a pure unipotent bireflection group then it must be either a maximal
pure bireflection group or contained in a maximal pure bireflection group. Above
gives the list of all possible pure bireflection groups which are all special, so each

of their subgroups must have class less than or equal to two. [
The following Proposition summarises the results of this Chapter.

Proposition 2.7.4. Let p > 2, n > 3. Let G be a unipotent group consisting of
bireflections with g € G.

1. If g =t is a transvection then G is one of the following

o A subgroup of K™ with u € (ry,rs),
+ A subgroup of (K™%)* with ¢ € {1,75),

o A subgroup of BYY with either U = ker(¢) or u € kv.

2. If g = t5:4$2 is a double transvection so ui,us € ker(¢y) Nker((y) then G is

one of the following

o A subgroup of K™ with (ri,r3) = (uq, us),
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o A subgroup of (K™)* with (v1,72) = (C1, (),
o A subgroup of BY" such that v € (uy,us)

o A subgroup of G < X7 where

(ri,m2) = (U1, ugz),

and

(71,72) = (C1, Ga),

e A subgroup of G < W™ where

<T17r277ﬂ3> > <u17u2>7
and
(71,725 73) > (€1, Ga)-

8. If g = t51t2 is an index 3 bireflection so uy & ker((y) and us € ker((y) then

G is one of the following

A subgroup of K"+"2,

A subgroup of (K¢2)*,

A subgroup of BV where U = ker((;) and v € kus,

A subgroup of G < X™7 where

<T1,T2,U> > <u17u2>7

and

(71,72, v") > (C15 C2)-

Proof. 1. Suppose g = t§ is a transvection. By the above corollary we know

that G must be a subgroup of one of the groups in Lemma 2.7.2. If G is a
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two-row group then by Lemma 2.3.6 we can find r1, 7, € V such that
ku = [gav] S [G7 V] S <7a17r2>

and G < K™2,

If G is a two—column group then G* is a two-row group so we can find

v1,7v2 € V* such that
k( S [GJ V*] S <71772>

and G < (K772)*,

Suppose G is a hook group with line kv and hyperplane U. Either u € kv
or U = ker(().

By Corollaries 2.5.9 and 2.6.5 we know that G is not contained in an

exception group of type one or type two.

2. Suppose g = t%t% is a double transvection. If G is a two-row group then

by Lemma 2.3.6 we can find 1,7, € V with
<'LL1,U2> = [Ga V] = <7,.1,r2>

such that G < K™, If G is two—column group then G* is a two-row

group and by Lemma 2.3.6 we can find v, v, with

(@) =[G, V] = (G, ¢)

such that G < (K772)*,

If G < BY" is a hook then as V9 has codimension two U # V9. This
means that kv < (up, ug). If G is an exceptional group of type one then by
Corollary 2.5.9

9 € Jry = {Xodn [ n €k}
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This means that

<u17u2> == [JI',’W V] == <T17T2>
and

(71,72) = (C1, G2)-

Let H=Wm"" if G < H then
(9, V] = (u1,uz) < [H,V] = (ry,ra,73)
and similarly V# < V9 so
(G, Ga) < {71572, 73)-

3. Suppose g = tfjltff; is an index 3 bireflection. If G is a two-row group
then we can again use Lemma 2.3.6 to see that G = K"*"*2. Similarly by
looking at the dual space we see that if G is a two—column group then

G < (KCLCQ)*'

If G is a hook group we just apply Lemma 2.2.7. If G < X7 then
[gv V} < [Xrﬁa V] = <T1,7“2, U>

SO

<7"1, T2, U> > <U1, U2>-

By looking at the fixed space (or by looking at the duals of both groups)

we see that

(1,72, %) > (C1, C2)-

By Corollary 2.6.5 we know that G is not contained in an exceptional group

of type two.



Chapter 3

Nakajima Groups and their

Subgroups

We now move on from the classification of pure bireflection groups and start
looking at their invariant rings. We introduce Nakajima groups which are
an important class of unipotent groups in invariant theory. By viewing other
unipotent groups as subgroups of Nakajima groups, we hope to be able to find
their invariant rings. Here we introduce methods and notation which will help us
in later chapters where we put it to use finding invariant rings of pure bireflection

groups.
Definition 3.0.1. Let B = {1, x9,...,2,} an ordered basis for W. Let G <
GL(V) be a p-group, for 1 < i < n define

Gi={9€G|g(x;) =z forall i #j}.

We say that G is a Nakajima group (with respect to B) if:
1. G <Ug and
2. G:GnGn_1...G1:{gn...g1 |gz GGZ‘ for 1 SlSTL}

We define B-Nak = {G < Up | G = G,,...G1}, the set of all groups which are
Nakajima groups with respect to B.
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In the above definition we can see that the subgroups G; are one-row groups
consisting of bireflections. As seen in the example below, the triangular group
Up is itself a Nakajima group meaning that all unipotent groups are a subgroup

of a Nakajima group.

Example 3.0.2. Let B = {x1, 29, 23,24} be a basis for W. With respect to this

basis, let

1 a b ¢
01 d e
G = | a,b,c,d,e, f €k
001 f
00 01
Then for any
1 a b ¢
01 d e
g= € G,
001 f
0 0 0
with a,b,c,d, e, f € k, with can find
1 a b ¢ 1 000 1 000
0100 01 d e 0100
g1 = 5 02 = 5 03 = ;
0010 0010 001 f
00 01 0001 000 1

and o4 = 1y so that g = 0403090,. Hence G is a Nakajima group.

Lemma 3.0.3. [10, Lemma 8.0.6.] Let B = {x1,...,x,} be an ordered basis
for W, G < GL(V) a p-group. Then every element g € G,,...G1 has a unique

expression of the form g = o, ...01 with o; € G; for 1 <i <n.
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In the above Lemma we can see that g(z;) = o;(x;) for 1 <i < n: G is upper
triangular so for some a; € k for 1 <j <i—1:

i1
g(x)=o0n...01(x;) =04 ...00x;) = 0p ... o1 (T + Z a;x;),
=1
i1

=x; + Z a;T; = 0'1(331)
j=0

The following can be seen to follow from Lemma 2.1.2.

Lemma 3.0.4. [10, Lemma 8.0.5] Let G < GL(V), B = {z1,...,x,} a basis
for W. Fori < j, G; normalizes G;; in particular G;G; = G;G;

Lemma 3.0.5. Let B = {x1,...,2,} be a basis for W, G = (Ny,...,N,) for
some r € N such that N; € B-Nak for 1 <1 <r, then G € B-Nak.

Proof. Let g € G then
g=o, ...0}

where o] € (Nj,)s; for 1 < i < m for some 1 < j; <r, 1 <s; <n. For any
h; € Gi, hj € Gj with i < j we can use Lemma 3.0.4 to see that h;h; = h';h; for
some h; € G; and h; € G;. This means we can rearrange the o; to write g as
g =0,...010 where g; € G; for 1 <i <n and so GG is a Nakajima group with

respect to B. O

Theorem 3.0.6. [10, Theorem 8.0.7] Let B = {xy,...,x,} be an ordered basis
for W, and G < Upg be a p-group. Then G is a Nakajima group with respect to
B if and only if k[V]¢ = k[N, ..., N,].

So the invariant rings of Nakajima groups are always polynomial. In the case
that k = IF, it can be shown that G is a p-group with a polynomial invariant ring
if and only if it is a Nakajima group with respect to some basis ([26, Theorem
1.4]). Theorems 1.3.4 and 1.3.5 can be used to gain more information about the

subgroups of Nakajima groups. In his thesis Yinglin Wu shows that if G < GL(V)
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is an abelian reflection group which is a two—column group on V' then k[V]% is a
complete intersection ring (he looks at S(V') rather then k[V] and so refers to
these as two—row groups). We will use a similar approach to Yinglin Wu: finding
the invariant ring of a group G by working down through maximal subgroups

from a Nakajima group containing . This has lead to the following definition.

Definition 3.0.7. Let B = {z1,...,x,} be a basis for W, G < Ug a p-group.

For 1 <17 <nlet:

Si(G) = {h € GL(V) [h(z;) = z;

for j # i, there exists g € G such that h(x;) = g(z;)}

Then define

Nak5(G) = (g | g € Si(G) for some 1 <i < n)
Naky(G) =G, ... Gy
We call G nice with respect to B if [Nak}(G), Nak}(G)] < G.

Lemma 3.0.8. [21, Lemma 3] Let B be an ordered basis for W. Let G,N <
GL(V) with G < N < Upg(V). If N € B-Nak then

e G <N implies Nakz(G) < N,
e [N,N] <G implies [N, N] < Nakz(G).

Proposition 3.0.9. Let B = {x1,...,x,} an ordered basis for W, G < Ug,
then:

1. Nakz(G) < G and if N < G with N a Nakajima group with respect to B
then N < Nakyz(G);

2. G < Nakj(G) and if G < N with N a Nakajima group with respect to B
then Nak5(G) < N;
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3. If G is nice with respect to B then

Nakz(G) 9 G < Nakk(G);

4. GP < Naki(G)P < [Naki(G),NakL(G)] and so

O(Nak}(G)) = [Nak}(G), Nakh(G)].

Proof. 1. For the first part if ¢ € N then by Lemma 3.0.3 we can find a
unique expression g = o, ...0; with g; € N; for 1 <7 <n. As N <G we

see that 0, < G, for 1 <i <mn, so g € Nakz(G) and N < Nak;(G).

2. For the second part, first note that G' and N are upper triangular unipotent

with respect to B so

G < N < Up € B-Nak.

If h € S;(G) for some 1 < i < n then there exists g € G such that
h(z;) = g(z;). We can find a unique expression of the form g =0y ...0,
(again by Lemma 3.0.3), where 0; € (Ug); for 1 < j < n. If Nis a
Nakajima group containing g then oy, ...,0, € N. By their definitions it’s

clear that o;(z;) = h(x;) = x; for j # i, and we can see that

g(x;) = 01...04(x;) = 0i(x;) = h(zy)

and so h = g; € N, so g € Nak};(G) < N, and G < Nakj(G).

3. For the third part, using Lemma 3.0.5 we see that both Nak}(G) and

Naky(G) are Nakajima groups and from there we can use Lemma 3.0.8.

4. For the fourth part, let Nak(G) = N and N = N/[N, N]. Let

g:O'n...O'leN
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where 0; € N; for 1 <14 < n and let g denote the image of ¢ in N. Then as

N is abelian and o; is a transvection of order p for 1 <i <n

P
1

(gp)=¢* =0 ...0) =e.

So for all g € N, g € [N, N]. This means that G» < N? < [N, N]. As N
is a p-group ®(N) = NP[N, N] = [N, N].
L

Corollary 3.0.10. Let G, Hy, Hy < GL(V) such that G = (Hy, Hy) and let B

be a basis with respect to which G is triangular, then
Nakj;(G) = (Nakj;(H,), Nakj;(Hz)).
Proof. As H; < G < Nak}(G) we see that Nak5(H;) < Naki(G) for i =1,2 so
(Nak§(H,),Nakh(Hs)) < Nakj(G).

By Proposition 3.0.5 (Nak}(H;), Nak}(H,)) is a Nakajima group, and so by the

above Proposition 3.0.9
Nak(G) = (Nak,(H,), Naks(Hsy)). m

We can see that given a basis B = {z1,...,x,} for W and a group G < Up
then Nak}(G) is the smallest Nakajima group with respect to B containing G,
and Nakz(G) is the largest Nakajima group with respect to B contained in G.
If G is nice with respect to B then the quotient groups

Nakh(G)/Nak(G), G/Naky(G), Nakh(G)/G

are elementary abelian.
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Proposition 3.0.11. Let B be an ordered basis for W, G < Ug a p-group such
that G is nice with respect to B and:

N*:=Nak},(G), N~ := Nakj(G).

For some m,l € N we can findh = {hy,... , hy} withh; € G andg ={q1,..., a0}
with g; € Nak§((h;,)) for some 1 < j; < m such that for any ordering of g and
h if:

Hy= N, H; = (Hi_1,h;) for 1 <i<m,

N0:G7 NZ:<NZ—1791> fOTlSZSl,
then:

N~ = HO Tmax Hl Umax - - - <max Hm = G:
+
G = NO max Nl max N2 max - - - Imax Nl =NT".

Proof. Let |G/N~| = p™ then we can find hy, ..., hy, such that
G/N~ = (hy,...,hy)

where h; is the image of h; in G/N~ for 1 <4 < m. Then
G=(N",h1,....,hn).

HG=(N",hy,...,hi1,hiy1,. .., hy) for any 1 <i < m then

G/N™ = (hy,..., hi_1,hiy1, hm)

which doesn’t have order p™, so

hi g <N_7h17"'7hi—1>



114

for 1 <i<m. Let

Hy=N", H;=(H;_1,h;) for 1 <i<m
then

N~ = Hy <ax Hi <max - - - max Hm = G.

If N is a Nakajima group containing G' then Nakf((h;)) < N and N* < N

N := (N~,Nakg((h1)),...,Nakj((h,))) < N.

By Lemma 3.0.5 Nisa Nakajima group and so N =N+ using Lemma 3.0.9. Let
| = |[N*/G| then we can find g = {g1, ..., g} with g; € Nak}({h;,)) for 1 <i <1

and some 1 < j; < m such that:
Nt ={(G,q1,--.,9).
Similarly to above g must be minimal and if
Go =G, Gi=(G;i_1,g;) for 1 <i <1
then
G = Gy Yax G1 max G2 <max - - - max G1 = NT. O
Proposition 3.0.12. If G < GL(V) is nice with respect to B then for 1 <i <n

{9(x;) — i | g € G} = {g(x;) — x; | g € Nakp(G)}
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and consequently:

Nak}(G)

where as defined above NY, N, are the orbit products of x; for G and

Nak%(G) respectively.

Proof. Let g € Nakk(G) such that:

g(x;) =z +r.

We need to show that there exists h € G such that:

h(x;) = x; +r.

By the definition of Nak5(G)

9= 9mGm-1---091

where m € N and g; € 5, (G) for 1 < j < m for some 1 <1[; <n. We proceed
by induction on m.

If m =1 result is trivially true. Let

9= 9mg .

By the induction hypothesis we can find some b’ € G such that:

b (z;) =g (z;) =x; + 7'

for some ' € (xy,...,2z;-1). If g € Si(G) then we can find some h,, € G such
that

P () = 2+ 1 — 1
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so h,,h' € G and
hmh/(l'l) =x;+7r+ 6hm (7"/).

AS hy, h' € Nakp(G) which is a Nakajima group we can find 0, 0, ; € Nakj(G);

for 1 < 7 < n such that:

hm =0Ommn---Om,1-
Let t = 0pi—1...0mp, then

ol(x;) = x; + 1, al(r')y =1,

t(z;) = i, t(r') = 1"+ on, (1).
Let 0 = o'to!~'t~", then

0(z;) = x; — op,, (1)
O(r) =r.

As 0 € [Nak}(G),Nak;(G)], 0 € G. Let h = 0h,,h’ then h € G and
h(x;) =z +r

as required.
Suppose g, € Si(G) then g, (") = r' +r" = r, with " € W9, Again we
can find o; € Nak™*(G) such that

oi(x)) =x;+7", o (r)=1"
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If = g:to; ' gm0, then

As 0 € [Nak}(G), Nak5(G)], 6 € G. Let h = 0/ then h € G and

hz;) = x; + .

The choice of basis is important. Let G = (g, h) where:

100 0 1110

010 1 0100
g= , h=

001 —1 0010

000 1 0001

with respect to the basis B = {x1,x2, x3, x4} for W. We can see that if

o O O =
o O = =
_ O
- o o O

then N := Nakj(G) = (g,h,t). The commutator subgroup [N, N] is then

generated by

o o o
o O = O
o = O O
_ o O
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and we see that ¢ € G and so G is not nice with respect to B. We also see that

Nf 7£ Nflv Let B/ = {y17y27y37y4} with:

Yr =21, Y2 =2T2— T3, Y3=2T3, Y4 = T4.

With respect to this basis:

o o O
o O = O
o = O O
o o O
o o = O
[ =
_ o O O

and so G is a Nakajima group with respect to B’.

Lemma 3.0.13. Let G < GL(V) a p-group. Then for any basis B for W such
that G < Ug, [Nak}(G), W] = [G, W] and V& = VNak5(©),

Proof. Let B be a basis such that G < U, N = Nak5(G). By Lemma 3.0.9 we
know that G < N and so [G, W] < [N, W].
For any group H = (g1,...,q;) < GL(V)

[Hv W] = Z[gia W]

If g € S;(G) for some 1 <i < n then [g, W] < [G, W] and so:
GWZY T =N
i=1 geSi(

so [G,W]=[N,W].
Let {e1,...,e,} be the corresponding basis for V', then by Lemma 1.0.2 we
see that for g € N the matrix representing g with respect to this basis is given

by the transpose inverse and so V& = V. [

Lemma 3.0.14. For G < GL(V') a p-group we can find a basis B for W such
that G < Ug, WY = WNk5(@ gnd [G, V] = [Nak§(G), V].
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Proof. Let m = dim,(W®), then we can choose a basis B = {z1,...,z,} for W
such that G < Ug and (z1,...,2,,) = WC.
Let N = Nak}(G). As

Si(G)={e} for 1 <i<m

z; € WN for 1 <i<mandso WS¢ <WN. As G < N we know that WV < W¢
and so W& = W,
Similarly to above using Lemma 1.0.2 we see that W& = W means [G, V] =

[N, V]. 0

Lemma 3.0.15. Let Uy < U, < --- Uy, < W be G-stable subspaces. Let B = U; B;
be a basis for W such that (B;) = U; and G < Ug. Then the U; are also Nak}(G)-
stable with [G, U;] = [NakL(G), U] for all i.

Proof. Let N := Nak}(G), then

[N,U;] = Y (n(z) —z | neN).

reB;
Let n € S;(G) and x € B;, then n(z) = g(z) for some g € G if v = z; or
n(z) = z otherwise. Hence n(z) — z € [g, U], so [n,U;] C [G, U;]. We have
nn'r —x =nn'z —n'x+n'r —x € [n,n'U] + [0, Uy].
Since N is generated by the S;(G)’s, we see inductively that

Lemma 3.0.16. A Nakajima group G is abelian if and only if [G,W] < W€,
Proof. This is just a special case of Lemma 2.1.5. [

Lemma 3.0.17. Let G < GL(V) be a p-group with [G,W] < W%, Then G is
abelian and we can find a basis B of W such that Nak5(G) is also abelian and

therefore G is nice.
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Proof. By Lemma 3.0.14 we can find a basis B for W such that G < Up and
W¢ = W where N := Nak}(G). By Lemma 3.0.13 [G, W] = [N, W] and so
[N, W] < W¥. By Proposition 3.0.16 N is an abelian group so [N, N|] = {e} < G
and G is nice with respect to B. As G < N, ( is also abelian. O]

3.1 Maximal Pure Bireflection Groups

We now apply the above to the maximal pure bireflection groups as defined in

Chapter 2.
Proposition 3.1.1. For G < GL(V):

e if G is a two—row group (on V') then Nakj(G) is a two—row group (on V)
for any basis B for W with respect to which G is triangular;

e if G is a two—column group (on V) then Nakk(G) is a two—column group
(on V') for any basis B for W with respect to which G is triangular and
G, V] = [Nakp(G), V];

e if G is a hook group on W with hyperplane U and line kv then for any

basis B = {xy,...,x,} with respect to which G is triangular and
U= <$1, c. ,SCn,1>.

then Nak%(G) is a hook group on W with hyperplane U and line kv.

If G < GL(V) is a maximal bireflection group which is either a hook, two-row
or two—column group then we can find some basis B with respect to which G is a

Nakajima group. Consequentially G is nice with respect to B.

Proof. If G is a two—row group on V, then

dimy ([G, V]) < 2
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and for any basis B with respect to which G is triangular. [G, V] = [Nakg(G), V].
This means that

dimg ([Nak$, V]) < 2

and Nak%(G) is a two-row group.
If GG is two—column group on V| then by Lemma 3.0.13 for any basis B for
W with respect to which G is triangular
Ve — VNakg(G)
so Nak} (@) is also a two—column group.
Suppose that G is a hook group with hyperplane U and line kv. Let B =

{z1,...,2,} be a basis for W with respect to which G is triangular and U =
{x1,...,2n_1}. By Proposition 3.0.15 U is a Nak}(G) stable subspace and

Nak}(G), U] = [G, U] < kv.

This means that Nak;(G) is a hook group with hyperplane U and line kv.

So if G any two-row, two—column or hook group using the above and Proposi-
tions 3.0.14, 3.0.13 and 3.0.15 we can find some basis B for W such that Nak5(G)
is a pure bireflection group containing G. If G is maximal then Nak}(G) = G.

This means that

[Nakis(G), Nak (@) < G
and so G is nice with respect to B. O]

Proposition 3.1.2. Let p # 2, and let G < GL(V') be a unipotent pure bireflec-
tion group then we can find a basis B with respect to which Nak5(G) is a pure
bireflection group if and only if G is not an exceptional group (of type one or
two).

Let G be a maximal unipotent pure bireflection group. Then G is not a

Nakajima group with respect to any basis if and only if G is an exceptional group
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of type 1 or 2. We can find some basis with respect to which G is nice if and only

if G is not an exceptional group of type 1.

Proof. Let G be a pure bireflection group. If G is not an exceptional group of
type one or two then G is a two-row, two—column or hook group by Theorem
1.0.5. By Proposition 3.1.1 we can find a basis B such that Nak}(G) is a pure
bireflection group.

If G is an exceptional group of type one or two it is not a two-row, two—
column or hook group. This means that Nak5(G) is not a two-row, two—column
or hook group for any choice of basis B. As exceptional groups do not contain
any reflections (Lemmas 2.5.9 and 2.6.5), Nak5(G) is not an exceptional group
either, and so by Theorem 1.0.5 Nak};(G) is not a pure bireflection group.

Now suppose G is a maximal pure bireflection group. If GG is an exceptional
group (of type 1 or 2) then G is not generated by reflections (Lemmas 2.5.9 and
2.6.5) and so it is not a Nakajima group with respect to any basis. If G is not
an exceptional group then it is either a two—row, two—column or hook group so
by Proposition 3.1.1 it is a Nakajima group, and hence also nice, with respect to
some basis.

Suppose G is an exceptional group of type one which is nice with respect to
some basis B and let N = Nakj;(G). By Lemma 2.5.9 there are no reflections in

G and so Nakj;(G) contains only the identity. By Lemma 3.0.8 as G is nice

[N, N] < Nakg(G).

This would mean that N is abelian, however as G < N is not abelian we have a
contradiction.
If G is a maximal exceptional group of type two then we can find ry, 15,73 € W

and 71,79, 73 € W* such that if

r={r,r2,73}, Y ="71,%:"73
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then G = W*7. We see that
<T17r277n3> = [Ga W] é WG

(see Definition 2.2.5). By Lemma 3.0.17 we can find some basis with respect to

which @ is nice. O]

Corollary 3.1.3. For p # 2, if G < GL(V) is a mazximal unipotent pure
bireflection group then k[V]Y is not a polynomial ring if and only if G is an

exceptional group of type 1 or 2.

Proof. By the above Proposition if (G is not an exceptional group then it is a
Nakajima group with respect to some basis and so k[V] is polynomial. If G is
an exceptional group of type one or two then G contains no reflections, so k[V]¢

is not polynomial. O]

Proposition 3.1.4. Let p # 2 and G < GL(V') be a unipotent pure bireflection
group. Let H = [G,G], then k[V]™ is Cohen Macaulay. Furthermore the invariant

ring k[V]H is polynomial if and only if G is not an exceptional group of type one.

Proof. If G is a hook group or a two—column group dim (V) > n — 1 and so
by Theorem 1.4.3 k[V]# is polynomial. If G is a two-row group then W has
codimension one and so H is a Nakajima group with polynomial ring of invariants.
If G is an exceptional group of type one then by Corollary 2.5.9 it does not
contain any reflections. This means that H cannot be generated by reflections
and so k[V] is not a polynomial ring, however since V# has codimension two
(see Corollary 2.5.9) by Theorem 1.4.3 k[V]¢ is Cohen-Macaulay. If G is an

exceptional group of type two then H is the trivial group as G is abelian. [



Chapter 4

Invariant rings of hook groups

In this chapter we look at invariant rings of hook groups. We fix w,v € W and
U a subspace of W with codimension one, and look at subgroups of BY. These
groups are generated by elements of the form b,y where w € U and A € V = W™,
We will look at transvection subgroups G of BY? to see when the invariant ring
k[V]¢ is polynomial. For k =, we find necessary and sufficient conditions for
G < BY" to be nice with respect to some basis. We will then find generators for
k[V]% in these cases using 1.3.4 and results from the previous chapter. Using
Theorem 1.3.5 we will show that, for £ = [, if a hook group is nice with respect
to some basis then it’s ring of invariants is a complete intersection ring. We start
more generally though, with k£ = F, where ¢ = p", and look at some definitions
and general properties of hook groups which we will want to make use of in the
next few sections.

The following connects hook groups with the results of the previous chapter.

Lemma 4.0.1. If G < BY* with Ryy < G then we can find some basis for W

with respect to which G is nice.

Proof. By Proposition 3.1.1 we can choose B such that BY* is a Nakajima group
with respect to B, then

[Nak} (G), Nakj;(G)] < [BY, B"'] = Ryy < G

)
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so (G is nice with respect to B. n
We define two [F,-vector spaces associated to each hook group.

Definition 4.0.2. Let G = (by,...,b) where b; = b, ,, € BY" for 1 <i < [.
Then define:

U(G) = (u,...,u)s, + kv,
AG) = O, M),
dimg, (U(G)) for Ry < G,
Dy(G) = )
dimg, (U(G)) —r for Ryy £ G,

DA(G) = dimg, (A(G)).
Lemma 4.0.3. Let G < BY" then:
1. ifbyy € G thenu € U(G) and X € A(G);
2. if \ € A(G) then by € G for some u € U(G);

3. A(G) is independent of choice of generators for G and

AG)={Ne W* | by € G for some u € W};

4. ifu € U then butevr € G for some A € A(G) and some ¢ € k;
5. U(G) = (g(w) —w | g € G)r, + kv;

6. if k=T, and v € [G, W] then U(G) = [G, W];

7. if Roy <G and u € U(G) then b,y € G for some A € wtNovt.

Proof. 1) Let G = (by,...,b;) where b; = b,, », € BY". For any element b, , € G,
we can write

by = b2, bt

u1,A1 up,AL
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for some t € ®(G) < Ry < Z(G) and 0 < @y, ...,a; < p— 1. Using Proposition
2.4.2(2)

U= aiu; +...aqu + cv,

)\:al)\1+...—|—al)\l,

for some ¢ € k. This means that u € U(G), and A € A(G).
2) For any A € A(G) we can write

)\:al/\1+...+&l>\l
for some 0 < aq,...,a; < p—1. We can take

by = b2, ... b

U, UL, AL

so then b, € G.

3) Combining parts 1) and 2) gives us
AG) ={ e W* | b, € G for some u € W}

which must be independent on the choice of generators for G.

4) For any u € U(G) we can write:
U= auy + ...+ aqu +bv

for some 0 < ay,...,a; <p—1and b € k. We can then find A € A(G) and c € k
such that b,1c,\ € G: take

by = b0, . b

Uu1,A1 Uy, AL

then

u=au +...+aqu +cv
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for some ¢ € k. If we let ¢ = ¢ — b then v = u + cv.

5) Using part 1) and the definition of U(G) we see that
(g(w) —w | g € G)r, + kv < U(G).

Using part 4) we know

and so

U(G) = (g(w) —w | g € G)r, + kv.
Parts 6) and 7) are direct consequences of part 5). O
The next lemma allows us to choose a useful generating set for later results.

Lemma 4.0.4. Let k = F, and G < BY" with dim,(U(G)) = m+1 then we can
find a set of generators {by, x,,-.., by} for G such that {u1,..., un,v} form a
basis for U(G) and form < i <1, u; € kv.

Proof. If U(G) = kv then the result is trivial. Otherwise let dim,(T(G)) > 1

and

G=(

le,:\17 bﬂg,j@’ e ’bal,;\l>'

We can assume that U(G) = span(y, s, ..., Um,v), so for 1 < i < m let
buiy)\i = bﬁi,j\i'

For j > m as @; € U(G) for 1 <i < m we can find some a;,b € k such that:

m
U; = bv + Zazuz
i=1

Let:

m
_ R —a;
bujv)‘]' - bﬁj,)\]‘ H buz})\i‘
i=1
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For some ¢ € k
m
uj =10; — Y aju; + cv
i—1

so u; € kv. O

As we have seen in previous sections, finding a good basis is useful for finding

invariant rings.

Definition 4.0.5. Let k = F, and G < BYY with L = {\1,...,\,,} a basis for
A(G). We define a basis C = {1, ...,2,-1} for U to be a A-basis with respect

toLifr;=vandfor1 <i:<m,1<j57<n-1

1if j=n—1,
Ai(zj) =
0 otherwise.

Lemma 4.0.6. Let k = F, and G < BY" with L = {\1,..., \n} a basis for
ANQG). If B={x1,...,x,} is a basis for W such that {x1,...,xn_1} is a A-basis
for U with respect to L, and N = Nakf;(G) then

1. N is a hook group with hyperplane U and line kv;
2. U% =UV;

3 for1<i<n-—1:

Lfor1<i<n—m-—1,
deg(NY) =

pforn—m<i<n-—1;
4. if by, € G for some 1 <i<m andu € U(G) with by, (2,) = x, +u then
Nakg((b%)%)) - <bu7)\i7 607)\1')'

Proof. 1) The first part can be seen from Proposition 3.1.1.
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2) For the next part we first note that as G is a subgroup of N

UN < Ue.

For 1 <i<mn—m—1 we see that g(z;) = z; for any g € G, therefore S; = {1}
and so r; € UN. For u € UY we must have that A(u) = 0 for all A € A(G),

therefore u € (xq,..., Ty _m_1), SO
Ué=0".
3) By definition [G, U] < kv, and so
1 < deg(Ny) <p

for 1 < i <n—1. From the above 2; € W% for 1 <i <n—m — 1, and so
deg(N;) = 1. By Proposition 4.0.3 for all ¢ € k there exists u € U(G) such that

bucxr, € G for 1 <i <mso
bu,c)\i (:C’n774> =Tp_; t+cv

and this means that deg(N%) =p forn —m <i <n — 1.
4) If by, € G for some 1 < i < m and u € U(G) with by, (z,) = 2, + u

then for 1 <7 <n

rj+u for j =n,

bun, () = xzj+vfor j=n—r1,

x; otherwise.
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We can see that for 1 < j <n

T+ u=by(z;)if j =mn,
buo(x;) =

x; otherwise,

i+ v ="by(z;)if j =n—1,
box () =

x; otherwise,

S0 byo € Sy, and by y € S;. This means that H = (b, »,, bo.»,) is a Nakajima group
by Proposition 3.0.5 and
H < Nakj ((byx,))-

As by \ = bybox we see G < H and so by Proposition 3.0.9

H = Nak; ((bar.)). m

4.1 Transvection subgroups

If k[V]9 is a polynomial ring then it is generated by reflections. In this section
we look at which hook groups generated by reflections have polynomial rings of

invariants.

Lemma 4.1.1. Let Ry < G < BY? then the subgroup of G generated by all
reflections in G has a polynomial ring of invariants (and so for k =F, it is a

Nakajima group).

Proof. The element b,y € G is a reflection if A = 0 or if u € kv so we are
interested in the subgroup of GG generated by elements of the form b, » and b, .
Since R;y < G we know that if b., » € G then by, € G.
Let
T = (geG|dim(W9) =n-—1).
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Now define subgroups of T"
Ty = (buo € G |u € U(QR)), Ta= (bop |\ € AG)).
As Ry < Ty the subgroup Ty is normal, we can also see that
T =TyTy = {tuta | tu € Ty, tx € Tr}.

Let 1,2, ..., x, be a basis for W such that U = (xy,...,2,-1), and 2, = w
then Ty is a Nakajima group with respect to this basis as it fixes all basis elements

except x,. So:
k[V]TU = ]{3[1’1, vy Tp—1, NZU]

For all t € T we have that t(x,) = t,(x,) for some t, € Ty so NI = N1v
and N1v e k[V]T.

Let A be the k vector space spanned by {z1,..., 2, 1,NZ} and let H =T /Ty
then k[V]T = S(A)”. As H = Ty and the action of H on A is linear with
dimy,((A*)#) = n — 1 by Theorem 1.4.3 (k[V]«)? = k[V]T is polynomial.

If k = F, this means that 7" is a Nakajima group (as in this case these are

the only p-groups with polynomial rings of invariants). O]

Proposition 4.1.2. Let G = (by,... b, Ryy) where b; = b, », € BV are a

minimal set of generators, then the following are equivalent:

1. k[V]9 is a polynomial ring,

2. G is generated by reflections,

8. |G| =p", I =a+b—r where a = Dy(G) and b = D)(G).
For k =T, this is equivalent to G being a Nakajima group.

Proof. 1) = 2) If k[V]¢ is a polynomial ring then we know G is generated by

reflections.
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2) = 3) As G is minimally generated by {b1,...,b;, Rs v} by Proposition
2.4.8 |G| = p*.

If G is generated by reflections then as shown in proof of Lemma 4.1 then
G =T = TyTy. From this we see |G| = |Ty||Th| = p*™ for a = Dy(G) and
b=Dx(G),andsol+r=a+bl=a+b—r.

3) = 1) Let {uy,...,uy,v} be a basis for U(G), {\1,..., A} a basis for A(G)
and let

H = (by; 0y sbuy.0:00015 - -, boxgs Rov)-

If b, » € G then by Lemma 4.0.3 u € U(G) and A € A(G) and so we can find
1<ay, . c,00,81, ., B <p—1
and ¢t € R; iy such that
bup = byt o b b, . bgs t € H

so G < H. We can see that |H| = p®™® and |G| = p!™" so if | = a + b — r then
G=H.

As G = H is clearly a reflection group by Proposition 4.1.1 G has polynomial
ring of invariants.

For k = F,, G is a p-group so k[V]® is polynomial if and only if G is a
Nakajima group [26, Proposition 4.1]. O

The previous Proposition tells us that if G < BYY with R;y < G then
k[V]9 is polynomial and in the case that k = F, it is a Nakajima group. The
following lemma provides some information about bases with respect to which
these reflection groups are Nakajima groups, and we will build on it later to find

invariant rings of other nice hook groups.

Lemma 4.1.3. Let G < BY? be generated by reflections such that either Ry <
G or [G,W] < WC, let k = F,. Then |G| = p*** where a = Dy(G) and
b= D) (G).
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Let L = {\,..., N} be a basis for A(G). If C = {xy,...,xp_1} is a A-
basis for U with respect to L then we can find some x, € W\U such that
B = {xy,...,2,} is a basis for W with respect to which k[V]% is a Nakajima

group.

Proof. First suppose that R,y < G. The first part is Lemma 4.1.2(3). In this

case if b, » € G then by » € G and we can choose a minimal set of generators
G = (bu0s- s bug 1,0:00.x5 -+ -, Doy, Rovr).-

By Lemma 4.0.3
{u e U|by € G for some A € A} = U(G)

so if we let z, = w then deg(N%) = |U(G)| = a. We know from Lemma 4.0.6

that

lfor1<i<n-—b-1,
deg(NY) =

pforn—0<i1<n-—1.
This means that
deg(NY) deg(N5) ... deg(NT) = p*** = |G.
Since N{, ..., IN¢ form a HSOP by Theorem 1.1.8 this means that

k[V]® = k[Ny,...,N,]

is a polynomial ring and by Theorem 3.0.6 G is a Nakajima group with respect
to this basis.

Now assume Ry £ G, [G, W] < WE. Let:

G - <bu1,07 L 7bul,07 bclv,)\’ly ceey bcm’u)\;n>
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so that G is minimally generated by these elements. This means that

{uy, ..., u,v}

are linearly independent (by Lemma 4.0.4). Suppose that {\,..., Al } not

linearly independent, then there exists some 7 such that:

A=\ + N N e ag A,

for some aq,...,a,, € k. Without loss of generality suppose i = m, so:
Aoy —
mev,)\Qn == bd@70( 311,07)\/1 e bcmfllfl}v)\;n,l)'
Where d = ¢,, — a1¢1 — ... — @y_1¢m—1. If d = 0 then G was not minimally
generated, however if d # 0 then R; y < G so we can assume that {uy,...,u}

and {\},..., Al } are both linearly independent sets. This means that

A

U(G) = <U1, R 7Ul,1}>,
AG) = (N, .. ),

and so dimy(U(G))—1 = [ = a and dim,(A(G)) = m = b. By 2.4.8 |G| = p't™ =

a+b
P .

By the additivity of the A we can pick generators such that X, = \; for
1<i<m=b.

Let B = {z1,...,z,} where

b
Tp =W — Z Cilp—j-
=1

Then for 1 <i < a:

by, 0(xn) = T + u; + div
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for some d; € k. Let u, = u; + d;v for 1 <7 <, then as uy,...

independent, so are uf,... v. For 1 <j<b

Y a?

ijv,Aj (xn) - cjv Aj Z CiTp— z

=w+¢jv — Z CiTp—i — CjU

=T,.

, Ug, v are linearly

As [G,W] < W& we know that G is commutative so for any g € G we can find

some 0 < aq,...,a1,01,...,8n < p—1such that
g = bu1 0- bal Obfll'u A1t bf::v Am*

This means that (using Proposition 2.4.2)

g(xn) =y + oqul + ...+

If N; is the orbit product of z; as previously defined, then using the above

and Lemma 4.0.6:

1for1<i<mn-—0>,

deg(N;) = {pforn—b<i<n,

a y
p® for 1 = n,

We know that Ny,..., N, is a HSOP (by [10, Proposition 4.0.3]) for k[V]¢, and

", deg(N;) = p**® = |G| so by Proposition 1.1.8 k[V]¢

and G is a Nakajima group with respect to B = {z1,...,x,}.

is a polynomial ring

]

Proposition 4.1.4. Let k =F, and G < BY* with R,y £ G and [G,W] < W€

then the following are equivalent:

1. G is generated by reflections,

2. |G| = p*® where a = Dy(G) and b = DA(G),
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3. k[V]% is a polynomial ring,
4. G is a Nakajima Group.
Proof. Using Lemma 4.1.3 3) & 4) < 1) < 2), so we just need to prove 2) = 3).

By Lemma 4.0.4 we can find a set of generators

{bul,)\p cee 7bua,)\aa bca+1v,>\a+1> LR bcl,)\l}

for G such that {uy, ..., u,, v} form a basis for U(G).
Suppose that
Ai € Natts s Nimt, Aty oo, AL

for some a + 1 <1 < [. Without loss of generality we assume that ¢ = [, then

Al = Qap1Aay1 + .o 1N

for some ayy1,...,qq_1 € k, and for some d € k
— p%atl ap—1
beyo i = b0a+1v,>\a+1 T bsz1v,>\zf1de:0'

If d =0 then G wasn’t minimally generated however if d # 0 then R; 7 € G, so
we can assume L = {\,1,..., A} to be linearly independent.

By Proposition 2.4.8 we know that |G| = p! = p*™ so b =1 — a, and

Choose a basis B = {x1,...,2,} such that {zy,...,2,-1} is a A-basis with

respect to L and

b
Tp =W — Z Cilp—j-
=1
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By Lemma 4.0.6

lforl1 <i<n-—b,
deg(N;) =

pforn—b<i1<n-—1.
Fora+1<i<]
bciv,)\i(mn) = Tnp-

As (G is abelian, for all g € G we can find «1,...,q; € k such that
9(@n) = by} s, - - o x, (Tn)

— bii7A1 “e bf::y)\a (:'UTZ)

=, +aiu; + ...+ au, +cv

for some ¢ € k. As uy,...,u, are linearly independent (and R;y £ G), this

means that deg(N,,) = p® so

1for1<i<n-—b,

deg(N;) =q{pforn—b<i<n-—1,

p for i = n.

We know that Ny,..., N, is a HSOP for k[V]¢ and since
[[ deg(Ny) = p*** = |G
i=1

this means that k[V]% is a polynomial ring. O

Corollary 4.1.5. Let k =F,, G < BY" is generated by reflections if and only

if K[V is a polynomial ring.
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Proof. We will show that either [G,W] < W% or Ryy < G, so we can use

Lemma 4.1.3. If GG is a reflection group then:

G - <bu1,07 s 7bul,07 bclv,)\17 sty bcmv,)\m>

for some u; € U, ¢; € k and \; € W*. If [G,W] £ WE then we can find some u;
and A; such that A\j(u;) # 0 then using Proposition 2.4.2 (5):

-1 3—-1 _
bui,Och-v,Ajbui,Oijv,Aj - b)\j(ui)”vo

50 Ry = (b, (o) < G- O

If k = F, then k[V]% being a polynomial ring means that G is a Nakajima
group with respect to some basis however if k = F,» for r # 1 then this isn’t

necessarily the case. For larger fields subgroups similar to Stong’s example appear

(see [10, Section 8.1}).
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Example 4.1.6. Let k =F, with {1, a} a vector space basis for Fy over Fy and
a? = 3. Let:

10010 10010 10110
01000 01000 01000
hi=10 0 10 0, he=|0 0 1 0 1|, ha=|0 0 1 0 1],
000171 000171 0001O0
0 00O0T1 0 00O0T1 0 00O0T1

101 00 10 a a0 11T a a0
01000 010 00 01 0 01
hy=1{0 0 1 0 1|, hs=[0 0 1 0 O0f, h=]00 1 0 0],
0001O0 0001258 00010
00001 000 01 000 01

11 o a0 11000
010 01 01001
hz=10 0 1 0 0|, hs=]0 0 1 0 0
0001258 00010
000 01 00001

with respect to the basis B = {x1, x9, 3,24, 25} for W.
Let G = (hy,...,hs, Ropy). Then we can see that if we let a = Dy (G),
b= D\(G) then

a+b—r=6+4-2=28.

By Proposition 4.1.2 we know G is generated by reflections and k[V]% is poly-
nomial, however T[, deg(N;) = 2!' > 219 = |G| so G is not a Nakajima group
with respect to this basis (more needs to be done to check it is not Nakajima with

respect to any basis). If:

2 2
Y = x5 + x311 + 2 + 1474
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then'Y € k[V|®. We find that Viz(N1,Na, N3, Y, N;5) = {0} and so, using 1.1.5,
N1, Ny, N3, Y, N5 form a homogeneous system of parameters for k[V]%. Since

deg(N1) deg(N>) deg(N3) deg(Y') deg(N;) = 2'° = |G|

by Theorem 1.1.8 this means that k[V]¢ = k[N, Ny, N3, Y, N3]

4.2 Nice groups with k =T,

We now look back to Chapter 3. We want to see which hook groups GG are nice
with respect to some basis B, so that if N = Nakj(G) we can try to find a

sequence of maximal subgroups from N to G as described in Proposition 3.0.11.

Lemma 4.2.1. Let k =TF,, G a hook group with hyperplane U and line kv. Let
L={\1,..., A} be a basis for A(G) and let B = {x1,...,x,} be a basis for W
such that {x1,..., 2,1} is a A-basis for U with respect to L. Then Nakj(G) is
a hook group with hyperplane U and line kv, and if Ryy < G or [G,W] < W€

then G is nice with respect to this basis.

Proof. Let N = Nak}(G). Firstly we note that by Proposition 3.1.1 N is a hook

group with hyperplane U and line kv. This means that
[N,N] < Ryp

so if Ry y < G then [N, N] < G and so G is nice with respect to B.
By Lemma 4.0.6 UY = UN. If [G,W] < W€ then [G,W] < U% By
Proposition 3.0.13 [G, W] = [N, W] and so

[N, W] =[G, W] <UY=U" <wV,

This means by Proposition 3.0.16 that N is abelian and so G is nice with respect
to B. ]
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Proposition 4.2.2. Let k = F,, G a hook group with hyperplane U and line
kv, then we can find a basis with respect to which G is nice if and only if either

R@,U S G or [G, W] S WG.

Proof. We see by Lemma 4.2.1 that if Ry < G or [G, W] < WY then we can
find some basis with respect to which G is nice.

Let G be a hook group such that Ry £ G and [G, W] £ WY, Suppose we
can find a basis B = {zy,...,2,} for W with respect to which G is nice and let
N = Nakj(G).

Let u € [G, W]\W¢, this means we can find some A\ € A(G) and ¢ € k such
that byicon € G.

Let

I={1<i<n|x; ¢U}.

For ¢ & I let u; = x; € U. For all i € I we can assume that z; = w + u; for some
u; € U so

bu+cv7,\(l’i) =T; +u-+ dv

for some d € k. This means that
UE (Ty,...,Ti1)
and there exists s; € S; such that

zj +u+ dv for i = j,
si(w;) =
x; otherwise.

Asu & WY and v € WY we can find some g € G such that g(u + dv) =
u+ (d+ 1)v and g(v) = v. Note that this means that v € (xy,...,x;_1). As
G < Nakf(G), which is a Nakajima group, by Lemma 3.0.3 we can find g; € N;

for 1 < 7 < n such that
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Let

h=gi1...q1.

then
h(u) =u+v, h(v)=uwv
Now let §; = h~'s; 'hs; then

hts;thsi(2;) = htsy P h (g + u + dv)
=h7ts; o +u+ (d+ 1)
= h Ha; +0)

=x; +v.
For j # i we can find some v’ € (x1,...,2; 1) such that

Oi(x;) = h™"s;  hsi(x;)
= h7"s; ()
=hts; (x + )
=h(z; + )

For 1 <i<nsuchthati g Ilet ;=1 Let ©®=0,...6; € [N,N]. Let [ be
the smallest number such that 6; # 1, then as 6;(x;) = x; + v this means that

v € (x1,...,2-1) and ;(v) = v for 1 < i < n. This means that

x;+ v foriel,

x; fori & I.
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For v/ € U we find a4, ...,a, € k such that

n
=" au;.
i=1

Let
b= Z a;
iel
then
u = bw + Zn: U;
i=1
so b= 0. Since
O)=u +bv

this means that ©(u') = ' for all «' € U. We can see that O(w) = w + v so
<@> = RﬁyU.

The above means that R,y < [N, N], however we have assumed that R,y £ G

and [N, N] < G, so we have a contradiction. ]

We shall call a hook group nice if we can find a basis B with respect to which
G is nice. For the rest of this section we will restrict to nice groups with k£ =IF,,.
This restriction still leaves us with a lot of interesting cases: as any non-zero
commutator generates R; y we include all non abelian hook groups. When p = 2,
if g is an index 3 bireflection then (¢g%) = R; ;s so any group containing at least
one index three bireflection is nice with respect to some basis for W.

Restricting to k = I, also means that now both U(G) and A(G) are vector
spaces over k, and dimy(A(G)) = dim (U) — dimy,(W).

Lemma 4.2.3. Let G < BYY with Hy < G generated by all reflections in G.
Fither G = Hy is a reflection group, or we can find b, x» € G and some mazimal

subgroup H of G, with Hy < H such that G = (H,b,»), u € U(H) and A\ & A(H).
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Proof. It U(G) = kv then G is a reflection group. Let a = dimg(U(G)) > 1 by

Proposition 4.0.4 we can find generators for GG such that:

G — <bu1,07 e 7but,07 b

Ut 41, 410 * * >bua,>\a7 bca+1v,>\a+17 s 7bCzU,)\z>

where U(G) = (uy, . .., ug,v). Suppose that ¢ is the maximal number such that

we can choose

for given bc,, v rap1s- - -5 Do If G is not a reflection group then ¢ # a. We can

assume that

)‘t+1 ¢ <)\t+27 s 7>\l>7

otherwise

At41 = Ceyadga + ...+ N

and we can replace by, , »,,, with
bu1,5+170 = but+17)\t+lb;tc-:;r,2)\t+2 e ’l:acf)\a ;C_;ljvl’)\a+1 e b;ﬁl)\z
SO
G = <bu1,07 s 7but,07 bu;Jrl,O? but+2,/\t+27 BRI bua,)\a7 bca+1v,)\a+17 e 7bul,)\l>-

and ¢t wasn’t maximal.

Let

H = <bu1707 B 7but707 but+27)\t+27 s 7bua,>\a7 bca+1v,>\a+17 ce 7buz,)\zv (I)<G)>>

then H is maximal in G' and G = (H, by, ,,,) With usyy & U(H) and Ay, ¢
A(H).
Suppose there exists a reflection g € G\ H, then

_ b d1 dt dt+2 da da+1 dl
g — but+17At+lbu1,O “ .. bUt,ObUt+2,At+2 “ e e bUa,/\abCa+1U7)\a+1 “ .. buhAlt
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for some t € ®(G), 0 < b, dy, ..., d; < p— 1, with b # 0 (otherwise g would be in
H). If g = by for some ¢ € k, A € A(G) then

cv =bu +dyuy + ... +daug + dv
for some d € k, so
—bu = ajuy + ... + Ay + (d — c)v

and u € U(H) so we have a contradiction. Alternatively for some u € U(G) we

could have g = b, ¢ so
0= bA\ig1 + digo Mg + ... + diN

and

—bAig1 = dipodipo + .. AN

however this would mean that A € A(H). We know H contains all reflections in

Gso Hy< H. O]

From the last section we know that the reflection subgroups of hook groups
are Nakajima with respect to some basis. We want to use the previous lemma
to split up our nice hook groups and make it easier to find Nakajima groups
containing them. The next result means that we can do this without losing the

niceness of the group.

Lemma 4.2.4. Let G be a hook group with H a subgroup of G containing all
reflections in G. If Ryy < G then Ryy < H, if [G,W] < WE then [H,W] <
Wi,

Proof. We know R; s is a reflection group so if H contains all reflections in G
and R,y < G then R,y < H.

As H is a subgroup of G we know that [H, W] < [G, W] and WY < WH  this
means if [G, W] < W then [H, W] < WH. O
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Lemma 4.2.5. Let H < BYY with Ryyy < H or [H,W] < WH. Let a = Dy(H),
b= Dx(H) and |H| = p*t*=™ for some m € N. Let Hy be the group generated by
all reflections in H. Then we can find a set {by, xs- -, buprn |, Where by, 5, € H

for 1 <1 < m, such that:
H = <H07 bul,)\17 ceey bum7/\m>
and

Uy, ... um € U(H)\U(Hy),
AL A € AH)\A(Hp)

are linearly independent sets.

Proof. In Propositions 4.1.2 and 4.1.4 we proved this for m = 0, we proceed by
induction on m.
For m > 0 by the previous Lemma 4.2.3 we can find some b,,, »,, € H and

maximal subgroup H' of H containing all reflections in H such that
H = <H/7bum,)\m>7

Uy & U(H') and \,, & A(H').
Let o' = Dy(H') = Dy(H) — 1, b/ = Dy(H') = Da(H) — 1 then:
H
L
p
_ pa+bfmfl
_ pa’+l+b’+1—m—1

— pa’+b’—(m—1) ]

Now by Lemma 4.2.4 we can use the induction hypothesis to find some

[ VRN

U —1Am—1
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with wy, ..., tum_y € UH)\U(H)) and Ay,..., A1 € A(H)\A(H})) linearly
independent sets, such that H' = (H{, by, zy»- -, bu, 1r,_,) Where H{ is the
group generated by all reflections in H'. As H' contains all reflections in H we
see that H) = Ho. As u,, & U(H/) and \,, € A(H') we can see that uy, ..., u, €
UH)\U(Hp) and Ay, ..., Ay € A(H)\A(Hy)) are linearly independent sets. As
H = (H'b,,, ,) we find that

H = (Ho, by, ays - - - > buyrn,)-

Lemma 4.2.6. Let H < BY" with Ryyy < H or [H,W] < WH# and
H = (Ho,bu, nys s bupyrn)s
where Hy is the subgroup generated by all reflections in H. Let
Amt1s -+ ADy gy € A(Hop)
such that

L= {)\17 s 7/\ma)‘m+17 e ")\DA(H)}

is a basis for A(H). For any C = {x1,...,x,—1} which a A-basis for U with
respect to L we can find x,, € W\U such that

e B={x,...,x,} is a basis for W,
. Hy = Nakg(H),

o by (xn) =xp+u; for 1 <i<m,
o Nakj(H) = (H,box,- Do)

Proof. The case m = 0 is covered in Lemma 4.1.3 so we proceed by induction on

m.
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Let
H = (Hoybuy gy -3 bupy ydm 1)

If C is a A-basis for U with respect to {A1,..., A} then C is a A-basis for U
with respect to {A1,..., A\n_1.} By Lemma 4.2.4 we can apply the induction

hypothesis to H': we can find z], such that C = {zy,...,x,_1,2,} is a basis for

W and

Naky (H') = Hy,
bu, A (Tn) = Ty +u; for 1 <i <m — 1,

Naky, (H') = (H' b - - -5 bor,_,)-

Aszl €U, x,, = w + u for some u € U, so:

bu o (20) = T, 4+ U, + cv

for some ¢ € k. Let x,, = 2], — cxy,_,, then
bumy)\m (.Tn> = Tn + Uy -

For all h € H'
On(wn) = On(ay,),

so if h(z!) = «], then h(x,) = z,. Let B={z1,...,2,}. For 1 <i<n—1let

H! ={h e H|h() =z, and h(z;) = z; for 1 <j <n—1,j#i}

Hy={heH|h(x;)=x;for 1 <j<mn,j+#i}
and let

H),={he€ H|h(zj)=z;for 1 <j<n-1}

H,={he H|h(xj)=xjfor1 <j<n-—1}
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Then for 1 <i<n

and so

Nakg, (H') = Naky (H') = H,.

As Hy contains all reflections in H, we know that Nakgz(H) < H,. By the above

Hj is a Nakajima group with respect to B so
Nakz(H) = H,.
Let H[i] = (by, ) for 1 < i <m then we see that
Nakj (H[i]) = (H]i],bo,) for 1 <i < m.
Using Corollary 3.0.10

Nak (H) = (Nakj (Hy), Nak; (H[1]), ..., Nakj (H[m])),
= <H07 b’ul,)\l;bo,)\p o 7bum,/\m) bO,/\m>7

= (H,bo -, b0, [l

Now we have broken our groups up and can use Theorems 1.3.4 and 1.3.5 to
show that their invariant rings are complete intersections. For this we will use

Properties of the Dickson Invariants from Lemma 1.1.7.

Lemma 4.2.7. Let
H = <H0, bu1,>\17 R 7bum,/\m> S BU’U

where Hy is the subgroup of H generated by reflections, with Ryy < H or
[H,W] < WH. Let \py1, - -, Dy € A(Hy) such that

L= A At Ay )
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is a basis for N(H). Let B = {xy,...,x,} is a basis for W such that {xy, ..., xp_1}

is a A-basis with respect to L and
e Hy = Nakg(H),
o by (xn) =ap+u; for 1 <i<m,
e Nakj(H) = (H,box,- Do)

Let Wy = (0p(x) | h € Ho) and W; = W1 + ktyy—i—1 for 1 <i < m. Let

fi = aleWm*i(xn) — Z.Z'n,jFWm7i (U])

Jj=1

for1 <1< m, then
E[V]C = k[NE NI . NP £ 00 fal

is a complete intersection ring.

Proof. For m =0, H = H, is a Nakajima group with respect to B so proceed by

induction on m. Assume the result holds for m — 1. Let:

H+ = <H7 bO,)xm>7

H™ = <H0’ bul,)\lv SR 7bum—1»)\'m—1>'

Suppose that ¢ € HT is a reflection with g ¢ (Ho, by, 0,b0.,,) then there

exists b, » € H~ such that

_ a b
9= bu,kbum,obo,/\m

with one of a,b # 0. Either u + au,, € kv or A + bA,, = 0. In the first instance
as Uy, & U(H’) this means that v = 0 and a = 0, and b,y € Hy. In the second
instance as A, € A(H ™) this means that A = 0 and b = 0 so again b, \ € H,.

From this we see that the group generated by all reflections in H* is

H(;L - <H07 bum,)\ma bO,)\m>
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From this we see that
H" = (Hy  buyays -y by d 1)
If Ryy < H then clearly Ry < HT. Let N = Nakj(G), then
H <H<H'"<N

so Nakj(HT) = N (using Proposition 3.0.9). Using Lemma 4.0.6 W~ = W# so
WH = WH" This means that if [, W] < W# then [H*, W] < WH".
As clearly by, 5, (z,) = ,, + u; for 1 <1i <n this means that in order to use

the induction hypothesis we just need to check that
Hf = Nakgz(H™).

As H{ contains all reflections in H* we know that
Nakgz(H) < Hy .

As H, and
<bum,>\m7 bo,)\m>

are both Nakajima groups with respect to B, by Lemma 3.0.5 Hj is a Nakajima
group and so

Hy = Nakgz(H™").
If we let
VVO+ = <5h<xn) | h e HJ) = Wo + kum,
W =W, & kum—i for 1 <i<m-—1,

+ i +
fir= xlFWW—l)—i(:cn) — an_jFW(m—U—i(uj) for1<i<m-—1,
j=1
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then we can find k[V]" by the induction hypothesis:
KVIHT = KN NI ]

is a complete intersection ring.
As
Nakj (H™) = Nakj (H)

and H™ and H are both nice with respect to B by Proposition 3.0.12
NI = NHE" = NV
for 1 <14 < n. Looking at the W;

W =W,

W =Wy for1<i<m-—1,

7

[ =Y () = D w g F () = fi for 1<i<m—1,
j=1

SO

k[V]HJr = k‘l[N{{’"'7N7ljvf17-"vfm—1]-

This means what we want to show is that k[V]7" [f,] = k[V]".
We can see that H is a maximal subgroup of H* with o :=b,,,0 € HT\H,
and clearly f,, & k[V]7". Let:

r:=(c—1)fn

= g, FW0 ()

then in order to use Theorem 1.3.4 we just need to prove that (o —1)(k[V]#) C (x).
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Using Lemma 4.2.4 we see we can also use the induction hypothesis to find

K[V]H ™. Let

Woi = <5h<xn) | h € H()> = W(],

VV; Zmil@kum,l,i for 1 SZSm—l,
fi = xlFW&”—l)—i(:cn) — an_jFW(:n_l)_i<U,j) for1 <i:<m-—1,
j=1
then

EVIH =Kk[NT, ... N T for]-

As H~ < H we know that k[V]¥ C k[V]" so (o — 1)k[V]? C (¢ — 1)E[V]H .
Let:

h=ai(ND (NP fy € RV

be a monomial in k[V]7 . If (6 — 1)(h) # 0 then at least one of ¢,,dy, ..., dpn 1

is not zero. We can see that:

N, = F"m-1(x,)

0,(N,) = FW;fl(um)
and for 1 <7 <m—1:

— l’ —
[ = o P nn=i(z,) = 3w g F em-i(uy)
j=1

_ W :
0o (fi7) = m Ftm=0=i ().
From the nice properties of Dickson invariants we know that for 1 <7 < m—1:

FYi (up) = FVim1 (U, )P — FVi-1 (U1 —i )P F i1 (uyy,).
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This means F'"o (u,,) = FWo(u,,) divides d,(h) # 0 for any h € k[V]?  and
hence for any h € k[V]#. If h € k[V]¥ then:

buy A (R) =
b0, A i 0 () =

From this we can see that x; divides d,(h) # 0 for any h € k[V]%. As H is a
p-group k[V] is a unique factorisation domain and so (o — 1)(k[V]¥) C zk[V]

as required. Now
RVIY = RV [fn] = RINT N fr s ol

By Theorem 1.3.5 k[V]# is a complete intersection ring. O

Theorem 4.2.8. For k =TF,, all hook groups G which are nice with respect to

some basis B for W have complete intersection rings of invariants.

Proof. If G is a hook group then it is a subgroup of BY" for some hyperplane
U and v € U. By Lemma 4.2.2 if G is nice with respect to some basis B either
Ry < G or [G,W] < WY then we can apply Lemmas 4.2.5, 4.2.6 and 4.2.7 to

show that it has complete intersection ring of invariants. O
This gives us the following corollaries:

Corollary 4.2.9. For k = TF,, all non-abelian hook groups have complete inter-

section rings of invariants.

Proof. As noted at the beginning of this section if £ = F, all non-abelian hook
groups contain I?; ;7 and so are nice with respect to some basis, hence by Theorem

4.2.8 they have complete intersection invariant rings. O]

Corollary 4.2.10. Let k = Fy, then all hook groups containing at least one

index 3 bireflection have complete intersection rings of invariants.
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Proof. 1If k =T, and G is a hook group which contains an index 3 bireflection g,

then
<92> = Rﬁ,U

so Ry v < G and so G is nice with respect to some basis. By Theorem 4.2.8 they

have complete intersection invariant rings. O

4.2.1 Example: quaternions

We cannot hope to extend the result above to show that all hook groups have
complete intersection invariant rings, or even that their invariant rings are all
Cohen—Macaulay. Here we see two four dimensional representations of (g which
are both hook groups- one has complete intersection invariant ring and the other

is not Cohen—Macaulay. This also shows Lemma 4.2.7 being used on an example.

Lemma 4.2.11. Let G < GL(V). If G = Qs is a bireflection group then G is a

hook group containing at least one index 3 bireflection.

Proof. The group Qs is an extraspecial group with [Qs, @s] = Z(Qs) a cyclic
group of order two. Let G < GL(V) such that G = Qg, and let t € G such that
Z(G) = (t).

If g € G\®(G) then |g| = 4 and ¢g* = t. The only bireflections with order 4
are index 3 bireflections, and if ¢ is an index three bireflection of order four then
g% is a transvection (see Lemma 2.1.2). If G = (g1, g2) then g1, g2 € G\®(G), so

we can find v € V and v € v+ such that:

Lol NV}
I
<
N DO
I
+
S
I
~

Let U = V', then U is a hyperplane, and d,, (U) = d,,(U) = kv, so G is a hook
group with hyperplane U and line kv. O]

Proposition 4.2.12. Let k = Fy. If G < GL(V) with G = Qg then k[V]Y is

either complete intersection or not Cohen—Macaulay.
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Proof. 1If G has a Cohen—Macaulay ring of invariants then G is generated by
bireflections (Theorem 1.3.6). By Lemma 4.2.11 G is a hook group containing
at least one index 3 bireflection so by Corollary 4.2.10 k[V]“ is a complete

intersection ring. 0

Example 4.2.13. Let k =Fy, H = (g1, go) where

1 01 0 1 1 00

0101 01 01
g1 = y g2 =

0 011 0010

00 01 00 01

with respect to basis B = {x1, T2, x3, x4} for W. We see that H = Qg is a hook
group with hyperplane U = (x1, x5, x3) and line kxy. We find it’s invariant ring
(which is a complete intersection ring) by using Proposition 4.2.7.

Let

1 010 1000 1 0 01

01 00 01 00 01 00
01 = ) 02 = ; =

0010 0011 0010

0 0 01 0001 00 01

As in Proposition 3.0.9 we can find

G - <gla.9270-170-2> - Na’kg<H)7
Hy = (f) = Nakg (G),

both Nakajima groups such that Hy < H < G. Let H; = (g1, g2, 02) then

E[V]™ = k[N, Ny, N3, Ny, f1]
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where the N; are orbit products and

fr = ai((2 — 212a)” = (25 — 24w2) (2] — 7124))—

23(((22 4+ 3)* — 1 (29 + 3))” — (43 — 2422) (22 + 23)% — 21(72 + 73))).
From here we can find k[V|H = k[V]71[f,] where
fo=21(22 — 2124) — 23((22 4+ 23)% — 21 (29 + 13)) — B2(25 — 2271).

Ezxample 4.2.14. Let k = Fy with a # 1, a® = 1. Let G = (g1, go) where

1 010 1 0 a®> 0

01 00 01 0 1
g1 = y g2 =

0011 00 1 a

00 01 00 0 1

with respect to basis B = {x1,xq, 23,24} for W. Again G = Qs. The mazximal
subgroups of G are L = (g192), M = (g1) and N = (go). Let t € G such that

{t) = 2(G) =G, ],

then
LNM=LNN=MnNN = (t).

We want to show that the invariant ring of G is not Cohen—Macaulay, we do this

using Theorem 1.2.6 by showing that:
(gr — DWY < (g1 — DWW N (grge — W N,

As WN = WM = WE = (21, 25) we see that (g — 1)WY = {0}. We need to find
some (g1 — DWiN (g1ge — HWENWHN £ {0}. As

Wt = <$1,ZL’2,I3> =U
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and G is a hook group with line kx1 and hyperplane U, on which none of the

generators act trivially
kry = (g1 — W N (gige — W N WY,
From this we see V is linearly flat and so for R = k[V]¢
depth(R®) =V +ccg(R)+1=1+1+1=3<4

so R is not Cohen—Macaulay.



Chapter 5

Invariant rings of two—column

groups

5.1 Non complete intersection example

By Proposition 1.4.3 all two—column groups have Cohen—Macaulay invariant rings,
however it is not the case that they are necessarily complete intersection rings as
we will see with this four dimensional representation of the extra-special group
M (3). This is a counter example to the conjecture that Cohen-Macaulay implies
complete intersection for invariant rings of unipotent groups. It is also a counter
example to the conjecture that all two—column groups have complete intersection
invariant rings in the modular case (a counter example in the non-modular case

was given by Wu in [33]).

Proposition 5.1.1. Let G = (g1, g2) where

1 010 1 100

0101 01 10
g1 = ) g2 =

0010 0010

0 0 01 0 0 01
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with respect to basis B = {x1,1s, 23,24} for W. If p=3 then k[V] is Cohen—

Macaulay but not complete intersection.

Firstly we look at a subgroup of G, let H = (g;, h) with

o o o =
]
—

= o O =

As H is a nice hook group using Proposition 4.2.7,
KV = B[NY, Ny, Ng N d]

where

d= (2 — xﬁ”_lm)xl — (2} — xﬁ’_le)xg.
We will use the notation

N; =N, n; =N/

To find the invariant ring of G we first find it’s localisation at ;.

Lemma 5.1.2. For G as given above, p # 2,

k[V]G = k[N1G7 NZG’ NBG7 Nf7 h17 h?]aﬁ

x1

where

hy = ns3r; — r2Ng

hg = led + (.T; - .Ill’g)NQ.

Proof. As in Theorem 1.3.12 we wish to find ¢y, ¢o, 03, ¢4 with ¢; € R[i] such
that k(V) = k(¢1,...,¢4). As always we can choose ¢; = 1. If we look at the
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action of G restricted to (x1,x2) we see that it acts as a Nakajima group and we
can choose

— P p=1.. _
¢2—I2—$1 IL‘Q—NQ.

As H is a subgroup of G we know that R[i]® C R[i]” for 1 <i < n. The
minimal degree of polynomials in z3 in R[3]7 is p. As hy € R[3]¢ with p the
maximal degree of x3 we can choose ¢3 = h;. The minimal degree of polynomials
in 74 in R[4] is also p. Similarly as hy € R[4]% with p the maximal degree of z,
we can choose ¢4 = hs.

As in Lemma 1.3.13 we let ¢; be the leading coefficient of ¢; viewed as a

polynomial in z; for 1 <7 <4 so

We can therefore use Lemma 1.3.13 to see that

k[V]S = k[N, Na, hi, hole, = k[N1, Ny, Ng, Ny, Ay, hola, . O

x1

We have found a ring A which is integral over k[V]¢ and such that A,, =
k[V]z,, so we can apply the SAGBI divide by x algorithm. First we find the

leading terms of the invariants we have:

LT(N,) = 21, LT(N,) = 2%, LT(N;) = 2,

LT(N,) = 2%, LT(h,) = 257, LT(hy) = 25*2.

For any p # 2 we have a non-trivial tete-a-tete {h?, h,N$'} and can find:

hs = (haN§ = h?) Jay

= 2dN2 — ZEQN% — l‘lng + 2x2N2n3

which has LT (h3) = TP
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Lemma 5.1.3. Forp=3 and p =25, for all 0 <1,7 <p—1 with
p<1+2)<2p-—-1

we can find ¢; ; such that if f;; are defined recursively (in lexicographic order) to

be:

WP — oy NG [y fori=0,j = ¥t

w‘+

hofo 1 — ciyhih§ (2j—p—1) /2Np+1 j) Jxy  fori=0,j> p+l

(
(
(hahd = ciy ”*3)/2) Jz1 fori=1,j =11t
(
(15
(h

—_

fi,j
hahbhS ™ — ¢ Nofioaji1) o fori>1 odd, j =",

7,/2 i . . +1—4
h} — cijha fie 1]) /1y for i even, j = =,

fz 1,5 — Cz,]thz] 1) /371 otherwise
then f;; € k[V]9 and LT(fi;) = 2P 2 where:

= (p* —1+2§)/2

Proof. We start with p = 3, and find if we let

Co2 = 2, C11 = 2, Ci2 = 2, c1=1

)
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and define f; ; as above then

hy = fi1 = <h1h2 + N;) /1
= 22 1n3d + (23 — 1179)Nyns + 25Nod + 22N3 + 2,2,N3,
hs = fo2 = (h% + N22h1> /1
= 21d* + (25 — 2129)dNy + Niang + 25N3 — 2,25N3,
he = f2,1 = (h3h2 - hlfl,l/xl
= d*Ny + 29dN, — xldng + $2dN% — 29Naonsd — x%Ng
— (@5 — 2179)Nyn3 — 25N3n3 — 1129N3n3,
hy = fi2 = (hifo2+ hafi1) /21
= 2x1n3d*> + x5Nod? — ;E%Ngd — xlaZQN%d — nsd + N%n% — QngQTLg

INJ2 2 3
+ x125N5ng + xo(x; — x122)N3.

These have the following leading terms:

LT(f0,2) = xgxi, LT(f1,1) = x§x§,

LT(f12) = 2525, LT(f21) = 255,
For p = 5 we let

Co,3 = 4, Coa = 2, C12 = 4, C1,3 = 4,

cla=1l ©p=3, c3=4, c31=23,

c32=3, 33=1, c1=2, ¢2=2



5.1 Non complete intersection example 164

The terms are larger still than in the case of p = 3, but the following can be

shown to be in k[V]¢:

= (h3 + N3hy) Jay,

= (hafos — 2mhsN3) /a1,

= (hh3 +N}) /s,
fiz = (hifos + hafip) /21,
fra= (hifoa — hafi3) /21,

= (h3hs — 3hifr2) Jan,
foz = (hifi2 + hafa2) /21,
fs1 = (hihohg — 3Naf12) /x1,
fs2 = (hifap = 3hafs1) /21,
fs3 = (hifoz — hafs2) /21,
Ji1 = (h2h§ - 2h1f3,1) /1,
far2 = (hafs2 = 2hafsa) /21

The leading terms are:

LT(fo3) = x%g’xg, LT(foa) = xé%éo,
LT(f12) = 95549327 LT(f13) = 33%535:130,
LT(f14) = 25°x3, LT(fa0) = 5'xy’,
LT(fa3) = w5°x3”, LT(fs1) = w5 w3,
LT(fs2) = 5wy, LT(fs3) = x5 a3,
LT(fs,1) = 25*25°, LT (f12) = x3'a3°
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Proposition 5.1.4. Let p =3 and hq, ..., hy be as previously defined, then
k[V]G = k[N, Ny, N3, Ny, by, ..., hy].

Proof. Let

2h2h2 + hyhyN3 — NS

x

hgzhi:

In Lemma 5.1.3 for 1 <14 < 7 we showed that h; € k[V] and that z; doesn’t
divide LT(h;). Using Lemma 5.1.3 and Lemma 5.1.2 we know that:

Aml - k[Nb N27 N37 N47 hl? <. 7h7](1‘1) = k[v](cjgl)

If we can show that

Nl,...,N4,h1,...,h7

form a SAGBI basis then we can use Proposition 1.3.15 to prove that
k[Nla N27 N37 N47 h17 ceey h7] - k[V]G
We find that

+1 -1 —1

hh = 227PNy — 2287 'Nbhy + N5 — 2INEF 4 22PN~ by,
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and using this obtain the following relations:

h% — hoNy = —x1h3,
hihy 4+ Nj = x1hy,
hihs — Nohy = —22N3 — 2, N2hy,
hihy + Nohs = z1hy,
hihs — Nahs = —x1hs,
hihe + Nohy = N3hyhg + 21hoN3,
hih; + hg = N3hy + 2,N35N3,
h3 + N3hy = x1hs,
hahs + Nohs = 221 he,
hohy + N2hg = 2z, hy,
hohs — N3hy = 21Nohy — 22N3 + 23N?hy + 207Ny,
hohg — hg = Njhy + 201NoNy — ;N3 + 22N3hy,
hohy — Nihg = 2N3h? 4+ 21 Ny — 22hiN3hy + 17hi Ny,
h2 — Nohg = N5 'h? 4+ 2y Nghy,
hshy — 2Noh; = 2N2hyhy + 221hyNs,
hshs 4 hg = N3h; — 21N2N3 — 2, N3 + 22N3hy + 207Ny Ny,
hshg + N3Ny = N3hs + 2NS 4 22, Nghy + 22, N2h; + 2:N3hy + 20°N2Ny,
hsh; — N2Ngh; = Njhs + N5hy + 21N3hs + 22, N2h; 4+ ;NS

+ 227NShy + 23NNy Ay,
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hyhs — N3hg = Nohy + 22, Nihs + 22,Njh; + 227N,
+ 23NZhy 4 221Ny by,
h4h,6 + NgNghl == N%hg + QNghl -+ {L’1N3h5 + 2$1N%h7 + 2$1Ng
+ ZL‘%N%hgl + 2!E%N2N4h1,
hyhy — N3N3hy = Nohy + Nohy + 22, Njhs + 223N N3 + 27N3hs
+ 23N, Nyhy 4 223 N2hg + 201N yhs,
h% — N2h; = 2NS + N3y + 22,N3hy + 202Ny
+ IL‘?N%hg, —|— 2$11N4h2,
hshe — N3N3hy = 2Njhy + N3hy + 2 N3hs + 22, N5 hy + 27NN
+ 23NN yhy + 23N3hg + 21Ny hs,
h5h7 - NgNg = N;lh5 + N; + 2$1N§h6 + $1N§h4 + 2$1Ngh2
+ 2iN3hs + 2NNy + 23N3hy + 27Ny hy,
hg + N3N3hs = Nihg + 2N5hs + 2NShy + 22, N3hy + 22Ny N;
+ 22, Nohs + 202 Nihg + 223NNy hs,
h6h7 — N%N3h4 = Ngh4 + QNghQ + 2I1N§N3h1 + 2$1Ngh3 + ZL‘lNghl
+ 2IN3hy + 27N N3 + 27N + 27NNy by + 223 N5 N3h,
+ 223N3hy + 2IN2NLhy + 27N3Ny,
h% — N2N3hs = 2N5h; + Njhs + 2N5 4+ 2, N3Nshy + 221N hg

+ ZL‘%Nghg —f- $§N2N4h5 + 237111N4h6

These, along with Lemma 1.3.10 can be used to show that all téte-4-tétes

subduct to zero, and

{N17N27N37N47 h17 cevy h7}

forms a SAGBI basis for A.
O

We have now found k[V]% for p = 3 and will go on to show that it is not
a complete intersection ring. Using MAGMA, [4], it can be shown that f;; as
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defined in Lemma 5.1.3 are contained in k[V]¢ for primes up to and including

19 (at this point the algorithm begins to run quite slowly finding the 7’22—+5
invariants). For p = 5 MAGMA can be used to show that the f; ;’s, along with

Ny, ..., Ny, hy, ho, hs generate k[V]C.

Proof. (of Proposition 5.1.1) Let I = (Ny, No, N3, Ny) and
A =FKk[VI]/I.

As k[V]9 is a Cohen-Macaulay ring any HSOP forms a regular sequence (see
[10, Theorem 2.8.1]), so by Proposition 1.2.14 if k[V]¢ is a complete intersection
ring then A is also a complete intersection ring.

For 1 <i < 7 let h; be the image of h; in A. A is a Poincaré duality algebra
with each degree either a zero- or one-dimensional vector space. Let A; denote

the degree i part of A. The non-empty degrees are:
0,4,5,7,8,9,11,12, 16.

Each non empty degree part is a one-dimension k-vector space

Z0 = k» A4 - kﬁl) ZS = khQ? Z? = kﬁ&
Z8 = kﬁll) AQ - kﬁ57 All — khﬁ) Z12 = kﬁ'ﬁ
Ay = k..

Let R = k[Y3,...,Ys] with

deg(Y7) =4, deg(Y3) =5, deg(Y3) =7, deg(Yy) =8,

deg(Vs) =9,  deg(Ye) =11,  deg(¥s) =12,
and let J be the ideal in R generated by

S={VY;|1<i<j<Ti+j#8U{ViY7 + Y7 Ya3Y5 + Y], YoYs — Y7}
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We define the surjective map:

p:R— A
o(Yi) — hy.

The kernel of ¢ is J and so R/J = A.
We claim that J cannot be generated by a regular sequence. Firstly we look

at the degrees of the generators for J in ascending order:

deg (Y2

)
deg(Y1Y2)
deg(Y5)

) =

deg(Y1Y3

deg(Y7) = 24.

If Y2 is not needed as a generator for J then we can find some r and X; € J

with deg(X;) < deg(Y?) such that

Yf = Z CLiX
i=1

where a; € R for 1 < i < r. If t; € J with deg(t;) < 8 then t; = ¢, Y} for
some ¢ € k, so Y must be part of our generating set. Suppose f, € J with
deg(f2) =9, then as the lowest positive degree in R is 4 we see that fo = ¢Y1Y5
for some ¢y € k, so Y1Ys must be part of our generating set. This is already
enough to show that J cannot be generated by a regular sequence, as Y2, Y1Y,
do not form a regular sequence. If we continue working through degrees, then
we see we cannot find a generating set with fewer elements than |S| = 27. This
means that A is not a complete intersection ring, and so k[V]% is not a complete

intersection ring. 0]



Chapter 6

Invariant rings of exceptional

pure bireflection groups

In this chapter we will see that both types of exceptional group defined in Chapter
2 have complete intersection invariant ring for k = F,, p # 2. At the end of the
chapter we put this together with earlier results to see when pure bireflection

groups have complete intersection or Cohen-Macaulay invariant rings.

6.1 Exceptional groups of type one

We start with exceptional groups of type one, and restrict to p # 2. Let

1 0 0 00 1 0 2 10
01100 011060
g=10010 1|, Rh=f0 0110
00010 0001O0
000 O01 00 0O01
with respect to a basis {yi,...,y,} for W. Let
™ =Y, T2 = Y2, v =Ys,

Y1 = Y5, Y2 = Yy, UV =1Ys3
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and fix

r= {7'1,7’2,1)},

Y= {717 Y2, U*}.
Then using the above matrices

_ y* y* o ,y* v* o r,,y
g =titys =1, = Xio0

£ L =t t

_ 41 Y
h=t 2y1+y2 vtr1Lor 4y = X0,1,0-

Y3+y1

Let z = xg,1 then (z) =[G, G] and with respect to this basis:

1000 =2
0101 -1
z=10 01 0 0
0001 O
0000 1

The group G < X*7 is an exceptional group of type one. If k = [, then
G=X".
We want to look at the invariant ring of this group, to do this we will make a

change of basis for W in order to make later calculations simpler. Let

1

T = §y27
1

To =Y1 + §y2,

1 1
T3 = —Y3 — —

3 23/3 4y2,

Ty = Y4,

T5 = Ys-
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then with respect to this basis:

Ne)

I
o o o o —
o (@] o — o
o (e} — (@] —
@] — o o (@]
— (@) [\) (@) —

>=

I
o o (@) o —
o o (@)
o [} — — [}
o — [\) — o
— (e} o o (@]

and

o o o o

o o o = O

_ o = O O

S = O O N
]

We will show that k[V]¢ is a complete intersection ring. We first we determine
the invariant field £(V)% by finding ¢, ..., ¢5 as described in Theorem 1.3.12.
As G is triangular we can see that U = (1, x9, 3, z4) is a G-stable subspace of
W, we want to find R[4] by looking at how G acts on U.

For this section four-by-four matrices describe the action of GL(V) on U, so

if ¢', 1/, 2" are the restrictions to U of g, h, z respectively then

1010 1000 100 2
, 0100 , 0111 , 0100
g = , h'= , 2=

0010 001 2 0010

000 1 000 1 000 1

Lemma 6.1.1. Let G be as above then R[4]¢ = K[N¢ N§ N NY, d,] where

2 1 1

di = (2§ — 2} Mg)? — () — o a) (2 — af )
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Proof. To find the invariant ring of H, we will first find the invariant ring of

H = (G, o) where

o o o =
o O = =
o = O O
- o O O

We know from the previous section on Exceptional Groups of type 1 that

[G,G] = (z). Let a € F, such that 2a = 1. As ¢ commutes with g and z and

—_
(@)
—_
—_

:gza

o o O
=)

o = O

= o O

the subgroup N = (o, ¢/, 2’) is a normal subgroup of H.

As N is a Nakajima group we can easily find it’s invariant ring
S(U)Y = k[N, Ny, NY, NJT,
where

N _ _ NTH _ NG
N _ . p p—1 _ H
N, =25 — 2] 29 =Ny,
N __p p—1
N3 =x5 — a7 3,

-1
NY = af — 2 'y,
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Letting H/N act on k[V]", we can see that:

5h1 (le\/) = (5h1 (Né\f) =0,
5711 (Név) = Né\/’

on, (NY) = 2NY + NY'".
Let H = (h). The action of H/N on k[V]N is isomorphic to the action of

H on S(U) = k[xy,xe, 3, 74]. Identifying xq,xs, x3,d of Example 1.3.16 to
Ny, N3, Ny, d; respectively we obtain:

k[V]HI = k[Nfl7N§/7N§laNf/adl]-

As (G is a maximal subgroup of H we can now we use Theorem 1.3.4 to find
S(U)Y: we know that xo € S(U)\S(U)* and 6,(z2) = x1. As 6,(x;) = 0 for
i # 2, it isn’t hard to see that §,S(U)# < 1 S(U)H so

S(U) = S(U)"[xo] = k[NT, N5, Ng', N, dy]. O
Lemma 6.1.2. Let A = k[N¢ NY NY NY NS¢ hy, hy) with

2
hy = 125 + x974 — T3,

o p—1 D p—1 p+1 p—1_2 p—1_2
ho = a1 (28 — b ws) + wo(ah — ™ wg) — 2257 + 2 2l + 2 ak.

Then A,, = k[V]S .

Proof. As in Theorem 1.3.12 we can find ¢,..., ¢5 such that ¢; € R]i] is of
minimal positive degree in z;. As deg,_(h1) =1 we cannot find any invariants of
lesser positive degree in x5 and so we can take ¢5 = h;.

Using Lemma 6.1.1 we know R[4]¢ = k[N¢,... N¢, d] so we can choose

¢; = NY for 1 < i < 3,

¢s = dy.
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Let A" = k[¢y, ..., ¢5]. Using Theorem 1.3.12

Quot(A’) = k(V)¢.
As

dy = —h? + 2t b hy + 2t hy

we see that d; € A and so

A'[Ny, Ny, hy] = A.
As Ny, Nj, hy € k[V]¢ we see that

Quot(A) = Quot(A4') = k(V)¢

furthermore we know that R[4]¢ C A.

By [7] Lemma 2.1 for any f € R[m]® we can find some r € N such that
& f € Rlm —1]%¢,] (where ¢; as defined in [7] for 1 <i < n). We know that
¢s € A with c¢5 = 21, and we know that R[4] C A so for any f € k[V]¢ = R[5]¢
we can find some 7 such that 2% f € R[4]%[h;] = A. This means that

We would like to use Theorem 1.3.15 and for this we need a SAGBI basis for
A. We start by looking at relations in A. First of all we find that

LM(hg) = LM(h{"*/?) = 28+!

so in our SAGBI basis for A we will use h}, = hy — 2h§p+1)/2 instead of hy (note
that LM(h)) = zo2h).
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To make notation easier we let

fi(t) =7 — b7,

folt) =t — b7t
We previously defined

dy = —hY + 28 b hy + 2 hy

= filws)® = fi(x2) fi(za)
we similarly let

dy = —h + 2t b hy + ab hy

= fo(3)® = fa(1) fo(ws).

We can write N3 in terms of fi(z3) and fi(x2) using the properties of the

Dickson invariants (see 1.1.7). Let U = (x1, x2), then

N3 = [] (5 +u) = fi(zs)” — fi(z2)"" fi(zs)

uelU
= H (w3 +u) = foz3)? — foz)P "t fa(zs),
uelU
and so
Ng = f (l'g)?P —2f1 (l‘Q)p*lfl (xg)erl + fi <$2)2p72f1 (xS)Q.
Let
Hi(dy) = —2f1(932)p—1dgp+1)/2 F (),
Hy(dy) = —QfQ(Il)p_ldng)/Q + f2($1)2p_2d2,
Lemma 6.1.3.

N3 —d} — Hy(dy) + fi(22)"Ny = Nj — db — Hy(ds) + fo(21)’N5 = 0
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Proof. Let

P, =N:—d — H(dy),
Py = N2 — db — Hy(dy).

As we can write

dy = fi(w3)* — fi(w2) fi(a),
dy = fo(w3)* — fo(1) fo(ws),

we see that x4 divides P; and x5 divides P,. As P, € k[V]“ this means that all
elements in the orbit of x4 under G divide P;: for some ¢; € k[V]¢ we know
P, = ¢;Ny. As the highest power of x4 in P is 1‘52 with coefficient — f; (z2)? we
must have:

P = —fl(f[‘g)pN4

SO

N32 + dlf + Hl(dl) + f1($2)pN4 =0.

Similarly for some ¢, € k[V]¢ we know P, = ¢;N5. As the highest power of

x5 in P is x’gQ with coefficient — f(z1)? we must have:
Py = —fo(r1)"N;

SO

N3+ d5 + Hy(dy) + folx1)PNs = 0. O

For any f € k[V] such that

m
a
f p— Z CSZL‘1571 o .. $g5yn
s=1
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with ¢, € k\O we define

(P = 3 ettt g
{slai=}

the part of f with x;-degree j.

Lemma 6.1.4. For 1 <r we can find
D, =h" — gt bl e A

where o, € kl[x1,x9, h1, hy] such that

(D)) = a f ()" fos) ™+ ab fi ()" ()

Proof. Firstly if we let

—1_p—1
Dy =hl — 2y 2b

1_p—1_2

= af fo(ws) + ab fi(xa) + 237 — 2} tab ad,
so that

o = hi,
then we see that

(D)) = 2 fo(ws) + b fi (z4).

Now let

N2 p—1 _p—1;12
Dy = Dy — 27wy " hs,

SO

1 —1_p-1
o9 = 20T — 2P 2 4 p2,
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As
(hz)geg(%) = x1 fo(ws) + 2. f1(24)
we find
(D2)55") = 220 o (25)? + 22 fi(24)? + 20505 f1 (24) fa (),
(h2)53") = 22 fo(5)? + 23 f1(24)? + 2120 f1 (24) fo5),
SO

(D2)geg(x3) = 55'113][2(951)]02(335)2 + 33]20f1($2)f1(l‘4)2

as required.

Now we can proceed by induction. Assume for some r > 1 we can find

_ pp(r=1) p—1_p—1
D, 1= hy — Xy Ty Or-1

and
D, =n" — xﬁ’_lxé’_lar
with
(Drfl)geg(m = af fo(@1)" 7 fo(ws) " + abfi(wa) 2 fi(wa) !
(D)) = af fo1)" " falws) + 2B fi(@2) " fua)'
Let

D = — D,(dy 4 d3) — Dy_1(d1dy)
=(h" — b o) (20 — 200 gy — My — b h)
— (W — bt o) (W - o e e — o he)

p p—1_p—1 p—1
(W — 2y 2y "hy — x5 ho)
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then
D = pPU) _gplgpls
where
o= wﬁ)—1$;27—1h€(r71)+2 n aﬁ—lh;lo(rfl)+1h2 4 xg—lhjlo(rfl)+1h2 B hjlo(rfl)h%

+ o.(dy + dy) + 0,_1d1ds.

Note that if 0., 0,1 € k[z1, X2, hq, ho] then o € k[z1, x9, hq, ho]. We find the part

of D with x3 degree 0, firstly we note that

(dy + d2)y® ") = — fi(2) f1(w4) — folar) falws),
(didy )deg ") = = fi(x2) fo(w1) f1(24) fo(s5),

SO
(= Dr(dy + do) )5 =2t fo(a1)" folws) ™! + 25 fi (o) fr(wa)™
+ 2 i) fo(r)" ™ fr(aa) fols)”
+ a8 fo(ar) fr(aa) ™ folas) fr(wa)",
(Dyr(drds))y ™™ =af fi(ws) fal1)"™ fr(a) fols)”
Jo(wr) fr(aa) ™" fals) i)
We find that
Dgeg(m) = l"szz(%)TJCZ(%)Nr1 + 25 f1(z2)" f1 (%)TH
and so we can let D,y 1 =D, 0,41 = 0. O

Lemma 6.1.5.

(hy)? — ahNy — aiNs — 227 oo + f17 (22)ds + f5 ' (21)dz = 0.
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Proof. From Lemma 6.1.3 we see that

fl(l’g)pN4 = Ng + dIIJ + H(d1>,

(f1(@2)PNDGET) = (o) fi(wa)? — 2f1(w2) "7 fi(wa) T + fi(ws)? " folw),
and so dividing by fi(z2)? gives
(NDOE™) = fi(a)? — 2f1(22)"T fi(wa)™F + fo(w2)? " fola).

Similarly to above, Lemma 6.1.3 gives

fQ(ZL‘l)pN5 = Ng + dg + H(dg),

(fola1)PNg)o®") = fo(1)? folws)P — 2fa(20) "7 folws) T + folwn)? " fu(ws),
and so
(N3)o®™) = fo(ws)? — 2fa(21)"T folws)™S + fala)P~ folzs).

Let

T = (W) — 23Ny — 27Ns + 2lel)_lxg_lg%l + 2 fr(w2)" 2 dy + o foa1)P 2 dy,

= hS — 2D 11)2) — ehNy — i N5 + fi(22)" 'dy + fo(z1)" ' do,
then using the above we see that
T

If T # 0 then z3 must divide all terms of 7" and so all elements in the orbit of x3

must divide T'.
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We look at the highest degree of x3 in each of the parts of T

deg,,((h)5) < p* = p,

deg,, (Na) = deg,, (Ns5) <p* -1,
deg,, (ops1) < p* —p+2,

deg,, (di) = deg,,(d») = 2.

This shows us that
deg,,(T) < p* —1 < p* = deg,, (N3)

so N3 cannot divide T" which means 7" = 0. ]
PI‘OpOSitiOH 6.1.6. /{Z[V]G = I{Z[Nl, NQ, Ng, N4, N5, ]’Ll, hg]

Proof. Let B = {Nj, Ny, N3, Ny, N5, hy, 5}, In order to show that B is a
SAGBI basis for A we need to find all téte-a—tétes in B and show that they

subduct to zero. We know

LM(NY) = 4,
LM(NY) = x,,
LM(N§) = ot
LM(N§) = a1,
LM(N§) = 2%,
LM(h;) = 3,
LM(hy) = xozh

It

LM(N{* N Ng* NN afe (h)*7) = LM(N7 Ng N Ny N A (7))



6.1 Exceptional groups of type one 183

then

ap = by,

as + ay = by + by,

asp’ + 2ag = bsp” + 2bg;,
asp® + azp = byp® + bip,

s — bg,.

We see that the only non trivial téte-4-tétes in B are {N2, h’f} and {4 Ny, (h))P}.

From Lemma 6.1.3 we know
N% — dg — Hz(dg) + f2(x1>pN5 = 07

where
d2 = —h}f + x’l’_lxé’_lhl + J]g_lhg.
This means that

N2+ 1 = af Pab PRy + af PR + Ha(dy) — fo(a1)"Ns

€ k[x1,$2, hl, hlg,Ng)}

As there are no non-trivial téte-d-tétes in {xy, x2, hy, hl, N5} we see that we can
use Lemma 1.3.10 to show that SUBDT(NZ2 + h) = 0.

From Lemma 6.1.5

(hé)p — $§N4 = ZEIfN5 + 2$€_1$g_10p7+1 — fl(ZL‘Q)p_ldl — fQ(ZL‘l)p_ldQ

€ k[xla T2, hh hl2> N5]

so we can again use Lemma 1.3.10 to see that SUBDT((h)? — 25N4) = 0.
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As both téte-4-tétes subduct to zero, B forms a SAGBI basis for k[V]%. The
orbit products form a HSOP for k[V]¢ and so it is integral over A and by Lemma
6.1.2 A,, = k[V]$ . Using Theorem 1.3.14 we see that k[V]¢ = A.

Viewing invariant ring k[V]% as a module of B = k[N, Ny, N3, Ny, N3] we
find that it is generated by

{mny 10<i<p’ =1, 0<j<p-1},
so the number of secondary generators is p®. We find that
5
[1 deg(N;) = p° = p’|G]
i=1

so by Theorem 1.2.3 k[V]¢ is a Cohen-Macaulay ring.
For0<i<p’—1,0<j<p—1let

A(yiz) = hy(hy).

Let
y={yi; |1<i<p’—1,0<j<p-—1}

so Bly] is a polynomial ring. We define canonical surjective map ¢ from Bly]
onto k[V]“ by

O(Yij) = fij
for0<i<p?—1,0<j<p—1.

For i + ¢ < p? and j + j' < p we see that

(i g) (Y j1) = firir jg

so we can write any polynomial which has degree less than p? in h; and less than

p in hy as a linear combination of the f; ;. Let

Fy = 2iN; + 2335’_193127_101%1 — fi(zo)?7 dy — fo(w1)P " dy + 25Ny
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and then let
Fy = o Pl PR ol P Fy — 2 PRV 4 Hy(dy) — fo)PN — N3,

Using Lemmas 6.1.3 and 6.1.5 we find that

fivir i fori+4' <p* j+j <p,

Jiir—p2 jj F1 fori+4 >p* j+j <bp,
(Y ) o(yirj1) =

fivirjajr—pFo fori+i' <p? j+j >p,

frvimppjrp—pIi Py fori+d >p*  j+j >p.

The terms on the right can be rewritten as linear expressions in the f; ; with
coefficients in B, and we find a set of relations as described in Proposition 1.2.13.
We can find a preimages of [}, F; as linear expressions in the y; ; with coefficients
in B, let these be denoted by FY, Fj respectively. The kernel I of the map above
can therefore be generated by (p* — 1)(p — 1) generators:

Yij — YioYo,; for 1 <i+7,
Y1,0Yp2-1,0 — F1/7

/
Yo1Yop—1 — Fg-

(p* = 1)(p — 1) = dim(B) — dim(k[V]%)

we see that the generators for I must form a regular sequence and so k[V]% is a

complete intersection ring. O]

Corollary 6.1.7. Let E be an exceptional group of type 1 generated by an
exceptional pair. Then k[V]¥ is a complete intersection ring. For k = F, all

exceptional groups of type one have complete intersection rings of invariants.
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Proof. 1f E is generated by an exceptional pair then £ is congruent to G and
so k[V]¥ is a complete intersection ring. For k = F,, all exceptional groups are

generated by special pairs, so all have complete intersection invariant rings. [J

6.2 Exceptional groups of type two

We now consider exceptional groups of type two. Let G = (g1, g2, g3) where

1000 —-10 100100
0100 0 O 01 0O0O01
0010 0 1 001000
g1 = o 92 = ’
0001 0 O 000100
000O0 1 O 000O01O0
0000 O0 1 00 0O0O01
100 000
010010
001100
gs =
0001O0O0
000010
00 0O0O01
with respect to the basis B = {x,...,x6} for W. Let
r =, T2 = T2, rs = T3,
N =z, V2 = g, V3 =T}

r = {ri,r,r3} and v = {71,72,73}. Then
. Y .
g1 = Wop,15, Y2 = Wi00, Yg3 = Wy,

so G < W*7 is an exceptional group of type 2. If k = F,, then G = W*".
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We know from Proposition 3.1.2 that G is nice with respect to B, so to find
the invariant ring of G we look at finding a chain for maximal subgroups from
the abelian group

N = Nak5(G) = (G, hy, hy, hs)

where
100 000 100000
01 00O0O0 01 0001
h1:001001,h22001000,
000100 000100
00 0O0T1Q0 000O0T1Q0
000001 000O0O01
100 000
01 0010
by — 001000
000100
00 0O0T1O0
000001
Let
Ny = Nakt(G),
Ny = (G, hy, hy),
Ny = (G, hy),
N; =G,

then we have the inclusions of maximal subgroups:

G = NS <max NZ <max Nl <max NO =N
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as described in 3.0.11. We shall work through these making repeated use of
Theorem 1.3.4 to find the invariant ring of G.

Lemma 6.2.1. k[V]M = k[N¥, ... NY, fi] where

fr= (o = af ) (2§ — o ws) — (2] — 2} Twa) (af — af ).

Proof. Ny is a Nakajima group so k[V]¥ = E[N7°, ... N{°] where

N{VO =T
N,

N20 — xQ
No _

NI = (2 — af " tag)P — (af — bty (af — 2 )
N = (28 — ab~ as)P — (2f — 2b 2y )P (2 — 2b )

NG = (a — ) — (ah — @ an)? " (af — 2 ae)
As G is nice with respect to the current basis by Proposition 3.0.12
NY - NY - N} — N¥ - N - NO

for 1 <4 < 6. We shall therefore denote N¥ by N; for 1 <i < 6.
We want to use Theorem 1.3.4 to show that

KVIY = K[VI™[Ai].
Firstly it is easy to check that f; € k[V]. Let

dy = 61, (f1) = (ab — 28 ay) (2 — 2f ' y)
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we will show that &, k[V]™ C dik[V]™. To do this we look at the action of hs

on a ring containing k[V ] let

H, = Nakg(Ny) = (91, 92, ha, ha)

then
KV)H = kNI NI NI D B[V

where
N =
Nfl = Iy
NI =25
N — g gy
Ngl = 7§ — 9511)71%
N = (28 - ngle;)p — (ah — nglxg)pfl(xg — x§71x6).

This means that we can write any f € k[V]™ in terms of N, N ... N,

We look at what hs does to these orbit products:

Oy (NI1) = 05, (N =0 for 1 <i < 4

(5h3(N?1) =ah — x’fflmg.

So any f € k[V]™ can be written as a polynomial in N5 with coefficients in

K[V, and so 2§ — o{ " wy must divide &, k[V]™.
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Let
1 0 00 0O
01 00O0O0
0011060
O3 =
0 001O06O0
0 00O0T1FO0
0 00O0O0T1

so o3hs = g3. If f € k[V]™ then

93(f) = ashs(f) = f,
hs(f) = o5 (f),

50 O, k[VIN = 0,,k[V]M. We find

05y (NIY) = 6, (NI) = 6, (NI =0 for 1 <i <3,

0y (NG) = 2§ — 2y

1 .. . -1 -1
and so 2} — 2} x5 divides 6, k[V]™. Since 28 — 2} 2y and 2§ — 2] 23 have

no common factors and k[V]M is a unique factorisation domain
= (af = o0 (@ — o )
1 =Ty =27 T2)(T3 —T1 T3

must divide 6y, (f) for any f € k[V]™. This means that &,,k[V]™ C dk[V]™
and so

KVIM = K[V [f]. O
Lemma 6.2.2. k[V|"2 = k[V|M[f,] where

1

fo = (8—a} " w5)as + (2 — 2§ we) 2y

— 33'4(95120 - 37571952) - 374(37}27 - 55110711'2) - 952(»’175 - 95}207133'4)-
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Proof. Similarly to above we want to use Theorem 1.3.4 to show that
V™ = B[V [fa].
Again it is easy to check that f, € k[V]"2. Let
dy = 0, (f2) = (ah — 28wy )y

we will show that &, k[V ] C dok[V]™2. To do this we look at the action of hy

on a ring containing k[V]2: let

H2 = Nakf(NQ) = <gl, h1>

then
E[V]H2 = B[N NE2 NE2] D [V,
where
N{b = T, Néb = T, N§{2 = I3,
N2 = 2, N2 — g — gy, N2 — g — b,
We find that

Sny,(NI2) =0for 1 <i<5

Shy (Ngb) =ah — a:g_lxg.

so zb — 25 'y must divide 6, k[V]™>.
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Let
1 001 00
01 00O0O0
001000
09 —
0 001O06O0
0 00O0T1FO0
0 00O0O0T1

S0 o9hy = go. If f € k[V]™ then

92(f) = o2ha(f) = f,
ho(f) = o3 ' (f).

50 Op,k[V]N2 = 60,,k[V]V2. We find

00y (NT2) = 6, (NH2) = 5, (NF2) =0 for 1 <i <3

502(Ni{2) = 1

.. . —1
and so z; divides d,,k[V]"2. Since 25 — 2} 25 and x; have no common factors
. . . . . —1 P
and k[V]™2 is a unique factorisation domain dy = (2§ — 2} 259)x; must divide

On, (f) for any f € k[V]N2. This means that &,k[V]Y2 C dok[V]™? and so
KV = k[VIM (£ O
Proposition 6.2.3. k[V]% = k[N, ..., Ng, f1, fo, f3] where
f3 = 11106 — T4 + T3T5.
Proof. As in the previous two Lemmas we want to show that

KV = K[VI™[fs].
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We check f3 € k[V]¢. Let
d3 = 0p, (f3) = 123
we will show that 6, k[V]¢ C dzk[V].

Op,(z;) =0for 1 <i<5

5h1 ({L‘G) = I3.

so w3 must divide 8, k[V]9.

Let

g1 —

_ o O O

o O = O o O
_ o O O O O

o o o o o =
o o o o = O
o o o = o o

e}

so o1hy = g1. If f € k[V]% then

qi(f) =o1hi(f) = f,
hl(f) = Ufl(f)'

50 O, k[V]Y = 65, k[V]¢. We find

0o, (T;) = 64, (x6) = 0 for 1 < i < 3,

5a1($5) = —In,

and so x; divides 6y, k[V]¢. Since 23 and z; have no common factors and k[V]“

is a unique factorisation domain dz = ;23 must divide 0, (f) for any f € k[V]™2.
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This means that &, k[V]¢ C d3k[V]¢ and so
kV]S = K[V]™[f5]. O

We use that any exceptional group of type two generated by an exceptional

triple is congruent to G to find the next result.

Proposition 6.2.4. If E is an exceptional group of type two generated by an
exceptional triple then k[V]¥ is a complete intersection ring. For k = F, all

exceptional groups of type two have complete intersection invariant rings.

6.3 Proof of Theorem 1.0.6 and open problems

Combining the results of this Chapter with those of Chapter 4 gives us some
information about when the invariant rings of pure unipotent bireflection groups
are Cohen-Macaulay or complete intersection rings. We are finally able to prove

Theorem 1.0.6.

Proof. (of Theorem 1.0.6). By Theorem 1.0.5 we know that if G is a unipotent
group consisting of bireflections then it is either a two-row group, two—column
group, hook group or an exceptional group (of type one or two). By [33] Theorem
3.2.1 if G is an abelian reflection two-column group then k[V]“ is a complete
intersection ring. By Theorem 4.2.8 if G is a nice hook group then it has complete
intersection ring of invariants, and by Proposition 4.2.2 if G is not nice then G is
abelian and [G, [G, W] # {0}. If G is an exceptional group then it has complete
intersection invariant ring by Propositions 6.2.4 and 6.1.7. The only remaining
groups are those listed above.

By Theorem 1.4.3 if G is a two-column group then k[V]¢ is Cohen-Macaulay
and so the only groups which could have non-Cohen—Macaulay invariant rings are

two-row groups or hook groups which are not nice with respect to any basis. [J

We end with a brief discussion of problems left to solve, for example finding

the invariant ring of the group in Chapter 5 for p # 3. Is this a special case or are
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there many more invariant rings which are Cohen—Macaulay and not complete
intersection rings? Are there examples for p = 27 Suppose f1, ..., f, are a HSOP
for k[V]¢ a Cohen—Macaulay but non complete intersection ring, what does the
Poincaré duality algebra k[V]/(fi,..., fa) look like in this case?

It would also be interesting to extend the results of Theorem 1.0.6 to other
fields. As shown in Example 2.2.12 we would need to start by finding a new
classification for k£ of even characteristic, here the structure of exceptional groups
of type one are also quite different. Work on hook groups is still valid for p = 2,
but more needs to be done to extend from k = [F,, to larger fields.

When G is a p-group which is nice with respect to some basis B, we know
that [G, G| is contained within N~ = Nak,(G). Can we find a set of hook groups
H; < G such that

N-<(N",H)<..<(N",Hy,... H, =G,

which would help us to find k[V]“ by extending the results of Chapter 47 Firstly
though we would need to look at when G is a nice bireflection group but k[V]¢
is not Cohen—Macaulay. Suppose that G is nice with respect to some basis B,
N+ := Nakj;(G) and we have a chain of maximal subgroups as in Proposition
3.0.11

G = Ny Dmax N1 <max N2 Dmas - - - <max V] = N T

If k[V]¢ is Cohen-Macaulay can we always find a chain such that for some
fiek [V]NZ
VIV = k[VIY ]

for 0 <4 < (? If this is the case then k[V] would either be complete intersection

or not Cohen—Macaulay for all groups which are nice with respect to some basis.
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