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Abstract

Let k be a field of characteristic p and let V be a k-vector space. In Chapter 2 of

this thesis we classify all unipotent groups G ≤ GL(V ) consisting of bireflections

for p ̸= 2: we show that unipotent groups consisting of bireflections are either two–

row groups, two–column groups, hook groups or one of two types of exceptional

group.

The well known theorem of Chevalley-Shephard-Todd shows the importance

of (pseudo-)reflection groups to invariant theory. Our interest in bireflection

groups is motivated by the theorem of Kemper which tells us if G ≤ GL(V ) is a

p-group and the invariant ring k[V ]G is Cohen–Macaulay then G is generated by

bireflections. We use our classification to investigate which groups consisting of

bireflections have Cohen–Macaulay or complete intersection invariant rings.

In Chapter 3 we introduce techniques and notation which we use later to find

invariant rings of groups by viewing them as subgroups of Nakajima groups. In

Chapter 4 we show that for k = Fp there is a family of hook groups, including

all non-abelian hook groups, which have complete intersection invariant rings.

It is well known that Cohen–Macaulay invariant rings of p-groups in char-

acteristic p are Gorenstein. There has been speculation by experts in the area,

that they might in fact be complete intersections. In Chapter 5 we settle this

negatively by giving an example of a p-group which has Cohen–Macaulay but

non complete intersection invariant ring. To the best of our knowledge this is

the first example of that kind.

Finally in Chapter 6 we show that when k = Fp both types of exceptional

group have complete intersection invariant rings.
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Chapter 1

Introduction

The results in this thesis can be divided into two sections. Chapter 2, although

motivated by invariant theory, deals only with unipotent groups consisting of

bireflections, their structure and classification. Later on we look at the invariant

rings of some of these groups. This first chapter gives an introduction to invariant

theory and why we are interested in unipotent bireflection groups. We start by

defining the objects we are interested in.

Definition 1.0.1. Let k be a field and V an n-dimensional k-vector space. We

denote the vectors fixed (pointwise) by a group G ∈ GL(V ):

V G = {v ∈ V | g(v) = v, for all g ∈ G},

and for any g ∈ GL(V ) we define:

V g = {v ∈ V | g(v) = v}.

An element g ∈ GL(V ) is called a reflection (sometimes a pseudoreflection)

if

dimk(V g) = n − 1.

If

dimk(V g) ≥ n − 2
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then g is called a bireflection. A subgroup G ≤ GL(V ) is called a reflection

group if it is generated by reflections. Similarly G is called a bireflection

group if it is generated by bireflections.

Let R be a commutative ring on which a group G acts. In invariant theory

we are interested in the subset of a ring R which remains invariant under the

group action

RG = {f ∈ R | g(f) = f, for all g ∈ G}.

Let k be a field, later we shall always consider a finite field k with positive

characteristic p, so k = Fq where q = pr for some r ∈ N\0. Let V be an

n-dimensional k-vector space with basis {e1, . . . , en}. We can choose a respective

dual basis for W = V ∗ by choosing {x1, . . . , xn} such that

xi(ej) =


1 if i = j

0 otherwise.

For any finite group G we look at a fixed representation ρ : G → GL(V ) giving

a left action of G on V . We will use the same convention as in Campbell and

Wehlau’s book ([10]) that G also acts on the left on W by the dual representation.

The following lemma will be used to relate the two:

Lemma 1.0.2. [10, 1.1.1] For a group G let ρ : G → GL(V ) be a fixed repre-

sentation, ρ∗ : G → GL(W ) the dual representation. Then for g ∈ G the matrix

representing ρ(g) ∈ GL(V ) with respect to a fixed basis is the transpose inverse

of the matrix representing ρ∗(g) with respect to the dual basis.

We will see that faithful representations of the same group can have very

different invariant rings, so we will mainly view the groups we are interested in

as subgroups of GL(V ) with the natural representation. If we have a matrix M

of g ∈ GL(V ) with respect to a basis e1, . . . , en for V , then we can read off the

action of g on this basis by looking at the columns of M . To find the action of

g−1 on the corresponding dual basis we can read across the rows of M .
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From here we can extend the action of G on W to an action on the polynomial

ring

k[V ] = S(W ) = k[x1, . . . , xn].

We do this by setting:

g(f(x1, . . . , xn)) = f(g(x1), . . . , g(xn))

for all f ∈ k[V ], g ∈ G. In invariant theory we are interested in the fixed space

of this action, the invariant ring:

k[V ]G = {f ∈ S(V ) | g(f) = f for all g ∈ G}.

Example 1.0.3. Let k = R, n = 2 with {x, y} a basis for W . Let G = ⟨g, h⟩

where

g =

−1 0

0 1

 , h =

1 0

0 −1

 ∈ GL(V ).

Let X = x2 and Y = y2 then

g(X) = g(x2) = (−x)2 = X = h(X),

h(Y ) = h(y2) = (−y)2 = Y = g(Y ),

so X, Y ∈ k[V ]G, furthermore we will see later that X, Y generate the whole ring

of invariants, so k[V ]G = k[X, Y ].

Invariant theory of finite groups can be split into the modular case (where the

characteristic of the field k divides the order of the group) and non-modular case.

We will mainly be interested in the modular case where many of the questions

that are answered in the non-modular case are still open.



4

Definition 1.0.4. Let A be the k-algebra generated by f1, . . . , fn so A =

k[f1, . . . , fn]. If the fi are algebraically independent then we say that A is

a regular or polynomial ring.

In the Example 1.0.3 we see that the invariant ring is polynomial, and so

k[V ]G ∼= k[V ]. In invariant theory we are interested in when this happens, when

is the ring of invariants a polynomial ring? We will use the following hierarchy

to describe how far away a ring is from being a polynomial ring:

Regular ⇒ Complete Intersection ⇒ Gorenstien ⇒ Cohen–Macaulay.

These terms will be defined in the next section.

The groups that we will be interested in will be p-groups with k a finite field

of characteristic p. Motivated by Theorems 1.3.6 and 1.3.7 we will look at groups

which consist of bireflections, and the structure of their invariant rings. Our

main groups of interest will be:

• two–column groups which are subsets of




1 0 0

c 1 0

a b In−2

 | a, b ∈ kn−2, c ∈ k


(see Section 2.3).

• two–row groups which are subsets of




In−2 0 0

a 1 0

b c 1

 | a, b ∈ (kn−2)T , c ∈ k


(see Section 2.3).
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• hook groups which are subsets of




1 0 0

b In−2 0

c a 1

 | a ∈ (kn−2)T , b ∈ kn−2, c ∈ k


(see Section 2.4).

• exceptional groups of type one. These are distinct from the above groups.

They are subgroups of a group consisting of bireflections which is isomorphic

to

Sylp(SL3(q)) =




1 m n

0 1 l

0 0 1

 | m, n, l ∈ k


(see Section 2.5).

• exceptional groups of type two. These are subgroups of an elementary

abelian group of order q3 consisting of bireflections. These are distinct

from hook groups but each pair of elements generates a hook group (see

Section 2.6).

In section 2.2 we give a full classification of finite unipotent groups consisting

of bireflections in characteristic p > 2.

Theorem 1.0.5. Let G ≤ GL(V ) be a p-group consisting of bireflections with

p ̸= 2 then one of the following must hold:

• G is a two–row group.

• G is a two–column group.

• G is a hook group.

• G is an exceptional group of type one.
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• G is an exceptional group of type two.

The remainder of Chapter 2 is spent looking at the properties of these groups.

This allows us to draw some more general conclusions in Section 2.7, for example

showing that all unipotent groups conisisting of bireflections have class less than

or equal to two for p ̸= 2, n ≥ 3 (see Corollary 2.7.3).

For k = Fp it turns out that a lot of these representations do have Cohen–

Macaulay rings of invariants, many of which are also complete intersection

rings.

Theorem 1.0.6. Let G ≤ GL(V ) be a unipotent group consisting of bireflections,

as above let W = V ∗. If k = Fp and k[V ]G is not a complete intersection ring

then one of the following must hold

• G is a non-abelian two–column group.

• G is a two–column group which cannot be generated by reflections.

• G is an abelian hook group with [G, [G, W ]] ̸= {0}.

• G is a two–row group.

If k = Fp and k[V ]G is not a Cohen–Macaulay ring then one of the following

must hold:

• G is an abelian hook group with [G, [G, W ]] ̸= {0}.

• G is a two–row group.

In Chapter 2 we formally define these groups and prove Theorem 1.0.5. In

Chapter 4 we show that certain hook groups have complete intersection invariant

rings for k = Fp (see Theorem 4.2.8). In Chapter 6 we show that the exceptional

groups have complete intersection invariant rings, again for k = Fp. Combining

these with existing results about two–column groups we will prove Theorem

1.0.6.

In Chapter 5 we will find the invariant ring of a two–column group which

has Cohen–Macaulay but non complete intersection ring of invariants. This is a
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counter example to speculation by experts that if k is a field of characteristic

p, G a p-group, then k[V ]G Cohen–Macaulay implies that k[V ]G is a complete

intersection ring.

Firstly though we need more of an introduction to invariant theory.

1.1 The invariant ring k[V ]G

The ring of invariants k[V ]G is a subring of k[V ] and has some of the same nice

properties, for example being finitely generated. This is a classical result of

David Hilbert from 1890 ([19]) in the non-modular case and was proved later in

1915 by Emmy Noether in the modular case ([29]). One consequence of this is

that the invariant ring is Noetherian which means that any chain of ascending

ideals eventually terminates. Another nice property of k[V ]G is that it is graded.

Definition 1.1.1. A ring R is called (positively) graded if we can find additive

groups Ri ≤ R for i ∈ N such that

R =
⊕
i∈N

Ri

and if ri ∈ Ri, rj ∈ Rj then rirj ∈ Ri+j. We call r ∈ R homogeneous if

r ∈ Ri for some i ∈ N. A graded algebra R is called connected if R0 = k. An

R-module M is called a graded module if we can find additive groups Mi ≤ M

for i ∈ N such that

M =
⊕
i∈N

Mi

and if ri ∈ Ri, mj ∈ Mj then ri(mj) ∈ Mi+j.

We say that a monomial xa1
1 xa2

2 . . . xan
n has degree d = a1 + a2 + . . . + an.

For a polynomial ring R = k[x1, . . . , xn] we let Rd be the subspace spanned by

monomials of degree d. In this way we see that polynomial rings have a natural

positive grading given by degree, as the degree zero part is the field itself they

are also connected. By the way we have defined the group action we can see

that it respects this grading, and all elements in degree zero (elements of the
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field k) are fixed. If f, g ∈ k[V ]G, so are fg and f + g so k[V ]G is a graded

connected k-algebra. An ideal in a graded ring R is called homogeneous if it can

be generated by homogeneous elements. In the case of a graded connected ring

there is a unique maximal homogeneous ideal R+, generated by all elements of

positive degree. In some situations we can use this to treat the ring similarly to

a local ring and refer to it as *-local.

Let R be a ring with subring S. If for some element a ∈ R we can find a

monic polynomial f with coefficients in S such that f(a) = 0 then we say that a

is integral over S. If every a ∈ R is integral we say that R is integral over S or

that R is an integral extension of S.

Theorem 1.1.2. [10, 3.0.4] Let G ≤ GL(V ) be a finite group, then k[V ] is an

integral extension of k[V ]G.

Proof. For any h ∈ k[V ] we can construct the monic polynomial

F (t) =
∏
g∈G

(t − g(h)) = t|G| + f|G|−1t
|G|−1 + . . . + f0.

As at least the identity in G fixes h we must have F (h) = 0. We can extend the

action of G on R = k[V ] to an action on R[t] by letting g(t) = t for all g ∈ G.

As all elements of the group simply permute the factors of F (t) we find that

F (t) ∈ R[t]G. This means that for any σ ∈ G:

t|G| + σ(f|G|−1)t|G|−1 + . . . + σ(f0) = t|G| + f|G|−1t
|G|−1 + . . . + f1t + f0.

As all the fi’s are of different degrees this means that fi ∈ k[V ]G for 0 ≤ i ≤

|G| − 1, and so k[V ] is integral over k[V ]G.

Definition 1.1.3. Let R be a Noetherian ring and let p be a prime ideal of R.

If we can find a chain of prime ideals

p0 ( p1 ( . . . ( pi = p
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which is of maximal length, i, then we call i the height of p. The Krull

dimension of R is the maximum height of proper prime ideals in R.

For a polynomial ring R = k[x1, . . . , xn] it’s Krull dimension is n: we can

find the chain of prime ideals:

(0) ( (x1) ( (x1, x2) ( . . . ( (x1, . . . , xn)

and this is the maximal possible length of a chain of prime ideals in R.

As k[V ] is integral over k[V ]G we can use the Lying Over, Going-Up and

Going-Down Theorems to relate prime ideals in k[V ]G with prime ideals in k[V ]

(see [10] Theorem 2.5.2). This tells us that k[V ] and k[V ]G have the same Krull

dimension. From here on for any ring R we shall mean the Krull dimension of

R when we refer to its dimension or write dim(R) and will specifically state in

any instances when we mean the dimension of R as a k-vector space (and write

dimk(R)).

We know that k[V ]G is finitely generated, suppose for some m ∈ N it is

generated by homogeneous elements f1, . . . , fm ∈ k[V ]G+. There is a canonical

surjective homomorphism of k-algebras φ from the polynomial ring k[y1, . . . , ym]

onto k[V ]G, mapping yi to fi for 1 ≤ i ≤ m. For a graded connected ring R the

minimal number of generators m for R+ is called the embedding dimension

of R (Emb dim(R)).

Definition 1.1.4. Let R be a commutative graded k-algebra of Krull dimension

n with homogeneous elements f1, . . . , fn of R and let A = k[f1, . . . , fn]. We say

that the fi’s form a homogeneous system of parameters (or HSOP) for R

if R is finitely generated as an A-module: there exists h1, . . . , hm for some m ∈ N

such that

R =
m∑

i=1
Ahi.
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In the case that R = k[V ]G a HSOP is often referred to as a set of primary

invariants and the module generators (the hi’s) are the respective secondary

invariants.

As k[V ]G is a graded connected k-algebra Noether’s Normalisation Lemma

(see [14, Theorem A1]) tells us that we can always find such a system for

the invariant ring k[V ]G. As k[V ] is integral over k[V ]G any HSOP for k[V ]G

also forms a HSOP for k[V ]. In example 1.0.3 {X, Y } can be shown to be a

homogeneous system of parameters for k[V ]G and in general a HSOP is not too

difficult to find.

Lemma 1.1.5. [10, 2.6.3] Let k[V ]G have Krull dimension n and f1, . . . , fn ∈

k[V ]G. Let k be the algebraic closure of k, and let

V = V ⊗k k.

Then {f1, . . . , fn} forms a HSOP for k[V ]G if and only if VV (f1, . . . , fn) = {0},

where

VV (f1, . . . , fn) = {x ∈ V : 0 = f1(x) = f2(x) = . . . = fn(x)}.

Example 1.1.6. Let k = Fq, R = k[V ] and let G = GL(V ). We can form the

following homogeneous polynomial over R[t]:

F W (t) =
∏

w∈W

(t − w) =
n∑

i=0
di,ntqi

.

We can see that F W (t) ∈ RG[t], and as the di,n all have different degrees we must

have di,n ∈ RG for 1 ≤ i ≤ n. These are known as the Dickson Invariants.

The smallest non-trivial case is k = F2 and W = ⟨x, y⟩k. Here we have

F W (t) = t(t + x)(t + y)(t + x + y) = t4 + (x2 + xy + y2)t2 + (x2y + y2x)
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so d1,2 = x2 + xy + y2, d0,2 = x2y + y2x. We see that

d0,2 = xy(x + y)

so if (c1, c2) ∈ VV (d0,2) either c1 = 0, c2 = 0 or c1 = −c2. Substituting these into

d1,2 shows that

VV (d1,2, d0,2) = {0}

and so we have found a HSOP for k[V ]G.

As k[V ] is integral over k[V ]G if H ≤ G then k[V ]H is integral over k[V ]G, so

a HSOP for k[V ]G is also a HSOP for k[V ]H . The Dickson Invariants can always

be shown to form a HSOP for GL(V ). As we are only interested in groups G

which are subgroups of GL(V ), this means that the Dickson Invariants always

form a HSOP for k[V ]G (though not usually the most convenient one to work

with). They also have some other nice properties which we will make use of later.

Lemma 1.1.7. [10, 3.3.1] Let x1, . . . , xn be a basis for W . For 1 ≤ i ≤ n define

subspaces of W by

Wi = ⟨x1, . . . , xi⟩

and as above let

Fi(t) = F Wi(t) =
∏

w∈Wi

(t − w).

Then

1. Fi(t) = Fi−1(t)q − Fi−1(xi)q−1Fi−1(t);

2. dj,i = dq
j,i−1 − dj−1,i−1F

q−1
n−1(xi).

The following can be used to check if a HSOP generates the whole invariant

ring.

Theorem 1.1.8. [22, 16] If {f1, . . . , fn} are a HSOP for k[V ]G then

n∏
i=1

deg(fi) = |G|



1.1 The invariant ring k[V ]G 12

if and only if k[V ]G = k[f1, . . . , fn] so k[V ]G is a polynomial ring.

In the case of the Dickson Invariants we can see that deg(di,n) = qn − qi for

1 ≤ i ≤ n and then can check that

n∏
i=1

deg(di,n) =
n−1∏
i=0

qn − qi = |GL(V )|.

So k[V ]G = k[d1,n, . . . , dn,n]. In Example 1.0.3 we also find that

deg(X) deg(Y ) = 4 = |G|,

however this is not always the case.

Example 1.1.9. Let k = R, n = 2 and x, y be a basis for W . Let G be as in

Example 1.0.3 and H = ⟨t⟩ ≤ GL(V ) where

t =

−1 0

0 −1

 .

We see that H is a subgroup of G and so X, Y form a HSOP for k[V ]H , however

they don’t generate the whole ring: xy ∈ k[V ]H but xy ̸∈ k[X, Y ]. It can be

shown that k[V ]H = k[V ]G[xy] and we cannot find a HSOP, f1, f2 such that

k[V ]G = k[f1, f2] and so k[V ]G is not regular.

When we can find a HSOP f1, . . . , fn such that k[V ]G = k[f1, . . . , fn] then

k[V ]G ∼= k[V ] and we say k[V ]G is a polynomial or regular ring. In the non-

modular case the well known theorem of Chevalley ([11]), Shephard and Todd([30])

tells us which groups have polynomial invariant rings.

Theorem 1.1.10 (Chevalley, Shephard-Todd). If |G| ∈ k∗ then k[V ]G is poly-

nomial if and only if G is generated by reflections

In the modular case Serre’s theorem (see [10, Corollary 12.2.5]) tells us that

for k[V ]G to be polynomial, G must be generated by reflections. However the

converse is false.



1.2 How far away is k[V ]G from being polynomial? 13

1.2 How far away is k[V ]G from being polyno-

mial?

When a ring fails to be a polynomial ring we can ask how far away it is from

being regular. In Example 1.1.9 we said that k[V ]H = k[V ]G[xy] where k[V ]G is

a polynomial ring. This is an example where the invariant ring R = k[V ]H is a

hypersurface- this means that

Emb dim(R) ≤ dim(R) + 1.

In this section we will define other ring classifications that we will use later

on.

1.2.1 Cohen–Macaulay rings and depth

Definition 1.2.1. Let R be a ring, M an R-module, and

x = x1, x2, ..., xn

a sequence of elements in R. The sequence x is called an M-regular sequence

or M-sequence of length n if the following are satisfied:

• M/xM ̸= 0;

• xi is not a zero divisor of M/(x1, ..., xi−1)M for 1 ≤ i ≤ n.

When R is taken to be a module over itself this is simply called a regular

sequence.

A regular sequence is maximal if it cannot be extended to a longer regular

sequence. If R is a Noetherian ring, M an R-module and I an ideal in R with

IM ≠ M , then all maximal regular M -sequences in I have the same length (see

[14] Chapter 17). For a local (or *-local) ring with maximal ideal m (or maximal

homogeneous ideal R+) we call the depth of M the length of a maximal regular
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M -sequence in m (or R+). We shall denote the depth of M (as an R-module)

by depthR(M), or just depth(M) where the ring is clear. Most often we will

be interested in the depth of R as an R-module (this is the maximal length of

homogeneous regular sequences in R). A ring is called Cohen–Macaulay if depth

is equal to Krull dimension, in which case any HSOP is a regular sequence (see

[10, 2.8.1]).

Theorem 1.2.2. [3, 4.3.5] If R is a graded connected Noetherian k-algebra then

the following are equivalent:

1. R is Cohen–Macaulay of dimension n;

2. R has a HSOP f1, ..., fn such that if A = k[f1, ..., fn] then R is free as an

A-module;

3. for any HSOP f1, ..., fn for R, A = k[f1, . . . , fn], R is free as an A-module.

This means that if R is Cohen–Macaulay with HSOP f1, . . . , fn then we can

find a set of secondary invariants h1, . . . , hm ∈ R for some m ∈ N such that if

A = k[f1, . . . , fn] then

R = ⊕m
i=1Ahi.

If we have a set of generators for R = k[V ]G then we have a simple way to check

if the ring is Cohen–Macaulay.

Theorem 1.2.3. [13, 3.7.1] Let G ≤ GL(V ), and let k[V ]G have a set of primary

invariants f1, . . . , fn, and a minimal set of secondary invariants h1, . . . , hm. Then

n∏
i=1

deg(fi) ≤ m|G|

with equality if and only if k[V ]G is Cohen–Macaulay.

In the non-modular case k[V ]G is always Cohen–Macaulay ([20]), however

this is not true in the modular case. We can use the Cohen–Macaulay defect to
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give a measure of how far away a ring R is from being Cohen–Macaulay:

CMdef(R) = Krull dim(R) − depth(R).

We introduce a little homological algebra which will allow us to put a lower

bound on the depth of an invariant ring.

Let R be a ring. An R-module P is called projective if it is a direct summand

of a free module or equivalently if for all maps f : P → N , and all surjections

g : N → M with M , N both R-modules there exists h such that the following

diagram commutes:

P

f
��

h

}}
M g

// // N.

For a graded module M over a graded connected ring R, free and projective

are equivalent (see [14] Theorem A3.2). Suppose M is a finitely generated R-

module, with generators m1, . . . , mr. We can always find a surjection from the

free R-module

M0 = ⊕r
i=1Rri

onto M by mapping ri to mi. Using this surjection we obtain the following exact

sequence:

0 // I //M0
p0 //M // 0

where I is the kernel of the map. The kernel I may not be free, but as above we

can find an M1 which is free and surjects onto I, and continue in this manner to

find the exact sequence of free modules (and M):

. . .
p3 //M2

p2 //M1
p1 //M0

p0 //M // 0 .

The above sequence is called a free resolution for M . If we have an exact

sequence as above, but with the Mi merely projective (not necessarily free) then
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this is called a projective resolution for M . If we can find some l such that

Ml ̸= 0 but Mi = 0 for i > l then we say that the resolution terminates and

has length l. A projective resolution of M is minimal if it has minimal length

l, in this case we call l the projective dimension of M (projdimR(M)). If it is

not possible to find a projective resolution which terminates we say that M has

infinite projective dimension.

Let R be a ring with R-modules M and N . Suppose that we have a projective

resolution P for M :

. . .
p3 //M2

p2 //M1
p1 //M0

p0 //M // 0 .

For i ≥ 1 we can define maps

fi : HomR(Mi−1, N) → Hom(Mi, N)

such that for m ∈ Hom(Mi−1, N), m′ ∈ Mi

fi(m)(m′) = m(ρi(m′)).

We can form the following complex Hom(P, N):

0 // Hom(M0, N) f1 // Hom(M1, N) f2 // Hom(M2, N) f3 // . . . .

Unlike the projective resolution this is not necessarily an exact sequence. We

measure how far away this sequence is from being exact by defining

Exti
R(M, N) = H i(P, N) = ker(fi)/Im(fi+1).

In the case that we have a finite group G with kG-module A we define

H i(G, A) = Exti
ZG(Z, A).
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We call the smallest i > 0 such that H i(G, A) ̸= 0 the cohomological connectivity

of A and denote it by ccG(A).

Theorem 1.2.4. [16, 1.2] Let R = k[V ], G ≤ GL(V ) then

depth(RG) ≥ min{dimk(V p) + ccG(R) + 1, dimk(V )}.

The representation V of a group G is called flat if

depth(RG) = dimk(V G) + ccG(R) + 1.

For p-groups and k of characteristic p, where ccG(R) = 1, this is a particularly

useful theorem.

Theorem 1.2.5. [15, 4] Let G be a group with Sylow-p-subgroup P . Let V be a

finite kG-module, R = k[V ], and m = ccG(R). Suppose that 0 ̸= τ ∈ Hm(G, R)

is a cohomology class such that

resP
N(τ) = 0

for each maximal subgroup N < P . Then V is flat.

Let G be a p-group. For a maximal subgroup M of G let

XM := (1 − g)W M

where g ∈ G\M . For some uN ∈ N\M for N ▹max G let

YM :=
⋂

N▹maxG
N ̸=M

(1 − uN)W N∩M .

Theorem 1.2.6. [15, 6] For a non-cyclic p-group G the following are equivalent:

1. ⋂M▹maxP ker(resG
M |H1(G,W )) ̸= 0;

2. for some M ▹ G maximal XM < YM ∩ W M ;
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3. for all M ▹ G maximal XM < YM ∩ W M .

From the above we see that homology is useful when looking at the depth

of invariant rings. Another useful tool when looking at regular sequences is the

Koszul complex. Let R be a commutative Noetherian ring with M an R-module.

Let ⊗i
M = M ⊗ M ⊗ . . . ⊗ M︸ ︷︷ ︸

i-times

so ⊗0 M = R, ⊗1 M = M and ⊗2 M = M ⊗ M . The tensor algebra of M ,⊗
M , is defined to be ⊗

M =
⊕
i≥0

⊗i
M.

where the multiplication of x1 ⊗ . . . ⊗ xm ∈ ⊗m M and y1 ⊗ . . . ⊗ yl ∈ ⊗l M is

given by

x1 ⊗ . . . ⊗ xm × y1 ⊗ . . . ⊗ yl = x1 ⊗ . . . ⊗ xm ⊗ y1 ⊗ . . . ⊗ yl ∈
⊗l+m

M.

From here we can define the exterior algebra

∧M =
⊗

M/J

where J is the ideal of ⊗M generated by the elements x ⊗ x and x ⊗ y − y ⊗ x

for all x, y ∈ M .

The tensor algebra is graded by the ⊗i M ’s, and this naturally leads to a

grading on ∧M by letting

∧iM =
⊗i

M

for i ≥ 0 where ⊗i M is the image of ⊗i M in ∧M .

Let x = x1, . . . , xm be a sequence in R and let N be the free R-module of

rank m with e1, . . . , em a basis for N . We can see that

∧iN ∼= R(m
i )
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as R-modules for 1 ≤ i ≤ m and ∧iN = 0 otherwise. Let f : N 7→ R be the map

defined by f(ei) = xi for 1 ≤ i ≤ m. The Koszul complex of x, K(x), is defined

to be:

0 // ∧mN
dm // ∧m−1N

dm−1 // . . .
d2 // ∧1N

d1 // R // 0

where for 1 ≤ i ≤ m the map di : ∧iN 7→ ∧i−1N maps a1 ∧ ... ∧ ai to

di(a1 ∧ .. ∧ ai) =
i∑

j=1
(−1)jf(aj)a1 ∧ . . . ∧ âj ∧ . . . ∧ ai

where âj signifies that this term has been omitted.

Theorem 1.2.7. [14, 17.4] Let M be a finitely generated module over the ring

R and let x = x1, . . . , xn be a sequence in R. If

Hj(M ⊗ K(x)) = 0 for j < m

while

Hm(M ⊗ K(x)) ̸= 0

then every maximal M-sequence in I = (x) ⊂ R has length m.

1.2.2 Gorenstein rings and free resolutions

We are always interested in R a graded connected finitely generated k-algebra,

and in this case the Hilbert Syzygy Theorem tells us that any R-module M

has finite projective dimension. The following relates projective dimension and

depth.

Theorem 1.2.8. Let R be a graded connected Noetherian k-algebra generated

by f1, . . . , fs and let B = k[y1, . . . , ys] be a polynomial ring. Then

depth(R) + projdimB(R) = dim(B).
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Proof. This is contained in [3] but not stated specifically: the ring R meets the

criterion of Hypothesis 4.3.2 (of [3]) so by Theorem 4.4.3 (of [3]) depth(R) =

hcodimB(R). By Theorem 4.4.4 (of [3])

hcodimB(R) + projdimB(R) = dim(B)

and so

depth(R) + projdimB(R) = dim(B).

This is a graded connected version of the Auslander-Buchsbaum Theorem

which holds in the local case. Let R be a graded connected Cohen–Macaulay

k-algebra, with Krull dimension n, which can be generated by f1, . . . , fs and let

B = k[y1, . . . , ys] be a polynomial ring with canonical surjection φ onto R.

If l is the projective dimension of R as a B-module then using the above

l = s − n. Let

0 //Ml
ρl // . . .

ρ1 //M0 // R // 0

be a projective resolution for R. For 1 ≤ i ≤ l let M∗
i = HomB(Mi, B) and

ρ∗
i : M∗

i−1 → M∗
i such that for m ∈ M∗

i−1, n ∈ Mi

ρ∗
i (m)(n) = m(ρi(n)).

Using [3] Corollary 4.5.2

Exti
B(M, B) = 0

for i ̸= s − n = l so if we let ΩB(M) = M∗
l /Im(ρl) then

0 //M∗
0

ρ∗
1 // . . .

ρ∗
l //M∗

l
// ΩB(R) // 0

is an exact sequence.
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It can be shown that ΩB(R) doesn’t depend on the choice of generators

f1, . . . , fs: for any f ′
1, . . . , f ′

s′ and regular ring B′ = k[y′
1, . . . , y′

s′ ] we find that

ΩB(R) = ΩB′(R) is a free R-module (see Section 4.5 of [3]). We call Ω(R) =

ΩB(R) the canonical module of R and say that the type of R is the rank of Ω(R)

as a free R-module.

Definition 1.2.9. Let R be a graded connected k-algebra. Then R is a Goren-

stein ring if it is a Cohen–Macaulay ring of type one (or equivalently Cohen–

Macaulay such that Ω(R) ∼= R as R-modules).

If k[V ]G is a Gorenstein ring with HSOP f1, . . . , fn, I = (f1, . . . , fn) then we

know a that k[V ]G/I has a particularly nice form, described by the definition

below.

Definition 1.2.10. Let R be a zero dimensional graded connected k-algebra

with top degree d, then R is called a Poincaré duality algebra if dimk(Rd) = 1

and for all i ≤ d/2 there exists a bilinear form

Ri ⊗k Rd−i → Rd,

a ⊗k b 7→ ab,

which is non-singular: if a ∈ Ri then a = 0 if and only if a ⊗k b 7→ 0 for all

b ∈ Rd−i.

If R is a Gorenstein ring with a HSOP f1, . . . , fn then R/(f1, . . . , fn) is a

Poincaré duality algebra (see [28] Corollary 5.7.4).

1.2.3 Complete intersection rings

Definition 1.2.11. Let R be a finitely generated k-algebra such that there is a

polynomial ring A = k[y1, . . . , yn+s] and some homogeneous ideal I with

R = A/I = k[ȳ1, ..., ȳn+s].
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We call R a complete intersection ring if it has dimension n and we can find

a homogeneous regular sequence a1, . . . , as which generates I.

This can be shown to be a ring property for R independent on the choice of

A and I. We can also show that if R = A/I is a complete intersection it must be

Cohen–Macaulay: as A is a Cohen–Macaulay ring a1, . . . , as can be extended to

a regular sequence a1, . . . , an+s which is a HSOP for A. From the definition of a

regular sequence we see as+1, . . . , an+s must be a regular sequence of length n in

A/I. This means that the depth of R is at least n, however as depth is bounded

above by the Krull dimension, the depth of R must be equal to n and so R is a

Cohen–Macaulay ring.

Proposition 1.2.12. [32, 9.4] Let S = k[y1, . . . , yn+s] be a polynomial ring,

I = (a1, . . . , am)A an ideal of A and R = A/I. Then R is a complete intersection

ring if and only if the Koszul complex, K(r1, . . . , rm), is a free resolution for R.

The Koszul complex is self dual ([6, Proposition 1.6.10]) so from this we can

see that if R is a complete intersection ring then R is Gorenstein. The next

result gives us a practical way to check if a ring is a complete intersection.

Proposition 1.2.13. [25] Let G ≤ GL(V ) and let f1, . . . , fn be a HSOP for

k[V ]G. Let A = k[f1, . . . , fn] and h1, . . . , hs be a set of module generators for

k[V ]G over A. Let J be the kernel of the map

A[y1, . . . , ys] → A[h1, . . . , hs] = k[V ]G, yi 7→ hi

where the degree of the yi are shifted such that deg(hi) = deg(yi). If S ⊂ J is

the set containing

• generators for the A linear relations between the hi, elements of J ∩

(⊕m
i=1Ayi),

• for each 1 ≤ i ≤ j ≤ s a relation of the form yiyj − fi,j with fi,j ∈ ⊕m
i=1Ayi,

then the elements of S form a generating set for the ideal J in A[y1, . . . , ys].
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Note that in the above as the HSOP is algebraically independent we do not

need to worry about relations between them. Even if we have found a set of

relations, showing that they are minimal can be difficult, so it can be useful to

move the question to a ring with smaller Krull dimension.

Proposition 1.2.14. Let R = k[f1, . . . , fn+s] ⊆ k[x1, . . . , xn] be a complete

intersection ring of dimension n. If t = t1, . . . , tm is a regular sequence in R

then R/tR is a complete intersection ring.

Proof. We will first show that if t1 ∈ R is a not a zero divisor then R/(t1) is a

complete intersection ring. Let B = k[y1, . . . , yn+s], then

φ : B → R,

φ(yi) 7→ fi for 1 ≤ i ≤ n + s.

is a surjection. As R is a complete intersection ring we can find a regular sequence

h1, . . . , hs which generate the ideal J = (h1, . . . , hs) such that ker(φ) = J .

Let t′ ∈ B such that φ(t′) = t1. As t1 is not a zero divisor in R, t
′, the image

of t′ in B/J , is not a zero divisor. This means that h1, . . . , hs, t′ form a regular

sequence, and so

B/(h1, . . . , hs, t′) ∼= R/(t1)

is a complete intersection ring.

Our result is true for a regular sequence of length one, we can easily extend to

a regular sequence of length m by induction. If t1, . . . , tm are a regular sequence,

by the induction hypothesis we assume that S = R/(t1, . . . , tm−1) is a complete

intersection ring. By the property of regular sequences tm, the image of tm in S,

is not a zero divisor in S, and so

S/tm
∼= R/(t1, . . . , tm),

is a complete intersection ring.
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1.3 Unipotent groups

Let k be a field of characteristic p, V a k-vector space and G ≤ GL(V ) a finite

group. We will mainly be interested in finite p-groups, so |G| = ps for some

s ∈ N.

Definition 1.3.1. The lower central series of a group G, is a series of sub-

groups, L1, L2, . . ., of G, defined by L1(G) = G, and

Li(G) = [Li−1(G), G] for i ≥ 2

so L2(G) = [G, G] = G′. If Lm(G) = 1 for some m, then G is called nilpotent.

If m = n + 1 is the smallest integer such that Lm(G) = 1 then n is known as the

class of G.

Let now G be a finite p-group. We can always find a normal subgroup N of

G such that G/N is elementary abelian, the smallest such subgroup is known at

the Frattini subgroup Φ(G), which can also be characterised by

Φ(G) =
⋂

M<maxG

M.

By the definition of [G, G] if g, h ∈ G then [g, h] ∈ [G, G] so G/[G, G] is abelian

(this also means any subgroup of G containing [G, G] is normal). To find an

elementary abelian group we need to eliminate any non identity gp ∈ G, so we

see that

Φ(G) = Gp[G, G].

A p-group is called special if it is either i)elementary abelian or ii)the Frattini

subgroup is given by

Φ(G) = Z(G) = [G, G]

in which case it is elementary abelian. A non-abelian special group such that

Φ(G) is cyclic is called extraspecial. The extraspecial groups of order p3 for p = 2
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are the dihedral group, D8, and the quaternions, Q8, where

Q8 = ⟨x, y | x4 = y4 = 1, [x, y] = x2 = y2⟩,

D8 = ⟨x, y | y4 = x2 = 1, xyx−1 = y−1⟩.

For p ̸= 2 the extraspecial groups of order p3 are M(p) and N(p), where

M(p) = ⟨x, y, z | xp = yp = zp = 1, [x, z] = [y, z] = 1, [x, y] = z⟩,

N(p) = ⟨x, y | xp2 = yp = 1, yxy−1 = xp+1⟩,

(see [17] Theorem 5.1). All extraspecial groups can be written as a central

product of copies of extraspecial groups of order p3 (see [17] Theorem 5.2). Later

we shall see some representations of these groups consisting of bireflections.

Let B = {x1, x2, . . . , xn} be an ordered basis for W , and

UB = {g ∈ GL(V ) | g(xi) − xi ∈ ⟨x1, . . . , xi−1⟩}.

We can see that UB (and hence subgroups) are p-groups, furthermore for any

p-group G ≤ GL(V ) we can find a basis B′ such that G ≤ UB′ (see [10, Lemma

4.0.2]). So we will be looking at groups which are generated by triangular matrices

with 1’s along the diagonal, we call these unipotent groups.

Definition 1.3.2. For g ∈ GL(V ), we write δg ∈ Endk(V ) for the map which

takes v ∈ V to (g − 1)(v).

For a unipotent element g ∈ GL(V ) the index of g, ind(g), is the nilpotence-

index of δg, that is c ∈ N such that δc
g = 0, δc−1

g ̸= 0. The index of a group

G ≤ GL(V ) is defined to be ind(G) := max{ind(g)|g ∈ G}.

Let G ≤ GL(V ), w ∈ W . We define the stabilizer (or isotropy) subgroup

of w to be

Gw = {g ∈ G | g(w) = w}.

The following invariants appear frequently in future sections and are especially

important for unipotent groups:



1.3 Unipotent groups 26

Definition 1.3.3. The orbit product of w is defined to be

O(w) =
∏

g∈G/Gxi

g(xi).

For a given basis B = {x1, . . . , xn} for W we denote:

NG
i = Ni = O(xi)

As applying any element g ∈ G only permutes it’s factors, for any w ∈ W

we see that OG(w) ∈ k[V ]G. If G ≤ UB then NG
1 , . . . , mathbfNG

n form a

homogeneous system of parameters for k[V ]G ([10, Proposition 4.0.3]). We can

ask for which groups does this HSOP generate the whole invariant ring? These

groups are known as Nakajima groups, and we shall see more about them in

Chapter 3.

In the non-modular case Nakajima characterised the groups with hypersurface

invariant rings as subgroups of reflection groups (with polynomial rings of

invariants), see [27]. There are several papers which investigate when the

invariant ring is a hypersurface in the modular case (including [5], [21], [8]).

The following result can be used to show that all maximal subgroups of Nakajima

groups have hypersurface invariant rings:

Proposition 1.3.4. [10, 11.0.1] Let R be an integral domain of characteristic p

and suppose the finite group G acts faithfully on R. Suppose H ≤ G is a maximal

subgroup of index less than or equal to p. Let σ ∈ G\H. If there exists f ∈ RH

such that if x := (σ − 1)f ∈ RG then (σ − 1)(RH) ⊆ Rx, then RH = RG[f ].

In their thesis Yinglin Wu proved the following which is useful in showing

when invariant rings are complete intersections.

Proposition 1.3.5. [33, 3.1.1] Let G ≤ GL(V ) be a p-group such that k[V ]G is

a complete intersection, and let H be a maximal proper subgroup of G. Then

if k[V ]H = k[V ]G[a] for some homogeneous element a ∈ k[V ]H , then k[V ]H is a

complete intersection.
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Invariant rings of p-groups are always unique factorisation domains (see [10,

Theorem 3.8.1]), so if they are Cohen–Macaulay they are also Gorenstein ([6,

Corollary 3.3.19]). This has led to the speculation that maybe Cohen–Macaulay

invariant rings of p-groups (characteristic p) are complete intersection rings (we

shall see a counter example to this in Chapter 5).

A result of Gordeev, Kac and Watanabe (see [28, Proposition 5.7.7]) says

that if k[V ]G is a complete intersection then G is generated by bireflections.

The following Theorem by Kemper is stronger in our case where we restrict to

unipotent groups.

Theorem 1.3.6. [23, 3.7] If G is a p-group and k[V ]G is Cohen–Macaulay then

G is generated by bireflections.

The next Theorem from the same paper can be used even for some groups

generated by reflections to show their invariant rings are not Cohen–Macaulay.

Theorem 1.3.7. [23, 3.9] Let G ≤ GL(V ) and N E G such that G/N is an

elementary abelian p-group. Suppose there exists σ0 ∈ G\N not a bireflection,

such that for all bireflections σ ∈ G\N we have

V σ0 ̸⊆ V σ.

Then k[V ]G is not Cohen–Macaulay.

The theorems above motivate our interest in groups consisting of bireflections.

Before we start to look at the classification of these groups we briefly review

some tools which will will want to use later to find their invariant rings.

1.3.1 Monomial orders and SAGBI basis

A monomial in a polynomial ring R = k[x1, . . . , xn] is a term of the form

xa1
1 . . . xan

n where ai ∈ N for 1 ≤ i ≤ n. A monomial order is a total ordering

of monomials satisfying the following additional hypothesis: for monomials

m1, m2, m, m1 > m2 implies mm1 > mm2. There are many types of monomial
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ordering, but throughout this thesis we will only use graded reverse lexicographical

ordering with xi < xj if i < j.

Definition 1.3.8. Let R = k[x1, . . . , xn] and order the xi: x1 < x2 < . . . < xn.

Let m1, m2 ∈ R be monomials with

m1 = xa1
1 . . . xan

n ,

m2 = xb1
1 . . . xbn

n .

In graded reverse lexicographical ordering m1 <GRevLex m2 if and only if

one of the following holds

• a1 + a2 + . . . + an < b1 + . . . + bn.

• a1 + a2 + . . . + an = b1 + . . . + bn and we can find some 1 ≤ j ≤ n such that

ai = bi for 1 ≤ i < j and aj > bj.

For any non-zero polynomial f ∈ R we can write f uniquely in the form

f = d1m1 + d2m2 + . . . + dsms

where the mi’s are monomials in R with mi >GRevLex mi+1 for 1 ≤ i ≤ s − 1 and

for 1 ≤ i ≤ s we have coefficients di ∈ k\{0}. We call d1m1 the lead term of f ,

denoted LT(f), and m1 the lead monomial of f , denoted LM(f).

Lemma 1.3.9. Let f ∈ k[x1, . . . , xn] be homogeneous, then x1 divides LT(f) if

and only if x1 divides f .

Proof. If x1 divides f then it divides each non-zero term including LT(f).

Let

f = d1m1 + d2m2 + . . . + dsms

and assume x1 divides LT(f) so

m1 = x
a1,1
1 x

a2,1
2 . . . xan,1

n



1.3 Unipotent groups 29

with a1,1 ≥ 1. For all

ml = x
a1,l

1 x
a2,l

2 . . . xan,l
n

with l > 1 we can find some 1 ≤ j ≤ n such that ai,1 = ai,l for 1 ≤ i < j and

aj,1 < aj,l. Either j = 1 and

a1,l > a1,1 ≥ 1

or j > 1 and

ai,l = ai,1 ≥ 1

for all i < j, in particular i = 1. This means that x1 divides each monomial ml,

and so x1 divides f .

A Gröbner basis for an ideal I is a generating set f1, . . . , fm for I such that

for any h ∈ I the lead monomial of h can be written as a multiple of the lead

monomial of some fi. It can be shown that we can find such a generating set for

any ideal I ∈ R using the Buchberger algorithm (see [2, 5.3]), and that this can

be used to answer the ideal membership problem.

The acronym SAGBI stands for Subalgebra Analogue of Gröbner Basis for

Ideals: we want to find a generating set f1, . . . , fm for a subalgebra A ⊆ R such

that for any h ∈ A

LM(h) = LM(f1)ai . . . LM(fm)am

with ai ∈ N for 1 ≤ i ≤ m. For any h ∈ R we can perform a subduction of h

using a set f = {f1, . . . , fm} and the following algorithm:
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Algorithm 1 Subduction
1: function Subdt(h, f)

2: H := h;

3: S := 0;

4: TEST:= true

5: while TEST = true do

6: if ∃ a1, . . . , am ∈ N such that LM(H) = LM(f1)a1 . . . LM(fm)am then

7: c := LT(H)/LT(fa1
1 . . . fam

m );

8: H := H − cfa1
1 . . . fam

m ;

9: S := S + cfa1
1 . . . fam

m ;

10: if H = 0 then

11: TEST:= false;

12: else

13: TEST:=false;
return H;

In this algorithm we find S ∈ k[f1, . . . , fm] such that

h = S + Subdt(h, f),

so if Subdt(h, f) = 0 then h ∈ k[f1, . . . , fm].

Lemma 1.3.10. Let f = {f1, . . . , fr} with f1, . . . , fr ∈ R. Let

h =
m∑

i=1
cihi

where ci ∈ k\0 and hi = f
a1,i

1 . . . f
ar,i
r for a1,i ∈ N. If

LM(hi) ̸= LM(hj)

for i ̸= j then Subdt(h, f) = 0.

Proof. If

LM(hi) ̸= LM(hj)
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for i ̸= j, then we can assume that the hi are ordered so that

LM(hi) <GRevLex LM(hj)

for i < j.

We prove by induction on m: if m = 1 then

h = c1f
a1,q

1 . . . far,q
r

so clearly

LM(h) = LM(fa1,q

1 . . . far,q
r ).

The first stage in the subduction process then is to find

h − c1f
a1,q

1 . . . far,q
r = 0

so after the first iteration we find Subdt(h, f) = 0.

Suppose m > 1 and let

h′ =
m−1∑
i=1

cihi.

We see that

LM(h) = LM(hm)

so the first step of the subduction algorithm is to find

h − cmhm = h′.

The next step of the algorithm is to reiterate the process with h′, however

by induction we can assume that Subdt(h′, f) = 0, and so we find that

Subdt(h, f) = 0.
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Let f = {f1, . . . , fm} with fi ∈ R as above. A tête–á–tête in f is a pair

{F1, F2} where

F1 = fa1
1 fa2

2 . . . fam
m ,

F2 = f b1
1 fa2

2 . . . f bm
m ,

for some ai, bi ∈ N for 1 ≤ i ≤ m, such that LM(F1) = LM(F2). A tête–á–

tête is called trivial if F1 and F2 share a common factor greater than one. If

B = {f1, . . . , fm} generates an algebra A ⊆ k[V ], then the SAGBI algorithm

can be used to find a SAGBI basis for A.

Algorithm 2 SAGBI
1: function SAGBI(B)

2: B = B;

3: B′ = B;

4: while B′ ̸= ∅ do

5: B′ = ∅;

6: for {F1, F2} a non-trivial tête–á–tête in B do

7: c := LT(F1)/LT(F2);

8: H := Subdt(F1 − cF2);

9: if H ̸= 0 then

10: B′ = B′ ∪ {H};

11: B = B ∪ {H};
return B;

This algorithm may not terminate: unlike a Gröbner basis for an ideal it is

not always possible to find a finite SAGBI basis for a subalgebra. Fortunately

in the case we are interested in, where the subalgebra A is the invariant ring of

some unipotent group, we can always choose a basis and monomial order such

that the algorithm terminates.

Theorem 1.3.11. [10, 5.2.3] If G ≤ GL(V ) is triangular, then k[V ]G has a

finite SAGBI basis.
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1.3.2 The invariant field and SAGBI/divide-by-x algo-

rithm

For G ≤ GL(V ), it is often easier to find the field of fractions, Quot(k[V ]G), than

to find the ring k[V ]G. We will write

k(V )G = Quot(k[V ]G)

and refer to k(V )G as the invariant field.

Let G ≤ GL(V ) be a p-group which is triangular with respect to a basis

x1, . . . , xn for W . As in the paper by Campbell and Chuai ([7]) we define

R[m] = k[x1, . . . , xm] for m = 1, . . . , n, and let R[0] = k.

Theorem 1.3.12. [7, 2.4] Let G ≤ GL(V ) be a p-group. For 1 ≤ i ≤ n let

φi ∈ R[i]G be homogeneous of smallest positive degree in xi, then

k(V )G = k(φ1, . . . , φn)

and further more we can find f ∈ k[V ]G such that

k[V ]Gf = k[φ1, . . . , φn]f .

Once we have found a set {φ1, . . . , φn} we view each φi as a polynomial in xi

with coefficients in R[i − 1] and let ci be the coefficient of the highest power of

xi in φi. We can use the ci to find f in the above Theorem.

Lemma 1.3.13. [7, 2.1] For any h ∈ R[m]G, there exists an integer r such that

cr
mh ∈ R[m − 1]G[φm].

When we have the invariant field or localised invariant ring, the next Theorem

helps us to find the invariant ring, which is not generally an easy task.

Proposition 1.3.14. [10, 10.0.8] Let A := k[f1, . . . , fm] ⊆ k[V ]G. Suppose that

1. k[V ] is integral over A,
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2. Quot(A) = k(V )G,

3. there exists h ∈ A such that hA is a prime ideal of A and Ah is a unique

factorisation domain.

Then A = k[V ]G.

Proof. If hA is a prime ideal and Ah is a unique factorisation domain then A is

a unique factorisation domain by [3, 6.3.1]. If A is integral over A and a unique

factorisation domain then A is integrally closed by [10, Proposition 3.0.2]. If

f ∈ k[V ]G then f ∈ Quot(A) as Quot(A) = k(V )G, as A is integrally closed this

means that f ∈ A.

Finding a ring A that meets the first two conditions is not usually too difficult:

if A contains a HSOP for k[V ]G then we know it is integral over A and we can

use Theorem 1.3.12 to find a ring such that Quot(A) = k(V )G. Checking that

A fulfils the third condition is usually more difficult and here it helps to have a

SAGBI basis using the graded reverse lexicographical ordering. The following

theorem is proved by combining Lemma 1.3.9 and Proposition 1.3.14.

Proposition 1.3.15. [9, 1.1] Let G ≤ GL(V ), x1, . . . , xn a basis for W and

let f1, . . . , fr ∈ k[V ]G be homogeneous. Let A = k[x1, f1, . . . , fr] such that

Ax1 = k[V ]Gx1. Suppose that the following hold

• A is integral over k[V ]G;

• x1, f1, . . . , fr are a SAGBI basis for A;

• x1 doesn’t divide LM(fi) for 1 ≤ i ≤ r.

Then A = k[V ]G.

Example 1.3.16. Let G = ⟨σ⟩ where

σ =


1 1 1

0 1 2

0 0 1

 .
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with respect to the natural basis B = {x1, x2, x3} for W . As kx1 = W G, we

can choose φ1 = x1. G acts as a Nakajima group on ⟨x1, x2⟩, so we can choose

φ2 = N2. Let

d = x2
2 − x1x3

then as degx3(d) = 1, we can choose φ3 = d. Using Theorem 1.3.12 if A′ =

k[φ1, φ2, φ3] then

Quot(A′) = k(V )G.

If we view the φi as polynomials in xi and let ci be the coefficient of the highest

degree term of xi, then

c1 = 1, c2 = 1, c3 = −x1.

Using Lemma 1.3.13 this means that

A′
x1 = k[V ]x1 .

Let A = A′[NG
3 ], then A contains a HSOP for k[V ]G and so is integral over

k[V ]G. As NG
3 ∈ k[V ]G

Ax1 = A′
x1 = k[V ]x1 .

G is a specific example of a symmetric square representation of (k, +) as in

Section 3 of [9]. They show that all tête–á–têtes in N1, N2, N3, d subduct to zero

and so using Theorem 1.3.14

A = k[V ]G.

If we find A with generating set B such that A contains a HSOP for k[V ]G

and Ax1 = k[V ]Gx1 then we can perform the SAGBI/divide-by-x algorithm as

introduced in Section 1 of [9] in order to get to a new ring A′ with generating

set B′ which meet the criteria of Proposition 1.3.15.
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Algorithm 3 SAGBI/divide-by-x
1: function SAGBI Divide(B,x)

2: B = B;

3: while ∃ f ∈ B such that x divides LT (f) do

4: f ′ = f/x

5: B = (B ∪ {f ′}) \{f}

6: B′ = B;

7: while B′ ̸= ∅ do

8: B′ = ∅;

9: for {F1, F2} a non-trivial tête–á–tête in B do

10: c := LT(F1)/LT(F2);

11: H := Subdt(F1 − cF2);

12: if H ̸= 0 then

13: if x divides LM(x) then H := H/x;

14: B′ = B′ ∪ {H};

15: B = B ∪ {H};

16: else

17: B′ = B′ ∪ {H};

18: B = B ∪ {H};
return B;

1.4 Reflection and bireflection groups

As we have seen reflection and bireflection groups are important in invariant

theory, however they are also interesting in their own right. For a reflection

g ∈ GL(V ) we call the fixed space V g the hyperplane of g and the one-dimensional

vector space Im(1 − g) the direction of g. There are two types of reflections:

diagonalisable reflections of order coprime to the characteristic of the field and

transvections. Transvections only have finite order when the field k has positive

characteristic p in which case they have order p.
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A diagonalisable reflection g has one as an eigenvalue with multiplicity n − 1

and another eigenvalue λg which is a root of unity. The second eigenvalue, λg is

called the root of g. The linear transformation g is called a real reflection, in the

case that k = R, and λg = −1. The finite groups generated by real reflections

are called Coxeter groups and were classified by Coxeter in [12] using ideas from

the theory of Lie algebras (e.g. root systems) and the theory of hyperplane

arrangements. Later similar techniques were extended to k = C by G.C.Shephard

and J.A.Todd, who showed that these also had polynomial invariant rings ([30]).

The study of real reflection groups is important to Lie Theory and is very well

developed. Whilst we don’t have the same descriptions with roots for modular

reflection groups a classification for the irreducible representations can be found

in [24] where it is then used to prove the following.

Theorem 1.4.1. Suppose V is an irreducible representation of the modular group

G. Then k[V ]G is a polynomial ring if and only if G is generated by reflections

and if W is any non-trivial subspace of V , then k[V ]GW has a polynomial ring of

invariants.

A classification for the irreducible bireflection groups can be found in [18] by

Guralnick and Saxl, however in the modular case we are interested in reducible

bireflection groups.

In [31, 8.2] Smith looks at the modular groups consisting entirely of reflections.

Proposition 1.4.2. [31, 8.2.18] Let k be a field of characteristic p ̸= 0, G ≤

GL(V ) such that every non identity element of G is a reflection. Either V G has

dimension n − 1 or (V ∗)G has dimension n − 1.

Using this it can be shown that all groups consisting of reflections have

polynomial rings of invariants. In the next chapter we will see that finding even

just the unipotent groups consisting of bireflections becomes more complicated.

From Theorems 1.3.6 and 1.3.7 we may hope that these would all have Cohen–

Macaulay rings of invariants, however this is not true in general. Let G = ⟨g, h⟩
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where

g :=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

0 1 0 0 1


, h :=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 1 0 1 0

0 0 1 0 1



with respect to a basis {e1, . . . , en} for V . In [15] they show that k[V ]G is flat

for p = 2 and so

depth(k[V ]G) = 4 < dim(k[V ]G).

Therefore G is a group consisting of bireflections (an example of a two–row

group) which has non Cohen–Macaulay invariant ring. There is a class of

unipotent groups consisting of bireflections where the invariant ring is always

Cohen–Macaulay:

Theorem 1.4.3. [10, 3.9.1] Let G ≤ GL(V ), dimk(V ) = n then:

1. if dimk(V G) = n − 1, then k[V ]G is a polynomial ring.

2. if dimk(V G) = n − 2, then k[V ]G is Cohen–Macaulay.

Due to the form of their matrix representations on V we shall call a group

G with dimk(V G) ≥ n − 2 a two–column group. In his thesis ([33]) Yinglin

Wu investigates the invariant rings of these groups, however considering the

matrices on W = V ∗ rather than V he calls them two–row groups. Wu studies

the conjecture that these groups always have complete intersection invariant

rings and in the modular case where k = Fp he shows that if G is an abelian

p-group generated by reflections with dimk(V G) ≥ n−2, then k[V ]G is a complete

intersection ring. In the non-modular case he finds the conjecture to be false,

by finding a two–column group G such that k[V ]G is not Gorenstein, and hence

not complete intersection. We will see in Chapter 5 that it is not true in the

modular case either. Our example G is a p-group, so k[V ]G is Gorenstein. This
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example also shows that Cohen–Macaulay does not imply complete intersection

for invariant rings of unipotent groups.



Chapter 2

Bireflection Groups

From here onwards we need a field of characteristic p so we set k = Fq where

q = pr. We will let V be a k-vector space, and later, when we start to look

for invariant rings, we will need W = V ∗. In this chapter we will classify all

unipotent groups consisting of bireflections for p ̸= 2. We will look at the different

types of unipotent bireflections and their properties, but first we want to look

at the correspondence between the properties of the group action on V and its

action on W . We start with a definition linking subspaces of V with subspaces

of W .

Definition 2.0.4. Let V be a vector space, U ⊆ V . We define

U⊥ = {λ ∈ V ∗ | λ(u) = 0 for all u ∈ U} ⊆ V ∗.

The next lemma will be used many times in this thesis to move between

groups and their dual representations.

Lemma 2.0.5. Let V be a finite-dimensional k-vector space and G ≤ GL(V ).

Then the following hold:

1. [G, V ∗]⊥ = V G and [G, V ]⊥ = (V ∗)G.

2. dimk([G, V ∗]) = dimk(V ) − dimk(V G) = codim(V G).

3. V G ≤ [G, V ] if and only if (V ∗)G ≤ [G, V ∗].
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4. the canonical map V → V/V G induces an isomorphism

[G, V ]/[G, V ]G ∼= [G, V/V G].

Proof. 1. If v ∈ [G, V ∗]⊥ then for all λ ∈ V ∗, g ∈ G

(g(λ) − λ)(v) = 0.

If v ∈ V G then g(v) − v = 0 for all g ∈ G. For λ ∈ V ∗, v ∈ V and g ∈ G

we have

(g(λ) − λ)(v) = λ(gv − v)

hence the claim.

2. As [G, V ∗]⊥ = V G,

dimk(V ) = dimk(V G) + dimk([G, V ∗]).

Rearranging gives the result.

3. V G ≤ [G, V ] ⇐⇒ (V G)⊥ ≥ [G, V ]⊥ ⇐⇒ [G, V ∗] ≥ (V ∗)G.

4. [V/V G, G] = ([V, G] + V G ∼= [V, G]/([V, G] ∩ V G) = [V, G]/[V, G]G.

2.1 Bireflections

Definition 2.1.1. For u ∈ V and 0 ̸= γ ∈ u⊥ we set tγ
u ∈ GL(V ) to be the

transvection mapping s ∈ V to s + γ(s)u.

In a field of characteristic p, transvections are reflections of order p. It isn’t

hard to see that V tγ
u = ker(γ) and [V, tγ

u] = ⟨u⟩. We start by proving some other

general results for transvections which will be useful later on.

Lemma 2.1.2. For u1, u2 ∈ V , γ1 ∈ u⊥
1 , γ2 ∈ u⊥

2 :
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1. if u2 ∈ ker(γ1) then

|tγ1
u1tγ2

u2| =


p2 if p = 2 and u1 ̸∈ ker(γ2),

p otherwise.

2. if u1 ∈ ker(γ2), then tγ1
u1tγ2

u2 = tγ2
u′

2
tγ1
u1 where u′

2 = tγ1
u1(u2).

3. |tγ1
u1tγ2

u2| is a power of p if and only if either γ1(u2) = 0 or γ2(u1) = 0.

4. if u1 ∈ ker(γ2) then tγ1
u1tγ2

u1 = tγ1+γ2
u1 .

5. if u2 ∈ ker(γ1) then tγ1
u1tγ1

u2 = tγ1
u1+u2.

6. tcγ1
u1 = tγ1

cu1 for all c ∈ k.

Proof. 1. Let t = tγ1
u1tγ2

u2 . For p ̸= 2 we will show that if u2 ∈ ker(γ1) then for

a ∈ N, w ∈ V :

ta(w) = w + aγ1(w)u1 + aγ2(w)u2 + a(a − 1)
2 γ1(w)γ2(u1)u2

We do this by induction, it is clear for a = 1, and then:

ta(w) = tta−1(w)

= t(w + (a − 1)γ1(w)u1 + (a − 1)γ2(w)u2 + (a − 1)(a − 2)
2 γ1(w)γ2(u1)u2)

= w + aγ1(w)u1 + aγ2(w)u2 + a(a − 1)
2 γ1(w)γ2(u1)u2

so |t| = p. If p = 2 we can see that:

t2(w) = w + γ1(w)γ2(u1)u2

so either t2 = 1 or t2 is a transvection with order 2, and so (t2)2 = t4 = 1

and t has order p2.
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2. Let w ∈ V so:

tγ1
u1tγ2

u2(w) = tγ1
u1(w + γ2(w)u2)

= w + γ1(w)u1 + γ2(w)u2 + γ2(w)γ1(u2)u1

= (w + γ1(w)u1) + γ2(w)(u2 + γ1(u2)u1)

= tγ2
u′

2
tγ1
u1(w)

where u′
2 is as given above.

3. We can see using the first two parts that if γ1(u2) = 0 or γ2(u1) = 0

then |tγ1
u1tγ2

u2| is a power of p. Let t = tγ1
u1tγ2

u2 , if |t| is a power of p, then

[t, V ]t ̸= {0}. If u2 ∈ ku1 then we already know that:

γ1(u2) = γ2(u1) = 0

so assume u1, u2 linearly independent. We can see that [t, V ] ≤ ⟨u1, u2⟩, so

we can find a1, a2 ∈ k not both zero such that a1u1 + a2u2 ∈ [t, V ]t:

a1u1 + a2u2 = t(a1u1 + a2u2)

= (a1 + a2γ1(u2) + a1γ2(u1)γ1(u2))u1 + (a2 + a1γ2(u1))u2

comparing u2 terms we see that a1γ2(u1) = 0, so either γ2(u1) = 0 or

a1 = 0. If a1 = 0 then a2 ̸= 0 and comparing u2 terms a2γ1(u2) = 0 so

γ1(u2) = 0.

4. For all v ∈ V

tγ1
u1tγ2

u1(v) = tγ1
u1(v + γ2(v)u1)

= v + (γ1(v) + γ2(v))u1

= v + (γ1 + γ2)(v)u1

= tγ1+γ2
u1 (v)
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so tγ1
u1tγ2

u1 = tγ1+γ2
u1 .

5. Similarly for all v ∈ V

tγ1
u1tγ1

u2(v) = tγ1
u1(v + γ1(v)u1)

= v + γ1(v)u1 + γ1(v)u2

= v + γ1(v)(u1 + u2)

= tγ1
u1+u2

so tγ1
u1tγ1

u2 = tγ1
u1+u2 .

6. For any c ∈ k and v ∈ V

tcγ1
u1 (v) = v + cγ1(v)(u1)

= v + γ1(v)(cu1)

= tγ1
cu1

Later we will want to write bireflections as products of transvections. The

next lemma will be useful when rewriting and comparing them.

Lemma 2.1.3. Let m ∈ N, γ1, . . . , γm ∈ V ∗ and u1, . . . , um such that γi(uj) = 0

for 1 ≤ i ≤ j ≤ m. Let

g = tγ1
u1tγ2

u2 . . . tγm
um

then

1. if γ1, . . . , γm are linearly independent and

h = tγ1
u′

1
tγ2
u′

2
. . . tγm

u′
m

such that γi(u′
j) = 0 for 1 ≤ i ≤ j ≤ m. Then g = h if and only if u′

i = ui

for 1 ≤ i ≤ m.
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2. if u1, . . . , um are linearly independent and

h = tγ′
1

u1tγ′
2

u2 . . . tγ′
m

um

such that γ′
i(uj) = 0 for 1 ≤ i ≤ j ≤ m. Then g = h if and only if γ′

i = γ

for 1 ≤ i ≤ m.

Proof. Part 1) is equivalent to Lemma 3.0.3. Part 2) is dual to part 1), which

we can see from Lemma 2.0.5.

The following can be used to check the commutator and fixed spaces of

elements of GL(V ) to see if they are bireflections.

Lemma 2.1.4. Let g, h ∈ GL(V ) be unipotent, w ∈ V . Then:

δgh(w) = δg(w) + δh(w) + δgδh(w),

δgi(w) =
i∑

j=1

(
i

j

)
δj

g(w).

If g is a bireflection then

δgi(w) = iδg(w) + i(i−1)
2 δ2

g(w).

Proof. For g, h ∈ G, w ∈ V :

gh(w) = g(w + δh(w))

= w + δg(w) + δh(w) + δgδh(w)

so the first result holds

δgh(w) = δg(w) + δh(w) + δgδh(w).
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For the second result

δgi(w) = (gi − 1)(w) = (((g − 1) + 1)i − 1)(w)

=
(

i∑
j=0

(
i

j

)
(g − 1)j(w)

)
− w =

i∑
j=1

(
i

j

)
(g − 1)j(w)

=
i∑

j=1

(
i

j

)
δj

g(w).

If g is a bireflection then δj
g(v) = 0 for any j > 2 and v ∈ V and so we get:

δgih(w) = iδg + i(i−1)
2 δ2

g(w).

From this we find the following:

Lemma 2.1.5. Let G ≤ GL(V ). If [G, V ] ≤ V G then [G, G] = 1 and G is

elementary abelian. If G is a unipotent transvection group then [G, G] = 1

implies [G, V ] ≤ V G.

Proof. By the above, for all g, h ∈ G, w ∈ V

δgh(w) = δgδh(w) + δg(w) + δh(w).

If [G, V ] ≤ V G then δgδh(w) = 0 and so

δgh(w) = δg(w) + δh(w) = δhg(w),

which means that [G, G] = 1.

Since (g − 1)2 = 0, for all g ∈ G, we see that 0 = (g − 1)p = gp − 1 so all

elements of G have order p and G is elementary abelian.

Let G = ⟨ti |i = 1, · · · , ℓ⟩ where ti = tγi
vi

for 1 ≤ i ≤ ℓ. If G is unipotent then

for 1 ≤ i, j ≤ ℓ either γi(vj) = 0 or γj(vi) = 0 (otherwise |titj| is not a power of

p by Lemma 2.1.2(3)). Suppose that γi(vj) = 0 then by Lemma 2.1.2(2)

tγi
vi

tγj
vj

= t
γj

v′
j
tγi
vi
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where v′
j = ti(vj). If G is abelian then vj = ti(vj). This means that

⟨v1, . . . , vl⟩ = [G, V ] ≤ V t1 ∩ . . . ∩ V tℓ = V G.

Definition 2.1.6. All reflections are bireflections (and so also all reflection groups

are bireflection groups), so unipotent bireflections include transvections:

J2 0

0 In−2


as well as those elements of GL(V ) conjugate to one of

J3 0

0 In−3

 index 3 bireflection,


J2 0 0

0 J2 0

0 0 In−4

 double transvection,

where J2, J3 are Jordan 2 and 3 blocks respectively. If g is a unipotent bireflection

it can be written as either tγ
u for some u ∈ V with γ ∈ u⊥ in the case of a

transvection, or as tγ1
u1tγ2

u2 for some u1, u2 ∈ V , γ1 ∈ u⊥
1 , γ2 ∈ u⊥

2 with γ1(u2) = 0.

If γ2(u1) ̸= 0 it is an index 3 bireflection, if γ2(u1) = 0 then it is a double

transvection.

2.2 Groups consisting of bireflections

We now look for the p-groups G which are not only generated by bireflections,

but g is a bireflection for all elements g ∈ G, we shall call these pure bireflection

groups. We define certain classes of group with this property.

Definition 2.2.1. Let G = ⟨g1, . . . , gl⟩ ≤ GL(V ). Then:
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• If dimk(∩l
i=1V

gi) ≥ n − 2 or equivalently dimk(V G) ≥ n − 2 then G is a

two–column group on V (if dimk(V G) ≥ n−1 then G is a one–column

group).

• If dimk(∑l
i=1[gi, V ]) ≤ 2 or equivalently dimk([G, V ]) ≤ 2 then G is a

two–row group on V (if dimk([G, V ]) ≤ 1 then G is a one–row group).

• If there exists U ⊂ V such that dimk(U) = n − 1 and [G, U ] ≤ kv for some

v ∈ UG, then G is a hook group on V with hyperplane U and line kv.

Looking at the unipotent groups consisting of reflections (see Proposition

1.4.2) we might expect these to be the only types of unipotent pure bireflection

group, however we shall see that there are some exceptional types.

Definition 2.2.2. Let n ≥ 5 and G ≤ GL(V ) a unipotent group. Let g, h ∈ G

be bireflections and U = V g + V h. We call g, h a special pair if we can find

r1, r2, v ∈ V linearly independent such that the following hold:

dimk(U) = n − 1, dimk(V g ∩ V h) = n − 3,

v ̸∈ U, r1, r2 ∈ V g ∩ V h

and:

δg(U) = kv, δg(v) = r2,

δh(U) = k(v + r1), δh(v) = 2r1 + r2.

If g, h ∈ G are a special pair and G is a pure bireflection group then we call G

an exceptional pure bireflection group (or exceptional group) of type one,

and g, h an exceptional pair (for a matrix example see Chapter 6.1).

Lemma 2.2.3. For g, h ∈ GL(V ) the following are equivalent:

1. g, h are a special pair;
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2. g = tζ1
v̂ tv̂∗

r̂2 for ζ1, v̂∗ ∈ V ∗ linearly independent, r̂2, v̂ ∈ ker(ζ1) such that

v̂∗(r̂2) = 0, v̂∗(v̂) = 1

and we can find a, b ∈ k, r̂1 ∈ ker(ζ1) ∩ ker(v̂∗) and some ζ2 ∈ V ∗ linearly

independent to ζ1 and v̂∗ such that

ζ2(r̂2) = ζ2(r̂1) = ζ2(v̂) = ζ1(r̂1) = 0

and h = tζ1
β1tζ2

β2tv̂∗
β3 where

β1 = bv̂ + (a − ab)r̂2 + (2a + b)r̂1,

β2 = v − ar̂2 + r̂1,

β3 = 2r̂1 + r̂2;

3. we can find some γ1, γ2, v∗ ∈ V ∗ linearly independent, and

r1, r2, v ∈ ker(γ1) ∩ ker(γ2)

linearly independent with

v∗(r1) = v∗(r2) = 0,

v∗(v) = 1

such that g = tγ1
v tv∗

r2 and h = tγ2
v+r1tv∗

2r1+r2.

Proof. 1) ⇒ 2) Suppose g, h are a special pair. This means g is an index 3

bireflection so we can find ζ1, v̂∗ ∈ V ∗ linearly independent, r̂2, v̂ ∈ ker(γ1) such

that v̂∗(r̂2) = 0, v̂∗(v̂) = 1 and g = tζ1
v̂ tv̂∗

r̂2 . Let u1 ∈ ker(v̂∗) such that ζ1(u1) = 1.
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As g, h are a special pair if U = V g + V h then dimk(U) = n − 1. As V g is

n − 2 dimensional and v̂, u1 ̸∈ V g are linearly independent we can see that

V = ku1 + kv̂ + V g.

This means we can find some a′, a ∈ k such that if u = a′u1−av̂ then U = ku+V g.

As δg(U) ̸≤ V g and δg(v̂) ∈ V g, we see a′ ̸= 0 and so we can assume a′ = 1.

We can now find v = δg(U), let

v = δg(u) = δg(u1 − av̂) = v̂ − ar̂2.

By the definition of a special pair we can find r̂1 ∈ V g ∩ V h such that

δh(U) = k(v + r̂1).

Since

δg(v) = δg(v̂ − ar̂2) = δg(v̂)

we know that r̂2 ∈ V g ∩ V h and

δh(v) = δh(v̂ − ar̂2) = δh(v̂) = 2r̂1 + r̂2.

Let u2 ∈ ker(ζ1) ∩ ker(v̂∗) such that δh(u2) = v + r̂1. We know

u2 ∈ U\V h

so

U = ku2 + V h.

We know that

u = u1 − av̂ ∈ U
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so we can find some b ∈ k such that u1 − av̂ − bu2 ∈ V h and

δh(u1 − av̂ − bu2) = 0.

This means that

δh(u1) = bv + (a − ab)r2 + (2a + b)r1.

Let ζ2 ∈ V ∗ such that ker(ζ2) = V g ∩ V h + ku1 + kv̂ and ζ2(u2) = 1. Let

β1 = bv̂ + (a − ab)r̂2 + (2a + b)r̂1,

β2 = v − ar̂2 + r̂1,

β3 = 2r̂1 + r̂2,

and h̃ = tζ1
β1tζ2

β2tv̂∗
β3 . We find

δh̃(u1) = u1 + bv̂ + (a − ab)r̂2 + (2a + b)r̂1 = δh(u1),

δh̃(u2) = u2 + v̂ − ar̂2 + r̂1 = δh(u2),

δh̃(v̂) = v̂ + 2r̂1 + r̂2 = δh(v̂),

and

δh̃(V g ∩ V h) = 0 = δh(V g ∩ V h)

so h = h̃ as required.

2) ⇒ 3) Let g, h be as described in part 2). Then we see that β1 = bβ2 + aβ3

and:

g = tζ1
v̂ tv̂∗

r̂2 = tζ1
v̂ tζ1

−ar̂2tζ1
ar̂2tv̂∗

r̂2 = tζ1
v̂−r̂2tv̂∗+aζ1

r̂2 ,

h = tζ1
bβ2+aβ3tζ2

β2tv̂∗
β3 = tbζ1

β2 taζ1
β3 tζ2

β2tv̂∗
β3 = tζ2+bζ1

β2 tv̂∗+aζ1
β3

(using Lemma 2.1.2).
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Let

γ1 = ζ1, γ2 = ζ2 + bζ1, v∗ = v̂∗ + aζ1

r1 = r̂1, r2 = r̂2, v = v̂ − ar̂2

then we can write

g = tγ1
v tv∗

r2 ,

h = tγ2
v+r1tv∗

2r1+r2

so they are in the form required.

3) ⇒ 1) Let g, h be as described in part 3). As v, r2 and v + r1, 2r1 + r2 are

linearly independent, V g = ker(γ1) ∩ ker(v∗) and V h = ker(γ2) ∩ ker(v∗) so

V g + V h = ker(v∗) ∩ ker(γ1) + ker(v∗) ∩ ker(γ2)

= ker(v∗) ∩ (ker(γ1) + ker(γ2))

= ker(v∗) ∩ V = ker(v∗)

which has dimension n − 1. We can also find

V g ∩ V h = ker(γ1) ∩ ker(γ2) ∩ ker(v∗)

and check it has the correct dimension

dimk(V g ∩ V h) = dimk(V g) + dimk(V h) − dimk(V g + V h)

= n − 2 + n − 2 − n + 1 = n − 3.

We can see that

δg(U) = kv, δg(v) = r2,

δh(U) = k(v + r1), δh(v) = 2r1 + r2,
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so g, h are a special pair.

We now check that exceptional groups of type one exist.

Lemma 2.2.4. If G is generated by a special pair then G is an exceptional group

of type one. Moreover, for p ̸= 2, G ∼= M(p) is an extraspecial group of order p3.

Proof. Let g, h ∈ GL(V ) be a special pair and G = ⟨g, h⟩. By Lemma 2.2.3 we

can find some γ1, γ2, v∗ ∈ V ∗ linearly independent, and r1, r2, v ∈ ker(γ1)∩ker(γ2)

linearly independent with

v∗(r1) = v∗(r2) = 0,

v∗(v) = 1,

such that we can write:

g = tγ1
v tv∗

r2 ,

h = tγ2
v+r1tv∗

2r1+r2 .

Using this and Lemma 2.1.2 we can find the commutator z = ghg−1h−1:

ghg−1h−1 = tγ1
v tv∗

r2 tγ2
v+r1tv∗

2r1+r2tv∗

−r2tγ1
−vtv∗

−2r1−r2tγ2
−v−r1

= tγ1
v tγ1

−v−2r1−r2tγ2
v+r1+r2tγ2

−v−r1tv∗

r2 tv∗

2r1tv∗

−2r1−r2

= tγ1
−2r1−r2tγ2

r2

and see that z commutes with g and h. As G is a p-group

Φ(G) = Gp[G, G].

Suppose p ̸= 2. As g and h are index 3 bireflections gp = hp = 1 and so

⟨z⟩ = Z(G) = Φ(G).
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Knowing this and using Lemma 2.1.2 we see that any σ ∈ G can be written as:

σ = glhmzn

= (tγ1
v tv∗

r2 )l(tγ2
v+r1tv∗

2r1+r2)m(tγ1
−2r1−r2tγ2

r2 )n

= tγ1
α1tγ2

α2tv∗

α3

for some 0 ≤ l, m, n ≤ p − 1, where:

α1 = lv − 2nr1 + l(l−1)−2n
2 r2,

α2 = mv + m2r1 + m(m−1+2l)+2n
2 r2,

α3 = 2mr1 + (m + l)r2.

We find that:

0 = 2mα1 − 2lα2 + (2n − lm)α3

and so G is an extra special group consisting of bireflections with |G| = p3. As

all σ ∈ G have order p, we see that G ∼= M(p).

For p = 2 we find that

g = tγ1
v tv∗

r2 ,

h = tγ2
v+r1tv∗

r2

are still index 3 bireflections and so

ghg−1h−1 = g2h2 = tγ1
r2 tγ2

r2 ∈ Z(G).

Let z1 = g2 and z2 = h2 then z1, z2 ∈ Z(G). This means that for any σ ∈ G can

be written as

σ = ga1ha2za3
1 za4

2 = tγ1
α1tγ2

α2tv∗

α3
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where a1, . . . , a4 ∈ F2 and

α1 = a1v + a3r2,

α2 = a2v + a2r1 + a4r2,

α3 = (a1 + a2)r2.

We see that if a1 = a2 then α3 = 0, otherwise we must have ai = 0, for either

i = 1 or i = 2, in which case

αi ∈ kα3.

In any of these cases we see that σ is a bireflection, and G is a pure bireflection

group.

We see from the above that exceptional groups of type one look quite different

when p = 2: they are abelian groups generated by elements of order p2 unlike in

the case that p is odd, where they are non abelian groups and all elements have

order p. This isn’t the case for our next type of exceptional pure bireflection

group.

Definition 2.2.5. Let G ≤ GL(V ) be a unipotent group with g1, g2, g3 ∈ G. We

call g1, g2, g3 a special triple if there exists r1, r2, r3 ∈ V , γ1, γ2, γ3 ∈ r⊥
1 ∩r⊥

2 ∩r⊥
3

with

dimk(r1, r2, r3) = dimk(γ1, γ2, γ3) = 3

and we can find f ∈ k such that

g1 = tγ1
r1 tγ2

r2 , g2 = tγ1
r3 tγ3

r2 , g3 = tγ2
fr3tγ3

−fr1 .

If G is a pure bireflection group then we call G an exceptional pure bireflec-

tion group (or exceptional group) of type two, and g1, g2, g3 an exceptional

triple. For a matrix example see Chapter 6.2.

We see that special triples g1, g2, g3 have the nice property that the group

generated by any pair ⟨gi, gj⟩ with 1 ≤ i < j ≤ 3 is a hook group, so they are not
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an extension on exceptional groups of type one. Again with exceptional groups

of type two we need to check that these groups exist.

Proposition 2.2.6. If G is generated by a special triple then G is an exceptional

group of type 2, moreover G is elementary abelian of order p3.

Proof. Let g1, g2, g3 be a special triple, so for some r1, r2, r3 ∈ V , γ1, γ2, γ3 ∈

r⊥
1 ∩ r⊥

2 ∩ r⊥
3 , f ∈ k:

g1 = tγ1
r1 tγ2

r2 , g2 = tγ1
r3 tγ3

r2 , g3 = tγ2
fr3tγ3

−fr1 .

From their definitions we can see g1, g2, g3 commute, so for any σ ∈ G:

σ = ga
1gb

2g
c
3 = tγ1

α1tγ2
α2tγ3

α3

with

α1 = ar1 + br3, α2 = ar2 + cfr3, α3 = br2 − cfr1

So

cfα1 = bα2 − aα3

and for all σ ∈ G, σ is a bireflection. This means G is an exceptional group of

type two, which is an abelian group of order p3.

If G ≤ GL(V ) is a pure bireflection group then the dual representation is also

a pure bireflection group. Using Lemma 1.0.2 the dual representation of a hook

group is also a hook group, and similarly for exceptional groups of types 1 and 2,

however the dual of a two–row group is a two–column group (and visa versa).

We will show that the above are the only types of pure unipotent bireflection

groups for p ̸= 2, to do this we will make regular use of Proposition 2.1.4. First

we show that an index 3 bireflection defines a unique hyperplane and line for

any hook group containing it.
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Lemma 2.2.7. Let G ≤ GL(V ), and g ∈ G an index three bireflection so we

can find γ1, γ2 ∈ V ∗ and u1, u2 ∈ V linearly independent such that

γ1(u1) = γ1(u2) = γ2(u2) = 0,

γ2(u1) ̸= 0 and g = tγ1
u1tγ2

u2. If G is a hook group then it has hyperplane U = ker(γ1)

and line ku2 = [g, [g, V ]].

Proof. Let G be a hook group with hyperplane U . If v ̸∈ ker(γ1) then δg(v) ̸∈ V g

so v ̸∈ U , so U ≤ ker(γ1). As

dimk(U) = n − 1 = dimk ker(γ1)

we see that U = ker(γ1). As δg(U) = ku2 we see that the line of G must be ku2.

As [g, V ] = ⟨u1, u2⟩ we see that [g, [g, V ]] = ku2.

We now begin to look at pure bireflection groups generated by two elements.

Lemma 2.2.8. Let G = ⟨g, h⟩ be a pure unipotent bireflection group which is

not a two–column or two–row group. Then U = V g + V h < V is a hyperplane

with codimension one, and dimk(δg(U)) = dimk(δh(U)) = 1. Furthermore G is a

hook group if and only if

δg(U) = δh(U) ≤ U.

Proof. As h is a bireflection dimk(V h) ≥ n − 2, however as G isn’t a two–column

group

dimk(V g ∩ V h) < n − 2.

This means that V h ̸= V g ∩ V h and so V h ̸≤ V g. As g is also a bireflection

1 ≤ dimk(δg(V h)) ≤ 2.
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Suppose dimk(δg(V h)) = 2 then δg(V h) = [g, V ] ≤ [gh, V ]. For any w ∈ V

δgh(w) = δg(w) + δh(w) + δgδh(w) ∈ [gh, V ].

As δg(w), δgδh(w) ∈ [g, V ] this means that δh(w) ∈ [gh, V ] and so [h, V ] ≤ [gh, V ].

However as G is not a two–row group this would mean that

dimk([gh, V ]) = dimk([g, V ] + [h, V ]) > 2

and gh is not a bireflection. So dimk(δg(V h)) = dimk(δh(V g)) = 1.

Let U = V g + V h, then (δg(U) + δh(U)) ≤ 2 and so U ̸= V . We can also see

that:

dimk(V g + V h) = dimk(V g) + dimk(V h) − dimk(V g ∩ V h)

> (n − 2) + (n − 2) − (n − 2) = n − 2

so dimk(U) = n − 1.

If δg(U) = δh(U) ≤ U then G is a hook group with hyperplane U and line

δg(U). Suppose G is a hook group with hyperplane U ′ and line kv ≤ U ′. If

V g ̸≤ U ′ we can find some u ∈ V g\U ′ such that V = U ′ + ku. Then

[g, V ] = [g, U ′] = kv,

[h, V ] = [h, ku] + [h, U ′] = kδh(u) + kv.

This would mean that

[G, V ] = [g, V ] + [h, V ] = kδh(u) + kv

but G is not a two–row group and so we must have V g ≤ U ′. Similarly V h ≤ U ′

and so

V g + V h = U ≤ U ′.
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As dimk(U) = dimk(U ′) this means that U = U ′ and

δg(U) = δh(U) = kv ≤ U.

The next two lemmas look at conditions under which a group generated by

two elements is either a two–row, two–column or hook group. It is here we start

restricting to characteristic p ̸= 2.

Lemma 2.2.9. Let G = ⟨g, h⟩ be a pure unipotent bireflection group, p ̸= 2,

U = V g + V h. If δh(U) ≤ U then G is either a hook, two–row or two–column

group.

Proof. Assume G is not a two–row or two–column group. We have shown in

Lemma 2.2.8 that U = V g + V h < V is a hyperplane with codimension 1, and

dimk(δg(U)) = dimk(δh(U)) = 1. Let u1, u2 ∈ V such that:

δg(U) = ku1, δh(U) = ku2

and choose some v ∈ V \U so V = U + kv. Assume δh(U) ⊆ U , u2 ∈ U . This

means that δh(u2) = a1u2 for some a1 ∈ k. Since δh is nilpotent a1 = 0 and

u2 ∈ V h. Similarly if δh(v) = a2v + r with a2 ∈ k and r ∈ U then a2 = 0,

δh(v) ∈ U so [h, V ] ≤ U .

We look at gh ∈ G. Let u ∈ V h\V g and u′ ∈ V g\V h, then:

δgh(u) = δg(u),

δgh(u′) = δgδh(u′) + δh(u′).

We can see that δg(u), δgδh(u′) ∈ ku1 and δh(u′) ∈ ku2. Since δg(u) and δh(u′)

are non-zero

ku1 + ku2 ⊆ [gh, V ].
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Suppose that dimk(ku1 + ku2) = 1. Then ku1 = ku2 ≤ V g ∩ V h and G is a hook

group with hyperplane U and line ku1. Assume dimk(ku1 + ku2) = 2. Then:

[gh, V ] = ku1 + ku2.

From this we know:

δgh(v) = δg(v) + δh(v) + δgδh(v) ∈ ku1 + ku2.

As [h, V ] ≤ U , we must have δgδh(v) ≤ ku1 and so for some c1, c2 ∈ k:

δg(v) + δh(v) = c1u1 + c2u2,

δh(v) = c1u1 + c2u2 − δg(v).

As [G, V ] = [g, V ] + [h, V ] = ⟨u1, u2, δg(v), δh(v)⟩ has dimension greater than two

{u1, u2, δg(v)} must be linearly independent.

Looking at the action of ghi on U for 2 ≤ i ≤ p − 1 we find that:

δghi(u) = δg(u),

δghi(u′) = iδh(u′) + iδgδh(u′).

We see that δg(u), δgδh(u′) ∈ ku1 and δh(u′) ∈ ku2 so:

[gih, V ] = ku1 + ku2

Using Lemma 2.1.4 we find

δghi(v) = δg(v) + iδh(v) + i(i − 1)
2 δ2

h(v) + iδgδh(v) + i(i − 1)
2 δgδ2

h(v)

∈ ku1 + ku2.
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As [h, V ] ≤ U we can see that:

δ2
h(v) ∈ ku2, δgδh(v), δgδ2

h(v) ∈ ku1.

so for some b1, b2 ∈ k

δg(v) + iδh(v) = b1u1 + b2u2.

Substituting in δh(v) = c1u1 + c2u2 − δg(v),

(i − 1)δg(v) = (b1 − c1)u1 + (b2 − c2)u2

but then δg(v), u1, u2 are not linearly independent and we have a contradiction.

Now we note what happens if our group generated by two elements is not a

two–row, two–column or hook group.

Lemma 2.2.10. Let G = ⟨g, h⟩ be a p-group consisting of bireflections which

is not a two–row, two–column or hook group, p ̸= 2. Then U = V g + V h has

codimension one, δh(U), δg(U) ̸⊆ U and v ∈ V \U , r ∈ U such that δg(U) = kv,

δh(U) = k(v + r). We can find c ∈ k such that either:

δg(v) = −cr + (c − 1)δh(v + r)

or

δh(v + r) = cr + (c − 1)δg(v).

Proof. Using Lemma 2.2.8 we know that if G is not a two–row or two–column

group then U has codimension one. By Lemma 2.2.9 if G is not a hook group

then δh(U), δg(U) ̸⊆ U .
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Let v ∈ V such that kv = δg(U). As δg(U) ̸⊆ U we can write V = U + kv.

As δh(U) ̸⊆ U we can find some r ∈ U such that δh(U) = k(v + r).

We look at gh ∈ G. Let u ∈ V h\V g, u′ ∈ V g\V h:

δgh(u) = δg(u) ∈ kv,

δgh(u′) = δh(u′) + δgδh(u′) ∈ k(v + r + δg(v + r)).

As r ∈ U , δg(r) ∈ kv so:

kv + k(v + r + δg(v)) ⊆ [gh, V ].

Suppose

dimk(kv + k(v + r + δg(v)) = 1

then:

k(v + r + δg(v)) ≤ kv

which would mean that r + δg(v) ∈ kv. As g is a bireflection and v ∈ [g, V ] we

know that δg(v) ∈ δ2
g(V ) ≤ V g. Since r, δg(v) ∈ U this tells us δg(v) = −r, so

δg(v) = −cr + (c − 1)δh(v + r)

for c = 1.

Suppose

dimk(kv + k(v + r + δg(v)) = 2
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then as gh is a bireflection

kv + k(v + r + δg(v)) = [gh, V ]

and

δgh(v + r) = δg(v + r) + δh(v + r) + δgδh(v + r)

∈ kv + k(r + δg(v)).

As h is a bireflection δh(v + r) ∈ V h ⊆ U and so δgδh(v + r), δg(r) ∈ kv. We can

find c1, c2 ∈ k such that:

δh(v + r) = c1(r + δg(v)) + c2v − δg(v).

As v is the only term not in U , we can see c2 = 0 and so if c = c1 we have:

δh(v + r) = cr + (c − 1)δg(v).

Lemma 2.2.11. Let p ̸= 2 and let G = ⟨g, h⟩ ≤ GL(V ) be a p-group. Then G

is a pure bireflection group if and only if one of the following holds:

• G is a hook group.

• G is a two–row group.

• G is a two–column group.

• G is an exceptional group of type one, and g and h are a special pair.

Proof. If G is a two–column, two–row or hook group then we can easily check

it consists of bireflections (see Lemmas 2.5.2, 2.4.2 and 2.3.3) and exceptional

groups consist of bireflections by definition. Suppose G = ⟨g, h⟩ isn’t a two–row,

two–column, hook or exceptional group. Using Lemma 2.2.10 U = V g + V h has
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codimension one, δh(U), δg(U) ̸⊆ U and v ∈ V \U , r ∈ U such that δg(U) = kv,

δh(U) = k(v + r). We can choose g, h such that:

δh(v + r) = cr + (c − 1)δg(v).

As we are assuming our group is not a two–row group this means that v, r, δg(v)

are linearly independent.

As r ∈ U we can find s, t ∈ k such that:

δh(r) = s(v + r), δg(r) = tv.

We will show that either:

• c ̸= 0 and s = t = 0,

• c = 0 and t = 0, or

• c = 0 and s = 0.

We do this by looking at the descending commutator series. Firstly we find

that

[G, V ] = ⟨v, r, δg(v)⟩.

We want to find [G, [G, V ]], so we look at

δg(v) = δg(v),

δg(r) = tv,

δ2
g(v) = 0,

δh(v) = (c − 1)δg(v) + cr − s(v + r),

δh(r) = s(v + r).



2.2 Groups consisting of bireflections 65

This gives us

[G, [G, V ]] ≥ ⟨δg(v), tv, cr, s(v + r)⟩.

As G is a p-group we know that dimk([G, V ]) > dimk([G, [G, V ]], so two of c, s, t

must equal 0.

First assume c ̸= 0, s = t = 0 so r ∈ V G. We look at gih ∈ G for 1 < i ≤ p−1.

Let u ∈ U\V g, u′ ∈ U\V h then using Lemma 2.1.4:

δgih(u) = iδg(u) + i(i−1)
2 δ2

g(u),

δgih(u′) = δh(u′) + iδgδh(u′) + i(i−1)
2 δ2

gδh(u′).

We have already found δg(v), v, r to be linearly independent, and

iδg(u) + i(i−1)
2 δ2

g(u) ∈ k(2v + (i − 1)δg(v)),

δh(u′) ∈ k(v + r),

iδg(v + r) + i(i−1)
2 δ2

g(v + r) = iδg(v)

so we can see that:

[gih, V ] = k(2v + (i − 1)δg(v)) + k(v + r + iδg(v)).

This means that

δgih(v) = iδg(v) + δh(v) + iδgδh(v) + i(i−1)
2 δ2

g(v) + i(i−1)
2 δ2

gδh(v)

∈ k(2v + (i − 1)δg(v)) + k(v + r + iδg(v)).
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We know that:

δh(v) = cr + (c − 1)δg(v), δ2
g(v) = δg(r) = 0

so for some α1, α2 ∈ k:

(i + c − 1)δg(v) + cr = α1(2v + (i − 1)δg(v)) + α2(v + r + iδg(v)).

Comparing r terms α2 = c, then comparing v terms α1 = − c
2 . Looking at the

δg(v) terms:

i + c − 1 = − c
2(i − 1) + ci,

c(i − 1) = 2(i − 1),

c = 2.

Now we can see that:

dimk(U) = n − 1, dimk(V g ∩ V h) = n − 3,

and if we let r1 = r, δg(v) = r2 then:

δg(U) = kv, δg(v) = r2,

δh(U) = k(v + r1), δh(v) = 2r1 + r2,

and so g, h are a special pair and G is as described in Lemma 2.2.4 and is an

exceptional group of type one.

Now suppose c = 0. If t = 0 we have:

δh(v + r) = −δg(v + r).
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As above let u ∈ U\V g, u′ ∈ U\V h then:

δgih(u) = iδg(u) + i(i−1)
2 δ2

g(u),

δgih(u′) = δh(u′) + iδgδh(u′) + i(i−1)
2 δ2

gδh(u′).

We know that

iδg(u) + i(i−1)
2 δ2

g(u) ∈ k(2v + (i − 1)δg(v)),

δh(u′) ∈ k(v + r),

δg(r) = δ2
g(v) = 0

so we find:

[gih, V ] = k(2v + (i − 1)δg(v)) + k(v + r + iδg(v)).

This means

δgih(v) = iδg(v) + δh(v) + iδgδh(v) + i(i−1)
2 δ2

g(v) + i(i−1)
2 δ2

g(v)

∈ k(2v + (i − 1)δg(v)) + k(v + r + iδg(v))

We know

δh(v) = −δg(v) − sv − sr,

δ2
g(v) = 0,

δg(r) = 0

so for some α1, α2 ∈ k:

(i − 1 − is)δg(v) − sv − sr = α1(2v + (i − 1)δg(v)) + α2(v + r + iδg(v)).
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Comparing V and r terms α2 = −s, α1 = 0, but comparing δg(v) terms

i − 1 − is = −is

which only holds for i = 1, so we have a contradiction.

If s = 0 then we have:

δh(v) = −δg(v)

which can be dealt with using the symmetric argument to the one above where

t = 0.

We need to exclude p = 2 in the above proposition as we can find additional

groups, which don’t exist in the odd p case.

Example 2.2.12. Let H := ⟨g1, g2⟩ where:

g1 =



1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1 1


, g2 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 1 0 0

0 0 0 0 1 0

0 0 0 0 1 1


.

We find that H ∼= C2 × C2 so it is an abelian group of order four. This just

leaves one non-identity element not given explicitly. As

g1g2 =



1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 1 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,
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we see that H consists of bireflections but isn’t a two–row, two–column or hook

group.

Let

h =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1 1


.

The group H is a maximal subgroup of the Nakajima group G := ⟨g1, g2, h⟩ (see

Chapter 3). Using Theorem 1.3.4 H has hypersurface invariant ring.

We now want to see what happens if our group has more than two generators.

First we want to find non-transvection bireflections.

Lemma 2.2.13. Let g1, . . . , gl be bireflections such that G = ⟨g1, . . . , gl⟩ is a

p-group which isn’t a one–row or one–column group. Then we can find g ∈ G

such that V g has codimension two.

Proof. By Proposition 8.2.12 of [31] G consists of transvections if and only if

it is either a one–row or one–column group. This means that either gi is not a

transvection for some 1 ≤ i ≤ l or there exists g ∈ G not a transvection which is

a product of two transvections. Suppose for some γ1, γ2 ∈ V ∗, u1, u2 ∈ V

g = tγ1
u1tγ2

u2 .

If either γ1 ∈ kγ2 or u1 ∈ ku2 we see that g is a transvection. Otherwise V g has

codimension 2.

We want to be able to use Lemma 2.2.11 to help us with pure bireflection

groups with more than two generators. The next lemma allows us to find a useful

subgroup with two generators for groups which are not two–row or two–column

groups.
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Lemma 2.2.14. Let G be a unipotent bireflection group which isn’t a two–row

or two–column group. Then we can find g1, g2 ∈ G such that H = ⟨g1, g2⟩ isn’t a

two–row or two–column group.

Proof. By the previous lemma we can pick g ∈ G such that V g has codimension

2.

As G is not a 2–column group we can find σ1 ∈ G such that V g ̸≤ V σ1 . If

also [σ1, V ] ̸≤ [g, V ] then choose g1 = g, g2 = σ1 and we are done. Otherwise, as

G is not a 2–row group, we can find σ2 ∈ G such that:

[σ2, V ] ̸≤ [g, V ].

Either:

• V g ̸≤ V σ2 , then pick g1 = g, g2 = σ2,

• V g ≤ V σ2 and dimk(V σ1) = dimk(V σ2) = n − 2, then V g = V σ2 so

V σ2 ̸≤ V σ1 so pick g1 = σ1, g2 = σ2, or

• V g ≤ V σ2 and either dimk(V σ1) > n − 2 or dimk(V σ2) > n − 2.

In the third case, as V g ̸≤ V σ1 , V g ≤ V σ2 we can find u ∈ V g\V σ1 so:

σ1σ2(u) = σ1(u)

so u ̸∈ V σ1σ2 .

As [σ1, V ] ≤ [g, V ] and [σ2, V ] ̸≤ [g, V ] we can find some v, r ∈ V such that

r ̸∈ [g, V ]:

σ2(v) = v + r,

σ1σ2(v) = v + r + δσ1(v + r).

We know that δσ1(v + r) ∈ [σ1, V ] ≤ [g, V ] and so r + δσ1(v + r) ̸∈ [g, V ] therefore

V g ̸≤ V σ1σ2 and [σ1σ2, V ] ̸≤ [g, V ] so choose g1 = g, g2 = σ1σ2.
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Now we are able to move up to looking at groups with three generators.

Lemma 2.2.15. Suppose p is odd. Suppose G = ⟨g1, g2, h⟩ is a pure bireflection

group such that H = ⟨g1, g2⟩ is a hook group with hyperplane U and line kv which

isn’t a two–row or two–column group. Then either:

• G is a hook group with hyperplane U and line kv,

• G is an exceptional group of type one and either g1, h or g2, h are a special

pair,

• G is an exceptional group of type two and g1, g2, h are double transvections.

Proof. Let G1 = ⟨g1, h⟩ and G2 = ⟨g2, h⟩. Suppose that neither g1, h or g2, h are

special pairs (in which case G is an exceptional group of type one). As both G1

and G2 must consist of bireflections up to duality we only need to consider the

following four cases:

1. G1 and G2 two–column groups,

2. G1 a two–row group, G2 a two–column group,

3. G1 a two–column group, G2 a hook group but not a two–column or two–row

group,

4. G1 and G2 hook groups which aren’t two–column or two–row groups.

We will use that as H is not a two–column or two–row group we can see by

Lemma 2.2.8 that U = V g1 + V g2 , and we can find

u1 ∈ V g1\V g2 , u2 ∈ V g2\V g1

such that

δg1(u2) = δg2(u1) = v.
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As U is of codimension one there exists some w ̸∈ U such that

dimk(kδg1(w) + kδg2(w)) = 2.

Case 1 If G1 and G2 are two–column groups, then V g1 ≤ V h and V g2 ≤ V h and so

V g1 + V g2 = U ≤ V h.

This means that δh(U) = {0} < kv and G is a hook group with hyperplane

U and line kv.

Case 2 If G1 is a two–row group and G2 is a two–column group then

[h, V ] ≤ [g1, V ] ≤ U

and V g2 ≤ V h. We see that

g1g2h(w) = w + δg1(w) + δg2(w) + δh(w) + c1v,

g1g2h(u1) = u + δh(u1) + c2v,

g1g2h(u2) = u′ + v

for some c1, c2 ∈ k. As G1 is a two–row group:

δh(u1) ∈ ⟨v, δg1(w)⟩.

Suppose that G not a hook group. Then v, δh(u1) are linearly independent,

so in order for g1g2h to be a bireflection:

[g1g2h, V ] = ⟨v, δh(u1)⟩ = ⟨v, δg1(w)⟩.
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This would mean that

δg1(w) + δg2(w) + δh(w) + c1v ∈ ⟨v, δg1(w)⟩

δg2(w) ∈ ⟨v, δg1(w)⟩

and G (and therefore H) is a two–row group, which is a contradiction.

Case 3 If G2 is a hook group but not a two–row or two–column group then by

Lemma 2.2.8 it has hyperplane U ′ = V g2 + V h. Suppose the line of G2 is

kv′. If G1 is a two–column group V g1 ≤ V h and so

U = V g1 + V g2 ≤ V h + V g2 = U ′.

As dimk(U) = dimk(U ′) this means that U = U ′. As δg2(U) = kv we see

that kv′ = kv and so G is a hook group with hyperplane U and line kv.

Case 4 Suppose G1 and G2 are both hook groups which are not two–row or two–

column groups. Let U1 = V g1 +V h, U2 = V g2 +V h be the hyperplanes of G1

and G2 with lines kv1 and kv2 respectively. If there exists u ∈ (V h ∩U)\V g1

then u ∈ U1 so U1 = V g + ku = U , kv1 = kv and ⟨g1, g2, h⟩ is a hook group.

Similarly if there exists u ∈ (V h ∩ U)\V g2 .

Assume this is not the case. If we take u1, u2 as defined above then

u1 ∈ U1\U2 and u2 ∈ U2\U1. We can see

U1 + U2 = U + U1 = U + U2 = V

and by definition dimk(U1) = dimk(U2) = dimk(U) = n − 1. From this we

see that

dimk(U1 ∩ U2) = n − 2, dimk(U ∩ U1 ∩ U2) = n − 3.
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As V h ≤ U1, V h ≤ U2 and dimk(V h) ≥ n − 2 we see that U1 ∩ U2 = V h.

Similarly

V g1 = U ∩ U1, V g2 = U ∩ U2.

We can assume w ∈ V h\U , and as H not a two–row or two–column group,

δg1(w), δg2(w), v are linearly independent. Since w ∈ U1 ∩ U2 and we can

see that kv1 = kδg1(w) ∈ V h, kv2 = kδg2(w) ∈ V h. Let a1, a2 ∈ k such that

δh(u1) = a1δg1(w), δh(u2) = a2δg2(w).

We now look at G3 = ⟨g1g2, h⟩ and see that

g1g2(w) = w + δg1(w) + δg2(w) + δg1δg2(w),

g1g2(u1) = u1 + v,

g1g2(u2) = u2 + v.

As

[g1g2, V ] = ⟨δg1(w) + δg2(w), v⟩ ≠ ⟨δg1(w), δg2(w)⟩ = [h, V ]

we know that G3 is not a two–row group. As

dimk(V g1g2) = dimk(V h) = n − 2

and w ∈ V g1g2\V h, we see that G3 is not a two–column group either. By

Lemma 2.2.8 this means that U3 = V h + V g1g2 has codimension one. As

u1 − u2 ∈ V g1g2 ≤ U3

and

δh(u1 − u2) = δh(u1) − δh(u2) = a1δg1(w) − a2δg2(w) ∈ V h.
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by Lemma 2.2.9 we see that G3 must be a hook group with line

k(a1δg1(w) − a2δg2(w)).

As w ∈ V h ≤ U we find:

k(a1δg1(w) − a2δg2(w)) = k(δg1(w) + δg2(w) + δg1δg2(w)).

As δg1(w), δg2(w), v are linearly independent and δg1δg2(w) ∈ kv we see that

δg1δg2(w) = δg2δg1(w) = 0

and a1 = −a2.

Let γ0, γ1, γ2 ∈ V ∗ such that:

γ0(w) = 1, ker(γ0) = U,

γ1(u2) = 1, ker(γ1) = U1,

γ2(u1) = 1, ker(γ2) = U2

Let G′ = ⟨g̃1, g̃2, h̃⟩ where

g̃1 = tγ0
δg1 (w)t

γ1
v , g̃2 = tγ0

δg2 (w)t
γ2
v , h̃ = tγ1

a1δg2 (w)t
γ2
−a1δg1 (w),

then G′ is an exceptional group of type two. We can see that for i = 1, 2

V g̃i = U ∩ Ui = V gi

and

V h̃ = U1 ∩ U2 = V h.
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We know that

V = V g1 ⊕ ku2 ⊕ kw = V g2 ⊕ ku1 ⊕ kw = V h ⊕ ku1 ⊕ ku2.

From the definition of g̃1

g̃1(u2) = u2 + v = g1(u2)

g̃1(w) = w + δg1(w) = g1(w)

and so g̃1 = g1, similarly g̃2 = g2 and h̃ = h. This means that G = G′ is an

exceptional group of type two, and g1, g2, h are double transvections.

We can finally now prove our main result of this section, the full classification

of unipotent pure bireflection groups for p ̸= 2.

Proof. (of Theorem 1.0.5) Suppose G is not a two–row, two–column group or

an exceptional group. By Lemma 2.2.14 we can find g1, g2 ∈ G such that

dimk(V g1 ∩ V g2) < n − 2 and dimk([g1, V ] + [g2, V ]) > 2. Let N := ⟨g1, g2⟩.

As G (and therefore N) consists of bireflections by Lemma 2.2.11 N must be

a hook group with hyperplane U for some U ⊂ V , and line kv for some v ∈ UN .

As G is not an exceptional group by Lemma 2.2.15 for any g ∈ G, ⟨g, N⟩ is a

hook group with hyperplane U and line kv. This means that

[G, U ] ≤ kv ≤ V G

and so G is a hook group with hyperplane U and line kv.

2.3 Two–column and two–row groups

Now that we know the groups consisting of bireflections for p ≠ 2 we can start

to look at them in more detail. Although we don’t have the same classification
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of pure bireflection groups, two–row, two–column and hook groups are still of

interest for p = 2, so we don’t restrict to p ≠ 2 for these sections. We start by

looking at two–row groups.

Definition 2.3.1. Let r1, r2 ∈ V be linearly independent, ζ ∈ V be such that

ζ(r1) = 1, ζ(r2) = 0. Then for all γ1, γ2 ∈ r⊥
1 ∩r⊥

2 , c ∈ k define κr1,r2,ζ
γ1,γ2,c = tγ1

r1 tγ2
r2 tζ

cr2 .

Let

Kr1,r2,ζ = {κr1,r2,ζ
γ1,γ2,c | γ1, γ2 ∈ r⊥

1 ∩ r⊥
2 , c ∈ k},

Lr1,r2 = {κr1,r2,ζ
0,γ,0 | γ ∈ r⊥

1 ∩ r⊥
2 }.

Where r1, r2, ζ are fixed in context we will write κγ1,γ2,c for κr1,r2,ζ
γ1,γ2,c.

We will see that for any two–row group G we can choose r1, r2 and ζ such

that G ≤ Kr1,r2,ζ , and that Z(Kr1,r2,ζ) = Lr1,r2 .

Lemma 2.3.2. Let r1, r2 ∈ V and ζ1, ζ2 ∈ V ∗ such that

ζ1(r1) = ζ2(r1) = 1,

ζ1(r2) = ζ2(r2) = 0.

Then

Kr1,r2,ζ1 = Kr1,r2,ζ2 .

Proof. Let

g = κr1,r2,ζ1
γ1,γ2,c ∈ Kr1,r2,ζ1 .

As ζ1 and ζ2 agree on r1 and r2 we can find γ3 ∈ r⊥
1 ∩ r⊥

2 such that

ζ1 = ζ2 + γ3.

This means

g = κr1,r2,ζ1
γ1,γ2,c = κr1,r2,ζ2

γ1,γ2+cγ3,c ∈ Kr1,r2,ζ2 .
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So Kr1,r2,ζ1 ≤ Kr1,r2,ζ2 . A symmetric argument tells us that Kr1,r2,ζ1 ≤ Kr1,r2,ζ1

and so

Kr1,r2,ζ1 = Kr1,r2,ζ2 .

From here on we shall write Kr1,r2 = Kr1,r2,ζ . we look at multiplication

between the elements of this set.

Lemma 2.3.3. If we fix r1, r2, ζ then

1. κγ1,γ2,c = κγ′
1,γ′

2,c′ ⇔ γ1 = γ′
1, γ2 = γ′

2 and c = c′.

2. κγ1,γ2,cκγ′
1,γ′

2,c′ = κγ̂1,γ̂2,ĉ where:

• γ̂1 = γ1 + γ′
1,

• γ̂2 = γ2 + γ′
2 + cγ′

1,

• ĉ = c + c′.

3. κγ1,γ2,c and κγ′
1,γ′

2,c′ commute iff cγ′
1 = c′γ1.

4. κ−1
γ1,γ2,c = κ−γ1,cγ1−γ2,−c.

5. κγ1,γ2,cκγ′
1,γ′

2,c′κ−1
γ1,γ2,cκ

−1
γ′

1,γ′
2,c′ = κcγ′

2−c′γ2,0,0 ∈ Lr1,r2.

6. For any κγ1,γ2,c ∈ GL(V ):

|κγ1,γ2,c| =


p2, if p = 2 and c ̸= 0,

p, otherwise.

Proof. 1. If κγ1,γ2,c = κγ′
1,γ′

2,c′ then:

tγ1
r1 tγ2

r2 tζ
cr2 = tγ′

1
r1 tγ′

2
r2 tζ

c′ .

As r1, r2 are linearly independent by Lemma 2.1.3

γ1 = γ′
1, γ2 + cζ = γ′

2 + c′ζ ′

so γ2 − γ′
2 = (c − c′)ζ. As γ2 − γ′

2 ∈ r⊥
2 , ζ ̸∈ r⊥

2 we see c = c′ and γ2 = γ′
2.
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2. If g = κγ1,γ2,c and h = κγ′
1,γ′

2,c′ then

gh = tγ1
r1 tγ2

r2 tζ
cr2tγ′

1
r1 tγ′

2
r2 = tγ1

r1 t
γ′

1
r1+cr2tγ2+γ′

2
r2 tζ

(c+c′)r2

= tγ1+γ′
1

r1 tγ2+γ′
2+cγ′

1
r2 tζ

(c+c′)r2
.

3.,4.,5. and 6. follow from 2..

We now move from looking at a set to looking at a group and its properties.

Proposition 2.3.4. Let G = ⟨κγ1,γ2,c|γ1, γ2 ∈ r⊥
1 ∩ r⊥

2 , c ∈ k⟩. Then G = Kr1,r2

and |G| = q2n−3.

Proof. We know that Kr1,r2 ⊆ G. By Proposition 2.3.3(2) all elements of the

group can be written as κγ1,γ2,c for some γ1, γ2, c, so G = Kr1,r2 .

By Proposition 2.3.3(1) κγ1,γ2,c = κγ′
1,γ′

2,c′ if and only if γ1 = γ′
1, γ2 = γ′

2 and

c = c′. This means that

|Kr1,r2| = |r⊥
1 ∩ r⊥

2 |2 · |k| = (qn−2)2q = q2n−3.

We want to see when different choices of r1, r2 determine different groups.

Lemma 2.3.5. Let r1, r2, u1, u2 ∈ V , G = Kr1,r2 and H = Ku1,u2. Then G = H

if and only if kr2 = ku2 and

⟨r1, r2⟩ = ⟨u1, u2⟩.

Proof. Let ζ1, ζ2 ∈ V ∗ such that ζ1(r2) = ζ2(u2) = 0 and ζ1(r1) = ζ2(u1) = 1.

Suppose to start with that kr2 = ku2 and

⟨r1, r2⟩ = ⟨u1, u2⟩.

Firstly we note that this means r1 = a1u1 + a2u2 and r2 = a3u2 with a1, a3 ̸= 0.

Also

r⊥
1 ∩ r⊥

2 = u⊥
1 ∩ u⊥

2 .
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For any g ∈ G we can write g = κr1,r2,ζ1
γ1,γ2,c ∈ Kr1,r2 for some γ1, γ2 ∈ r⊥

1 ∩ r⊥
2 ,

c ∈ k. Using Lemma 2.1.2 this means that

g = tγ1
r1 tγ2

r2 tζ1
cr2 = tγ1

a1u1+a2u2tγ2
a3r2tζ1

cr2 = ta1γ1
u1 ta3γ2+a2γ1

u2 tζ1
ca3u2 .

As kr2 = ku2 we can see that ζ1(u2) = 0. Then

ζ1(a1u1 + a2u2) = a1ζ1(u1) = 1

and ζ1(u1) = 1/a1. Let b = 1/a1. As ζ1 and bζ2 agree on r1, r2 we can find some

γ3 ∈ r⊥
1 ∩ r⊥

2 such that ζ1 = γ3 + bζ2. Using Lemma 2.1.2

g = ta1γ1
u1 ta3γ2+a2γ1

u2 tζ1
cr2

= ta1γ1
u1 ta3γ2+a2γ1

u2 tγ3+bζ2
ca3u2

= ta1γ1
u1 ta3γ2+a1γ1

u2 tγ3
ca3u2tζ2

bca3u2

= ta1γ1
u1 ta3γ2+a1γ1+ca3γ3

u2 tζ2
bca3u2

= κu1,u2,ζ2
γ′

1,γ′
2,c′ ∈ H,

where

γ′
1 = a1γ1,

γ′
2 = a3γ2 + a1γ1 + ca3γ3,

c′ = bca3.

This means for any g ∈ G, g ∈ H. We can use the symmetric argument to show

that for any h ∈ H, h ∈ G and so G = H.

Suppose that

⟨r1, r2⟩ ≠ ⟨u1, u2⟩.

This means that

[G, V ] ̸= [H, V ]
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and so G ̸= H. Suppose that

⟨r1, r2⟩ = ⟨u1, u2⟩

but kr2 ̸= ku2. This means that

kr2 = [G, V ]G ̸= [H, V ]H = ku2

so G ̸= H.

Clearly Kr1,r2 is a two–row group for any r1, r2 ∈ V . We check that any

two–row group can be written as a subgroup of Kr1,r2 for some r1, r2 ∈ V .

Lemma 2.3.6. Let H be a two–row group. If

[H, V ]H = [H, V ]

then H ≤ Kr1,r2 for any r1, r2 ∈ V such that

[H, V ] = ⟨r1, r2⟩.

If

kv = [H, V ]H < [H, V ]

then H ≤ Kr1,r2 for any r2 ∈ kv and r1 ∈ V such that

[H, V ] = ⟨r1, r2⟩.

Proof. Suppose H is a two–row group with

[H, V ]H = [H, V ].

If we choose any r1, r2 ∈ V such that

[H, V ] ≤ ⟨r1, r2⟩
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then any h ∈ H can be written as

h = tγ1
r1 tγ2

r2

for some γ1, γ2 ∈ r⊥
1 ∩ r⊥

2 . Then for any ζ ∈ V ∗ such that ζ(r1) = 1 and ζ(r2) = 0

h = tγ1
r1 tγ2

r2 = tγ1
r1 tγ2

r2 tζ
0 = κr1,r2,ζ

γ1,γ2,0 ∈ Kr1,r2.

This means that H ≤ Kr1,r2 .

Suppose that H is a two–row group with

kv = [H, V ]H < [H, V ].

If we choose any r2 ∈ kv and r1 ∈ V such that

[H, V ] = ⟨r1, r2⟩

then we can write and h ∈ H as

h = tγ1
r1 tγ2

r2

for some γ1 ∈ r⊥
1 ∩ r⊥

2 , γ2 ∈ V ∗. If γ2 ∈ r⊥
1 ∩ r⊥

2 then h ∈ Kr1,r2 by the above

argument. If γ2(r1) = c ̸= 0 then let ζ = 1
c
γ2 and write

h = tγ1
r1 t0

r2tζ
cr2 = κr1,r2,ζ

γ1,0,c

so h ∈ Kr1,r2 and H ≤ Kr1,r2 .

Proposition 2.3.7. For n ≥ 3 if G = Kr1,r2 then it is a special group with:

Z(G) = Φ(G) = [G, G] = Lr1,r2
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Proof. As G is a p-group we know that Φ(G) = Gp[G, G]. We have shown

in Proposition 2.3.3 that [G, G] ≤ Lr1,r2 , and that Gp = {e} for p odd and

Gp ≤ Lr1,r2 for p even. Putting this together we find that Φ(G) ≤ Lr1,r2 .

For γ ∈ r⊥
1 ∩ r⊥

2 take g1 = κγ,0,0 and g2 = κ0,0,1 then g1g2g
−1
1 g−1

2 = κ0,γ,0 so

[G, G] = Lr1,r2 = Φ(G).

If g ∈ Lr1,r2 then it commutes with all elements κγ1,γ2,c so Lr1,r2 ≤ Z(G). If

we choose κγ1,γ2,c ∈ Z(G) then for any γ′
1, c′ we have that cγ′

1 = c′γ1 so γ = 0

and c = 0, so κγ1,γ2,c ∈ Lr1,r2 and Z(G) = Lr1,r2 = Φ(G) = [G, G]. G is a special

p-group.

We can see that for any γ1, γ2 ∈ V ∗, G = (Kγ1,γ2)∗ is a two–row group.

Results for two–column groups can be obtain by dualising the results of this

section using Lemma 2.0.5.

2.4 Hook groups

We now move on to look at properties of hook groups. First we establish some

notation.

Definition 2.4.1. Let U < V ∗ be a subspace of codimension 1 and fix 0 ̸= v ∈ U

and w ∈ V ∗\U . For every λ ∈ v⊥ ∩ w⊥ and u ∈ U define bw,U,v
u,λ ∈ GL(V ) by:

bw,U,v
u,λ (w) = w + u,

bw,U,v
u,λ |U = tλ

v ,

so that bw,U,v
u,λ (u′) = u′ + u′(λ)v for any u′ ∈ U .

Choose w∗ ∈ V ∗ such that w∗(w) = 1 and U = ker(w∗). For c ∈ k we can then
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define:

Bw,U,v
c := {bw,U,v

u,λ |λ ∈ v⊥ ∩ w⊥, λ(u) = c},

BU,v := {bw,U,v
u,λ |λ ∈ v⊥ ∩ w⊥, u ∈ U},

Rv̂,U := {tw∗

av |a ∈ k} = {bw,U,v
av,0 |a ∈ k}.

Note that we have chosen hyperplane U and line kv to be in the dual space

W = V ∗. This is to ease in calculations of invariant rings later on. As hook

groups are self dual we would achieve the same results by specifying a hyperplane

and line in V .

For c ̸= 0 the elements of Bw,U,v
c are index 3 bireflections. If w, U, v are fixed

in context we will write bu,λ and Bc instead of bw,U,v
u,λ and Bw,U,v

c .

We look at multiplication of the elements of BU,v.

Lemma 2.4.2. If we fix w, U, v then

1. bu,λ = bu′,λ′ ⇔ u = u′ and λ = λ′,

2. bu,λbu′,λ′ = bû,λ̂ where λ̂ = λ + λ′ and û = u + u′ + λ(u′)v,

3. bu,λ and bu′,λ′ commute iff λ(u′) = λ′(u),

4. b−1
u,λ = b−u+λ(u)v,λ,

5. bu′,λ′bu,λb−1
u′,λ′b−1

h,λ = b(λ′(u)−λ(u′))v,0 ∈ Rv̂,U ,

6. For bu,λ ∈ Bc

|bu,λ| =


p2, if p = 2 and c ̸= 0,

p, otherwise.

Proof. 1. If bu,λ = bu′,λ′ then:

w + u = w + u′

u = u′.
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For any s ∈ U we find

s + λ(s)v = s + λ′(s)v

λ(s)v = λ′(s)v,

so λ = λ′.

2. Let λ̂ = λ + λ′ and û = u + u′ + λ(u′)v. We can look at the action of

bu,λbu′,λ′ on w and on U . We start with w:

bu,λbu′,λ′(w) = bu,λ(w + u′)

= w + (u + u′ + λ(u′)v)

= bû,λ̂(w).

Let s ∈ U then

bu,λbu′,λ′(s) = bu,λ(s + λ(s)v)

= s + (λ(s) + λ′(s))v

= bû,λ̂(s)

so bu,λbu′,λ′ = bû,λ̂.

3.,4.,5.,6. follow from 2.

We see that BU,v is closed under multiplication, the next few propositions

look at it’s group structure.

Proposition 2.4.3. Let G = ⟨bu,λ|u ∈ U, λ ∈ v⊥ ∩ w⊥⟩. Then G = BU,v and

|G| = q2n−1.

Proof. From the definition of G,

{bu,λ|u ∈ U, λ ∈ v⊥ ∩ w⊥} ⊆ G.
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By Proposition 2.4.2(2) all elements of the group can be written as bu,λ for some

u, λ, so

G = {bu,λ|u ∈ U, λ ∈ v⊥ ∩ w⊥}.

By Proposition 2.4.2(1) bu,λ = bu′,λ′ if and only if u = u′ and λ = λ′ so

|{bu,λ|u ∈ U, λ ∈ v⊥ ∩ w⊥}| = |{u ∈ U}| · |{λ ∈ v⊥ ∩ w⊥}|

= qn−1qn−2 = q2n−3.

Proposition 2.4.4. For n ≥ 3, the group G = BU,v is a special group with:

Z(G) = Φ(G) = [G, G] = Rv̂,U

Proof. As G is a p-group we know that Φ(G) = Gp[G, G]. We have shown in

Proposition 2.4.2 that [G, G] ≤ Rv̂,U , and that Gp = {e} for p odd and Gp ≤ Rv̂,U

for p even. So we have that Φ(G) ≤ Rv̂,U .

Let u ∈ V , for any d ∈ k we can choose λ ∈ V ∗ such that λ(u) = −d. Then

bu,0, b0,λ ∈ G and:

bu,0b0,λb−1
u,0b

−1
0,λ = bdv,0 ∈ Rv̂,U .

so [G, G] = Rv̂,U = Φ(G).

If t ∈ Rv̂,U then it commutes with all elements bu,λ so Rv̂,U ≤ Z(G). If we

choose bu,λ ∈ Z(G) then for any u′, λ′ we know λ(u′) = λ′(u). This can only

happen if u = cv and λ = 0, so bu,λ ∈ Rv̂,U and

Z(G) = Rv̂,U = Φ(G) = [G, G].

This means that G is a special p-group.

We know that BU,v is special, for k = Fp it is extra special so we know we

can write it as a central product of copies of extraspecial groups of order p3.
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Lemma 2.4.5. Let k = Fp, n ≥ 3 and G = BU,v. If p = 2 then

G ∼= D8 ∗ D8 ∗ . . . ∗ D8︸ ︷︷ ︸
n−2 copies

.

Otherwise

G ∼= M(p) ∗ M(p) ∗ . . . ∗ M(p)︸ ︷︷ ︸
n−2 copies

.

Proof. Let {e1, . . . , en} be a basis for V such that e1 = v and ⟨e1, . . . , en−1⟩ = U .

For 1 ≤ i ≤ n − 2 let

Hi = ⟨bei+1,0, b0,e∗
i+1

⟩.

The Hi are groups of order p3 and we can check using Lemma 2.4.2 that

[Hi, Hi] = Z(Hi) = Rv̂,U .

This means that Hi is extraspecial for 1 ≤ i ≤ n − 2. If p = 2 then as |bu,0| = 2

and bu,0 ̸∈ Φ(Hi) we see that Hi
∼= D8. If p is odd then as all elements have

order p, Hi
∼= M(p).

Let H = H1H2 . . . Hn−2. For any 2 ≤ i, j ≤ n−1, i ̸= j we see Z(Hi) = Z(Hj),

and Hi centralises Hj so for p even

H ∼= D8 ∗ D8 ∗ . . . ∗ D8︸ ︷︷ ︸
n−2 copies

,

and for p odd

H ∼= M(p) ∗ M(p) ∗ . . . ∗ M(p)︸ ︷︷ ︸
n−2 copies

.

Clearly H ≤ G and |H| = p2n−1 = |G| so H = G.

The next Proposition relates Bc and BU,v. It is useful when looking for

generators of BU,v.

Proposition 2.4.6. Let n > 3. For c ∈ k let Gc = ⟨Bc⟩. Then Gc = BU,v.
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Proof. We know Gc ≤ BU,v. We will show that for any element bu,λ ∈ BU,v,

bu,λ ∈ Gc and so BU,v ≤ Gc.

Since dimk(V ) = n > 3 we can choose u′, λ′ such that:

λ′(u′) = c,

λ′(u) = 0,

λ(u′) = 0,

so bu′,λ′ , bu′+u,λ′ , bu′,λ+λ′ ∈ Bc. Then:

bu′+u,λ′b−1
u′,λ′ = bu,0 ∈ Gc,

bu′,λ′+λb−1
u′,λ′ = b0,λ ∈ Gc,

bu,0b0,λ = bu,λ ∈ Gc.

We now look at some subgroups of BU,v.

Proposition 2.4.7. Let G = ⟨b1, . . . , bl⟩, where bi = bui,λi
∈ BU,v for 1 ≤ i ≤ l

minimally generate G. Then pl ≤ |G| ≤ pl+r

Proof. As G is a p-group Φ(G) = Gp[G, G]. We know that Gp ≤ Rv̂,U and

[G, G] ≤ Rv̂,U so Φ(G) ≤ Rv̂,U and 1 ≤ |Φ(G)| ≤ q.

By [1, Theorem 23.1] ⟨X⟩ = G if and only if ⟨X, Φ(G)⟩ = G. As G/Φ(G)

is elementary abelian this means if l is the minimal number of generators then

|G/Φ(G)| = pl, and so pl ≤ |G| ≤ qpl = pl+r.

Proposition 2.4.8. 1. Let G = ⟨b1, . . . , bl, Rv̂,U⟩ where the set of bi = bhi,λi
∈

BU,v for 1 ≤ i ≤ l, and the bi’s and Rv̂,U minimally generate G. Then

|G| = pl+r.

2. Let G = ⟨b1, . . . , bl⟩ where the set of bi = bhi,λi
∈ BU,v for 1 ≤ i ≤ l, and

the bi’s minimally generate G. Suppose [G, [G, V ]] = 0, then |G| = pl.

Proof. 1. Since Φ(G) ≤ Rv̂,U ≤ Z(G), G/Rv̂,U is elementary abelian of order

pl and |Rv̂,U | = q = pr, so |G| = pl+r.
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2. If [G, [G, V ]] = 0 it can be seen from Proposition 2.4.2 that G is elementary

abelian and if it is minimally generated by l elements it has order pl.

2.5 Exceptional groups of type one

We now look at the exceptional groups of type one. In Lemma 2.2.4 we see that

a group generated by a exceptional pair G = ⟨g, h⟩ for p = 2 is quite different to

a group generated by a special pair for odd p. To start with we note that g and

h have order p2 and not order p. The centre of G also has order p2 rather than

p, and G is not an extra-special group. The types of bireflection we find are also

quite different:

ghg−1h−1 = tγ1
r2 tγ2

r2

is a transvection and not a double transvection for p = 2. We will see in the odd

case that exceptional groups do not contain any transvections (Lemma 2.5.9).

For even p the exceptional groups of type one are part of a larger family of pure

bireflection groups containing a pair of elements

g = tζ1
u1tζ3

u3 , h = tζ2
u2tζ3

u3

for ζ1, ζ2, ζ3 ∈ V ∗, u1, u2, u3 ∈ V . We have already seen another one of these

groups in Example 2.2.12 but we will not look at them in any detail.

We will restrict to p ̸= 2 for this section, we also need n ≥ 5 for our definition

of an exceptional group of type one to make sense. We start by defining some

groups containing a special pair, and then show that these are the only possible

exceptional groups of type one.

Definition 2.5.1. Define linearly independent sets

r = {r1, r2, v} and γ = {γ1, γ2, v∗}
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with r1, r2, v ∈ V , γ1, γ2 ∈ r⊥
1 ∩ r⊥

2 ∩ v⊥ such that v∗ ∈ r⊥
1 ∩ r⊥

2 and v∗(v) = 1.

For all l, m, n ∈ k define χr,γ
l,m,n by:

χr,γ
l,m,n = tγ1

α1tγ2
α3tv∗

α2

where

α1 = lv − 2nr1 + l(l−1)−2n
2 r2,

α2 = mv + m2r1 + m(m−1+2l)+2n
2 r2,

α3 = 2mr1 + (m + l)r2.

Define:

Xr,γ = {χr,γ
l,m,n | l, m, n ∈ k},

Jr,γ = {χr,γ
0,0,n | n ∈ k}.

If r, γ are fixed in context we will write χl,m,n.

Note that for all l, m, n ∈ k

2mα1 − 2lα2 + (2n + ml)α3 = 0

and so χl,m,n is a bireflection.

Lemma 2.5.2. For fixed r, γ we have:

1. χl,m,n = χl′,m′,n′ ⇔ l = l′, m = m′, n = n′,

2. χl,m,nχl′,m′,n′ = χl+l′,m+m′,n+n′−ml′,

3. χl,m,n and χl′,m′,n′ commute iff ml′ = m′l,

4. χ−1
l,m,n = χ−l,−m,−n−ml,

5. χl,m,nχl′,m′,n′χ−1
l,m,nχ−1

l′,m′,n′ = χ0,0,lm′−l′m.
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Proof. 1. This is a direct application of Lemma 2.1.3.

2. Let l, m, n, l′, m′, n′ ∈ k then

χl,m,nχl′,m′,n′ = tγ1
α1tγ2

α2tv∗

α3tγ1
α′

1
tγ2
α′

2
tv∗

α′
3

= tγ1
α1+α′

1+l′α3
tγ2
α2+α′

2+m′α3
tv∗

α3+α′
3

where:

α1 = lv − 2nr1 + l(l−1)−2n
2 r2,

α2 = mv + m2r1 + m(m−1+2l)+2n
2 r2,

α3 = 2mr1 + (m + l)r2,

α′
1 = l′v − 2n′r1 + l(l−1)−2n

2 r2,

α′
2 = m′v + (m′)2r1 + m′(m′−1+2l′)+2′n

2 r2.

α′
3 = 2m′r1 + (m′ + l′)r2.

We find that

α1 + α′
1 + l′α3 =(l + l′)v − 2(n + n′ − ml′)r1

+ (l+l′)(l+l′−1)−2(n+n′−ml′)
2 r2,

α2 + α′
2 + m′α3 =(m + m′)v + (m + m′)2r1

+ (m+m′)(m+m′−1+2(l+l′))+2(n+n′−ml′)
2 r2,

α3 + α′
3 =2(m + m′)r1 + (m + m′ + l + l′)r2,

and so χl,m,nχl′,m′,n′ = χl+l′,m+m′,n+n′−ml′ .

3.,4.,5. and 6. follow from 2..

We know that Xx,γ is closed under multiplication, we can now start to look

at it as a group.

Proposition 2.5.3. Let G = ⟨χl,m,n | l, m, n ∈ k⟩. Then G = Xr,γ and |G| = q3.
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Proof. By Proposition 2.5.2(2) all elements of the group can be written as χl,m,n

for some l, m, n ∈ k, so G = {χl,m,n|l, m, n ∈ k} = Xr,γ.

By Proposition 2.5.2(1) χl,m,n = χl′,m′,n′ if and only if l = l′, m = m′, n = n′

so |Xr,γ| = |k|3 = q3.

Proposition 2.5.4. Let G = Xr,γ. Then G is a special group with:

Z(G) = Φ(G) = [G, G] = Jr,γ.

Proof. As G is a p-group we know that Φ(G) = Gp[G, G]. We have shown in

Proposition 2.5.2 that [G, G] ≤ Jr,γ . As G is a pure bireflection group with p ≠ 2,

Gp = {e}. So we see that Φ(G) ≤ Jr,γ.

For any l ∈ k if we let b1 = χl,0,0, b2 = χ0,1,0 then b1b2b
−1
1 b−1

2 = χ0,0,l, and so

[G, G] = Jr,γ = Φ(G).

If t ∈ Jr,γ then it commutes with all elements χl,m,n so Jr,γ ≤ Z(G). If we

choose χl,m,n ∈ Z(G) then for any l′, m′ we have that ml′ = m′l so m = l = 0

and so χl,m,n ∈ Jr,γ. This means that

Z(G) = Φ(G) = [G, G]

and G is a special p-group.

Using the above we see that Xr,γ is isomorphic to a group we recognise.

Proposition 2.5.5. Let G = Xr,γ and

P =
〈

1 a b

0 1 c

0 0 1

 | a, b, c ∈ k

〉
.

Then G ∼= P for any r, γ.
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Proof. We can define a map φ : G → P such that

φ(χl,m,n) =


1 m −n

0 1 l

0 0 1

 .

Clearly φ is surjective, we check that the map is a group homomorphism. Let

χl,m,n, χl′,m′,n′ ∈ G then

φ(χl,m,nχl′,m′,n′) = φ(χl+l′,m+m′,n+n′−ml′)

=


1 m + m′ −n − n′ + ml′

0 1 l + l′

0 0 1

 ,

and

φ(χl,m,n)φ(χl′,m′,n′) =


1 m −n

0 1 l

0 0 1




1 m′ −n′

0 1 l′

0 0 1



=


1 m + m′ −n − n′ + ml′

0 1 l + l′

0 0 1

 .

If φ(χl,m,n) = 1 then l = m = n = 0 and χ0,0,0 = 1, so φ is an isomorphism and

G ∼= P .

In the above P is the Sylow p-subgroup of SL3(q). The next couple of lemmas

will help us towards our goal of showing that all exceptional groups of type one

are isomorphic to P .

Lemma 2.5.6. Let G1, G2 ≤ GL(V ) be hook groups with hyperplanes U1, U2 and

lines v1, v2 respectively. Let γ1, γ2 ∈ V ∗ such that ker(γ1) = U1 and ker(γ2) = U2.
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If U1 ̸= U2, kv1 ̸= kv2 then for any t ∈ G1 ∩ G2 we can find a, b ∈ k such that

t = tγ1
av2tγ2

bv1 .

Let γ3 ∈ V ∗ and v3 ∈ V such that

dimk⟨v1, v2, v3⟩ = dimk⟨γ1, γ2, γ3⟩ = 3.

If G3 ≤ GL(V ) is also a hook group with hyperplane U3 = ker(γ3) and line v3

and t ∈ G1 ∩ G2 ∩ G3 then t = 1.

Proof. For any u ∈ ker(γ1) ∩ ker(γ2) we see that δt(u) ∈ kr2 ∩ k(2r1 + r2) = {0}

so we can find r3, r4 ∈ V such that

t = tγ1
r3 tγ2

r4 .

As ker(γ2) ̸≤ ker(γ1) we see that r3 ∈ kv2 and similarly r4 ∈ kv1, so we can find

some a, b ∈ k such that:

t = tγ1
av2tγ2

bv1 .

If t ∈ G1 ∩ G2 ∩ G3 as above then we see that for some c1, c2, c3, c4 ∈ k

t = tγ1
c1v2tγ2

c2v1 = tγ1
c3v3tγ3

c4v1

= tγ1
c1v2tγ2

c2v1tγ3
0 = tγ1

c3v3tγ2
0 tγ3

c4v1

so using Lemma 2.1.3 c1 = c2 = c3 = c4 = 0.

Lemma 2.5.7. Let g1 = χ1,0,0, g2 = χ0,1,0 and σ ∈ GL(V ). If G = ⟨g1, g2, σ⟩

is a pure bireflection group then either σ is a double transvection and for some

a ∈ k, σ = χ0,0,a or σ is an index 3 bireflection and g1, σ or g2, σ are a special

pair.

Proof. Let z = χ0,0,1, G1 = ⟨g1, z, σ⟩ and G2 = ⟨g2, z, σ⟩. As G1, G2 are not

two–row or two–column groups, by Lemma 2.2.15 each could be a hook group,
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exceptional group of type one or exceptional group of type two. As g1 is an

index 3 bireflection G1 is not an exceptional group of type two. As z is a

double transvection if G1 is an exceptional group of type one then g1, σ are an

exceptional pair. Similarly either G2 is a hook group or g2, σ are an exceptional

pair. Suppose both G1 and G2 are hook groups.

As g1 is an index 3 bireflection we see by Lemma 2.2.7 that G1 has hyperplane

ker(γ1) and line kr2. Similarly G2 has hyperplane ker(γ2) and line k(2r1 + r2).

Using Lemma 2.5.6 we can find some a, b ∈ k such that:

σ = tγ1
a(2r1+r2)t

γ2
br2 .

As r1, r2 ∈ ker(γ1) ∩ ker(γ2) we see σ is a double transvection.

Let G3 = ⟨g1g2, z, σ⟩. Using Lemma 2.2.15 again, G3 is either a hook or an

exceptional group. As g1g2 is an index 3 bireflection it isn’t an exceptional group

of type two, and as σ, z are double transvections G3 isn’t a exceptional group of

type one. This means that G3 is a hook group. We know that

g1g2 = tγ1
v+2r1+r2tγ2

v+r1tv∗

2r1+2r2

= tγ1+γ2
v+r1 t2v∗+γ1

r1+r2

and

[g1g2, [g1g2, V ]] = k(r1 + r2).

By Lemma 2.2.7 k(r1+r2) is the line of G3, and U = ker(γ1+γ2) is the hyperplane.

If u1, u2 ∈ ker(v∗) such that for i, j ∈ {1, 2}

γi(uj) =


1 if i = j,

0 otherwise.

We can see that u1 − u2 ∈ ker(γ1 + γ2) = U , so

δσ(u1 − u2) ∈ k(r1 + r2)
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2ar1 + (a − b)r2 ∈ k(r1 + r2)

For this to happen we must have b = −a and then σ = χ0,0,a.

We can now prove that all exceptional groups of type one are as described

above.

Proposition 2.5.8. If G ≤ GL(V ) is an exceptional group of type one then we

can find r, γ such that G ≤ Xr,γ.

Proof. If G is an exceptional group of type one then we can find r = {r1, r2, v}

and γ = {γ1, γ2, v∗} such that

χr,γ
1,0,0, χr,γ

0,1,0 ∈ G.

Let g1 = χr,γ
1,0,0, g2 = χr,γ

0,1,0. If G ̸≤ Xr,γ then we can find σ ∈ G\Xr,γ. If G

consists of bireflections then ⟨g1, g2, σ⟩ consists of bireflections so by Lemma 2.5.7

if σ ̸∈ Xr,γ then either g1, σ or g2, σ are an exceptional pair.

Without loss of generality we can assume g1, σ are an exceptional pair. By

Lemma 2.2.3 we can find a, b ∈ k, r3 ∈ ker(γ1) ∩ ker(v∗) and γ3 ∈ V ∗ linearly

independent to γ1 and v∗ such that

γ3(r2) = γ2(r3) = γ3(v) = γ1(r3) = 0

and σ = tγ1
β1tγ3

β2tv∗
β3 where

β1 = bv + (a − ab)r2 + (2a + b)r3,

β2 = v − ar′
2 + r3,

β3 = 2r3 + r2.

Using Lemma 2.1.2 we can find

z′ := σg1σ
−1g−1

1 = tγ1
2r3+(1−b)r2

tγ3
−r2 .



2.5 Exceptional groups of type one 97

As z′ is not an index 3 bireflection it can’t be part of an exceptional pair so

because ⟨g1, g2, z′⟩ must be a pure bireflection group by Lemma 2.5.7

z′ = χ0,0,c

for some c ∈ k. This means that

z′ = tγ1
c(2r1+r2)t

γ2
−cr2 = tγ1

2r3+(1−b)r2
tγ3
−r2 .

As γ1 is linearly independent to γ2 and γ3 we can find some u1 ∈ V such that

γ1(u1) = 1 and γ2(u1) = γ3(u1) = 0. We find

δz′(u1) = 2r3 + (1 − b)r2 = 2cr1 + cr2

so r3 = cr1 + (c−1+b)r2
2 . By multiplying z′ on the right by (tγ1

2cr1+cr2)−1 and using

Lemma 2.1.2 we get:

tγ1
c(2r1+r2)t

γ3
−r2 = tγ1

c(2r1+r2)t
γ2
−cr2 ,

tγ3
−r2 = tγ2

−cr2 ,

tγ3
−r2 = tcγ2

−r2 .

Using Lemma 2.1.3 we see that γ3 = cγ2. Now we see that σ = tγ1
β1tγ2

cβ2tv∗
β3 for

β1 = bv + (a − ab)r2 + (2a + b)(cr1 + (c − 1 + b)
2 r2),

= bv + (2ac + bc)r1 + b(b − 1) + 2ac + bc

2 r2,

cβ2 = cv − car2 + c2r1 + c(c − 1 + b)r2

2 ,

= cv + c2r1 + c(c − 1 + 2b) − 2ac − bc

2 ,

β3 = 2(cr1 + (c − 1 + b)r2

2 ) + r2,

= 2cr1 + (c + b)r2.
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If L = b, M = c and L = −2ac+bc
2 then σ = χr,γ

L,M,N , so σ ∈ Xr,γ.

This allows us to say some more about exceptional groups of type one.

Corollary 2.5.9. If G is an exceptional group of type one then it contains no

transvections and any double transvections in G are contained within Jr,γ, which

is a two–row and two–column group.

Corollary 2.5.10. If k = Fp, for fixed r, γ, there is only one exceptional group

of type one which is an extra special group of order p3 which is isomorphic to

M(p).

Proof. If G is an exceptional group of type one then by the above proposition

G ≤ Xr,γ, for some r, γ, however G has no non-trivial subgroups which contain

a special pair, so G = Xr,γ. We can see that

Φ(G) = [G, G] = Z(G) = Jr,γ

so G is extraspecial, and the order of G is p3. As G has no elements of order

greater than p, G ∼= M(p).

2.6 Exceptional groups of type two

In this section we will treat exceptional groups of type two, as we have with

exceptional groups of type one above. Unlike exceptional groups of type one,

many of our results for exceptional groups of type two still hold for p = 2, so

we do not restrict odd characteristic when we define some groups containing

a special triple. We cannot, however, use our earlier classification results for

even characteristic and so we restrict to p ≠ 2 when we show that these are all

possible exceptional groups of type two in Proposition 2.6.4.

To be able to find G ≤ GL(V ) an exceptional group of type two we need

n ≥ 6.
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Definition 2.6.1. Let r = {r1, r2, r3} with r1, r2, r3 ∈ V , γ = {γ1, γ2, γ3} with

γ1, γ2, γ3 ∈ r⊥
1 ∩ r⊥

2 ∩ r⊥
3 and

dimk⟨r1, r2, r3⟩ = dimk⟨γ1, γ2, γ3⟩ = 3.

For all a, b, c ∈ k define wr,γ
a,b,c = tγ1

α1tγ2
α2tγ3

α3 where:

α1 = ar1 + br3,

α2 = ar2 + cr3,

α3 = br2 − cr1,

and W r,γ = {wr,γ
a,b,c|a, b, c ∈ k}. Where r, γ are fixed in context we shall write

wr,γ
a,b,c = wa,b,c.

Lemma 2.6.2. For fixed r, γ we have:

1. wa,b,c = wa′,b′,b′ ⇔ l = l′, m = m′, n = n′.

2. wa,b,cwa′,b′,c′ = wa+a′,b+b′,c+c′.

3. wa,b,c and wa′,b′,c′ commute for all a, b, c, a′, b′, c′ ∈ k.

4. w−1
a,b,c = w−a,−b,−c.

Proof. 1. We can see by using Lemma 2.1.3..

2. For a, b, c, a′, b′, c′ ∈ k we see that

wa,b,cwa′b′,c′ = tγ1
ar1+br3tγ2

ar2+cr3tγ3
br2−cr3tγ1

a′r1+b′r3
tγ2
a′r2+c′r3

tγ3
b′r2−c′r3

,

= tγ1
(a+a′)r1+(b+b′)r3

tγ2
(a+a′)r2+(c+c′)r3

tγ3
(b+b′)r2−(c+c′)r3

.

3.,4.,5.,6. follow from 2..

Proposition 2.6.3. Let G = ⟨wr,γ
a,b,c|a, b, c ∈ k⟩. Then G = W r,γ is an elemen-

tary abelian group with |G| = q3.
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Proof. By Proposition 2.6.2(2) all elements of the group can be written as wa,b,c

for some a, b, c ∈ k, so

G = {wa,b,c|a, b, c ∈ k} = W r,γ.

As all elements commute and have order p we see that G is elementary abelian.

By Proposition 2.6.2(1) wa,b,c = wa′,b′,c′ if and only if a = a′, b = b′, c = c′ so

|W r,γ| = q3.

Proposition 2.6.4. Let p ̸= 2. If G ∈ GL(V ) is an exceptional group of type

two then there exists some r, γ such that for all h ∈ G, h = wr,γ
a,b,c for some

a, b, c ∈ k.

Proof. As G is an exceptional group of type two we can find a subgroup H =

⟨g1, g2, g3⟩ such that g1, g2, g3 are a special triple. This means that for some

r = {r1, r2, r3}, γ = {γ1, γ2, γ3} and s ∈ k:

g1 = wr,γ
1,0,0, g2 = wr,γ

0,1,0, g3 = wr,γ
0,0,s.

We will show that for all h ∈ G we can find some a, b, c ∈ k such that h = wr,γ
a,b,c.

From Proposition 2.5.9 we can see that G is not an exceptional group of type

one: for any exceptional group of type one all elements which are not index three

bireflections are contained within the centre which is a two–column (and two–row

group). The special triple g1, g2, g3 are all double transvections which are not

contained in any single two–row or two–column group.

For all h ∈ G the subgroups

⟨gi, gj, h⟩ for 1 ≤ i < j ≤ 3

consist of bireflections so by Lemma 2.2.15 they are either hook groups or

exceptional groups of type two. Suppose ⟨g1, g2, h⟩ is a hook group then it has

hyperplane ker(γ1) and line kr2. Similarly if ⟨g1, g3, h⟩ is a hook group then it

has hyperplane ker(γ2) and line kr1, and if ⟨g2, g3, h⟩ is a hook group then it has
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hyperplane γ3 and line r3. As γ1, γ2, γ3 and r1, r2, r3 are linearly independent

this means if all three groups are hook groups by Lemma 2.5.6, h = 1.

For h not the identity we know that for some 1 ≤ i < j ≤ 3 that ⟨gi, gj, h⟩ is

not a hook group, we can assume i = 1 and j = 2 without loss of generality.

We can find r′ = {r′
1, r′

2, r′
3}, γ′ = {γ′

1, γ′
2, γ′

3} such that for some n ∈ k:

g1 = wr′,γ′

1,0,0, g2 = wr′,γ′

0,1,0, h = wr′,γ′

0,0,n.

Then:

tγ1
r1 tγ2

r2 = t
γ′

1
r′

1
t
γ′

2
r′

2
,

tγ1
r3 tγ3

r2 = t
γ′

1
r′

3
t
γ′

3
r′

2
.

As

(kγ1 + kγ2) ∩ (kγ1 + kγ3) = kγ1, (kr1 + kr2) ∩ (kr2 + kr3) = kr2

for some l, m ∈ k

γ1 = γ′
1, γ′

2 = γ2 + lγ1, γ′
3 = γ3 + mγ1

r′
1 = r1 − lr2, r2 = r′

2, r′
3 = r3 − mr2.

Using this we find that

h = t
γ′

2
nr′

3
t
γ′

3
−nr′

1
,

= tlγ1
n(r3−mr2)t

mγ1
−n(r1−lr2)t

γ2
n(r3−mr2)t

γ3
−n(r1−lr2),

= tγ1
−mnr1+lnr2tγ2

nr3−mnr2tγ3
−nr1+lnr2 ,

= wr,γ
−mn,ln,n

as required.
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Corollary 2.6.5. If G is an exceptional group of type two then it contains no

transvections or index 3 bireflections.

Corollary 2.6.6. If k = Fp then for fixed r, γ there is only one exceptional group

of type two which is an elementary abelian group of order p3.

2.7 Pure bireflection groups

We now know a little about each type of bireflection group for p ≠ 2 so we can

say a bit more about them than at the end of Section 2.2.

Definition 2.7.1. A subgroup G ≤ GL(V ) is called a maximal pure bireflec-

tion group if it is a pure bireflection group, and for all G ≤ H ≤ GL(V ) either

H = G or H is not a pure bireflection group.

Lemma 2.7.2. Let p ̸= 2, n > 3. If G is a maximal pure unipotent bireflection

group then it is a special group and one of the following holds:

• G = BU,v for some U < V of codimension 1, v ∈ U . |G| = q2n−3.

• G = Kr1,r2 or G = (Kγ1,γ2)∗ for some r1, r2 ∈ V or γ1, γ2 ∈ V ∗. Then

|G| = q2n−3.

• G = Xr,γ for some r = {r1, r2, v}, γ = {γ1, γ2, v∗}. Then |G| = q3.

• G = W r,γ for some r = {r1, r2, r3}, γ = {γ1, γ2, γ3}. Then |G| = q3.

If k = Fp, then G is extra special or abelian if and only if it is self-dual.

Proof. We show in Proposition 1.0.5 that if G is a pure bireflection group then

it is either a hook, two–row, two–column or exceptional group. Suppose it is a

hook group. Then we can find some U, v such that [G, V ] ≤ kv, so G ≤ BU,v, as

G is maximal G = BU,v, similarly for G a two–row, two–column and exceptional

group.

Let k = Fp. By Proposition 2.3.7 if G = Kr1,r2 then

|Φ(G)| = |Lr1,r2| = pn−2 > p
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for n ≥ 3, so G is not extra special if it is a two–row or two–column group. If

G is not a two–row or two–column group then it is either a hook group or an

exceptional group and is self dual. If G is a hook group then

|Φ(G)| = |Rv,U | = p,

so G is extraspecial. If G is exceptional of type one then

|Φ(G)| = |Jr,γ| = p,

so it is extra special. If it is exceptional of type two then it is abelian.

Corollary 2.7.3. If G is a pure unipotent bireflection group, p ̸= 2, n > 3, then

it is a subgroup of one of the groups in Lemma 2.7.2 and it has class less than or

equal to two.

Proof. If G is a pure unipotent bireflection group then it must be either a maximal

pure bireflection group or contained in a maximal pure bireflection group. Above

gives the list of all possible pure bireflection groups which are all special, so each

of their subgroups must have class less than or equal to two.

The following Proposition summarises the results of this Chapter.

Proposition 2.7.4. Let p > 2, n ≥ 3. Let G be a unipotent group consisting of

bireflections with g ∈ G.

1. If g = tζ
u is a transvection then G is one of the following

• A subgroup of Kr1,r2 with u ∈ ⟨r1, r2⟩,

• A subgroup of (Kγ1,γ2)∗ with ζ ∈ ⟨γ1, γ2⟩,

• A subgroup of BU,v with either U = ker(ζ) or u ∈ kv.

2. If g = tζ1
u1tζ2

u2 is a double transvection so u1, u2 ∈ ker(ζ1) ∩ ker(ζ2) then G is

one of the following

• A subgroup of Kr1,r2 with ⟨r1, r2⟩ = ⟨u1, u2⟩,
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• A subgroup of (Kγ1,γ2)∗ with ⟨γ1, γ2⟩ = ⟨ζ1, ζ2⟩,

• A subgroup of BU,v such that v ∈ ⟨u1, u2⟩

• A subgroup of G ≤ Xr,γ where

⟨r1, r2⟩ = ⟨u1, u2⟩,

and

⟨γ1, γ2⟩ = ⟨ζ1, ζ2⟩,

• A subgroup of G ≤ W r,γ where

⟨r1, r2, r3⟩ > ⟨u1, u2⟩,

and

⟨γ1, γ2, γ3⟩ > ⟨ζ1, ζ2⟩.

3. If g = tζ1
u1tζ2

u2 is an index 3 bireflection so u1 ̸∈ ker(ζ2) and u2 ∈ ker(ζ1) then

G is one of the following

• A subgroup of Ku1,u2,

• A subgroup of (Kζ1,ζ2)∗,

• A subgroup of BU,v where U = ker(ζ2) and v ∈ ku2,

• A subgroup of G ≤ Xr,γ where

⟨r1, r2, v⟩ > ⟨u1, u2⟩,

and

⟨γ1, γ2, v∗⟩ > ⟨ζ1, ζ2⟩.

Proof. 1. Suppose g = tζ
u is a transvection. By the above corollary we know

that G must be a subgroup of one of the groups in Lemma 2.7.2. If G is a
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two–row group then by Lemma 2.3.6 we can find r1, r2 ∈ V such that

ku = [g, V ] ≤ [G, V ] ≤ ⟨r1, r2⟩

and G ≤ Kr1,r2 .

If G is a two–column group then G∗ is a two–row group so we can find

γ1, γ2 ∈ V ∗ such that

kζ ≤ [G, V ∗] ≤ ⟨γ1, γ2⟩

and G ≤ (Kγ1,γ2)∗.

Suppose G is a hook group with line kv and hyperplane U . Either u ∈ kv

or U = ker(ζ).

By Corollaries 2.5.9 and 2.6.5 we know that G is not contained in an

exception group of type one or type two.

2. Suppose g = tζ1
u1tζ2

u2 is a double transvection. If G is a two–row group then

by Lemma 2.3.6 we can find r1, r2 ∈ V with

⟨u1, u2⟩ = [G, V ] = ⟨r1, r2⟩

such that G ≤ Kr1,r2 . If G is two–column group then G∗ is a two–row

group and by Lemma 2.3.6 we can find γ1, γ2 with

⟨ζ1, ζ2⟩ = [G, V ∗] = ⟨ζ1, ζ2⟩

such that G ≤ (Kγ1,γ2)∗.

If G ≤ BU,v is a hook then as V g has codimension two U ̸̸= V g. This

means that kv ≤ ⟨u1, u2⟩. If G is an exceptional group of type one then by

Corollary 2.5.9

g ∈ Jr,γ = {χr,γ
0,0,n | n ∈ k}.
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This means that

⟨u1, u2⟩ = [Jr,γ, V ] = ⟨r1, r2⟩

and

⟨γ1, γ2⟩ = ⟨ζ1, ζ2⟩.

Let H = W r,γ, if G ≤ H then

[g, V ] = ⟨u1, u2⟩ ≤ [H, V ] = ⟨r1, r2, r3⟩

and similarly V H ≤ V g so

⟨ζ1, ζ2⟩ < ⟨γ1, γ2, γ3⟩.

3. Suppose g = tζ1
u1tζ2

u2 is an index 3 bireflection. If G is a two–row group

then we can again use Lemma 2.3.6 to see that G = Ku1,u2 . Similarly by

looking at the dual space we see that if G is a two–column group then

G ≤ (Kζ1,ζ2)∗.

If G is a hook group we just apply Lemma 2.2.7. If G ≤ Xr,γ then

[g, V ] ≤ [Xr,γ, V ] = ⟨r1, r2, v⟩

so

⟨r1, r2, v⟩ > ⟨u1, u2⟩.

By looking at the fixed space (or by looking at the duals of both groups)

we see that

⟨γ1, γ2, v∗⟩ > ⟨ζ1, ζ2⟩.

By Corollary 2.6.5 we know that G is not contained in an exceptional group

of type two.



Chapter 3

Nakajima Groups and their

Subgroups

We now move on from the classification of pure bireflection groups and start

looking at their invariant rings. We introduce Nakajima groups which are

an important class of unipotent groups in invariant theory. By viewing other

unipotent groups as subgroups of Nakajima groups, we hope to be able to find

their invariant rings. Here we introduce methods and notation which will help us

in later chapters where we put it to use finding invariant rings of pure bireflection

groups.

Definition 3.0.1. Let B = {x1, x2, . . . , xn} an ordered basis for W . Let G ≤

GL(V ) be a p-group, for 1 ≤ i ≤ n define

Gi = {g ∈ G | g(xj) = xj for all i ̸= j}.

We say that G is a Nakajima group (with respect to B) if:

1. G ≤ UB and

2. G = GnGn−1 . . . G1 = {gn . . . g1 | gi ∈ Gi for 1 ≤ i ≤ n}.

We define B-Nak = {G ≤ UB | G = Gn . . . G1}, the set of all groups which are

Nakajima groups with respect to B.
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In the above definition we can see that the subgroups Gi are one-row groups

consisting of bireflections. As seen in the example below, the triangular group

UB is itself a Nakajima group meaning that all unipotent groups are a subgroup

of a Nakajima group.

Example 3.0.2. Let B = {x1, x2, x3, x4} be a basis for W . With respect to this

basis, let

G =





1 a b c

0 1 d e

0 0 1 f

0 0 0 1


| a, b, c, d, e, f ∈ k


.

Then for any

g =



1 a b c

0 1 d e

0 0 1 f

0 0 0 1


∈ G,

with a, b, c, d, e, f ∈ k, with can find

σ1 =



1 a b c

0 1 0 0

0 0 1 0

0 0 0 1


, σ2 =



1 0 0 0

0 1 d e

0 0 1 0

0 0 0 1


, σ3 =



1 0 0 0

0 1 0 0

0 0 1 f

0 0 0 1


,

and σ4 = I4 so that g = σ4σ3σ2σ1. Hence G is a Nakajima group.

Lemma 3.0.3. [10, Lemma 8.0.6.] Let B = {x1, . . . , xn} be an ordered basis

for W , G ≤ GL(V ) a p-group. Then every element g ∈ Gn . . . G1 has a unique

expression of the form g = σn . . . σ1 with σi ∈ Gi for 1 ≤ i ≤ n.
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In the above Lemma we can see that g(xi) = σi(xi) for 1 ≤ i ≤ n: G is upper

triangular so for some aj ∈ k for 1 ≤ j ≤ i − 1:

g(xi) = σn . . . σ1(xi) = σn . . . σi(xi) = σn . . . σi+1(xi +
i−1∑
j=1

ajxj),

= xi +
i−1∑
j=0

ajxj = σi(xi).

The following can be seen to follow from Lemma 2.1.2.

Lemma 3.0.4. [10, Lemma 8.0.5] Let G ≤ GL(V ), B = {x1, . . . , xn} a basis

for W . For i < j, Gi normalizes Gj; in particular GiGj = GjGi

Lemma 3.0.5. Let B = {x1, . . . , xn} be a basis for W , G = ⟨N1, . . . , Nr⟩ for

some r ∈ N such that Ni ∈ B-Nak for 1 ≤ i ≤ r, then G ∈ B-Nak.

Proof. Let g ∈ G then

g = σ′
m . . . σ′

1

where σ′
i ∈ (Nji

)si
for 1 ≤ i ≤ m for some 1 ≤ ji ≤ r, 1 ≤ si ≤ n. For any

hi ∈ Gi, hj ∈ Gj with i < j we can use Lemma 3.0.4 to see that hihj = h′
jh

′
i for

some h′
i ∈ Gi and h′

j ∈ Gj. This means we can rearrange the σ′
i to write g as

g = σn . . . σ1 where σi ∈ Gi for 1 ≤ i ≤ n and so G is a Nakajima group with

respect to B.

Theorem 3.0.6. [10, Theorem 8.0.7] Let B = {x1, . . . , xn} be an ordered basis

for W , and G ≤ UB be a p-group. Then G is a Nakajima group with respect to

B if and only if k[V ]G = k[N1, . . . , Nn].

So the invariant rings of Nakajima groups are always polynomial. In the case

that k = Fp it can be shown that G is a p-group with a polynomial invariant ring

if and only if it is a Nakajima group with respect to some basis ([26, Theorem

1.4]). Theorems 1.3.4 and 1.3.5 can be used to gain more information about the

subgroups of Nakajima groups. In his thesis Yinglin Wu shows that if G ≤ GL(V )
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is an abelian reflection group which is a two–column group on V then k[V ]G is a

complete intersection ring (he looks at S(V ) rather then k[V ] and so refers to

these as two–row groups). We will use a similar approach to Yinglin Wu: finding

the invariant ring of a group G by working down through maximal subgroups

from a Nakajima group containing G. This has lead to the following definition.

Definition 3.0.7. Let B = {x1, . . . , xn} be a basis for W , G < UB a p-group.

For 1 ≤ i ≤ n let:

Si(G) = {h ∈ GL(V ) |h(xj) = xj

for j ̸= i, there exists g ∈ G such that h(xi) = g(xi)}

Then define

Nak+
B(G) = ⟨g | g ∈ Si(G) for some 1 ≤ i ≤ n⟩

Nak−
B(G) = Gn . . . G1

We call G nice with respect to B if [Nak+
B(G), Nak+

B(G)] ≤ G.

Lemma 3.0.8. [21, Lemma 3] Let B be an ordered basis for W . Let G, N ≤

GL(V ) with G ≤ N ≤ UB(V ). If N ∈ B-Nak then

• G ▹ N implies Nak−
B(G) ▹ N ,

• [N, N ] ≤ G implies [N, N ] ≤ Nak−
B(G).

Proposition 3.0.9. Let B = {x1, . . . , xn} an ordered basis for W , G ≤ UB,

then:

1. Nak−
B(G) ≤ G and if N ≤ G with N a Nakajima group with respect to B

then N ≤ Nak−
B(G);

2. G ≤ Nak+
B(G) and if G ≤ N with N a Nakajima group with respect to B

then Nak+
B(G) ≤ N ;
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3. If G is nice with respect to B then

Nak−
B(G) E G E Nak+

B(G);

4. Gp ≤ Nak+
B(G)p ≤ [Nak+

B(G), Nak+
B(G)] and so

Φ(Nak+
B(G)) = [Nak+

B(G), Nak+
B(G)].

Proof. 1. For the first part if g ∈ N then by Lemma 3.0.3 we can find a

unique expression g = σn . . . σ1 with σi ∈ Ni for 1 ≤ i ≤ n. As N ≤ G we

see that σi ≤ Gi for 1 ≤ i ≤ n, so g ∈ Nak−
B(G) and N ≤ Nak−

B(G).

2. For the second part, first note that G and N are upper triangular unipotent

with respect to B so

G ≤ N ≤ UB ∈ B-Nak.

If h ∈ Si(G) for some 1 ≤ i ≤ n then there exists g ∈ G such that

h(xi) = g(xi). We can find a unique expression of the form g = σ1 . . . σn

(again by Lemma 3.0.3), where σj ∈ (UB)j for 1 ≤ j ≤ n. If N is a

Nakajima group containing g then σ1, . . . , σn ∈ N . By their definitions it’s

clear that σi(xj) = h(xj) = xj for j ̸= i, and we can see that

g(xi) = σ1 . . . σn(xi) = σi(xi) = h(xi)

and so h = σi ∈ N , so g ∈ Nak+
B(G) ≤ N , and G ≤ Nak+

B(G).

3. For the third part, using Lemma 3.0.5 we see that both Nak+
B(G) and

Nak−
B(G) are Nakajima groups and from there we can use Lemma 3.0.8.

4. For the fourth part, let Nak+
B(G) = N and N = N/[N, N ]. Let

g = σn . . . σ1 ∈ N
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where σi ∈ Ni for 1 ≤ i ≤ n and let g denote the image of g in N . Then as

N is abelian and σi is a transvection of order p for 1 ≤ i ≤ n

(gp) = gp = σp
n . . . σp

1 = e.

So for all g ∈ N , gp ∈ [N, N ]. This means that Gp ≤ Np ≤ [N, N ]. As N

is a p-group Φ(N) = Np[N, N ] = [N, N ].

Corollary 3.0.10. Let G, H1, H2 ≤ GL(V ) such that G = ⟨H1, H2⟩ and let B

be a basis with respect to which G is triangular, then

Nak+
B(G) = ⟨Nak+

B(H1), Nak+
B(H2)⟩.

Proof. As Hi ≤ G ≤ Nak+
B(G) we see that Nak+

B(Hi) ≤ Nak+
B(G) for i = 1, 2 so

⟨Nak+
B(H1), Nak+

B(H2)⟩ ≤ Nak+
B(G).

By Proposition 3.0.5 ⟨Nak+
B(H1), Nak+

B(H2)⟩ is a Nakajima group, and so by the

above Proposition 3.0.9

Nak+
B(G) = ⟨Nak+

B(H1), Nak+
B(H2)⟩.

We can see that given a basis B = {x1, . . . , xn} for W and a group G ≤ UB

then Nak+
B(G) is the smallest Nakajima group with respect to B containing G,

and Nak−
B(G) is the largest Nakajima group with respect to B contained in G.

If G is nice with respect to B then the quotient groups

Nak+
B(G)/Nak−

B(G), G/Nak−
B(G), Nak+

B(G)/G

are elementary abelian.
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Proposition 3.0.11. Let B be an ordered basis for W , G ≤ UB a p-group such

that G is nice with respect to B and:

N+ := Nak+
B(G), N− := Nak−

B(G).

For some m, l ∈ N we can find h = {h1, . . . , hm} with hi ∈ G and g = {g1, . . . , gl}

with gi ∈ Nak+
B(⟨hji

⟩) for some 1 ≤ ji ≤ m such that for any ordering of g and

h if:

H0 = N−, Hi = ⟨Hi−1, hi⟩ for 1 ≤ i ≤ m,

N0 = G, Ni = ⟨Ni−1, gi⟩ for 1 ≤ i ≤ l,

then:

N− = H0 ▹max H1 ▹max . . . ▹max Hm = G,

G = N0 ▹max N1 ▹max N2 ▹max . . . ▹max Nl = N+.

Proof. Let |G/N−| = pm then we can find h1, . . . , hm such that

G/N− = ⟨h1, . . . , hm⟩

where hi is the image of hi in G/N− for 1 ≤ i ≤ m. Then

G = ⟨N−, h1, . . . , hm⟩.

If G = ⟨N−, h1, . . . , hi−1, hi+1, . . . , hm⟩ for any 1 ≤ i ≤ m then

G/N− = ⟨h1, . . . , hi−1, hi+1, hm⟩

which doesn’t have order pm, so

hi ̸∈ ⟨N−, h1, . . . , hi−1⟩
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for 1 ≤ i ≤ m. Let

H0 = N−, Hi = ⟨Hi−1, hi⟩ for 1 ≤ i ≤ m

then

N− = H0 ▹max H1 ▹max . . . ▹max Hm = G.

If N is a Nakajima group containing G then Nak+
B(⟨hi⟩) ≤ N and N+ ≤ N

so

Ñ := ⟨N−, Nak+
B(⟨h1⟩), . . . , Nak+

B(⟨hn⟩)⟩ ≤ N.

By Lemma 3.0.5 Ñ is a Nakajima group and so Ñ = N+ using Lemma 3.0.9. Let

l = |N+/G| then we can find g = {g1, . . . , gl} with gi ∈ Nak+
B(⟨hji

⟩) for 1 ≤ i ≤ l

and some 1 ≤ ji ≤ m such that:

N+ = ⟨G, g1, . . . , gl⟩.

Similarly to above g must be minimal and if

G0 = G, Gi = ⟨Gi−1, gi⟩ for 1 ≤ i ≤ l

then

G = G0 ▹max G1 ▹max G2 ▹max . . . ▹max Gl = N+.

Proposition 3.0.12. If G ≤ GL(V ) is nice with respect to B then for 1 ≤ i ≤ n

{g(xi) − xi | g ∈ G} = {g(xi) − xi | g ∈ Nak+
B(G)}
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and consequently:

NG
i = NNak+

B(G)
i

where as defined above NG
i , NNak+

B(G)
i are the orbit products of xi for G and

Nak+
B(G) respectively.

Proof. Let g ∈ Nak+
B(G) such that:

g(xi) = xi + r.

We need to show that there exists h ∈ G such that:

h(xi) = xi + r.

By the definition of Nak+
B(G)

g = gmgm−1 . . . g1

where m ∈ N and gj ∈ Slj (G) for 1 ≤ j ≤ m for some 1 ≤ lj ≤ n. We proceed

by induction on m.

If m = 1 result is trivially true. Let

g = gmg′.

By the induction hypothesis we can find some h′ ∈ G such that:

h′(xi) = g′(xi) = xi + r′

for some r′ ∈ ⟨x1, . . . , xi−1⟩. If gm ∈ Si(G) then we can find some hm ∈ G such

that

hm(xi) = xi + r − r′
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so hmh′ ∈ G and

hmh′(xi) = xi + r + δhm(r′).

As hm, h′ ∈ Nak+
B(G) which is a Nakajima group we can find σ′

j, σm,j ∈ Nak+
B(G)j

for 1 ≤ j ≤ n such that:

h′ = σ′
n . . . σ′

1,

hm = σm,n . . . σm,1.

Let t = σm,i−1 . . . σm,0, then

σ′
i(xi) = xi + r′, σ′

i(r′) = r′,

t(xi) = xi, t(r′) = r′ + δhm(r′).

Let θ = σ′
itσ

′
i
−1t−1, then

θ(xi) = xi − δhm(r′)

θ(r) = r.

As θ ∈ [Nak+
B(G), Nak+

B(G)], θ ∈ G. Let h = θhmh′ then h ∈ G and

h(xi) = xi + r

as required.

Suppose gm ̸∈ Si(G) then gm(r′) = r′ + r′′ = r, with r′′ ∈ W gm . Again we

can find σi ∈ Nak+(G) such that

σi(xi) = xi + r′, σi(r′) = r′.
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If θ = g−1
m σ−1

i gmσi, then

θ(xi) = xi + r′′,

θ(r′) = r′.

As θ ∈ [Nak+
B(G), Nak+

B(G)], θ ∈ G. Let h = θh′ then h ∈ G and

h(xi) = xi + r.

The choice of basis is important. Let G = ⟨g, h⟩ where:

g =



1 0 0 0

0 1 0 1

0 0 1 −1

0 0 0 1


, h =



1 1 1 0

0 1 0 0

0 0 1 0

0 0 0 1



with respect to the basis B = {x1, x2, x3, x4} for W . We can see that if

t =



1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1



then N := Nak+
B(G) = ⟨g, h, t⟩. The commutator subgroup [N, N ] is then

generated by

σ =



1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1
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and we see that σ ̸∈ G and so G is not nice with respect to B. We also see that

NG
4 ̸= NN

4 . Let B′ = {y1, y2, y3, y4} with:

y1 = x1, y2 = x2 − x3, y3 = x3, y4 = x4.

With respect to this basis:

g =



1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1


, h =



1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1



and so G is a Nakajima group with respect to B′.

Lemma 3.0.13. Let G ≤ GL(V ) a p-group. Then for any basis B for W such

that G ≤ UB, [Nak+
B(G), W ] = [G, W ] and V G = V Nak+

B(G).

Proof. Let B be a basis such that G ≤ UB, N = Nak+
B(G). By Lemma 3.0.9 we

know that G ≤ N and so [G, W ] ≤ [N, W ].

For any group H = ⟨g1, . . . , gl⟩ ≤ GL(V )

[H, W ] =
l∑

i=1
[gi, W ].

If g ∈ Si(G) for some 1 ≤ i ≤ n then [g, W ] ≤ [G, W ] and so:

[G, W ] ≥
n∑

i=1

∑
g∈Si(G)

[g, W ] = [N, W ],

so [G, W ] = [N, W ].

Let {e1, . . . , en} be the corresponding basis for V , then by Lemma 1.0.2 we

see that for g ∈ N the matrix representing g with respect to this basis is given

by the transpose inverse and so V G = V N .

Lemma 3.0.14. For G ≤ GL(V ) a p-group we can find a basis B for W such

that G ≤ UB, W G = W Nak+
B(G) and [G, V ] = [Nak+

B(G), V ].
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Proof. Let m = dimk(W G), then we can choose a basis B = {x1, . . . , xn} for W

such that G ≤ UB and ⟨x1, . . . , xm⟩ = W G.

Let N = Nak+
B(G). As

Si(G) = {e} for 1 ≤ i ≤ m

xi ∈ W N for 1 ≤ i ≤ m and so W G ≤ W N . As G ≤ N we know that W N ≤ W G

and so W G = W N .

Similarly to above using Lemma 1.0.2 we see that W G = W N means [G, V ] =

[N, V ].

Lemma 3.0.15. Let U1 ≤ U2 ≤ · · · Uℓ ≤ W be G-stable subspaces. Let B = ∪iBi

be a basis for W such that ⟨Bi⟩ = Ui and G ≤ UB. Then the Ui are also Nak+
B(G)-

stable with [G, Ui] = [Nak+
B(G), Ui] for all i.

Proof. Let N := Nak+
B(G), then

[N, Ui] =
∑

x∈Bi

⟨n(x) − x | n ∈ N⟩.

Let n ∈ Sj(G) and x ∈ Bi, then n(x) = g(x) for some g ∈ G if x = xj or

n(x) = x otherwise. Hence n(x) − x ∈ [g, Ui], so [n, Ui] ⊆ [G, Ui]. We have

nn′x − x = nn′x − n′x + n′x − x ∈ [n, n′Ui] + [n′, Ui].

Since N is generated by the Sj(G)’s, we see inductively that

[N, Ui] ≤ [G, Ui] ≤ [N, Ui] for 1 ≤ i ≤ ℓ.

Lemma 3.0.16. A Nakajima group G is abelian if and only if [G, W ] ≤ W G.

Proof. This is just a special case of Lemma 2.1.5.

Lemma 3.0.17. Let G ≤ GL(V ) be a p-group with [G, W ] ≤ W G. Then G is

abelian and we can find a basis B of W such that Nak+
B(G) is also abelian and

therefore G is nice.
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Proof. By Lemma 3.0.14 we can find a basis B for W such that G ≤ UB and

W G = W N where N := Nak+
B(G). By Lemma 3.0.13 [G, W ] = [N, W ] and so

[N, W ] ≤ W N . By Proposition 3.0.16 N is an abelian group so [N, N ] = {e} ≤ G

and G is nice with respect to B. As G ≤ N , G is also abelian.

3.1 Maximal Pure Bireflection Groups

We now apply the above to the maximal pure bireflection groups as defined in

Chapter 2.

Proposition 3.1.1. For G ≤ GL(V ):

• if G is a two–row group (on V ) then Nak+
B(G) is a two–row group (on V )

for any basis B for W with respect to which G is triangular;

• if G is a two–column group (on V ) then Nak+
B(G) is a two–column group

(on V ) for any basis B for W with respect to which G is triangular and

[G, V ] = [Nak+
B(G), V ];

• if G is a hook group on W with hyperplane U and line kv then for any

basis B = {x1, . . . , xn} with respect to which G is triangular and

U = ⟨x1, . . . , xn−1⟩.

then Nak+
B(G) is a hook group on W with hyperplane U and line kv.

If G ≤ GL(V ) is a maximal bireflection group which is either a hook, two–row

or two–column group then we can find some basis B with respect to which G is a

Nakajima group. Consequentially G is nice with respect to B.

Proof. If G is a two–row group on V , then

dimk([G, V ]) ≤ 2
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and for any basis B with respect to which G is triangular. [G, V ] = [Nak+
B(G), V ].

This means that

dimk([Nak+
B, V ]) ≤ 2

and Nak+
B(G) is a two–row group.

If G is two–column group on V , then by Lemma 3.0.13 for any basis B for

W with respect to which G is triangular

V G = V Nak+
B(G),

so Nak+
B(G) is also a two–column group.

Suppose that G is a hook group with hyperplane U and line kv. Let B =

{x1, . . . , xn} be a basis for W with respect to which G is triangular and U =

{x1, . . . , xn−1}. By Proposition 3.0.15 U is a Nak+
B(G) stable subspace and

[Nak+
B(G), U ] = [G, U ] ≤ kv.

This means that Nak+
B(G) is a hook group with hyperplane U and line kv.

So if G any two–row, two–column or hook group using the above and Proposi-

tions 3.0.14, 3.0.13 and 3.0.15 we can find some basis B for W such that Nak+
B(G)

is a pure bireflection group containing G. If G is maximal then Nak+
B(G) = G.

This means that

[Nak+
B(G), Nak+

B(G)] ≤ G

and so G is nice with respect to B.

Proposition 3.1.2. Let p ̸= 2, and let G ≤ GL(V ) be a unipotent pure bireflec-

tion group then we can find a basis B with respect to which Nak+
B(G) is a pure

bireflection group if and only if G is not an exceptional group (of type one or

two).

Let G be a maximal unipotent pure bireflection group. Then G is not a

Nakajima group with respect to any basis if and only if G is an exceptional group
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of type 1 or 2. We can find some basis with respect to which G is nice if and only

if G is not an exceptional group of type 1.

Proof. Let G be a pure bireflection group. If G is not an exceptional group of

type one or two then G is a two–row, two–column or hook group by Theorem

1.0.5. By Proposition 3.1.1 we can find a basis B such that Nak+
B(G) is a pure

bireflection group.

If G is an exceptional group of type one or two it is not a two–row, two–

column or hook group. This means that Nak+
B(G) is not a two–row, two–column

or hook group for any choice of basis B. As exceptional groups do not contain

any reflections (Lemmas 2.5.9 and 2.6.5), Nak+
B(G) is not an exceptional group

either, and so by Theorem 1.0.5 Nak+
B(G) is not a pure bireflection group.

Now suppose G is a maximal pure bireflection group. If G is an exceptional

group (of type 1 or 2) then G is not generated by reflections (Lemmas 2.5.9 and

2.6.5) and so it is not a Nakajima group with respect to any basis. If G is not

an exceptional group then it is either a two–row, two–column or hook group so

by Proposition 3.1.1 it is a Nakajima group, and hence also nice, with respect to

some basis.

Suppose G is an exceptional group of type one which is nice with respect to

some basis B and let N = Nak+
B(G). By Lemma 2.5.9 there are no reflections in

G and so Nak−
B(G) contains only the identity. By Lemma 3.0.8 as G is nice

[N, N ] ≤ Nak−
B(G).

This would mean that N is abelian, however as G ≤ N is not abelian we have a

contradiction.

If G is a maximal exceptional group of type two then we can find r1, r2, r3 ∈ W

and γ1, γ2, γ3 ∈ W ∗ such that if

r = {r1, r2, r3}, γ = γ1, γ2, γ3
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then G = W r,γ. We see that

⟨r1, r2, r3⟩ = [G, W ] ≤ W G

(see Definition 2.2.5). By Lemma 3.0.17 we can find some basis with respect to

which G is nice.

Corollary 3.1.3. For p ̸= 2, if G ≤ GL(V ) is a maximal unipotent pure

bireflection group then k[V ]G is not a polynomial ring if and only if G is an

exceptional group of type 1 or 2.

Proof. By the above Proposition if G is not an exceptional group then it is a

Nakajima group with respect to some basis and so k[V ]G is polynomial. If G is

an exceptional group of type one or two then G contains no reflections, so k[V ]G

is not polynomial.

Proposition 3.1.4. Let p ̸= 2 and G ≤ GL(V ) be a unipotent pure bireflection

group. Let H = [G, G], then k[V ]H is Cohen Macaulay. Furthermore the invariant

ring k[V ]H is polynomial if and only if G is not an exceptional group of type one.

Proof. If G is a hook group or a two–column group dimk(V H) ≥ n − 1 and so

by Theorem 1.4.3 k[V ]H is polynomial. If G is a two–row group then W H has

codimension one and so H is a Nakajima group with polynomial ring of invariants.

If G is an exceptional group of type one then by Corollary 2.5.9 it does not

contain any reflections. This means that H cannot be generated by reflections

and so k[V ]H is not a polynomial ring, however since V H has codimension two

(see Corollary 2.5.9) by Theorem 1.4.3 k[V ]G is Cohen–Macaulay. If G is an

exceptional group of type two then H is the trivial group as G is abelian.



Chapter 4

Invariant rings of hook groups

In this chapter we look at invariant rings of hook groups. We fix w, v ∈ W and

U a subspace of W with codimension one, and look at subgroups of BU,v. These

groups are generated by elements of the form bu,λ where u ∈ U and λ ∈ V = W ∗.

We will look at transvection subgroups G of BU,v to see when the invariant ring

k[V ]G is polynomial. For k = Fp we find necessary and sufficient conditions for

G ≤ BU,v to be nice with respect to some basis. We will then find generators for

k[V ]G in these cases using 1.3.4 and results from the previous chapter. Using

Theorem 1.3.5 we will show that, for k = Fp, if a hook group is nice with respect

to some basis then it’s ring of invariants is a complete intersection ring. We start

more generally though, with k = Fq where q = pr, and look at some definitions

and general properties of hook groups which we will want to make use of in the

next few sections.

The following connects hook groups with the results of the previous chapter.

Lemma 4.0.1. If G ≤ BU,v with Rv̂,U ≤ G then we can find some basis for W

with respect to which G is nice.

Proof. By Proposition 3.1.1 we can choose B such that BU,v is a Nakajima group

with respect to B, then

[Nak+
B (G), Nak+

B (G)] ≤ [BU,v, BU,v] = Rv̂,U ≤ G
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so G is nice with respect to B.

We define two Fp-vector spaces associated to each hook group.

Definition 4.0.2. Let G = ⟨b1, . . . , bl⟩ where bi = bui,λi
∈ BU,v for 1 ≤ i ≤ l.

Then define:

Û(G) = ⟨u1, . . . , ul⟩Fp + kv,

Λ(G) = ⟨λ1, . . . , λl⟩Fp ,

DÛ(G) =


dimFp(Û(G)) for Rv̂,U ≤ G,

dimFp(Û(G)) − r for Rv̂,U ̸≤ G,

DΛ(G) = dimFp(Λ(G)).

Lemma 4.0.3. Let G ≤ BU,v then:

1. if bu,λ ∈ G then u ∈ Û(G) and λ ∈ Λ(G);

2. if λ ∈ Λ(G) then bu,λ ∈ G for some u ∈ Û(G);

3. Λ(G) is independent of choice of generators for G and

Λ(G) = {λ ∈ W ∗ | bu,λ ∈ G for some u ∈ W};

4. if u ∈ Û then bu+cv,λ ∈ G for some λ ∈ Λ(G) and some c ∈ k;

5. Û(G) = ⟨g(w) − w | g ∈ G⟩Fp + kv;

6. if k = Fp and v ∈ [G, W ] then Û(G) = [G, W ];

7. if Rv̂,U ≤ G and u ∈ Û(G) then bu,λ ∈ G for some λ ∈ w⊥⋂ v⊥.

Proof. 1) Let G = ⟨b1, . . . , bl⟩ where bi = bui,λi
∈ BU,v. For any element bu,λ ∈ G,

we can write

bu,λ = ba1
u1,λ1 . . . bal

ul,λl
t
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for some t ∈ Φ(G) ≤ Rv̂,U ≤ Z(G) and 0 ≤ a1, . . . , al ≤ p − 1. Using Proposition

2.4.2(2)

u = a1u1 + . . . alul + cv,

λ = a1λ1 + . . . + alλl,

for some c ∈ k. This means that u ∈ Û(G), and λ ∈ Λ(G).

2) For any λ ∈ Λ(G) we can write

λ = a1λ1 + . . . + alλl

for some 0 ≤ a1, . . . , al ≤ p − 1. We can take

bu,λ = ba1
u1,λ1 . . . bal

ul,λl

so then bu,λ ∈ G.

3) Combining parts 1) and 2) gives us

Λ(G) = {λ ∈ W ∗ | bu,λ ∈ G for some u ∈ W}

which must be independent on the choice of generators for G.

4) For any u ∈ Û(G) we can write:

u = a1u1 + . . . + alul + bv

for some 0 ≤ a1, . . . , al ≤ p − 1 and b ∈ k. We can then find λ ∈ Λ(G) and c ∈ k

such that bu+cv,λ ∈ G: take

bu′,λ = ba1
u1,λ1 . . . bal

ul,λl
,

then

u′ = a1u1 + . . . + alul + c′v
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for some c′ ∈ k. If we let c = c′ − b then u′ = u + cv.

5) Using part 1) and the definition of Û(G) we see that

⟨g(w) − w | g ∈ G⟩Fp + kv ≤ Û(G).

Using part 4) we know

Û(G) ≤ ⟨g(w) − w | g ∈ G ⟩Fp + kv,

and so

Û(G) = ⟨g(w) − w | g ∈ G⟩Fp + kv.

Parts 6) and 7) are direct consequences of part 5).

The next lemma allows us to choose a useful generating set for later results.

Lemma 4.0.4. Let k = Fp and G ≤ BU,v with dimk(Û(G)) = m+1 then we can

find a set of generators {bu1,λ1 , . . . , bul,λl
} for G such that {u1, . . . , um, v} form a

basis for Û(G) and for m < i ≤ l, ui ∈ kv.

Proof. If Û(G) = kv then the result is trivial. Otherwise let dimk(Û(G)) > 1

and

G = ⟨bû1,λ̂1
, bû2,λ̂2

, . . . , bûl,λ̂l
⟩.

We can assume that Û(G) = span(û1, û2, . . . , ûm, v), so for 1 ≤ i ≤ m let

bui,λi
= bûi,λ̂i

.

For j > m as ûj ∈ Û(G) for 1 ≤ i ≤ m we can find some ai, b ∈ k such that:

ûj = bv +
m∑

i=1
aiui.

Let:

buj ,λj
= bûj ,λ̂j

m∏
i=1

b−ai
ui,λi

.
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For some c ∈ k

uj = ûj −
m∑

i=1
aiui + cv

so uj ∈ kv.

As we have seen in previous sections, finding a good basis is useful for finding

invariant rings.

Definition 4.0.5. Let k = Fp and G ≤ BU,v with L = {λ1, . . . , λm} a basis for

Λ(G). We define a basis C = {x1, . . . , xn−1} for U to be a Λ-basis with respect

to L if x1 = v and for 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1

λi(xj) =


1 if j = n − i,

0 otherwise.

Lemma 4.0.6. Let k = Fp and G ≤ BU,v with L = {λ1, . . . , λm} a basis for

Λ(G). If B = {x1, . . . , xn} is a basis for W such that {x1, . . . , xn−1} is a Λ-basis

for U with respect to L, and N = Nak+
B (G) then

1. N is a hook group with hyperplane U and line kv;

2. UG = UN ;

3. for 1 ≤ i ≤ n − 1:

deg(NG
i ) =


1 for 1 ≤ i ≤ n − m − 1,

p for n − m ≤ i ≤ n − 1;

4. if bu,λi
∈ G for some 1 ≤ i ≤ m and u ∈ Û(G) with bu,λi

(xn) = xn + u then

Nak+
B (⟨bu,λi

⟩) = ⟨bu,λi
, b0,λi

⟩.

Proof. 1) The first part can be seen from Proposition 3.1.1.



129

2) For the next part we first note that as G is a subgroup of N

UN ≤ UG.

For 1 ≤ i ≤ n − m − 1 we see that g(xi) = xi for any g ∈ G, therefore Si = {1}

and so xi ∈ UN . For u ∈ UG we must have that λ(u) = 0 for all λ ∈ Λ(G),

therefore u ∈ ⟨x1, . . . , xn−m−1⟩, so

UG = UN .

3) By definition [G, U ] ≤ kv, and so

1 ≤ deg(NG
i ) ≤ p

for 1 ≤ i ≤ n − 1. From the above xi ∈ W G, for 1 ≤ i ≤ n − m − 1, and so

deg(Ni) = 1. By Proposition 4.0.3 for all c ∈ k there exists u ∈ Û(G) such that

bu,cλi
∈ G for 1 ≤ i ≤ m so

bu,cλi
(xn−i) = xn−i + cv

and this means that deg(NG
i ) = p for n − m ≤ i ≤ n − 1.

4) If bu,λi
∈ G for some 1 ≤ i ≤ m and u ∈ Û(G) with bu,λi

(xn) = xn + u

then for 1 ≤ j ≤ n

bu,λi
(xj) =



xj + u for j = n,

xj + v for j = n − i,

xj otherwise.
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We can see that for 1 ≤ j ≤ n

bu,0(xj) =


xj + u = bu,λi

(xj) if j = n,

xj otherwise,

b0,λi
(xj) =


xj + v = bu,λi

(xj) if j = n − i,

xj otherwise,

so bu,0 ∈ Sn and b0,λ ∈ Si. This means that H = ⟨bu,λi
, b0,λi

⟩ is a Nakajima group

by Proposition 3.0.5 and

H ≤ Nak+
B (⟨bu,λi

⟩).

As bu,λ = bu,0b0,λ we see G ≤ H and so by Proposition 3.0.9

H = Nak+
B (⟨bu,λi

⟩).

4.1 Transvection subgroups

If k[V ]G is a polynomial ring then it is generated by reflections. In this section

we look at which hook groups generated by reflections have polynomial rings of

invariants.

Lemma 4.1.1. Let Rv̂,U ≤ G ≤ BU,v then the subgroup of G generated by all

reflections in G has a polynomial ring of invariants (and so for k = Fp it is a

Nakajima group).

Proof. The element bu,λ ∈ G is a reflection if λ = 0 or if u ∈ kv so we are

interested in the subgroup of G generated by elements of the form bcv,λ and bu,0.

Since Rv̂,U ≤ G we know that if bcv,λ ∈ G then b0,λ ∈ G.

Let

T = ⟨g ∈ G | dimk(W g) = n − 1⟩.
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Now define subgroups of T :

TU = ⟨bu,0 ∈ G | u ∈ Û(G)⟩, TΛ = ⟨b0,λ | λ ∈ Λ(G)⟩.

As Rv̂,U ≤ TU the subgroup TU is normal, we can also see that

T = TUTΛ = {tutλ | tu ∈ TU , tλ ∈ TΛ}.

Let x1, x2, . . . , xn be a basis for W such that U = ⟨x1, . . . , xn−1⟩, and xn = w

then TU is a Nakajima group with respect to this basis as it fixes all basis elements

except xn. So:

k[V ]TU = k[x1, . . . , xn−1, NTU
n ].

For all t ∈ T we have that t(xn) = tu(xn) for some tu ∈ TU so NT
n = NTU

n

and NTU
n ∈ k[V ]T .

Let A be the k vector space spanned by {x1, . . . , xn−1, NT
n } and let H = T/TU

then k[V ]T = S(A)H . As H ∼= Tλ and the action of H on A is linear with

dimk((A∗)H) = n − 1 by Theorem 1.4.3 (k[V ]Tu)H = k[V ]T is polynomial.

If k = Fp this means that T is a Nakajima group (as in this case these are

the only p-groups with polynomial rings of invariants).

Proposition 4.1.2. Let G = ⟨b1, . . . , bl, Rv̂,U⟩ where bi = bui,λi
∈ BU,v are a

minimal set of generators, then the following are equivalent:

1. k[V ]G is a polynomial ring,

2. G is generated by reflections,

3. |G| = pa+b, l = a + b − r where a = DÛ(G) and b = DΛ(G).

For k = Fp this is equivalent to G being a Nakajima group.

Proof. 1) ⇒ 2) If k[V ]G is a polynomial ring then we know G is generated by

reflections.
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2) ⇒ 3) As G is minimally generated by {b1, . . . , bl, Rv̂,U} by Proposition

2.4.8 |G| = pl+r.

If G is generated by reflections then as shown in proof of Lemma 4.1 then

G = T = TUTΛ. From this we see |G| = |TU ||TΛ| = pa+b for a = DÛ(G) and

b = DΛ(G), and so l + r = a + b, l = a + b − r.

3) ⇒ 1) Let {u1, . . . , ub, v} be a basis for Û(G), {λ1, . . . , λa} a basis for Λ(G)

and let

H = ⟨bu1,0, . . . , bub,0, b0,λ1 , . . . , b0,λa , Rv̂,U⟩.

If bu,λ ∈ G then by Lemma 4.0.3 u ∈ Û(G) and λ ∈ Λ(G) and so we can find

1 ≤ α1, . . . , αa, β1, . . . , βb ≤ p − 1

and t ∈ Rv̂,U such that

bu,λ = bβ1
u1,0 . . . bβb

ub,0b
α1
0,λ1 . . . bαa

0,λa
t ∈ H

so G ≤ H. We can see that |H| = pa+b and |G| = pl+r so if l = a + b − r then

G = H.

As G = H is clearly a reflection group by Proposition 4.1.1 G has polynomial

ring of invariants.

For k = Fp, G is a p-group so k[V ]G is polynomial if and only if G is a

Nakajima group [26, Proposition 4.1].

The previous Proposition tells us that if G ≤ BU,v with Rv̂,U ≤ G then

k[V ]G is polynomial and in the case that k = Fp it is a Nakajima group. The

following lemma provides some information about bases with respect to which

these reflection groups are Nakajima groups, and we will build on it later to find

invariant rings of other nice hook groups.

Lemma 4.1.3. Let G ≤ BU,v be generated by reflections such that either Rv̂,U ≤

G or [G, W ] ≤ W G, let k = Fp. Then |G| = pa+b where a = DÛ(G) and

b = DΛ(G).
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Let L = {λ1, . . . , λb} be a basis for Λ(G). If C = {x1, . . . , xn−1} is a Λ-

basis for U with respect to L then we can find some xn ∈ W\U such that

B = {x1, . . . , xn} is a basis for W with respect to which k[V ]G is a Nakajima

group.

Proof. First suppose that Rv̂,U ≤ G. The first part is Lemma 4.1.2(3). In this

case if bcv,λ ∈ G then b0,λ ∈ G and we can choose a minimal set of generators

G = ⟨bu1,0, . . . , bua−1,0, b0,λ′
1
, . . . , b0,λ′

b
, Rv̂,U⟩.

By Lemma 4.0.3

{u ∈ U | bu,λ ∈ G for some λ ∈ Λ} = Û(G)

so if we let xn = w then deg(NG
n ) = |Û(G)| = a. We know from Lemma 4.0.6

that

deg(NG
i ) =


1 for 1 ≤ i ≤ n − b − 1,

p for n − b ≤ i ≤ n − 1.

This means that

deg(NG
1 ) deg(NG

2 ) . . . deg(NG
n ) = pa+b = |G|.

Since NG
1 , . . . , NG

n form a HSOP by Theorem 1.1.8 this means that

k[V ]G = k[N1, . . . , Nn]

is a polynomial ring and by Theorem 3.0.6 G is a Nakajima group with respect

to this basis.

Now assume Rv̂,U ̸≤ G, [G, W ] ≤ W G. Let:

G = ⟨bu1,0, . . . , bul,0, bc1v,λ′
1
, . . . , bcmv,λ′

m
⟩
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so that G is minimally generated by these elements. This means that

{u1, . . . , ul, v}

are linearly independent (by Lemma 4.0.4). Suppose that {λ′
1, . . . , λ′

m} not

linearly independent, then there exists some i such that:

λi = a1λ
′
1 + . . . + ai−1λ

′
i−1 + ai+1λ

′
i+1 + . . . + amλ′

m

for some a1, . . . , am ∈ k. Without loss of generality suppose i = m, so:

bcmv,λ′
m

= bdv,0(ba1
c1v,λ′

1
. . . b

am−1
cm−1v,λ′

m−1
).

Where d = cm − a1c1 − . . . − am−1cm−1. If d = 0 then G was not minimally

generated, however if d ≠ 0 then Rv̂,U ≤ G so we can assume that {u1, . . . , ul}

and {λ′
1, . . . , λ′

m} are both linearly independent sets. This means that

Û(G) = ⟨u1, . . . , ul, v⟩,

Λ(G) = ⟨λ′
1, . . . , λ′

m⟩,

and so dimk(Û(G))−1 = l = a and dimk(Λ(G)) = m = b. By 2.4.8 |G| = pl+m =

pa+b.

By the additivity of the λ we can pick generators such that λ′
i = λi for

1 ≤ i ≤ m = b.

Let B = {x1, . . . , xn} where

xn = w −
b∑

i=1
cixn−i.

Then for 1 ≤ i ≤ a:

bui,0(xn) = xn + ui + div
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for some di ∈ k. Let u′
i = ui + div for 1 ≤ i ≤ l, then as u1, . . . , ua, v are linearly

independent, so are u′
1, . . . , u′

a, v. For 1 ≤ j ≤ b

bcjv,λj
(xn) = bcjv,λj

(w −
b∑

i=1
cixn−i)

= w + cjv −
b∑

i=1
cixn−i − cjv

= xn.

As [G, W ] ≤ W G we know that G is commutative so for any g ∈ G we can find

some 0 ≤ α1, . . . , αl, β1, . . . , βm ≤ p − 1 such that

g = bα1
u1,0 . . . bαl

ul,0b
β1
c1v,λ1 . . . bβm

cmv,λm
.

This means that (using Proposition 2.4.2)

g(xn) = xn + α1u
′
1 + . . . + αau′

a.

If Ni is the orbit product of xi as previously defined, then using the above

and Lemma 4.0.6:

deg(Ni) =



1 for 1 ≤ i < n − b,

p for n − b ≤ i < n,

pa for i = n,

.

We know that N1, . . . , Nn is a HSOP (by [10, Proposition 4.0.3]) for k[V ]G, and∏n
i=1 deg(Ni) = pa+b = |G| so by Proposition 1.1.8 k[V ]G is a polynomial ring

and G is a Nakajima group with respect to B = {x1, . . . , xn}.

Proposition 4.1.4. Let k = Fp and G ≤ BU,v with Rv̂,U ̸≤ G and [G, W ] ≤ W G

then the following are equivalent:

1. G is generated by reflections,

2. |G| = pa+b where a = DÛ(G) and b = DΛ(G),
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3. k[V ]G is a polynomial ring,

4. G is a Nakajima Group.

Proof. Using Lemma 4.1.3 3) ⇔ 4) ⇔ 1) ⇐ 2), so we just need to prove 2) ⇒ 3).

By Lemma 4.0.4 we can find a set of generators

{bu1,λ1 , . . . , bua,λa , bca+1v,λa+1 , . . . , bcl,λl
}

for G such that {u1, . . . , ua, v} form a basis for Û(G).

Suppose that

λi ∈ ⟨λa+1, . . . , λi−1, λi+1, . . . , λl⟩

for some a + 1 ≤ i ≤ l. Without loss of generality we assume that i = l, then

λl = αa+1λa+1 + . . . + αl−1λl−1

for some αa+1, . . . , αl−1 ∈ k, and for some d ∈ k

bclv,λl
= b

αa+1
ca+1v,λa+1 . . . b

αl−1
cl−1v,λl−1

bdv,0.

If d = 0 then G wasn’t minimally generated however if d ̸= 0 then Rv̂,U ∈ G, so

we can assume L = {λa+1, . . . , λl} to be linearly independent.

By Proposition 2.4.8 we know that |G| = pl = pa+b so b = l − a, and

Λ(G) = ⟨λa+1, . . . , λl⟩.

Choose a basis B = {x1, . . . , xn} such that {x1, . . . , xn−1} is a Λ-basis with

respect to L and

xn = w −
b∑

i=1
cixn−i.
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By Lemma 4.0.6

deg(Ni) =


1 for 1 ≤ i < n − b,

p for n − b ≤ i ≤ n − 1.

For a + 1 ≤ i ≤ l

bciv,λi
(xn) = xn.

As G is abelian, for all g ∈ G we can find α1, . . . , αl ∈ k such that

g(xn) = bα1
u1,λ1 . . . bαl

clv,λl
(xn)

= bα1
u1,λ1 . . . bαa

ua,λa
(xn)

= xn + α1u1 + . . . + αaua + cv

for some c ∈ k. As u1, . . . , ua are linearly independent (and Rv̂,U ̸≤ G), this

means that deg(Nn) = pa so

deg(Ni) =



1 for 1 ≤ i < n − b,

p for n − b < i ≤ n − 1,

pa for i = n.

We know that N1, . . . , Nn is a HSOP for k[V ]G and since

n∏
i=1

deg(Ni) = pa+b = |G|

this means that k[V ]G is a polynomial ring.

Corollary 4.1.5. Let k = Fp, G ≤ BU,v is generated by reflections if and only

if k[V ]G is a polynomial ring.
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Proof. We will show that either [G, W ] ≤ W G or Rv̂,U ≤ G, so we can use

Lemma 4.1.3. If G is a reflection group then:

G = ⟨bu1,0, . . . , bul,0, bc1v,λ1 , . . . , bcmv,λm⟩

for some ui ∈ U , ci ∈ k and λi ∈ W ∗. If [G, W ] ̸≤ W G then we can find some ui

and λj such that λj(ui) ̸= 0 then using Proposition 2.4.2 (5):

bui,0bcjv,λj
b−1

ui,0b
−1
cjv,λj

= bλj(ui)v,0

so Rv̂,U = ⟨bλj(ui)v,0⟩ ≤ G.

If k = Fp then k[V ]G being a polynomial ring means that G is a Nakajima

group with respect to some basis however if k = Fpr for r ̸= 1 then this isn’t

necessarily the case. For larger fields subgroups similar to Stong’s example appear

(see [10, Section 8.1]).
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Example 4.1.6. Let k = F4 with {1, α} a vector space basis for F4 over F2 and

α2 = β. Let:

h1 =



1 0 0 1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 1


, h2 =



1 0 0 1 0

0 1 0 0 0

0 0 1 0 1

0 0 0 1 1

0 0 0 0 1


, h3 =



1 0 1 1 0

0 1 0 0 0

0 0 1 0 1

0 0 0 1 0

0 0 0 0 1


,

h4 =



1 0 1 0 0

0 1 0 0 0

0 0 1 0 1

0 0 0 1 0

0 0 0 0 1


, h5 =



1 0 α α 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 β

0 0 0 0 1


, h6 =



1 1 α α 0

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,

h7 =



1 1 α α 0

0 1 0 0 1

0 0 1 0 0

0 0 0 1 β

0 0 0 0 1


, h8 =



1 1 0 0 0

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


with respect to the basis B = {x1, x2, x3, x4, x5} for W .

Let G = ⟨h1, . . . , h8, Rv̂,U⟩. Then we can see that if we let a = DÛ(G),

b = DΛ(G) then

a + b − r = 6 + 4 − 2 = 8.

By Proposition 4.1.2 we know G is generated by reflections and k[V ]G is poly-

nomial, however ∏n
i=1 deg(Ni) = 211 > 210 = |G| so G is not a Nakajima group

with respect to this basis (more needs to be done to check it is not Nakajima with

respect to any basis). If:

Y = x2
3 + x3x1 + x2

4 + x4x1
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then Y ∈ k[V ]G. We find that VV (N1, N2, N3, Y, N5) = {0} and so, using 1.1.5,

N1, N2, N3, Y, N5 form a homogeneous system of parameters for k[V ]G. Since

deg(N1) deg(N2) deg(N3) deg(Y ) deg(N5) = 210 = |G|

by Theorem 1.1.8 this means that k[V ]G = k[N1, N2, N3, Y, N5].

4.2 Nice groups with k = Fp

We now look back to Chapter 3. We want to see which hook groups G are nice

with respect to some basis B, so that if N = Nak+
B (G) we can try to find a

sequence of maximal subgroups from N to G as described in Proposition 3.0.11.

Lemma 4.2.1. Let k = Fp, G a hook group with hyperplane U and line kv. Let

L = {λ1, . . . , λa} be a basis for Λ(G) and let B = {x1, . . . , xn} be a basis for W

such that {x1, . . . , xn−1} is a Λ-basis for U with respect to L. Then Nak+
B (G) is

a hook group with hyperplane U and line kv, and if Rv̂,U ≤ G or [G, W ] ≤ W G

then G is nice with respect to this basis.

Proof. Let N = Nak+
B (G). Firstly we note that by Proposition 3.1.1 N is a hook

group with hyperplane U and line kv. This means that

[N, N ] ≤ Rv̂,U

so if Rv̂,U ≤ G then [N, N ] ≤ G and so G is nice with respect to B.

By Lemma 4.0.6 UG = UN . If [G, W ] ≤ W G then [G, W ] ≤ UG. By

Proposition 3.0.13 [G, W ] = [N, W ] and so

[N, W ] = [G, W ] ≤ UG = UN ≤ W N .

This means by Proposition 3.0.16 that N is abelian and so G is nice with respect

to B.



4.2 Nice groups with k = Fp 141

Proposition 4.2.2. Let k = Fp, G a hook group with hyperplane U and line

kv, then we can find a basis with respect to which G is nice if and only if either

Rv̂,U ≤ G or [G, W ] ≤ W G.

Proof. We see by Lemma 4.2.1 that if Rv̂,U ≤ G or [G, W ] ≤ W G then we can

find some basis with respect to which G is nice.

Let G be a hook group such that Rv̂,U ̸≤ G and [G, W ] ̸≤ W G. Suppose we

can find a basis B = {x1, . . . , xn} for W with respect to which G is nice and let

N = Nak+
B (G).

Let u ∈ [G, W ]\W G, this means we can find some λ ∈ Λ(G) and c ∈ k such

that bu+cv,λ ∈ G.

Let

I = {1 ≤ i ≤ n | xi ̸∈ U}.

For i ̸∈ I let ui = xi ∈ U . For all i ∈ I we can assume that xi = w + ui for some

ui ∈ U so

bu+cv,λ(xi) = xi + u + dv

for some d ∈ k. This means that

u ∈ ⟨x1, . . . , xi−1⟩

and there exists si ∈ Si such that

si(xj) =


xj + u + dv for i = j,

xj otherwise.

As u ̸∈ W G and v ∈ W G we can find some g ∈ G such that g(u + dv) =

u + (d + 1)v and g(v) = v. Note that this means that v ∈ ⟨x1, . . . , xi−1⟩. As

G ≤ Nak+
B (G), which is a Nakajima group, by Lemma 3.0.3 we can find gj ∈ Nj

for 1 ≤ j ≤ n such that

g = gn . . . g1.
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Let

h = gi−1 . . . g1.

then

h(u) = u + v, h(v) = v

Now let θi = h−1s−1
i hsi then

h−1s−1
i hsi(xi) = h−1s−1

i h(xi + u + dv)

= h−1s−1
i (xi + u + (d + 1)v)

= h−1(xi + v)

= xi + v.

For j ̸= i we can find some u′ ∈ ⟨x1, . . . , xi−1⟩ such that

θi(xj) = h−1s−1
i hsi(xj)

= h−1s−1
i h(xj)

= h−1s−1
i (xj + u′)

= h−1(xj + u′)

= xj.

For 1 ≤ i ≤ n such that i ̸∈ I let θi = 1. Let Θ = θn . . . θ1 ∈ [N, N ]. Let l be

the smallest number such that θi ̸= 1, then as θl(xl) = xl + v this means that

v ∈ ⟨x1, . . . , xl−1⟩ and θi(v) = v for 1 ≤ i ≤ n. This means that

Θ(xi) =


xi + v for i ∈ I,

xi for i ̸∈ I.
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For u′ ∈ U we find a1, . . . , an ∈ k such that

u′ =
n∑

i=1
aixi.

Let

b =
∑
i∈I

ai

then

u′ = bw +
n∑

i=1
ui

so b = 0. Since

Θ(u′) = u′ + bv

this means that Θ(u′) = u′ for all u′ ∈ U . We can see that Θ(w) = w + v so

⟨Θ⟩ = Rv̂,U .

The above means that Rv̂,U ≤ [N, N ], however we have assumed that Rv̂,U ̸≤ G

and [N, N ] ≤ G, so we have a contradiction.

We shall call a hook group nice if we can find a basis B with respect to which

G is nice. For the rest of this section we will restrict to nice groups with k = Fp.

This restriction still leaves us with a lot of interesting cases: as any non-zero

commutator generates Rv̂,U we include all non abelian hook groups. When p = 2,

if g is an index 3 bireflection then ⟨g2⟩ = Rv̂,U so any group containing at least

one index three bireflection is nice with respect to some basis for W .

Restricting to k = Fp also means that now both Û(G) and Λ(G) are vector

spaces over k, and dimk(Λ(G)) = dimk(U) − dimk(W G).

Lemma 4.2.3. Let G ≤ BU,v with H0 ≤ G generated by all reflections in G.

Either G = H0 is a reflection group, or we can find bu,λ ∈ G and some maximal

subgroup H of G, with H0 ≤ H such that G = ⟨H, bu,λ⟩, u ̸∈ Û(H) and λ ̸∈ Λ(H).
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Proof. If Û(G) = kv then G is a reflection group. Let a = dimk(Û(G)) > 1 by

Proposition 4.0.4 we can find generators for G such that:

G = ⟨bu1,0, . . . , but,0, but+1,λt+1 , . . . , bua,λa , bca+1v,λa+1 , . . . , bclv,λl
⟩

where Û(G) = ⟨u1, . . . , ua, v⟩. Suppose that t is the maximal number such that

we can choose

λ1 = . . . = λt = 0

for given bca+1v,λa+1 , . . . , bclv,λl
. If G is not a reflection group then t ≠ a. We can

assume that

λt+1 ̸∈ ⟨λt+2, . . . , λl⟩,

otherwise

λt+1 = ct+2λt+2 + . . . + clλl

and we can replace but+1,λt+1 with

bu′
t+1,0 = but+1,λt+1b

−ct+2
ut+2,λt+2 . . . b−ca

ua,λa
b

−ca+1
ca+1v,λa+1 . . . b−cl

ul,λl

so

G = ⟨bu1,0, . . . , but,0, bu′
t+1,0, but+2,λt+2 , . . . , bua,λa , bca+1v,λa+1 , . . . , bul,λl

⟩.

and t wasn’t maximal.

Let

H = ⟨bu1,0, . . . , but,0, but+2,λt+2 , . . . , bua,λa , bca+1v,λa+1 , . . . , bul,λl
, Φ(G)⟩,

then H is maximal in G and G = ⟨H, but+1,λt+1⟩ with ut+1 ̸∈ Û(H) and λt+1 ̸∈

Λ(H).

Suppose there exists a reflection g ∈ G\H, then

g = bb
ut+1,λt+1bd1

u1,0 . . . bdt
ut,0b

dt+2
ut+2,λt+2 . . . bda

ua,λa
b

da+1
ca+1v,λa+1 . . . bdl

ul,λl
t
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for some t ∈ Φ(G), 0 ≤ b, d1, ..., dl ≤ p − 1, with b ̸= 0 (otherwise g would be in

H). If g = bcv,λ for some c ∈ k, λ ∈ Λ(G) then

cv = bu + d1u1 + ... + daua + dv

for some d ∈ k, so

−bu = a1u1 + ... + amum + (d − c)v

and u ∈ Û(H) so we have a contradiction. Alternatively for some u ∈ Û(G) we

could have g = bu,0 so

0 = bλt+1 + dt+2λt+2 + ... + dlλl

and

−bλt+1 = dt+2λt+2 + ... + dlλl

however this would mean that λ ∈ Λ(H). We know H contains all reflections in

G so H0 ≤ H.

From the last section we know that the reflection subgroups of hook groups

are Nakajima with respect to some basis. We want to use the previous lemma

to split up our nice hook groups and make it easier to find Nakajima groups

containing them. The next result means that we can do this without losing the

niceness of the group.

Lemma 4.2.4. Let G be a hook group with H a subgroup of G containing all

reflections in G. If Rv̂,U ≤ G then Rv̂,U ≤ H, if [G, W ] ≤ W G then [H, W ] ≤

W H .

Proof. We know Rv̂,U is a reflection group so if H contains all reflections in G

and Rv̂,U ≤ G then Rv̂,U ≤ H.

As H is a subgroup of G we know that [H, W ] ≤ [G, W ] and W G ≤ W H , this

means if [G, W ] ≤ W G then [H, W ] ≤ W H .
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Lemma 4.2.5. Let H ≤ BU,v with Rv̂,U ≤ H or [H, W ] ≤ W H . Let a = DÛ (H),

b = DΛ(H) and |H| = pa+b−m for some m ∈ N. Let H0 be the group generated by

all reflections in H. Then we can find a set {bu1,λ1 , . . . , bum,λm}, where bui,λi
∈ H

for 1 ≤ i ≤ m, such that:

H = ⟨H0, bu1,λ1 , . . . , bum,λm⟩

and

u1, . . . , um ∈ Û(H)\Û(H0),

λ1, . . . , λm ∈ Λ(H)\Λ(H0)

are linearly independent sets.

Proof. In Propositions 4.1.2 and 4.1.4 we proved this for m = 0, we proceed by

induction on m.

For m > 0 by the previous Lemma 4.2.3 we can find some bum,λm ∈ H and

maximal subgroup H ′ of H containing all reflections in H such that

H = ⟨H ′, bum,λm⟩,

um ̸∈ Û(H ′) and λm ̸∈ Λ(H ′).

Let a′ = DÛ(H ′) = DÛ(H) − 1, b′ = DΛ(H ′) = DΛ(H) − 1 then:

|H ′| = |H|
p

= pa+b−m−1

= pa′+1+b′+1−m−1

= pa′+b′−(m−1).

Now by Lemma 4.2.4 we can use the induction hypothesis to find some

bu1,λ1 , . . . , bum−1λm−1
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with u1, . . . , um−1 ∈ Û(H ′)\Û(H ′
0) and λ1, . . . , λm−1 ∈ Λ(H ′)\Λ(H ′

0)) linearly

independent sets, such that H ′ = ⟨H ′
0, bu1,λ1 , . . . , bum−1λm−1⟩ where H ′

0 is the

group generated by all reflections in H ′. As H ′ contains all reflections in H we

see that H ′
0 = H0. As um ̸∈ Û(H ′) and λm ̸∈ Λ(H ′) we can see that u1, . . . , um ∈

Û(H)\Û(H0) and λ1, . . . , λm ∈ Λ(H)\Λ(H0)) are linearly independent sets. As

H = ⟨H ′, bum,λm⟩ we find that

H = ⟨H0, bu1,λ1 , . . . , bum,λm⟩.

Lemma 4.2.6. Let H ≤ BU,v with Rv̂,U ≤ H or [H, W ] ≤ W H and

H = ⟨H0, bu1,λ1 , . . . , bum,λm⟩,

where H0 is the subgroup generated by all reflections in H. Let

λm+1, . . . , λDΛ(H) ∈ Λ(H0)

such that

L = {λ1, . . . , λm, λm+1, . . . , λDΛ(H)}

is a basis for Λ(H). For any C = {x1, . . . , xn−1} which a Λ-basis for U with

respect to L we can find xn ∈ W\U such that

• B = {x1, . . . , xn} is a basis for W ,

• H0 = Nak−
B (H),

• bui,λi
(xn) = xn + ui for 1 ≤ i ≤ m,

• Nak+
B (H) = ⟨H, b0,λ1 , . . . , b0,λm⟩.

Proof. The case m = 0 is covered in Lemma 4.1.3 so we proceed by induction on

m.
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Let

H ′ = ⟨H0, bu1,λ1 , . . . , bum−1,λm−1⟩.

If C is a Λ-basis for U with respect to {λ1, . . . , λm} then C is a Λ-basis for U

with respect to {λ1, . . . , λm−1.} By Lemma 4.2.4 we can apply the induction

hypothesis to H ′: we can find x′
n such that C = {x1, . . . , xn−1, x′

n} is a basis for

W and

Nak−
B′(H ′) = H0,

bui,λi
(xn) = xn + ui for 1 ≤ i ≤ m − 1,

Nak+
B′(H ′) = ⟨H ′, b0,λ1 , . . . , b0,λm−1⟩.

As x′
n ̸∈ U , x′

n = w + u for some u ∈ U , so:

bum,λm(x′
n) = x′

n + um + cv

for some c ∈ k. Let xn = x′
n − cxn−m then

bum,λm(xn) = xn + um.

For all h ∈ H ′

δh(xn) = δh(x′
n),

so if h(x′
n) = x′

n then h(xn) = xn. Let B = {x1, . . . , xn}. For 1 ≤ i ≤ n − 1 let

H ′
i = {h ∈ H | h(x′

n) = xn and h(xj) = xj for 1 ≤ j ≤ n − 1, j ̸= i}

Hi = {h ∈ H | h(xj) = xj for 1 ≤ j ≤ n, j ̸= i}

and let

H ′
n = {h ∈ H | h(xj) = xj for 1 ≤ j ≤ n − 1}

Hn = {h ∈ H | h(xj) = xj for 1 ≤ j ≤ n − 1}.
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Then for 1 ≤ i ≤ n

H ′
i = Hi

and so

Nak−
B′(H ′) = Nak−

B (H ′) = H0.

As H0 contains all reflections in H, we know that Nak−
B (H) ≤ H0. By the above

H0 is a Nakajima group with respect to B so

Nak−
B (H) = H0.

Let H[i] = ⟨bui,λi
⟩ for 1 ≤ i ≤ m then we see that

Nak+
B (H[i]) = ⟨H[i], b0,λi

⟩ for 1 ≤ i ≤ m.

Using Corollary 3.0.10

Nak+
B (H) = ⟨Nak+

B (H0), Nak+
B (H[1]), . . . , Nak+

B (H[m])⟩,

= ⟨H0, bu1,λ1 , b0,λ1 , . . . , bum,λm , b0,λm⟩,

= ⟨H, b0,λ1 , . . . , b0,λm .⟩

Now we have broken our groups up and can use Theorems 1.3.4 and 1.3.5 to

show that their invariant rings are complete intersections. For this we will use

Properties of the Dickson Invariants from Lemma 1.1.7.

Lemma 4.2.7. Let

H = ⟨H0, bu1,λ1 , . . . , bum,λm⟩ ≤ BU,v

where H0 is the subgroup of H generated by reflections, with Rv̂,U ≤ H or

[H, W ] ≤ W H . Let λm+1, . . . , λDΛ(H) ∈ Λ(H0) such that

L = {λ1, . . . , λm, λm+1, . . . , λDΛ(H)}
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is a basis for Λ(H). Let B = {x1, . . . , xn} is a basis for W such that {x1, . . . , xn−1}

is a Λ-basis with respect to L and

• H0 = Nak−
B (H),

• bui,λi
(xn) = xn + ui for 1 ≤ i ≤ m,

• Nak+
B (H) = ⟨H, b0,λ1 , . . . , b0,λm⟩.

Let W0 = ⟨δh(xn) | h ∈ H0⟩ and Wi = Wi−1 + kum−i−1 for 1 ≤ i ≤ m. Let

fi = x1F
Wm−i(xn) −

i∑
j=1

xn−jF
Wm−i(uj).

for 1 ≤ i ≤ m, then

k[V ]G = k[NH
1 , NH

2 , . . . , NH
n , f1, . . . , fm]

is a complete intersection ring.

Proof. For m = 0, H = H0 is a Nakajima group with respect to B so proceed by

induction on m. Assume the result holds for m − 1. Let:

H+ = ⟨H, b0,λm⟩,

H− = ⟨H0, bu1,λ1 , . . . , bum−1,λm−1⟩.

Suppose that g ∈ H+ is a reflection with g ̸∈ ⟨H0, bum,0, b0,λm⟩ then there

exists bu,λ ∈ H− such that

g = bu,λba
um,0b

b
0,λm

with one of a, b ̸= 0. Either u + aum ∈ kv or λ + bλm = 0. In the first instance

as um ̸∈ Û(H−) this means that u = 0 and a = 0, and bu,λ ∈ H0. In the second

instance as λm ̸∈ Λ(H−) this means that λ = 0 and b = 0 so again bu,λ ∈ H0.

From this we see that the group generated by all reflections in H+ is

H+
0 = ⟨H0, bum,λm , b0,λm⟩
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From this we see that

H+ = ⟨H+
0 , bu1,λ1 , . . . , bum−1,λm−1⟩.

If Rv̂,U ≤ H then clearly Rv̂,U ≤ H+. Let N = Nak+
B (G), then

H− ≤ H ≤ H+ ≤ N

so Nak+
B (H+) = N (using Proposition 3.0.9). Using Lemma 4.0.6 W N = W H so

W H = W H+ . This means that if [H, W ] ≤ W H then [H+, W ] ≤ W H+ .

As clearly bui,λi
(xn) = xn + ui for 1 ≤ i ≤ n this means that in order to use

the induction hypothesis we just need to check that

H+
0 = Nak−

B (H+).

As H+
0 contains all reflections in H+ we know that

Nak−
B (H+) ≤ H+

0 .

As H0 and

⟨bum,λm , b0,λm⟩

are both Nakajima groups with respect to B, by Lemma 3.0.5 H+
0 is a Nakajima

group and so

H+
0 = Nak−

B (H+).

If we let

W +
0 = ⟨δh(xn) | h ∈ H+

0 ⟩ = W0 + kum,

W +
i = W +

i−1 ⊕ kum−i−1 for 1 ≤ i ≤ m − 1,

f+
i = x1F

W +
(m−1)−i(xn) −

i∑
j=1

xn−jF
W +

(m−1)−i(uj) for 1 ≤ i ≤ m − 1,
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then we can find k[V ]H+ by the induction hypothesis:

k[V ]H+ = k[NH+

1 , . . . , NH+

n , f+
1 , . . . , f+

m−1]

is a complete intersection ring.

As

Nak+
B (H+) = Nak+

B (H)

and H+ and H are both nice with respect to B by Proposition 3.0.12

NH
i = NH+

i = NN
i

for 1 ≤ i ≤ n. Looking at the Wi

W +
0 = W1,

W +
i = Wi+1 for 1 ≤ i ≤ m − 1,

f+
i = x1F

Wm−i(xn) −
i∑

j=1
xn−jF

Wm−i(uj) = fi for 1 ≤ i ≤ m − 1,

so

k[V ]H+ = k[NH
1 , . . . , NH

n , f1, . . . , fm−1].

This means what we want to show is that k[V ]H+ [fm] = k[V ]H .

We can see that H is a maximal subgroup of H+ with σ := bum,0 ∈ H+\H,

and clearly fm ̸∈ k[V ]H+ . Let:

x := (σ − 1)fm

= x1F
W0(um)

then in order to use Theorem 1.3.4 we just need to prove that (σ−1)(k[V ]H) ⊆ (x).
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Using Lemma 4.2.4 we see we can also use the induction hypothesis to find

k[V ]H− . Let

W −
0 = ⟨δh(xn) | h ∈ H0⟩ = W0,

W −
i = W −

i−1 ⊕ kum−1−i for 1 ≤ i ≤ m − 1,

f−
i = x1F

W −
(m−1)−i(xn) −

i∑
j=1

xn−jF
W −

(m−1)−i(uj) for 1 ≤ i ≤ m − 1,

then

k[V ]H− = k[N−
1 , . . . , N−

n , f−
1 , . . . , f−

m−1].

As H− ≤ H we know that k[V ]H ⊆ k[V ]H− so (σ − 1)k[V ]H ⊆ (σ − 1)k[V ]H− .

Let:

h = a1(N−
1 )c1 . . . (N−

n )cnfd1
1 . . . f

dm−1
m−1 ∈ k[V ]H−

be a monomial in k[V ]H− . If (σ − 1)(h) ̸= 0 then at least one of cn, d1, . . . , dm−1

is not zero. We can see that:

N−
n = F W −

m−1(xn)

δσ(N−
n ) = F W −

m−1(um)

and for 1 ≤ i ≤ m − 1:

f−
i = x1F

W −
(m−1)−i(xn) −

i∑
j=1

xn−jF
W −

(m−1)−i(uj)

δσ(f−
i ) = x1F

W −
(m−1)−i(um).

From the nice properties of Dickson invariants we know that for 1 ≤ i ≤ m−1:

F W −
i (um) = F W −

i−1(um)p − F W −
i−1(um−1−i)p−1F W −

i−1(um).
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This means F W −
0 (um) = F W0(um) divides δσ(h) ̸= 0 for any h ∈ k[V ]H− and

hence for any h ∈ k[V ]H . If h ∈ k[V ]H then:

bum,λm(h) = h,

b0,λmbum,0(h) = h,

σ(h) = b−1
0,λm

(h).

From this we can see that x1 divides δσ(h) ̸= 0 for any h ∈ k[V ]H . As H is a

p-group k[V ]H is a unique factorisation domain and so (σ − 1)(k[V ]H) ⊆ xk[V ]

as required. Now

k[V ]H = k[V ]H+ [fm] = k[NH
1 , . . . , NH

n , f1, . . . , fm].

By Theorem 1.3.5 k[V ]H is a complete intersection ring.

Theorem 4.2.8. For k = Fp, all hook groups G which are nice with respect to

some basis B for W have complete intersection rings of invariants.

Proof. If G is a hook group then it is a subgroup of BU,v for some hyperplane

U and v ∈ U . By Lemma 4.2.2 if G is nice with respect to some basis B either

Rv̂,U ≤ G or [G, W ] ≤ W G, then we can apply Lemmas 4.2.5, 4.2.6 and 4.2.7 to

show that it has complete intersection ring of invariants.

This gives us the following corollaries:

Corollary 4.2.9. For k = Fp, all non-abelian hook groups have complete inter-

section rings of invariants.

Proof. As noted at the beginning of this section if k = Fp all non-abelian hook

groups contain Rv̂,U and so are nice with respect to some basis, hence by Theorem

4.2.8 they have complete intersection invariant rings.

Corollary 4.2.10. Let k = F2, then all hook groups containing at least one

index 3 bireflection have complete intersection rings of invariants.
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Proof. If k = F2 and G is a hook group which contains an index 3 bireflection g,

then

⟨g2⟩ = Rv̂,U

so Rv̂,U ≤ G and so G is nice with respect to some basis. By Theorem 4.2.8 they

have complete intersection invariant rings.

4.2.1 Example: quaternions

We cannot hope to extend the result above to show that all hook groups have

complete intersection invariant rings, or even that their invariant rings are all

Cohen–Macaulay. Here we see two four dimensional representations of Q8 which

are both hook groups- one has complete intersection invariant ring and the other

is not Cohen–Macaulay. This also shows Lemma 4.2.7 being used on an example.

Lemma 4.2.11. Let G ≤ GL(V ). If G ∼= Q8 is a bireflection group then G is a

hook group containing at least one index 3 bireflection.

Proof. The group Q8 is an extraspecial group with [Q8, Q8] = Z(Q8) a cyclic

group of order two. Let G ≤ GL(V ) such that G ∼= Q8, and let t ∈ G such that

Z(G) = ⟨t⟩.

If g ∈ G\Φ(G) then |g| = 4 and g2 = t. The only bireflections with order 4

are index 3 bireflections, and if g is an index three bireflection of order four then

g2 is a transvection (see Lemma 2.1.2). If G = ⟨g1, g2⟩ then g1, g2 ∈ G\Φ(G), so

we can find v ∈ V and γ ∈ v⊥ such that:

g2
1 = g2

2 = tγ
v = t.

Let U = V t, then U is a hyperplane, and δg1(U) = δg2(U) = kv, so G is a hook

group with hyperplane U and line kv.

Proposition 4.2.12. Let k = F2. If G ≤ GL(V ) with G ∼= Q8 then k[V ]G is

either complete intersection or not Cohen–Macaulay.
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Proof. If G has a Cohen–Macaulay ring of invariants then G is generated by

bireflections (Theorem 1.3.6). By Lemma 4.2.11 G is a hook group containing

at least one index 3 bireflection so by Corollary 4.2.10 k[V ]G is a complete

intersection ring.

Example 4.2.13. Let k = F2, H = ⟨g1, g2⟩ where

g1 =



1 0 1 0

0 1 0 1

0 0 1 1

0 0 0 1


, g2 =



1 1 0 0

0 1 0 1

0 0 1 0

0 0 0 1



with respect to basis B = {x1, x2, x3, x4} for W . We see that H ∼= Q8 is a hook

group with hyperplane U = ⟨x1, x2, x3⟩ and line kx1. We find it’s invariant ring

(which is a complete intersection ring) by using Proposition 4.2.7.

Let

σ1 =



1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1


, σ2 =



1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1


, t =



1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1


.

As in Proposition 3.0.9 we can find

G = ⟨g1, g2, σ1, σ2⟩ = Nak+
B (H),

H0 = ⟨t⟩ = Nak−
B (G),

both Nakajima groups such that H0 ≤ H ≤ G. Let H1 = ⟨g1, g2, σ2⟩ then

k[V ]H1 = k[N1, N2, N3, N4, f1]



4.2 Nice groups with k = Fp 157

where the Ni are orbit products and

f1 = x1((x2
4 − x1x4)2 − (x2

2 − x4x2)(x2
4 − x1x4))−

x3(((x2 + x3)2 − x1(x2 + x3))2 − (x2
2 − x4x2)((x2 + x3)2 − x1(x2 + x3))).

From here we can find k[V ]H = k[V ]H1 [f2] where

f2 = x1(x2
4 − x1x4) − x3((x2 + x3)2 − x1(x2 + x3)) − x2(x2

2 − x2x1).

Example 4.2.14. Let k = F4 with a ̸= 1, a3 = 1. Let G = ⟨g1, g2⟩ where

g1 =



1 0 1 0

0 1 0 0

0 0 1 1

0 0 0 1


, g2 =



1 0 a2 0

0 1 0 1

0 0 1 a

0 0 0 1



with respect to basis B = {x1, x2, x3, x4} for W . Again G ∼= Q8. The maximal

subgroups of G are L = ⟨g1g2⟩, M = ⟨g1⟩ and N = ⟨g2⟩. Let t ∈ G such that

⟨t⟩ = Z(G) = [G, G],

then

L ∩ M = L ∩ N = M ∩ N = ⟨t⟩.

We want to show that the invariant ring of G is not Cohen–Macaulay, we do this

using Theorem 1.2.6 by showing that:

(g1 − 1)W N < (g1 − 1)W t ∩ (g1g2 − 1)W t ∩ W N .

As W N = W M = W L = ⟨x1, x2⟩ we see that (g1 − 1)W N = {0}. We need to find

some (g1 − 1)W t ∩ (g1g2 − 1)W t ∩ W N ̸= {0}. As

W t = ⟨x1, x2, x3⟩ = U



4.2 Nice groups with k = Fp 158

and G is a hook group with line kx1 and hyperplane U , on which none of the

generators act trivially

kx1 = (g1 − 1)W t ∩ (g1g2 − 1)W t ∩ W N .

From this we see V is linearly flat and so for R = k[V ]G

depth(RG) = V G + ccG(R) + 1 = 1 + 1 + 1 = 3 < 4

so RG is not Cohen–Macaulay.



Chapter 5

Invariant rings of two–column

groups

5.1 Non complete intersection example

By Proposition 1.4.3 all two–column groups have Cohen–Macaulay invariant rings,

however it is not the case that they are necessarily complete intersection rings as

we will see with this four dimensional representation of the extra-special group

M(3). This is a counter example to the conjecture that Cohen–Macaulay implies

complete intersection for invariant rings of unipotent groups. It is also a counter

example to the conjecture that all two–column groups have complete intersection

invariant rings in the modular case (a counter example in the non-modular case

was given by Wu in [33]).

Proposition 5.1.1. Let G = ⟨g1, g2⟩ where

g1 =



1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


, g2 =



1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 1
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with respect to basis B = {x1, x2, x3, x4} for W . If p = 3 then k[V ]G is Cohen–

Macaulay but not complete intersection.

Firstly we look at a subgroup of G, let H = ⟨g1, h⟩ with

h =



1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1


.

As H is a nice hook group using Proposition 4.2.7,

k[V ]H = k[NH
1 , NH

2 , NH
3 , NH

4 , d]

where

d = (xp
4 − xp−1

1 x4)x1 − (xp
2 − xp−1

1 x2)x3.

We will use the notation

Ni = NG
i , ni = NH

i .

To find the invariant ring of G we first find it’s localisation at x1.

Lemma 5.1.2. For G as given above, p ̸= 2,

k[V ]Gx1 = k[NG
1 , NG

2 , NG
3 , NG

4 , h1, h2]x1

where

h1 = n3x1 − x2N2

h2 = 2x1d + (x2
2 − x1x2)N2.

Proof. As in Theorem 1.3.12 we wish to find φ1, φ2, φ3, φ4 with φi ∈ R[i] such

that k(V ) = k(φ1, . . . , φ4). As always we can choose φ1 = x1. If we look at the
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action of G restricted to ⟨x1, x2⟩ we see that it acts as a Nakajima group and we

can choose

φ2 = xp
2 − xp−1

1 x2 = N2.

As H is a subgroup of G we know that R[i]G ⊆ R[i]H for 1 ≤ i ≤ n. The

minimal degree of polynomials in x3 in R[3]H is p. As h1 ∈ R[3]G with p the

maximal degree of x3 we can choose φ3 = h1. The minimal degree of polynomials

in x4 in R[4]H is also p. Similarly as h2 ∈ R[4]G with p the maximal degree of x4

we can choose φ4 = h2.

As in Lemma 1.3.13 we let ci be the leading coefficient of φi viewed as a

polynomial in xi for 1 ≤ i ≤ 4 so

c1 = c2 = 1, c3 = x1, c4 = x2
1.

We can therefore use Lemma 1.3.13 to see that

k[V ]Gx1 = k[N1, N2, h1, h2]x1 = k[N1, N2, N3, N4, h1, h2]x1 .

We have found a ring A which is integral over k[V ]G and such that Ax1 =

k[V ]x1 , so we can apply the SAGBI divide by x algorithm. First we find the

leading terms of the invariants we have:

LT(N1) = x1, LT(N2) = xp
2, LT(N3) = xp2

3 ,

LT(N4) = xp2

4 , LT(h1) = xp+1
2 , LT(h2) = xp+2

2 .

For any p ̸= 2 we have a non-trivial tete-a-tete {h2
1, h2NG

3 } and can find:

h3 =
(
h2NG

3 − h2
1

)
/x1

= 2dN2 − x2N2
2 − x1n

2
3 + 2x2N2n3

which has LT(h3) = x2p
2 x3.
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Lemma 5.1.3. For p = 3 and p = 5, for all 0 ≤ i, j ≤ p − 1 with

p ≤ i + 2j ≤ 2p − 1

we can find ci,j such that if fi,j are defined recursively (in lexicographic order) to

be:

fi,j =



(
h

(p+1)/2
2 − ci,jh1N(p+1)/2

2

)
/x1 for i = 0, j = p+1

2 ,(
h2f0,j−1 − ci,jh1h

(2j−p−1)/2
3 Np+1−j

2

)
/x1 for i = 0, j > p+1

2 ,(
h1h

j
2 − ci,jN(p+3)/2

2

)
/x1 for i = 1, j = p−1

2 ,(
h1h

j
2h

(i−1)/2
3 − ci,jN2fi−2,j+1

)
/x1 for i > 1 odd, j = p−i

2 ,(
h

i/2
3 hj

2 − ci,jh1fi−1,j

)
/x1 for i even, j = p+1−i

2 ,

(h1fi−1,j − ci,jh2fi,j−1) /x1 otherwise

then fi,j ∈ k[V ]G and LT(fi,j) = x
aj

2 x
bi,j

3 where:

aj = (p2 − 1 + 2j)/2

bi,j = p(2i + 2j − p + 1)/2

Proof. We start with p = 3, and find if we let

c0,2 = 2, c1,1 = 2, c1,2 = 2, c2,1 = 1
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and define fi,j as above then

h4 = f1,1 =
(
h1h2 + N3

2

)
/x1

= 2x1n3d + (x2
2 − x1x2)N2n3 + x2N2d + x2

2N2
2 + x1x2N2

2,

h5 = f0,2 =
(
h2

2 + N2
2 h1

)
/x1

= x1d
2 + (x2

2 − x1x2)dN2 + N2
2n3 + x3

2N2
2 − x1x

2
2N2

2,

h6 = f2,1 = (h3h2 − h1f1,1/ x1

= d2N2 + x2dN2 − x1dn2
3 + x2dN2

2 − x2N2n3d − x2
2N3

2

− (x2
2 − x1x2)N2n

2
3 − x2

2N2
2n3 − x1x2N2

2n3,

h7 = f1,2 = (h1f0,2 + h2f1,1) /x1

= 2x1n3d
2 + x2N2d

2 − x2
2N2

2d − x1x2N2
2d − n3d + N2

2n
2
3 − x3

2N2n3

+ x1x
2
2N2

2n3 + x2(x2
2 − x1x2)N3

2.

These have the following leading terms:

LT(f0,2) = x6
2x

3
3, LT(f1,1) = x5

2x
3
3,

LT(f1,2) = x6
2x

6
3, LT(f2,1) = x5

2x
6
3.

For p = 5 we let

c0,3 = 4, c0,4 = 2, c1,2 = 4, c1,3 = 4,

c1,4 = 1, c2,2 = 3, c2,3 = 4, c3,1 = 3,

c3,2 = 3, c3,3 = 1, c4,1 = 2, c4,2 = 2.
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The terms are larger still than in the case of p = 3, but the following can be

shown to be in k[V ]G:

f0,3 =
(
h3

2 + N3
2h1

)
/x1,

f0,4 =
(
h2f0,3 − 2h1h3N2

2

)
/x1,

f1,2 =
(
h1h

2
2 + N4

2

)
/x1,

f1,3 = (h1f0,3 + h2f1,2) /x1,

f1,4 = (h1f0,4 − h2f1,3) /x1,

f2,2 =
(
h2

2h3 − 3h1f1,2
)

/x1,

f2,3 = (h1f1,2 + h2f2,2) /x1,

f3,1 = (h1h2h3 − 3N2f1,2) /x1,

f3,2 = (h1f2,2 − 3h2f3,1) /x1,

f3,3 = (h1f2,3 − h2f3,2) /x1,

f4,1 =
(
h2h

2
3 − 2h1f3,1

)
/x1,

f4,2 = (h1f3,2 − 2h2f4,1) /x1.

The leading terms are:

LT(f0,3) = x15
2 x5

3, LT(f0,4) = x16
2 x10

3 ,

LT(f1,2) = x14
2 x5

3, LT(f1,3) = x15
2 x10

3 ,

LT(f1,4) = x16
2 x15

3 , LT(f2,2) = x14
2 x10

3 ,

LT(f2,3) = x15
2 x15

3 , LT(f3,1) = x13
2 x10

3 ,

LT(f3,2) = x14
2 x15

3 , LT(f3,3) = x15
2 x20

3 ,

LT(f4,1) = x13
2 x15

3 , LT(f4,2) = x14
2 x20

3 .
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Proposition 5.1.4. Let p = 3 and h1, . . . , h7 be as previously defined, then

k[V ]G = k[N1, N2, N3, N4, h1, . . . , h7].

Proof. Let

h8 = h2
4 = 2h2

1h
2
2 + h1h2N3

2 − N6
2

x1
.

In Lemma 5.1.3 for 1 ≤ i ≤ 7 we showed that hi ∈ k[V ]G and that x1 doesn’t

divide LT(hi). Using Lemma 5.1.3 and Lemma 5.1.2 we know that:

Ax1 = k[N1, N2, N3, N4, h1, . . . , h7](x1) = k[V ]G(x1).

If we can show that

N1, . . . , N4, h1, . . . , h7

form a SAGBI basis then we can use Proposition 1.3.15 to prove that

k[N1, N2, N3, N4, h1, . . . , h7] = k[V ]G.

We find that

hp
1 = xp

1N3 − Np+1
2 + xp−1

1 Np−1
2 h1,

hp
2 = 2x2p

1 N4 − 2xp−1
1 Np

2h1 + Np+2
2 − xp

1Np+1
2 + x2p−2

1 Np−1
2 h2,
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and using this obtain the following relations:

h2
1 − h2N2 = −x1h3,

h1h2 + N3
2 = x1h4,

h1h3 − N2h4 = −x2
1N3 − x1N2

2h1,

h1h4 + N2h5 = x1h7,

h1h5 − N2
2h3 = −x1h7,

h1h6 + N2h7 = N2
2h1h2 + x1h2N3,

h1h7 + h8 = N4
2h1 + x1N2

2N3,

h2
2 + N2

2h1 = x1h5,

h2h3 + N2h5 = 2x1h6,

h2h4 + N2
2h3 = 2x1h7,

h2h5 − N2
2h4 = x1N2h1 − x2

1N4
2 + x3

1N2h2 + 2x5
1N4,

h2h6 − h8 = N4
2h1 + 2x4

1N2N4 − x1N4
2 + x2

1N3
2h2,

h2h7 − N2
2h6 = 2N3

2h
2
1 + x1h1N4

2 − x2
1h1N2

2h2 + x4
1h1N4,

h2
3 − N2h6 = Np−1

2 h2
1 + x1N3h1,

h3h4 − 2N2h7 = 2N2
2h1h2 + 2x1h2N3,

h3h5 + h8 = N4
2h1 − x1N2

2N3 − x1N4
2 + x2

1N3
2h2 + 2x4

1N2N4,

h3h6 + N3
2N3 = N3

2h5 + 2N6
2 + 2x1N3h4 + 2x1N2

2h7 + x1N4
2h2 + 2x3

1N2
2N4,

h3h7 − N2
2N3h1 = N4

2h3 + N5
2h1 + x1N3h5 + 2x1N2

2h7 + x1N6
2

+ 2x2
1N3

2h4 + x3
1N2N4h1,
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h4h5 − N2
2h6 = N4

2h2 + 2x1N3
2h3 + 2x1N4

2h1 + 2x2
1N5

2

+ x3
1N2

2h4 + 2x4
1N4h1,

h4h6 + N2
2N3h1 = N4

2h3 + 2N5
2h1 + x1N3h5 + 2x1N2

2h7 + 2x1N6
2

+ x2
1N3

2h4 + 2x2
1N2N4h1,

h4h7 − N2
2N3h2 = N4

2h4 + N5
2h2 + 2x1N4

2h3 + 2x2
1N3

2N3 + x2
1N3

2h5

+ x3
1N2N4h2 + 2x3

1N2
2h6 + 2x4

1N4h3,

h2
5 − N2

2h7 = 2N6
2 + x1N3

2h4 + 2x1N4
2h2 + 2x2

1N4
2h1

+ x3
1N2

2h5 + 2x4
1N4h2,

h5h6 − N2
2N3h2 = 2N4

2h4 + N5
2h2 + x1N4

2h3 + 2x1N5
2h1 + x2

1N3
2N3

+ x3
1N2N4h2 + x3

1N2
2h6 + x4

1N4h3,

h5h7 − N4
2N3 = N4

2h5 + N7
2 + 2x1N3

2h6 + x1N4
2h4 + 2x1N5

2h2

+ x2
1N4

2h3 + x3
1N3

2N4 + x3
1N2

2h7 + x4
1N4h4,

h2
6 + N2

2N3h3 = N2
2h8 + 2N5

2h3 + 2N6
2h1 + 2x1N3h7 + 2x1N4

2N3

+ 2x1N4
2h5 + 2x2

1N3
2h6 + 2x3

1N2N4h3,

h6h7 − N2
2N3h4 = N5

2h4 + 2N6
2h2 + 2x1N3

2N3h1 + 2x1N5
2h3 + x1N6

2h1

+ x2
1N3

2h7 + x2
1N4

2N3 + x2
1N7

2 + x3
1N2N4h4 + 2x3

1N2
2N3h2

+ 2x3
1N4

2h4 + x4
1N2

2N4h1 + x5
1N3N4,

h2
7 − N2

2N3h5 = 2N4
2h7 + N5

2h5 + 2N8
2 + x1N3

2N3h2 + 2x1N4
2h6

+ x2
1N2

2h8 + x3
1N2N4h5 + 2x4

1N4h6.

These, along with Lemma 1.3.10 can be used to show that all tête–á–têtes

subduct to zero, and

{N1, N2, N3, N4, h1, . . . , h7}

forms a SAGBI basis for A.

We have now found k[V ]G for p = 3 and will go on to show that it is not

a complete intersection ring. Using MAGMA, [4], it can be shown that fi,j as
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defined in Lemma 5.1.3 are contained in k[V ]G for primes up to and including

19 (at this point the algorithm begins to run quite slowly finding the p2+5
2

invariants). For p = 5 MAGMA can be used to show that the fi,j’s, along with

N1, . . . , N4, h1, h2, h3 generate k[V ]G.

Proof. (of Proposition 5.1.1) Let I = (N1, N2, N3, N4) and

A = k[V ]G/I.

As k[V ]G is a Cohen–Macaulay ring any HSOP forms a regular sequence (see

[10, Theorem 2.8.1]), so by Proposition 1.2.14 if k[V ]G is a complete intersection

ring then A is also a complete intersection ring.

For 1 ≤ i ≤ 7 let hi be the image of hi in A. A is a Poincaré duality algebra

with each degree either a zero- or one-dimensional vector space. Let Ai denote

the degree i part of A. The non-empty degrees are:

0, 4, 5, 7, 8, 9, 11, 12, 16.

Each non empty degree part is a one-dimension k-vector space

A0 = k, A4 = kh1, A5 = kh2, A7 = kh3,

A8 = kh4, A9 = kh5, A11 = kh6, A12 = kh7,

A16 = kh
2
4.

Let R = k[Y1, . . . , Y7] with

deg(Y1) = 4, deg(Y2) = 5, deg(Y3) = 7, deg(Y4) = 8,

deg(Y5) = 9, deg(Y6) = 11, deg(Y7) = 12,

and let J be the ideal in R generated by

S = {YiYj | 1 ≤ i ≤ j ≤ 7, i + j ̸= 8} ∪ {Y1Y7 + Y 2
4 , Y3Y5 + Y 2

4 , Y2Y6 − Y 2
4 }.
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We define the surjective map:

φ : R −→ A

φ(Yi) 7−→ hi.

The kernel of φ is J and so R/J ∼= A.

We claim that J cannot be generated by a regular sequence. Firstly we look

at the degrees of the generators for J in ascending order:

deg(Y 2
1 ) = 8,

deg(Y1Y2) = 9,

deg(Y 2
2 ) = 10,

deg(Y1Y3) = 11,

...

deg(Y 2
7 ) = 24.

If Y 2
1 is not needed as a generator for J then we can find some r and Xi ∈ J

with deg(Xi) ≤ deg(Y 2) such that

Y 2
1 =

r∑
i=1

aiXi

where ai ∈ R for 1 ≤ i ≤ r. If t1 ∈ J with deg(t1) ≤ 8 then t1 = c1Y
2

1 for

some c ∈ k, so Y 2
1 must be part of our generating set. Suppose f2 ∈ J with

deg(f2) = 9, then as the lowest positive degree in R is 4 we see that f2 = c2Y1Y2

for some c2 ∈ k, so Y1Y2 must be part of our generating set. This is already

enough to show that J cannot be generated by a regular sequence, as Y 2
1 , Y1Y2

do not form a regular sequence. If we continue working through degrees, then

we see we cannot find a generating set with fewer elements than |S| = 27. This

means that A is not a complete intersection ring, and so k[V ]G is not a complete

intersection ring.



Chapter 6

Invariant rings of exceptional

pure bireflection groups

In this chapter we will see that both types of exceptional group defined in Chapter

2 have complete intersection invariant ring for k = Fp, p ̸= 2. At the end of the

chapter we put this together with earlier results to see when pure bireflection

groups have complete intersection or Cohen–Macaulay invariant rings.

6.1 Exceptional groups of type one

We start with exceptional groups of type one, and restrict to p ̸= 2. Let

g =



1 0 0 0 0

0 1 1 0 0

0 0 1 0 1

0 0 0 1 0

0 0 0 0 1


, h =



1 0 2 1 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1


.

with respect to a basis {y1, . . . , yn} for W . Let

r1 = y1, r2 = y2, v = y3,

γ1 = y∗
5, γ2 = y∗

4, v∗ = y∗
3
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and fix

r = {r1, r2, v},

γ = {γ1, γ2, v∗}.

Then using the above matrices

g = ty∗
5

y3 ty∗
3

y2 = tγ∗
1

v tv∗

r2 = χr,γ
1,0,0,

h = t
y∗

4
y3+y1t

y∗
3

2y1+y2 = t
γ∗

1
v+r1tv∗

2r1+r2 = χr,γ
0,1,0.

Let z = χr,γ
0,0,1 then ⟨z⟩ = [G, G] and with respect to this basis:

z =



1 0 0 0 −2

0 1 0 1 −1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

The group G ≤ Xr,γ is an exceptional group of type one. If k = Fp then

G = Xr,γ.

We want to look at the invariant ring of this group, to do this we will make a

change of basis for W in order to make later calculations simpler. Let

x1 = 1
2y2,

x2 = y1 + 1
2y2,

x3 = 1
2y3 − 1

4y2,

x4 = y4,

x5 = y5.
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then with respect to this basis:

g =



1 0 1 0 1

0 1 0 0 0

0 0 1 0 2

0 0 0 1 0

0 0 0 0 1


, h =



1 0 0 0 0

0 1 1 1 0

0 0 1 2 0

0 0 0 1 0

0 0 0 0 1


,

and

z =



1 0 0 2 0

0 1 0 0 −2

0 0 1 0 0

0 0 0 1 0

0 0 1 0 1


.

We will show that k[V ]G is a complete intersection ring. We first we determine

the invariant field k(V )G by finding φ1, . . . , φ5 as described in Theorem 1.3.12.

As G is triangular we can see that U = ⟨x1, x2, x3, x4⟩ is a G-stable subspace of

W , we want to find R[4]G by looking at how G acts on U .

For this section four-by-four matrices describe the action of GL(V ) on U , so

if g′, h′, z′ are the restrictions to U of g, h, z respectively then

g′ =



1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1


, h′ =



1 0 0 0

0 1 1 1

0 0 1 2

0 0 0 1


, z′ =



1 0 0 2

0 1 0 0

0 0 1 0

0 0 0 1


.

Lemma 6.1.1. Let G be as above then R[4]G = k[NG
1 , NG

2 , NG
3 , NG

4 , d1] where

d1 = (xp
3 − xp−1

1 x3)2 − (xp
2 − xp−1

1 x2)(xp
4 − xp−1

1 x4)
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Proof. To find the invariant ring of H, we will first find the invariant ring of

H = ⟨G, σ⟩ where

σ =



1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

We know from the previous section on Exceptional Groups of type 1 that

[G, G] = ⟨z⟩. Let a ∈ Fp such that 2a = 1. As σ commutes with g and z and

σ−1(h)−1σh =



1 0 1 1

0 1 0 0

0 0 1 0

0 0 0 1


= gza

the subgroup N = ⟨σ, g′, z′⟩ is a normal subgroup of H.

As N is a Nakajima group we can easily find it’s invariant ring

S(U)N = k[NN
1 , NN

2 , NN
3 , NN

4 ],

where

NN
1 = x1 = NH

1 = NG
1 ,

NN
2 = xp

2 − xp−1
1 x2 = NH

2 ,

NN
3 = xp

3 − xp−1
1 x3,

NN
4 = xp

4 − xp−1
1 x4.
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Letting H/N act on k[V ]N , we can see that:

δh1(NN
1 ) = δh1(NN

2 ) = 0,

δh1(NN
3 ) = NN

2 ,

δh1(NN
4 ) = 2NN

3 + NN
2 .

Let H̃ = ⟨h⟩. The action of H̃/N on k[V ]N is isomorphic to the action of

H̃ on S(U) = k[x1, x2, x3, x4]. Identifying x1, x2, x3, d of Example 1.3.16 to

N2, N3, N4, d1 respectively we obtain:

k[V ]H′ = k[NH′

1 , NH′

2 , NH′

3 , NH′

4 , d1].

As G is a maximal subgroup of H we can now we use Theorem 1.3.4 to find

S(U)G: we know that x2 ∈ S(U)G\S(U)H and δσ(x2) = x1. As δσ(xi) = 0 for

i ̸= 2, it isn’t hard to see that δσS(U)H ≤ x1S(U)H so

S(U)G = S(U)H [x2] = k[NG
1 , NG

2 , NG
3 , NG

4 , d1].

Lemma 6.1.2. Let A = k[NG
1 , NG

2 , NG
3 , NG

4 , NG
5 , h1, h2] with

h1 = x1x5 + x2x4 − x2
3,

h2 = x1(xp
5 − xp−1

2 x5) + x2(xp
4 − xp−1

1 x4) − 2xp+1
3 + xp−1

1 x2
3 + xp−1

2 x2
3.

Then Ax1 = k[V ]Gx1.

Proof. As in Theorem 1.3.12 we can find φ1, . . . , φ5 such that φi ∈ R[i] is of

minimal positive degree in xi. As degx5(h1) = 1 we cannot find any invariants of

lesser positive degree in x5 and so we can take φ5 = h1.

Using Lemma 6.1.1 we know R[4]G = k[NG
1 , . . . , NG

4 , d1] so we can choose

φi = NG
i for 1 ≤ i ≤ 3,

φ4 = d1.
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Let A′ = k[φ1, . . . , φ5]. Using Theorem 1.3.12

Quot(A′) = k(V )G.

As

d1 = −hp
1 + xp−1

1 xp−1
2 h1 + xp−1

1 h2

we see that d1 ∈ A and so

A′[N4, N5, h2] = A.

As N4, N5, h2 ∈ k[V ]G we see that

Quot(A) = Quot(A′) = k(V )G

furthermore we know that R[4]G ⊆ A.

By [7] Lemma 2.1 for any f ∈ R[m]G we can find some r ∈ N such that

cr
mf ∈ R[m − 1]G[φm] (where ci as defined in [7] for 1 ≤ i ≤ n). We know that

φ5 ∈ A with c5 = x1, and we know that R[4] ⊂ A so for any f ∈ k[V ]G = R[5]G

we can find some r such that xr
1f ∈ R[4]G[h1] = A. This means that

Ax1 = k[V ]Gx1 .

We would like to use Theorem 1.3.15 and for this we need a SAGBI basis for

A. We start by looking at relations in A. First of all we find that

LM(h2) = LM(h(p+1)/2
1 ) = xp+1

3

so in our SAGBI basis for A we will use h′
2 = h2 − 2h

(p+1)/2
1 instead of h2 (note

that LM(h′
2) = x2x

p
4).
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To make notation easier we let

f1(t) = tp − xp−1
1 t,

f2(t) = tp − xp−1
2 t.

We previously defined

d1 = −hp
1 + xp−1

1 xp−1
2 h1 + xp−1

1 h2

= f1(x3)2 − f1(x2)f1(x4)

we similarly let

d2 = −hp
1 + xp−1

1 xp−1
2 h1 + xp−1

2 h2

= f2(x3)2 − f2(x1)f2(x5).

We can write N3 in terms of f1(x3) and f1(x2) using the properties of the

Dickson invariants (see 1.1.7). Let U = ⟨x1, x2⟩, then

N3 =
∏
u∈U

(x3 + u) = f1(x3)p − f1(x2)p−1f1(x3)

=
∏
u∈U

(x3 + u) = f2(x3)p − f2(x1)p−1f2(x3),

and so

N2
3 = f1(x3)2p − 2f1(x2)p−1f1(x3)p+1 + f1(x2)2p−2f1(x3)2.

Let

H1(d1) = −2f1(x2)p−1d
(p+1)/2
1 + f1(x2)2p−2d1,

H2(d2) = −2f2(x1)p−1d
(p+1)/2
2 + f2(x1)2p−2d2.

Lemma 6.1.3.

N2
3 − dp

1 − H1(d1) + f1(x2)pN4 = N2
3 − dp

2 − H2(d2) + f2(x1)pN5 = 0
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Proof. Let

P1 = N2
3 − dp

1 − H1(d1),

P2 = N2
3 − dp

2 − H2(d2).

As we can write

d1 = f1(x3)2 − f1(x2)f1(x4),

d2 = f2(x3)2 − f2(x1)f2(x5),

we see that x4 divides P1 and x5 divides P2. As P1 ∈ k[V ]G this means that all

elements in the orbit of x4 under G divide P1: for some c1 ∈ k[V ]G we know

P1 = c1N4. As the highest power of x4 in P is xp2

4 with coefficient −f1(x2)p we

must have:

P = −f1(x2)pN4

so

N2
3 + dp

1 + H1(d1) + f1(x2)pN4 = 0.

Similarly for some c2 ∈ k[V ]G we know P2 = c2N5. As the highest power of

x5 in P is xp2

5 with coefficient −f2(x1)p we must have:

P2 = −f2(x1)pN5

so

N2
3 + dp

2 + H2(d2) + f2(x1)pN5 = 0.

For any f ∈ k[V ] such that

f =
m∑

s=1
csx

αs,1
1 . . . xαs,n

n
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with cs ∈ k\0 we define

(f)deg(xi)
j =

∑
{s|αs,i=j}

csx
αs,1
1 . . . xαs,n

n

the part of f with xi-degree j.

Lemma 6.1.4. For 1 ≤ r we can find

Dr = hpr
1 − xp−1

1 xp−1
2 σr ∈ A

where σr ∈ k[x1, x2, h1, h2] such that

(Dr)deg(x3)
0 = xp

1f2(x1)r−1f2(x5)r+1 + xp
2f1(x2)r−1f1(x4)r+1

Proof. Firstly if we let

D1 = hp
1 − xp−1

1 xp−1
2 h1

= xp
1f2(x5) + xp

2f1(x4) + x2p
3 − xp−1

1 xp−1
2 x2

3,

so that

σ1 = h1,

then we see that

(D1)deg(x3)
0 = xp

1f2(x5) + xp
2f1(x4).

Now let

D2 = D2
1 − xp−1

1 xp−1
2 h2

2,

so

σ2 = 2hp+1
1 − xp−1

1 xp−1
2 h2

1 + h2
2.
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As

(h2)deg(x3)
0 = x1f2(x5) + x2f1(x4)

we find

(D2
1)deg(x3)

0 = x2p
1 f2(x5)2 + x2p

2 f1(x4)2 + 2xp
1xp

2f1(x4)f2(x5),

(h2
2)

deg(x3)
0 = x2

1f2(x5)2 + x2
2f1(x4)2 + 2x1x2f1(x4)f2(x5),

so

(D2)deg(x3)
0 = xp

1f2(x1)f2(x5)2 + xp
2f1(x2)f1(x4)2

as required.

Now we can proceed by induction. Assume for some r > 1 we can find

Dr−1 = h
p(r−1)
1 − xp−1

1 xp−1
2 σr−1

and

Dr = hpr
1 − xp−1

1 xp−1
2 σr

with

(Dr−1)deg(x3)
0 = xp

1f2(x1)r−2f2(x5)r−1 + xp
2f1(x2)r−2f1(x4)r−1

(Dr)deg(x3)
0 = xp

1f2(x1)r−1f2(x5)r + xp
2f1(x2)r−1f1(x4)r.

Let

D = − Dr(d1 + d2) − Dr−1(d1d2)

=(hpr
1 − xp−1

1 xp−1
2 σr)(2hp

1 − 2xp−1
1 xp−1

2 h1 − xp−1
1 h2 − xp−1

2 h2)

− (hp(r−1)
1 − xp−1

1 xp−1
2 σr−1)(hp

1 − xp−1
1 xp−1

2 h1 − xp−1
1 h2)

(hp
1 − xp−1

1 xp−1
2 h1 − xp−1

2 h2)
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then

D = h
p(r+1)
1 − xp−1

1 xp−1
2 σ

where

σ = xp−1
1 xp−1

2 h
p(r−1)+2
1 + xp−1

1 h
p(r−1)+1
1 h2 + xp−1

2 h
p(r−1)+1
1 h2 − h

p(r−1)
1 h2

2

+ σr(d1 + d2) + σr−1d1d2.

Note that if σr, σr−1 ∈ k[x1, x2, h1, h2] then σ ∈ k[x1, x2, h1, h2]. We find the part

of D with x3 degree 0, firstly we note that

(d1 + d2)deg(x3)
0 = −f1(x2)f1(x4) − f2(x1)f2(x5),

(d1d2)deg(x3)
0 = f1(x2)f2(x1)f1(x4)f2(x5),

so

(−Dr(d1 + d2))deg(x3)
0 =xp

1f2(x1)rf2(x5)r+1 + xp
2f1(x2)rf1(x4)r+1

+ xp
1f1(x2)f2(x1)r−1f1(x4)f2(x5)r

+ xp
2f2(x1)f1(x2)r−1f2(x5)f1(x4)r,

(Dr−1(d1d2))deg(x3)
0 =xp

1f1(x2)f2(x1)r−1f1(x4)f2(x5)r

+ xp
2f2(x1)f1(x2)r−1f2(x5)f1(x4)r.

We find that

D
deg(x3)
0 = xp

1f2(x1)rf2(x5)r+1 + xp
2f1(x2)rf1(x4)r+1

and so we can let Dr+1 = D, σr+1 = σ.

Lemma 6.1.5.

(h′
2)p − xp

2N4 − xp
1N5 − 2xp−1

1 xp−1
2 σ p+1

2
+ fp−1

1 (x2)d1 + fp−1
2 (x1)d2 = 0.
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Proof. From Lemma 6.1.3 we see that

f1(x2)pN4 = N2
3 + dp

1 + H(d1),

(f1(x2)pN4)deg(x3)
0 = f1(x2)pf1(x4)p − 2f1(x2)

3p−1
2 f1(x4)

p+1
2 + f1(x2)2p−1f2(x4),

and so dividing by f1(x2)p gives

(N4)deg(x3)
0 = f1(x4)p − 2f1(x2)

p−1
2 f1(x4)

p+1
2 + f1(x2)p−1f2(x4).

Similarly to above, Lemma 6.1.3 gives

f2(x1)pN5 = N2
3 + dp

2 + H(d2),

(f2(x1)pN5)deg(x3)
0 = f2(x1)pf2(x5)p − 2f2(x1)

3p−1
2 f2(x5)

p+1
2 + f2(x1)2p−1f1(x5),

and so

(N5)deg(x3)
0 = f2(x5)p − 2f2(x1)

p−1
2 f2(x5)

p+1
2 + f2(x1)p−1f2(x5).

Let

T = (h′)p
2 − xp

2N4 − xp
1N5 + 2xp−1

1 xp−1
2 σ p+1

2
+ xp

2f1(x2)p−2d1 + xp
1f2(x1)p−2d2,

= hp
2 − 2D(p+1)/2) − xp

2N4 − xp
1N5 + f1(x2)p−1d1 + f2(x1)p−1d2,

then using the above we see that

T
deg(x3)
0 = 0.

If T ̸= 0 then x3 must divide all terms of T and so all elements in the orbit of x3

must divide T .
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We look at the highest degree of x3 in each of the parts of T

degx3((h′)p
2) ≤ p2 − p,

degx3(N4) = degx3(N5) ≤ p2 − 1,

degx3(σ p+1
2

) ≤ p2 − p + 2,

degx3(d1) = degx3(d2) = 2.

This shows us that

degx3(T ) ≤ p2 − 1 < p2 = degx3(N3)

so N3 cannot divide T which means T = 0.

Proposition 6.1.6. k[V ]G = k[N1, N2, N3, N4, N5, h1, h2].

Proof. Let B = {N1, N2, N3, N4, N5, h1, h′
2}. In order to show that B is a

SAGBI basis for A we need to find all tête–á–têtes in B and show that they

subduct to zero. We know

LM(NG
1 ) = x1,

LM(NG
2 ) = x2,

LM(NG
3 ) = xp2

3 ,

LM(NG
4 ) = xp2

4 ,

LM(NG
5 ) = xp2

5 ,

LM(h1) = x2
3,

LM(h′
2) = x2x

p
4.

If

LM(Na1
1 Na2

2 Na3
3 Na4

4 Na5
5 ha6

1 (h′
2)a7) = LM(Nb1

1 Nb2
2 Nb3

3 Nb4
4 Nb5

5 hb6
1 (h′

2)b7)
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then

a1 = b1,

a2 + a7 = b1 + b7,

a3p
2 + 2a6 = b3p

2 + 2b6,

a4p
2 + a7p = b4p

2 + b7p,

a5 = b5.

We see that the only non trivial tête–á–têtes in B are {N2
3, hp2

1 } and {xp
4N2, (h′

2)p}.

From Lemma 6.1.3 we know

N2
3 − dp

2 − H2(d2) + f2(x1)pN5 = 0,

where

d2 = −hp
1 + xp−1

1 xp−1
2 h1 + xp−1

2 h2.

This means that

N2
3 + hp2

1 = xp2−p
1 xp2−p

2 hp
1 + xp2−p

2 hp
2 + H2(d2) − f2(x1)pN5

∈ k[x1, x2, h1, h′
2, N5].

As there are no non-trivial tête–á–têtes in {x1, x2, h1, h′
2, N5} we see that we can

use Lemma 1.3.10 to show that Subdt(N2
3 + hp2

1 ) = 0.

From Lemma 6.1.5

(h′
2)p − xp

2N4 = xp
1N5 + 2xp−1

1 xp−1
2 σ p+1

2
− f1(x2)p−1d1 − f2(x1)p−1d2

∈ k[x1, x2, h1, h′
2, N5]

so we can again use Lemma 1.3.10 to see that Subdt((h′
2)p − xp

2N4) = 0.
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As both tête–á–têtes subduct to zero, B forms a SAGBI basis for k[V ]G. The

orbit products form a HSOP for k[V ]G and so it is integral over A and by Lemma

6.1.2 Ax1 = k[V ]Gx1 . Using Theorem 1.3.14 we see that k[V ]G = A.

Viewing invariant ring k[V ]G as a module of B = k[N1, N2, N3, N4, N5] we

find that it is generated by

{hi
1(h′

2)j | 0 ≤ i ≤ p2 − 1, 0 ≤ j ≤ p − 1},

so the number of secondary generators is p3. We find that

5∏
i=1

deg(Ni) = p6 = p3|G|

so by Theorem 1.2.3 k[V ]G is a Cohen–Macaulay ring.

For 0 ≤ i ≤ p2 − 1, 0 ≤ j ≤ p − 1 let

φ(yi,j) = hi
1(h′

2)j.

Let

y = {yi,j | 1 ≤ i ≤ p2 − 1, 0 ≤ j ≤ p − 1}

so B[y] is a polynomial ring. We define canonical surjective map φ from B[y]

onto k[V ]G by

φ(yi,j) = fi,j

for 0 ≤ i ≤ p2 − 1, 0 ≤ j ≤ p − 1.

For i + i′ < p2 and j + j′ < p we see that

φ(yi,j)φ(yi′,j′) = fi+i′,j+j′

so we can write any polynomial which has degree less than p2 in h1 and less than

p in h2 as a linear combination of the fi,j. Let

F2 = xp
1N5 + 2xp−1

1 xp−1
2 σ p+1

2
− f1(x2)p−1d1 − f2(x1)p−1d2 + xp

2N4
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and then let

F1 = xp2−p
1 xp2−p

2 hp
1 + xp2−p

2 F2 − 2xp2−p
2 h

p(p+1)/2
1 + H2(d2) − f2(x1)pN5 − N2

3.

Using Lemmas 6.1.3 and 6.1.5 we find that

φ(yi,j)φ(yi′,j′) =



fi+i′,j+j′ for i + i′ < p2, j + j′ < p,

fi+i′−p2,j+j′F1 for i + i′ ≥ p2, j + j′ < p,

fi+i′,j+j′−pF2 for i + i′ < p2, j + j′ ≥ p,

fi+i′−p2,j+j′−pF1F2 for i + i′ ≥ p2, j + j′ ≥ p.

The terms on the right can be rewritten as linear expressions in the fi,j with

coefficients in B, and we find a set of relations as described in Proposition 1.2.13.

We can find a preimages of F1, F2 as linear expressions in the yi,j with coefficients

in B, let these be denoted by F ′
1, F ′

2 respectively. The kernel I of the map above

can therefore be generated by (p2 − 1)(p − 1) generators:

yi,j − yi,0y0,j for 1 < i + j,

y1,0yp2−1,0 − F ′
1,

y0,1y0,p−1 − F ′
2.

As

(p2 − 1)(p − 1) = dim(B) − dim(k[V ]G)

we see that the generators for I must form a regular sequence and so k[V ]G is a

complete intersection ring.

Corollary 6.1.7. Let E be an exceptional group of type 1 generated by an

exceptional pair. Then k[V ]E is a complete intersection ring. For k = Fp all

exceptional groups of type one have complete intersection rings of invariants.
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Proof. If E is generated by an exceptional pair then E is congruent to G and

so k[V ]E is a complete intersection ring. For k = Fp all exceptional groups are

generated by special pairs, so all have complete intersection invariant rings.

6.2 Exceptional groups of type two

We now consider exceptional groups of type two. Let G = ⟨g1, g2, g3⟩ where

g1 =



1 0 0 0 −1 0

0 1 0 0 0 0

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, g2 =



1 0 0 1 0 0

0 1 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,

g3 =



1 0 0 0 0 0

0 1 0 0 1 0

0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

with respect to the basis B = {x1, . . . , x6} for W . Let

r1 = x1, r2 = x2, r3 = x3,

γ1 = x∗
4, γ2 = x∗

6, γ3 = x∗
5

r = {r1, r2, r3} and γ = {γ1, γ2, γ3}. Then

g1 = wr,γ
0,0,1, g2 = wr,γ

1,0,0, g3 = wr,γ
0,1,0

so G ≤ W r,γ is an exceptional group of type 2. If k = Fp then G = W r,γ.
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We know from Proposition 3.1.2 that G is nice with respect to B, so to find

the invariant ring of G we look at finding a chain for maximal subgroups from

the abelian group

N = Nak+
B(G) = ⟨G, h1, h2, h3⟩

where

h1 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, h2 =



1 0 0 0 0 0

0 1 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,

h3 =



1 0 0 0 0 0

0 1 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

Let

N0 = Nak+(G),

N1 = ⟨G, h1, h2⟩,

N2 = ⟨G, h1⟩,

N3 = G,

then we have the inclusions of maximal subgroups:

G = N3 <max N2 <max N1 <max N0 = N
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as described in 3.0.11. We shall work through these making repeated use of

Theorem 1.3.4 to find the invariant ring of G.

Lemma 6.2.1. k[V ]N1 = k[NN
1 , . . . , NN

6 , f1] where

f1 = (xp
5 − xp−1

1 x5)(xp
3 − xp−1

1 x3) − (xp
4 − xp−1

1 x4)(xp
2 − xp−1

1 x2).

Proof. N0 is a Nakajima group so k[V ]N0 = k[NN0
1 , . . . , NN0

6 ] where

NN0
1 = x1

NN0
2 = x2

NN0
3 = x3

NN0
4 = (xp

4 − xp−1
3 x4)p − (xp

1 − xp−1
3 x1)p−1(xp

4 − xp−1
3 x4)

NN0
5 = (xp

5 − xp−1
2 x5)p − (xp

1 − xp−1
2 x1)p−1(xp

5 − xp−1
2 x5)

NN0
6 = (xp

6 − xp−1
3 x6)p − (xp

2 − xp−1
3 x2)p−1(xp

6 − xp−1
3 x6)

As G is nice with respect to the current basis by Proposition 3.0.12

NN
i = NN0

i = NN1
i = NN2

i = NN3
i = NG

i

for 1 ≤ i ≤ 6. We shall therefore denote NN
i by Ni for 1 ≤ i ≤ 6.

We want to use Theorem 1.3.4 to show that

k[V ]N1 = k[V ]N0 [f1].

Firstly it is easy to check that f1 ∈ k[V ]N1 . Let

d1 = δh3(f1) = (xp
2 − xp−1

1 x2)(xp
3 − xp−1

1 x3)
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we will show that δh3k[V ]N1 ⊆ d1k[V ]N1 . To do this we look at the action of h3

on a ring containing k[V ]N1 , let

H1 = Nak−
B(N1) = ⟨g1, g2, h1, h2⟩

then

k[V ]H1 = k[NH1
1 , NH1

2 , . . . , NH1
6 ] ⊇ k[V ]N1 ,

where

NH1
1 = x1

NH1
2 = x2

NH1
3 = x3

NH1
4 = xp

4 − xp−1
1 x4

NH1
5 = xp

5 − xp−1
1 x5

NH1
6 = (xp

6 − xp−1
3 x6)p − (xp

2 − xp−1
3 x2)p−1(xp

6 − xp−1
3 x6).

This means that we can write any f ∈ k[V ]N1 in terms of NH1
1 , NH1

2 , . . . , NH1
6 .

We look at what h3 does to these orbit products:

δh3(NH1
i ) = δh3(NH1

6 ) = 0 for 1 ≤ i ≤ 4

δh3(NH1
5 ) = xp

2 − xp−1
1 x2.

So any f ∈ k[V ]N1 can be written as a polynomial in N5 with coefficients in

k[V ]h3 , and so xp
2 − xp−1

1 x2 must divide δh3k[V ]N0 .
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Let

σ3 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



so σ3h3 = g3. If f ∈ k[V ]N1 then

g3(f) = σ3h3(f) = f,

h3(f) = σ−1
3 (f),

so δh3k[V ]N1 = δσ3k[V ]N1 . We find

δσ3(NH1
i ) = δσ3(NH1

5 ) = δσ3(NH1
6 ) = 0 for 1 ≤ i ≤ 3,

δσ3(NH1
4 ) = xp

3 − xp−1
1 x3

and so xp
3 − xp−1

1 x3 divides δh3k[V ]N1 . Since xp
2 − xp−1

1 x2 and xp
3 − xp−1

1 x3 have

no common factors and k[V ]N1 is a unique factorisation domain

d1 = (xp
2 − xp−1

1 x2)(xp
3 − xp−1

1 x3)

must divide δh3(f) for any f ∈ k[V ]N1 . This means that δh3k[V ]N1 ⊆ d1k[V ]N1

and so

k[V ]N1 = k[V ]N0 [f1].

Lemma 6.2.2. k[V ]N2 = k[V ]N1 [f2] where

f2 = (xp
5−xp−1

1 x5)x3 + (xp
6 − xp−1

3 x6)x1

− x4(xp
2 − xp−1

3 x2) − x4(xp
2 − xp−1

1 x2) − x2(xp
4 − xp−1

2 x4).
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Proof. Similarly to above we want to use Theorem 1.3.4 to show that

k[V ]N2 = k[V ]N1 [f2].

Again it is easy to check that f2 ∈ k[V ]N2 . Let

d2 = δh2(f2) = (xp
2 − xp−1

3 x2)x1

we will show that δh3k[V ]N2 ⊆ d2k[V ]N2 . To do this we look at the action of h2

on a ring containing k[V ]N2 : let

H2 = Nak−(N2) = ⟨g1, h1⟩

then

k[V ]H2 = k[NH2
1 , NH2

2 , . . . , NH2
6 ] ⊇ k[V ]N2 ,

where

NH2
1 = x1, NH2

2 = x2, NH2
3 = x3,

NH2
4 = x4, NH2

5 = xp
5 − xp−1

1 x5, NH2
6 = xp

6 − xp−1
3 x6.

We find that

δh2(NH2
i ) = 0 for 1 ≤ i ≤ 5

δh2(NH2
6 ) = xp

2 − xp−1
3 x2.

so xp
2 − xp−1

3 x2 must divide δh2k[V ]N2 .
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Let

σ2 =



1 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



so σ2h2 = g2. If f ∈ k[V ]N2 then

g2(f) = σ2h2(f) = f,

h2(f) = σ−1
2 (f).

so δh2k[V ]N2 = δσ2k[V ]N2 . We find

δσ2(NH2
i ) = δσ2(NH2

5 ) = δσ2(NH2
6 ) = 0 for 1 ≤ i ≤ 3

δσ2(NH2
4 ) = x1

and so x1 divides δh2k[V ]N2 . Since xp
2 − xp−1

1 x2 and x1 have no common factors

and k[V ]N2 is a unique factorisation domain d2 = (xp
2 − xp−1

1 x2)x1 must divide

δh2(f) for any f ∈ k[V ]N2 . This means that δh2k[V ]N2 ⊆ d2k[V ]N2 and so

k[V ]N2 = k[V ]N1 [f2].

Proposition 6.2.3. k[V ]G = k[N1, . . . , N6, f1, f2, f3] where

f3 = x1x6 − x2x4 + x3x5.

Proof. As in the previous two Lemmas we want to show that

k[V ]G = k[V ]N2 [f3].
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We check f3 ∈ k[V ]G. Let

d3 = δh1(f3) = x1x3

we will show that δh1k[V ]G ⊆ d3k[V ]G.

δh1(xi) = 0 for 1 ≤ i ≤ 5

δh1(x6) = x3.

so x3 must divide δh1k[V ]G.

Let

σ1 =



1 0 0 0 −1 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

so σ1h1 = g1. If f ∈ k[V ]G then

g1(f) =σ1h1(f) = f,

h1(f) = σ−1
1 (f).

so δh1k[V ]G = δσ1k[V ]G. We find

δσ1(xi) = δσ1(x6) = 0 for 1 ≤ i ≤ 3,

δσ1(x5) = −x1,

and so x1 divides δh1k[V ]G. Since x3 and x1 have no common factors and k[V ]G

is a unique factorisation domain d3 = x1x3 must divide δh1(f) for any f ∈ k[V ]N2 .
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This means that δh1k[V ]G ⊆ d3k[V ]G and so

k[V ]G = k[V ]N2 [f3].

We use that any exceptional group of type two generated by an exceptional

triple is congruent to G to find the next result.

Proposition 6.2.4. If E is an exceptional group of type two generated by an

exceptional triple then k[V ]E is a complete intersection ring. For k = Fp all

exceptional groups of type two have complete intersection invariant rings.

6.3 Proof of Theorem 1.0.6 and open problems

Combining the results of this Chapter with those of Chapter 4 gives us some

information about when the invariant rings of pure unipotent bireflection groups

are Cohen-Macaulay or complete intersection rings. We are finally able to prove

Theorem 1.0.6.

Proof. (of Theorem 1.0.6). By Theorem 1.0.5 we know that if G is a unipotent

group consisting of bireflections then it is either a two–row group, two–column

group, hook group or an exceptional group (of type one or two). By [33] Theorem

3.2.1 if G is an abelian reflection two-column group then k[V ]G is a complete

intersection ring. By Theorem 4.2.8 if G is a nice hook group then it has complete

intersection ring of invariants, and by Proposition 4.2.2 if G is not nice then G is

abelian and [G, [G, W ] ̸= {0}. If G is an exceptional group then it has complete

intersection invariant ring by Propositions 6.2.4 and 6.1.7. The only remaining

groups are those listed above.

By Theorem 1.4.3 if G is a two–column group then k[V ]G is Cohen–Macaulay

and so the only groups which could have non-Cohen–Macaulay invariant rings are

two–row groups or hook groups which are not nice with respect to any basis.

We end with a brief discussion of problems left to solve, for example finding

the invariant ring of the group in Chapter 5 for p ≠ 3. Is this a special case or are
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there many more invariant rings which are Cohen–Macaulay and not complete

intersection rings? Are there examples for p = 2? Suppose f1, . . . , fn are a HSOP

for k[V ]G a Cohen–Macaulay but non complete intersection ring, what does the

Poincaré duality algebra k[V ]/(f1, . . . , fn) look like in this case?

It would also be interesting to extend the results of Theorem 1.0.6 to other

fields. As shown in Example 2.2.12 we would need to start by finding a new

classification for k of even characteristic, here the structure of exceptional groups

of type one are also quite different. Work on hook groups is still valid for p = 2,

but more needs to be done to extend from k = Fp to larger fields.

When G is a p-group which is nice with respect to some basis B, we know

that [G, G] is contained within N− = Nak−
B(G). Can we find a set of hook groups

Hi < G such that

N− ≤ ⟨N−, H1⟩ ≤ . . . ≤ ⟨N−, H1, . . . , Hm⟩ = G,

which would help us to find k[V ]G by extending the results of Chapter 4? Firstly

though we would need to look at when G is a nice bireflection group but k[V ]G

is not Cohen–Macaulay. Suppose that G is nice with respect to some basis B,

N+ := Nak+
B(G) and we have a chain of maximal subgroups as in Proposition

3.0.11

G = N0 ▹max N1 ▹max N2 ▹max . . . ▹max Nl = N+.

If k[V ]G is Cohen–Macaulay can we always find a chain such that for some

fi ∈ k[V ]Ni

k[V ]Ni = k[V ]Ni+1 [fi]

for 0 ≤ i < l? If this is the case then k[V ]G would either be complete intersection

or not Cohen–Macaulay for all groups which are nice with respect to some basis.
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