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Abstract

In [5] Cauchon introduced the so-called deleting derivations algorithm. This algorithm was

first used in noncommutative algebra to prove catenarity in generic quantum matrices, and then to

show that torus-invariant primes in these algebras are generated by quantum minors. Since then

this algorithm has been used in various contexts. In particular, the matrix version makes a bridge

between torus-invariant primes in generic quantum matrices, torus-orbits of symplectic leaves in

matrix Poisson varieties and totally nonnegative cells in totally nonnegative matrix varieties [12].

This led to recent progress in the study of totally nonnegative matrices such as new recognition

tests, see for instance [18]. The aim of this article is to develop a Poisson version of the deleting

derivations algorithm to study the Poisson spectra of the members of a classP of polynomial

Poisson algebras. It has recently been shown that the Poisson Dixmier-Moeglin equivalence does

not hold for all polynomial Poisson algebras [2]. Our algorithm allows us to prove this equivalence

for a significant class of Poisson algebras, when the base field is of characteristic zero. Finally,

using our deleting derivations algorithm, we compare topologically spectra of quantum matrices

with Poisson spectra of matrix Poisson varieties.

2010 Mathematics subject classification:17B63, 20G42
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Introduction

Poisson algebras have been intensively and widely studied since their first appearance, both on their

own and in connection with other areas of mathematics. For instance, we refer to [19] where Poisson

structures are studied from the differential geometry point of view, [7] where links with number the-

ory are made or [10] for the connection with noncommutative algebra; this literature is of course non

∗The second author thanks EPSRC for its support.
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exhaustive. In this paper we study Poisson spectra of certain Poisson polynomial algebras. Differ-

ent aspects of this topic have been investigated previously: the Poisson Dixmier-Moeglin equivalence

is studied in [2], [9], [11] and [21], links between Poisson spectra and their quantum analogues are

investigated in [13], [14], [21] and [24] and Poisson spectra of Jacobian Poisson structures and gener-

alisations in higher dimensions are studied in [15] and [16].

Inspired by [5], we develop a method to study the algebras of aclassP of iterated Poisson-Ore ex-

tensions over a fieldK of arbitrary characteristic. More precisely forA ∈ P, the (characteristic-free)

Poisson deleting derivations algorithmconsists of performing several explicit changes of variables

inside the field of fractions FracA of A. At each step of the algorithm we obtain a sequence ofn

algebraically independent elements of FracA, where the integern corresponds to the number of in-

determinates inA. The subalgebra of FracA generated by these elements is a Poisson algebra with a

"simpler" Poisson bracket than the one obtained at the previous step. Moreover the Poisson algebras

corresponding to two consecutive steps, sayCj+1 andCj , satisfy:

Cj+1S
−1
j = CjS

−1
j

for a given multiplicatively closed setSj. After the last step, we get algebraically independent ele-

mentsT1, . . . , Tn of FracA such that the algebraA they generate is aPoisson affine space, i.e. A

is a polynomial algebraK[T1, . . . , Tn] with Poisson bracket on the generators given by{Ti, Tj} =

λijTiTj for all i, j, where(λij) ∈ Mn(K) is a skew-symmetric matrix. In particular the algorithm

shows that FracA = FracA as Poisson algebras. Therefore we retrieve the results of Poisson bira-

tional equivalence obtained in [17] (see also [11] in characteristic zero), that is the Poisson algebras

of the classP satisfy the quadratic Poisson Gel’fand-Kirillov problem (see [11] and [17] for more

details).

For a Poisson algebraA we denoted by P.Spec(A) the set of prime ideals which are also Poisson

ideals. We refer to this set as thePoisson spectrumof A (see Remark 0.3 at the end of the introduction).

The set P.Spec(A) is equipped with the induced Zariski topology from the spectrum Spec(A) of A.

WhenA ∈ P, our algorithm allows us to define an embeddingϕ from P.Spec(A) to P.Spec(A) called

thecanonical embedding. This embedding will be our main tool for studying Poisson spectra. One of

its important properties is that forP ∈ P.Spec(A) we have a Poisson algebra isomorphism:

Frac
(A

P

)

∼= Frac
( A

ϕ(P )

)

.

Note that this isomorphism reduces the quadratic Poisson Gel’fand-Kirillov problem for the Poisson

prime quotients ofA to the quadratic Poisson Gel’fand-Kirillov problem for thePoisson prime quo-

tients of a Poisson affine space. As in the noncommutative case, the canonical embedding leads to

a partition of P.Spec(A) indexed by a subsetW ′
P of W := P([[1, n]]), the powerset of[[1, n]] :=

{1, . . . , n}. More precisely, forw ∈ W , we set:

P.Specw(A) :=
{

P ∈ P.Spec(A) | Q ∩ {T1, . . . , Tn} = {Ti | i ∈ w}
}

, (1)
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where we recall thatT1, . . . , Tn are the generators of the Poisson affine spaceA. These sets form a

partition of P.Spec(A) which induces a partition on P.Spec(A) as follows:

P.Spec(A) =
⊔

w∈W ′

P

ϕ−1
(

P.Specw(A)
)

, where W ′
P := {w ∈ W | ϕ−1

(

P.Specw(A)
)

6= ∅}.

This partition of P.Spec(A) is called thecanonical partition, and the elements ofW ′
P will be called

the Cauchon diagrams associated to A, or Cauchon diagrams for short. Forw ∈ W ′
P , the set

ϕ−1
(

P.Specw(A)
)

is called thestratumassociated tow. We study the topologico-algebraic prop-

erties of those strata in Section 2.4, our main result being that forw ∈ W ′
P the image of the stratum

associated tow is a closed subset of P.Specw(A) and thatϕ induces a homeomorphism from this

stratum to its image. In Section 4 we turn our attention to Poisson primitive spectra of the algebras of

the classP. In particular our algorithm allows us to prove the Poisson Dixmier-Moeglin equivalence

for the algebras of the classP when charK = 0. For information on the original Dixmier-Moeglin

equivalence, as well as its Poisson version we refer to [2] and [9]. We briefly recall here the Poisson

version. LetA be a PoissonK-algebra andP ∈ P.Spec(A). The idealP is said to belocally closedif

the point{P} is a locally closed point of P.Spec(A). LetB a be Poisson algebra. The Poisson centre

of B is the Poisson subalgebraZP (B) := {a ∈ B | {a,−} ≡ 0}. The idealP is said to bePoisson

rational provided the fieldZP

(

Frac(A/P )
)

is algebraic over the ground fieldK. ForJ an ideal of

A, there is a largest Poisson ideal contained inJ that is called thePoisson coreof J . Poisson cores

of maximal ideals ofA are calledPoisson primitive ideals. We say that the Poisson Dixmier-Moeglin

equivalence holds for the Poisson algebraA if the following sets coincide:

(1) the set of Poisson primitive ideals;

(2) the set of locally closed Poisson ideals;

(3) the set of Poisson rational ideals.

It is shown in [21] that we have the inclusions(2) ⊆ (1) ⊆ (3) for all affine Poisson algebras over a

base field of characteristic zero. However the inclusion(3) ⊆ (2) is not always satisfied as there exist

counterexamples in all Krull dimensiond ≥ 4 (see [2]). All algebras of the classP are affine Poisson

algebras, therefore it only remains to show the inclusion(3) ⊆ (2), as long as charK = 0. It is

known that Poisson affine spaces satisfy the Poisson Dixmier-Moeglin equivalence, see [9, Example

4.6] for instance. In Section 4 this fact together with the canonical embedding will allow us to prove

the Poisson Dixmier-Moeglin equivalence for all algebras of the classP. Even better, the Poisson

primitive ideals are exactly the Poisson prime ideals that are maximal in their strata. Note that in

[11] the Poisson Dixmier-Moeglin equivalence was shown fora class of Poisson algebras supporting

rational torus actions. In our assumptions we do not requirethe existence of any torus action, and we

indeed give an example (see Example 4.7), where previous results do not apply.

In [5] Cauchon uses his deleting derivations algorithm to obtain information on the spectra of the

algebras of a classR of iterated Ore extensions (i.e. the algebras satisfying the hypotheses of [5,

Section 3.1]). These algebras are deformation of Poisson algebras of the classP. More precisely, we
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are in the following setting. LetRt be an iterated Ore extension overK[t±1]:

Rt = K[t
±1][x1][x2;σ2,∆2] · · · [xn;σn,∆n],

such that for all2 ≤ i ≤ n:

• R<i
t denotes the subalgebra ofRt generated byt±1, x1, . . . , xi−1,

• σi is aK[t±1]-automorphism ofR<i
t such thatσi(xj) = tλijxj for all 1 ≤ j < i, where the

scalarsλij are integers,

• ∆i is a locally nilpotentK[t±1]-linearσi-derivation ofR<i
t ,

• σi∆i = tηi∆iσi for some nonzero integerηi,

• ∆k
i (R

<i
t ) ⊆ (t− 1)k(k)!tηiR

<i
t for all k ≥ 0,

• A := Rt/(t− 1)Rt is commutative.

We fix a scalarq ∈ K× which is not a root of unity. Then, the algebraRq := Rt/(t − q)Rt

belongs to the classR, and the algebraA is a Poisson algebra which belongs to the classP (see [17,

Theorem 4.2]). The Poisson bracket onA is given by the informal formula:
{

r + (t− 1)Rt, s+ (t− 1)Rt

}

=
rs− sr

t− 1
+ (t− 1)Rt, (2)

for all r, s ∈ Rt. We say that the algebraRq is adeformationof the Poisson algebraA, and thatA is

thesemiclassical limitof the algebraRt at t− 1. The diagram of Figure 1 illustrates this situation.

Rt

A Rq

t = 1 t = q

deformation

Figure 1: Deformation

In such a deformation-quantisation context, it is usually expected that the algebraRq and the

Poisson algebraA share similarities. For instance it is conjectured in [10, Section 9.1] that there

should be a homeomorphism between the spectrum of the generic quantised coordinate ring of an

affine algebraic varietyV and the Poisson spectrum of its semiclassical limitO(V ) whenK is al-

gebraically closed of characteristic zero. This conjecture has been investigated for several algebras,

for instance we refer to the recent works [8] and [24]. In particular, building on previous work of

Hodges-Levasseur and Joseph, progress have been made by Yakimov [24] towards obtaining a home-

omorphism between the symplectic leaves of a connected, simply connected complex algebraic group

G and the primitive spectrum of the quantized coordinate ringRq[G].

In light of this, it would be natural to ask whether or not there exists a homeomorphism between

Spec(Rq) and P.Spec(A). However, it is not always the case, and a counterexample is provided by

the algebraRt generated overK[t±1] by x andy subject to:

xy − tyx = (t− 1)2.
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In view of (2) we have:

{

x+ (t− 1)Rt, y + (t− 1)Rt

}

= (x+ (t− 1)Rt)(y + (t− 1)Rt),

so that the algebraA is a Poisson affine plane. On the other hand the algebraRq is isomorphic to the

first quantum Weyl algebra. In particularRq has a unique height one prime ideal, and its spectrum

cannot be homeomorphic to the Poisson spectrum ofA.

In this article, we propose a sufficient condition for such a homeomorphism to exist (see Question

0.2 below). Toward describing this sufficient condition, werecall that Cauchon defines a partition

of the spectrum Spec(Rq) indexed by a subsetW ′ of W , see [5, Proposition 4.4.1]. Similarly, our

algorithm allows us to define a partition of the Poisson spectrum P.Spec(A) indexed by a subsetW ′
P

of W . Again it would be natural to ask whether or not these sets coincide, but the same example as

above shows that it is not always the case. Indeed, from (1) itis clear that we haveW ′
P = W =

{

∅, {1}, {2}, {1, 2}
}

, whereas we haveW ′ =
{

∅, {1}
}

, by [20, Section 7.2.1.2] for instance. In

Section 5, we prove thatW ′ = W ′
P for the algebra ofm× p quantum matrices, and we use this fact

to prove the following result.

Theorem 0.1(Proposition 5.1). Suppose thatcharK = 0. LetR = Oq

(

Mm,p(K)
)

be the algebra

of quantum matrices andA = Oq

(

Mm,p(K)
)

its semiclassical limit. There exists a bijection be-

tweenSpec(R) and P.Spec(A), which restricts to homeomorphisms between the strataSpecw(R)

andP.Specw(A) for all w ∈ W ′ = W ′
P .

To prove this theorem we show that forw ∈ W ′ = W ′
P there is a homeomorphism between

the strata Specw(R) and P.Specw(A). However we deduce this homeomorphism from the canonical

embedding, which is known to be continuous only when being restricted to a stratum. Therefore it is

unclear whether the bijection of the theorem above is a homeomorphism or not. In small dimensions

methods from [4] and their Poisson analogues [8] could be used to decide this question, but their

computational nature would prevent use of them in the general case.

In view of the above discussion, it is natural to ask the following question.

Question 0.2. Let Rt be an iterated Ore extension as above and suppose thatW ′ = W ′
P . Is there a

homeomorphism between Spec(Rq) and P.Spec(A)?

We note that the algebra generated overK[t±1] by x andy subject toxy − tyx = (t − 1)2 does

not satisfy the condition thatW ′ = W ′
P .

Remark0.3. The Poisson spectrum of a Poisson algebra is usually defined in a more general way.

For a Poisson algebraA, a Poisson-prime idealP is a Poisson ideal such that if wheneverIJ ⊆ P

for some Poisson idealsI, J of A, then eitherI ⊆ P or J ⊆ P . It is clear that a Poisson and

prime ideal is a Poisson-prime ideal. IfA is noetherian and the characteristic of the base field is zero,

then the converse is true thanks to [6, Lemma 3.3.2]. The method we developed in Section 2 does

not apply to non prime Poisson-prime ideals. However our approach includes all the Poisson-prime
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ideals in the characteristic zero case and deals with a significant set of Poisson-prime ideals in positive

characteristic.

In the situation described previously our main goal is to compare the spectrum ofRq (for q not a

root of unity) with the Poisson spectrum ofA. However even in the simplest example these spectra are

not homeomorphic when we consider Poisson-prime ideals. Indeed, assume thatK is algebraically

closed and that charK = p > 0. We denote byRt = K[t±1][x1][x2;σ2] the iterated Ore extension

such thatσ2(t) = t andσ2(x1) = tx1. ThenRq is a quantum affine space for a non root of unity

q ∈ K×, and its set of prime ideals is well known, see [3, II.1.2] forinstance. In particular the principal

ideals generated byx1 andx2 are the only height one prime ideals inRq. The Poisson algebraA is

the Poisson affine spaceA = K[X1,X2] with {X1,X2} = X1X2. In addition of the ideals generated

by X1 andX2, there are infinitely many other height one Poisson-prime ideals inA. For instance the

ideal generated by the Poisson central elementXp
1 − 1 is a non prime Poisson ideal, and it follows

from [17, Lemma 3.5] that it is also Poisson-prime. Thus the set of Poisson-prime ideals ofA cannot

be homeomorphic with the set of prime ideals inRq. However it is easy to verify that there is a

homeomorphism between the set of Poisson and prime ideals inA and the set of prime ideals inRq.

To summarise, when dealing with a Poisson algebraB over a field of arbitrary characteristic we

will restrict our attention to the study of the Poisson and prime ideals ofB, and the set of such ideals

will be denoted by P.Spec(B).

1 Poisson deleting derivations algorithm

The aim of this section is to define the Poisson deleting derivations algorithm. This algorithm is

based on the Poisson deleting derivation homomorphism defined in [17]. We recall the definition and

properties of this homomorphism in Section 1.1, and introduce the class of Poisson algebras to which

the Poisson deleting derivations algorithm applies in Section 1.2.

1.1 Poisson deleting derivation homomorphism

Most of the definitions and results in this section are taken from [17, Section 2]. We recall them here

for the convenience of the reader. Poisson-Ore extensions are Poisson analogues of the well-known

notion of Ore extension, or skew polynomial ring, in noncommutative ring theory. Their definition is

based on the following result of Oh.

Theorem 1.1. [22, Theorem 1.1]Let α and δ beK-linear maps of a PoissonK-algebraA. Then

the polynomial algebraR = A[X] is a Poisson algebra with Poisson bracket extending the Poisson

bracket ofA and satisfying:

{X, a} = α(a)X + δ(a) for all a ∈ A,

if and only ifα is a Poisson derivation ofA, i.e.α is aK-derivation ofA with:

α({a, b}) = {α(a), b} + {a, α(b)} for all a, b ∈ A,

6



andδ is a Poissonα-derivation ofA, i.e. δ is aK-derivation ofA with:

δ({a, b}) = {δ(a), b} + {a, δ(b)} + α(a)δ(b) − δ(a)α(b) for all a, b ∈ A.

Definition 1.2. Let A be a Poisson algebra. The set of Poisson derivations ofA is denoted by

DerP (A). Let α ∈ DerP (A) andδ be a Poissonα-derivation ofA. SetR = A[X]. The algebra

R endowed with the Poisson bracket from Theorem 1.1 is denotedby R = A[X;α, δ]P and called a

Poisson-Ore extension. As usual we writeA[X;α]P for A[X;α, 0]P .

This construction is easily iterated. We say thatR is an iterated Poisson-Ore extension overA if

R = A[X1;α1, δ1]P [X2;α2, δ2]P · · · [Xn;αn, δn]P

for some Poisson derivationsα1, . . . , αn andαi-Poisson derivationsδi (1 ≤ i ≤ n) of the appropriate

Poisson subalgebras.

Let λ = (λij) ∈ Mn(K) be a skew-symmetric matrix. Then we define a Poisson bracket on

the polynomial algebraK[X1, . . . ,Xn] by setting by{Xi,Xj} := λijXiXj for all i, j. This Poisson

algebra is called thePoisson affinen-space associated toλ and is denoted byKλ[X1, . . . ,Xn]. It

is clear that the Poisson affinen-spaceKλ[X1, . . . ,Xn] is an iterated Poisson-Ore extension of the

form:

K[X1][X2;α2]P · · · [Xn;αn]P ,

whereαi is the Poisson derivation of the Poisson algebraK[X1][X2;α2]P · · · [Xi−1;αi−1]P such that

αi(Xj) = λijXj for all 1 ≤ j < i ≤ n.

The main tool to define the characteristic-free Poisson deleting derivations algorithm is the exis-

tence of higher derivations which are compatible with Poisson brackets. We now fix the notation and

terminology used in this article.

Definition 1.3. LetA be a PoissonK-algebra,α ∈ DerP (A) andη ∈ K.

(1) A higher derivationonA is a sequence ofK-linear maps(Di)
∞
i=0 = (Di) such that:

D0 = idA andDn(ab) =
n
∑

i=0
Di(a)Dn−i(b) for all a, b ∈ A and alln ≥ 0.

A higher derivation isiterative if DiDj =
(

i+j
i

)

Di+j for all i, j ≥ 0, andlocally nilpotent if

for all a ∈ A there existsn ≥ 0 such thatDi(a) = 0 for all i ≥ n.

(2) A higher derivation(Di) is ahigherα-skew Poisson derivationif for all a, b ∈ A and alln ≥ 0:

Dn({a, b}) =
n
∑

i=0
{Di(a),Dn−i(b)} + i

(

αDn−i(a)Di(b)−Di(a)αDn−i(b)
)

.

(3) A higherα-skew Poisson derivation is ahigher(η, α)-skew Poisson derivationif for all i ≥ 0:

Diα = αDi + iηDi.

7



(4) We say that the derivationδ of a Poisson-Ore extensionA[X;α, δ]P extends to a higher(η, α)-

skew Poisson derivationif there exists a higher(η, α)-skew Poisson derivation(Di) onA such

thatD1 = δ.

We first observe that to define a higher derivation(Di) on an algebraA, it is enough to give its

values on a set of generators ofA. Moreover(Di) is iterative (resp. locally nilpotent) onA, if it is

iterative (resp. locally nilpotent) on a set of generators of A. Tedious computations show that it is also

enough to check assertions(2) and(3) of Definition 1.3 on a set of generators.

Example1.4. LetA = K[X]. We define a higher derivation(Di) onA by setting:

Di(X) :=











X i = 0,

1 i = 1,

0 i > 1.

Note that by induction we have:

Di(X
k) =

(

k

i

)

Xk−i

for all i, k ≥ 0. It is clear thatDi is iterative and locally nilpotent. Letα := X∂X andδ := ∂X where

∂X denotes the usual partial derivative ofA with respect toX. Thenα is a Poisson derivation ofA

andδ is a Poissonα-derivation ofA such thatD1 = δ, whereA is endowed with the trivial Poisson

structure ({a, b} = 0 for all a, b ∈ A). It follows easily thatδ extends to an iterative, locally nilpotent

higher(1, α)-skew Poisson derivation onA.

We now recall the Poisson deleting derivation homomorphismthat was defined in [17, Section

2.3]. Note that a Poisson bracket extends uniquely by localisation [19, Section 2.4.2], so in particular

the Poisson bracket of a Poisson-Ore extensionA[X;α, δ]P uniquely extends to the Laurent polyno-

mial ringA[X±1], and we denote this Poisson algebra byA[X±1;α, δ]P .

Theorem 1.5. [17, Theorem 2.11]Let A[X;α, δ]P be a Poisson-Ore extension, whereA is a Pois-

sonK-algebra. Suppose thatδ extends to an iterative, locally nilpotent higher(η, α)-skew Poisson

derivation(Di) onA such thatη ∈ K×. Then the algebra homomorphismθ : A → A[X±1] defined

by:

θ(a) =
∑

i≥0

1

ηi
Di(a)X

−i

uniquely extends to a PoissonK-algebra isomorphism:

θ : A[Y ±1;α]P
∼=

−→ A[X±1;α, δ]P

by settingθ(Y ) = X.

We setB := A[X;α, δ]P andS := {Xi | i ≥ 0} so that we haveBS−1 = A[X±1;α, δ]P . We

deduce immediately the following result.
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Corollary 1.6. BS−1 contains a Poisson subalgebraB′ isomorphic toA[Y ;α]P , and we have

B′S−1 = BS−1. In particular we have:

Frac
(

A[X;α, δ]P
)

= Frac
(

B′
)

∼= Frac
(

A[Y ;α]P
)

.

Proof. TakeB′ := θ(A[Y ;α]P ).

1.2 A class of iterated Poisson-Ore extensions

In this section, we introduce the class of Poisson algebras that we will study in this paper.

Hypothesis 1.7.

(1) A = K[X1][X2;α2, δ2]P · · · [Xn;αn, δn]P is an iterated Poisson-Ore extension overK. We set

Ai := K[X1][X2;α2, δ2]P · · · [Xi;αi, δi]P for all 1 ≤ i ≤ n.

(2) Suppose that for all1 ≤ j < i ≤ n there existsλij ∈ K such thatαi(Xj) = λijXj. We set

λji := −λij for all 1 ≤ j < i ≤ n.

(3) For all2 ≤ i ≤ n, assume that the derivationδi extends to an iterative, locally nilpotent higher

(ηi, αi)-skew Poisson derivation(Di,k)
∞
k=0 onAi−1, whereηi is anonzeroscalar.

(4) Assume thatαiDj,k = Dj,kαi + kλijDj,k for all 2 ≤ j < i ≤ n and allk ≥ 0.

Notation 1.8. We denote byP the class of iterated Poisson-Ore extensions which satisfyHypothesis

1.7.

Note that, ifA = K[X1][X2;α2, δ2]P · · · [Xn;αn, δn]P ∈ P, then the intermediate Poisson alge-

brasAi from Hypothesis 1.7 also belong toP.

Remark1.9. In characteristic zero we have thatDi =
Di

1
i! for all i for any iterative higher derivation

(Di). In particular it follows from [20, Remark 5.1.2] that in characteristic zero, one can replace

assertions (3) and (4) of Hypothesis 1.7 by:

(3’) Assume that for all2 ≤ i ≤ n the derivationδi is locally nilpotent and thatδiα − αδi = ηiδi

for some nonzero scalarηi.

In the next sections we will need to use inductive arguments to define and study the Poisson

deleting derivations algorithm. In the induction step we will need to re-arrange the order of the

indeterminates of an iterated Poisson-Ore extension inP. The following lemma will ensure that the

new Poisson algebra is still inP, so that one can apply the deleting derivation homomorphismto this

new algebra, and thus proceed with the induction. In particular, to satisfy the hypothesis of Theorem

1.5 we need the scalarsηi to be nonzero.

The restriction of a linear mapf to a subspaceV of its domain will be denoted byf |V .

Lemma 1.10. LetA ∈ P with δj+1 = · · · = δn = 0. With the notation of Hypothesis 1.7, we have

the following.
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(1) We can writeA = Aj−1[Xj+1;βj+1]P · · · [Xn;βn]P [Xj ;α
′
j , δ

′
j ]P where:

• βi|Aj−1 = αi|Aj−1 for all j < i ≤ n andβi(Xl) = λilXl for all j < l < i,

• α′
j |Aj−1 = αj andα′

j(Xl) = λjlXl for all j < l ≤ n,

• δ′j |Aj−1 = δj andδ′j(Xl) = 0 for all j < l ≤ n.

(2) δ′j extends to an iterative, locally nilpotent higher (ηj , α
′
j)-skew Poisson derivation(D′

j,k)
∞
k=0

on Aj−1[Xj+1;βj+1]P · · · [Xn;βn]P such that the restriction ofD′
j,k to Aj−1 coincides with

Dj,k for all k ≥ 0, andD′
j,k(Xl) = 0 for all k > 0 and all j < l ≤ n.

(3) A = Aj−1[Xj+1;βj+1]P · · · [Xn;βn]P [Xj ;α
′
j , δ

′
j ]P also belongs toP.

Proof. (1) Since{Xl,Xj} = λljXlXj for all j < l ≤ n, the order of the variablesXj , . . . ,Xn can

be changed. The resulting Poisson (αi-)derivations are those described above.

(2) This is an easy induction using [17, Lemma 3.1].

(3) This follows directly from (1) and (2).

1.3 Poisson deleting derivations algorithm

Let A = K[X1][X2;α2, δ2]P · · · [Xn;αn, δn]P ∈ P. We continue using the notation of Hypothesis

1.7.

We are now ready to describe the Poisson deleting derivations algorithm. Forj running fromn+1

to 2 we define, by a decreasing induction, a sequence(X1,j , . . . ,Xn,j) of elements of FracA. First

for j = n+ 1 we set(X1,j , . . . ,Xn,j) := (X1, . . . ,Xn). Then for2 ≤ j ≤ n we set:

Xi,j :=







Xi,j+1 i ≥ j,
∑

k≥0

1
ηkj
Dj,k(Xi,j+1)X

−k
j,j+1 i < j,

for all 1 ≤ i ≤ n. Moreover for all2 ≤ j ≤ n + 1 we setCj := K[X1,j , . . . ,Xn,j ]. In particular we

haveCn+1 = A. The following proposition describes explicitly the Poisson structures on the algebras

Cj induced by these changes of variables.

Proposition 1.11. For all 1 ≤ j ≤ n we have:

(1) Cj+1 is isomorphic to an iterated Poisson-Ore extension of the form:

K[X1] · · · [Xj ;αj , δj ]P [Xj+1;βj+1]P · · · [Xn;βn]P

by a Poisson isomorphism sendingXi,j+1 toXi for 1 ≤ i ≤ n.

(2) For all l ∈ {j + 1, . . . , n}, the mapβl is a Poisson derivation such thatβl(Xi) = λliXi for all

1 ≤ i < l and we haveβlDi,k = Di,kβl + kλliDi,k for all 1 < i ≤ j and allk ≥ 0.

(3) SetSj = {Um
j | m ≥ 0} = {V m

j | m ≥ 0}. We haveCjS
−1
j = Cj+1S

−1
j .

10



Proof. We proceed by a decreasing induction onj. Forj = n + 1 we haveCn+1 = A and the result

follows from Hypothesis 1.7. We now suppose that the result is true for a rankj +1 > 2. To simplify

notation we setUi = Xi,j+1 andVi = Xi,j for all 1 ≤ i ≤ n. By the induction hypothesis we can

expressCj+1 as the iterated Poisson-Ore extension:

K[U1] · · · [Uj ;αj , δj ]P [Uj+1;βj+1]P · · · [Un;βn]P ∈ P.

By Lemma 1.10 we can write:

Cj+1 = K[U1] · · · [Uj−1;αj−1, δj−1]P [Uj+1;β
′
j+1]P · · · [Un;β

′
n]P [Uj ;α

′
j , δ

′
j ]P ,

whereβ′
l for all j < l ≤ n andα′

j andδ′j are defined as in assertion (1) of Lemma 1.10. In particular

δ′j extends to an iterative, locally nilpotent higher(ηj , α
′
j)-skew Poisson derivation(D′

j,k)
∞
k=0 on the

Poisson algebra:

Ĉj+1 := K[U1] · · · [Uj−1;αj−1, δj−1]P [Uj+1;β
′
j+1]P · · · [Un;β

′
n]P .

Therefore by applying Theorem 1.5 to the Poisson algebraCj+1 = Ĉj+1[Uj ;α
′
j , δ

′
j ]P we get a Poisson

algebra isomorphismθ from Ĉj+1[U
±1
j ;α′

j ]P to Ĉj+1[U
±1
j ;α′

j , δ
′
j ]P sendingUj to Uj. In particular

we haveθ(Ui) = Vi for all 1 ≤ i ≤ n sinceUj = Vj and:

θ(Ui) =
∑

l≥0

1

ηlj
D′

j,l(Ui)U
−l
j =







∑

l≥0

1
ηlj
Dj,l(Ui)U

−l
j i < j,

Ui i < j.

Thus we have:

θ
(

Ĉj+1[Uj ;α
′
j ]P

)

= K[V1] · · · [Vj−1;αj−1, δj−1]P [Vj+1;β
′
j+1]P · · · [Vn;β

′
n]P [Vj ;α

′
j ]P = Cj,

and by Corollary 1.6 we getCjS
−1
j = Cj+1S

−1
j . This proves assertion (3).

Since{Vl, Vj} = λljVjVl for all j < l ≤ n we can bring backVj in thej-th position:

Cj = K[V1] · · · [Vj−1;αj−1, δj−1]P [Vj ;β
′′
j ]P · · · [Vn;β

′′
n]P ,

where for allj ≤ l ≤ n, the mapβ′′
l is a Poisson derivation such thatβ′′

l (Vi) = λliVi for all 1 ≤ i < l.

This proves assertion (1).

Finally, the fact thatβ′′
l Dm,k = Dm,kβ

′′
l + kλlmDm,k for all 1 < m < j ≤ l ≤ n and allk ≥ 0,

follows directly from the equalities:

• βlDm,k = Dm,kβl + kλlmDm,k for all 1 < m ≤ j < l ≤ n and allk ≥ 0,

• βl(Ui) = λliUi for all j < l ≤ n and all1 ≤ i < l,

• αj(Ui) = λjiUi for all 1 ≤ i < j,

• β′′
l (Vi) = λliVi for all j ≤ l ≤ n and all1 ≤ i < l.

11



This proves assertion (2).

Corollary 1.12. The algebraA := C2 is a Poisson affine space. More precisely, by settingTi := Xi,2

for all 1 ≤ i ≤ n andλ for the skew-symmetric matrix defined byλ := (λij) ∈ Mn(K) we have:

A = Kλ[T1, . . . , Tn].

2 Poisson deleting derivations algorithm and Poisson spectrum

Recall that for a Poisson algebraB we denote by P.Spec(B) its Poisson spectrum, i.e. the set of prime

ideals ofB which are also Poisson ideals. P.Spec(B) is endowed with the induced Zariski topology.

In this section we focus on the behaviour of the Poisson spectrum of an iterated Poisson-Ore extension

A ∈ P under the Poisson deleting derivation algorithm. We show that there is an embedding between

P.Spec(A) and P.Spec(A). This is done by showing that, at each step of the algorithm there is an

embedding between P.Spec(Cj+1) and P.Spec(Cj) for all 2 ≤ j ≤ n.

Throughout this section, we use the notation of Hypothesis 1.7 and we fix2 ≤ j ≤ n, and set

Ui := Xi,j+1 andVi := Xi,j for all 1 ≤ i ≤ n.

2.1 The embeddingϕj : P.Spec(Cj+1) → P.Spec(Cj)

Recall thatUj = Vj, and set:

P0
j (Cj) = {P ∈ P.Spec(Cj) | Vj /∈ P}, P1

j (Cj) = {P ∈ P.Spec(Cj) | Vj ∈ P},

P0
j (Cj+1) = {P ∈ P.Spec(Cj+1) | Uj /∈ P}, P1

j (Cj+1) = {P ∈ P.Spec(Cj+1) | Uj ∈ P}.

These sets partition P.Spec(Cj) and P.Spec(Cj+1). Since we haveCjS
−1
j = Cj+1S

−1
j , contraction

and extension of ideals provide bijections betweenP0
j (Cj) andP0

j (Cj+1) (it is easy to show that the

contraction or the extension of a Poisson ideal is again a Poisson ideal). More precisely we have the

following result.

Lemma 2.1. There is a homeomorphismϕ0
j : P0

j (Cj+1) → P0
j (Cj) given byϕ0

j(P ) := PS−1
j ∩ Cj

for P ∈ P0
j (Cj+1). Its inverse is defined by(ϕ0

j )
−1(Q) := QS−1

j ∩ Cj+1 for Q ∈ P0
j (Cj).

We note that bothϕ0
j and (ϕ0

j )
−1 respect the inclusion of Poisson prime ideals. We now want

to compareP1
j (Cj+1) andP1

j (Cj). For, we denote by〈Uj〉P the smallest Poisson ideal inCj+1

containingUj and for all 1 ≤ i ≤ n, we denote byUi the image ofUi in the Poisson algebra

Cj+1/〈Uj〉P .

Lemma 2.2. There is a surjective Poisson algebra homomorphismgj : Cj → Cj+1/〈Uj〉P given by

gj(Vi) = Ui for all 1 ≤ i ≤ n.

12



Proof. The mapgj is the composition of the canonical quotient mapπ : Cj+1 → Cj+1/〈Uj〉P and

the algebra isomorphismΨ : Cj → Cj+1 defined byΨ(Vi) = Ui for all 1 ≤ i ≤ n. Thus clearlygj =

π◦Ψ is a surjective algebra homomorphism. Note thatπ is a Poisson algebra homomorphism whereas

Ψ is not in general, so we cannot conclude directly. We show that gj({Vk, Vl}) = {gj(Vk), gj(Vl)}

for all 1 ≤ l < k ≤ n. First if k ≥ j we have:

gj({Vk, Vl}) = gj(λklVkVl) = λklUkUl = {Uk, Ul} = {gj(Vk), gj(Vj)}.

(Note that whenk = j we haveUk = 0). If k < j we haveΨ(δk(Vl)) = δk(Ul) and thus:

gj({Vk, Vl}) = gj
(

λklVkVl + δk(Vl)
)

= λklUkUl + gj
(

δk(Vl)
)

= λklUkUl + δk(Ul) = {Uk, Ul} = {gj(Vk), gj(Vl)}.

SetNj := ker(gj). There is a homeomorphismϕ1
j from P1

j (Cj+1) to {P ∈ P.Spec(Cj) | Nj ⊆

P} defined byϕ1
j(P ) := g−1

j (P/〈Uj〉P ) for P ∈ P1
j (Cj+1). SinceVj = Uj ∈ Nj we have{P ∈

P.Spec(Cj) | Nj ⊆ P} ⊆ P1
j (Cj) and:

Lemma 2.3. There is an increasing and injective mapϕ1
j : P

1
j (Cj+1) → P1

j (Cj) defined byϕ1
j (P ) =

g−1
j (P/〈Uj〉P ) for P ∈ P1

j (Cj+1), which induces a homeomorphism on its image.

We can now define a mapϕj : P.Spec(Cj+1) → P.Spec(Cj) by setting:

ϕj(P ) =

{

ϕ0
j (P ) if P ∈ P0

j (Cj+1),

ϕ1
j (P ) if P ∈ P1

j (Cj+1).

As a direct consequence of Lemmas 2.1 and 2.3 we get the following result.

Proposition 2.4. The mapϕj : P.Spec(Cj+1) → P.Spec(Cj) is injective. Forε ∈ {0, 1}, the mapϕj

induces a homeomorphism fromPε
j (Cj+1) to ϕj

(

Pε
j (Cj+1)

)

which is a closed subset ofPε
j (Cj).

2.2 The canonical partition ofP.Spec(A)

Definition 2.5. We setϕ := ϕ2 ◦ · · · ◦ϕn. This is an injective map from P.Spec(Cn+1) = P.Spec(A)

to P.Spec(C2) = P.Spec(A) and we refer to it as thecanonical embedding.

LetW := P([[1, n]]) denote the powerset of[[1, n]]. Forw ∈ W , we set:

P.Specw(A) :=
{

Q ∈ P.Spec(A) | Q ∩ {T1, . . . , Tn} = {Ti | i ∈ w}
}

,

where we recall that theTi are the generators of the Poisson affine spaceA. Note that these sets form

a partition of P.Spec(A). For allw ∈ W we set:

P.Specw(A) := ϕ−1
(

P.Specw(A)
)

,
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andW ′
P for the set ofw such that P.Specw(A) 6= ∅, i.e.

W ′
P := {w ∈ W | P.Specw(A) 6= ∅}.

This family forms a partition of P.Spec(A):

P.Spec(A) =
⊔

w∈W ′

P

P.Specw(A) and |W ′
P | ≤ |W | = 2n.

Definition 2.6. This partition of P.Spec(A) will be called thecanonical partition, the elements of

W ′
P will be called theCauchon diagrams associated to A, or Cauchon diagrams for short. Finally, for

w ∈ W ′
P the set P.Specw(A) is called thestratumassociated tow.

Note that the setW ′
P depends on the expression ofA as an iterated Poisson-Ore extension.

2.3 A membership criterion for Im(ϕ)

The following results help us to understand whether or not a given Poisson prime ideal ofA belongs to

the image of the canonical embedding. This will be useful to understand better the canonical partition

and when dealing with examples. We start this section with a membership criterion for Im(ϕj). Recall

thatNj = ker(gj) was defined in Section 2.1.

Lemma 2.7. LetQ ∈ P.Spec(Cj). Then:

Q ∈ Im(ϕj) ⇔
(

eitherUj = Vj /∈ Q, or Nj ⊆ Q
)

.

Proof. This is clear since the mapϕ0
j is a bijection fromP0

j (Cj+1) to P0
j (Cj) and the mapϕ1

j is a

bijection fromP1
j (Cj+1) to {Q ∈ P.Spec(Cj) | Nj ⊆ Q}.

Setf1 := idP.Spec(A). For all 2 ≤ j ≤ n we define a mapfj : P.Spec(Cj+1) → P.Spec(A) by

settingfj := fj−1 ◦ ϕj . Note that eachfj is injective. We deduce from Lemma 2.7 the following

membership criterion for Im(ϕ).

Proposition 2.8. LetQ ∈ P.Spec(A). The following are equivalent:

• Q ∈ Im(ϕ),

• for all 2 ≤ j ≤ n we haveQ ∈ Im(fj−1) and

eitherXj,j = Xj,j+1 /∈ f−1
j−1(Q), or Nj ⊆ f−1

j−1(Q).

Remark2.9. To understandNj it is enough to understand〈Uj〉P sinceNj = Ψ−1(〈Uj〉P ), where the

algebra isomorphismΨ : Cj → Cj+1 is defined byΨ(Vi) = Ui for all 1 ≤ i ≤ n (see proof of

Lemma 2.2). As{Uj , Ui} = λjiUjUi + δj(Ui) for all i ∈ [[1, j − 1]], we deduce that:

〈Uj , δj(Ui) | i ∈ [[1, j − 1]]〉 ⊆ 〈Uj〉P .
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By minimality of 〈Uj〉P , the reverse inclusion will be satisfied if the left hand sideis a Poisson ideal.

However this is not always the case as the following example demonstrates. LetA be the iterated

Poisson-Ore extensionA := C[X][Y ;β,∆]P [Z;α, δ]P , whereβ := −X∂X , α := X∂X − Y ∂Y ,

∆ := ∂X andδ := Y 2∂X , so that:

{Y,X} = −XY + 1,

{Z,X} = XZ + Y 2,

{Z, Y } = −Y Z.

We have∆β − β∆ = −∆ andδα− αδ = δ. Moreover since∆ andδ are locally nilpotent, assertion

(3’) is satisfied and the algebraA belongs toP. However the ideal〈Z, Y 2〉 is not a Poisson ideal.

2.4 Topological and algebraic properties of the canonical embedding

In this section we investigate topological properties of the canonical embedding. We start with some

results that will be used in this section as well as latter on.

Lemma 2.10. Let l ∈ {j . . . , n}, P ∈ P.Spec(Cj+1) andQ := ϕj(P ) ∈ P.Spec(Cj). Then we have:

Ul ∈ P ⇔ Vl ∈ Q.

Proof. If l = j, then(Ul ∈ P ) ⇔
(

P ∈ P1
j (Cj+1)

)

and(Vl ∈ Q) ⇔
(

Q ∈ P1
j (Cj)

)

, and the result

is given by Proposition 2.4. We distinguish between two cases whenl > j. First, if P ∈ P0
j (Cj+1),

then we have:

Ul ∈ P ⇒ Ul ∈ PS−1
j ⇒ Vl = Ul ∈ Cj ∩ PS−1

j = Q,

and

Vl ∈ Q ⇒ Vl ∈ QS−1
j ⇒ Ul = Vl ∈ Cj+1 ∩QS−1

j = P.

Next, if P ∈ P1
j (Cj+1), then we have:

Ul ∈ P ⇔ Ul ∈
P

〈Uj〉P
⇔ gj(Vl) ∈

P

〈Uj〉P
⇔ Vl ∈ g−1

j

( P

〈Uj〉P

)

= Q.

ForQ ∈ Im(ϕ), we setPj := f−1
j−1(Q) ∈ P.Spec(Cj) for all 2 ≤ j ≤ n + 1. In particular, note

thatQ = P2.

Corollary 2.11. Let i ∈ {1, . . . , n} andQ ∈ Im(ϕ). We have:

Ti = Xi,2 ∈ P2 ⇔ Xi,i+1 ∈ Pi+1.

Proof. This follows by induction from Lemma 2.10.
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Let 1 ≤ j ≤ n andw ∈ W . SetXw := f−1
j (P.Specw(A)) ⊂ P.Spec(Cj+1). Whenj ≥ 2, we

also setYw := f−1
j−1(P.Specw(A)) ⊂ P.Spec(Cj), so thatXw = ϕ−1

j (Yw) sincefj = fj−1 ◦ ϕ. Note

that the setsXw andYw can be empty.

Lemma 2.12. For j ≤ l ≤ n we have:

• If l /∈ w, thenUl /∈ P for all P ∈ Xw,

• If l ∈ w, thenUl ∈ P for all P ∈ Xw.

Proof. Note that sincel ≥ j we haveUl = Xl,k = Tl for all 2 ≤ k ≤ j + 1. If j = 1, we have

Xw = P.Specw(A) and the result comes from the definition of P.Specw(A).

Assume thatj ≥ 2 and the result shown forj − 1. First assume thatl /∈ w and letP ∈ Xw. If

Ul ∈ P thenVl ∈ Q = ϕj(P ) ∈ Yw by Lemma 2.10. This contradicts the induction hypothesis, thus

Ul /∈ P . Next assume thatl ∈ w and letP ∈ Xw. If Ul /∈ P thenVl /∈ Q = ϕj(P ) ∈ Yw by Lemma

2.10. This contradicts the induction hypothesis, thusUl ∈ P .

Lemma 2.13. The setfj(Xw) is a closed subset ofP.Specw(A), and fj induces (by restriction) a

homeomorphism fromXw to fj(Xw).

Proof. The result is trivial ifj = 1. Assume thatj ≥ 2 and that the result is shown forj − 1. By

Lemma 2.12 (applied tol = j for j andj − 1) we have:

• (j /∈ w) ⇒ (Xw ⊂ P0
j (Cj+1) andYw ⊂ P0

j (Cj)),

• (j ∈ w) ⇒ (Xw ⊂ P1
j (Cj+1) andYw ⊂ P1

j (Cj)).

Therefore we haveϕj(Xw) = Yw ∩ Z whereZ = ϕj(P
ε
j (Cj+1)) with ε ∈ {0, 1}. By Proposition

2.4,Yw ∩ Z is a closed subset ofYw, andϕj induces a homeomorphism fromXw to Yw ∩ Z. By the

induction hypothesisfj−1 induces a homeomorphism fromYw to fj−1(Yw) which is a closed subset

of P.Specw(A).

Thusfj−1(Yw∩Z) is a closed subset offj−1(Yw) (as the image of a closed subset by a homeomor-

phism), and so is a closed subset of P.Specw(A). Sincefj(Xw) = fj−1 ◦ ϕj(Xw) = fj−1(Yw ∩ Z),

the first assertion is proved.

The mapfj : Xw → fj(Xw) = fj−1(Yw ∩ Z) is the composition of the two mapsϕj : Xw →

Yw ∩ Z andfj−1 : Yw ∩ Z → fj−1(Yw ∩ Z) which are both homeomorphisms.

Whenj = n we havefj = ϕ andXw = P.Specw(A), for all w ∈ W . We deduce the following

result.

Theorem 2.14. Letϕ : P.Spec(A) → P.Spec(A) be the canonical embedding andw ∈ W ′
P . Then

ϕ(P.Specw(A)) is a (non empty) closed subset ofP.Specw(A), andϕ induces (by restriction) a home-

omorphism fromP.Specw(A) to ϕ(P.Specw(A)).
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In particular we note that the mapϕ respect the inclusion of Poisson prime ideals within the same

strata. In a lot of examples (when the Poisson algebra considered is supporting a suitable torus action

for instance) the inclusion of the previous theorem is actually an equality:

ϕ(P.Specw(A)) = P.Specw(A).

However this is not true in general as the following example demonstrates.

Example2.15. Assume that charK = 0. LetB = Kλ[X1,X2,X3] be the Poisson affine space where:

λ =







0 0 −1

0 0 −1

1 1 0






.

Observe thatα := −X1
∂

∂X1
−X2

∂
∂X2

is a Poisson derivation ofB andδ := (X1+X2)
∂

∂X3
a Poisson

α-derivation ofB. Thus we can form the Poisson-Ore extensionA = B[X4;α, δ]P . Note thatδ is

locally nilpotent and that we haveδα = αδ + δ. ThusA ∈ P by Remark 1.9. In particular the

derivationδ uniquely extends to an iterative, locally nilpotent higher(1, α)-skew Poisson derivation

(Di) defined byDi =
δi

i! for all i ≥ 0. Therefore we can apply the deleting derivations algorithm

(actually the deleting derivation homomorphism is enough here since there is only one step in the

algorithm).

The Poisson algebraA is the Poisson affine spaceKλ
′ [T1, T2, T3, T4] where:

λ′ =













0 0 −1 1

0 0 −1 1

1 1 0 0

−1 −1 0 0













,

and whereT1 = X1, T2 = X2, T3 = X3 + (X1 +X2)X
−1
4 andT4 = X4. The canonical embedding

is the mapϕ from P.Spec(A) to P.Spec(A) defined by:

P 7−→

{

PS−1 ∩A X4 /∈ P

g−1(P/〈X4〉P ) X4 ∈ P,

whereS is the multiplicative set ofA generated byX4, and where:

g : A −→
A

〈X4〉P

Ti 7−→ Xi + 〈X4〉P for i = 1, . . . , 4.

Firstly we show that{4} ∈ W ′
P ⊆ W = P([[1, 4]]). SetP := 〈X4〉P = 〈X4,X1 + X2〉. It

easy to see thatP ∈ P.Spec(A). SinceX4 ∈ P , Lemma 3.1 gives us a Poisson algebra isomorphism

A/P ∼= A/ϕ(P ) sendingXi + P to Ti + ϕ(P ) for 1 ≤ i ≤ 4. Therefore we haveT4 ∈ ϕ(P ) and

T1, T2, T3 /∈ ϕ(P ). Henceϕ(P ) ∈ P.Spec{4}(A) and{4} ∈ W ′
P .
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Secondly, since{4} ∈ W ′
P , Theorem 2.14 tells us that the setϕ

(

P.Spec{4}(A)
)

is a non-empty

closed subset of P.Spec{4}(A). We will show that this inclusion is strict. ForQ ∈ P.Spec{4}(A) we

haveT4 ∈ ϕ(Q) ∈ P.Spec{4}(A), soX4 ∈ Q. But thenQ ∈ P1(A) and thus〈T4, T1 + T2〉 ⊆ ϕ(Q).

Hence we have the following inclusion:

ϕ
(

P.Spec{4}(A)
)

⊆ {P ∈ P.Spec{4}(A) | T4 ∈ P, T1 + T2 ∈ P} ⊆ P.Spec{4}(A).

But it is clear that〈T4〉 ∈ P.Spec{4}(A). Thus:

ϕ
(

P.Spec{4}(A)
)

 P.Spec{4}(A).

To conclude this section we prove the following criterion for a Poisson prime ideal to belong to

the image of the canonical embedding.

Proposition 2.16. Letw ∈ W ′
P , P ∈ P.Specw(A) andQ ∈ P.Specw(A) such thatϕ(P ) ⊆ Q. Then

Q ∈ Im(ϕ).

Proof. We prove by induction thatQ ∈ Im(fj) for all 1 ≤ j ≤ n. Whenj = 1 the result is trivial

sincef1 is the identity on P.Spec(A). Suppose thatQ ∈ Im(fj−1) for some2 ≤ j ≤ n. We have to

show thatf−1
j−1(Q) ∈ Im(ϕj) sincefj = fj−1 ◦ ϕj . Firstly we remark thatϕ(P ) ⊆ Q implies that

f−1
j−1(ϕ(P )) ⊆ f−1

j−1(Q) by Lemma 2.13 (withj replaced byj− 1). We now distinguish between two

cases.

Assume thatUj /∈ f−1
j (ϕ(P )). Then by Corollary 2.11 we haveTj /∈ ϕ(P ) and soj /∈ w. But

then by Lemma 2.12 we haveUj /∈ f−1
j−1(Q) and thusf−1

j−1(Q) ∈ Im(ϕj) by Lemma 2.7.

Assume thatUj ∈ f−1
j (ϕ(P )). Then:

Nj ⊆ ϕj

(

f−1
j (ϕ(P ))

)

= f−1
j−1(ϕ(P )) ⊆ f−1

j−1(Q),

and Lemma 2.7 shows thatf−1
j−1(Q) ∈ Im(ϕj).

This concludes the induction. The result follows by takingj = n.

3 Poisson prime quotients ofA and A

In this section we study the behaviour of the Poisson prime quotients of a Poisson algebraA ∈ P under

the deleting derivations algorithm. We continue using notation from Hypothesis 1.7 and Section 2.

Fix 2 ≤ j ≤ n, letP ∈ P.Spec(Cj+1) and setQ := ϕj(P ) ∈ P.Spec(Cj). As usual, to simplify

notation we setUi := Xi,j+1 andVi := Xi,j for all i. We also setD := Cj+1/P andE := Cj/Q.

Finally, we setdi := Ui + P andei := Vi +Q for all 1 ≤ i ≤ n.

Lemma 3.1. If dj = 0, then there is a Poisson algebra isomorphism betweenE andD sendingei to

di for all 1 ≤ i ≤ n.
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Proof. dj = 0 means thatP ∈ P1
j (Cj+1) andQ = g−1

j (P/〈Uj〉P ). Thus we have a surjective

Poisson algebra homomorphism:

Cj −→
Cj+1/〈Uj〉P
P/〈Uj〉P

∼= Cj+1/P,

whose kernel isQ.

Lemma 3.2. Assume thatdj 6= 0 and setSj := {dnj | n ≥ 0}. Then there is an injective Poisson

algebra homomorphismΛ : E → DSj
−1

defined by:

Λ(ei) =







di i ≥ j,
∑

k≥0

1
ηkj
Dj,k(Ui)d

−k
j i < j

whereDj,k(Ui) := Dj,k(Ui) + P .

Proof. By assumptionP ∈ P0
j (Cj+1), soQS−1

j = PS−1
j is an ideal inCjS

−1
j = Cj+1S

−1
j and we

have the following identifications:

CjS
−1
j

QS−1
j

=
Cj+1S

−1
j

PS−1
j

∼= DSj
−1

.

Thus the canonical embedding ofCj in CjS
−1
j induces a well-defined injective Poisson algebra ho-

momorphismΛ from E toDSj
−1

whose expression is clear from the equalities:

Vi =







Ui i ≥ j,
∑

k≥0

1
ηkj
Dj,k(Ui)U

−k
j i < j.

From Lemma 3.1 and Lemma 3.2, we can state:

Corollary 3.3. D andE have the same Poisson field of fractions (ifUj /∈ P , we identifyE with its

image inDS−1
j byΛ so that we haveDSj

−1
= ESj

−1
).

An easy induction gives us the following result on the Poisson structure of the fields of fractions

of the Poisson prime quotients ofA.

Corollary 3.4. Let A ∈ P, P ∈ P.Spec(A) and setQ := ϕ(P ) ∈ P.Spec(A). Then we have a

Poisson algebra isomorphism:

Frac
(

A/P
)

∼= Frac
(

A/Q
)

.

In particular this corollary says that in order to prove the quadratic Poisson Gel’fand-Kirillov

problem (see [11] or [17]) for the Poisson prime quotients ofA it is enough to prove it for the Poisson

prime quotients of the Poisson affine spaceA. We retrieve the result of [17, Therorem 3.3 (2)] with

the addition that the idealQ is now charaterised by the canonical embedding. In characteristic zero

the Poisson prime quotients of a Poisson affine space indeed satisfy the quadratic Poisson Gel’fand-

Kirillov problem ([11, Theorem 3.3]), but this is not clear anymore in positive characteristic.
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4 Poisson Dixmier-Moeglin equivalence

In this section we prove that thePoisson Dixmier-Moeglin equivalenceholds for the Poisson algebras

of the classP when charK = 0. As stated in the introduction it only remains to show that the Poisson

rational ideals ofA ∈ P are also locally closed. We continue to use the notation of Hypothesis 1.7

and of Sections 2 and 3. For a Poisson prime idealP of a Poisson algebraA we set:

V (P ) = {I ∈ P.Spec(A) | I ⊇ P} and W (P ) = {I ∈ P.Spec(A) | I 6⊇ P}.

The setV (P ) is a closed set of P.Spec(A) andW (P ) is an open of P.Spec(A). The following lemma

is a Poisson version of [3, Lemma II.7.7].

Lemma 4.1. LetA be a Poisson algebra andP ∈ P.Spec(A). ThenP is locally closed if and only if

the intersection of all the Poisson prime ideals properly containingP is an ideal properly containing

P .

Proof. Let I be the intersection of all the Poisson prime ideals ofA properly containingP . If P  I,

thenW (I) ∩ V (P ) = {P}, i.e. {P} is a locally closed point P.Spec(A). Conversely, ifP is locally

closed, then there are idealsI andL in A such thatV (I) ∩W (L) = {P}. Therefore we can see that

P  L+ P ⊆ I.

HenceP is locally closed if and only if the intersection of all non trivial Poisson prime ideals in

A/P is non trivial.

Proposition 4.2. Let A ∈ P and assume thatcharK = 0. Then Poisson rational ideals ofA are

Poisson locally closed ideals.

Proof. Recall that by applying the Poisson deleting derivations algorithm to the Poisson algebraA we

get a sequence of Poisson algebrasCj wherej runs fromn+1 to 2 such thatCn+1 = A andC2 = A

is a Poisson affine space. We will show by an increasing induction onj that all Poisson rational ideals

of Cj are locally closed. Whenj = 2 the algebraA is a Poisson affine space and the result comes

from [9, Example 4.6]. Assume that for some2 ≤ j ≤ n the Poisson rational ideals ofCj are locally

closed. LetP ∈ P.Spec(Cj+1) be a Poisson rational ideal. We distinguish between two cases: either

Uj ∈ P , orUj /∈ P .

Case 1:If Uj ∈ P , then by Lemma 3.1 we get a Poisson algebra isomorphism betweenCj+1/P

andCj/ϕj(P ), and the result follows.

Case 2:If Uj /∈ P , then by Lemma 3.2 we get the equalityCjS
−1
j /QS−1

j = Cj+1S
−1
j /PS−1

j ,

which leads to the isomorphism:

ZP

(

Frac
(Cj+1

P

))

∼= ZP

(

Frac
( Cj

ϕj(P )

))

.
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Thereforeϕj(P ) ∈ P.Spec(Cj) is Poisson rational, and so is locally closed. We now introduce a few

notation:

F0
j := {Q ∈ P.Spec(Cj) | ϕj(P )  Q andVj /∈ Q},

F1
j := {Q ∈ P.Spec(Cj) | ϕj(P )  Q andVj ∈ Q},

F0
j+1 := {Q ∈ P.Spec(Cj+1) | P  Q andUj /∈ Q},

F1
j+1 := {Q ∈ P.Spec(Cj+1) | P  Q andUj ∈ Q},

T 0
j :=

⋂

Q∈F0
j

Q, T 1
j :=

⋂

Q∈F1
j

Q, T 0
j+1 :=

⋂

Q∈F0
j+1

Q, and T 1
j+1 :=

⋂

Q∈F1
j+1

Q.

Let I be the intersection of all the Poisson prime ideals ofCj+1 properly containingP . We have:
(

P locally closed
)

⇐⇒
(

P  I
)

⇐⇒
(

P  
(

T 0
j+1 ∩ T 1

j+1

)

)

. (3)

By the induction hypothesis we have:

ϕj(P )  
(

T 0
j ∩ T 1

j

)

so that ϕj(P ) = PS−1
j ∩ Cj  T 0

j .

Since the mapϕj restricts to a homeomorphism fromF0
j+1 toF0

j we have:

ϕj(P )  T 0
j ⇐⇒ P  T 0

j+1.

Therefore there existsa ∈
(

T 0
j+1 \ P

)

. Moreover by definition we haveUj ∈
(

T 1
j+1 \ P

)

. SinceP is

a prime ideal anda, Uj /∈ P it clear that:

aUj ∈
(

T 0
j+1 ∩ T 1

j+1 \ P
)

,

and by (3) we obtain thatP is locally closed. This concludes the induction. The casej = n gives us

the result forCn+1 = A.

We are now ready to state the main results of this section.

Theorem 4.3. LetA ∈ P and assume thatcharK = 0. ThenA satisfies the Poisson Dixmier-Moeglin

equivalence.

Corollary 4.4. LetA ∈ P and assume thatcharK = 0. Then for allP ∈ P.Spec(A) we have the

following equivalence:

P is Poisson primitive inA ⇐⇒ ϕ(P ) is Poisson primitive inA.

We can also describe the primitive ideals ofA ∈ P inside their stata, namely they are exactely the

maximal ideals in their respective strata.

Proposition 4.5. Let A ∈ P and assume thatcharK = 0. Suppose thatw ∈ W ′
P and letP ∈

P.Specw(A). Then:

P is Poisson primitive ⇐⇒ P is maximal inP.Specw(A).
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Proof. First suppose thatP is a Poisson primitive ideal. Thenϕ(P ) ∈ P.Specw(A) is Poisson primi-

tive inA by Corollary 4.4. By [9, Theorem 4.3, Example 4.6],ϕ(P ) is maximal in P.Specw(A). Now

let P ′ ∈ P.Specw(A) be such thatP ⊆ P ′. Sinceϕ induces a homeomorphism from P.Specw(A) to

ϕ(P.Specw(A)) ⊆ P.Specw(A), we haveϕ(P ) ⊆ ϕ(P ′) inside P.Specw(A). By maximality ofϕ(P )

we getϕ(P ) = ϕ(P ′), i.e.P = P ′, andP is maximal in P.Specw(A).

Conversely, suppose thatP is maximal in P.Specw(A). Thenϕ(P ) is maximal inϕ
(

P.Specw(A)
)

by Theorem 2.14. Recall thatϕ
(

P.Specw(A)
)

⊆ P.Specw(A) by Theorem 2.14, and letQ ∈

P.Specw(A) such thatϕ(P ) ⊆ Q. By Proposition 2.16 we haveQ ∈ Im(ϕ), i.e.Q ∈ ϕ
(

P.Specw(A)
)

and by maximality ofϕ(P ) in ϕ
(

P.Specw(A)
)

we haveQ = ϕ(P ). Thereforeϕ(P ) is maximal in

P.Specw(A). By [9, Theorem 4.3, Example 4.6] this shows thatϕ(P ) is Poisson primitive inA. We

conclude by Corollary 4.4 thatP is Poisson primitive inA.

In characteristic zero every iterative, locally nilpotentPoissonα-derivation such that[δ, α] =

ηδ for some nonzero scalarη, extends to an iterative, locally nilpotent higher(η, α)-skew Poisson

derivation, so that Hypothesis 1.7 is easier to check in thatcase.

We have the following transfer result, which can be proved ina similar way as Proposition 4.2,

thanks to Theorem 1.5.

Theorem 4.6. Assume thatcharK = 0. LetA be an affine PoissonK-algebra,α ∈ DerP (A) and

δ be a locally nilpotent Poissonα-derivation such that[δ, α] = ηδ for some nonzero scalarη. If the

Poisson-Ore extensionA[X;α]P satisfies the Poisson Dixmier-Moeglin equivalence, then the Poisson-

Ore extensionA[X;α, δ]P satisfies the Poisson Dixmier-Moeglin equivalence.

Example4.7. The algebraA = B[X4;α, δ]P of Example 2.15 satisfies the Poisson Dixmier-Moeglin

equivalence. Indeed, the Poisson algebraB[X4;α]P is a Poisson affine space and thus satisfies the

Poisson Dixmier-Moeglin equivalence ([9, Example 4.6]). Moreover[δ, α] = δ andδ is locally nilpo-

tent, so we can apply Theorem 4.6. Note that the torusH := (K∗)2 acts by Poisson automorphisms

on this algebra via:

h ·X1 = h1X1, h ·X2 = h1X2, h ·X3 = h2X3, and h ·X4 = h1h
−1
2 X4,

for all h = (h1, h2) ∈ H. However, the fact thatA satisfies the Poisson Dixmier-Moeglin equivalence

cannot be deduced from [9, Theorem 4.3] with this natural torus action asA has infinitely many

PoissonH-invariant prime ideals (it is easy to check that, for allλ ∈ K, the ideal generated by

X1 + λX2 is a PoissonH-invariant prime ideal).

5 Quantum and Poisson matrices: toward a homeomorphism between

spectrum and Poisson spectrum

In this section we assume that charK = 0 and thatq ∈ K∗ is not a root of unity. It is conjectured in

[10] that, among other quantised coordinate rings, the spectrum of the algebra of quantum matrices
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is homeomorphic to the Poisson spectrum of its semiclassical limit. In this section we present a step

toward proving this conjecture. The single parameter coordinate ring of quantum matrices is denoted

by R := Oq

(

Mm,p(K)
)

(see [3, Section I.2.2] for a definition). Its semiclassicallimit, denoted byA,

is the polynomial algebraK[Xij | 1 ≤ i ≤ m, 1 ≤ j ≤ p ] endowed with the Poisson bracket:

{Xij ,Xkl} =























XijXkl if i < k andj = l,

XijXkl if i = k andj < l,

0 if i < k andj > l,

2XilXkj if i < k andj < l.

For more details on the semiclassical limit process see [10,Section 2]. SetW = P
(

[[1,m]]× [[1, p]]
)

.

Thanks to Cauchon’s deleting derivations algorithm (see [5]), the spectrum Spec(R) of R is parti-

tioned into strata, denoted by Specw(R), indexed by the elements of a subsetW ′ of W . It is shown in

[20, Section 7.3] that the Poisson algebraA belongs to the classP, so that we can perform the Poisson

deleting derivations algorithm, and that the set of CauchondiagramsW ′
P coincides withW ′.

We now compare the strata Specw(R) and P.Specw(A) associated to the samew ∈ W ′ = W ′
P .

We will need the following observation. The algebraR, obtained at the end of Cauchon’s deleting

derivations algorithm, is a quantum affine space associatedto a multiplicatively skew-symmetric ma-

trix q := (q(i,j),(u,v)) of the form q(i,j),(u,v) = qλ(i,j),(u,v) for some skew-symmetric matrixλ :=

(λ(i,j),(u,v)) (the matrixλ is made explicit in [1, Section 4.1] for instance). It is a direct consequence

of the semiclassical limit process thatλ is the matrix defining the Poisson affine spaceA, obtained at

the end of the Poisson deleting derivations algorithm.

Proposition 5.1. Let w ∈ W ′ = W ′
P . Then there is a homeomorphism betweenP.Specw(A) and

Specw(R). More precisely we have:

P.Specw(A) ∼= Spec(K[U±1
1 , . . . , U±1

s ]) ∼= Specw(R),

wheres is equal to the dimension overQ of the kernel of a matrixM(w), obtained from the matrixλ

by deleting rows and columns indexed by(i, j) ∈ w.

Proof. The homeomorphism Specw(R) ∼= Spec(K[U±1
1 , . . . , U±1

s ]) follows from [1, Theorem 3.1]

and the observation made before the proposition.

To prove the homeomorphism P.Specw(A)
∼= Spec(K[U±1

1 , . . . , U±1
s ]) we proceed as follows.

From Theorem 2.14 and [20, Theorem 7.3.8] the stratum P.Specw(A) is homeomorphic to the stratum

P.Specw(A) via the canonical embedding. Recall thatA is the Poisson affine spaceKλ[T11, . . . , Tmp].

We denote byJw the Poisson ideal ofA generated by theTij for (i, j) ∈ w, and bySw is the

multiplicative set ofA/Jw generated by the image of theTij for i ∈ w :=
(

[[1,m]] × [[1, p]]
)

\ w. It

results from the definition of P.Specw(A) (see Section 2.2) that there is a homeomorphism between

P.Specw(A) and P.Spec(T ), whereT = (A/Jw)S
−1
w is the Poisson torus associated toM(w). By

[23, Lemma 1.2], a Poisson ideal of a Poisson torus is generated by its intersection with the Poisson

centre, thus:

P.Specw(A) ∼= P.Specw(A) ∼= P.Spec(T ) ∼= P.Spec(ZP (T )).
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By [23, Lemma 1.2], the Poisson centre ofT is the group algebra of the free abelian group:

S :=
{

α ∈ Zr | αM(w)βtr = 0 for all β ∈ Zr
}

,

wherer is the cardinality ofw and the elements ofZr are seen as row vectors. To conclude we remark

that a basis ofS has the same cardinality as a basis of the kernel of the matrixM(w).

To summarise, we have just proved Theorem 0.1, i.e. there is abijection between Spec(R) and

P.Spec(A) which induces by restriction homeomorphisms from Specw(R) and P.Specw(A) for all

w ∈ W ′ = W ′
P . However it is unclear whether this bijection is a homeomorphism or not. The main

obstruction is that the canonical embedding is only continuous on strata.
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