Poisson Deleting Derivations Algorithm and Poisson Spaatr

Stéphane Launois and César Lecautre

School of Mathematics, Statistics and Actuarial Scient#3&S), Cornwallis Building, University of
Kent, Canterbury, Kent CT2 7NF, United Kingdom

S. Launoi s@ent . ac. uk andC. Lecout re@ent . ac. uk

Abstract

In [5] Cauchon introduced the so-called deleting derivaialgorithm. This algorithm was
first used in noncommutative algebra to prove catenaritgmegic quantum matrices, and then to
show that torus-invariant primes in these algebras arergtteby quantum minors. Since then
this algorithm has been used in various contexts. In paaticthe matrix version makes a bridge
between torus-invariant primes in generic quantum matyit®us-orbits of symplectic leaves in
matrix Poisson varieties and totally nonnegative cell®talty nonnegative matrix varieties [12].
This led to recent progress in the study of totally nonnegatiatrices such as new recognition
tests, see for instande [|18]. The aim of this article is toettgy a Poisson version of the deleting
derivations algorithm to study the Poisson spectra of thembes of a clas® of polynomial
Poisson algebras. It has recently been shown that the Pd¥zmier-Moeglin equivalence does
not hold for all polynomial Poisson algebras [2]. Our altfum allows us to prove this equivalence
for a significant class of Poisson algebras, when the baskidi@f characteristic zero. Finally,
using our deleting derivations algorithm, we compare togimlally spectra of quantum matrices
with Poisson spectra of matrix Poisson varieties.
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Introduction

Poisson algebras have been intensively and widely studtied their first appearance, both on their
own and in connection with other areas of mathematics. Ftamte, we refer td [19] where Poisson
structures are studied from the differential geometry pofrview, [7] where links with number the-

ory are made or [10] for the connection with noncommutatigelara; this literature is of course non
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exhaustive. In this paper we study Poisson spectra of nePtaisson polynomial algebras. Differ-
ent aspects of this topic have been investigated previotl#yPoisson Dixmier-Moeglin equivalence
is studied in[[2], [9], [11] and[[21], links between Poissqrestra and their quantum analogues are
investigated in[[13],.[14],121] and [24] and Poisson sp&ctf Jacobian Poisson structures and gener-
alisations in higher dimensions are studied_in [15] and.[16]

Inspired by[[5], we develop a method to study the algebrasctdssP of iterated Poisson-Ore ex-
tensions over a fieltk of arbitrary characteristic. More precisely fdre P, the (characteristic-free)
Poisson deleting derivations algorithoonsists of performing several explicit changes of vaeabl
inside the field of fractions Frad of A. At each step of the algorithm we obtain a sequence of
algebraically independent elements of FAaavhere the integen corresponds to the number of in-
determinates imM. The subalgebra of Frat generated by these elements is a Poisson algebra with a
"simpler" Poisson bracket than the one obtained at the gquestep. Moreover the Poisson algebras
corresponding to two consecutive steps, 6ay; andC}, satisfy:

CipS;t =08

for a given multiplicatively closed sef;. After the last step, we get algebraically independent ele-
mentsT}, ..., T, of FracA such that the algebrd they generate is Roisson affine spacé.e. A

is a polynomial algebr& [T, ..., T,] with Poisson bracket on the generators given{By, 75} =

Xij ;T for all 4, j, where(\;;) € M, (K) is a skew-symmetric matrix. In particular the algorithm
shows that Frad = FracA as Poisson algebras. Therefore we retrieve the resultsis§dobira-
tional equivalence obtained in[17] (see alsal [11] in chimadstic zero), that is the Poisson algebras
of the classP satisfy the quadratic Poisson Gel'fand-Kirillov problese¢ [11] and[[17] for more
details).

For a Poisson algebra we denoted by P.Spéel) the set of prime ideals which are also Poisson
ideals. We refer to this set as tReisson spectrurof A (see Remark 013 at the end of the introduction).
The set P.Spgcd) is equipped with the induced Zariski topology from the speatSpeg A) of A.
WhenA € P, our algorithm allows us to define an embeddjnfjom P.Spe¢A) to P.Spe¢A) called
thecanonical embeddinglhis embedding will be our main tool for studying Poissoacpa. One of
its important properties is that fd? € P.Spe¢ A) we have a Poisson algebra isomorphism:

A A
Frac(ﬁ> = Frac(wp)).
Note that this isomorphism reduces the quadratic Poissdfa@adKirillov problem for the Poisson
prime quotients ofA to the quadratic Poisson Gel'fand-Kirillov problem for tReisson prime quo-
tients of a Poisson affine space. As in the noncommutative, ¢as canonical embedding leads to
a partition of P.SpegA) indexed by a subsél/;, of W := Z2([[1,n]), the powerset of1,n] :=
{1,...,n}. More precisely, forv € W, we set:

P.Speg,(A) := {P € P.SpecA) | QN {Ty,..., T} ={T; | i € w}}, (1)



where we recall thaf, ..., T}, are the generators of the Poisson affine spacd@hese sets form a
partition of P.Spe¢A) which induces a partition on P.Spet) as follows:

P.Spe¢d) = | | ¢ '(P.Speg,(4)), where Wp:={we W |¢ ' (P.Speg,(4)) + 0}.

weW,

This partition of P.Spe€A) is called thecanonical partition and the elements d#/;, will be called
the Cauchon diagrams associated tg & Cauchon diagrams for short. Far € W, the set
gp—l(P.SpeqU(Z)) is called thestratumassociated tav. We study the topologico-algebraic prop-
erties of those strata in Sectibn 2.4, our main result béiagforw € W, the image of the stratum
associated tav is a closed subset of P.Spgd) and thaty induces a homeomorphism from this
stratum to its image. In Sectidh 4 we turn our attention tes&am primitive spectra of the algebras of
the classP. In particular our algorithm allows us to prove the Poissaxnider-Moeglin equivalence
for the algebras of the clag® when chalK = 0. For information on the original Dixmier-Moeglin
equivalence, as well as its Poisson version we reféer|to [@][@h We briefly recall here the Poisson
version. LetA be a PoissoiK-algebra and® € P.Spec¢A). The idealP is said to bdocally closedif
the point{ P} is a locally closed point of P.Spé¢d). Let B a be Poisson algebra. The Poisson centre
of B is the Poisson subalgebfg(B) := {a € B | {a,—} = 0}. The idealP is said to bePoisson
rational provided the fieldZp (Frac(4/P)) is algebraic over the ground field. For.J an ideal of
A, there is a largest Poisson ideal contained ithat is called thd?oisson coreof J. Poisson cores
of maximal ideals ofd are calledPoisson primitive idealsWe say that the Poisson Dixmier-Moeglin
equivalence holds for the Poisson algeHr# the following sets coincide:

(1) the set of Poisson primitive ideals;

(2) the set of locally closed Poisson ideals;

(3) the set of Poisson rational ideals.
It is shown in [21] that we have the inclusio(®) C (1) C (3) for all affine Poisson algebras over a
base field of characteristic zero. However the inclugi®nC (2) is not always satisfied as there exist
counterexamples in all Krull dimensiah> 4 (see[2]). All algebras of the clag3 are affine Poisson
algebras, therefore it only remains to show the inclugidn C (2), as long as cha = 0. Itis
known that Poisson affine spaces satisfy the Poisson Dixihdeglin equivalence, segl[9, Example
4.6] for instance. In Sectidd 4 this fact together with theazacal embedding will allow us to prove
the Poisson Dixmier-Moeglin equivalence for all algebréshe classP. Even better, the Poisson
primitive ideals are exactly the Poisson prime ideals thatraaximal in their strata. Note that in
[11] the Poisson Dixmier-Moeglin equivalence was showrefatass of Poisson algebras supporting
rational torus actions. In our assumptions we do not reghigeexistence of any torus action, and we
indeed give an example (see Exaniplé 4.7), where previoukse® not apply.

In [5] Cauchon uses his deleting derivations algorithm taiwbinformation on the spectra of the

algebras of a clas® of iterated Ore extensions (i.e. the algebras satisfyieghypotheses of |5,
Section 3.1]). These algebras are deformation of Poisgmbeds of the clasB. More precisely, we



are in the following setting. LeR; be an iterated Ore extension ow&f*!]:
Ry = K[t [z1][w2; 02, Ag] - - - [Tn; 0y A,
such that foralR < i < n:
e R denotes the subalgebra Bf generated by*! z1,...,2; 1,
e o; is aK[t*!]-automorphism of?;~* such that;(z;) = t*iz; forall 1 < j < 4, where the
scalars\;; are integers,
e A, is alocally nilpotentk[t*!]-linear o;-derivation of R;",
e 0;A; = t"A,;0; for some nonzero integey,
o AF(RFH) C (¢t — 1)*(k)!ym RS forall k > 0,
o A:= R;/(t—1)R, is commutative.
We fix a scalarg € K* which is not a root of unity. Then, the algebfa, := R;/(t — q)R;

belongs to the clask, and the algebral is a Poisson algebra which belongs to the clagsee([17,
Theorem 4.2]). The Poisson bracket dns given by the informal formula:

{r+(t—1)Rys+({t—1)R} = T‘;:fr

for all r,s € R,. We say that the algebifd, is adeformationof the Poisson algebrd, and thatA is
the semiclassical limiof the algebrak; att — 1. The diagram of Figuril 1 illustrates this situation.

Ry
t/ \q
q

A R

+ (t —1)Ry, (2)

deformation

Figure 1: Deformation

In such a deformation-quantisation context, it is usuakpeeted that the algebr&, and the
Poisson algebral share similarities. For instance it is conjectured(inl [18¢tidn 9.1] that there
should be a homeomorphism between the spectrum of the gemgaintised coordinate ring of an
affine algebraic variety” and the Poisson spectrum of its semiclassical liéh{l”) whenK is al-
gebraically closed of characteristic zero. This conjextums been investigated for several algebras,
for instance we refer to the recent works [8] andl[24]. Inipatar, building on previous work of
Hodges-Levasseur and Joseph, progress have been madeitmpW{&4] towards obtaining a home-
omorphism between the symplectic leaves of a connecteg@l\stonnected complex algebraic group
G and the primitive spectrum of the quantized coordinate fRy{~].

In light of this, it would be natural to ask whether or not texists a homeomorphism between
Sped R,) and P.Spe¢A). However, it is not always the case, and a counterexampleisded by
the algebraR; generated oveK|[t*!] by = andy subject to:

ry — tyr = (t — 1)
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In view of (2) we have:
{z+(t-DR,y+(t—1)R} = (x+(t - DR)(y + (t = DRy),

so that the algebra is a Poisson affine plane. On the other hand the algBpiia isomorphic to the
first quantum Weyl algebra. In particuldl, has a unique height one prime ideal, and its spectrum
cannot be homeomorphic to the Poisson spectrum. of

In this article, we propose a sufficient condition for suctoelbomorphism to exist (see Question
below). Toward describing this sufficient condition, meeall that Cauchon defines a partition
of the spectrum Spe®,) indexed by a subsé¥”’ of W, see|[5, Proposition 4.4.1]. Similarly, our
algorithm allows us to define a partition of the Poisson spectP.Spe¢A) indexed by a subsét’,,
of W. Again it would be natural to ask whether or not these setscae, but the same example as
above shows that it is not always the case. Indeed, ffdm (§)dlear that we havél’;, = W =
{0,{1},{2},{1,2}}, whereas we havé/’ = {0,{1}}, by [20, Section 7.2.1.2] for instance. In
Sectior{ b, we prove thal’’ = W, for the algebra ofn x p quantum matrices, and we use this fact
to prove the following result.

Theorem 0.1(Propositior 5.11) Suppose thatharK = 0. LetR = O, (Mmp(K)) be the algebra
of quantum matrices and = O, (M, ,(K)) its semiclassical limit. There exists a bijection be-
tweenSped R) and P.Sped¢A), which restricts to homeomorphisms between the stéec, (R)
andP.Speg, (A) forall w € W' = Wp..

To prove this theorem we show that far € W’ = W, there is a homeomorphism between
the strata Speg(R) and P.Speg (A). However we deduce this homeomorphism from the canonical
embedding, which is known to be continuous only when beisgricted to a stratum. Therefore it is
unclear whether the bijection of the theorem above is a homgghism or not. In small dimensions
methods from[[4] and their Poisson analogues [8] could bel tsalecide this question, but their
computational nature would prevent use of them in the génasz.

In view of the above discussion, it is natural to ask the feife question.

Question 0.2. Let R, be an iterated Ore extension as above and supposé&ithat W. Is there a
homeomorphism between Spgt;,) and P.Spe€A)?

We note that the algebra generated dié*!] by = andy subject toxy — tyz = (¢t — 1)? does
not satisfy the condition thal’’ = W7p..

Remark0.3. The Poisson spectrum of a Poisson algebra is usually definadriore general way.
For a Poisson algebrd, a Poisson-prime idedP is a Poisson ideal such that if whenevet C P

for some Poisson ideals, J of A, then eitherl C P or J C P. ltis clear that a Poisson and
prime ideal is a Poisson-prime ideal.Afis noetherian and the characteristic of the base field is zero
then the converse is true thanks [t6 [6, Lemma 3.3.2]. The odette developed in Sectidd 2 does
not apply to non prime Poisson-prime ideals. However ouragugh includes all the Poisson-prime



ideals in the characteristic zero case and deals with dfisigni set of Poisson-prime ideals in positive
characteristic.

In the situation described previously our main goal is to pare the spectrum a&, (for ¢ not a
root of unity) with the Poisson spectrum 4f However even in the simplest example these spectra are
not homeomorphic when we consider Poisson-prime ideatdedd, assume th& is algebraically
closed and that cha = p > 0. We denote byR; = K[t*!][z}][x2; 2] the iterated Ore extension
such thatry(t) = t andoa(z1) = tz1. ThenR, is a quantum affine space for a non root of unity
q € K*, and its set of prime ideals is well known, sek [3, 1l.1.2]ifmtance. In particular the principal
ideals generated hy; andxz, are the only height one prime ideals ). The Poisson algebra is
the Poisson affine space= K[ X1, X,] with { X7, X»} = X; X5. In addition of the ideals generated
by X; and X», there are infinitely many other height one Poisson-prineal&inA. For instance the
ideal generated by the Poisson central elendéht- 1 is a non prime Poisson ideal, and it follows
from [17, Lemma 3.5] that it is also Poisson-prime. Thus #ieo$ Poisson-prime ideals of cannot
be homeomorphic with the set of prime idealsRy. However it is easy to verify that there is a
homeomorphism between the set of Poisson and prime idedsimd the set of prime ideals iR,.

To summarise, when dealing with a Poisson algdBraver a field of arbitrary characteristic we
will restrict our attention to the study of the Poisson anidhgrideals ofB, and the set of such ideals
will be denoted by P.Spe@).

1 Poisson deleting derivations algorithm

The aim of this section is to define the Poisson deleting di&ars algorithm. This algorithm is
based on the Poisson deleting derivation homomorphismedefin[17]. We recall the definition and
properties of this homomorphism in Sectionl1.1, and intoedine class of Poisson algebras to which
the Poisson deleting derivations algorithm applies iniSeff.2.

1.1 Poisson deleting derivation homomorphism

Most of the definitions and results in this section are takemf[17, Section 2]. We recall them here
for the convenience of the reader. Poisson-Ore extensienBa@sson analogues of the well-known
notion of Ore extension, or skew polynomial ring, in noncomtative ring theory. Their definition is
based on the following result of Oh.

Theorem 1.1.[22, Theorem 1.1] et o and é be K-linear maps of a Poissoik-algebra A. Then
the polynomial algebra? = A[X] is a Poisson algebra with Poisson bracket extending thesBais
bracket ofA and satisfying:

{X,a} = a(a)X + d(a) forall a € A,
if and only ifa is a Poisson derivation aofl, i.e. « is aK-derivation of A with:

a({a,b}) = {a(a),b} + {a,a(b)} forall a,b € A,
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and/ is a Poissom-derivation ofA4, i.e. ¢ is aK-derivation of A with:
0({a,b}) ={d(a),b} +{a,d(b)} + a(a)d(b) — d(a)a(b) for all a,b € A.

Definition 1.2. Let A be a Poisson algebra. The set of Poisson derivationd &f denoted by
Derp(A). Leta € Derp(A) andd be a Poissom-derivation of A. SetR = A[X]. The algebra
R endowed with the Poisson bracket from Theofem 1.1 is derite’l = A[X; «, 6] p and called a
Poisson-Ore extensioms usual we writed[ X ; o] p for A[X; o, 0]p.

This construction is easily iterated. We say tRais an iterated Poisson-Ore extension oveif
R = A[Xy;0q,61]p[X2;02,02]p -+ - [Xn; o, 0n] P

for some Poisson derivations, . . . , o, anda;-Poisson derivationg; (1 < ¢ < n) of the appropriate
Poisson subalgebras.

Let A = (\;j) € M, (K) be a skew-symmetric matrix. Then we define a Poisson bracket o
the polynomial algebr& [ X, ..., X,,] by setting by{ X;, X;} := X\;; X; X for all 4, j. This Poisson

algebra is called th€oisson affine:-space associated th and is denoted b [X1,..., X,]. It
is clear that the Poisson affinespaceKy[X1,...,X,] is an iterated Poisson-Ore extension of the
form:

K[X1])[Xo; a)p -+ [Xn: anlp,

whereq; is the Poisson derivation of the Poisson algelif&’;|[Xso; as]p - - - [Xi—1; a;—1] p Such that
a;(X;) = ;X forall1 < j <i<n.

The main tool to define the characteristic-free Poissortidglelerivations algorithm is the exis-
tence of higher derivations which are compatible with Rwmidsrackets. We now fix the notation and
terminology used in this article.

Definition 1.3. Let A be a PoissoiK-algebra € Derp(A) andn € K.

(1) A higher derivationon A is a sequence d&-linear mapg D;):°, = (D;) such that:
Dy =id4 andD,,(ab) = > D;(a)D,—;(b) forall a,b € Aandalln > 0.
i=0

A higher derivation isterativeif D;D; = (“17)D;,; for all i, j > 0, andlocally nilpotentif
for all a € A there exists: > 0 such thatD;(a) = 0 for all i > n.

(2) A higher derivationD;) is ahigher a-skew Poisson derivatioffor all a,b € A and alln > 0:
Da({a,b)) = £ {Di(a), Ducs0)} +i(0Dsmi(a) Di(5) = Dila)aDs(8).
(3) A highera-skew Poisson derivation istagher (1, «)-skew Poisson derivatioififor all i > 0:
D;a = aD; + inD,.
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(4) We say that the derivationof a Poisson-Ore extensiot{ X ; «, §] p extends to a highem, «)-
skew Poisson derivatioifithere exists a highef, a)-skew Poisson derivatiofiD;) on A such
thatD; = 4.

We first observe that to define a higher derivat{d@y) on an algebral, it is enough to give its
values on a set of generators 4f Moreover(D;) is iterative (resp. locally nilpotent) oA, if it is
iterative (resp. locally nilpotent) on a set of generatdrgl oTedious computations show that it is also
enough to check assertio(®) and(3) of Definition[1.3 on a set of generators.

Examplel.4. Let A = K[X]. We define a higher derivatiofD;) on A by setting:

X i=0,
Di(X):=4 1 i=1,
0 i>1.

Note that by induction we have:

DZ(Xk) — <I:> kai
forall i, k > 0. Itis clear thatD; is iterative and locally nilpotent. Let := XJx ando := 0x where
Ox denotes the usual partial derivative Afwith respect toX. Thena is a Poisson derivation od
andJ is a Poissony-derivation of A such thatD; = o, whereA is endowed with the trivial Poisson
structure {a,b} = 0 for all a,b € A). It follows easily that) extends to an iterative, locally nilpotent
higher(1, a)-skew Poisson derivation a#.

We now recall the Poisson deleting derivation homomorphisat was defined in_[17, Section
2.3]. Note that a Poisson bracket extends uniquely by Isatidin [19, Section 2.4.2], so in particular
the Poisson bracket of a Poisson-Ore extensiQh; «, 6] p uniquely extends to the Laurent polyno-
mial ring A[X*!], and we denote this Poisson algebra4jx *!; o, 6] p.

Theorem 1.5. [17, Theorem 2.11let A[X; «, 6] p be a Poisson-Ore extension, whetes a Pois-
sonK-algebra. Suppose thatextends to an iterative, locally nilpotent highey, «)-skew Poisson
derivation (D;) on A such thaty € K*. Then the algebra homomorphigm A — A[X*!] defined

by:

%
>0 N

uniquely extends to a Poisséfralgebra isomorphism:
0: A alp — A[X*a,0]p
by settingd(Y) = X.

We setB := A[X;a,d]p andS := {X* | i > 0} so that we havéBS—! = A[X*!;q,d]p. We
deduce immediately the following result.



Corollary 1.6. BS~! contains a Poisson subalgebr®&’ isomorphic toA[Y;a]p, and we have
B'S~! = BS~!. In particular we have:

Frac(A[X;a,é]p) = Frac(B') = Frac(A[Y;o]p).

Proof. TakeB’ := §(A[Y; a]p). O

1.2 Aclass of iterated Poisson-Ore extensions
In this section, we introduce the class of Poisson algehtsate will study in this paper.
Hypothesis 1.7.

(1) A =K[X1][X2;a2,02|p - [Xpn; an, dn]p is an iterated Poisson-Ore extension dikeMVe set
A; = K[Xl][XQ, a2,62]p s [Xu Oél',(;i]P foralll <i<n.

(2) Suppose that for all < j < i < n there exists\;; € K such that;(X;) = \;; X;. We set
Aji ==X foralll <j<i<n.

(3) Forall2 < i < n, assume that the derivatidpn extends to an iterative, locally nilpotent higher
(ni, o;)-skew Poisson derivatiofD; ;.)7° , on A;_1, wheren; is anonzeroscalar.

(4) Assume thaty;D; ;. = Dj oy + kXD forall 2 < j < i <nandallk > 0.

Notation 1.8. We denote byP the class of iterated Poisson-Ore extensions which satigppthesis

[L.2.

Note that, ifA = K[X1][X2; a2, 02]p - - - [Xn; an, o] p € P, then the intermediate Poisson alge-
brasA; from Hypothesi$ 117 also belong .

Remarkl1.9. In characteristic zero we have that = [Z)—,i for all i for any iterative higher derivation
(D;). In particular it follows from [[20, Remark 5.1.2] that in clhateristic zero, one can replace
assertions (3) and (4) of Hypothekis]1.7 by:

(3") Assume that for alk < ¢ < n the derivationy; is locally nilpotent and thad;a — ad; = n;9;
for some nonzero scala;.

In the next sections we will need to use inductive argumemtdeffine and study the Poisson
deleting derivations algorithm. In the induction step wel weed to re-arrange the order of the
indeterminates of an iterated Poisson-Ore extensidp. i he following lemma will ensure that the
new Poisson algebra is still iR, so that one can apply the deleting derivation homomorphisthis
new algebra, and thus proceed with the induction. In pdaicto satisfy the hypothesis of Theorem
[1.3 we need the scalansto be nonzero.

The restriction of a linear mapto a subspac# of its domain will be denoted by |y .

Lemma 1.10.Let A € P with §;;1 = --- = d, = 0. With the notation of Hypothedis 1.7, we have
the following.



(1) We canwrited = A;_1[Xj11; Bj1lp - [Xn; BalP[Xj; @, 651 p Where:

® Bila;_, = aila,_, forall j <i <nandp;i(X;) = \gX; forall j <1 <4,
o af|a;, , = ajanda’(X;) =\ X, forall j <1 <mn,

® 0ila; , =d;anddi(X;) =0forall j <1 <n.

(2) 5" extends to an iterative, locally nilpotent highey; (a;)—skew Poisson derivatiohD;7k)g<’: 0
on A;_1[Xj11;Bj+1]p - - - [Xn; Bn]p such that the restriction oD’. to A;_; coincides with
Djiforall k > 0,andD’,(X;) =0forallk >0andallj <! <n

(3) A= Aj1[Xj11;Bj41lp - - [Xu; Bul P[Xj; o), 0] p also belongs toP.

Proof. (1) Since{X;, X;} = A\; X, X forall j <1 < n, the order of the variableX, ..., X,, can
be changed. The resulting Poissan-fderivations are those described above.

(2) This is an easy induction usirnig [17, Lemma 3.1].
(3) This follows directly from (1) and (2). O

1.3 Poisson deleting derivations algorithm

Let A = K[X;][X2; 0, 02]p - - [Xn; am, o] p € P. We continue using the notation of Hypothesis
[L.1.

We are now ready to describe the Poisson deleting derivasitlgorithm. Foy running fromn + 1
to 2 we define, by a decreasing induction, a sequéticg;, . .., X, ;) of elements of Frad. First
forj=n+1weset(Xy,,...,X, ;) = (X1,...,X,). Thenfor2 < j <nwe set:

X,j+1 i>j,
Xig =93 S LD o (X010 X <
77 Ji.k i,j+1 J,3+1 ? Js
k>0 "
forall 1 <4 < n. Moreover for all2 < j <n 4+ 1 we setC; := K[X; ;,..., X, ;]. In particular we

haveC, 1 = A. The following proposition describes explicitly the Paisstructures on the algebras
C; induced by these changes of variables.

Proposition 1.11. For all 1 < j < n we have:
(1) €41 isisomorphic to an iterated Poisson-Ore extension of thefo
K[Xa]- - [Xjs 05, 65]p (X413 Bjalp -+ [ Xas Bulp
by a Poisson isomorphism sendig ;i to X; for 1 <i < n.

(2) Foralll e {j +1,...,n}, the map3; is a Poisson derivation such that(X;) = A\; X; for all
1 <i<landwehaves D, = D; 0 + kA;D; i forall 1 <4 < jandallk > 0.

(3) SetS; = {U" [ m > 0} = {V;™ | m > 0}. We haveC;S; " = Cj 15,

10



Proof. We proceed by a decreasing inductionjororj = n + 1 we haveC,, 1 = A and the result
follows from Hypothesi§ 117. We now suppose that the restituie for a rank + 1 > 2. To simplify
notation we sel; = X, ;1 andV; = X, ; forall 1 < i < n. By the induction hypothesis we can
expres; ;1 as the iterated Poisson-Ore extension:

K[U1] -+~ [Uj; a4, 051 p[Ujs1; Bj+1lp -+ - [Uns Bulp € P.
By Lemmd1.1D we can write:
Cj+1 = K[Ul] s [Ujfl; Oéj—l,éjfl]P[UjJrl; B;‘-H]P T [Un§ 5;;]P[Uj; a;’(;;]P’

whereg; for all j < I < n anda; andd’; are defined as in assertion (1) of Lemimall.10. In particular
53- extends to an iterative, locally nilpotent highey;, a;)—skew Poisson derivatio(i)}k)gozo on the
Poisson algebra:

—

Cjt1 =K[U1] - [Uj-1;05-1,8;-1]p[Uj11; Bjalp -+ - [Un; Byl p-

Therefore by applying Theorm 1.5 to the Poisson algébra = C/*JE [Uj; o5, 53] p we get a Poisson

algebra isomorphisr from C/’j;[Ujﬂ; o/]p to C/‘jE[Ujﬂ; o/;, 8] p sendingU; to U;. In particular

we haved (U;) = V; forall 1 < i < n sinceU; = V; and:

1 —1 C

1 - > = Du(Un)U; i < J,

O(U) =3 DUV} = § 20T -
>0 '1J U; 1< j.

Thus we have:

—

0(Cia[Us; olp) = KVA] -+ [Vicis 1,851l p[Vis1; Bjalp - Vas BrlpVyi ajlp = Cj

and by Corollary16 we gef;S; ' = C;15; . This proves assertion (3).
Since{V},V;} = \;;V;V; forall j < 1 < n we can bring back’; in the j-th position:

Cy =KV [Vi-siayo1, 851 elVyi Bl -+ [Vas B

where for allj < < n, the map3/’ is a Poisson derivation such thg{t(V;) = A;; Vi forall 1 < i <.
This proves assertion (1).

Finally, the fact that3,' D,,, x = Dy 18] + kAim D i foralll <m < j <1 <nandallk > 0,
follows directly from the equalities:

® 51 Dp i = Dy ki + kX Dy foralll <m < j <l <nandallk >0,
e 3(U;) = \yUiforallj <l <nandalll <i<l,
° Ozj(UZ') = )\]ZUZ foralll <i< 7

o B/ (Vi) =XN;Viforallj <l<nandalll <i<I.
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This proves assertion (2). O

Corollary 1.12. The algebraA := C, is a Poisson affine space. More precisely, by seffing= X;
forall 1 <i < nandA for the skew-symmetric matrix definedby= (\;;) € M,,(K) we have:

A=K\[Ty,...,T,).

2 Poisson deleting derivations algorithm and Poisson speaim

Recall that for a Poisson algebBawe denote by P.Spé&) its Poisson spectrum, i.e. the set of prime
ideals of B which are also Poisson ideals. P.SpB¢ is endowed with the induced Zariski topology.
In this section we focus on the behaviour of the Poisson gppeabdf an iterated Poisson-Ore extension
A € P under the Poisson deleting derivation algorithm. We shawttiere is an embedding between
P.SpecA) and P.SpetA). This is done by showing that, at each step of the algorithenetlis an
embedding between P.Spgc; 1) and P.Spe(C;) forall 2 < j < n.

Throughout this section, we use the notation of HypotHesisahd we fix2 < j < n, and set
Ui = X; j1andV; = X; ;forall1 <i <n.

2.1 The embeddingyp; : P.SpecC;,,) — P.SpedC;)

Recall thatl/; =V}, and set:

P;(Cj) = {P € P.SpedC)) | V; ¢ P}, P;(Cj) = {P € P.SpedC)) | V; € P},

PY(Cjt1) = {P € P.SpecCj1) | U; ¢ P}, P;j(Cj41) = {P € P.Spe¢C; 1) | U; € P}.

These sets partition P.Spgc;) and P.Spe(C;1). Since we hav«.ijSj*1 = CjHSj*l, contraction
and extension of ideals provide bijections betwﬁ’r@(]j) andeQ(CjH) (it is easy to show that the
contraction or the extension of a Poisson ideal is again ssBniideal). More precisely we have the
following result.

Lemma 2.1. There is a homeomorphispd! : PY(C;11) — PY(C;) given byg)(P) := PS; ' N C;
for P e P9(Cj1). Its inverse is defined biy9) =1 (Q) := QS; ' N Cjy1 for Q € PI(C).

We note that both;o? and (wg)—l respect the inclusion of Poisson prime ideals. We now want
to compareP}(CjH) and P}(Cj). For, we denote byU;)p the smallest Poisson ideal @@;4
containingU; and for all1 < ¢ < n, we denote byJ; the image ofU; in the Poisson algebra
Cj+1/{Uj)p.

Lemma 2.2. There is a surjective Poisson algebra homomorphismC; — C;.1/(U;)p given by
g;(Vi) =U;forall 1 <i<n,
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Proof. The mapg; is the composition of the canonical quotient map C; 11 — C;41/(U;)p and

the algebra isomorphisti : C; — C;41 defined by¥ (V;) = U; forall 1 < i < n. Thus clearlyy; =
moW is a surjective algebra homomorphism. Note thiat a Poisson algebra homomorphism whereas
VU is not in general, so we cannot conclude directly. We showdh@ Vi, Vi}) = {9;(Vk),9;(V1)}
forall1 <1 < k <n. Firstif k > j we have:

9i{Vi, Vi}) = gi(AViVi) = MaUiUr = {U, Ui} = {95 (Vi), 9;(Vi) }-
(Note that wherk = j we haveU,, = 0). If k < j we have¥ (5;(V})) = 6;(U;) and thus:

9 ({Vi, Vi}) = g5 MaVeVi 4 0:(V)) = MUk, + g5 (0: (V1))
= AUpUp + 6, (U)) = {U, Ui} = {g;(Vi), 9; (V1) }.

O

SetN; := ker(g;). There is a homeomorphispy from P} (C;41) to {P € P.SpedCj) | N; C
P} defined byp}(P) := g; ' (P/(U;)p) for P € P}(Cjy1). SinceV; = U; € N; we have{P e
P.SpedC;) | N; € P} C P}(C;) and:

Lemma 2.3. There is an increasing and injective map : P} (Cj.1) — P} (C;) defined by} (P) =
g; ' (P/{U;)p) for P € P}(Cj41), which induces a homeomorphism on its image.

We can now define a map; : P.Spe¢C;,1) — P.Spe¢C}) by setting:

o[ PP EPUC)
P = { AP it P e PC).

As a direct consequence of Lemniad 2.1[and 2.3 we get the foljoesult.
Proposition 2.4. The mapp; : P.Spe¢C;1) — P.SpecC}) is injective. Fore € {0,1}, the mapp;

induces a homeomorphism fraRj (Cj.1) to ¢; (Pj(CjH)) which is a closed subset & (C}).

2.2 The canonical partition of P.Spe¢A)

Definition 2.5. We setp := p90---0¢,,. This is an injective map from P.SpgC,,1) = P.Spec¢A)
to P.Spe¢C,) = P.SpedA) and we refer to it as theanonical embedding

LetWW := Z([[1,n])) denote the powerset @1, n]. Forw € W, we set:
P.Speg,(4) := {Q € P.SpedA) | QN {T1,..., Tn} = {Ti | i € w}},

where we recall that th&; are the generators of the Poisson affine sphclote that these sets form
a partition of P.SpegA). For allw € W we set:

P.Speg,(A) := ¢~ (P.Speg,(4)),
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andWV}, for the set ofw such that P.Speg(A) # 0, i.e.
Wp:={w € W | P.Spec,(A) # 0}.
This family forms a partition of P.Spée!):

P.Spe¢A) = | | P.Speg,(4) and |Wp| < |W]|=2"
weWp,

Definition 2.6. This partition of P.SpeA) will be called thecanonical partition the elements of
W, will be called theCauchon diagrams associated tpdx Cauchon diagrams for short. Finally, for
w € W, the set P.Speg(A) is called thestratumassociated ta.

Note that the selV’}, depends on the expressionfas an iterated Poisson-Ore extension.

2.3 A membership criterion for Im(y)

The following results help us to understand whether or ndtengPoisson prime ideal of belongs to
the image of the canonical embedding. This will be usefultderstand better the canonical partition
and when dealing with examples. We start this section witleebership criterion for Irfy;). Recall
that V; = ker(g;) was defined in Sectidn 2.1.

Lemma 2.7. Let@ € P.Spe¢C;). Then:
Q €Im(yp;) < (eitherU; =V; ¢ Q,or N; C Q).

Proof. This is clear since the ma,p? is a bijection fromPJQ(CjH) to PJQ(CJ-) and the mamojl. is a
bijection fromP} (C;1) to {Q € P.SpecC;) | N; C Q}. O

Setf, := idplspe@). Forall2 < j < n we define a mayf; : P.SpecC;1) — P.Spe¢A) by
setting f; := fj—1 o ;. Note that eacly; is injective. We deduce from Lemrha 2.7 the following
membership criterion for Iifyp).

Proposition 2.8. LetQ < P.SpecA). The following are equivalent:

° Q S |m(g0),

e forall 2 < j < nwehavel € Im(f;_1) and
either X ; = Xjj+1 ¢ fj:l1(Q)a or N; C f]:11(Q)

Remark2.9. To understandV; it is enough to understand/;) p sinceN; = ¥~1((U;) p), where the
algebra isomorphisn¥ : C; — Cj41 is defined by¥(V;) = U; for all 1 < i < n (see proof of
Lemmd2.2). ASlU;,U;} = \j;U;U; + 6;(U;) for all i € 1,5 — 1], we deduce that:

(Uj,6;(Us) i € [1,5 —1]) € (Uj)p.
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By minimality of (U;) p, the reverse inclusion will be satisfied if the left hand s&la Poisson ideal.
However this is not always the case as the following examplaahstrates. Le#l be the iterated
Poisson-Ore extensioA := C[X][Y; 3, A]p[Z;«,d]p, Wwheref := —X0x, a := X0x — Y0y,
A := 0y ands := Y29y, so that:

{V, X} = XY +1,
{(Z,X}=XZ+Y?,
{Z,Y}y=-YZ

We haveAs — BA = —A andda — ad = 6. Moreover sincel andoé are locally nilpotent, assertion
(3)) is satisfied and the algebr&belongs toP. However the idealZ, Y2) is not a Poisson ideal.
2.4 Topological and algebraic properties of the canonicalrabedding

In this section we investigate topological properties @f ¢anonical embedding. We start with some
results that will be used in this section as well as latter on.

Lemma2.10.Letl € {j...,n}, P € P.SpecC;,1) and@ := ¢;(P) € P.Spe¢C;). Then we have:
U eP & Veq.

Proof. If | = j, then(U; € P) & (P € Pj(Cj41)) and(V; € Q) & (Q € Pj(C;)), and the result
is given by Propositioh 214. We distinguish between two sagieen/ > j. First, if P ¢ PJQ(C]-H),
then we have:

UeP = UePS;' = V=UeCnPS;'=Q,

and
VieQ = VeQS;' = U=VeCnQS =P

Next, if P € P}(Cjﬂ), then we have:

U eP < 716

& g (V) e & Vzegj_l< )ZQ-

{Uj)p (Uj)p {Uj)p

O

For@ € Im(y), we setP; := j*_ll(Q) € P.Spe¢(}) for all 2 < j < n + 1. In particular, note
thatQ = P.

Corollary 2.11. Leti € {1,...,n} and@ € Im(y). We have:
Ti=Xip€ P Xy € Piqr.

Proof. This follows by induction from Lemmia2.10. O
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Letl <j <nandw € W. SetX,, := fjfl(P.SpeQU(Z)) C P.SpeqCj11). Whenj > 2, we
also set,, := j‘fl(P.SpeqU(Z)) C P.Spe¢C}), so thatX,, = gpj_l(Yw) sincef; = fj_1 o ¢. Note
that the sets(,, andY,, can be empty.

Lemma 2.12. For j <[ < n we have:
e Ifl ¢ w,thenU; ¢ Pforall P € X,
e Ifl ¢ w,thenU, € Pforall P € X,,.

Proof. Note that sincd > j we havelU; = X, = T;forall2 < k < j+ 1. If j = 1, we have
X, = P.Spec, (A) and the result comes from the definition of P.Spé4).

Assume thag > 2 and the result shown for — 1. First assume thdt¢ w and letP € X,,. If
U, € PthenV; € Q = ¢;(P) € Y,, by Lemm& 2.10. This contradicts the induction hypothekiss t
U, ¢ P. Next assume thdte w and letP € X,,. If U; ¢ P thenV; ¢ Q = ¢;(P) € Y,, by Lemma
[2.10Q. This contradicts the induction hypothesis, thius P. O

Lemma 2.13. The setf;(X,,) is a closed subset ¢.Spec,(A), and f; induces (by restriction) a
homeomorphism fronX, to f;(X,,).

Proof. The result is trivial ifj = 1. Assume tha > 2 and that the result is shown fgr— 1. By
LemmdZ. IR (applied tb= j for j andj — 1) we have:

e j¢w) = (Xy CP)Cj1)andY, CPIC))),
° (] S w) = (Xw C 'P}(Cj_i_l) andY,, C 73]1((]]))

Therefore we have;(X,,) = Y, N Z whereZ = ¢;(P;(C;j+1)) with ¢ € {0,1}. By Proposition
[2.4,Y,, N Z is a closed subset df,, andy; induces a homeomorphism froM,, to Y,, N Z. By the
induction hypothesig;_; induces a homeomorphism fro, to f;_(Y,,) which is a closed subset
of P.Speg, (A).

Thusf;_1(Y,NZ)is aclosed subset g§_; (Y,,) (as the image of a closed subset by a homeomor-
phism), and so is a closed subset of P.Spet). Sincef;(X,) = fj—10¢j(Xw) = fj—1(Yw N Z),
the first assertion is proved.

The mapf; : X, = f;(Xw) = fj—1(Yw N Z) is the composition of the two mags; : X,, —
YoNZandfj_1:Y,NZ— fj—1(Y, N Z) which are both homeomorphisms. O

Whenj = n we havef; = ¢ andX,, = P.Speg,(A), for all w € W. We deduce the following
result.

Theorem 2.14.Lety : P.Spe¢A4) — P.Spe¢A) be the canonical embedding ande W}. Then
©(P.Speg,(A)) is a (non empty) closed subsetro®pec, (A), andy induces (by restriction) a home-
omorphism fronP.Spec, (A) to p(P.Speg,(A)).
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In particular we note that the maprespect the inclusion of Poisson prime ideals within theesam
strata. In a lot of examples (when the Poisson algebra cersids supporting a suitable torus action
for instance) the inclusion of the previous theorem is dist@n equality:

©(P.Speg,(A)) = P.Speg,(A).

However this is not true in general as the following exam@mdnstrates.

Example2.15 Assume that chdk = 0. Let B = K[ X, X2, X3] be the Poisson affine space where:

-1
A= -1
0
Observe thaty := _Xlaixl - Xgaix2 is a Poisson derivation d& ands := (X, JFXQ)B%3 a Poisson

a-derivation of B. Thus we can form the Poisson-Ore extensibr= B[Xy; «, §]p. Note thatd is
locally nilpotent and that we hawey = ad + 0. ThusA € P by Remarl_1DB. In particular the
derivationé uniquely extends to an iterative, locally nilpotent higliera)-skew Poisson derivation
(D;) defined byD; = ‘2—, for all i > 0. Therefore we can apply the deleting derivations algorithm
(actually the deleting derivation homomorphism is enougtetsince there is only one step in the
algorithm).

The Poisson algebrd is the Poisson affine spaégy/ [T}, T», T3, T4] where:

0o 0 -1
0O 0 -1

0
-1 -1 0

P

o O = =

and wherel} = X, Ty = X5, T35 = X3+ (X7 + XQ)X;1 andT, = X,. The canonical embedding
is the mapy from P.Spe¢A) to P.Spe¢A) defined by:

p PST'nA X, ¢ P
g (P/{(X4)p) Xy€P,

whereS is the multiplicative set ofd generated byX4, and where:

g: A —

(Xa)p
T; '—)XZ+<X4>p for i=1,...,4.

Firstly we show thaf4} € W, C W = 22([1,4]). SetP = (Xu)p = (X4, X1 + Xo). It
easy to see tha? € P.Spec¢A). SinceX, € P, Lemmd3.1 gives us a Poisson algebra isomorphism
A/P = A/p(P) sendingX; + PtoT; + ¢(P) for 1 < i < 4. Therefore we havé € ¢(P) and

T1,T»,T5 ¢ ¢(P). Hencep(P) € P.Speg, (A) and{4} € Wp.
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Secondly, sincd4} € W}, Theoreni 2.14 tells us that the $@([P.Spec{4}(A)) is a non-empty
closed subset of P.Speg (A4). We will show that this inclusion is strict. F@p € P.Speg,; (A) we
haveT € ¢(Q) € P.Speg,,(4), soX, € Q. ButthenQ € P'(A) and thus(Ty, T1 + T») C »(Q).
Hence we have the following inclusion:

¢(P.Speg,y(A)) C {P € P.Speg,y(A) | Ty € P, T1 + T € P} C P.Speg,(A).

Butitis clear thatTy) € P.Speg,,(A). Thus:

¢ (P.Speg,y(4)) & P.Spegy, (A).

To conclude this section we prove the following criteriom goPoisson prime ideal to belong to
the image of the canonical embedding.

Proposition 2.16. Letw € W}, P € P.Speg,(A) andQ € P.Speg,(A) such thatp(P) C Q. Then
Q € Im(y).

Proof. We prove by induction thaf) € Im(f;) forall 1 < j < n. Whenj = 1 the result is trivial
since f; is the identity on P.Spgcl). Suppose thaf) € Im(f;_1) for some2 < j < n. We have to
show thatf]f_ll(Q) € Im(yp;) sincef; = fj—1 o p;. Firstly we remark thaip(P) C @ implies that
F71(e(P)) € f;,4(Q) by Lemmd21B (withy replaced byj — 1). We now distinguish between two
cases.

Assume thal; ¢ f;l(@(P)). Then by Corollary 2,11 we havg; ¢ ¢(P) and soj ¢ w. But
then by Lemma 2.12 we havé; ¢ f]f_ll(Q) and thusfj‘_ll(Q) € Im(yp;) by Lemmée 2.7.

Assume that/; € ;' (o(P)). Then:

N; C @i (f;H(@(P)) = fi 4 (0(P) € £;24(Q),

and Lemm&2]7 shows th#f ', (Q) € Im(i;).
This concludes the induction. The result follows by takjng n. O

3 Poisson prime quotients of4 and A

In this section we study the behaviour of the Poisson prinmgiguts of a Poisson algebrac P under
the deleting derivations algorithm. We continue using tietefrom Hypothesis 117 and Sectibh 2.

Fix2 < j <n,letP e P.Spe¢C;;) and set) := ¢;(P) € P.Spec¢C};). As usual, to simplify
notation we sel; := X; ;1 andV; := X; ; for all i. We also selD := Cj;,1/P andE := C;/Q.
Finally, we setd; := U; + Pande; :=V; + Q forall1 <i <n.

Lemma 3.1. If d; = 0, then there is a Poisson algebra isomorphism betwEemd D sendinge; to
d; forall1 <: <n.

18



Proof. d; = 0 means thatP < Pl(CJH) and@ = g; Y(P/(U;)p). Thus we have a surjective
Poisson algebra homomorphism:

Uj)p
Wi /< >P ]+1/
whose kernel i€). O
Lemma 3.2. Assume thatl; # 0 and setS = {d} | n > 0}. Then there is an injective Poisson

algebra homomorphism : £ — DS ! defined by:

e =3 5 1D DU " i<
k>0773

whereD; (U;) := D; 1(U;) + P.

Proof. By assumptionP € P9(Cjy1), s0QS; " = PS; ! is anideal inC;S; " = C;115; " and we
have the following identifications:

C;S;t CinSit o
- - J

—1
—1 —1 :
QS; PS;

Thus the canonical embedding Of in Cij‘l induces a well-defined injective Poisson algebra ho-
momorphismA from E to DS_f1 whose expression is clear from the equalities:

Vi= gomD”( TR i<

From Lemm&3]1 and Lemrha 8.2, we can state:

Corollary 3.3. D and E have the same Poisson field of fractionsl{jf ¢ P, we identifyZ with its

image inDS:" by A so that we hav®s, ' = ES; ).

An easy induction gives us the following result on the Paissioucture of the fields of fractions
of the Poisson prime quotients df

Corollary 3.4. Let A € P, P € P.SpedA) and setQ := o(P) € P.SpedA). Then we have a
Poisson algebra isomorphism:
Frac(A/P) = Frac(4/Q).

In particular this corollary says that in order to prove thedyratic Poisson Gel'fand-Kirillov
problem (see[11] oi [17]) for the Poisson prime quotientgldfis enough to prove it for the Poisson
prime quotients of the Poisson affine spateWe retrieve the result of [17, Therorem 3.3 (2)] with
the addition that the ided) is now charaterised by the canonical embedding. In charstitezero
the Poisson prime quotients of a Poisson affine space inddisflyshe quadratic Poisson Gel'fand-
Kirillov problem ([11, Theorem 3.3]), but this is not cleamyanore in positive characteristic.
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4 Poisson Dixmier-Moeglin equivalence

In this section we prove that tHeoisson Dixmier-Moeglin equivalené®lds for the Poisson algebras
of the class? when chalk = 0. As stated in the introduction it only remains to show thatBisson
rational ideals ofA € P are also locally closed. We continue to use the notation qfdthyesis 1.I7
and of Sectionk]2 arid 3. For a Poisson prime ideaf a Poisson algebrd we set:

V(P)={lcPSpecA)|I > P} and W(P)={I € P.SpecA) |l 2 P}.

The setl/(P) is a closed set of P.Spéd) andW (P) is an open of P.Spdel). The following lemma
is a Poisson version of[3, Lemma I1.7.7].

Lemma 4.1. Let A be a Poisson algebra ant € P.SpeqA). ThenP is locally closed if and only if
the intersection of all the Poisson prime ideals properiptaining P is an ideal properly containing
P.

Proof. LetZ be the intersection of all the Poisson prime idealsi @roperly containingP. If P ¢ Z,
thenW (Z) NV (P) = {P}, i.e. {P} is alocally closed point P.Spéd). Conversely, ifP is locally
closed, then there are idedlgnd L in A such that' (I) "N W (L) = {P}. Therefore we can see that
PCL+PCT. O

HenceP is locally closed if and only if the intersection of all nolivial Poisson prime ideals in
A/ P is non trivial.

Proposition 4.2. Let A € P and assume thatharK = 0. Then Poisson rational ideals of are
Poisson locally closed ideals.

Proof. Recall that by applying the Poisson deleting derivatiogsdhm to the Poisson algebrawe
get a sequence of Poisson algelfasvherej runs fromn + 1 to 2 such thatC,, ; = A andCy = A
is a Poisson affine space. We will show by an increasing imolucin j that all Poisson rational ideals
of C; are locally closed. Whepi = 2 the algebraA is a Poisson affine space and the result comes
from [9, Example 4.6]. Assume that for soe< j < n the Poisson rational ideals 6f; are locally
closed. LetP € P.Spe¢C;) be a Poisson rational ideal. We distinguish between twoscasther
Uje P,orU; ¢ P.

Case 1if U; € P, then by Lemma_3]1 we get a Poisson algebra isomorphism betg /P
andC}/p;(P), and the result follows.

Case 2if U; ¢ P, then by Lemm&3]2 we get the equalityS; ' /QS; " = C; 15" /PS;,
which leads to the isomorphism:

Zp (Frac(C;;q)) = Zp<Frac(%%D ))

~—
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Thereforep;(P) € P.Spe¢C}) is Poisson rational, and so is locally closed. We now intoeda few
notation:

T} :={Q € P.SpedC;)) | ¢;(P) & Q andV; ¢ Q},
F} = {Q € P.SpedC;) | p;(P) ¢ QandV; € Q},
Fli1:=1{Q € P.SpeCj1) | P ¢ QandU; ¢ Q},
Fi1:={Q € P.SpeC; 1) | P ¢ Q andU; € Q},

=@ T'=(]Q Th= (] Q ad Ty := () Q

QeFY QeF} QEF),, QEF},,

LetZ be the intersection of all the Poisson prime ideal€'pf; properly containing”. We have:
(P locally close() = (P c Z) — <P ¢ (TN 7;1“)) (3)
By the induction hypothesis we have:
0;(P) & (TP NT}') sothat ¢;(P)=PS:'nC; ¢ T,
Since the mapp; restricts to a homeomorphism fraff, , to 7 we have:

ﬂPj(P)gTO — P§7}0+1-

J

Therefore there exists € (7}0+1 \ P). Moreover by definition we havé; € (7;1+1 \ P). SinceP is
a prime ideal and, U; ¢ P it clear that:

alj € (7}0+1m7}1+1\P>’

and by [(3) we obtain thaP is locally closed. This concludes the induction. The casen gives us
the result forC,, ; = A. O

We are now ready to state the main results of this section.

Theorem 4.3.Let A € P and assume thatharK = 0. ThenA satisfies the Poisson Dixmier-Moeglin
equivalence.

Corollary 4.4. Let A € P and assume thatharK = 0. Then for allP € P.Spe¢A) we have the
following equivalence:

P is Poisson primitive ild <= ¢(P) is Poisson primitive im.

We can also describe the primitive idealshE P inside their stata, namely they are exactely the
maximal ideals in their respective strata.

Proposition 4.5. Let A € P and assume thatharK = 0. Suppose thaty € W}, and letP <
P.Spec,(A). Then:

P is Poisson primitive <= P is maximal inP.Speg,(A).
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Proof. First suppose thaP is a Poisson primitive ideal. Thep( P) € P.Speg,(A) is Poisson primi-
tive in A by Corollary[4.4. By[[9, Theorem 4.3, Example 4.6],P) is maximal in P.Speg(A). Now

let P’ € P.Speg,(A) be such thai” C P’. Sincey induces a homeomorphism from P.Spéel) to

©(P.Speg,(A)) C P.Speg,(A), we havep(P) C (P’ inside P.Speg(A). By maximality ofo(P)

we getp(P) = ¢(P'),i.e. P = P’, andP is maximal in P.Speg(A).

Conversely, suppose th&tis maximal in P.Speg(A). Theny(P) is maximal ing (P.Speg, (A))
by Theoren(2.14. Recall that(P.Speg,(A4)) C P.Speg,(A) by Theoren{ 214, and lef) <
P.Speg,(A4) such thatp(P) C Q. By Propositio 2.16 we hav@ € Im(yp), i.e. Q € ¢(P.Speg,(4))
and by maximality ofp(P) in ap(P.SpeqU(A)) we have@) = ¢(P). Thereforep(P) is maximal in
P.Spec,(A). By [9, Theorem 4.3, Example 4.6] this shows th4f) is Poisson primitive inA. We
conclude by Corollariy 414 thd? is Poisson primitive inA. O

In characteristic zero every iterative, locally nilpotdPdissona-derivation such thad, o] =
nd for some nonzero scalay, extends to an iterative, locally nilpotent highler, «)-skew Poisson
derivation, so that Hypothedis 1.7 is easier to check indhsé.

We have the following transfer result, which can be proved Bimilar way as Propositidn 4.2,
thanks to Theorefn 1.5.

Theorem 4.6. Assume thatharK = 0. Let A be an affine PoissoK-algebra,a € Derp(A) and
0 be a locally nilpotent Poisson-derivation such thais, a] = né for some nonzero scalay. If the
Poisson-Ore extensiaA[X; o] p satisfies the Poisson Dixmier-Moeglin equivalence, therPtiisson-
Ore extensioM[X; a, §] p satisfies the Poisson Dixmier-Moeglin equivalence.

Exampled.7. The algebrad = B[X4; «, 6] p of Example 2,15 satisfies the Poisson Dixmier-Moeglin
equivalence. Indeed, the Poisson algeBf& 4; o] p is a Poisson affine space and thus satisfies the
Poisson Dixmier-Moeglin equivalencé ([9, Example 4.6]orover[, o] = ¢ andd is locally nilpo-
tent, so we can apply Theordm#.6. Note that the tdfus= (K*)? acts by Poisson automorphisms
on this algebra via:

h-X1=mXy, h-Xo=mhXs, h- X3=hyXs, and h- Xy :h1h51X4,

forall h = (h1,he) € H. However, the fact thad satisfies the Poisson Dixmier-Moeglin equivalence
cannot be deduced froml[9, Theorem 4.3] with this naturalga@ction asd has infinitely many
PoissonH -invariant prime ideals (it is easy to check that, for alle K, the ideal generated by
X1 + AXs is a PoissorH -invariant prime ideal).

5 Quantum and Poisson matrices: toward a homeomorphism beteen
spectrum and Poisson spectrum

In this section we assume that cli@e= 0 and thaty € K* is not a root of unity. It is conjectured in
[10] that, among other quantised coordinate rings, thetspacof the algebra of quantum matrices
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is homeomorphic to the Poisson spectrum of its semiclddgitia In this section we present a step
toward proving this conjecture. The single parameter doatd ring of quantum matrices is denoted
by R := 0O, (Mm,p(K)) (seel3, Section 1.2.2] for a definition). Its semiclassloait, denoted byA,

is the polynomial algebr&[X;; | 1 <i <m, 1 < j < p| endowed with the Poisson bracket:

Xij Xy ifi<kandj =1,
Xij X ifi=kandj </,

if i <kandj > 1,
2XXy; ifi<kandj <l

{Xij, X} =

For more details on the semiclassical limit process(see§&6tion 2]. SetV = P([[1,m] x [1,p])).
Thanks to Cauchon’s deleting derivations algorithm (5dg fBe spectrum Spdd) of R is parti-
tioned into strata, denoted by Spe@d?), indexed by the elements of a subBét of . Itis shown in
[20, Section 7.3] that the Poisson algebraelongs to the clasB, so that we can perform the Poisson
deleting derivations algorithm, and that the set of Cauatiagramsi¥’}, coincides withi?’.

We now compare the strata Spgd?) and P.Speg,(A) associated to the samec W' = Wy,.
We will need the following observation. The algebRa obtained at the end of Cauchon’s deleting
derivations algorithm, is a quantum affine space assoctatadnultiplicatively skew-symmetric ma-
trix q := (q(i),(u,v)) Of the formgg ;v = ¢\ia.o) for some skew-symmetric matrix =
(Aig),(uw)) (the matrixX is made explicit in[[1, Section 4.1] for instance). It is aedir consequence
of the semiclassical limit process thais the matrix defining the Poisson affine spatebtained at
the end of the Poisson deleting derivations algorithm.

Proposition 5.1. Letw € W’ = W}. Then there is a homeomorphism betw&®pec,(A) and
Spec, (R). More precisely we have:

P.Speg,(4) = SpedK[UT, ..., U"]) = Spec,(R),

wheres is equal to the dimension ové&r of the kernel of a matri¥/(w), obtained from the matrix
by deleting rows and columns indexed(by;) € w.

Proof. The homeomorphism Spg¢R) = SpedK[U!, ..., UZ) follows from [1, Theorem 3.1]
and the observation made before the proposition.

To prove the homeomorphism P.Spdel) = SpeqK[U!, ..., UZF']) we proceed as follows.
From Theoreri 2.14 and [20, Theorem 7.3.8] the stratum P,Sp&cis homeomorphic to the stratum
P.Speg, (A) via the canonical embedding. Recall this the Poisson affine spak®\ [T11, . . . , Trnyp)-
We denote byJ,, the Poisson ideal ofl generated by thd;; for (i,j) € w, and byS,, is the
multiplicative set of4/.J,, generated by the image of tfg; for i € w := ([1,m] x [1,p]) \ w. It
results from the definition of P.Spg€A) (see Sectioh 212) that there is a homeomorphism between
P.Spec,(A) and P.SpefTl’), whereT = (A/J,)S,! is the Poisson torus associatedMt(w). By
[23, Lemma 1.2], a Poisson ideal of a Poisson torus is gestbiat its intersection with the Poisson
centre, thus:

P.Speg,(A) = P.Speg,(A) = P.SpedT) = P.Sped¢ Zp(T)).
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By [23, Lemma 1.2], the Poisson centrelofs the group algebra of the free abelian group:
S:={aeZ |aM(w)s" =0 forall g e Z"},

wherer is the cardinality oft and the elements &" are seen as row vectors. To conclude we remark
that a basis of has the same cardinality as a basis of the kernel of the mif(ix). O

To summarise, we have just proved Theofen 0.1, i.e. therdiigetion between Sped) and
P.Spe¢A) which induces by restriction homeomorphisms from Sp@g) and P.Speg(A) for all
w € W' = W}. However it is unclear whether this bijection is a homeorh@m or not. The main
obstruction is that the canonical embedding is only comtirsuon strata.
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