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Summary. At a time of climate change and major loss of biodiversity, it is important to have efficient tools for monitoring
populations. In this context, animal abundance indices play an important rôle. In producing indices for invertebrates, it is
important to account for variation in counts within seasons. Two new methods for describing seasonal variation in invertebrate
counts have recently been proposed; one is nonparametric, using generalized additive models, and the other is parametric, based
on stopover models. We present a novel generalized abundance index which encompasses both parametric and nonparametric
approaches. It is extremely efficient to compute this index due to the use of concentrated likelihood techniques. This has
particular relevance for the analysis of data from long-term extensive monitoring schemes with records for many species and
sites, for which existing modeling techniques can be prohibitively time consuming. Performance of the index is demonstrated
by several applications to UK Butterfly Monitoring Scheme data. We demonstrate the potential for new insights into both
phenology and spatial variation in seasonal patterns from parametric modeling and the incorporation of covariate dependence,
which is relevant for both monitoring and conservation. Associated R code is available on the journal website.
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1. Introduction

We shall illustrate the work of the article with UK butter-
fly monitoring data, though the approach may be applied to
other similar insect data, possibly with modification.

1.1. Butterfly Monitoring

Indices of abundance are vital for monitoring the population
status of a species and measuring responses to changes in
climate and land-use. Indices play an important rôle in as-
sessing progress toward targets to reduce biodiversity loss at
both national (Defra, 2013) and global scales (Convention on
Biological Diversity, 2006; Butchart et al., 2010).

Insects are an important component of our ecosystems and
account for a major proportion of the world’s biodiversity
(Gaston, 1991), but most groups are not well monitored. But-
terflies are the most comprehensively monitored invertebrate
taxon; their population status provides a valuable indicator
for changes in biodiversity and phenology as they respond
sensitively and rapidly to changes in climate and habitat
(Thomas, 2005; van Swaay et al., 2008). Butterfly monitoring
schemes that collect count data exist in many countries and
continue to be established (van Swaay et al., 2008; Dennis
et al., 2013). Similar schemes for monitoring abundance of
other insect taxa also exist, for example, for moths, dragon-
flies, and bees (Dennis et al., 2013). In the United Kingdom,
abundance indices for butterflies form one of 25 indicators em-
ployed by the UK government for the assessment of general
trends in biodiversity (Defra, 2013). Novel methods for accu-
rately and efficiently deriving indices are continually sought.

A key modeling problem for monitoring-scheme data for
insects such as butterflies is the seasonal nature of the data.
Butterflies have multi-stage life cycles and counts are usually
only made of the most visible adult stage. Hence, count data
fluctuate within each year in response to the emergence of
butterflies as adults and additionally many species are mul-
tivoltine, with more than one brood of adults per year, a
feature which may itself be increasing with climate change
(Altermatt, 2010).

Count data for UK butterflies are primarily gathered
through the UK Butterfly Monitoring Scheme (UKBMS). The
scheme consists of a national system of transects on which
recorders make counts of butterflies on a weekly basis under
favorable conditions during the main butterfly flight period
between early April and the end of September (Pollard and
Yates, 1993). Roughly 30% of potential counts in the 26 week
season are missed (Dennis et al., 2013), for example due to
unsuitable weather conditions or recorder unavailability. The
scheme began with 34 sites, and has steadily grown to over
1200 sites sampled in 2013, from which long-term and 10-year
trends are reported annually for 56 of the 59 species occurring
regularly in the United Kingdom (Brereton et al., 2014).

1.2. Current Methods of Analysis: Notation, Models,
and Assumptions

Suppose that counts are recorded at S sites, each visited on
at most T occasions within a single year; T = 26 weeks for
the UKBMS. Each count, yi,j, for the ith site and jth visit, at
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occasion ti,j, is regarded as the realization of a Poisson random
variable, with expectation λi,j.

1.2.1. Use of GAMs. Currently, the main approach to ac-
count for missing values and seasonal variation in UKBMS
counts involves nonparametric curve fitting using generalized
additive models (GAMs, Wood, 2006). The original approach
by Rothery and Roy (2001) has been extended by Dennis
et al. (2013). The approach involves three stages, only the
first of which actually involves fitting a GAM. The following
approach is applied for each species.

For any year, we write

λi,j = exp
{
ηi + s

f

i,j

}
.

The seasonal effect is described through the function s
f

i,j =
α0 + ∑f

d=1
αdBd(ti,j), where Bd(ti,j) are the basis functions for

cubic splines (Chambers and Hastie, 1991) and f is the de-
grees of freedom, which is estimated within the mgcv package
in R (Wood, 2006; R Core Team, 2015), which is employed.
GAMs are fitted to the data from all sites, for each year sepa-
rately. A limitation of the GAM is its restriction to the same
seasonal shape, s

f

i,j, for all sites in any year, though the shapes
are scaled differently for different sites, through the {ηi}.

Once the GAMs have been fitted, then the estimated values
for the curve describing the seasonal patterns for the kth year
are included in a GLM as offsets:

E[yi,j,k] = exp{αi + βk + ŝ
f

i,j},

where we extend the specification of yi,j to include the year,
which we denote by the subscript k. Here, {αi} and {βk} de-
note site and year effects, respectively. The objective of this
fit is to impute missing weekly counts.
An index value for any year and site i is then obtained from
the estimated area under the seasonal curve, given from the
trapezoidal rule as follows:

Indexi =
T∑

j=2

(yi,j + yi,j−1)(ti,j − ti,j−1)

2
, (1)

where yi,j are real or imputed counts.
Once this is done, then a further GLM is carried out for all

the site/year values of the indices, using a Poisson distribution
and log link with site and year as additive terms, and the
year terms are used as annual indices of abundance. In our
experience, this last stage is not necessary if the number of
sites is large.

This is a time-consuming process, due mainly to the many
GLMs fitted when the offsets are used. As the approach in-
volves multiple stages and the nonparametric estimation of
offsets, error estimation is via the bootstrap, which is par-
ticularly time consuming. Application of the GAM approach
has been limited to assuming a Poisson distribution and a log
link.

An emphasis in the GAM approach lies in the interpolation
of missing values. This is because site-specific indices in full
weekly detail could be of interest to site managers. The op-
tion to have maximum resolution on spatio-temporal changes

is appealing. This will assist in the estimation of timings of
peak count, for example, which can be obtained without the
distributional assumptions made in the other models we dis-
cuss.

1.2.2. Stopover model. Matechou et al. (2014) have pro-
posed a stopover model incorporating a mixture of terms to
parameterize the seasonal pattern. Unlike the GAM, it incor-
porates specific parameters that relate to the butterfly lifecy-
cle. In this case,

λi,j = Nipi,j

j∑
d=1

βi,d−1

(
j−1∏
k=d

φk,c

)
,

for j = 1, . . . , T and c = k − d + 1, where Ni is defined as the
size of a super-population of butterflies, which provides an
index of abundance, for site i.

It is assumed that the total number of adults at site i is
distributed over visits through the parameters {βi,d−1}. The
seasonal effect is achieved through these parameters, and is
modeled using a mixture of B normal distributions, corre-
sponding to B broods, so that

βi,d−1 =
B∑

b=1

ωi,b{Fi,b(ti,d) − Fi,b(ti,d − 1)},

where Fi,b(ti,d) = Pr(X ≤ ti,d , for X ∼ N(μi,b, σ
2
i,b), where μi,b is

the mean date of emergence for the bth brood at site i and σi,b

denotes the corresponding standard deviation. We define φj,c

to be the probability that an individual which has been at a
site for c occasions and is present at visit j will remain until
visit j + 1. Additionally, the {pi,j} are appropriate detection
probabilities of a surviving individual being detected.

This approach was illustrated on data from 50 sites from
1 year of a single numerous British butterfly, the Common
Blue, using a Poisson distribution, though others could also
be employed. In this application, the approach was not used
for constructing an index of relative abundance.

Surprisingly little is known about adult butterfly survival,
and so a model which explicitly includes survival parameters
has great potential. It is shown by Matechou et al. (2014) that
the detection probabilities may be estimated if they are re-
gressed on suitable covariates, such as the temperature when
a visit takes place; however, imputation may be necessary, as
temperature is not always recorded by observers. Addition-
ally, the model may be near singular (Catchpole, Kgosi, and
Morgan, 2001) if either there are insufficient data to allow
precise estimation of the effect of covariates on the detection
probabilities, or if suitable covariates vary little. In these cases
stable, separate estimation of Ni and pi,j may not be possible.
An important study of detection probabilities is provided by
Isaac et al. (2011). They conclude that detectability varies
appreciably between species and sites, that the variation in
detection is small compared to the variation in true abun-
dance, and that estimates of relative abundance from the tran-
sect sampling correlate highly with estimates obtained from
the alternative approach of distance sampling (which is not a
practical alternative for the collection of national invertebrate
data).
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As a result, in the work of this article we shall not use detec-
tion probabilities, though except for the GAM approach they
can be included straightforwardly, if there were suitably de-
tailed and abundant data to warrant this. The assumption of
constant detection probability is typically made when forming
indices of relative abundance (van Swaay et al., 2008).

1.3. Motivation and Structure of the Article

The current modeling approaches applied to the UKBMS data
require optimization of a likelihood with potentially many pa-
rameters corresponding to relative abundance for each site.
Given the often large amount of data available from moni-
toring schemes such as the UKBMS, fitting these models for
hundreds or thousands of sites over many years, for multiple
species, is computer-intensive. Long-term monitoring schemes
require annual updates, and time-consuming methods, par-
ticularly the nonparametric bootstrapping required for GAM
error estimation, lead to appreciable lags in data processing.
The need for more efficient data analysis methods motivates
the work of this article, which contains several new devel-
opments. In addition, we respond to the need for a flexible
approach, as different species exhibit different characteristics,
which cannot be described by a single model.

We present a general abundance index, GAI, which incor-
porates the stopover model and also a nonparametric alterna-
tive, corresponding to the first stage of the GAM, as special
cases. A new mixture model, which is intermediate between
the two existing methods, is presented as a further special case
of the GAI. In all cases, a range of alternative distributions
is possible. Due to the adoption of a concentrated likelihood
approach, the members of the GAI are all fitted extremely
efficiently. The GAI thus provides a range of useful tools for
practical use, and different components can be applied ac-
cording to the requirements of different applications. If very
detailed data are available on a small number of species, then
the stopover model may be appropriate, whereas for routine
use on national data describing many different species the new
mixture model may be appropriate, though for species with
more than two broods the nonparametric approach may be
best.

The GAI is described in Section 2: Section 2.1 gives three al-
ternative expressions for the modeling of seasonal counts; the
concentrated likelihood approach is outlined for the Poisson
case in Section 2.2, and extended by an iterated concentrated
likelihood method for the negative binomial and zero-inflated
Poisson distributions in Sections 2.3 and 2.4. Efficiency is dis-
cussed in Section 2.5. The derivation of the GAI is provided in
Section 2.6. Section 3 presents a series of examples of the GAI
applied to UKBMS data, chosen to illustrate the flexibility of
the approach. The last example indicates how a multi-year
model can be formed, using covariates. The article ends with
a discussion and further new approaches are given in the Sup-
plementary Material.

2. Generalized Abundance Index

Here, each count yi,j in a given year is treated as the realiza-
tion of an appropriate discrete random variable, which may be
Poisson, negative binomial, or zero-inflated Poisson. Counts
can be expected to be over-dispersed relative to the Poisson
and/or contain additional zeros, for example, due to small

counts at the ends of the season. We shall not impute missing
data as our focus is not primarily site specific.

Also, in this article the expectation of the distribution, λi,j,
will be modeled as a product of the site parameter, Ni, which
represents the relative abundance for the ith site, and general
ai,j ≡ ai(ti,j, θ), which denotes a function describing the sea-
sonal variation in counts in terms of a small set of parameters
θ:

λi,j = Niai,j.

We specify a particular GAI using the x/z notation, with
x denoting the distribution and z the choice for ai,j. In this
article, we consider x as P, ZIP, and NB for the Poisson, zero-
inflated Poisson, and negative-binomial distributions, respec-
tively. In the following sections possible options for z are de-
scribed.

2.1. Functions for ai,j

The function ai,j may be any general function which describes
the seasonal variation in counts over the monitoring period,
and we present both nonparametric and parametric options.

2.1.1. Splines. For illustration, we adopt simple cubic B-
splines as in the GAM, such that

ai,j = exp

{
α0 +

f∑
d=1

αdBd(ti,j)

}
,

where Bd(ti,j) are the basis functions and f is the degrees of
freedom, defined as the sum of the degree of the spline (in this
case 3 for cubic splines) and the number of knots minus one.
Six knots were used in the example in this article (Section
3.1), but other choices had minimal effect on the results. To
formulate the B-spline basis matrix in {ai,j} within the con-
centrated likelihood framework, we use the splines package
in R (R Core Team, 2015), rather than the mgcv package used
in the GAM approach as the latter is too complex to use in
this context. The optimal number of knots could be selected
automatically, for example, using cross-validation, as in the
mgcv package. Model notation is x/C. Apart from the choice
of f , the P/C GAI corresponds to fitting the first stage of the
GAM approach and the seasonal pattern is the same across
sites, as for the GAM approach.

2.1.2. Mixture model. In this case, ai,j is taken as a mix-
ture of B Normal probability density functions so that

ai,j =
B∑

b=1

wi,b

1

σi,b

√
2π

exp

{
− (ti,j − μi,b)

2

2σ2
i,b

}
, (2)

where wi,b, μi,b, and σi,b correspond to the weight, mean,
and standard deviation, respectively, for the ith site and bth
brood, and

∑B

b =1
wi,b = 1. For a univoltine species, where

B = 1, ai,j would be the single Normal probability density
function

ai,j = 1

σi

√
2π

exp

{
− (ti,j − μi)

2

2σ2
i

}
. (3)
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This model has the potential flexibility of having different
mean and scaling parameters for different sites, which is an
advantage compared to the GAM and spline. Model notation
is x/NB.

2.1.3. Stopover model. The stopover model has been de-
scribed in Section 1.2.2. It was originally proposed to describe
counts of migrating birds breaking their journey to rest and
feed. An additional attractive feature of this model is that it
can account for individuals being seen in multiple weeks. In
Web Appendix A, we provide links between stopover and mix-
ture models. The stopover model valuably estimates survival
probabilities, but it will also do this when applied to data
simulated from the mixture model, without survival parame-
ters. When we have examined this feature, we have found that
the resulting estimates of survival are small, in line with the
predictions of equations (1) and (2) in Web Appendix A. This
finding could be potentially misleading if the model is used
uncritically. For more discussion, including a simulation study
of performance and discussion of parameter redundancy, see
Matechou et al. (2014). Model notation is x/SOB.

2.2. Concentrated Likelihood for the Poisson Case

The Poisson distribution with expectation λi,j = Niai,j gives
the likelihood

L(N, θ;y) =
S∏

i=1

T∏
j=1

exp(−Niai,j)(Niai,j)
yi,j

yi,j!
. (4)

Maximization of this likelihood is straightforward but cum-
bersome when data arise from many sites. However, the num-
ber of parameters to estimate can be reduced appreciably by
optimizing a concentrated (or profile) likelihood as follows.

Using the notation ai,. = ∑T

j=1
ai,j,


 = Log(L) = −
S∑

i=1

Niai,. +
S∑

i=1

yi,.log(Ni)

+
S∑

i=1

T∑
j=1

yi,jlog(ai,j) −
S∑

i=1

T∑
j=1

log(yi,j!).

Then,

∂


∂Ni

= −ai,. + yi,.

Ni

,

and equating to zero we obtain

Ni = yi,.

ai,.

, (5)

which estimates {Ni} by scaled site totals. It is interesting
to compare this expression with that of equation (1). In that
case, if the sampling times are roughly equidistant then we can
see that the index in (1) is also, approximately, proportional
to the sum of the site-specific annual totals, as yi,1 ≈ yi,T ≈ 0,

for all i. Substituting the expression for {Ni} in (4) results in
a Poisson likelihood with expectation λi,j = yi,.

ai,.
ai,j, which we

refer to as the concentrated likelihood, which is maximized
with respect to only the parameters, θ, associated with {ai,j}.
Estimation of {Ni} is then straightforward, by deriving âi,., and
substituting into (5). An alternative approach for reducing
the number of parameters, by treating the site parameters as
random effects, is shown to generalize (5) (Web Appendix B).

2.3. Negative-Binomial Case

For the negative-binomial case (using the NB-2 form, Hilbe,
2011), the likelihood is given by

L(N, θ, r;y)=
S∏

i=1

T∏
j=1

�(yi,j + r)

�(r)yi,j!

(
Niai,j

r+Niai,j

)yi,j
(

r

r + Niai,j

)r

,

where r is the dispersion parameter and the expectation of
yi,j is again Niai,j. Hence,


 = Log(L) =
S∑

i=1

T∑
j=1

[
log

{
�(yi,j + r)

�(r)yi,j!

}
+ yi,jlog(Niai,j)

− (r + yi,j)log(r + Niai,j) + rlogr

]
, (6)

leading to

∂


∂Ni

=
T∑

j=1

{
yi,j

Ni

− (r + yi,j)ai,j

r + Niai,j

}
. (7)

An exact solution for Ni does not result in this case from
equating to zero. However, given that E(yi,.) = Niai,., if we
make the approximation yi,j ≈ Niai,j, then (7) reduces to

Ni = yi,.

ai,.

,

as in (5), which provides an approximation for a concentrated
likelihood, which can be fitted as for the Poisson case. Ex-
act maximum-likelihood parameter estimates can then be ob-
tained as follows:

(i) Maximize the approximate concentrated likelihood
from (6) with Ni, = yi,.

ai,.
to give parameter estimates for

âi,j.
(ii) Based on âi,j, solve (7) numerically for Ni.
(iii) Insert the Ni from (ii) into (6) and optimize for the

parameters for âi,j.
(iv) Iterate steps (ii)–(iii) until convergence.

2.4. Zero-Inflated Poisson Case

The approach for the negative-binomial applies also for the
zero-inflated Poisson. The likelihood has the form

L(N, θ, ψ;y) =
S∏

i=1

T∏
j=1

{
1 − ψ + ψe−Niai,j

}1−δi,j

×
{

ψe−Niai,j (Niai,j)
yi,j

yi,j!

}δi,j

,
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where 1 − ψ accounts for additional zeros, and

δi,j =
{

1 if yi,j > 0

0 if yi,j = 0.

Then,


 = Log(L) =
S∑

i=1

T∑
j=1

{
(1 − δi,j)log

(
1 − ψ + ψe−Niai,j

)

+ δi,jlog

(
ψ

yi,j!

)
−δi,jNiai,j+δi,jyi,jlog

(
Niai,j

)}
,

(8)

and differentiating with respect to Ni gives

∂


∂Ni

=
T∑

j=1

{−ψai,j(1 − δi,j)e
−Niai,j

1 − ψ + ψe−Niai,j
− δi,jai,j + δi,jyi,j

Ni

}
.

(9)

Steps (i)–(iv) in Section 2.3 can then be applied to obtain
maximum-likelihood parameter estimates, but replacing (6)
and (7) with (8) and (9), respectively.

2.5. Increased Efficiency

Step (ii) in Section 2.3 is easily achieved using the uniroot

function in R (R Core Team, 2015) and only a few iterations
of steps (ii)–(iii) are generally needed. The concentrated like-
lihoods are functions of S fewer parameters than the original
likelihoods. Substantial reductions in computation time are
then made, which we demonstrate via simulation in Web Ap-
pendix C.

2.6. Generalized Abundance Index

For each year for any particular model, we use the average
of the estimated site parameters, {N̂i}, as a measure of abun-
dance, given by

G = 1

S

S∑
i=1

N̂i. (10)

If desired, the GLM final stage of the GAM-based approach
could be employed to account for different sites being sampled
in different years. Although the resulting additional compu-
tation is fast, it is unlikely to be necessary for large data sets,
including those for most species in the UKBMS.

The model is fitted separately for each year, G is calcu-
lated in each case and the results are plotted against time to
provide an index of abundance. Errors may be derived by non-
parametric bootstrapping, where for each replicate the GAI
is fitted to data for a random sample of sites, drawn with re-
placement, or by standard inversion of the estimated Hessian
at the likelihood maximum, followed by use of the multivari-
ate delta method.

3. Examples

In work not reported here, we have checked the accuracy of
the GAI by application to simulation data (Dennis, 2015,
Tables 5.3 and 5.4). We now apply the GAI for a series of
examples of butterfly transect counts from the UKBMS, to
illustrate the range of modeling alternatives. The species se-
lected cover univoltine, bivoltine, and a multivoltine species,
where adults have one, two, and more than two flight periods
per year, respectively. Supplementary tables and figures are
provided in Web Appendix D. Latin names for the species
studied in this article are provided in Web Table 4.

3.1. Splines

A spline is advised for species with complex seasonal flight
patterns, which may not be easily modeled parametrically. We
demonstrate the P/C GAI for Speckled Wood, a multivoltine
species whose flight pattern tends to exhibit three overlapping
broods per year. The flight period is further complicated since
the Speckled Wood overwinters as both caterpillar and pupa,
which may emerge at different times. We apply the GAI and
GAM to data from 1980 to 2011 for a subset of 100 sites.

Comparable seasonal pattern curves are predicted from the
GAM and P/C GAI (Figure 1), as well as similar indices
of relative abundance (Web Figure 3), despite the simplicity
and greater speed of fitting the GAI, compared to the GAM
approach.

3.2. Mixture Model

We examine the performance of the x/N2 GAI for a selec-
tion of bivoltine UK butterfly species. For demonstration, we
fit the model where x is Poisson, zero-inflated Poisson, and
negative-binomial for five species and make comparisons with
the GAM approach. For each species, models were fitted to
data for each year from 1978 to 2011 separately, and an index
of abundance then formed as defined in Section 2.6. Confi-
dence intervals were derived via bootstrapping.

In order to compare the two methods, each index was stan-
dardized to have zero mean and unit variance. Where a species
has been observed in more than 100 sites within a given year
(true of all species but Small Blue), each model was fitted to a
common random sample of 100 sites. For illustration we con-
sider the homoscedastic case, where σ1 = σ2, and also no site
variation in distribution location and scale parameters. We let
μ2 = μ1 + μd , where μ1, μd ≥ 0 to ensure μ2 ≥ μ1. For B = 2,
we denote w1 = w, and w2 = 1 − w.

There were minimal differences in the indices derived from
the P, ZIP, and NB GAIs, but NB performed best in terms
of AIC and dispersion (Web Figures 4 and 5). The latter
is unavailable for ZIP. The negative-binomial GAI was also
found to perform best when compared to a Poisson GAI and
an alternative hierarchical model in Web Appendix B, al-
though the Poisson GAI produces similar results and is more
computationally efficient. The indices of abundance from the
GAM and GAI show similar patterns (Figure 2). The differ-
ences seen are in part due to the use of just 100 sites in the
analyses of the article. The differences diminish appreciably
when either the last GLM stage of the GAM is employed
for the GAI, to account for different sites being sampled in
different years, or when much larger numbers of sites are
analyzed. There is a greater difference for the Small Blue,
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Figure 1. Predicted seasonal pattern for each week since the start of the season for the GAM approach (solid) and P/C
GAI (dashed) for Speckled Wood. This figure appears in color in the electronic version of this article.

particularly for earlier years in the index, which may be due
to the lack of sites available for this species which is a habitat
specialist.

The confidence intervals for the GAI are narrower than
those for the GAM for three of the five species, and are never
greatly wider (Table 1 and Web Figure 6). The GAI is sub-
stantially quicker than the GAM (Table 1). This is of vital
importance when data on multiple species are analyzed each
year, and bootstrap confidence intervals are also required.

3.3. Stopover Model

For illustration, we apply the P/SO1 GAI to data for two
univoltine species to assess changes in survival probability φ

over time (Figure 3a). Matechou et al. (2014) considered data
for one species in a single year but explored allowing φ to vary
with time or age. Here, only constant φ (within each year) is
considered.

Analysis was restricted to start from the first year in which
the species was recorded at at least 30 sites. Higher survival
probabilities are correlated with earlier emergence in the sea-
son (Figure 3b), which generates an hypothesis for further
investigation; for example, earlier emergence may expose indi-
viduals to cooler temperatures leading to increased longevity.

3.4. Goodness of Fit

As in Matechou et al. (2014), we may use dispersion (residual
deviance/degrees of freedom) as an overall measure of good-
ness of fit, and a check of whether there is overdispersion
present which needs to be taken account of. An illustration
is provided in Web Table 1. Web Figure 5 shows the over-
all improvement in fit of moving from model P/N2 to model
NB/N2. Goodness of fit may also be examined graphically,
to check for outliers and model deficiencies, and Matechou
et al. (2014) do this on a site basis for one species and 1 year,
plotting observed values against expected. Another possibil-

ity, not shown here, is to combine the data from all sites for
individuals years, to reduce the number of plots involved.

3.5. Regressing Parameters on Year and Northing

In this section, we demonstrate the flexibility of the GAI for
the inclusion of covariates, which was not possible with the
GAM approach. Rather than fitting the model separately to
data for each year, a single concentrated likelihood can be
maximized over multiple years. The number of parameters
can be reduced by restricting appropriate parameters over
time, for example, to be constant or linearly time-varying.

For demonstration, we apply models to data for Wall
Brown. We use the P/N2 GAI, but fit a single multi-year
model. The parameters w, the mixing probability for the two
broods, μ1 and μd , the mean flight date of the first brood
and the separation of the two broods, could vary linearly with
year, northing, or an additive or multiplicative combination of
both. We allowed the standard deviation σ to be constant or
linearly varying with year but consider only the homoscedas-
tic case where σ1 = σ2.

The most complex model, which had 14 parameters and
included an interaction between northing and year for w, μ1,
and μd , was favored in terms of AIC and has a dispersion value
of 1.8 suggesting moderate overdispersion. The estimated sea-
sonal pattern is provided for 3 years in Figure 4, each for a
sample of northing values. The positive value of the slope for
year for w at all but the most extreme latitudes suggests an
overall trend for an increase in size of the first brood relative
to the second brood over time (Web Table 5). The timing of
the first brood is later further north, but has become earlier
over time, and the difference in the timing of the two broods
has increased over time. The standard deviation has changed
minimally with time.

A different approach to analyzing data from multiple years
is presented in Dennis et al. (2016); by making additional
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Figure 2. Relative abundance indices from the NB/N2 GAI (solid line, circles) and GAM approach (dashed line, crosses).
This figure appears in color in the electronic version of this article.

Table 1
Comparison of efficiency and accuracy for the GAM and P/N2, ZIP/N2, and NB/N2 GAI, where m and s denote minutes

and seconds, respectively

Time for a single run Mean CI width

GAI GAI

Species GAM P ZIP NB GAM P ZIP NB

Holly Blue 9 m 20 s 3 m 1 m 0.862 0.664 0.703 0.627
Small Blue 32 m 13 s 2 m 1 m 3.091 1.892 1.949 1.871
Wall Brown 39 m 23 s 3 m 2 m 0.860 1.089 1.147 1.096
Small White 23 m 28 s 3 m 3 m 0.998 0.954 0.954 0.938
Common Blue 22 m 26 s 3 m 2 m 1.066 1.305 1.328 1.338
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Figure 3. (a) Predicted survival probability (weekly) for each year and (b) average week of emergence (μ) versus predicted
survival probability (weekly). A P/SO1 GAI was fitted to data for the two univoltine species.

modeling assumptions population sizes are linked determinis-
tically between years and broods via appropriate productivity
parameters.

4. Discussion

We have presented a generalized abundance index which uni-
fies and extends existing methods for estimating abundance of
seasonal invertebrates. It is fitted efficiently using maximum-
likelihood estimation and a concentrated likelihood. The GAI
is suitably general for parametric or nonparametric functions
to be chosen specific to the study species and scenario. Splines
may be preferable for species with complex flight periods, such
as migrants. The new mixture model is a simplification of the
stopover model. The stopover model provides additional in-
sights via the estimates of survival. However, for wider scale
analysis, the mixture model is more efficient and akin to the
methods currently used for deriving abundance indices. The
mixture model may also be more suitable in cases with limited
data, since the stopover model has greater demands on data
in order to estimate survival. When spatio-temporal models
are fitted to long-term data for many species and sites, an
important consideration is the computational effort required.
Model fitting is very time-consuming for the GAM approach.

When there are many sites, bootstrapping can take weeks for a
single UKBMS species. The GAI shows substantial improve-
ments in computation time which will reduce the time and
resources required for data processing, leading to faster out-
puts and feedback of results to recorders and policy makers.
The provision of such feedback is essential for the motivation
and retention of participants in citizen science projects such
as the UKBMS.

The GAM approach assumes the seasonal pattern to be
static across sites within each year. In principle, geographic
variation could be incorporated in the smoothing component
but in practice that does not appear to be straightforward
and robust. The parametric approaches within the GAI can
readily incorporate available covariates, such as northing, land
cover, weather, or growing degree days (Hodgson et al., 2011).
Novel description of spatial and temporal variation in seasonal
pattern will benefit phenological studies, which for butterfly
data have involved measures such as mean first appearance,
mean peak appearance, and mean length of the flight period
(Roy and Sparks, 2000; Karlsson, 2014; Roy et al., 2015).
Hodgson et al. (2011) utilized GAMs for studying spatio-
temporal variation in phenology, but changes in phenology
and voltinism can be studied more flexibly through the GAI,
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Figure 4. Predicted seasonal pattern (standardized seasonal count) for each week since the start of the season for the
multi-year P/N2 GAI (1978-2011) for Wall Brown for 3 years. Each line represents one of 10 equally spaced Northing values
between 17 km (light gray) and 667 km (dark gray).

extending the capacity to study the nonuniform effects of cli-
mate change.

The GAM approach accounts for turnover in sites between
years. This is not done in the GAI, but comparable results to
the GAM are produced despite the simplicity of the model. If
necessary, an additional GLM stage can be added to the GAI.
Time variation in sites sampled may need to be accounted for
when there is a limited number of sites. Trends in relative
abundance for individual sites can be estimated by the GAI,
which may be of interest for conservation and monitoring of
certain locations. For the GAM approach trends in abundance
are assumed to be spatially constant, which may be an unre-
alistic assumption.

The presented examples demonstrate the generality of the
GAI framework, and application to multiple years and species
for the first time outside the GAM context. In practice, wider
model selection would be required in any application of the
GAI. Alternatives to the Normal distribution in the paramet-
ric approaches, such as asymmetric distributions to account
for skewness in emergence are also possible (Calabrese, 2012).
Clearly the “best” model choice will be dependent on both the
purpose of the study and the species of interest.

The gains in efficiency achieved by the GAI arise from max-
imizing a concentrated likelihood. The proposed iterative con-
centrated likelihood approach for negative-binomial and zero-
inflated Poisson obtains the correct result and is still consider-
ably quicker than previous methods. The Poisson distribution
may be sufficient if an index is the required output of a study,
since the resulting GAIs are quick with minimal differences in

accuracy. Using random effects to describe {Ni} is slower and
less straightforward than the concentrated likelihood method
(Web Appendix B).

The GAI is a robust and flexible framework that can pro-
duce new insights relevant to the monitoring and conservation
of invertebrates with both efficiency and accuracy. An R pro-
gram for the GAI is available in the Supplementary Material.

5. Supplementary Materials

The Web Appendices referenced in Sections 2, 3, and 4, to-
gether with R code, are available with this article at the Bio-
metrics website on Wiley Online Library.
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