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ABSTRACT  

Power output is central to the viability of a Li-ion battery, and is, in part, dependent upon the activation energy 

barrier associated with Li intercalation/deintercalation into the host lattice (electrode). The lower the energy barrier, 

the faster the intercalation reaction rate and greater the power. The activation energy is governed by the atomistic 

structure(s) of the entrance sites for Li intercalation. Accordingly, a first step in optimising battery power via 

structural manipulation of entrance sites, is to understand the structure of these entrance sites. However, HRTEM 

is (presently) unable to characterise the structures of entrance sites with atomistic resolution. Accordingly, we 

generate models of the entrance sites using Molecular Dynamics. In particular, we simulate the synthetic protocol 

used to fabricate nanostructured TiO2 experimentally. The resulting atomistic models reveal a highly complex and 

diverse structural distribution of entrance sites, which emanate from the surface curvature of the nanostructured 

material. In particular, we show how nanostructuring can be used to change profoundly the nature and 

concentration of such entrance sites. 
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INTRODUCTION 

Nanostructured materials have shown great promise recently as potential electrodes for Li-ion batteries [1,2]. In 

particular, Ren et al. showed that mesoporous TiO2, with a 3D pore structure, can be used as an anode replacing 

graphite.[3] Similarly, mesoporous MnO2 can act as a cathode [4]. Nanostructuring of the electrodes was shown, in 

both cases, to confer electrochemical activity upon the materials [5]; the parent bulk materials are electrochemically 

inactive. A recent simulation study revealed that mesoporous materials are able to expand and contract elastically 

(during charge cycling) as pseudo ‘breathing-crystals’ – enabling retention of the structure and crucially the 1x1 

tunnels in which the Li ions enter and reside [6]. Conversely, the bulk parent material deforms plastically during 

intercalation pulverising the tunnels [4,6]. 

Central to the power output and charge time of batteries is the activation energy barriers associated with Li 

intercalation/deintercalation from the host electrodes. The lower the energy barriers, the faster the reactions 

facilitating higher power and lower charge times. The activation energy is governed by the atomistic structure(s) of 

the entrance sites for Li intercalation. Accordingly, a first step in tuning battery power, via structural manipulation 

of entrance sites, is to understand their structure. 

Inspection of HRTEM images of mesoporous TiO2, fig 1, reveals that the entrance sites are not structurally uniform 

[3]; rather the figure reveals a diverse structural complexity, which emanates from the three-dimensional curvature 

of the pore. Accordingly, if one were to use a model of the perfect surface to calculate energy barriers associated 

with Li intercalation, the results would prove erroneous because the model would not capture the structural 

perturbations emanating from the curvature of the surface. Indeed, Tompsett and co-workers showed that structure 

has a profound impact upon the energy barriers for Li intercalation [7]. In particular, notwithstanding the curvature 

of a nanostructured system, the group used Density Functional Theory (DFT) to show that the energy barrier 

associated with Li intercalation into β-MnO2 (isostructural with rutile, TiO2) can change from 0.6eV to less than 0.3eV 

for the (101) and (001) surfaces of β-MnO2 respectively.[7] Accordingly, if reliable predictions, pertaining to 

activation energy barriers for Li intercalation into nano-structured TiO2, are to be proffered by simulation, the model 

must capture the structural complexity of the curved pore surface.  

HRTEM is (presently) unable to characterise the structures of entrance sites with atomistic resolution, fig 1; rather 

only the interconnecting networks of pores, fig 1(a) [8] and interatomic planes, fig 1(b), [3] at the pore surfaces are 

evident from HRTEM. What is missing, are three dimensional atomistic structures of the entrance sites, from which 

one can (visually) understand how Li may intercalate into the host lattice. Accordingly, in this study, we use MD 

simulation to generate atomistic models of the surface entrance sites. 

Normally, atomistic models are generated by utilising experimental data, such as atom positions derived from XRD 

or HRTEM, but this is not possible at present because the structural complexity of a mesoporous material is such 

that such the atom positions cannot (yet) be extracted from experiment. An alternative approach is to use chemical 

intuition coupled with symmetry operators. However, this approach also becomes intractably difficult when one 

considers that the unit cell of a mesoporous material comprises tens of thousands of atoms. Moreover, the model 

must also capture microstructural features such as dislocations and grain-boundaries and the morphologies of the 

(internal) pore surfaces, which will influence Li intercalation.  

Hierarchical structural complexity of nanostructured materials, which includes the polymorphic crystal structure, 

microstructure and nanostructurei, emanates ultimately from the synthetic protocol used in their experimental 

fabrication. Accordingly, the approach we use in this study, to generate atomistic models that are realistic, in that 

they capture the hierarchical structural complexity, is to simulate the synthetic protocol. Specifically, we simulate 

the crystallisation of the nanostructured material starting from amorphous precursors. The size of the unit cell, 

                                                           
i Microstructure includes, for example: dislocations, grain-boundaries, intrinsic point defects; nanostructure 
includes: architecture of pore network, curvature of (internal) surfaces.  
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required to capture such structural complexity, is of the order of tens of thousands of atoms, and therefore ab-initio 

methods are presently computationally prohibitive. Consequently, we use atomistic simulation to generate the 

structural models. 

 

 

 

Figure 1.  HRTEM of mesoporous TiO2 (a) Mesoporous rutile-structured TiO2. reproduced with permission 

from ref [8]. Copyright American Chemical Society 2013 (b) Anatase TiO2 reproduced with permission from ref [3]; 

the yellow arrows indicate the positions of possible entrance sites revealing the difficulty in characterising the 

entrance sites for Li intercalation. Copyright American Chemical Society 2010.  

 

METHODS 

Potential models and simulation code 

All calculations presented in this study are based on the Born model of ionic solids, where titanium (Ti) and oxygen 

(O) ions interact via long-range Coulombic interactions and short-range parameterised interactions of the 

Buckingham form. The potentials used in this study were optimized by Matsui [9] and are able to reproduce the four 

polymorphs of TiO2 (rutile, anatase, brookite and TiO2(II), which is isostructural with α-PbO2). The parameters are 

reported in table S1 and S2 (supporting information). 

One of the most rigorous tests of a potential model is its ability to simulate crystallisation. In particular, the potential 
must describe interatomic distances far from the equilibrium distance and capture the amorphous-to-crystalline 
state (following both the kinetics and thermodynamics associated with the combination of ‘random’ atom collisions 
that together manifest in the evolution of a nucleating seed). Moreover, the simulation must capture the 
spontaneous evolution of the seed, which nucleates crystallisation of the polymorphic crystal structures. The 
potential model we have chosen is able to successfully simulate crystallisation of nanotitania to yield the 
polymorphic crystal structures (rutile and brookite) in accord with experiment [10] and therefore we argue that the 
potential model we have chosen is appropriate to accurately represent the material. 
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All the molecular dynamical simulations were performed using the computer code DL_Poly [11]. The user manual 

provides comprehensive analytical descriptions and discussion of the molecular dynamics simulations, force fields, 

boundary conditions, algorithms and parallelization methods used in these simulations.  

 

 

Generating Atomistic models 

During experimental synthesis, mesoporous TiO2 emanates from an amorphous pre-cursor and then undergoes 

crystallisation into the mesoporous nanoform [8] We simulate directly this process. In particular, we start with 

amorphous precursors and allow the system to crystallise under MD simulation. Analogous to experiment, we 

control only the temperature of the system:  At a particular instant in time, under MD simulation, the combination 

of atom collisions spontaneously results in the evolution of a crystalline seed. This seed then nucleates crystallisation 

to facilitate the polymorphic crystal structures (rutile and brookite), the microstructure (dislocations and grain-

boundaries) and nanostructure (network of interconnecting pores, and curved (internal) surface morphologies) in 

accord with experiment. 

 

We argue that because our procedure of ‘simulating synthesis’ generates models with three levels of hierarchical 

structural complexity (crystal structure, microstructure, nanostructure) in accord with experiment, starting from an 

amorphous starting point, by just controlling the simulation temperature, our methological approach is valid. We 

now describe in detail how each nanostructural model was generated. 

Amorphous Precursor The atomistic models for the nanoparticle, nanosheet, nanoporous architecture and bulk 

material were generated using a molten TiO2 nanoparticle precursor. In particular, a particle of TiO2 comprising 

15972 atoms (5324 titanium and 10648 oxygen atoms), was cut from the parent bulk material. The nanoparticle was 

then melted by heating to 6000 K, which is above the melting point for TiO2, under MD simulation. The molten 

nanoparticle was then used as the ‘building-block’ to generate the nanoparticle, nanosheet, nanoporous 

architectures and bulk material.  

Nanoparticle. Here, the molten TiO2 nanoparticle was placed in a simulation cell with dimensions sufficiently 

large that the nanoparticle does not interact with its images. NVT simulation was then performed at 2000 K for 3.5 

ns to facilitate crystallisation of the nanoparticle. 20 GPa pressure was imposed upon the nanoparticle to facilitate 

crystallisation, which was communicated via a pseudo-gas following the procedure in ref.[10]. The low-temperature 

structural model was then generated by removing the pressure and cooling the system to 0 K under NVT MD 

simulation, which acts effectively as a pseudo energy minimisation. 

Nanosheet For the nanosheet, a cubic simulation cell was constructed, and the TiO2 nanoparticle positioned 

at lattice points associated with the primitive cubic Bravais lattice. Two of the dimensions of the simulation cell were 

reduced such that the nanoparticle agglomerated with its periodic neighbours in two dimensions under MD 

simulation facilitating the sheet. NVT simulation was then performed at 2000 K for 3.5 ns to facilitate crystallisation 

of the nanosheet. Periodic boundary conditions were imposed to facilitate replication of the structure of the 

nanosheet in two-dimensions. The low-temperature structural model was then generated by cooling the system to 

0 K under NVT MD simulation until the configurational energy converged. 

Nanoporous Architecture.To capture the (cubic) symmetry of the nanoporous architecture, a simulation cell with 

cubic symmetry was constructed and a nanoparticle of TiO2 was positioned at lattice points associated with the 

primitive cubic Bravais lattice. The size of the simulation cell was then reduced in all three dimensions to enable the 

nanoparticle to agglomerate in all three spacial directions. NVT simulation was then performed at 2000 K for 3.5 ns 

to facilitate crystallisation. Periodic boundary conditions were used to replicate the structure infinitely in three 
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dimensions. The low-temperature structural model was then generated by cooling the system to 0 K under NVT MD 

simulation until the configurational energy converged. 

Bulk. A nanoparticle of TiO2 was positioned within a cubic simulation cell and pressure was imposed upon the 

system such that the ions comprising the molten nanoparticle filled the simulation cell completely. Specifically, NPT 

simulation was performed at 2000 K with a pressure of 15 GPa for 3.5 ns during which time the TiO2 crystallized. 

Analysis of the structure revealed domains of rutile, brookite and (similar to) baddeleyite - a high-pressure phase of 

TiO2 with 7-coordinate Ti. Accordingly, the pressure was released and the material was annealed under NPT 

simulation at 2000 K for 10 ns during which time the domains of baddeleyite annealed out leaving rutile and brookite 

phases. 

The procedures for generating atomistic models for nanomaterials are described in more detail in refs [12]. The final, 

low-temperature nanostructures are shown in fig. 2. 

 

Figure 2.  Atomistic models for the TiO2 nanostructures.  (a) Nanosphere, (b) nanosheet, (c) nanoporous 

architecture and (d) bulk. 
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Crystallisation 

Crystallisation is evidenced by the change in the configuration energies as a function of time, and is shown in, figure 

3. At the start of the simulation the configuration energies are high (indicative of the amorphous structure) and then 

a nucleating seed spontaneously evolves and nucleates the crystallisation of the nanomaterial. During crystallisation 

the configurational energy reduces until it reaches a plateau after the nanostructure has fully crystallised. 

 

Figure 3.  Configuration energy, calculated as a function of time, for the TiO2 nanoparticle, nanosheet, 

nanoporous architecture and bulk. The atomistic structure of the nanoparticle is shown at varions points during the 

crystallisation depicting the amorphous (top left) to crystalline (middle, right) transition. 

 

The latent heat of crystallization is the difference in the configuration energy between the amorphous and the 

crystalline nanostructures and are calculated to be 53, 59 and 52 kJmol-1 for the nanosphere, nanoporous and bulk 

architectures respectively. The values are in reasonable accord with experiment; the measured heat of fusion of rutile 

TiO2 is about 50 kJmol-1. [13] The structures of the amorphous, partially crystalline and fully crystalline structure of the 

TiO2 nanoparticle are shown inset in fig. S2. 

 

Contrary to other nano-architectures, the nanosheet crystallized during agglomeration of neighbouring nanospheres, 

under the NPT ensemble and therefore there is not a significant drop in the configuration energy as a function of 

time, fig. 3. This is firstly evidenced by the corresponding configuration energy vs time curve remaining near constant 

from 0 to 1.5 ns followed by a slight drop of energy from 1.5 to 2.25 ns. Above 2.25 ns there is a sudden reduction of 

energy, amounting to 5 kJ.mol-1, which though noticeable, is not as large as the latent heat of crystallisation associated 

with nucleation to crystallisation transition. Such change can be ascribed to annealing (Oswald ripening) of a grain 

boundary. 
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RESULTS 

Analysis of the model nanostructures, using molecular graphics and calculated radial distribution functions (not 

shown), reveals that the TiO2 crystallises into the rutile and brookite polymorphic crystal structures. The atomistic 

models were then analysed further, to better understand the structure of the entrance sites associated with Li 

intercalation/deintercalation. 

 

Mesoporous TiO2 

The model of mesoporous TiO2 is shown in fig 4. In particular, fig 4(a) shows an HRTEM image of the real material 

[3], which can be compared to the atomistic model in fig 4(b); the positions of possible entrance sites for Li 

intercalation are highlighted by the yellow arrows in each figure. Polyhedral rendering of the structure (TiO6 

polyhedra) is shown in fig 4(c), which reveals more clearly the 1x1 tunnels in which the Li ions intercalate and reside. 

TiO6 octahedra in the plane of the page are blue and TiO6 octahedra below the plane of the page are white. 

Accordingly, in the plane of the page, there are vacant 1x1 tunnels above the white TiO6 polyhedra into which the Li 

ions intercalate and reside. 

It is difficult to appreciate the entrance sites with these two-dimensional images of the structure and therefore 

Connolly surfaces were calculated to reveal the accessible surface. The image in fig 4(d) shows the Connolly surface 

and enables a perspective view of the surface of the internal pore. An enlarged segment of the pore is shown in fig 

4(e), which reveals the entrance sites for Li intercalation into the 1x1 tunnels; a ball and stick model of the atom 

positions is shown inset in fig 4(e) to illustrate how the individual atoms facilitate the structure of the entrance sites. 

Li ions are shown entering the 1x1 tunnels for illustration. The images of the mesoporous TiO2 depict atom positions 

comprising the model – no images are schematic.  

 



8 
 

 

Figure 4. Atomistic structure of nanoporous TiO2. (a) HRTEM image from ref [3]. (b) Sphere model 

representation of the atom positions comprising the atomistic model (only Ti shown). (c) Polyhedral rendering of the 

TiO6 octahedra showing the 1x1 tunnels. (d) Connolly surface rendered model looking along one of the pores of the 

nanomaterial. (e) Connolly surface showing the entrance sites to the 1x1 tunnels; a ball and stick model is shown inset 

(Ti is grey and oxygen is red). 
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TiO2 nanosheet 

The atomistic model of the TiO2 nanosheet is shown in fig 5. Fig 5(a,b) show the atom positions. It is difficult to 

appreciate the structure of the entrance sites via inspection of the atom positions, fig 5(a,b). Conversely, visualisation 

of the accessible surface, via calculated Connoly surface, provides insightful information, fig 5(c). A segment of (c) is 

shown enlarged in (d) and (e) using polyhedral and Connolly surface rendering respectively to reveal more clearly 

the accessible surface entrance sites. 

Close inspection of fig 5(e) reveals many entrance sites with square profile. In particular, the 1x1 tunnels highlighted 

in the green circle, show (visually) that the entrance sites are large enough for Li to intercalate. However, as the 

surface of the nanosheet curves, the size and shape of other entrance sites change (red circle) preventing Li 

intercalation. Indeed, some entrance sites are blocked. 

In the perfect bulk material, the 1x1 tunnel size is 3.3x3.3Å (cross section). Analysis, of the entrance sites in the 

mesoporous model reveals that some of the entrance sites are much larger than this (4.2x4.5Å) and would likely 

facilitate facile intercalation. Conversely, others are much smaller (2.7x4.9Å), preventing intercalation. The sizes of 

the 1x1 tunnels, inside the mesoporous TiO2, also show considerable structural variation, which would impact upon 

the transport of Li inside the host lattice and storage capacity. 
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Figure 5. Atomistic structure of the TiO2 nanosheet. (a) Sphere model representation of the atom positions; Ti 

is grey and oxygen is red. (b) Enlarged segment of (a). (c) Segment of the nanosheet, viewed perpendicular to the 

surface, revealing the atomistic structures of the surface entrances (Connolly surface rendered model). (d) Polyhedral 

rendered model of an enlarged segment of (c). (e) Enlarged segment of (c); Li (yellow) is superimposed on the atomistic 

model illustrating (as a schematic) the intercalation of Li into the surface and residing in one of the 1x1 tunnels. The 

region highlighted in green shows viable surface entrance sites. Conversely, the region highlighted in red, shows a 

considerable change in surface entrance site structure, which would likely impede Li intercalation. 
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TiO2 Nanoparticle 

The atomistic model of the nanoparticle is shown in fig 6. The atom positions are shown in fig 6(a), which reveals 

some planar faceting of the surface occurs (top right corner of image). The curvature is therefore not smoothly 

continuous, which will influence the structure of the entrance sites. Similar to mesoporous and nanosheet models, 

entrance sites with square profile are observed, fig 6(c,d). Similarly, the curvature changes profoundly the structure 

of entrance sites, fig 6(e). The model structure of the nanoparticle is shown superimposed with a HRTEM image in 

fig 7; the close accord helps validate the model. [14]  

 

 

Figure 6. Atomistic structure of the TiO2 nanoparticle. (a) Sphere model representation of the atom positions; 

Ti is grey and oxygen is red. (b) Polyhedral rendering of part of the surface of the nanoparticle showing the 1x1 tunnels 

(view looking perpendicular to the surface) which terminate at the surface. (c) (Connolly) surface rendered model of 

the nanoparticle (view is perpendicular to the surface) revealing the atomistic structures of the entrance sites to the 

1x1 tunnels. (d) enlarged view of (c) showing more clearly the 1x1 tunnels. (e) View looking at a different region of the 

surface to show the considerable structural diversity of surface entrance sites. 
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Figure 7. Nanostructured TiO2 model compared to experiment. (a) View looking perpendicular to the surface 

entrance of the atomistic model. (b) Spherical aberration corrected HRTEM reproduced with permission from 

Institution of Physics Publishing [14] A 1x1 tunnel is highlighted in both the model (a) and real (b) material. 
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X- Ray Diffraction (XRDs) 
To further validate our structural models, XRD patterns, calculated for each of the model  
TiO2 nanostructures, are compared to experiment (brookite, rutile and α-PbO2 structured TiO2) [15] in fig 8. 
 
 

 

 

Figure 8.  Calculated X-Ray Diffraction (XRD) patterns of the atomistic models of nanostructured TiO2 

compared with experimental data (reproduced with permission of The Electrochemical Society ref [15]) for TiO2; 

brookite, rutile and α-PbO2 polymorphs. We note that (d) shows the bulk structure prior to annealing out the 

baddeleyite polymorph.  

 

Inspection of fig. 8, reveals evidence of the brookite polymorph in each of the nanostructures; peaks at 27, 33 and 

37 ° can be indexed to brookite (120), (121) and (012) planes respectively. Similarly, the models also exhibit 

characteristics of rutile and α-PbO2-type phases. We note that the XRD trace for the bulk TiO2 is generally sharper 

compared to the nanomaterials. In particular, a greater accord with rutile and α-PbO2-type structure, rather than 

brookite, is evident. TiO2 nanocrystals comprising both brookite and rutile polymorphs have been reported [16]; the 

authors proposed that the relative proportions of such polymorphs can be varied facilitating tuneable photocatalytic 

properties of the nanomaterial. 
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Microstructure 

Once intercalated into the TiO2, the Li ions need to move within the host lattice; typically, it is understood that Li 

ions move and reside within the 1x1 tunnels. Accordingly, microstructural features, such as grain-boundaries, will 

impact considerably upon transport and storage within the host.[17,18] Molecular graphics was used to explore the 

microstructural features comprising the nanoparticle, nanosheet, nanoporous architecture and bulk, fig. 9; the 

(perfect) crystal structures of the parent rutile, brookite and anatase polymorphs of TiO2 are shown in fig. 10 to 

compare.  

Slices of each (model) nanomaterial were cleaved to reveal the connectivity of the TiO6 octahedra. Octahedra 

comprising the upper plane are coloured blue, and polyhedra comprising the lower plane are white. For the 

nanoparticle, fig 9(a), we observe large domains of rutile structured TiO2 together with microtwinning; smaller 

domains of brookite-structure TiO2 are also evident. For the nanosheet, fig 9(b), we observe an even mix of domains 

conforming to brookite and rutile polymorphs. Similarly, the nanoporous model, fig 9(c), comprises an even mix of 

brookite and rutile. We note that the domain-boundaries are normally coherent between the brookite and rutile 

polymorphs. The bulk material, fig 9(d,e) also comprises both rutile and brookite, but there is also a grain-boundary 

that traverses the slice, fig 9(d). An alternative view of the model reveals a structure similar to the baddeleyite 

polymorph, fig 9(e). We note that the bulk model, depicted in fig 9(d,e), is under 10 GPa pressure; upon release of 

the pressure, the baddeleyite polymorph transforms structurally to leave only the brookite and rutile polymorphs. 

Inspection of the atomistic models of all nanostructures also reveals a variety of grain-boundaries/dislocations and 

point defects (predominantly vacancies). Nanostructured TiO2 comprising mixed polymorphic phases have been 

reported [19, 20]. 
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Figure 9.  Microstructural features comprising the TiO2 nanostructures. (a) TiO2 nanoparticle (b) nanosheet 

- rutile and brookite domains designated by yellow and red regions respectively; the green line is a junction or domain 

boundary, (c) nanoporous architecture, (d,e) bulk. Polyhedral rendering of the TiO6 octahedra was used to depict the 

1x1 tunnels more clearly. The region enclosed by the red oval and yellow rectangle (b) correspond to the brookite and 

rutile polymorphs respectively; the yellow triangle in (c) reveals microtwinning of the rutile structure; the green 

rectangle reveals a grain-boundary/dislocation which comprises point defects. We note that (d,e) shows the bulk 

structure prior to annealing out the baddeleyite polymorph. 
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Figure 10. Polymorphic crystal structures of brookite (a,b), rutile (c,d) and anatase (e), showing the zig-zag 

(brookite) and straight (rutile) 1x1 tunnels. Views depict: (a) brookite [100]; (b) brookite [001]; (c) rutile [001]; (d) 

rutile [100]; (e) anatase [100]. 
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DISCUSSION 

Central to the viability of a nanomaterial acting as an electrode for a Li-ion battery are the kinetics associated with 

Li intercalation and transport within the host nanomaterial. Atomistic simulation can be used to predict the kinetics 

associated with the intercalation of Li into the host lattice by calculating the activation energy barrier for Li to pass 

through the surface of the host. Indeed, Tompsett et al. calculated the energy associated with Li insertion into the 

β-MnO2 (101) surface to be >0.6 eV; the (101) surface dominates the equilibrium morphology. Li mobility within the 

bulk was calculated to be 0.17eV and therefore Li intercalation is predicted to be the rate limiting step [7]. The 

authors also argue that nanostructuring might help reduce the (high) energy barrier to Li intercalation. 

Characterisation of the atomistic structure of the surface sites is therefore a first step in exploring the energetics of 

Li intercalation and a pre-cursor to being able to modify the surface structures to facilitate energetically facile 

intercalation/deintercalation and hence increase the power of Li-ion devices. 

Here, we show that the structure of the surface entrance sites for nanostructured TiO2 deviate considerably 

compared to the parent (bulk) material, which will influence the energetics and hence kinetics associated with Li 

intercalation. Our simulations reveal that the structures of the entrance sites for Li intercalation are critically 

dependent upon the curvature of the surfaces. We predict therefore that nanostructuring can be used to tune the 

power of a battery. Changes may include, for example, the nanoparticle radius, mesoporous wall thickness and 

architecture. Similarly, the architecture of the mesoporous TiO2 can be changed by using alternative silica templates 

during synthesis. In particular, the architecture of the real material, fig 1(b), conforms to the Ia3d space symmetry 

[3]. Alternative silica templates, with different sizes, shapes and pore connectivities can be used to facilitate 

nanostructuring of the TiO2. 

 

Li transport numbers 

In addition to the activation energy barrier, the power of a Li-ion battery is directly correlated with the Li-ion 

transport number. Specifically, the number of Li ions that can be intercalated/deintercalated into the host lattice as 

a function of time. The transport number will depend upon the number of viable surface entrance sites per unit area. 

In particular, fig 5(e), shows regions on the surface of the TiO2 nanoparticle that facilitate Li intercalation (green oval) 

and conversely regions where the surface entrance sites are too small to facilitate intercalation (red oval). We also 

note that some regions on the surface are blocked towards Li intercalation, which emanate as a consequence of the 

crystallographic direction with respect to the nanostructure. The atomistic models therefore proffer some insight 

into the Li ion transport numbers as limited by the concentration of viable entrance sites. 

Experimentally, atom positions (coordinates), measured using, for example, XRD, provide a quantitative depiction 

of structure. However, for mesoporous materials, where the unit cells comprise tens of thousands of atoms, the 

atom positions are no longer intuitive; rather HRTEM images, fig 4(a), manifest as quantitative and accessible 

depictions of structure. Similarly, a list of the atom coordinates comprising an atomistic model are quantitative 

depictions of structure, which can be presented in an accessible fashion using molecular graphics. All the images 

presented here are representations of the actual atom positions (no images are schematic). Accordingly, we argue 

that the (molecular graphical) images manifest as a quantitative depiction of structure.  

Previously, we showed that atomistic models of nanomaterials, generated by ‘simulating synthesis’, are in 

quantitative structural accord with experiment [21]. In this present study, our images of nanostructured TiO2 are in 

close accord with experiment – fig 4(a,b) and fig 7(a,b) . The close comparison with HRTEM acts as a validation of 

the model. In particular, if we can generate atomistic structures in accord with experiment, by simulating the 
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crystallisationii, we can have confidence that the structural complexity of the model reflects the real material. 

Moreover, we can be assured that the information derived from using the model is reliable. In particular, at present, 

experiment (HRTEM) cannot resolve the structure of the entrance sites, which are central to the speed of Li 

intercalation and hence battery power. Here, we show the rich variety of atomistic structures and sizes of the 

entrance sites. Indeed, it might be assumed that the entrance sites are structurally similar, this study reveals that 

they are profoundly different.  

 

CONCLUSION 

Molecular dynamics simulation has been used to generate atomistic models of nanostructured TiO2 including: 

nanoparticles, nanosheets and mesoporous architectures. The hierarchical structural complexity of the system was 

captured within the model by ‘simulating synthesis’. Specifically, we simulated crystallisation of the system starting 

from amorphous precursors – the only variable used to direct the evolution of the nanostructures was the 

temperature of crystallisation. The resulting models reveal the structures of the entrance sites, which facilitate Li 

intercalation. The structures of the entrance sites show considerable structural variation, spanning large ‘diameter’ 

entrances sites, which would likely facilitate facile Li intercalation to small diameter entrance sites, which would 

make Li intercalation difficult. The structural variation is critically dependent upon the nanostructuring – specifically 

the curvature of the surfaces, which emanate from the radius of the nanoparticle and architecture of the 

mesoporous system. 
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